WO2018123249A1 - マイクロ波加熱処理装置及び炭素繊維の製造装置と製造方法 - Google Patents
マイクロ波加熱処理装置及び炭素繊維の製造装置と製造方法 Download PDFInfo
- Publication number
- WO2018123249A1 WO2018123249A1 PCT/JP2017/039325 JP2017039325W WO2018123249A1 WO 2018123249 A1 WO2018123249 A1 WO 2018123249A1 JP 2017039325 W JP2017039325 W JP 2017039325W WO 2018123249 A1 WO2018123249 A1 WO 2018123249A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- microwave
- heated
- heat treatment
- conductivity
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/14—Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/66—Circuits
- H05B6/68—Circuits for monitoring or control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/80—Apparatus for specific applications
Definitions
- the present invention relates to a microwave heat treatment apparatus for carbonizing precursor fibers by irradiation with microwave power, and a carbon fiber production apparatus and production method using the same.
- Carbon fiber has excellent physical and chemical properties and is increasingly used in a wide range of fields such as automobiles, aerospace, industrial machinery, and others.
- heated fiber (precursor fiber) spun from polymer raw material is rolled to roll (roll-to-roll) in a heating furnace heated from 300 ° C to 2000 ° C with a resistance heater. to roll) method (see Patent Documents 1, 2, and 3).
- the heating method for heated fibers in the conventional carbon fiber manufacturing process starts the manufacturing of heated fibers that are set for heat treatment using the roll-to-roll method to raise the temperature inside the furnace, including the walls of the heating furnace. It takes a lot of time and effort to raise and lower the temperature of the heating furnace when it is completed and when maintenance is performed. In addition, since the heat capacity of the heating object including the heating furnace wall is large, a large amount of electric power is consumed particularly when the temperature is raised. Therefore, when carbonizing the heated fiber, a method of reducing the power consumption and improving the maintainability of the heating furnace by irradiating microwaves to the heated fiber without heating the entire heating furnace is being studied.
- the microwave heating apparatus that performs the heat treatment by the microwave in the heat treatment chamber, Apply a voltage between two specific points of the heated fiber, From the voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber, the conductivity of the heated fiber is calculated.
- a technique for adjusting the microwave output so that the heat treatment according to the carbonization rate, microwave output, and conductivity of the fiber to be heated calculated in advance is performed.
- the conductivity of the heated fiber traveling in the heat treatment chamber is measured, and the microwave output is obtained based on the relationship obtained in advance as the relationship between the conductivity, the microwave power, and the carbonization rate. It is possible to adjust the carbonization of the heated fiber with high quality. Further, according to the present invention, in the carbon fiber manufacturing process, heat treatment by a microwave heating apparatus is possible, the temperature of the heated fiber in the heat treatment is calculated and measured, and the heat treatment control according to the carbonization state is performed. Is possible.
- FIG. 2 is a cross-sectional view (detailed cross-sectional view of the heat treatment chamber in FIG.
- FIG. 1A for explaining the heat treatment chamber in the microwave heating apparatus according to the embodiment of the present invention.
- FIG. 2 is a cross-sectional view (view of the inside of the heat treatment chamber in FIG. 1A as viewed from above) for explaining the heat treatment chamber in the microwave heating apparatus according to the embodiment of the present invention.
- the figure regarding the microwave irradiation part and conductivity measuring part concerning embodiment of this invention The figure regarding the microwave irradiation part and conductivity measuring part concerning embodiment of this invention
- the figure regarding the microwave irradiation part and conductivity measuring part concerning embodiment of this invention The structure of the microwave irradiation part concerning embodiment of this invention is shown, (a) is the figure seen from the side, (b) is the figure seen from the bottom.
- FIG. 1A to 1C are views for explaining a carbonization state in a microwave heating apparatus according to an embodiment of the present invention.
- FIG. 1A is a cross-sectional view of the heat treatment chamber and schematically shows a cross section of the heat treatment chamber 1 in which the heated fiber 3 is carbonized.
- FIG. 1B is a diagram showing the positional relationship of the heated part of the heated fiber in the heat treatment chamber, and shows the relationship between the mode in which the heated fiber 3 is heated by the microwave 5 and the position in the heat treatment chamber 1. ing.
- FIG. 1A is a cross-sectional view of the heat treatment chamber and schematically shows a cross section of the heat treatment chamber 1 in which the heated fiber 3 is carbonized.
- FIG. 1B is a diagram showing the positional relationship of the heated part of the heated fiber in the heat treatment chamber, and shows the relationship between the mode in which the heated fiber 3 is heated by the microwave 5 and the position in the heat treatment chamber 1. ing.
- FIG. 1A is a cross-sectional view of the heat
- FIGS. 1A to 1C are diagram showing the temperature, carbonization rate, dielectric loss, conductivity, and microwave output based on the positional relationship of the heated part of the heated fiber in the heat treatment chamber, that is, at the position in the heat treatment chamber 1.
- the temperature, carbonization rate, dielectric loss, conductivity, and microwave output of the heated fiber 3 are shown.
- FIGS. 1A to 1C the positions in the heat treatment chamber 1 are shown to have the same relationship.
- the heated fiber 3 enters from the left end of the heat treatment chamber 1 shown in the figure, is sent to the right end at a constant speed, and is heat-treated by a roll-to-roll method.
- the heated heated fiber 3 is supported by a roller 6 shown in FIG. 2A (and FIG. 2B), which will be described later, so that the position in the heat treatment chamber 1 is not changed.
- the electrical conductivity measurement part 14 is provided between the microwave irradiation parts 4 (2 places between each electrical conductivity measurement part in a present Example), and the electrical conductivity of the to-be-heated fiber 3 is measured. Details will be described later with reference to FIG.
- the number and installation positions of the microwave irradiation units 4 are increased or decreased depending on the number of heated fibers 3, the processing temperature, and the feed rate.
- 2.45 GHz is used as the frequency of the microwave, other frequencies may be used as long as the heat treatment can be performed by irradiation.
- the carbonization progresses from the left side of the heat treatment chamber 1 to the right, and shifts from dielectric heating to induction heating.
- the heated fiber 3 is a synthetic fiber spun from a polymer raw material and contains carbon. While the heated fiber 3 travels in the heat treatment chamber 1 in an inert gas atmosphere, the organic matter of the heated fiber 3 is denatured and a part of the organic matter is released out of the heated fiber 3. As a result, the carbon concentration of the heated fiber 3 is increased, and the chemical composition is also changed by heating, and the microwave absorption state is changed from the dielectric heating due to dielectric loss to the induction heating side due to induction current. In a state where induction heating occurs, the heated fiber 3 is heated from about 300 ° C. to about 2000 ° C., and this is maintained for a while to perform carbonization.
- the conductivity increases as the carbonization rate increases as the carbonization process proceeds, and the dielectric loss decreases.
- the temperature of the to-be-heated fiber 3 increases at an accelerated rate as the conductivity increases, and is maintained at about 2000 ° C. so that carbonization proceeds efficiently.
- the microwave output is maximized when the heated fiber 3 is heated, and is gradually decreased when the heated fiber 3 reaches 2000 ° C., and is controlled so that the temperature of the heated fiber 3 is maintained at 2000 ° C.
- Equation 1 The calorific value P1 due to dielectric heating is shown in Equation 1, and the calorific value P2 due to induction heating is shown in Equation 2.
- the amount of heat generated by dielectric heating is proportional to the dielectric loss tan ⁇ , and the amount of heat generated by induction heating is proportional to the conductivity ⁇ .
- the dielectric loss tan ⁇ for microwaves of the heated fiber 3 is large, so dielectric heating becomes the main heating mechanism, and when carbonization progresses and the conductivity ⁇ increases, an induction heating mechanism is added. Efficient heating at high temperatures is possible.
- FIG. 2A and 2B are views for explaining a heat treatment chamber in the microwave heating apparatus according to the embodiment of the present invention
- FIG. 2A is a detailed sectional view of the heat treatment chamber in FIG. 1A described above
- 2B is a view of the inside of the heat treatment chamber as viewed from above.
- a pipe (not shown) for supplying an inert gas into the heat treatment chamber 1.
- the heated fiber 3 is heat-treated in an inert gas atmosphere.
- a roller 6 that supports a plurality of fibers to be heated 3 that are continuously sent is provided inside the heat treatment chamber 1, and the plurality of fibers to be heated 3 are fed while maintaining a certain height.
- microwave irradiators 4 for irradiating the heated fibers 3 with the microwaves 5 are provided on the ceiling of the heat treatment chamber 1, and the microwaves 5 are irradiated to the plurality of heated fibers 3 that are running.
- a heat insulating cover (not shown) is provided around the heated fiber 3. This heat insulating cover has a low microwave absorption rate and is made of a high melting point material that suppresses transmission of radiant heat from the heated fiber. 2A and 2B will be described in detail later.
- FIG. 6A and 6B show the structure of the microwave irradiation unit 4 according to the embodiment of the present invention, where FIG. 6A is a side view, and FIG. 6B is a bottom view.
- the microwave irradiation unit 4 is composed of a magnetron 23, an isolator 24, a directional coupler 25, a matching unit 26, and a waveguide 27, and the end of the waveguide 27 is closed by a wall.
- the wall can be moved in the range of about one wavelength of the microwave in the axial direction of the waveguide 27 by a mechanism (not shown).
- slits 28 are provided below the waveguide 27 at intervals of 1 ⁇ 2 of the wavelength of the microwave.
- 1 ⁇ 2 wavelength indicates the pitch of the slit
- the interval between adjacent slits is 1 ⁇ 2 wavelength.
- the slits are arranged in a zigzag manner, but the slits may be parallel.
- the microwave output from the magnetron 23 is adjusted so as to resonate from the matching unit to the waveguide, so that the antinode 30 (see FIG. 7 described later), which is the largest part of the microwave electric field, is positioned in the slit 28.
- the microwave is radiated from the slit 28 to the outside of the waveguide 27.
- the height and the mounting position of the roller 6 vary depending on how the heated fiber 3 is routed. However, since the traveling position of the heated fiber 3 changes accordingly, the position of the microwave irradiation unit 4 takes these into account. Provided at an appropriate position.
- two sets of conductivity measuring rollers 7 are provided on the downstream side of the plurality of microwave irradiation units 4.
- the conductivity measuring roller 7 is provided with a plurality of pulley-like terminals 8 for applying a voltage to the heated fiber 3, and each power supply 11 passes through the two types of conductivity measuring rollers 7, respectively.
- a voltage is applied to the pulley-like terminal 8, and the voltage and current between the two pulley-like terminals 8 can be measured by a voltmeter 9 and an ammeter 10, respectively.
- the rotating shafts of the conductivity measuring roller 7 and the pulley-like terminal 8 are the same, and the contact portion of the outer periphery of the pulley-like terminal 8 with the heated fiber 3 is insulated from the conductivity measuring roller 7.
- a pulley-like terminal 8 for applying a voltage between two specific points of the heated fiber 3 is a pulley-like shape while rotating integrally with the pulley-like terminal 8 of the conductivity measuring roller 7 while the heated fiber 3 is running.
- the structure is such that a current flows between the terminal 8 and the heated fiber 3.
- a power line between two specific points of the heated fiber 3 is connected to a power source 11 provided outside the heat treatment chamber 1 via a rotary connector 13 provided at an end of the rotating roll. Further, when applying a voltage between two specific points of the plurality of heated fibers 3, a power source 11, a voltmeter 9 and an ammeter 10 may be provided for each, but when it is not necessary to measure continuously, As shown in FIG.
- the voltage may be applied in a time-sharing manner by the terminal selection unit 12 connected to the rotary connector 13.
- the measured voltage value and current value data are sent to the control device (control unit), and the conductivity of the heated fiber 3 is calculated. Further, the conductivity measuring system electrically connected to the power source 11 is insulated from other members.
- FIG. 10 shows a block diagram of a control apparatus according to the embodiment of the present invention.
- An AC or DC voltage is supplied from the power source (for conductivity measurement) to the terminal (electrode terminal) of the measurement unit that contacts the heated fiber.
- the voltage between the terminals measured by the measurement unit and the current value flowing through the heated fiber are digitized by an A / D (analog / digital) conversion unit and sent to the control unit.
- the microwave power source irradiates the heated fiber with the microwave adjusted by the calculation of the conductivity according to the control signal input from the control unit.
- the control unit stores the measured voltage and current value of the heated fiber in the storage unit over time, and sets the temperature, conductivity, voltage value between the measurement terminals, and current value so that the desired conductivity can be obtained. It is calculated and output to the microwave power source as a desired control signal.
- the conductivity of the fiber to be heated is measured as indicating the degree of carbonization by heating the fiber, and the measurement result is fed back to adjust the microwave irradiation.
- the voltage applied between two specific points of the heated fiber 3 in the conductivity measuring system is a direct current, but an alternating current may be used.
- DC is used to measure conductivity
- alternating current is used to measure conductivity
- the frequency of spark generation at the pulley-shaped terminal portion that contacts the heated fiber can be reduced compared to direct current, and deterioration due to electrolytic corrosion at the contact portion of the current path is reduced.
- the voltage can be easily changed (for example, it can be easily changed by a transformer). Therefore, when the scale of the conductivity measurement system is large and complicated, direct current is suitable when the parasitic capacitance is large, and alternating current is suitable when it is not.
- the conductivity measurement system according to the embodiment of the present invention will be described.
- the pulley-like terminals 8 of the pair of conductivity measuring rollers 7 that come into contact with the heated fiber 3 traveling in the heat treatment chamber 1 are selected by the terminal selection unit 12, and the voltage supplied from the power source 11 is selected. Apply. In this state, the voltage value applied between the pulley-like terminals 8 of the conductivity measuring roller 7 and the measured value of the current flowing through the heated fiber 3 between the pulley-like terminals 8 (current 21 between the rollers) are measured.
- the data is sent to the control device, and the conductivity is calculated by the following equation (3).
- the microwave irradiation power is adjusted so as to keep the measured conductivity within a predetermined range.
- the relationship between the electrical conductivity, microwave output, and carbonization rate obtained in advance is stored in the storage unit of the control device, and the desired carbonization stabilized by adjusting the microwave irradiation power appropriately. Processing can be performed.
- FIG. 3 shows the first microwave irradiation unit 17, the first conductivity measuring unit 15, and the second microwave from the upstream side (left side in the figure) to the downstream side (right side in the figure) in the traveling direction of the heated fiber 3.
- Each unit is provided in the order of the irradiation unit 18, the second conductivity measurement unit 16, and the third microwave irradiation unit 19.
- the first microwave irradiation unit 17 heat-treats the fiber 3 to be heated, and the conductivity after the heat treatment is measured by the first conductivity measurement unit 15. If necessary, the first microwave irradiation unit 17. And the microwave power of the second microwave irradiation unit 18 is adjusted. Next, the microwave power of the second microwave irradiation unit 18 and the third microwave irradiation unit 19 is adjusted as necessary based on the conductivity measured by the second conductivity measurement unit 16.
- FIG. 4 shows a case where a plurality of microwave irradiation units 4 are connected to FIG. 3 described above, and the traveling speed of the heated fiber 3 can be increased. At this time, as shown in FIG. 7, the mounting positions of the microwave irradiators are adjusted so that the microwave phase difference 20 in the adjacent waveguide becomes a quarter wavelength.
- the desired electrical conductivity by the irradiation of the microwave power is determined based on the relationship between the microwave output and the temperature corresponding to the electrical conductivity ( ⁇ ) of the heated fiber previously obtained by actual measurement and stored in the control device.
- the microwave power is adjusted so that the temperature of the water reaches a predetermined temperature.
- FIG. 9 is a diagram showing the relationship between the microwave power and the temperature for each conductivity of the heated fiber according to the embodiment of the present invention. Since the carbonization proceeds while the temperature of the heated fiber 3 is maintained at the holding temperature and the conductivity ( ⁇ ) increases from, for example, d to a, the temperature of the heated fiber 3 increases. Adjust the power to decrease in the direction of arrow A in Fig. 9.
- FIG. 7 shows the structure of the microwave irradiation unit 4 according to the embodiment of the present invention.
- the irradiation waveform is shown schematically. This is because the heated fiber 3 that has passed through the node 29 of the microwave 5 electric field of the first microwave irradiation unit 17 passes through the portion of the belly 30 in the next microwave irradiation unit, and the electric field intensity of the microwave that is irradiated. It is effective to reduce the difference between the two and uniformly heat-treat.
- FIG. 5 measures the conductivity in the first microwave irradiation unit 17 and the second microwave irradiation unit 18 with the first conductivity measurement unit 15 and the second conductivity measurement unit 16 with respect to FIG. 4 described above, It shows the case where the microwave output of each microwave irradiation part is adjusted to an appropriate value as needed.
- the configuration shown in FIG. 5 can make the external dimensions of the heat treatment apparatus smaller than the configuration shown in FIG.
- FIG. 8 is a diagram showing a manufacturing process for the carbon fiber according to the embodiment of the present invention.
- a polymer raw material is charged, and the heated fiber (precursor fiber) is processed into a string or string by the spinning section, and output to the microwave carbonization section.
- This output is sent at a desired speed by a roll-to-roll method, and a desired carbon fiber is produced by carbonization by predetermined microwave irradiation in the microwave carbon part.
- the carbonized carbon fiber is subjected to predetermined processing by plasma processing or the like, and a desired carbon fiber is taken out.
- the conductivity is measured and fed back to the irradiated microwave power.
- the rotation speed can be achieved by controlling both the rotation speed of the roll and the microwave power (control of feedback based on the measured conductivity).
- one unit of fiber is conveyed by a roll to be measured, or a plurality of heated fibers (fibers) are conveyed in batches to be measured. can do.
- Conductivity measurement can improve the accuracy of carbonization due to the contact of the rolls in a single fiber transport, and the efficiency of carbonization can be increased in the case of multiple fibers. If the measurement result of the conductivity of the heated fiber falls outside the desired range, the corresponding length portion of the heated fiber is determined to be abnormal, and error processing, for example, the coverage of the length portion is detected. It can be a process of discarding heated fibers.
- a member for measuring the conductivity of the heated fiber is provided in the heat treatment chamber, and the conductivity of the heated fiber measured by this member and the microwave are measured.
- the carbonization of the heated fiber can be performed while adjusting the output of the microwave power based on the relationship obtained in advance with respect to the relationship between the output of the fiber and the carbonization rate of the heated fiber.
- the conductivity is measured even when the temperature of the heated fiber traveling in the heat treatment chamber cannot be accurately measured, and the relationship between the conductivity, the microwave power, and the carbonization rate is determined.
- the carbonization process can be performed with high quality by adjusting the microwave output based on the relationship obtained in advance.
- a voltage is applied between two specific points of a fiber to be heated which is heated in a roll-to-roll method using microwaves in a heat treatment chamber. Apply the voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber, and calculate the conductivity of the heated fiber in advance.
- This is a microwave heat treatment apparatus that adjusts the microwave output so as to obtain an appropriate heat treatment state based on the relationship between the carbonization rate of the heated fiber, the microwave output, and the electrical conductivity.
- the electrical conductivity of the heated fiber is measured by carbonizing the heated fiber using a roll-to-roll method using microwaves in the heat treatment chamber.
- the voltage applied between two specific points of the heated fiber is a direct current.
- the electrical conductivity of the heated fiber is measured by carbonizing the heated fiber in a roll-to-roll method using microwaves in the heat treatment chamber. Therefore, in the microwave heat treatment apparatus according to the embodiment (1), the voltage applied between two specific points of the heated fiber is alternating current.
- the electrical conductivity of a heated fiber that has been carbonized by a roll-to-roll method using microwaves in a heat treatment chamber in order to measure the electrical conductivity of a heated fiber that has been carbonized by a roll-to-roll method using microwaves in a heat treatment chamber.
- the terminal that contacts the heated fiber is a pulley-like portion at the portion where the voltage is applied between the two points of the heated fiber, and the pulley-like terminal has a common rotating shaft for the rotating roller.
- the contact portion of the pulley-shaped terminal with the heated fiber is insulated from the rotating roll, and the pulley-shaped terminal rotates integrally with the roll as the heated fiber advances, and a pair of pulley-shaped terminals are rotated.
- the microwave heat treatment apparatus of the embodiment (1) having a structure in which an electric current is passed through the fiber to be heated via
- the electrical conductivity of the heated fiber is measured by carbonizing the heated fiber using a roll-to-roll method using microwaves in the heat treatment chamber. Therefore, a power supply line for applying a voltage between two specific points of the heated fiber is connected to a power supply provided outside the heat treatment chamber via a rotary connector provided at the end of the rotary roll. It is the microwave heat processing apparatus of the said Embodiment (4) which is.
- heating is performed in which a plurality of heated fibers are carbonized in a belt-like manner using a roll-to-roll method using microwaves in a heat treatment chamber.
- the microwave heating process according to any one of the embodiments (1) to (4) in which the electrical conductivity of the fiber is measured with two or more fibers, and the microwave power is controlled so that the respective electrical conductivity falls within a predetermined range. It is a science device.
- the microwave heat treatment apparatus according to any one of the embodiments (1) to (4) in which the conductivity measuring unit is provided on the upstream side, the downstream side, or both sides of the microwave irradiation unit. is there .
- terminals for applying the voltage of the conductivity measuring unit are provided on the upstream side and the downstream side of the microwave irradiation unit, and the conduction of the heated fiber during the heat treatment in the microwave irradiation unit. It is the microwave heat processing apparatus of the said Embodiment (1) thru
- a voltage is applied between two specific points of a fiber to be heated that is heat-treated by a roll-to-roll method using microwaves in a heat treatment chamber.
- the electrical conductivity of the heated fiber is measured from the voltage value applied between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber,
- a controller for obtaining in advance a relationship between the electrical conductivity, the microwave power, and the carbonization state of the heated fiber and adjusting the output of the microwave power used for the heating treatment of the heated fiber based on the relationship.
- a microwave heat treatment apparatus A microwave heat treatment apparatus.
- the first configuration according to the present invention is as follows.
- a voltage application unit that applies a voltage between two specific points of the heated fiber;
- a conductivity calculation unit for calculating the conductivity of the heated fiber from the voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber;
- a microwave irradiation unit for adjusting the microwave output was provided so as to perform the heat treatment according to the carbonization rate and microwave output of the heated fiber calculated in advance and the conductivity calculated by the conductivity calculating unit.
- a microwave heat treatment apparatus A microwave heat treatment apparatus.
- the second configuration according to the present invention is as follows.
- a microwave heat treatment apparatus of the first configuration The microwave heating apparatus, wherein the heated fiber is heated by a roll to roll method.
- the third configuration according to the present invention is as follows.
- a microwave heat treatment apparatus of the second configuration In order to measure the electrical conductivity of the heated fiber that is being carbonized, the terminal that contacts the heated fiber in the portion where voltage is applied between the two points of the heated fiber has a pulley shape. And the rotating roller is insulated from the contact portion of the pulley-like terminal with the heated fiber, and the pulley-like terminal is moved along with the progress of the heated fiber.
- a microwave heat treatment apparatus characterized by having a structure in which an electric current is supplied to a heated fiber through a pair of pulley-shaped terminals while rotating integrally with a roll.
- the fourth configuration according to the present invention is as follows.
- a microwave heat treatment apparatus of the second or third configuration In order to measure the electrical conductivity of the heated fiber that is carbonizing the heated fiber, a power line that applies a voltage between two specific points of the heated fiber is a rotary type provided at the end of the rotating roll.
- a microwave heat treatment apparatus wherein the microwave heat treatment apparatus is connected to a power source provided outside the heat treatment chamber via a connector.
- the fifth configuration according to the present invention is as follows.
- a microwave heat treatment apparatus having the second to fourth configurations Conducting multiple carbon fiber measurements of the heated fibers in a strip shape and controlling the microwave power so that each conductivity falls within a preset range.
- the sixth configuration according to the present invention is as follows.
- a microwave heat treatment apparatus having the first to fifth configurations In order to measure the conductivity of the heated fiber that is carbonizing the heated fiber, the voltage applied between two specific points of the heated fiber is either direct current or alternating current. Wave heat treatment equipment.
- the seventh configuration according to the present invention is as follows.
- a microwave heat treatment apparatus having the first to sixth configurations A microwave heat treatment apparatus characterized in that a conductivity measuring unit is provided on an upstream side, a downstream side, or both sides of a microwave irradiation unit.
- the eighth configuration according to the present invention is as follows.
- a microwave heat treatment apparatus having the first to seventh configurations, Terminals to which the voltage of the conductivity measuring unit is applied are provided upstream and downstream of the microwave irradiation unit, and the conductivity of the heated fiber during the heat treatment is measured by the microwave irradiation unit. Wave heat treatment equipment.
- the ninth configuration according to the present invention is as follows.
- a microwave heating apparatus that performs a heat treatment using microwaves in a heat treatment chamber
- a voltage application unit that applies a voltage between two specific points of a heated fiber, and a voltage value that is applied between the two points
- the microwave heat processing apparatus which has a control apparatus for calculating
- a tenth configuration includes: In a carbon fiber production apparatus for producing carbon fiber by carbonizing a predetermined precursor fiber, A precursor fiber input section for supplying a polymer raw material; A spinning section that processes the charged precursor fiber into a filament or string to be heated; A microwave carbonization unit that heats the heated fiber processed into a string or string to form carbon fiber, The microwave carbonization unit includes a heat treatment chamber, The heat treatment chamber heat-treats the heated fiber by microwave irradiation, The heated fiber is applied with a voltage between two specific points in the heat treatment chamber, Calculate the conductivity of the heated fiber from the applied voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber, A microwave irradiation unit that adjusts the output of the microwave irradiation so as to perform heat treatment according to the carbonization rate of the fiber to be heated calculated in advance, the microwave irradiation, and the calculated conductivity; Carbon fiber manufacturing apparatus characterized by the above.
- the eleventh configuration according to the present invention is A carbon fiber manufacturing apparatus according to the tenth configuration, A carbon fiber production apparatus characterized by producing a desired carbon fiber by performing predetermined processing on the carbon fiber output from the microwave carbonization unit.
- the twelfth configuration according to the present invention is In the carbon fiber production method of producing carbon fiber by carbonizing a predetermined precursor fiber, Precursor fiber charging means for charging a polymer raw material, spinning means for processing the charged precursor fibers into a string or string to make a heated fiber, and a heated fiber processed into a string or string It is composed of microwave carbonization means that is heated to make carbon fiber,
- the microwave carbonization means includes a heat treatment means,
- the heat treatment means heat-treats the heated fiber by microwave irradiation,
- the heated fiber is applied with a voltage between two specific points in the heat treatment means, Calculate the conductivity of the heated fiber from the applied voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber,
- Microwave irradiation means for adjusting the output of the microwave irradiation so as to perform heat treatment according to the carbonization rate of the heated fiber calculated in advance, the microwave irradiation, and
- the thirteenth configuration according to the present invention is A method for producing the carbon fiber of the twelfth configuration, A carbon fiber production method comprising: producing a desired carbon fiber by performing predetermined processing on the carbon fiber output from the microwave carbonization means.
- the fourteenth configuration according to the present invention is In the microwave heating method of performing heat treatment by microwave in the heat treatment chamber, Voltage applying means for applying a voltage between two specific points of the heated fiber; A conductivity calculating means for calculating the conductivity of the heated fiber from the voltage value between the two points, the current value flowing between the two points, the distance between the two points, and the cross-sectional area of the heated fiber; A microwave irradiation means for adjusting the microwave output so as to perform a heat treatment according to the carbonization rate and microwave output of the fiber to be heated calculated in advance and the calculated conductivity; Microwave heat treatment method.
- the embodiment of the present invention in the carbon fiber manufacturing process, heat treatment by a microwave heating apparatus is possible, the temperature of the heated fiber in the heat treatment is calculated and measured, and the heat treatment according to the carbonization state is performed. It is possible to perform control.
- the present invention is effective and can be used for carbonization of heated fibers (precursor fibers) in a carbon fiber production process. Further, the present invention can be effectively used in a microwave heat treatment apparatus for carbonizing precursor fibers by irradiation with microwave power, and a carbon fiber production apparatus and production method using the same.
- This application claims the benefit of priority based on Japanese Patent Application No. 2016-253258 filed on Dec. 27, 2016, the entire disclosure of which is incorporated herein by reference.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Inorganic Fibers (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
Abstract
炭素繊維の製造プロセスにおいて、マイクロ波で加熱する場合に被加熱繊維の物 理的な性質がプロセスの進行と共に変化し、最適な加熱状態を維持することが難しいとい う問題がある。 加熱処理室の中でマイクロ波による加熱処理を行うマイクロ波加熱装置にお いて、被加熱繊維の特定の2点間に電圧を印加し、その2点間の電圧値と、その2点間に 流れる電流値と、その2点間の距離と、被加熱繊維の断面積から被加熱繊維の導電率を算 出し、あらかじめ算出した被加熱繊維の炭素化率とマイクロ波出力と導電率とに応じた加 熱処理を行うように、マイクロ波出力を調節するマイクロ波照射部を備える。
Description
本発明は、マイクロ波電力の照射により前駆体繊維を炭素化するマイクロ波加熱処理装 置、及び、これを用いた炭素繊維の製造装置及び製造方法に関するものである。
炭素繊維は、物理的、化学的に優れた性質を有し自動車、航空・宇宙、産業機械他幅広 い分野での利用が進んでいる。
炭素繊維製造プロセスの炭素化において、従来はポリマー原料を紡糸した被加熱繊維( 前駆体繊維)を、抵抗加熱ヒータで300℃から2000℃程度に昇温した加熱炉の中を ロール トゥ ロール(roll to roll)方式で送りながら製造している(特許文献1、2 、3参照)。
炭素繊維製造プロセスの炭素化において、従来はポリマー原料を紡糸した被加熱繊維( 前駆体繊維)を、抵抗加熱ヒータで300℃から2000℃程度に昇温した加熱炉の中を ロール トゥ ロール(roll to roll)方式で送りながら製造している(特許文献1、2 、3参照)。
従来の炭素繊維製造プロセスにおける被加熱繊維の加熱方法は、加熱炉の壁を含めて炉 内全体を昇温するため、ロール トゥ ロール方式で加熱処理するためにセッティングす る被加熱繊維の製造開始や終了時、及び保守を行う際、加熱炉の昇降温に多大な時間と労 力を要する。
また加熱炉壁を含む加熱対象の熱容量が大きいため特に昇温時に大量の電力を消費する 。 そこで被加熱繊維を炭素化する際、加熱炉全体を加熱せず、マイクロ波を被加熱繊維に照 射して消費電力の削減と加熱炉の保守性を改善する方法が検討されている。
また加熱炉壁を含む加熱対象の熱容量が大きいため特に昇温時に大量の電力を消費する 。 そこで被加熱繊維を炭素化する際、加熱炉全体を加熱せず、マイクロ波を被加熱繊維に照 射して消費電力の削減と加熱炉の保守性を改善する方法が検討されている。
しかし、炭素繊維の製造プロセスにおいて、マイクロ波で加熱する場合に被加熱繊維の 物理的な性質がプロセスの進行と共に変化し、最適な加熱状態を維持することが難しいと いう問題がある。
またマイクロ波で加熱している状態の被加熱繊維の温度を直接正確に測定できればフィ ードバック制御が可能であるが、被加熱繊維の輻射熱による熱逃げを抑制するための断熱 機構を設けた場合、放射温度計による被加熱繊維の温度測定は非常に困難になる。
またマイクロ波で加熱している状態の被加熱繊維の温度を直接正確に測定できればフィ ードバック制御が可能であるが、被加熱繊維の輻射熱による熱逃げを抑制するための断熱 機構を設けた場合、放射温度計による被加熱繊維の温度測定は非常に困難になる。
本発明によれば、加熱処理室の中でマイクロ波による加熱処理を行うマイクロ波加熱装 置において、
被加熱繊維の特定の2点間に電圧を印加し、
その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊 維の断面積から被加熱繊維の導電率を算出し、
あらかじめ算出した被加熱繊維の炭素化率とマイクロ波出力と導電率とに応じた加熱処 理を行うように、マイクロ波出力を調節する技術を提供する。
被加熱繊維の特定の2点間に電圧を印加し、
その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊 維の断面積から被加熱繊維の導電率を算出し、
あらかじめ算出した被加熱繊維の炭素化率とマイクロ波出力と導電率とに応じた加熱処 理を行うように、マイクロ波出力を調節する技術を提供する。
本発明によれば、加熱処理室の中を走行する被加熱繊維の導電率を測定し、導電率とマ イクロ波電力と炭素化率の関係をあらかじめ取得した関係を基にしてマイクロ波出力を調 節することができ、被加熱繊維の炭素化処理を高品質で行うことができる。
また本発明によれば、炭素繊維の製造プロセスにおいて、マイクロ波加熱装置による加 熱処理を可能とし、加熱処理における被加熱繊維の温度を演算測定し、炭素化状態に応じ た加熱処理制御を行うことを可能とするものである。
また本発明によれば、炭素繊維の製造プロセスにおいて、マイクロ波加熱装置による加 熱処理を可能とし、加熱処理における被加熱繊維の温度を演算測定し、炭素化状態に応じ た加熱処理制御を行うことを可能とするものである。
以下、本発明の実施形態について図面を参照して詳細に説明する。
図1A~Cは、本発明の実施の形態に係わるマイクロ波加熱装置における炭素化処理状 態を説明する図である。
図1Aは、加熱処理室の断面図であり、被加熱繊維3の炭素化を行う加熱処理室1の断 面を模式的に示している。
図1Bは、加熱処理室における被加熱繊維の加熱部位の位置関係を示す図であり、被加 熱繊維3がマイクロ波5に加熱されるモードと加熱処理室1内の位置との関係を示してい る。
図1Cは、加熱処理室における被加熱繊維の加熱部位の位置関係に基づく温度、炭素化 率、誘電損失、導電率、マイクロ波出力を示す図であり、即ち、加熱処理室1内の位置に おける被加熱繊維3の温度、炭素化率、誘電損失、導電率、マイクロ波出力を示している 。 ここで、図1A~Cにおいて、加熱処理室1内での位置は同じ関係になるように示してあ る。
図1A~Cは、本発明の実施の形態に係わるマイクロ波加熱装置における炭素化処理状 態を説明する図である。
図1Aは、加熱処理室の断面図であり、被加熱繊維3の炭素化を行う加熱処理室1の断 面を模式的に示している。
図1Bは、加熱処理室における被加熱繊維の加熱部位の位置関係を示す図であり、被加 熱繊維3がマイクロ波5に加熱されるモードと加熱処理室1内の位置との関係を示してい る。
図1Cは、加熱処理室における被加熱繊維の加熱部位の位置関係に基づく温度、炭素化 率、誘電損失、導電率、マイクロ波出力を示す図であり、即ち、加熱処理室1内の位置に おける被加熱繊維3の温度、炭素化率、誘電損失、導電率、マイクロ波出力を示している 。 ここで、図1A~Cにおいて、加熱処理室1内での位置は同じ関係になるように示してあ る。
図1Aにおいて、被加熱繊維3は図に示した加熱処理室1の左端から入って右端に一定 の速度で送られ、ロール トゥ ロール方式で加熱処理される。 走行中の被加熱繊維3は後述する図2A(および図2B)のローラ6により加熱処理室1 内部における進行する位置が変化しないように支持されている。 加熱処理室1内部にはマイクロ波照射部4が数か所(本実施例では3か所)に設けられ、 その下部を通過する被加熱繊維3にマイクロ波を照射して加熱処理を行うものである。
またマイクロ波照射部4の間に導電率測定部14が設けられ(本実施例では各導電率測 定部間の2ヶ所)、被加熱繊維3の導電率を測定する。詳細は後述する図10にて説明す る。
ここで、マイクロ波照射部4の数や設置位置は被加熱繊維3の数や処理温度、送り速度 によって増減させる。
また、マイクロ波の周波数は2.45GHzを用いるが、照射による加熱処理のできる 周波数であればその他の周波数でも構わない。
またマイクロ波照射部4の間に導電率測定部14が設けられ(本実施例では各導電率測 定部間の2ヶ所)、被加熱繊維3の導電率を測定する。詳細は後述する図10にて説明す る。
ここで、マイクロ波照射部4の数や設置位置は被加熱繊維3の数や処理温度、送り速度 によって増減させる。
また、マイクロ波の周波数は2.45GHzを用いるが、照射による加熱処理のできる 周波数であればその他の周波数でも構わない。
図1Bにおいて、被加熱繊維3がマイクロ波5に加熱されるモードは加熱処理室1の左 側から右に進むにしたがって炭素化が進行し、誘電加熱から誘導加熱に移行する。
被加熱繊維3はポリマー原料から紡糸した合成繊維で炭素を含んでいる。
被加熱繊維3は、不活性ガス雰囲気の加熱処理室1内を走行する間に、被加熱繊維3の 有機物が変質してその一部が被加熱繊維3の外へ放出される。これによって被加熱繊維3 の炭素の濃度が高くなると共に、加熱によって化学組成も変化し、マイクロ波の吸収状態 が誘電損失による誘電加熱から誘導電流による誘導加熱側に変化するものである。
誘導加熱が生じる状態で被加熱繊維3を300℃程度から2000℃程度まで昇温し、 これをしばらく維持して炭素化処理を行う。
被加熱繊維3はポリマー原料から紡糸した合成繊維で炭素を含んでいる。
被加熱繊維3は、不活性ガス雰囲気の加熱処理室1内を走行する間に、被加熱繊維3の 有機物が変質してその一部が被加熱繊維3の外へ放出される。これによって被加熱繊維3 の炭素の濃度が高くなると共に、加熱によって化学組成も変化し、マイクロ波の吸収状態 が誘電損失による誘電加熱から誘導電流による誘導加熱側に変化するものである。
誘導加熱が生じる状態で被加熱繊維3を300℃程度から2000℃程度まで昇温し、 これをしばらく維持して炭素化処理を行う。
図1Cにおいて、導電率は炭素化処理の進行により炭素化率が大きくなると上昇し、誘 電損失は逆に減少する。
被加熱繊維3の温度は導電率の上昇と共に加速度的に上がり、効率的に炭素化が進むよ うに2000℃程度に維持される。
マイクロ波出力は被加熱繊維3の昇温時に最大となり、被加熱繊維3が2000℃に到 達した時点で徐々に低下させ、被加熱繊維3の温度が2000℃に維持されるように制御 される。
被加熱繊維3の温度は導電率の上昇と共に加速度的に上がり、効率的に炭素化が進むよ うに2000℃程度に維持される。
マイクロ波出力は被加熱繊維3の昇温時に最大となり、被加熱繊維3が2000℃に到 達した時点で徐々に低下させ、被加熱繊維3の温度が2000℃に維持されるように制御 される。
誘電加熱による発熱量P1を数1に、誘導加熱による発熱量P2を数2に示す。
誘電加熱による発熱量は誘電損失tanδに比例し、誘導加熱による発熱量は導電率σに 比例する。
炭素化処理の初期では被加熱繊維3のマイクロ波に対する誘電損失tanδが大きいため 誘電加熱が主な加熱メカニズムとなり、炭素化が進行して導電率σが増加してくると誘導 加熱のメカニズムが加わり高温での効率的な加熱が可能となる。
炭素化処理の初期では被加熱繊維3のマイクロ波に対する誘電損失tanδが大きいため 誘電加熱が主な加熱メカニズムとなり、炭素化が進行して導電率σが増加してくると誘導 加熱のメカニズムが加わり高温での効率的な加熱が可能となる。
図2A、Bは、本発明の実施の形態に係わるマイクロ波加熱装置に加熱処理室を説明す る図であり、図2Aは、前述した図1Aの加熱処理室の断面詳細図であり、図2Bは、加 熱処理室の内部を上から見た図である。
加熱処理室壁2には加熱処理室1内部に不活性ガスを供給する図示しない配管が接続さ れている。被加熱繊維3は不活性ガスの雰囲気中で加熱処理が行われる。
また加熱処理室1の内部には連続的に送られてくる複数の被加熱繊維3を支持するロー ラ6が設けられ、複数の被加熱繊維3が一定の高さを維持しながら送られる。
加熱処理室1の天井部には被加熱繊維3にマイクロ波5を照射するマイクロ波照射部4 が3式設けてあり、走行中の複数の被加熱繊維3にマイクロ波5を照射する。
また、マイクロ波5による照射で被加熱繊維3を効率よく加熱するために、被加熱繊維 3の周囲には図示しない断熱用のカバーが設けてある。
この断熱用カバーはマイクロ波の吸収率は低く、被加熱繊維からの輻射熱の透過を抑制 する高融点材料で構成される。
なお図2A、Bについては、後述に詳細を示す。
加熱処理室壁2には加熱処理室1内部に不活性ガスを供給する図示しない配管が接続さ れている。被加熱繊維3は不活性ガスの雰囲気中で加熱処理が行われる。
また加熱処理室1の内部には連続的に送られてくる複数の被加熱繊維3を支持するロー ラ6が設けられ、複数の被加熱繊維3が一定の高さを維持しながら送られる。
加熱処理室1の天井部には被加熱繊維3にマイクロ波5を照射するマイクロ波照射部4 が3式設けてあり、走行中の複数の被加熱繊維3にマイクロ波5を照射する。
また、マイクロ波5による照射で被加熱繊維3を効率よく加熱するために、被加熱繊維 3の周囲には図示しない断熱用のカバーが設けてある。
この断熱用カバーはマイクロ波の吸収率は低く、被加熱繊維からの輻射熱の透過を抑制 する高融点材料で構成される。
なお図2A、Bについては、後述に詳細を示す。
図6は、本発明の実施の形態に係わるマイクロ波照射部4の構造を示しており、(a) は側面から見た図、(b)は下から見た図である。
図6に示すようにマイクロ波照射部4はマグネトロン23、アイソレータ24、方向性 結合器25、整合器26、導波管27で構成され、導波管27の終端は壁で閉じられてお り、その壁は図示しない機構で導波管27の軸方向にマイクロ波の1波長程度の範囲で移 動できるようになっている。
また、導波管27の下側にはマイクロ波の波長の1/2の間隔でスリット28が設けて ある。すなわち、1/2波長はスリットのピッチを示しており、隣り合うスリットの間隔 を1/2波長とするものである。なお、図6においてはスリットがジグザグに配置されて いる実施例としているが、スリットは平行であっても良い。
また、マグネトロン23の出力するマイクロ波は整合器から導波管にかけて共振するよ うに調節され、マイクロ波の電界の最も大きな部分である腹30(後述する図7参照)が スリット28に位置するようになっており、スリット28からマイクロ波が導波管27の 外へ放射される。
ここで、ローラ6の高さや取付け位置は被加熱繊維3の引き回し方によって異なるが、 これに伴って被加熱繊維3の走行位置も変わるため、マイクロ波照射部4の位置はこれら を考慮して適切な位置に設けられる。
図6に示すようにマイクロ波照射部4はマグネトロン23、アイソレータ24、方向性 結合器25、整合器26、導波管27で構成され、導波管27の終端は壁で閉じられてお り、その壁は図示しない機構で導波管27の軸方向にマイクロ波の1波長程度の範囲で移 動できるようになっている。
また、導波管27の下側にはマイクロ波の波長の1/2の間隔でスリット28が設けて ある。すなわち、1/2波長はスリットのピッチを示しており、隣り合うスリットの間隔 を1/2波長とするものである。なお、図6においてはスリットがジグザグに配置されて いる実施例としているが、スリットは平行であっても良い。
また、マグネトロン23の出力するマイクロ波は整合器から導波管にかけて共振するよ うに調節され、マイクロ波の電界の最も大きな部分である腹30(後述する図7参照)が スリット28に位置するようになっており、スリット28からマイクロ波が導波管27の 外へ放射される。
ここで、ローラ6の高さや取付け位置は被加熱繊維3の引き回し方によって異なるが、 これに伴って被加熱繊維3の走行位置も変わるため、マイクロ波照射部4の位置はこれら を考慮して適切な位置に設けられる。
図2A、Bにおいて、複数のマイクロ波照射部4の下流側には導電率測定用ローラ7が 2式ずつ設けてある。
この導電率測定用ローラ7には被加熱繊維3に電圧を印加するための複数の滑車状端子 8が設けてあり、電源11により2式の導電率測定用ローラ7を経由して、それぞれの滑 車状端子8に電圧を印加し、この2式の滑車状端子8の間の電圧と電流をそれぞれ電圧計 9と電流計10で測定できるようになっている。
導電率測定用ローラ7と滑車状端子8の回転軸は同一で、滑車状端子8の外周の被加熱 繊維3との接触部は導電率測定用ローラ7と絶縁されている。
被加熱繊維3の特定の2点間に電圧を印加する滑車状端子8は、被加熱繊維3の走行と 共に導電率測定用ローラ7の滑車状端子8と一体となって回転しながら滑車状端子8と被 加熱繊維3との間で電流を流す構造になっている。
被加熱繊維3の特定の2点間の電源ラインは回転ロールの端部に設けたロータリコネク タ13を経由して加熱処理室1の外部に設けた電源11に接続されている。
また複数の被加熱繊維3の特定の2点間に電圧を印加する際、それぞれに電源11、電 圧計9、電流計10を設けても良いが、連続して測定する必要がない場合は、図2のよう にロータリコネクタ13に連接した端子選択ユニット12により時分割して電圧を印加す る構造としても良い。
測定した電圧値と電流値のデータは制御装置(制御部)に送られ、被加熱繊維3の導電 率が算出される。
また、電源11と電気的に接続されている導電率測定系は他の部材と絶縁されている。
この導電率測定用ローラ7には被加熱繊維3に電圧を印加するための複数の滑車状端子 8が設けてあり、電源11により2式の導電率測定用ローラ7を経由して、それぞれの滑 車状端子8に電圧を印加し、この2式の滑車状端子8の間の電圧と電流をそれぞれ電圧計 9と電流計10で測定できるようになっている。
導電率測定用ローラ7と滑車状端子8の回転軸は同一で、滑車状端子8の外周の被加熱 繊維3との接触部は導電率測定用ローラ7と絶縁されている。
被加熱繊維3の特定の2点間に電圧を印加する滑車状端子8は、被加熱繊維3の走行と 共に導電率測定用ローラ7の滑車状端子8と一体となって回転しながら滑車状端子8と被 加熱繊維3との間で電流を流す構造になっている。
被加熱繊維3の特定の2点間の電源ラインは回転ロールの端部に設けたロータリコネク タ13を経由して加熱処理室1の外部に設けた電源11に接続されている。
また複数の被加熱繊維3の特定の2点間に電圧を印加する際、それぞれに電源11、電 圧計9、電流計10を設けても良いが、連続して測定する必要がない場合は、図2のよう にロータリコネクタ13に連接した端子選択ユニット12により時分割して電圧を印加す る構造としても良い。
測定した電圧値と電流値のデータは制御装置(制御部)に送られ、被加熱繊維3の導電 率が算出される。
また、電源11と電気的に接続されている導電率測定系は他の部材と絶縁されている。
図10は、本発明の実施の形態に係わる制御装置のブロック図を示す。
電源(導電率測定用)から交流又は直流の電圧を被加熱繊維と接触する測定部の端子( 電極端子)に供給する。測定部で測定された端子間の電圧と被加熱繊維に流れる電流値を A/D(アナログ/デジタル)変換部でデジタル化し制御部に送る。制御部において予め記 憶部に記憶している被加熱繊維の温度、導電率、測定端子間の電圧値、電流値と、測定し た(A/D変換部から入力された)電圧と電流値の関係から被加熱繊維の温度が所定の値 になるように導電率を演算し、マイクロ波電源に制御信号を送る。マイクロ波電源は制御 部から入力した制御信号に従って前記導電率の演算により調整したマイクロ波を被加熱繊 維に照射する。
なお、制御部は測定した被加熱繊維の電圧と電流値を時間の経過とともに記憶部に記憶 し、所望の導電率が得られるように温度、導電率、測定端子間の電圧値、電流値を演算し て所望の制御信号としてマイクロ波電源に出力するものである。このような制御により、 被加熱繊維の導電率は、該繊維の加熱による炭素化の度合を示すものとして測定され、該 測定結果をフィードバックしてマイクロ波の照射を調整するものである。
電源(導電率測定用)から交流又は直流の電圧を被加熱繊維と接触する測定部の端子( 電極端子)に供給する。測定部で測定された端子間の電圧と被加熱繊維に流れる電流値を A/D(アナログ/デジタル)変換部でデジタル化し制御部に送る。制御部において予め記 憶部に記憶している被加熱繊維の温度、導電率、測定端子間の電圧値、電流値と、測定し た(A/D変換部から入力された)電圧と電流値の関係から被加熱繊維の温度が所定の値 になるように導電率を演算し、マイクロ波電源に制御信号を送る。マイクロ波電源は制御 部から入力した制御信号に従って前記導電率の演算により調整したマイクロ波を被加熱繊 維に照射する。
なお、制御部は測定した被加熱繊維の電圧と電流値を時間の経過とともに記憶部に記憶 し、所望の導電率が得られるように温度、導電率、測定端子間の電圧値、電流値を演算し て所望の制御信号としてマイクロ波電源に出力するものである。このような制御により、 被加熱繊維の導電率は、該繊維の加熱による炭素化の度合を示すものとして測定され、該 測定結果をフィードバックしてマイクロ波の照射を調整するものである。
なお図2A、Bでは、導電率測定系における被加熱繊維3の特定の2点間に印加する電 圧は直流となっているが、交流でも良い。
導電率の測定に直流を用いる場合、測定系の寄生容量を考慮せずに容易に電圧、電流値 の測定が可能となる利点がある。また、導電率の測定に交流を用いる場合、直流に比べて 被加熱繊維と接触する滑車状端子部でのスパーク発生の頻度を少なくでき、電流経路の接 触部での電食による劣化を少なくでき、電圧の変更が容易(例えばトランスによる可変が 容易)となる利点がある。
したがって、導電率測定系の規模が大きく複雑となる場合、寄生容量が大きい場合は直 流が向いており、そうでない場合は交流が向いている。
導電率の測定に直流を用いる場合、測定系の寄生容量を考慮せずに容易に電圧、電流値 の測定が可能となる利点がある。また、導電率の測定に交流を用いる場合、直流に比べて 被加熱繊維と接触する滑車状端子部でのスパーク発生の頻度を少なくでき、電流経路の接 触部での電食による劣化を少なくでき、電圧の変更が容易(例えばトランスによる可変が 容易)となる利点がある。
したがって、導電率測定系の規模が大きく複雑となる場合、寄生容量が大きい場合は直 流が向いており、そうでない場合は交流が向いている。
次に本発明の実施の形態に係わる導電率測定系ついて説明する。
図2A、Bにおいて、加熱処理室1内を走行する被加熱繊維3が接触する一対の導電率 測定用ローラ7の滑車状端子8を端子選択ユニット12で選択し、電源11から供給され る電圧を印加する。
この状態での導電率測定用ローラ7の滑車状端子8の間に印加した電圧値と、滑車状端 子8の間の被加熱繊維3に流れる電流(ローラ間の電流21)の測定値のデータを制御装 置に送り、次の数3で導電率を求める。
図2A、Bにおいて、加熱処理室1内を走行する被加熱繊維3が接触する一対の導電率 測定用ローラ7の滑車状端子8を端子選択ユニット12で選択し、電源11から供給され る電圧を印加する。
この状態での導電率測定用ローラ7の滑車状端子8の間に印加した電圧値と、滑車状端 子8の間の被加熱繊維3に流れる電流(ローラ間の電流21)の測定値のデータを制御装 置に送り、次の数3で導電率を求める。
導電率σを測定する被加熱繊維3を端子選択ユニット12で選択しながら加熱処理室1 を走行する複数の被加熱繊維3の導電率の測定を順次繰り返し行う。
そして測定した導電率を所定の範囲に保持するようマイクロ波照射電力を調整する。
ここで、あらかじめ求めておいた導電率とマイクロ波出力と炭素化率の関係を制御装置 の記憶部に記憶しておき、マイクロ波照射電力を適切に調節することで安定した所望の炭 素化処理を行うことができる。
そして測定した導電率を所定の範囲に保持するようマイクロ波照射電力を調整する。
ここで、あらかじめ求めておいた導電率とマイクロ波出力と炭素化率の関係を制御装置 の記憶部に記憶しておき、マイクロ波照射電力を適切に調節することで安定した所望の炭 素化処理を行うことができる。
図3、図4、図5は、本発明の実施の形態であるマイクロ波照射部と導電率測定部に関 する図であり、前述した図2Bの加熱処理室壁2を省略して被加熱繊維3の加熱処理の仕 方を模式的に示している図である。
図3は、被加熱繊維3の走行方向の上流側(図の左側)から下流側(図の右側)に向かって 第1マイクロ波照射部17、第1導電率測定部15、第2マイクロ波照射部18、第2導 電率測定部16、第3マイクロ波照射部19の順に各ユニットが設けてある。
まず第1マイクロ波照射部17が被加熱繊維3を加熱処理し、この加熱処理された後の 導電率を第1導電率測定部15で測定し、必要に応じて第1マイクロ波照射部17と第2 マイクロ波照射部18のマイクロ波電力を調節する。
次に第2導電率測定部16で測定された導電率を基に必要に応じて、第2マイクロ波照 射部18と第3マイクロ波照射部19のマイクロ波電力を調節する。
図3は、被加熱繊維3の走行方向の上流側(図の左側)から下流側(図の右側)に向かって 第1マイクロ波照射部17、第1導電率測定部15、第2マイクロ波照射部18、第2導 電率測定部16、第3マイクロ波照射部19の順に各ユニットが設けてある。
まず第1マイクロ波照射部17が被加熱繊維3を加熱処理し、この加熱処理された後の 導電率を第1導電率測定部15で測定し、必要に応じて第1マイクロ波照射部17と第2 マイクロ波照射部18のマイクロ波電力を調節する。
次に第2導電率測定部16で測定された導電率を基に必要に応じて、第2マイクロ波照 射部18と第3マイクロ波照射部19のマイクロ波電力を調節する。
図4は、前述した図3に対し、マイクロ波照射部4を複数連結した場合を示しており、 被加熱繊維3の走行速度を上げることができる。
このとき各マイクロ波照射部は、図7に示すように隣り合う導波管内におけるマイクロ 波の位相差20が1/4波長になるように各マイクロ波照射部の取付位置が調節されてい る。
このとき各マイクロ波照射部は、図7に示すように隣り合う導波管内におけるマイクロ 波の位相差20が1/4波長になるように各マイクロ波照射部の取付位置が調節されてい る。
ここで、マイクロ波電力の照射による所望の導電率については、予め実測により求めて 制御装置に記憶した被加熱繊維の導電率(σ)に対応したマイクロ波出力と温度の関係から 、被加熱繊維の温度が所定の温度になるようにマイクロ波電力を調節する。
図9は、本発明の実施の形態に係わる被加熱繊維の導電率毎のマイクロ波電力とその温 度の関係を示す図である。
被加熱繊維3の温度を保持温度に維持した状態で炭素化が進行して導電率(σ)が例えば dからaに向けて高くなると被加熱繊維3の温度が上昇してしまうため、マイクロ波電力を 図9の矢印Aの方向に向けて下げて行く調節を行う。
図9は、本発明の実施の形態に係わる被加熱繊維の導電率毎のマイクロ波電力とその温 度の関係を示す図である。
被加熱繊維3の温度を保持温度に維持した状態で炭素化が進行して導電率(σ)が例えば dからaに向けて高くなると被加熱繊維3の温度が上昇してしまうため、マイクロ波電力を 図9の矢印Aの方向に向けて下げて行く調節を行う。
図7は、本発明の実施の形態に係わるマイクロ波照射部4の構造を示しており、前述し た図6(b)のマイクロ波照射部4を複数連結した場合の構造、及び、マイクロ波照射の 波形を模式的に示している。
これは第1マイクロ波照射部17のマイクロ波5電界の節29の部分を通過した被加熱 繊維3が次マイクロ波照射部では腹30の部分を通過して、照射されるマイクロ波の電界 強度の差を小さくして均一に加熱処理されるようにするのに有効となる。
これは第1マイクロ波照射部17のマイクロ波5電界の節29の部分を通過した被加熱 繊維3が次マイクロ波照射部では腹30の部分を通過して、照射されるマイクロ波の電界 強度の差を小さくして均一に加熱処理されるようにするのに有効となる。
図5は、前述した図4に対し、第1マイクロ波照射部17と第2マイクロ照射部18に おける導電率を、第1導電率測定部15と第2導電率測定部16で測定し、必要に応じて それぞれのマイクロ波照射部のマイクロハ波出力を適切な値に調節する場合を示している 。
この図5で示した構成は図4で示した構成よりも加熱処理装置の外形寸法を小さくする ことができる。
この図5で示した構成は図4で示した構成よりも加熱処理装置の外形寸法を小さくする ことができる。
図8は、本発明の実施の形態に係わる炭素繊維に製造工程を示す図である。
炭素繊維製造プロセスの炭素化において、まずポリマー原料を投入し、紡糸部により被 加熱繊維(前駆体繊維)を、糸状またはひも状に加工し、マイクロ波炭素化部に出力する 。この出力はロール トゥ ロール(roll to roll)方式で所望の速度で送るものであり 、マイクロ波炭素部において、所定のマイクロ波照射により炭素化することにより、所望 の炭素繊維を製造している。
炭素化された炭素繊維にプラズマ加工処理等により所定の加工を施し、所望の炭素繊維 を取り出すものである。
炭素繊維製造プロセスの炭素化において、まずポリマー原料を投入し、紡糸部により被 加熱繊維(前駆体繊維)を、糸状またはひも状に加工し、マイクロ波炭素化部に出力する 。この出力はロール トゥ ロール(roll to roll)方式で所望の速度で送るものであり 、マイクロ波炭素部において、所定のマイクロ波照射により炭素化することにより、所望 の炭素繊維を製造している。
炭素化された炭素繊維にプラズマ加工処理等により所定の加工を施し、所望の炭素繊維 を取り出すものである。
上述した本発明の実施の形態においては、導電率を測定して照射するマイクロ波電力に フィードバックするものであるが、別の実施の形態として、ロールの回転速度を可変する 制御とすることもできる。
これは、加熱炉の内部において、被加熱繊維にマイクロ波電力を照射すると、定在波に よって横(並列)方向にムラが出来る可能性があり、その場合、ロールの個々のスピード (すなわちロールの回転速度)にフィードバックするものである。 また、このロールの回転速度およびマイクロ波電力の両方を可変する制御(測定した導電 率に基づくフィードバックの制御)とすることで、より細かな制御が可能となる。
これは、加熱炉の内部において、被加熱繊維にマイクロ波電力を照射すると、定在波に よって横(並列)方向にムラが出来る可能性があり、その場合、ロールの個々のスピード (すなわちロールの回転速度)にフィードバックするものである。 また、このロールの回転速度およびマイクロ波電力の両方を可変する制御(測定した導電 率に基づくフィードバックの制御)とすることで、より細かな制御が可能となる。
また、被加熱繊維の導電率の測定において、1本単位の繊維をロールで搬送して測定対 象とするか、若しくは、複数の被加熱繊維(ファイバ)を一括して搬送して測定対象とす ることができる。
1本のファイバ搬送においての、ロール部分接触により導電率測定は炭素化の精度を高 めることができ、また、複数ファイバの場合には炭素化の効率を高めることができる。 また、被加熱繊維の導電率の測定結果が所望の範囲外となった場合には、当該被加熱繊維 の該当する長さ部分を異常と判断し、エラー処理、例えば、当該長さ部分の被加熱繊維を 廃棄する工程とすることができる。
1本のファイバ搬送においての、ロール部分接触により導電率測定は炭素化の精度を高 めることができ、また、複数ファイバの場合には炭素化の効率を高めることができる。 また、被加熱繊維の導電率の測定結果が所望の範囲外となった場合には、当該被加熱繊維 の該当する長さ部分を異常と判断し、エラー処理、例えば、当該長さ部分の被加熱繊維を 廃棄する工程とすることができる。
以上説明したように、本発明の実施の形態によれば、被加熱繊維の導電率を測定する部 材を加熱処理室の中に設け、この部材で測定した被加熱繊維の導電率とマイクロ波の出力 及び被加熱繊維の炭素化率の関係についてあらかじめ求めた関係を基に、マイクロ波電力 の出力を調節しながら被加熱繊維の炭素化処理を行うことができる。
本発明の実施の形態によれば、加熱処理室の中を走行する被加熱繊維の温度を正確に測 定できない状態でも導電率を測定し、導電率とマイクロ波電力と炭素化率の関係をあらか じめ取得した関係を基にしてマイクロ波出力を調節して、炭素化処理を高品質で行うこと ができる。
本発明の実施の形態によれば、加熱処理室の中を走行する被加熱繊維の温度を正確に測 定できない状態でも導電率を測定し、導電率とマイクロ波電力と炭素化率の関係をあらか じめ取得した関係を基にしてマイクロ波出力を調節して、炭素化処理を高品質で行うこと ができる。
本発明の実施の形態(1)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll)方式で加熱処理を行っている被加熱繊維の特定の2点間に電圧を 印加し、その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被 加熱繊維の断面積から被加熱繊維の導電率を算出し、事前に測定した被加熱繊維の炭素化 率とマイクロ波出力と導電率の関係から、適切な加熱処理状態になるように、マイクロ波 出力を調節するマイクロ波加熱処理装置である。
本発明の実施の形態(2)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll) 方式で被加熱繊維の炭素化を行っている被加熱繊維の導電率を 測定するために、被加熱繊維の特定の2点間に印加する電圧が直流である前記実施の形態 (1)のマイクロ波加熱処理装置である。
本発明の実施の形態(3)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll) 方式で被加熱繊維の炭素化を行っている被加熱繊維の導電率を 測定するために、被加熱繊維の特定の2点間に印加する電圧が交流である前記実施の形態 (1)のマイクロ波加熱処理装置である。
本発明の実施の形態(4)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll)方式で炭素化処理を行っている被加熱繊維の導電率を測定するた めに、被加熱繊維の2点間に電圧を印加する部分において被加熱繊維と接触する端子が滑 車状であって、この滑車状の端子が回転ローラにそれぞれの回転軸が共通となるように設 けられ、且つ滑車状の端子の被加熱繊維との接触部と回転ロールは絶縁され、被加熱繊維 の進行と共に滑車状の端子がロールと一体となって回転しながら一対の滑車状の端子を経 由して被加熱繊維に電流を流す構造である前記実施の形態(1)のマイクロ波加熱処理装 置である。
ロール(roll to roll)方式で加熱処理を行っている被加熱繊維の特定の2点間に電圧を 印加し、その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被 加熱繊維の断面積から被加熱繊維の導電率を算出し、事前に測定した被加熱繊維の炭素化 率とマイクロ波出力と導電率の関係から、適切な加熱処理状態になるように、マイクロ波 出力を調節するマイクロ波加熱処理装置である。
本発明の実施の形態(2)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll) 方式で被加熱繊維の炭素化を行っている被加熱繊維の導電率を 測定するために、被加熱繊維の特定の2点間に印加する電圧が直流である前記実施の形態 (1)のマイクロ波加熱処理装置である。
本発明の実施の形態(3)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll) 方式で被加熱繊維の炭素化を行っている被加熱繊維の導電率を 測定するために、被加熱繊維の特定の2点間に印加する電圧が交流である前記実施の形態 (1)のマイクロ波加熱処理装置である。
本発明の実施の形態(4)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll)方式で炭素化処理を行っている被加熱繊維の導電率を測定するた めに、被加熱繊維の2点間に電圧を印加する部分において被加熱繊維と接触する端子が滑 車状であって、この滑車状の端子が回転ローラにそれぞれの回転軸が共通となるように設 けられ、且つ滑車状の端子の被加熱繊維との接触部と回転ロールは絶縁され、被加熱繊維 の進行と共に滑車状の端子がロールと一体となって回転しながら一対の滑車状の端子を経 由して被加熱繊維に電流を流す構造である前記実施の形態(1)のマイクロ波加熱処理装 置である。
本発明の実施の形態(5)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll) 方式で被加熱繊維の炭素化を行っている被加熱繊維の導電率を 測定するために、被加熱繊維の特定の2点間に電圧を印加する電源ラインは回転ロールの 端部に設けたロータリ式のコネクタを経由して加熱処理室の外部に設けた電源に接続され ている前記実施の形態(4)のマイクロ波加熱処理装置である。
本発明の実施の形態(6)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll) 方式で帯状に複数の被加熱繊維の炭素化処理を行っている被加 熱繊維の導電率測定を2本以上で行い、それぞれの導電率が予め設定した所定の範囲に入 るようにマイクロ波電力を制御する前記実施の形態(1)乃至(4)のマイクロ波加熱処 理装置である。
本発明の実施の形態(7)として、導電率測定部をマイクロ波照射部の上流側または下 流側又は両側に設けた前記実施の形態(1)乃至(4)のマイクロ波加熱処理装置である 。 本発明の実施の形態(8)として、導電率測定部の電圧を印加する端子をマイクロ波照射 部の上流側と下流側に設けて、マイクロ波照射部で加熱処理中の被加熱繊維の導電率を測 定する前記実施の形態(1)乃至(4)のマイクロ波加熱処理装置である。
ロール(roll to roll) 方式で被加熱繊維の炭素化を行っている被加熱繊維の導電率を 測定するために、被加熱繊維の特定の2点間に電圧を印加する電源ラインは回転ロールの 端部に設けたロータリ式のコネクタを経由して加熱処理室の外部に設けた電源に接続され ている前記実施の形態(4)のマイクロ波加熱処理装置である。
本発明の実施の形態(6)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll) 方式で帯状に複数の被加熱繊維の炭素化処理を行っている被加 熱繊維の導電率測定を2本以上で行い、それぞれの導電率が予め設定した所定の範囲に入 るようにマイクロ波電力を制御する前記実施の形態(1)乃至(4)のマイクロ波加熱処 理装置である。
本発明の実施の形態(7)として、導電率測定部をマイクロ波照射部の上流側または下 流側又は両側に設けた前記実施の形態(1)乃至(4)のマイクロ波加熱処理装置である 。 本発明の実施の形態(8)として、導電率測定部の電圧を印加する端子をマイクロ波照射 部の上流側と下流側に設けて、マイクロ波照射部で加熱処理中の被加熱繊維の導電率を測 定する前記実施の形態(1)乃至(4)のマイクロ波加熱処理装置である。
本発明の実施の形態(9)として、加熱処理室の中でマイクロ波を用いてロール トゥ
ロール(roll to roll)方式で加熱処理を行っている被加熱繊維の特定の2点間に電圧を 印加し、その2点間に印加する電圧値と、その2点間に流れる電流値と、その2点間の距 離と、被加熱繊維の断面積から被加熱繊維の導電率を測定し、この導電率と、マイクロ波 電力と、被加熱繊維の炭素化状態との関係を予め求め、その関係に基づいて被加熱繊維の 加熱処理に用いるマイクロ波電力の出力を調節するための制御装置を有するマイクロ波加 熱処理装置である。
ロール(roll to roll)方式で加熱処理を行っている被加熱繊維の特定の2点間に電圧を 印加し、その2点間に印加する電圧値と、その2点間に流れる電流値と、その2点間の距 離と、被加熱繊維の断面積から被加熱繊維の導電率を測定し、この導電率と、マイクロ波 電力と、被加熱繊維の炭素化状態との関係を予め求め、その関係に基づいて被加熱繊維の 加熱処理に用いるマイクロ波電力の出力を調節するための制御装置を有するマイクロ波加 熱処理装置である。
本発明に係る第1の構成は、
加熱処理室の中でマイクロ波による加熱処理を行うマイクロ波加熱装置において、
被加熱繊維の特定の2点間に電圧を印加する電圧印加部と、
その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊 維の断面積から被加熱繊維の導電率を算出する導電率算出部と、
あらかじめ算出した被加熱繊維の炭素化率とマイクロ波出力と前記導電率算出部が算出 した導電率とに応じた加熱処理を行うように、マイクロ波出力を調節するマイクロ波照射 部を備えたことを特徴とするマイクロ波加熱処理装置。
加熱処理室の中でマイクロ波による加熱処理を行うマイクロ波加熱装置において、
被加熱繊維の特定の2点間に電圧を印加する電圧印加部と、
その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊 維の断面積から被加熱繊維の導電率を算出する導電率算出部と、
あらかじめ算出した被加熱繊維の炭素化率とマイクロ波出力と前記導電率算出部が算出 した導電率とに応じた加熱処理を行うように、マイクロ波出力を調節するマイクロ波照射 部を備えたことを特徴とするマイクロ波加熱処理装置。
本発明に係る第2の構成は、
前記第1の構成のマイクロ波加熱処理装置であって、
前記被加熱繊維はロール トゥ ロール(roll to roll)方式で加熱処理されることを 特徴とするマイクロ波加熱処理装置。
前記第1の構成のマイクロ波加熱処理装置であって、
前記被加熱繊維はロール トゥ ロール(roll to roll)方式で加熱処理されることを 特徴とするマイクロ波加熱処理装置。
本発明に係る第3の構成は、
前記第2の構成のマイクロ波加熱処理装置であって、
炭素化処理を行っている被加熱繊維の導電率を測定するために、被加熱繊維の2点間に 電圧を印加する部分において被加熱繊維と接触する端子が滑車状であって、この滑車状の 端子が回転ローラにそれぞれの回転軸が共通となるように設けられ、且つ滑車状の端子の 被加熱繊維との接触部と回転ロールは絶縁され、被加熱繊維の進行と共に滑車状の端子が ロールと一体となって回転しながら一対の滑車状の端子を経由して被加熱繊維に電流を流 す構造であることを特徴とするマイクロ波加熱処理装置。
前記第2の構成のマイクロ波加熱処理装置であって、
炭素化処理を行っている被加熱繊維の導電率を測定するために、被加熱繊維の2点間に 電圧を印加する部分において被加熱繊維と接触する端子が滑車状であって、この滑車状の 端子が回転ローラにそれぞれの回転軸が共通となるように設けられ、且つ滑車状の端子の 被加熱繊維との接触部と回転ロールは絶縁され、被加熱繊維の進行と共に滑車状の端子が ロールと一体となって回転しながら一対の滑車状の端子を経由して被加熱繊維に電流を流 す構造であることを特徴とするマイクロ波加熱処理装置。
本発明に係る第4の構成は、
前記第2または第3の構成のマイクロ波加熱処理装置であって、
被加熱繊維の炭素化を行っている被加熱繊維の導電率を測定するために、被加熱繊維の 特定の2点間に電圧を印加する電源ラインは回転ロールの端部に設けたロータリ式のコネ クタを経由して加熱処理室の外部に設けた電源に接続されていることを特徴とするマイク ロ波加熱処理装置。
前記第2または第3の構成のマイクロ波加熱処理装置であって、
被加熱繊維の炭素化を行っている被加熱繊維の導電率を測定するために、被加熱繊維の 特定の2点間に電圧を印加する電源ラインは回転ロールの端部に設けたロータリ式のコネ クタを経由して加熱処理室の外部に設けた電源に接続されていることを特徴とするマイク ロ波加熱処理装置。
本発明に係る第5の構成は、
前記第2乃至第4の構成のマイクロ波加熱処理装置であって、
帯状に複数の被加熱繊維の炭素化処理を行っている被加熱繊維の導電率測定を複数で行 い、それぞれの導電率が予め設定した所定の範囲に入るようにマイクロ波電力を制御する ことを特徴とするマイクロ波加熱処理装置。
前記第2乃至第4の構成のマイクロ波加熱処理装置であって、
帯状に複数の被加熱繊維の炭素化処理を行っている被加熱繊維の導電率測定を複数で行 い、それぞれの導電率が予め設定した所定の範囲に入るようにマイクロ波電力を制御する ことを特徴とするマイクロ波加熱処理装置。
本発明に係る第6の構成は、
前記第1乃至第5の構成のマイクロ波加熱処理装置であって、
被加熱繊維の炭素化を行っている被加熱繊維の導電率を測定するために、被加熱繊維の 特定の2点間に印加する電圧が直流または交流の何れかであることを特徴とするマイクロ 波加熱処理装置。
前記第1乃至第5の構成のマイクロ波加熱処理装置であって、
被加熱繊維の炭素化を行っている被加熱繊維の導電率を測定するために、被加熱繊維の 特定の2点間に印加する電圧が直流または交流の何れかであることを特徴とするマイクロ 波加熱処理装置。
本発明に係る第7の構成は、
前記第1乃至第6の構成のマイクロ波加熱処理装置であって、
導電率測定部をマイクロ波照射部の上流側または下流側又は両側に設けたことを特徴と するマイクロ波加熱処理装置。
前記第1乃至第6の構成のマイクロ波加熱処理装置であって、
導電率測定部をマイクロ波照射部の上流側または下流側又は両側に設けたことを特徴と するマイクロ波加熱処理装置。
本発明に係る第8の構成は、
前記第1乃至第7の構成のマイクロ波加熱処理装置であって、
導電率測定部の電圧を印加する端子をマイクロ波照射部の上流側と下流側に設けて、マ イクロ波照射部で加熱処理中の被加熱繊維の導電率を測定することを特徴とするマイクロ 波加熱処理装置。
前記第1乃至第7の構成のマイクロ波加熱処理装置であって、
導電率測定部の電圧を印加する端子をマイクロ波照射部の上流側と下流側に設けて、マ イクロ波照射部で加熱処理中の被加熱繊維の導電率を測定することを特徴とするマイクロ 波加熱処理装置。
本発明に係る第9の構成は、
加熱処理室の中でマイクロ波を用いて加熱処理を行うマイクロ波加熱装置において、 被加熱繊維の特定の2点間に電圧を印加する電圧印加部と、その2点間に印加する電圧値 と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊維の断面積から被加熱 繊維の導電率を測定する導電率測定部と、この測定した導電率と、マイクロ波電力と、被 加熱繊維の炭素化状態との関係を予め求め、その関係に基づいて被加熱繊維の加熱処理に 用いるマイクロ波電力の出力を調節するための制御装置を有するマイクロ波加熱処理装置 。
加熱処理室の中でマイクロ波を用いて加熱処理を行うマイクロ波加熱装置において、 被加熱繊維の特定の2点間に電圧を印加する電圧印加部と、その2点間に印加する電圧値 と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊維の断面積から被加熱 繊維の導電率を測定する導電率測定部と、この測定した導電率と、マイクロ波電力と、被 加熱繊維の炭素化状態との関係を予め求め、その関係に基づいて被加熱繊維の加熱処理に 用いるマイクロ波電力の出力を調節するための制御装置を有するマイクロ波加熱処理装置 。
本発明に係る第10の構成は、
所定の前駆体繊維を炭素化して炭素繊維を製造する炭素繊維の製造装置において、
ポリマー原料を投入する前駆体繊維投入部と、
該投入された前駆体繊維を糸状またはひも状に加工して被加熱繊維とする紡糸部と、
該糸状またはひも状に加工された被加熱繊維を加熱して炭素繊維とするマイクロ波炭素 化部とより構成され、
前記マイクロ波炭素化部は、加熱処理室を備え、
該加熱処理室は、前記被加熱繊維をマイクロ波照射により加熱処理を行うものであって 、
前記被加熱繊維は、前記加熱処理室の中の特定の2点間で電圧を印加され、
該印加された2点間の電圧値と、該2点間に流れる電流値と、該2点間の距離と、当該 被加熱繊維の断面積から被加熱繊維の導電率を算出し、
あらかじめ算出した被加熱繊維の炭素化率と、前記マイクロ波照射と、前記算出した導 電率とに応じて加熱処理を行うように、前記マイクロ波照射の出力を調節するマイクロ波 照射部を備えたことを特徴とする炭素繊維の製造装置。
所定の前駆体繊維を炭素化して炭素繊維を製造する炭素繊維の製造装置において、
ポリマー原料を投入する前駆体繊維投入部と、
該投入された前駆体繊維を糸状またはひも状に加工して被加熱繊維とする紡糸部と、
該糸状またはひも状に加工された被加熱繊維を加熱して炭素繊維とするマイクロ波炭素 化部とより構成され、
前記マイクロ波炭素化部は、加熱処理室を備え、
該加熱処理室は、前記被加熱繊維をマイクロ波照射により加熱処理を行うものであって 、
前記被加熱繊維は、前記加熱処理室の中の特定の2点間で電圧を印加され、
該印加された2点間の電圧値と、該2点間に流れる電流値と、該2点間の距離と、当該 被加熱繊維の断面積から被加熱繊維の導電率を算出し、
あらかじめ算出した被加熱繊維の炭素化率と、前記マイクロ波照射と、前記算出した導 電率とに応じて加熱処理を行うように、前記マイクロ波照射の出力を調節するマイクロ波 照射部を備えたことを特徴とする炭素繊維の製造装置。
本発明に係る第11の構成は、
前記第10の構成の炭素繊維の製造装置であって、
前記マイクロ波炭素化部より出力される炭素繊維に所定の加工を施し、所望の炭素繊維 を製造することを特徴とする炭素繊維の製造装置。
前記第10の構成の炭素繊維の製造装置であって、
前記マイクロ波炭素化部より出力される炭素繊維に所定の加工を施し、所望の炭素繊維 を製造することを特徴とする炭素繊維の製造装置。
本発明に係る第12の構成は、
所定の前駆体繊維を炭素化して炭素繊維を製造する炭素繊維の製造方法において、
ポリマー原料を投入する前駆体繊維投入手段と、 該投入された前駆体繊維を糸状またはひも状に加工して被加熱繊維とする紡糸手段と、 該糸状またはひも状に加工された被加熱繊維を加熱して炭素繊維とするマイクロ波炭素化 手段とより構成され、
前記マイクロ波炭素化手段は、加熱処理手段を備え、
該加熱処理手段は、前記被加熱繊維をマイクロ波照射により加熱処理を行うものであっ て、
前記被加熱繊維は、前記加熱処理手段の中の特定の2点間で電圧を印加され、
該印加された2点間の電圧値と、該2点間に流れる電流値と、該2点間の距離と、当該 被加熱繊維の断面積から被加熱繊維の導電率を算出し、
あらかじめ算出した被加熱繊維の炭素化率と、前記マイクロ波照射と、前記算出した導 電率とに応じて加熱処理を行うように、前記マイクロ波照射の出力を調節するマイクロ波 照射手段を備えたことを特徴とする炭素繊維の製造方法。
所定の前駆体繊維を炭素化して炭素繊維を製造する炭素繊維の製造方法において、
ポリマー原料を投入する前駆体繊維投入手段と、 該投入された前駆体繊維を糸状またはひも状に加工して被加熱繊維とする紡糸手段と、 該糸状またはひも状に加工された被加熱繊維を加熱して炭素繊維とするマイクロ波炭素化 手段とより構成され、
前記マイクロ波炭素化手段は、加熱処理手段を備え、
該加熱処理手段は、前記被加熱繊維をマイクロ波照射により加熱処理を行うものであっ て、
前記被加熱繊維は、前記加熱処理手段の中の特定の2点間で電圧を印加され、
該印加された2点間の電圧値と、該2点間に流れる電流値と、該2点間の距離と、当該 被加熱繊維の断面積から被加熱繊維の導電率を算出し、
あらかじめ算出した被加熱繊維の炭素化率と、前記マイクロ波照射と、前記算出した導 電率とに応じて加熱処理を行うように、前記マイクロ波照射の出力を調節するマイクロ波 照射手段を備えたことを特徴とする炭素繊維の製造方法。
本発明に係る第13の構成は、
前記第12の構成の炭素繊維の製造方法であって、
前記マイクロ波炭素化手段より出力される炭素繊維に所定の加工を施し、所望の炭素繊 維を製造することを特徴とする炭素繊維の製造方法。
前記第12の構成の炭素繊維の製造方法であって、
前記マイクロ波炭素化手段より出力される炭素繊維に所定の加工を施し、所望の炭素繊 維を製造することを特徴とする炭素繊維の製造方法。
本発明に係る第14の構成は、
加熱処理室の中でマイクロ波による加熱処理を行うマイクロ波加熱方法において、
被加熱繊維の特定の2点間に電圧を印加する電圧印加手段と、
その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊 維の断面積から被加熱繊維の導電率を算出する導電率算出手段と、
あらかじめ算出した被加熱繊維の炭素化率とマイクロ波出力と前記算出した導電率とに 応じた加熱処理を行うように、マイクロ波出力を調節するマイクロ波照射手段とを備えた ことを特徴とするマイクロ波加熱処理方法。
加熱処理室の中でマイクロ波による加熱処理を行うマイクロ波加熱方法において、
被加熱繊維の特定の2点間に電圧を印加する電圧印加手段と、
その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊 維の断面積から被加熱繊維の導電率を算出する導電率算出手段と、
あらかじめ算出した被加熱繊維の炭素化率とマイクロ波出力と前記算出した導電率とに 応じた加熱処理を行うように、マイクロ波出力を調節するマイクロ波照射手段とを備えた ことを特徴とするマイクロ波加熱処理方法。
本発明の実施の形態によれば、炭素繊維の製造プロセスにおいて、マイクロ波加熱装置 による加熱処理を可能とし、加熱処理における被加熱繊維の温度を演算測定し、炭素化状 態に応じた加熱処理制御を行うことを可能とするものである。
本発明の実施形態について詳細に説明したが、本発明は上述した実施形態に限定される ものではなく、本発明の趣旨を逸脱しない範囲で種々変更して実施することができる。
本発明の実施形態について詳細に説明したが、本発明は上述した実施形態に限定される ものではなく、本発明の趣旨を逸脱しない範囲で種々変更して実施することができる。
本発明は、炭素繊維製造プロセスにおける被加熱繊維(前駆体繊維)の炭素化に有効で利 用可能である。
また、マイクロ波電力の照射により前駆体繊維を炭素化するマイクロ波加熱処理装置、 及び、これを用いた炭素繊維の製造装置及び製造方法に有効で利用可能である。 この出願は、2016年12月27日に出願された日本出願特願2016-253258を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
また、マイクロ波電力の照射により前駆体繊維を炭素化するマイクロ波加熱処理装置、 及び、これを用いた炭素繊維の製造装置及び製造方法に有効で利用可能である。 この出願は、2016年12月27日に出願された日本出願特願2016-253258を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
1:加熱処理室、2:加熱処理室壁、3:被加熱繊維、4:マイクロ波照射部、5:マイ クロ波、6:ローラ、7:導電率測定用ローラ、8:滑車状端子、9:電圧計、10:電 流計、11:電源、12:端子選択ユニット、13:ロータリコネクタ、14:導電率測 定部、15:第1導電率測定部、16:第2導電率測定部、17:第1マイクロ波照射部 、18:第2マイクロ波照射部、19:第3マイクロ波照射部、20:位相差、21:ロ ーラの電流、23:マグネトロン、24:アイソレータ、25:方向性結合器、26:整 合器、27:導波管、28:スリット、29:節、30:腹。
Claims (14)
- 加熱処理室の中でマイクロ波による加熱処理を行うマイクロ波加熱装置において、 被加熱繊維の特定の2点間に電圧を印加する電圧印加部と、
その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊 維の断面積から被加熱繊維の導電率を算出する導電率算出部と、
あらかじめ算出した被加熱繊維の炭素化率とマイクロ波出力と前記導電率算出部が算出 した導電率とに応じた加熱処理を行うように、マイクロ波出力を調節するマイクロ波照射 部を備えたことを特徴とするマイクロ波加熱処理装置。 - 前記請求項1記載のマイクロ波加熱処理装置であって、
前記被加熱繊維はロール トゥ ロール(roll to roll)方式で加熱処理されることを 特徴とするマイクロ波加熱処理装置。 - 前記請求項2に記載のマイクロ波加熱処理装置であって、
炭素化処理を行っている被加熱繊維の導電率を測定するために、被加熱繊維の2点間に 電圧を印加する部分において被加熱繊維と接触する端子が滑車状であって、この滑車状の 端子が回転ローラにそれぞれの回転軸が共通となるように設けられ、且つ滑車状の端子の 被加熱繊維との接触部と回転ロールは絶縁され、被加熱繊維の進行と共に滑車状の端子が ロールと一体となって回転しながら一対の滑車状の端子を経由して被加熱繊維に電流を流 す構造であることを特徴とするマイクロ波加熱処理装置。 - 前記請求項2または請求項3に記載のマイクロ波加熱処理装置であって、
被加熱繊維の炭素化を行っている被加熱繊維の導電率を測定するために、被加熱繊維の 特定の2点間に電圧を印加する電源ラインは回転ロールの端部に設けたロータリ式のコネ クタを経由して加熱処理室の外部に設けた電源に接続されていることを特徴とするマイク ロ波加熱処理装置。 - 前記請求項2乃至請求項4記載のマイクロ波加熱処理装置であって、
帯状に複数の被加熱繊維の炭素化処理を行っている被加熱繊維の導電率測定を複数で行 い、それぞれの導電率が予め設定した所定の範囲に入るようにマイクロ波電力を制御する ことを特徴とするマイクロ波加熱処理装置。 - 前記請求項1乃至請求項5に記載のマイクロ波加熱処理装置であって、
被加熱繊維の炭素化を行っている被加熱繊維の導電率を測定するために、被加熱繊維の 特定の2点間に印加する電圧が直流または交流の何れかであることを特徴とするマイクロ 波加熱処理装置。 - 前記請求項1乃至請求項6記載のマイクロ波加熱処理装置であって、 導電率測定部をマイクロ波照射部の上流側または下流側又は両側に設けたことを特徴とす るマイクロ波加熱処理装置。
- 前記請求項1乃至請求項7記載のマイクロ波加熱処理装置であって、
導電率測定部の電圧を印加する端子をマイクロ波照射部の上流側と下流側に設けて、マ イクロ波照射部で加熱処理中の被加熱繊維の導電率を測定することを特徴とするマイクロ 波加熱処理装置。 - 加熱処理室の中でマイクロ波を用いて加熱処理を行うマイクロ波加熱装置において、 被加熱繊維の特定の2点間に電圧を印加し、その2点間に印加する電圧値と、その2点間 に流れる電流値と、その2点間の距離と、被加熱繊維の断面積から被加熱繊維の導電率を 測定し、この導電率と、マイクロ波電力と、被加熱繊維の炭素化状態との関係を予め求め 、その関係に基づいて被加熱繊維の加熱処理に用いるマイクロ波電力の出力を調節するた めの制御装置を有するマイクロ波加熱処理装置。
- 所定の前駆体繊維を炭素化して炭素繊維を製造する炭素繊維の製造装置において、 ポリマー原料を投入する前駆体繊維投入部と、
該投入された前駆体繊維を糸状またはひも状に加工して被加熱繊維とする紡糸部と、 該糸状またはひも状に加工された被加熱繊維を加熱して炭素繊維とするマイクロ波炭素化 部とより構成され、
前記マイクロ波炭素化部は、加熱処理室を備え、
該加熱処理室は、前記被加熱繊維をマイクロ波照射により加熱処理を行うものであって 、 前記被加熱繊維は、前記加熱処理室の中の特定の2点間で電圧を印加され、
該印加された2点間の電圧値と、該2点間に流れる電流値と、該2点間の距離と、当該 被加熱繊維の断面積から被加熱繊維の導電率を算出し、
あらかじめ算出した被加熱繊維の炭素化率と、前記マイクロ波照射と、前記算出した導 電率とに応じて加熱処理を行うように、前記マイクロ波照射の出力を調節するマイクロ波 照射部を備えたことを特徴とする炭素繊維の製造装置。 - 前記請求項10に記載の炭素繊維の製造装置であって、
前記マイクロ波炭素化部より出力される炭素繊維に所定の加工を施し、所望の炭素繊維 を製造することを特徴とする炭素繊維の製造装置。 - 所定の前駆体繊維を炭素化して炭素繊維を製造する炭素繊維の製造方法において、
ポリマー原料を投入する前駆体繊維投入手段と、
該投入された前駆体繊維を糸状またはひも状に加工して被加熱繊維とする紡糸手段と、 該糸状またはひも状に加工された被加熱繊維を加熱して炭素繊維とするマイクロ波炭素化 手段とより構成され、
前記マイクロ波炭素化手段は、加熱処理手段を備え、
該加熱処理手段は、前記被加熱繊維をマイクロ波照射により加熱処理を行うものであっ て、
前記被加熱繊維は、前記加熱処理手段の中の特定の2点間で電圧を印加され、
該印加された2点間の電圧値と、該2点間に流れる電流値と、該2点間の距離と、当該 被加熱繊維の断面積から被加熱繊維の導電率を算出し、
あらかじめ算出した被加熱繊維の炭素化率と、前記マイクロ波照射と、前記算出した導 電率とに応じて加熱処理を行うように、前記マイクロ波照射の出力を調節するマイクロ波 照射手段を備えたことを特徴とする炭素繊維の製造方法。 - 前記請求項12に記載の炭素繊維の製造方法であって、
前記マイクロ波炭素化手段より出力される炭素繊維に所定の加工を施し、所望の炭素繊 維を製造することを特徴とする炭素繊維の製造方法。 - 加熱処理室の中でマイクロ波による加熱処理を行うマイクロ波加熱方法において、
被加熱繊維の特定の2点間に電圧を印加する電圧印加手段と、
その2点間の電圧値と、その2点間に流れる電流値と、その2点間の距離と、被加熱繊 維の断面積から被加熱繊維の導電率を算出する導電率算出手段と、
あらかじめ算出した被加熱繊維の炭素化率とマイクロ波出力と前記算出した導電率とに 応じた加熱処理を行うように、マイクロ波出力を調節するマイクロ波照射手段とを備えた ことを特徴とするマイクロ波加熱処理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018558854A JP6826613B2 (ja) | 2016-12-27 | 2017-10-31 | マイクロ波加熱処理装置及び炭素繊維の製造装置と製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-253258 | 2016-12-27 | ||
JP2016253258 | 2016-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123249A1 true WO2018123249A1 (ja) | 2018-07-05 |
Family
ID=62707401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/039325 WO2018123249A1 (ja) | 2016-12-27 | 2017-10-31 | マイクロ波加熱処理装置及び炭素繊維の製造装置と製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6826613B2 (ja) |
WO (1) | WO2018123249A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110878434A (zh) * | 2018-09-06 | 2020-03-13 | 永虹先进材料股份有限公司 | 高温碳化炉 |
CN111099917A (zh) * | 2018-10-29 | 2020-05-05 | 中国石油化工股份有限公司 | 一种微波中产生电弧的多孔复合材料及制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58144125A (ja) * | 1982-02-10 | 1983-08-27 | Hirochiku:Kk | 炭素繊維製造用マイクロ波加熱装置 |
JP2006128075A (ja) * | 2004-10-01 | 2006-05-18 | Seiko Epson Corp | 高周波加熱装置、半導体製造装置および光源装置 |
JP2013221232A (ja) * | 2012-04-18 | 2013-10-28 | Tec One Company | 炭素繊維、炭素繊維製造方法、前記炭素繊維を有する材 |
US20160348283A1 (en) * | 2015-05-26 | 2016-12-01 | Korea Institute Of Science And Technology | Nanocarbon composite carbon fiber with low cost and high performance and their preparation method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160038283A1 (en) * | 2014-08-06 | 2016-02-11 | The University Of Iowa Research Foundation | Systems and methods utilizing expandable transcatheter valve |
-
2017
- 2017-10-31 JP JP2018558854A patent/JP6826613B2/ja active Active
- 2017-10-31 WO PCT/JP2017/039325 patent/WO2018123249A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58144125A (ja) * | 1982-02-10 | 1983-08-27 | Hirochiku:Kk | 炭素繊維製造用マイクロ波加熱装置 |
JP2006128075A (ja) * | 2004-10-01 | 2006-05-18 | Seiko Epson Corp | 高周波加熱装置、半導体製造装置および光源装置 |
JP2013221232A (ja) * | 2012-04-18 | 2013-10-28 | Tec One Company | 炭素繊維、炭素繊維製造方法、前記炭素繊維を有する材 |
US20160348283A1 (en) * | 2015-05-26 | 2016-12-01 | Korea Institute Of Science And Technology | Nanocarbon composite carbon fiber with low cost and high performance and their preparation method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110878434A (zh) * | 2018-09-06 | 2020-03-13 | 永虹先进材料股份有限公司 | 高温碳化炉 |
CN111099917A (zh) * | 2018-10-29 | 2020-05-05 | 中国石油化工股份有限公司 | 一种微波中产生电弧的多孔复合材料及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6826613B2 (ja) | 2021-02-03 |
JPWO2018123249A1 (ja) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5191004B2 (ja) | 炭素繊維の連続製造法 | |
WO2018123249A1 (ja) | マイクロ波加熱処理装置及び炭素繊維の製造装置と製造方法 | |
WO2015060140A1 (ja) | 過熱水蒸気処理装置 | |
JP2009250474A (ja) | 高周波誘電加熱による円筒体の加熱乾燥装置 | |
EP3745817B1 (en) | Microwave processing device and carbon fiber production method | |
JP6662957B2 (ja) | イオン改質 | |
US9745671B2 (en) | Carbonization method and carbon fiber production method | |
JP6469212B2 (ja) | 炭素繊維及び炭素繊維の製造方法 | |
US20160017484A1 (en) | Carbon film formation method, and carbon film | |
JP2013231244A (ja) | 炭素繊維の製造装置 | |
JP2012246200A (ja) | 黒鉛化炉および黒鉛の生成方法 | |
JP2015214461A (ja) | 炭素繊維連続黒鉛化炉 | |
US10378125B2 (en) | Method and device for processing carbon fiber strands | |
DE102010056020B4 (de) | Verfahren und Vorrichtung zum Ausbilden einer dielektrischen Schicht auf einem Substrat | |
JP2001172724A (ja) | 精密ワイヤーの製造法及び製造装置 | |
CN105154657A (zh) | 一种合金异型弹簧钢丝在线感应退火热处理生产方法 | |
JP6869052B2 (ja) | マイクロ波加熱処理装置 | |
KR101236199B1 (ko) | 탄소섬유 가공장치 | |
JP2011174097A (ja) | 熱cvd法および熱cvd装置並びにカーボンナノチューブの製造方法および製造装置 | |
DE102011100024A1 (de) | Verfahren zum ausbilden einer schicht auf einem substrat | |
US3192385A (en) | Electrical discharge producing apparatus for treating plastic materials | |
TW201938838A (zh) | 電漿處理裝置、電漿處理方法以及電漿處理裝置用程式 | |
JP2011117020A (ja) | アルミニウム撚り電線の焼鈍方法、及び、線材の焼鈍方法 | |
RU2324023C2 (ru) | Устройство для непрерывной высокотемпературной обработки углеродных жгутов | |
US20240076808A1 (en) | Apparatus and Method for Close Proximity Carbonization of Polymeric Materials for Carbon Fiber Production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17886206 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018558854 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17886206 Country of ref document: EP Kind code of ref document: A1 |