WO2018121579A1 - 采用半桥电路的交流电磁铁 - Google Patents

采用半桥电路的交流电磁铁 Download PDF

Info

Publication number
WO2018121579A1
WO2018121579A1 PCT/CN2017/118894 CN2017118894W WO2018121579A1 WO 2018121579 A1 WO2018121579 A1 WO 2018121579A1 CN 2017118894 W CN2017118894 W CN 2017118894W WO 2018121579 A1 WO2018121579 A1 WO 2018121579A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
terminal
resistor
half bridge
capacitor
Prior art date
Application number
PCT/CN2017/118894
Other languages
English (en)
French (fr)
Inventor
汪孟金
孙浙胜
朱亮
Original Assignee
宁波市镇海华泰电器厂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波市镇海华泰电器厂 filed Critical 宁波市镇海华泰电器厂
Publication of WO2018121579A1 publication Critical patent/WO2018121579A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings

Definitions

  • the invention relates to the field of low-voltage electrical appliances, in particular to an alternating current electromagnet using a half-bridge circuit capable of high-efficiency power saving.
  • the AC electromagnet is a very widely used low voltage electrical appliance.
  • AC electromagnetic contactor, AC solenoid valve, AC electromagnetic tractor, AC electromagnetic clutch, AC electromagnetic brake, AC electromagnetic chuck, AC electromagnetic crane, AC electromagnetic lock, AC electromagnetic punch, AC electromagnetic nail gun, AC electromagnetic crusher, AC electromagnets are provided in devices such as AC electromagnetic cutting machines and AC maglev trains.
  • FIG. 1 is a schematic diagram of the operation of a conventional AC electromagnet.
  • This conventional AC electromagnet is mainly composed of a moving iron core M, a static iron core G, a return spring F, and an exciting coil L.
  • the A1 terminal and the A2 terminal of the exciting coil L are connected to the AC220V, AC110V or AC380V voltage (hereinafter referred to as AC220V, AC110V or AC380V as the AC voltage or the excitation power source)
  • the movable iron core M is subjected to the magnetic force generated by the exciting coil L.
  • the static iron core G is closed; when the AC voltage on the exciting coil L is disconnected, the moving iron core M is demagnetized and separated from the static iron core G by the action of the return spring F and reset.
  • the excitation coil L is connected to the AC voltage, and the movable iron core M is activated.
  • the excitation power source in order to overcome the inertia of the moving iron core M and the elastic force of the return spring F, the excitation power source must provide a large power (hereinafter referred to as the starting power), and the moving and static iron cores can be attracted to each other.
  • the excitation coil L continues to be connected to the AC voltage, and the moving and static iron cores continue to be in a state of suction.
  • the excitation power supply only needs to provide a small power (hereinafter referred to as the power of the holding power), and the moving and static iron cores can continue to suck.
  • the excitation power supply provides excessive holding power, it will cause waste of power and cause the heat generated by the AC electromagnet to rise.
  • the working process of the conventional AC solenoid valve consisting of the static iron core G, the exciting coil L, the valve core (corresponding to the moving iron core) M, and the return spring F shown in FIG. 2 is: before the AC voltage is turned on, the inlet and the The outlet is cut off; after the AC voltage is turned on, the spool (moving iron core) M and the static iron core G are sucked, and the inlet and the outlet are in communication.
  • AC contactor The working process of the conventional AC electromagnetic contactor (hereinafter referred to as AC contactor) composed of the static iron core G, the exciting coil L, the moving iron core M, and the return spring F shown in FIG. 3 is: before the AC voltage is turned on, the dynamic contact The point is connected to the normally closed contact; after the AC voltage is turned on, the movable iron core M is connected to the static iron core G, and the movable contact is connected to the normally open contact.
  • the object of the present invention is to apply electronic technology, transform traditional industries, and design an AC electromagnet that can efficiently save electricity and adopt a half bridge circuit.
  • the method for achieving the above object is: an alternating current electromagnet using a half bridge circuit, comprising a conventional alternating current electromagnet composed of a moving iron core M, a static iron core G, a return spring F, an exciting coil L, and two parts of the electronic unit 100.
  • the electronic unit 100 is composed of a DC power supply circuit 101, a switching pulse generating circuit 102, a switching circuit 103, a boosting circuit 104, a voltage dividing circuit 105, a half bridge circuit 106, and a common terminal E;
  • One end of the DC power supply circuit 101 is connected to the half bridge circuit 106; the three ends of the switching pulse generating circuit 102 are connected to the two ends of the power supply circuit 101, and the four ends are connected to the switch circuit 103.
  • the terminal is connected; the 6 terminal of the switching circuit 103 is connected to the DC2 terminal of the half bridge circuit 106, the 7 terminal is connected to the 8 terminal of the boosting circuit 104; and the 9 terminal of the boosting circuit 104 and the half bridge circuit 106 are connected.
  • the DC2 terminal is connected; the 10 terminal of the voltage dividing circuit 105 is also connected to the half bridge circuit 106; the AC1 terminal of the half bridge circuit 106 is connected to the P1 terminal of the AC voltage, and the DC1 terminal is connected to the excitation.
  • the A1 end of the coil L is connected, and the DC2 end is connected to the A2 end of the exciting coil L.
  • the common terminal E is connected to the P2 end of the AC voltage; one end of each of the DC power supply circuit 101, the switching pulse generating circuit 102, the switching circuit 103, the boosting circuit 104, and the voltage dividing circuit 105 is connected to the common terminal E. Connected (see Figure 4).
  • the electronic unit 100 and the conventional alternating current electromagnet are combined in the manner described above to form an alternating current electromagnet using the half bridge circuit as referred to in the present invention.
  • the method of connecting the one end of the DC power supply circuit 101 to the half bridge circuit 106 may adopt the following three types: First, one end of the DC power supply circuit 101 is connected to the AC1 end of the half bridge circuit 106; Second, one end of the DC power supply circuit 101 is connected to the DC1 terminal of the half bridge circuit 106; and third, one end of the DC power supply circuit 101 is connected to the DC2 terminal of the half bridge circuit 106.
  • the method of connecting the 10th end of the voltage dividing circuit 105 to the half bridge circuit 106 can be respectively adopted as follows: First, the 10 end of the voltage dividing circuit 105 is connected to the DC2 end of the half bridge circuit 106; Second, the 10 terminal of the voltage dividing circuit 105 is connected to the DC1 terminal of the half bridge circuit 106.
  • the DC power supply circuit 101 can adopt various circuit configurations.
  • the present invention preferably has the following circuit structure: it has one end, a first capacitor C1, a first diode D1, a second diode D2, and a second capacitor C2. a two-terminal composition; wherein, one end of the first capacitor C1 is connected to the one end, and the other end is connected to the anode of the first diode D1 and the anode of the second diode D2; the second pole
  • the cathode of the tube D2 is connected to the anode and the 2 terminal of the second capacitor C2; the anode of the first diode D1 and the cathode of the second capacitor C2 are both connected to the common terminal E.
  • the switching pulse generating circuit 102 can adopt various circuit configurations, and the present invention preferably has the following circuit structure:
  • a which is composed of a 3-terminal, a third capacitor C3, a first resistor R1, a second resistor R2, a third resistor R3, and a transistor T1, 4; wherein: one end of each of the first resistor R1 and the third resistor R3 is The three ends are connected; the other end of the first resistor R1, one end of the second resistor R2, and one end of the third capacitor C3 are connected to the base of the transistor T1; the other end of the third resistor R3 and the collector of the transistor T1 are both Connected to the 4 terminal; the other end of the third capacitor C3, the other end of the second resistor R2, and the emitter of the transistor T1 are connected to the common terminal E (see FIG. 5).
  • b It consists of a 3-terminal, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, a sixth capacitor C6, and an integrated time base circuit IC1, 4; wherein: one end of the fifth resistor R5, the integrated time base circuit The 8-pin and 4-pin of IC1 are connected to the 3-terminal; the 6-pin and 2-pin of the integrated time base circuit IC1, the other end of the fifth resistor R5, one end of the sixth resistor R6, and one end of the sixth capacitor C6 are connected to each other.
  • One end of the seventh resistor R7 is connected to the 3 pin of the integrated time base circuit IC1, and the other end is connected to the 4 end; the other end of the sixth capacitor C6, the other end of the sixth resistor R6, and the integrated time base circuit IC1
  • the feet are connected to the common terminal E (see Figure 6).
  • the integrated time base circuit IC1 can select a plurality of integrated circuits, and the present invention preferably has a 555 integrated time base circuit.
  • the switch circuit 103 can adopt various circuit configurations.
  • the present invention preferably has the following circuit structure: the fifth diode D5, the unidirectional thyristor SCR (Silicon Controlled Rectifier), the 5 terminal, the 6 terminal, and the 7 a terminal composition; wherein: the anode of the fifth diode D5 is connected to the 6 end, the anode is connected to the anode and the 7 end of the unidirectional thyristor SCR; and the cathode of the unidirectional thyristor SCR is The terminal is connected to the common terminal E, and the gate is connected to the 5 terminal (see FIGS. 5, 6, and 7).
  • the one-way thyristor SCR can use other switching devices such as a Field Effect Transistor (FET), a Triode AC Switch (TRIAC), and an Insulatend Gate Bipolar (Insulatend Gate Bipolar).
  • FET Field Effect Transistor
  • TRIAC Triode AC Switch
  • IGBT Injection Enhanced Gate Tanstor
  • SITH Static Induction Thyristor
  • the boosting circuit 104 can adopt various circuit structures.
  • the present invention preferably has the following circuit structure: the 8-terminal, the fourth capacitor C4, the sixth diode D6, and the 9-terminal, wherein: the positive pole of the fourth capacitor C4 It is connected to the 8-terminal, and the negative electrode is connected to the 9-terminal; the negative electrode of the sixth diode D6 is also connected to the 8-terminal, and the positive electrode is connected to the common terminal (see FIGS. 5, 6, and 7).
  • the booster circuit 104 is characterized in that it has the dual function of enhancing the starting voltage and filtering out the interference voltage.
  • the voltage dividing circuit 104 can adopt various circuit structures.
  • the present invention preferably has the following circuit structure: it is composed of a 10-terminal and a fifth capacitor C5, wherein: the fifth capacitor C5 has one end connected to the 10 end and the other end connected to the common end. E.
  • the half bridge circuit 106 can adopt various circuit structures.
  • the present invention preferably has the following circuit structure: it is composed of a third diode D3, a fourth diode D4, an AC1 terminal, a DC1 terminal, and a DC2 terminal, wherein: The anode of the third diode D3 and the anode of the fourth diode D4 are all connected to the AC1 terminal; the anode of the third diode D3 is connected to the DC2 terminal; and the cathode of the fourth diode D4 is connected to the DC1 terminal. Connection (see Figure 5, Figure 6, Figure 7).
  • the half bridge circuit 106 is characterized in that it has a triple function of rectifying, converting the interference voltage to the excitation current, and suppressing the internal interference voltage.
  • High-efficiency power saving The measured results show that the power saving efficiency of the innovative parts applying the invention is as high as 96% compared with the conventional parts.
  • the invention has the function of high-efficiency power-saving, saves electric energy, and inevitably has low heat during operation.
  • the AC voltage is rectified by the half bridge circuit 106, and is operated by direct current, so that there is no audible noise during operation.
  • the half bridge circuit 106 can rectify the external disturbance into the excitation current; in the negative half cycle of the AC voltage, the boost circuit can absorb or filter out the external interference; when the AC voltage is turned off, the half bridge circuit 106 is provided. Freewheeling device. Therefore, the present invention has strong anti-interference performance, and can eliminate external interference without disturbing external circuits.
  • the present invention has the advantages of high efficiency, low heat operation, quietness, no noise, strong anti-interference performance, etc., therefore, an apparatus capable of providing an alternating current electromagnet inside, such as an alternating current electromagnetic contactor, an alternating current electromagnetic valve, and an alternating current.
  • Figure 1 is a working principle diagram of a conventional alternating current electromagnet
  • FIG. 2 is a working principle diagram of an alternating current electromagnet of a conventional AC solenoid valve
  • FIG. 3 is a working principle diagram of an alternating current electromagnet of a conventional alternating current electromagnetic contactor
  • Figure 4 is a schematic block diagram of the present invention.
  • FIG. 5 is a circuit schematic diagram of Embodiment 1;
  • Figure 6 is a circuit schematic diagram of Embodiment 2.
  • Figure 7 is a circuit schematic diagram of Embodiment 3.
  • Figure 8 is a pulse waveform diagram of the output of the switching pulse generating circuit 103;
  • FIG. 4 is a schematic block diagram of the present invention
  • FIG. 5 is a circuit schematic diagram of Embodiment 1.
  • L is an exciting coil in a conventional alternating current electromagnet
  • A1 and A2 are two connection ports thereof
  • a broken line block 100 indicates the electronic unit 100 of the present invention.
  • an AC electromagnet using a half bridge circuit comprising a conventional AC electromagnet composed of a moving iron core M, a static iron core G, a return spring F, and an exciting coil L, and an electronic unit 100, wherein:
  • the electronic unit 100 is composed of a DC power supply circuit 101, a switching pulse generating circuit 102, a switching circuit 103, a boosting circuit 104, a voltage dividing circuit 105, a half bridge circuit 106, and a common terminal E; wherein the DC power circuit 101 One end is connected to the half bridge circuit 106; the three ends of the switching pulse generating circuit 102 are connected to the two ends of the power supply circuit 101, and the four ends are connected to the five ends of the switch circuit 103;
  • the 6-terminal of the switching circuit 103 is connected to the DC2 terminal of the half bridge circuit 106, and the 7 terminal is connected to the 8 terminal of the boosting circuit 104.
  • the 9 terminal of the boosting circuit 104 is connected to the DC2 terminal of the half bridge circuit 106.
  • the 10 terminal of the voltage dividing circuit 105 is also connected to the half bridge circuit 106; the AC1 terminal of the half bridge circuit 106 is connected to the P1 terminal of the AC voltage, and the DC1 terminal and the A1 terminal of the excitation coil L are connected.
  • the DC2 terminal is connected to the A2 end of the exciting coil L; the common terminal E and the AC power
  • the P2 terminal of the voltage is connected; one end of each of the DC power supply circuit 101, the switching pulse generating circuit 102, the switching circuit 103, the boosting circuit 104, and the voltage dividing circuit 105 is connected to the common terminal E.
  • the electronic unit 100 and the conventional alternating current electromagnet are combined in the manner described above to form an alternating current electromagnet using the half bridge circuit as referred to in the present invention.
  • FIG. 5 is a circuit schematic diagram of Embodiment 1.
  • the first embodiment :
  • the first terminal, the first capacitor C1, the first diode D1, the second diode D2, and the second capacitor C2, 2 are formed as a DC power supply circuit 101; wherein the 1 terminal and the DC2 terminal of the half bridge circuit 106 One end of the first capacitor C1 is connected to the one end, the other end is connected to the anode of the first diode D1 and the anode of the second diode D2; the cathode of the second diode D2
  • the positive electrode and the second terminal of the second capacitor C2 are connected to each other; the positive electrode of the first diode D1 and the negative electrode of the second capacitor C2 are connected to the common terminal E.
  • the DC voltage outputted by the DC power supply circuit 101 is Vcc, the 2 terminal is its positive terminal, and the common terminal E is its negative terminal.
  • the three ends, the third capacitor C3, the first resistor R1, the second resistor R2, the third resistor R3, and the transistors T1 and 4 are formed as a switching pulse generating circuit 102; wherein: one end of each of the first resistor R1 and the third resistor R3 Each of the first resistor R1 is connected to the other end of the transistor R1; the other end of the third resistor R3 is connected to the base of the transistor T1; The electrodes are connected to the four ends; the other end of the third capacitor C3, the other end of the second resistor R2, and the emitter of the transistor T1 are all connected to the common terminal E.
  • the fifth diode D5, the unidirectional thyristor SCR, the 5th end, the 6th end, and the 7th end are composed of a switch circuit 103; wherein: the positive pole of the fifth diode D5 is connected with the 6 end, and the negative pole is The anode and the 7-terminal phase of the unidirectional thyristor SCR are connected; the cathode of the unidirectional thyristor SCR is connected to the common terminal E, and the gate is connected to the 5 terminal (see FIG. 5 and FIG. 6, Figure 7).
  • the unidirectional thyristor SCR can be replaced by other switching devices such as a field effect transistor, a bidirectional thyristor, an insulated gate bipolar transistor, an electron injection enhancement gate transistor, an electrostatic induction thyristor or a switching transistor.
  • the 8-terminal, fourth capacitor C4, and sixth diode D6, 9 terminals are formed as a booster circuit 104, wherein: the positive pole of the fourth capacitor C4 is connected to the 8-terminal end, and the negative pole is connected to the 9-terminal; the sixth diode The negative electrode of D6 is also connected to the 8-terminal, and the positive electrode is connected to the common terminal E.
  • the 10th end and the fifth capacitor C5 are formed as a voltage dividing circuit 104, wherein the 10th end is connected to the DC2 end of the half bridge circuit 106; the fifth capacitor C5 has one end connected to the 10th end and the other end connected to the common end E.
  • the third diode D3, the fourth diode D4, the AC1 terminal, the DC1 terminal, and the DC2 terminal are configured as a half bridge circuit 106, wherein: the anode of the third diode D3 and the anode of the fourth diode D4 are both The AC1 terminal is connected; the anode of the third diode D3 is connected to the DC2 terminal; and the cathode of the fourth diode D4 is connected to the DC1 terminal.
  • the DC voltage Vcc charges the third capacitor C3 through the first resistor R1.
  • the voltage on the third capacitor C3, that is, the base voltage of the transistor T1 is Vb ⁇ 0.7V
  • Vb ⁇ 0.7V the transistor T1 is changed from the off state to the on state, and the Vg ⁇ 0.
  • Vgt is the gate trigger voltage of the one-way thyristor SCR.
  • the fourth capacitor C4 in the boosting circuit 104 is discharged through the unidirectional thyristor SCR, and the discharge discharging process can be divided into two stages:
  • the voltage U across the exciting coil L is the sum of the voltage Uc at the fourth capacitor C4 and the instantaneous value u at the positive half cycle of the AC voltage.
  • the boost circuit 104 has a function of boosting the startup voltage.
  • the starting excitation current I in the exciting coil L flows along the path of the P1-D4-excitation coil L-C4-one thyristor SCR-P2.
  • the fourth capacitor C4 discharges.
  • the present invention can obtain a sufficiently strong starting excitation current I, so that the moving iron core M and the static iron core G are strongly energized.
  • the fifth diode D5 is turned on:
  • the fifth diode D5 has the function of protecting the fourth capacitor C4 from damage.
  • the excitation current I is started to flow by the following path: P1-D4-excitation coil L-D5-one-way thyristor SCR-P2, and the AC voltage continues to be the half bridge
  • the AC solenoid of the circuit provides the starting power.
  • the unidirectional thyristor SCR is turned off because its anode current is less than its minimum holding current, and the excitation current I is turned off.
  • the present invention has completed the starting process; but in the time range from t4 to t6, the one-way crystal thyristor SCR is still turned on, and the excitation is started. Current I is still circulating. In the t4 ⁇ t6 time domain, the excitation current I is activated to stabilize the startup result.
  • the present invention refers to the t4 to t6 time domain as the startup consolidation time domain.
  • the positive voltage of the AC voltage is high in P1 and low in P2:
  • the current ic1 on the first capacitor C1 flows along the path of the P1-D4-exciting coil L-C1 (charging)-D2-Vcc (multipath)-P2;
  • the current ic3 on the fifth capacitor C5 flows along the path of the P1-D4-exciting coil L-C5 (charging)-P2;
  • a current ic2 (shown by a dashed arrow) on the first capacitor C1 flows along a path of P2-D1-C1 (discharge)-D3-P1;
  • the current ic1 indicated by the solid arrow on the first capacitor C1 and the current ic2 indicated by the dotted arrow have a mutual coexistence relationship. Without the former charging the first capacitor C1, the latter does not discharge the first capacitor C1. vice versa.
  • the current ic3 indicated by the solid arrow on the fifth capacitor C5 and the current ic4 indicated by the dotted arrow also have a mutual coexistence relationship.
  • the current ic1 and the current ic3 together maintain the holding state of the present invention.
  • the fifth capacitance C5 can be omitted when the required holding power of the electromagnet is small.
  • the half bridge circuit 106 has two functions in the present invention.
  • the rectification function rectifies the current flowing into the excitation coil L into a direct current
  • the freewheeling function the excitation coil The current in L provides a freewheeling path.
  • the bridge circuit 105 has both rectification and freewheeling functions.
  • Embodiment 6 is a circuit schematic diagram of Embodiment 2.
  • the circuit structure of Embodiment 2 is the same as that of Embodiment 1, and the difference is:
  • one end of the DC power supply circuit 101 is connected to the DC2 terminal of the half bridge circuit 106, and in the second embodiment, one end of the DC power supply circuit 101 is connected to the DC1 terminal of the half bridge circuit 106. ;
  • the switching pulse generating circuit 102 is composed of a transistor T1 and its peripheral devices.
  • the switching pulse generating circuit 102 is composed of an integrated time base circuit IC1 and its peripheral devices: 3 end, fifth resistor R5, sixth resistor R6, seventh resistor R7, sixth capacitor C6, integrated time base circuit IC1, 4 end; wherein: one end of the fifth resistor R5, the integrated time base circuit IC1 8 feet And 4 feet are connected with the 3 terminals; the 6th pin and the 2 pin of the integrated time base circuit IC1, the other end of the fifth resistor R5, one end of the sixth resistor R6, and one end of the sixth capacitor C6 are connected to each other; the seventh resistor One end of R7 is connected to the 3 pin of the integrated time base circuit IC1, and the other end is connected to the 4th end; the other end of the sixth capacitor C6, the other end of the sixth resistor R6, and the 1 pin of the integrated time base circuit IC1 are common to End E is connected.
  • the working process of the switching pulse generating circuit 102 in the second embodiment to generate the switching pulse is:
  • the voltage across the sixth capacitor C6 is the voltage Vi ⁇ 1/3Vcc ⁇ 2/3Vcc on the 2nd and 6th pins of the integrated time base circuit IC1
  • the voltage on the sixth capacitor C6 is the voltage on the 6th and 2nd pins of the integrated time base circuit IC1, Vi>2/3Vcc>1/3Vcc, and the voltage on the 3rd pin of the integrated time base circuit IC1 Vo
  • Embodiment 7 is a circuit schematic diagram of Embodiment 3. Compared with Embodiment 1, three of the Embodiment 3 are different from Embodiment 1:
  • one end of the DC power supply circuit 101 is connected to the DC2 terminal of the half bridge circuit 106, and in the third embodiment, the one end of the DC power supply circuit 101 and the AC1 end of the half bridge circuit 106 are connected.
  • the 10 terminal of the voltage dividing circuit 105 is connected to the DC2 terminal of the half bridge circuit 106, and in the third embodiment, the 10 terminal of the voltage dividing circuit 105 and the DC1 terminal of the half bridge circuit 106. Connected
  • the switching pulse generating circuit 102 is different from the first embodiment.
  • the switching pulse generating circuit 102 is composed of a 3-terminal, an eighth resistor R8, a ninth resistor R9, a tenth resistor R10, an eleventh resistor R11, a twelfth resistor R12, and a seventh capacitor C7.
  • the 3rd pin of IC2 is connected; the other end and 4th end of the twelfth resistor R12 are connected to the 1 pin of the integrated operational amplifier IC2; the other end of the seventh capacitor C7, the other end of the ninth resistor R9, and the eleventh resistor
  • the other end of R11 and the 4-pin of the integrated operational amplifier IC2 are connected to the common terminal E.
  • the working process of the switching pulse generating circuit 102 in the third embodiment to generate the switching pulse is:
  • the DC voltage Vcc charges the seventh capacitor C7 through the eighth resistor R8. As the charging progresses, the voltage on the seventh capacitor C7, that is, the voltage V2 on the pin 2 of the integrated operational amplifier IC2 gradually rises.
  • the voltage V3 on the pin 3 of the integrated operational amplifier IC2 is greater than the voltage V2 on the pin 2, that is, V3>V2, and the voltage output from the integrated operational amplifier IC2 is the voltage Vg on the pin 1 of the integrated operational amplifier IC2. Is high level Vgt.
  • the voltage on the seventh capacitor C7 that is, the voltage V2 on the pin 2 of the integrated operational amplifier IC2 rises gradually.
  • the switching pulse waveform outputted by the switching pulse generating circuit 102 in the third embodiment can be expressed by Fig. 8.
  • the working process of starting, holding, and resetting in the third embodiment is the same as that in the first embodiment.
  • FIG. 5 With reference to FIG. 4, FIG. 5, FIG. 6, and FIG. 7, the present invention has the following important anti-interference characteristics:
  • the booster circuit 104 has the function of filtering out the interference voltage.
  • the boost circuit 104 has the dual function of boosting the startup voltage and filtering out the interference voltage.
  • the excitation current in the magnetizing inductance L is in the path of P1-D4-exciting inductance L-D5-SCR-P2 (starting process) or P1-
  • the D4-exciting inductance L-C5-P2 (suction holding process) path circulates, and the interference voltage introduced by the AC voltage is rectified by the fourth diode D4 in the half bridge circuit 106, and is converted into the exciting current in the magnetizing inductance L.
  • the half bridge circuit 106 has the function of converting the interference voltage to the excitation current.
  • the half bridge circuit 106 has a function of suppressing internal interference voltage.
  • the half bridge circuit 106 has a triple function of rectifying, converting the interference voltage to the excitation current, and suppressing the internal interference voltage.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Treatment Devices (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Rectifiers (AREA)

Abstract

一种采用半桥电路的交流电磁铁,包括由动铁芯(M)、静铁芯(G)、复位弹簧(F)、励磁线圈(L)所组成的常规交流电磁铁以及电子单元(100)两部分,所述电子单元(100)由DC电源电路(101)、开关脉冲发生电路(102)、开关电路(103)、增压电路(104)、分压电路(105)、半桥电路(106)、公共端(E)所组成。

Description

采用半桥电路的交流电磁铁 技术领域
本发明涉及低压电器领域,尤其涉及一种可以高效节电的采用半桥电路的交流电磁铁。
背景技术
交流电磁铁是一种应用非常广泛的低压电器。例如交流电磁接触器、交流电磁阀、交流电磁牵引器、交流电磁离合器、交流电磁制动器、交流电磁吸盘、交流电磁起重机、交流电磁锁、交流电磁冲床、交流电磁钉枪、交流电磁捣碎机、交流电磁切断机、交流磁悬浮列车等器械中均设有交流电磁铁。
图1为常规交流电磁铁的工作原理图。这种常规的交流电磁铁主要由动铁芯M、静铁芯G、复位弹簧F、励磁线圈L组成。当励磁线圈L的A1端、A2端接通AC220V、AC110V或AC380V电压(以下通称AC220V、AC110V或AC380V为AC电压或励磁电源)时,动铁芯M受励磁线圈L产生的磁力的作用而与静铁芯G闭合;当励磁线圈L上的AC电压断开时,动铁芯M失磁并受复位弹簧F的作用而与静铁芯G分离并复位。
这种常规交流电磁铁的工作过程可分为启动、吸持、复位三个阶段:
1、启动:励磁线圈L与AC电压接通,动铁芯M启动。在此阶段,为克服动铁芯M的惯性和复位弹簧F的弹力,励磁电源必须提供较大的功率(以下称此功率为启动功率),动、静铁芯才能互相吸合。
2、吸持:励磁线圈L继续与AC电压接通,动、静铁芯继续保持吸合的状态。在此阶段,励磁电源只须提供较小的功率(以下称此功率为吸持功率),动、静铁芯也能继续吸合。在此阶段,励磁电源若提供过大的吸持功率,将造成电能浪费并导致交流电磁铁不应有的发热升温。
3、复位:励磁线圈L断开AC电压,动、静铁芯复位分离。
交流电磁铁的用途千差万别,结构也千差万别,但它们的工作原理、工作过程均与图1相同。例如:图2所示的由静铁芯G、励磁线圈L、阀芯(相当于动铁芯)M、复位弹簧F组成的常规交流电磁阀的工作过程为:AC电压接通前,入口与出口隔断;AC电压接通后,阀芯(动铁芯)M与静铁芯G吸合,入口与出口连通。图3所示的由静铁芯G、励磁线圈L、动铁芯M、复位弹簧F组成的常规交流电磁接触器(以下简称交流接触器)的工作过程为:AC电压接通前,动触点与常闭触点连接;AC电压接通后,动铁芯M与静铁芯G吸合、动触点与常开触点连接。
常规交流电磁铁由于启动与吸持阶段,励磁线圈L中均通以相同的AC电压,因此存在以下的严重缺点:
1、无谓的耗电:前已述,在启动和吸持阶段,常规交流电磁铁的励磁线圈L中均通以相同的AC电压,导致吸持功率过大,造成了无谓的电能损耗;
2、发热:无谓的电能损耗所产生的恶果是升温发热,严重时,甚至会烧毁常规交流电磁铁的励磁线圈L;
3、存在烦人的交流噪声。
4、AC电压接通后,励磁线圈L产生的磁力不够强,动铁芯M与静铁芯G吸合的速度较慢。
5、无续流电路,AC电压切断瞬间,易对外电路产生干扰。
针对常规交流电磁铁的现状,本发明要迖到的目标是:应用电子技术,改造传统产业,设计一种可高效节电的采用半桥电路的交流电磁铁。
发明内容
本发明实现上述目标的方法为:一种采用半桥电路的交流电磁铁,包括由动铁芯M、静铁芯G、复位弹簧F、励磁线圈L所组成的常规交流电磁铁以及电子单元100两部分,其特征在于:所述电子单元100由DC电源电路101、开关脉冲发生电路102、开关电路103、增压电路104、分压电路105、半桥电路106、公共端E所组成;其中,所述DC电源电路101的1端与所述半桥电路106相连接;所述开关脉冲发生电路102的3端与所述电源电路101的2端相连接、4端与所述开关电路103的5端相连接;所述开关电路103的6端与半桥电路106的DC2端相连接、7端与增压电路104的8端相连接;所述增压电路104的9端与半桥电路106的DC2端相连接;所述分压电路105的10端也与所述半桥电路106相连接;所述半桥电路106的AC1端与AC电压的P1端相连接、DC1端与所述励磁线圈L的A1端相连接、DC2端与所述励磁线圈L的A2端相连接;所述公共端E与AC电压的P2端相连接;DC电源电路101、开关脉冲发生电路102、开关电路103、增压电路104、分压电路105各自的一端均与所述公共端E相连接(见图4)。
所述电子单元100与常规交流电磁铁按以上所述方式相组合,即可组成本发明所指的采用半桥电路的交流电磁铁。
所述DC电源电路101的1端与所述半桥电路106相连接的方法,可以分别采用以下三种:第一种,DC电源电路101的1端与半桥电路106的AC1端相连接;第二种,DC电源电路101的1端与半桥电路106的DC1端相连接;第三种,DC电源电路101的1端与半桥电路106的DC2端相连接。
所述分压电路105的10端与所述半桥电路106相连接的方法,可以分别采用以下二种:第一种,分压电路105的10端与半桥电路106的DC2端相连接;第二种,分压电路105的10端与半桥电路106的DC1端相连接。
所述DC电源电路101可以采用多种电路结构,本发明优选了以下的电路结构:其由1端、第一电容C1、第一二极管D1、第二二极管D2、第二电容C2、2端组成;其中,所述第一电容C1一端与所述1端相连接、另一端与第一二极管D1的负极、第二二极管D2的正极均相连接;第二二极管D2的负极与第二电容C2的正极、2端均相连接;第一二极管D1的正极、第二电容C2的负极均与公共端E相连接。
所述开关脉冲发生电路102可以采用多种电路结构,本发明优选了以下的电路结构:
a、其由3端、第三电容C3、第一电阻R1、第二电阻R2、第三电阻R3、三极管T1、4端组成;其中:第一电阻R1、第三电阻R3各自的一端均与3端相连接;第一电阻R1的另一端、第二电阻R2的一端、第三电容C3的一端均与三极管T1的基极相连接;第三电阻R3的另一端、三极管T1的集电极均与4端相连接;第三电容C3的另一端、第二电阻R2的另一端、三极管T1的发射极均与公共端E相连接(见图5)。
b、其由3端、第五电阻R5、第六电阻R6、第七电阻R7、第六电容C6、集成时基电路IC1、4端组成;其中:第五电阻R5的一端、集成时基电路IC1的8脚和4脚均与3端相连接;集成时基电路IC1的6脚和2脚、第五电阻R5的另一端、第六电阻R6的一端、第六电容C6的一端均互相连接;第七电阻R7的一端与集成时基电路IC1的3脚相连接、另一端与4端相连接;第六电容C6的另一端、第六电阻R6的另一端、集成时基电路IC1的1脚均与公共端E相连接(见图6)。
所述集成时基电路IC1可以选用多种集成电路,本发明优选555集成时基电路。
C、其由3端、第八电阻R8、第九电阻R9、第十电阻R10、第十一电阻R11、第十二电阻R12、第七电容C7、集成运算放大器1C2、4端组成;其中:第八电阻R8的一端、第十电阻R10的一端、第十二电阻R12的一端、集成运算放大器IC2的8脚均与3端相连接;第八电阻R8的另一 端、第七电容C7的一端、第九电阻R9的一端均与集成运算放大器IC2的2脚相连接;第十电阻R10的另一端、第十一电阻R11的一端均与集成运算放大器IC2的3脚相连接;第十二电阻R12的另一端、4端均与集成运算放大器IC2的1脚相连接;第七电容C7的另一端、第九电阻R9的另一端、第十一电阻R11的另一端、集成运算放大器IC2的4脚均与公共端E相连接(见图7)。
所述开关电路103可以采用多种电路结构,本发明优选了以下的电路结构:其由第五二极管D5、单向晶体闸流管SCR(Silicon Controlled Rectifier)、5端、6端、7端组成;其中:所述第五二极管D5的正极与6端相连接,负极与所述单向晶体闸流管SCR的阳极、7端相连接;单向晶体闸流管SCR的阴极与所述与公共端E相连接、门极与5端相连接(见图5、图6、图7)。
所述单向晶体闸流管SCR可以用其他开关器件例如场效应管(Field Eff ect Transistor,FET)、双向晶体闸流管(Triode AC Switch,TRIAC)、绝缘栅双极型晶体管(Insulatend Gate Bipolar Transistor,IGBT)、电子注入增强栅晶体管(Injection Enhanced Gate Tansistor,IEGT)、静电感应晶闸管(Static Induction Thyristor,SITH)或开关三极管代替。
所述增压电路104可以采用多种电路结构,本发明优选了以下的电路结构:其由8端、第四电容C4、第六二极管D6、9端、其中:第四电容C4的正极与8端相连接、负极与9端相连接;第六二极管D6的负极也与8端相连接、正极与公共端相连接(见图5、图6、图7)。
所述增压电路104的特征在于:其具有增强启动电压、滤除干扰电压的双重功能。
所述分压电路104可以采用多种电路结构,本发明优选了以下的电路结构:其由10端、第五电容C5组成,其中:第五电容C5的一端接10端、另一端接公共端E。
所述半桥电路106可以采用多种电路结构,本发明优选了以下的电路结构:其由第三二极管D3、第四二极管D4、AC1端、DC1端、DC2端组成,其中:第三二极管D3的负极、第四二极管D4的正极均与AC1端相连接;第三二极管D3的正极与DC2端相连接;第四二极管D4的负极与DC1端相连接(见图5、图6、图7)。
所述半桥电路106的特征在于:其具有整流、转化干扰电压为励磁电流、抑制内部干扰电压的三重功能。
应用本发明,可以取得以下有益效果:
1、高效节电:实测结果表明,与常规件相比较,应用本发明的创新件的节电效率高达96%。
2、低热运行:本发明具有高效节电的功能,节约了电能,运行时必然低热。
3、寂静无噪:
本发明所指的采用半桥电路的交流电磁铁,AC电压经半桥电路106整流后,为直流运行,故运行时寂静无可闻噪声。
而常规交流电磁铁为交流运行,必然存在烦人的交流噪声。
4、抗干扰性能强:
在AC电压正半周,半桥电路106可将外部干扰整流转化为励磁电流;在AC电压负半周,增压电路可吸收或滤除外部干扰;在AC电压关断时,半桥电路106设有续流器件。因此,本发明抗干扰性能强,既可消除外部干扰,同时也不干扰外部电路。
综上所述,由于本发明具有高效节电、低热运行、寂静无噪、抗干扰性能强等优点,因此,可以在内部设有交流电磁铁的器械,例如交流电磁接触器、交流电磁阀、交流电磁牵引器、交流电磁离合器、交流电磁制动器、交流电磁吸盘、交流电磁起重机、交流电磁锁、交流电磁冲床、交流电磁钉枪、交流电磁捣碎机、交流电磁切断机、交流磁悬浮列车等器械中 得到应用。
附图说明
图1为常规交流电磁铁的工作原理图;
图2为常规交流电磁阀之交流电磁铁的工作原理图;
图3为常规交流电磁接触器之交流电磁铁的工作原理图;
图4为本发明的原理方框图;
图5为实施例1的电路原理图;
图6为实施例2的电路原理图;
图7为实施例3的电路原理图;
图8为开关脉冲发生电路103输出的脉冲波形图;
图9为AC电压波形图——初相角φ=0时的AC电压波形图。
具体实施方式
下面结合附图,说明本发明的实施方式。
图4为本发明的原理方框图,图5为实施例1的电路原理图。图4中:L为常规交流电磁铁中的励磁线圈,A1、A2为其之两个连接端口;虚线方框100表示本发明的电子单元100。
结合图4:一种采用半桥电路的交流电磁铁,包括由动铁芯M、静铁芯G、复位弹簧F、励磁线圈L所组成的常规交流电磁铁及电子单元100两部分,其特征在于:所述电子单元100由DC电源电路101、开关脉冲发生电路102、开关电路103、增压电路104、分压电路105、半桥电路106、公共端E所组成;其中,所述DC电源电路101的1端与所述半桥电路106相连接;所述开关脉冲发生电路102的3端与所述电源电路101的2端相连接、4端与所述开关电路103的5端相连接;所述开关电路103的6端与半桥电路106的DC2端相连接、7端与增压电路104的8端相连接;所述增压电路104的9端与半桥电路106的DC2端相连接;所述分压电路105的10端也与所述半桥电路106相连接;所述半桥电路106的AC1端与AC电压的P1端相连接、DC1端与所述励磁线圈L的A1端相连接、DC2端与所述励磁线圈L的A2端相连接;所述公共端E与AC电压的P2端相连接;DC电源电路101、开关脉冲发生电路102、开关电路103、增压电路104、分压电路105各自的一端均与所述公共端E相连接。
所述电子单元100与常规交流电磁铁按以上所述方式相组合,即可组成本发明所指的采用半桥电路的交流电磁铁。
图5为实施例1的电路原理图,本实施例1中:
1端、第一电容C1、第一二极管D1、第二二极管D2、第二电容C2、2端组成为DC电源电路101;其中,所述1端与半桥电路106的DC2端相连接;所述第一电容C1一端与所述1端相连接、另一端与第一二极管D1的负极、第二二极管D2的正极均相连接;第二二极管D2的负极与第二电容C2的正极、2端均相连接;第一二极管D1的正极、第二电容C2的负极均与公共端E相连接。
所述DC电源电路101输出的DC电压为Vcc,2端为其正端、公共端E为其负端。
3端、第三电容C3、第一电阻R1、第二电阻R2、第三电阻R3、三极管T1、4端组成为开关脉冲发生电路102;其中:第一电阻R1、第三电阻R3各自的一端均与3端相连接;第一电阻R1的另一端、第二电阻R2的一端、第三电容C3的一端均与三极管T1的基极相连接;第三电阻R3的另一端、三极管T1的集电极均与4端相连接;第三电容C3的另一端、第二电阻R2的另一端、三极管T1的发射极均与公共端E相连接。
第五二极管D5、单向晶体闸流管SCR、5端、6端、7端组成为开关电路103;其中:所述第五二极管D5的正极与6端相连接,负极与所述单向晶体闸流管SCR的阳极、7端相连接;单向晶体闸流管SCR的阴极与所述与公共端E相连接、门极与5端相连接(见图5、图6、图7)。
所述单向晶体闸流管SCR可以用其他开关器件例如场效应管、双向晶体闸流管、绝缘栅双极型晶体管、电子注入增强栅晶体管、静电感应晶闸管或开关三极管代替。
8端、第四电容C4、第六二极管D6、9端组成为增压电路104,其中:第四电容C4的正 极与8端相连接、负极与9端相连接;第六二极管D6的负极也与8端相连接、正极与公共端E相连接。
10端、第五电容C5组成为分压电路104,其中:所述10端与半桥电路106的DC2端相连接;所述第五电容C5的一端接10端、另一端接公共端E。
第三二极管D3、第四二极管D4、AC1端、DC1端、DC2端组成为半桥电路106,其中:第三二极管D3的负极、第四二极管D4的正极均与AC1端相连接;第三二极管D3的正极与DC2端相连接;第四二极管D4的负极与DC1端相连接。
下面,结合附图,阐述本实施例1的工作过程:
一、启动:
结合图4、图5、图8、图9:
t=t1时,AC电压接通,AC电压沿着P2-D6-C4-D3-P1的路径对增压电路104中的第四电容C4充电,第四电容C4充电储能。
t=t2时,AC电压进入P1为高电平、P2为低电平的正半周。第二二极管D2导通,电流ic1(实线剪头所示)沿着P1-D4-励磁线圈L-C1-D2-Vcc(多路径)-P2的路径流通,DC电源电路101输出的DC电压Vcc迅速建立。
DC电压Vcc通过第一电阻R1对第三电容C3充电。
在t3~t5时域,第三电容C3上的电压,即三极管T1基极电压Vb<0.7V,三极管T1为截止状态(三极管T1选用硅三极管),开关脉冲发生电路102输出的幅度为Vg=Vgt的控制脉冲;
随着充电进程,t=t5时,第三电容C3上的电压,即三极管T1基极电压
Vb≥0.7V,三极管T1由截止状态转变为导通状态,所述Vg≈0。
综上所述,再结合图8,在本发明启动-吸持-复位的工作周期内,所述开关脉冲发生电路102输出单个电压幅度为Vg=Vgt的控制脉冲,其波形由图8表示,图中Vgt为单向晶体闸流管SCR的门极触发电压。
再结合图5,Vg=Vgt时,单向晶体闸流管SCR触发导通。
单向晶体闸流管SCR触发导通之后,增压电路104中的第四电容C4通过单向晶体闸流管SCR放电释能,其放电释能的过程可分为二个阶段:
1、第五二极管D5截止阶段:若忽略第四二极管D4、晶体闸流管SCR之上的电压,则励磁线圈L两端的电压U=Uc+u
上式中:Uc为第四电容C4上的电压、u为AC电压正半周时的瞬时值:u=UmSin(ωt+φ),其中Um为AC电压的的振幅值、ω为AC电压的角频率、φ为AC电压的初相角。
由上式可知,励磁线圈L两端的电压U为第四电容C4上的电压Uc、AC电压正半周时的瞬时值u之和。换言之:在AC电压正半周,所述电磁铁启动过程中,等效为相串联的双电源启动,一个电源为AC电压、另一个电源为已充电储能的增压电路104中的第四电容C4。简言之:增压电路104具有增强启动电压的功能。
在相串联的双电源驱动下,励磁线圈L中的启动励磁电流I沿着P1-D4-励磁线圈L-C4-单向晶体闸流管SCR-P2的路径流通。
随着励磁电流I的流通,第四电容C4放电释能。
只要调整第四电容C4的值,本发明就可获得足够强的启动励磁电流I,使动铁芯M、静铁芯G吸合动作强劲有力。
2、第五二极管D5导通阶段:
随着放电释能的进程,第四电容C4上的电压Uc不断降低,Uc=0以后,AC电压对其反向充电。当Uc=-0.7V时,第五二极管D5导通(第五二极管D5选用硅二极管)。
第五二极管D5导通后,第四电容C4上的电压Uc被钳制为Uc=-0.7V,其就获得了第五二极管D5的保护而不会因反向电压过高而损坏。
简言之:第五二极管D5兼有保护第四电容C4不受损坏的功能。
第五二极管D5导通后,启动励磁电流I改由下述路径流动:P1-D4-励磁线圈L-D5-单向晶体闸流管SCR-P2,AC电压继续为所述采用半桥电路的交流电磁铁提供启动功率。
t=t4时,动铁芯M与静铁芯G吸合,所述采用半桥电路的交流电磁铁完成启动过程并进入吸持阶段。
二、吸持:
再结合图8,图9,在t4~t5时域,开关脉冲发生电路102输出的脉冲电压仍为Vg=Vgt,单向晶体闸流管SCR仍为导通状态。
t=t5时,开关脉冲发生电路102输出的脉冲电压Vg≈0,根据晶体闸流管工作原理,已处于导通状态的单向晶体闸流管SCR继续导通,启动励磁电流I继续流通。
在t=t6时,单向晶体闸流管SCR因其阳极电流小于其最小维持电流而关断,启动励磁电流I切断。
前已述,t=t4时,动铁芯M与静铁芯G已吸合,本发明已完成启动过程;但在t4~t6时域,单向晶体闸流管SCR仍导通,启动励磁电流I仍流通。此t4~t6时域中,启动励磁电流I起到了巩固启动成果的作用,本发明称此t4~t6时域为启动巩固时域。
单向晶体闸流管SCR关断后,AC电压通过第一电容C1上的电流ic1、第五电容C5上的电流ic3为本发明提供吸持功率,使已吸合的动铁芯M与静铁芯G继续保持吸合状态。其过程为:
结合图5,在P1为高电平、P2为低电平的AC电压正半周:
第一电容C1上的电流ic1沿着P1-D4-励磁线圈L-C1(充电)-D2-Vcc(多路径)-P2的路径流通;
第五电容C5上的电流ic3沿着P1-D4-励磁线圈L-C5(充电)-P2的路径流通;
在P1为低电平、P2为高电平的AC电压负半周:
第一电容C1上的电流ic2(虚线箭头所示)沿着P2-D1-C1(放电)-D3-P1的路径流通;
第五电容C5上的电流ic4(虚线箭头所示)沿着P2-C5(放电)-D3-P1的路径流通;
图5中,第一电容C1上实线箭头表示的电流ic1、虚线箭头表示的电流ic2,存在互生共存的关系,没有前者对第一电容C1充电,就没有后者对第一电容C1放电,反之亦然。
第五电容C5上实线箭头表示的电流ic3、虚线箭头表示的电流ic4,也同样存在互生共存的关系。
综上所述,简言之:电流ic1、电流ic3共同维持本发明的吸持状态。
本专业人员应该清楚:当电磁铁要求的吸持功率较小时,所述第五电容C5可以省略。
三、复位
t=t7时,AC电压关断,由于励磁线圈L中的电流不能突变,因此,励磁线圈L中的电流将沿着A1-励磁线圈L-A2-D3-D4-A1路径续流并逐渐减小至零,所述采用半桥电路的交流电磁铁复位。
综上所述可知:所述半桥电路106在本发明中兼具二种功能,第一,整流功能:将流入励磁线圈L中的电流整流成为直流;第二,续流功能:为励磁线圈L中的电流提供续流路径。简言之:电桥电路105兼具整流、续流二种功能。
t=t8时,AC电压重新接通,所述采用半桥电路的交流电磁铁再次通电,重新进入启动、吸持、复位的工作周期中。
图6为实施例2的电路原理图,本实施例2的电路结构与实施例1相同,不同之处为:
1、在实施例1中,DC电源电路101的1端与半桥电路106的DC2端相连接,而本实施例2中,DC电源电路101的1端与半桥电路106的DC1端相连接;
2、在实施例1中,开关脉冲发生电路102由三极管T1及其外围器件组成;而本实施例2中,所述开关脉冲发生电路102由集成时基电路IC1及其外围器件组成:其由3端、第五电阻R5、第六电阻R6、第七电阻R7、第六电容C6、集成时基电路IC1、4端组成;其中:第五电阻R5的一端、集成时基电路IC1的8脚和4脚均与3端相连接;集成时基电路IC1的6脚和2脚、第五电阻R5的另一端、第六电阻R6的一端、第六电容C6的一端均互相连接;第七电阻R7的一端与集成时基电路IC1的3脚相连接、另一端与4端相连接;第六电容C6的另一端、第六电阻R6的另一端、集成时基电路IC1的1脚均与公共端E相连接。
本实施例2中的开关脉冲发生电路102产生开关脉冲之工作过程为:
结合图6、图8、图9:
t=t3时,第六电容C6两端的电压即集成时基电路IC1的2脚、6脚上的电压Vi<1/3Vcc<2/3Vcc,集成时基电路IC1的3脚上的电压Vo为高电平,即Vo≈Vcc,经第七电阻R7分压以后,所述开关脉冲发生电路102之输出电压Vg=Vgt。
从t=t2时刻开始,DC电压Vcc通过第五电阻R5对第六电容C6充电,第六电容C6上的电压Vi不断地上升。
至t=t5时,第六电容C6上的电压即集成时基电路IC1的6脚、2脚上的电压Vi>2/3Vcc>1/3Vcc,集成时基电路IC1的3脚上的电压Vo变为低电平,即Vo≈0,所述开关脉冲发生电路102之输出电压亦随之下降为零,即Vg=0。
综上分析可知:本实施例4中的开关脉冲发生电路102输出的开关脉冲波形可用图8表示。
本实施例2启动、吸持、复位的工作过程与实施例1相同。
图7为实施例3的电路原理图,与实施例1相比较,本实施例3有三处与实施例1不同:
第一处,在实施例1中,DC电源电路101的1端与半桥电路106的DC2端相连接,而本实施例3中,DC电源电路101的1端与半桥电路106的AC1端相连接;
第二处,在实施例1中,分压电路105的10端与半桥电路106的DC2端相连接,而本实施例3中,分压电路105的10端与半桥电路106的DC1端相连接;
第三处,开关脉冲发生电路102与实施例1不相同。在本实施例3中,所述开关脉冲发生电路102由3端、第八电阻R8、第九电阻R9、第十电阻R10、第十一电阻R11、第十二电阻R12、第七电容C7、集成运算放大器IC2、4端组成;其中:第八电阻R8的一端、第十电阻R10的一端、第十二电阻R12的一端、集成运算放大器IC2的8脚均与3端相连接;第八电阻R8的另一端、第七电容C7的一端、第九电阻R9的一端均与集成运算放大器IC2的2脚相连接;第十电阻R10的另一端、第十一电阻R11的一端均与集成运算放大器IC2的3脚相连接;第十二电阻R12的另一端、4端均与集成运算放大器IC2的1脚相连接;第七电容C7的另一端、第九电阻R9的另一端、第十一电阻R11的另一端、集成运算放大器IC2的4脚均与公共端E相连接。
本实施例3中的开关脉冲发生电路102产生开关脉冲之工作过程为:
DC电压Vcc通过第八电阻R8对第七电容C7充电,随着充电的进程,该第七电容C7上的电压即集成运算放大器IC2之2脚上的电压V2逐渐上升。
结合图8,在t3~t5时域,集成运算放大器IC2之3脚上电压V3大于其2脚上电压V2,即V3>V2,集成运算放大器IC2输出的电压即其之1脚上的电压Vg为高电平Vgt。
随着充电的进程,第七电容C7上的电压即集成运算放大器IC2之2脚上的电压V2逐步上升,至t=t5时,集成运算放大器IC2之2脚上电压V2已上升为大于集成运算放大器IC2之3脚上电压V3,即V2>V3,集成运算放大器IC2输出的电压即其之1脚上的电压Vg变为低电平,即Vg=0
综上所述,本实施例3中的开关脉冲发生电路102输出的开关脉冲波形可用图8表 示。
本实施例3启动、吸持、复位的工作过程与实施例1相同。
结合图4、图5、图6、图7,本发明具有以下重要的抗干扰特征:
1、在P1为低电平、P2为高电平的AC电压负半周,第三二极管D3、第六二极管D6均导通,增压电路104中的第四电容C4等效与AC电压相并联,因此,由AC电压引入的干扰电压被第四电容C4滤除。简言之:增压电路104兼有滤除干扰电压的功能。
综合先前所述:增压电路104具有增强启动电压、滤除干扰电压的双重功能。
2、在P1为低电平、P2为高电平的AC电压正半周,励磁电感L中的励磁电流按P1-D4-励磁电感L-D5-SCR-P2(启动过程)的路径或P1-D4-励磁电感L-C5-P2(吸持过程)路径流通,由AC电压引入的干扰电压经半桥电路106中的第四二极管D4整流后,转化为励磁电感L中的励磁电流。简言之:半桥电路106兼有转化干扰电压为励磁电流的功能。
3、如前已述,AC电压关断时,励磁电感L中电流通过半桥电路106中的第三二极管D3、第四二极管D4续流并逐渐减小至零,因此,可防止本发明内部产生干扰电压。简言之:半桥电路106兼有抑制内部干扰电压的功能。
综合先前所述:半桥电路106具有整流、转化干扰电压为励磁电流、抑制内部干扰电压的三重功能。
以上阐述了本发明的技术方案,一切不脱离本发明的技术方案之实质的替代,都应在本发明的权利要求的范围内。

Claims (7)

  1. 一种采用半桥电路的交流电磁铁,包括由动铁芯M、静铁芯G、复位弹簧F、励磁线圈L所组成的常规交流电磁铁以及电子单元100两部分,其特征在于:所述电子单元100由DC电源电路101、开关脉冲发生电路102、开关电路103、增压电路104、分压电路105、半桥电路106、公共端E所组成;其中,所述DC电源电路101的1端与所述半桥电路106相连接;所述开关脉冲发生电路102的3端与所述电源电路101的2端相连接、4端与所述开关电路103的5端相连接;所述开关电路103的6端与半桥电路106的DC2端相连接、7端与增压电路104的8端相连接;所述增压电路104的9端与半桥电路106的DC2端相连接;所述分压电路105的10端也与所述半桥电路106相连接;所述半桥电路106的AC1端与AC电压的P1端相连接、DC1端与所述励磁线圈L的A1端相连接、DC2端与所述励磁线圈L的A2端相连接;所述公共端E与AC电压的P2端相连接;DC电源电路101、开关脉冲发生电路102、开关电路103、增压电路104、分压电路105各自的一端均与所述公共端E相连接。
  2. 如权利要求1所述的采用半桥电路的交流电磁铁,其特征在于:所述DC电源电路101的1端与所述半桥电路106相连接的方法采用以下三种之一:第一种,DC电源电路101的1端与半桥电路106的AC1端相连接;第二种,DC电源电路101的1端与半桥电路106的DC1端相连接;第三种,DC电源电路101的1端与半桥电路106的DC2端相连接;
    所述分压电路105的10端与所述半桥电路106相连接的方法采用以下二种之一:第一种,分压电路105的10端与半桥电路106的DC2端相连接;第二种,分压电路105的10端与半桥电路106的DC1端相连接。
  3. 如权利要求2所述的采用半桥电路的交流电磁铁,其特征在于:所述DC电源电路101由1端、第一电容C1、第一二极管D1、第二二极管D2、第二电容C2、 2端组成;其中,所述第一电容C1一端与所述1端相连接、另一端与第一二极管D1的负极、第二二极管D2的正极均相连接;第二二极管D2的负极与第二电容C2的正极、2端均相连接;第一二极管D1的正极、第二电容C2的负极均与公共端E相连接。
  4. 如权利要求3所述的采用半桥电路的交流电磁铁,其特征在于:所述开关脉冲发生电路102的电路结构为以下三种结构之一:
    第一种:所述开关脉冲发生电路102由3端、第三电容C3、第一电阻R1、第二电阻R2、第三电阻R3、三极管T1、4端组成;其中:第一电阻R1、第三电阻R3各自的一端均与3端相连接;第一电阻R1的另一端、第二电阻R2的一端、第三电容C3的一端均与三极管T1的基极相连接;第三电阻R3的另一端、三极管T1的集电极均与4端相连接;第三电容C3的另一端、第二电阻R2的另一端、三极管T1的发射极均与公共端E相连接;
    第二种:所述开关脉冲发生电路102由3端、第五电阻R5、第六电阻R6、第七电阻R7、第六电容C6、集成时基电路IC1、4端组成;其中:第五电阻R5的一端、集成时基电路IC1的8脚和4脚均与3端相连接;集成时基电路IC1的6脚和2脚、第五电阻R5的另一端、第六电阻R6的一端、第六电容C6的一端均互相连接;第七电阻R7的一端与集成时基电路IC1的3脚相连接、另一端与4端相连接;第六电容C6的另一端、第六电阻R6的另一端、集成时基电路IC1的1脚均与公共端E相连接;
    第三种:所述开关脉冲发生电路102由3端、第八电阻R8、第九电阻R9、第十电阻R10、第十一电阻R11、第十二电阻R12、第七电容C7、集成运算放大器IC2、4端组成;其中:第八电阻R8的一端、第十电阻R10的一端、第十二电阻R12的一端、集成运算放大器IC2的8脚均与3端相连接;第八电阻R8的 另一端、第七电容C7的一端、第九电阻R9的一端均与集成运算放大器IC2的2脚相连接;第十电阻R10的另一端、第十一电阻R11的一端均与集成运算放大器IC2的3脚相连接;第十二电阻R12的另一端、4端均与集成运算放大器IC2的1脚相连接;第七电容C7的另一端、第九电阻R9的另一端、第十一电阻R11的另一端、集成运算放大器IC2的4脚均与公共端E相连接。
  5. 如权利要求3所述的采用半桥电路的交流电磁铁,其特征在于:所述开关电路103由第五二极管D5、单向晶体闸流管SCR(Silicon Controlled Rectifier)、5端、6端、7端组成;其中:所述第五二极管D5的正极与6端相连接,负极与所述单向晶体闸流管SCR的阳极、7端相连接;单向晶体闸流管SCR的阴极与所述与公共端E相连接、门极与5端相连接。
  6. 如权利要求3所述的采用半桥电路的交流电磁铁,其特征在于:所述增压电路104由8端、第四电容C4、第六二极管D6、9端、其中:第四电容C4的正极与8端相连接、负极与9端相连接;第六二极管D6的负极也与8端相连接、正极与公共端相连接。
  7. 如权利要求3所述的采用半桥电路的交流电磁铁,其特征在于:所述半桥电路106由第三二极管D3、第四二极管D4、AC1端、DC1端、DC2端组成,其中:第三二极管D3的负极、第四二极管D4的正极均与AC1端相连接;第三二极管D3的正极与DC2端相连接;第四二极管D4的负极与DC1端相连接。
PCT/CN2017/118894 2016-12-27 2017-12-27 采用半桥电路的交流电磁铁 WO2018121579A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611225933.6A CN106783011B (zh) 2016-12-27 2016-12-27 采用半桥电路的交流电磁铁
CN201611225933.6 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018121579A1 true WO2018121579A1 (zh) 2018-07-05

Family

ID=58921497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118894 WO2018121579A1 (zh) 2016-12-27 2017-12-27 采用半桥电路的交流电磁铁

Country Status (2)

Country Link
CN (1) CN106783011B (zh)
WO (1) WO2018121579A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110562223A (zh) * 2019-09-09 2019-12-13 西安航空制动科技有限公司 具有延时功能的静刹车保护电路及其参数的确定方法
CN112837887A (zh) * 2019-11-25 2021-05-25 北京华航无线电测量研究所 一种时分复用体制的局部交变磁场发生装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783011B (zh) * 2016-12-27 2018-05-11 宁波市镇海华泰电器厂 采用半桥电路的交流电磁铁
CN111863529A (zh) * 2019-06-17 2020-10-30 李正庭 一种节电接触器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800470A (zh) * 2010-02-02 2010-08-11 天津大学 实现电磁铁快速吸合和释放的主电路
US20120134064A1 (en) * 2010-11-29 2012-05-31 Michael Allen Weed Solid-state magnet controller for use with an alternating current generator
CN202521032U (zh) * 2012-04-19 2012-11-07 宁波市镇海华泰电器厂 静噪电磁阀
CN104595557A (zh) * 2015-03-01 2015-05-06 宁波市镇海华泰电器厂 阻容降压型节电静噪的交流电磁阀
CN104676076A (zh) * 2015-04-02 2015-06-03 宁波市镇海华泰电器厂 具有阻容降压整流型dc电源电路的脉冲式交流电磁阀
CN106783011A (zh) * 2016-12-27 2017-05-31 宁波市镇海华泰电器厂 采用半桥电路的交流电磁铁

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2082891U (zh) * 1990-11-15 1991-08-14 蔡礼君 节能、调速、力矩去磁电磁铁
CN2907064Y (zh) * 2006-04-21 2007-05-30 河海大学常州校区 直线电机
CN202501080U (zh) * 2012-04-19 2012-10-24 宁波市镇海华泰电器厂 电子式交流电磁阀
DE102014212804B4 (de) * 2014-07-02 2016-09-15 Continental Automotive Gmbh Aktuator mit Positionssensor
CN104613218B (zh) * 2015-03-01 2017-03-01 宁波市镇海华泰电器厂 单阈值型节电静噪的交流电磁阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800470A (zh) * 2010-02-02 2010-08-11 天津大学 实现电磁铁快速吸合和释放的主电路
US20120134064A1 (en) * 2010-11-29 2012-05-31 Michael Allen Weed Solid-state magnet controller for use with an alternating current generator
CN202521032U (zh) * 2012-04-19 2012-11-07 宁波市镇海华泰电器厂 静噪电磁阀
CN104595557A (zh) * 2015-03-01 2015-05-06 宁波市镇海华泰电器厂 阻容降压型节电静噪的交流电磁阀
CN104676076A (zh) * 2015-04-02 2015-06-03 宁波市镇海华泰电器厂 具有阻容降压整流型dc电源电路的脉冲式交流电磁阀
CN106783011A (zh) * 2016-12-27 2017-05-31 宁波市镇海华泰电器厂 采用半桥电路的交流电磁铁

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110562223A (zh) * 2019-09-09 2019-12-13 西安航空制动科技有限公司 具有延时功能的静刹车保护电路及其参数的确定方法
CN110562223B (zh) * 2019-09-09 2023-06-30 西安航空制动科技有限公司 具有延时功能的静刹车保护电路及其参数的确定方法
CN112837887A (zh) * 2019-11-25 2021-05-25 北京华航无线电测量研究所 一种时分复用体制的局部交变磁场发生装置

Also Published As

Publication number Publication date
CN106783011A (zh) 2017-05-31
CN106783011B (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2018121579A1 (zh) 采用半桥电路的交流电磁铁
WO2016015590A1 (zh) 交流接触器的控制器及控制方法
CN102142833B (zh) 可控硅触发电路
CN208874481U (zh) 一种电磁线圈节能驱动电路
CN104183356B (zh) 一种新型智能电子线圈
CN104505214A (zh) 一种大推力低温升无噪音交流电磁铁
WO2018121614A1 (zh) 电容储能的推拉交流电磁铁
CN207483148U (zh) 自动扶梯用电磁铁电路
TWI507840B (zh) 功率因數修正器及電力轉換裝置
CN202523640U (zh) 变频式节电交流接触器
CN106098474B (zh) 高效节电的交流接触器
CN103413725B (zh) 设有节电单元的节电型交流接触器
CN100501896C (zh) 交流接触器的节电控制器
CN111130374A (zh) 一种低直流链电压尖峰的t源逆变器
CN204270773U (zh) 一种大推力低温升无噪音交流电磁铁
CN107622915B (zh) 采用实心铁芯的节电静噪的交流接触器
WO2017128695A1 (zh) 零电压准谐振升压电路
CN105977099A (zh) 利用控制电流的节能交流接触器
CN114267515A (zh) 采用三个电桥电路的交流电磁铁
CN204068738U (zh) 一种双路输出式精密开关电源
CN106098472B (zh) 兼可抑止瞬变电压的单脉冲交流接触器
CN203386661U (zh) 设有阈值电压的节电交流接触器
WO2019196523A1 (zh) 一种辅助供电电路及应用该电路的接触器
CN106783009B (zh) 采用储能电路的交流电磁铁
CN2427012Y (zh) 交流接触器节能保护器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888150

Country of ref document: EP

Kind code of ref document: A1