WO2018121475A1 - 一种识别hla-a2分子与sllmwitqc短肽形成的复合物的单域抗体 - Google Patents

一种识别hla-a2分子与sllmwitqc短肽形成的复合物的单域抗体 Download PDF

Info

Publication number
WO2018121475A1
WO2018121475A1 PCT/CN2017/118287 CN2017118287W WO2018121475A1 WO 2018121475 A1 WO2018121475 A1 WO 2018121475A1 CN 2017118287 W CN2017118287 W CN 2017118287W WO 2018121475 A1 WO2018121475 A1 WO 2018121475A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
acid sequence
domain antibody
single domain
Prior art date
Application number
PCT/CN2017/118287
Other languages
English (en)
French (fr)
Inventor
吕丽慧
高斌
古明珠
刘莹
Original Assignee
天津天锐生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津天锐生物科技有限公司 filed Critical 天津天锐生物科技有限公司
Publication of WO2018121475A1 publication Critical patent/WO2018121475A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2833Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention belongs to the technical field of tumor immunotherapy, and particularly relates to a single domain antibody which recognizes a complex formed by an HLA-A2 molecule and a SLLMWITQC short peptide.
  • NY-ESO-1 is a newly discovered antigen in recent years. Due to its strong immunogenicity, NY-ESO-1 has attracted much attention in tumor immunotherapy research.
  • NY-ESO-1 was originally a highly immunogenic antigenic protein found in the cDNA expression library of esophageal cancer by Chen (chen YT et al: Cancer J, 208-217, 2000). It is expressed in many malignant tumors, but is hardly expressed in normal tissues. NY-ESO-1 is expressed in varying degrees in tumors of various tissue types. Immunohistochemical staining revealed that NY-ESO-1 protein has a high frequency of expression in the following tumors: neuroblastoma (82%), synovial sarcoma (80%), malignant melanoma (46%), and ovarian epithelium Cancer (43%).
  • RT-PCR analysis showed that NY-ESO-1 mRNA was highly expressed in prostate cancer, bladder cancer, breast cancer, multiple myeloma and hepatocellular carcinoma, but many of them were detected at low frequency by IHC. . It has also been reported that the expression frequency of NY-ESO-1 in lung cancer, esophageal cancer and uterine cancer cells is between 20% and 40%.
  • NY-ESO-1 In patients with malignant melanoma with positive mRNA for NY-ESO-1, 50% of patients have a spontaneous humoral immune response against NY-ESO-1, whereas this immune response does not exist in normal humans. Other studies have shown that high-affinity autoantibodies to NY-ESO-1 can be detected in peripheral blood of a small number of patients. Its anti-tumor mechanism may be related to the presentation of the human leukocyte antigen HLA-A2 molecule by the epitope polypeptide of 157-170 in its amino acid sequence, thereby inducing specific CTC and CD+4, CD+8 immune responses. Based on the above research, NY-ESO-1 antigen has become a research hotspot in the research of tumor biotherapy, especially as the dominant target of genetically modified TCR, CART and TCR-like antibodies, which has attracted the attention of researchers.
  • NY-ESO-1 (157-165, amino acid sequence SLLMWITQC) is a HLA-A2 restricted dominant epitope.
  • the following NY-ESO-1 (157-165, amino acid sequence SLLMWITQC) is abbreviated as HLA-A2/SLLMWITQC.
  • T cell immunity and mature antibody technology can be combined to develop a novel T cell modification treatment that combines the advantages of antibodies and T cells. technology.
  • the Kurilsky laboratory of the Pasteur Institute successfully produced monoclonal antibodies in 1993 that specifically recognize T cell epitope polypeptides that bind to MHC class I molecules.
  • phage display technology was used to obtain antibodies that specifically recognize influenza virus polypeptides and inhibit infection of the corresponding viruses.
  • HLA-A2 transgenic mice used HLA-A2 transgenic mice to obtain hybridoma cells that secrete antibodies that recognize the OVA antigen-processed leader polypeptide H-2Kb complex.
  • This TCR-specific antibody is used to localize and quantify complexes of specific peptides and MHC molecules, providing a new tool for studying the mechanism of antigen processing and presentation.
  • TCR-like antibodies Such antibodies that recognize the polypeptide MHC complex, known as TCR-like antibodies, are sometimes referred to as TCR-mimic antibodies because of their T cell receptor function.
  • TCR-mimic antibodies To facilitate and modify the differentiation of T-cells from CAR-T and TCR-T, such antibodies with MHC polypeptide complex specificity were named MAR (MHC Antigen Receptor).
  • MAR MHC Antigen Receptor
  • MAR MHC Antigen Receptor
  • MAR MHC Antigen Receptor
  • MAR MHC Antigen Receptor
  • MAR as a novel molecule for recognizing MHC polypeptide complexes can recognize tumor extracellular antigens by recognizing the function of natural T cell receptors and adopting the self-heterologous recognition mechanism obtained during the evolution of life.
  • the intratumoral antigen formed by antigen processing has a wider application, especially for solid tumor antigens, and has unique advantages.
  • Modified T cells are a class of molecules used in tumor therapy.
  • MAR-NK/MAR-T not only kills HLA-A2 positive melanoma cells, but also kills HLA-A2 positive melanoma cells.
  • the growth of human melanoma in immunodeficient mice can be inhibited (zhang et al: Immunol Cell Biol 2013, 91(10): 615-24; zhang et al: Sci Rep 2014, 4: 3571). It was first confirmed that MAR modified effector cells can inhibit the growth of tumor cells in animals and lay a foundation for further clinical research to treat cancer.
  • NY-ESO-1 peptide 157-165-specific TCR-T cells were designed and directly manipulated against these NY-ESO-1-T1-CD28/CD3 ⁇ T The cells were returned to the NY-ESO-1(+) mouse model, and a large amount of cytokine secretion such as IFN- ⁇ was found to exert anti-tumor effects in vivo and in vitro, and it has protective effects on mice (Schuberth PC et al: Gene Ther, 386-395, 2013).
  • Robbins team returned NY-ESO-1 antigen-specific TCR gene-modified T cells to 6 synovial sarcoma patients and 11 malignant melanoma patients, resulting in 4 synovial sarcoma patients and 5 malignant blacks Patients with metaplasia achieved significant therapeutic effects, including 2 patients with complete remission, and no significant adverse events occurred (Robbins et al.: J Clin Oncol. 2011 Mar 1; 29(7): 917-24). The results of Robbins in Phase I/II trials demonstrate that NY-ESO-1-LAGE-1 TCR engineered T cells are safe. Twenty positive antigen-positive patients received an average of 2.4 ⁇ 10 9 engineered T cells 2 days after autologous stem cell transplantation.
  • Adaptimmune also demonstrated a clinical trial design of ongoing NY-ESO SPEAR T cell therapy with/without the PD-1 inhibitor Keytruda (pembrolizumab) for multiple myeloma (NCT03168438).
  • PD-1 inhibitor Keytruda pembrolizumab
  • NY-ESOSPEAR T cell therapy had been performed in a single-dose phase I/II clinical trial in multiple myeloma, and 91% of patients had remission within 100 days of autologous stem cell transplantation (20/22). ).
  • the single domain antibody provided by the present invention comprises a complementarity determining region CDR1, a complementarity determining region CDR2 and a complementarity determining region CDR3, and the single domain antibody is any one of the following (a) to (c):
  • the complementarity determining region CDR3 of the single domain antibody is as follows (a7) or (a8) or (a9):
  • the complementarity determining region CDR1 of the single domain antibody is as follows (b1) or (b2) or (b3):
  • the complementarity determining region CDR1 of the single domain antibody is as follows (c1) or (c2) or (c3):
  • the complementarity determining region CDR2 of the single domain antibody is as follows (c4) or (c5) or (c6):
  • the single domain antibody is as follows (d1) or (d2):
  • (d2) having the same function as the amino acid sequence represented by SEQ ID No. 10 or SEQ ID No. 11 or SEQ ID No. 12 by substitution and/or deletion and/or addition of one or several amino acid residues Amino acid sequence.
  • Another object of the present invention is to provide a derivative of the above single domain antibody.
  • the derivative provided by the present invention is any of the following (e1) to (e9):
  • the fusion protein is obtained by directly fusing the above single domain antibody with at least one polypeptide molecule having therapeutic or recognition function, or by a linker peptide and one or more therapeutic or recognition functions.
  • the polypeptide molecules are linked together.
  • the polypeptide molecule having a therapeutic or recognition function is a human Fc protein.
  • the fusion protein is an Fc fusion protein obtained by fusing the above single domain antibody with a human Fc protein.
  • the single domain antibody is fused to the human Fc protein, the monovalent antibody becomes a bivalent antibody, and the affinity is improved.
  • the specific preparation method of the Fc fusion protein comprises the steps of: introducing the coding gene of the single domain antibody and the coding gene of the human Fc protein into a host cell to obtain a recombinant cell; and culturing the recombinant cell to obtain the fusion protein.
  • the coding gene of the single domain antibody and the coding gene of the human Fc protein are introduced into a host cell by a recombinant vector;
  • the gene encoding the single domain antibody and the gene encoding the human Fc protein are the DNA molecules shown in SEQ ID No. 16 or SEQ ID No. 17.
  • the expression vector is a pET22b vector or a pcDNA3.1 vector.
  • the host cell is an E. coli/DE3 cell or a 293F cell.
  • the composition may be a pharmaceutical composition containing a pharmaceutically acceptable carrier.
  • the pharmaceutical compositions of the invention may be administered in combination therapy, i.e., in combination with other agents.
  • pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like which are physiologically compatible.
  • the carrier is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion).
  • the active compound ie, an antibody, immunoconjugate or bispecific molecule or multispecific molecule
  • the active compound can be coated in a material to protect the compound from acids and other natural compounds that can inactivate the compound.
  • the role of the condition ie, an antibody, immunoconjugate or bispecific molecule or multispecific molecule.
  • compositions of the invention may also contain a pharmaceutically acceptable antioxidant.
  • pharmaceutically acceptable antioxidants include: (1) water-soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium hydrogen sulfate, sodium metabisulfite, sodium sulfite, etc.; (2) oil-soluble antioxidants such as ascorbic acid palmitate Ester, butylated hydroxyanisole (BHA), butylated hydroxytoluene (DHT), lecithin, propyl gallate, alpha-tocopherol, etc.; (3) metal chelating agents such as citric acid, ethylenediaminetetraacetic acid (EDTA) , sorbitol, tartaric acid, phosphoric acid, etc.
  • water-soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium hydrogen sulfate, sodium metabisulfite, sodium sulfite, etc.
  • oil-soluble antioxidants such as ascorbic acid palmitate Ester, butylated hydroxyani
  • aqueous or nonaqueous vehicles examples include water, ethanol, polyols (e.g., glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils such as olive oil, And injectable organic esters such as ethyl oleate.
  • polyols e.g., glycerol, propylene glycol, polyethylene glycol, and the like
  • vegetable oils such as olive oil
  • injectable organic esters such as ethyl oleate.
  • Proper fluidity can be maintained, for example, by the application of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the presence of microorganisms can be ensured by a sterilization procedure or by the inclusion of various antibacterial and antifungal agents such as parabens, chlorobutanol, phenol sorbic acid, and the like.
  • Examples include paclitaxel, cytochalasin B, gramicidin D, ethidium bromide, ipecaine, mitomycin, epipodophyllotoxin, epipodophyllotoxin, vincristine, vinblastine , colchicine, doxorubicin, daunorubicin, dihydroxy anthrax dione, mitoxantrone, phosfomycin, actinomycin D, l-dehydrotestosterone, glucocorticoid, proca , tetracaine, lidocaine, propranolol and puromycin and their analogs or homologs.
  • antibody-conjugated therapeutic cytotoxins include doxorubicin, calicheamicin, maytansin, auristatin, and derivatives thereof. Coupling of a cytotoxin with an antibody of the invention can be utilized in the art. Joint technology.
  • the antibodies of the invention may also be conjugated to a radioisotope to produce a cytotoxic radiopharmaceutical, also known as a radioimmunoconjugate.
  • a radioisotope that can be coupled to antibodies for diagnostic or therapeutic use include, but are not limited to, iodine 131 , indium 111 , ⁇ 90, and ⁇ 177 .
  • Methods of preparing radioactive immunoconjugates have been established in the art. Examples of radioimmunoconjugates may be used as commercially available, including Zevalin TM (IDEC Pharmaceuticals) and Bexxar TM (Corixa Pharmaceuticals), using a similar method capable of preparing radioimmunoconjugates using the antibodies of the present invention.
  • Such proteins may include, for example, enzymatically active toxins or active fragments thereof, such as abrin, ricin A, Pseudomonas exotoxin or diphtheria toxin; proteins such as tumor necrosis factor or interferon- ⁇ ; or biological response regulators such as lymphokines, interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-6 (IL-6), granulocyte macrophages Cell colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF) or other growth factors.
  • IL-1 interleukin-1
  • IL-2 interleukin-2
  • IL-6 interleukin-6
  • GM-CSF granulocyte macrophages Cell colony stimulating factor
  • G-CSF granulocyte colony stimulating factor
  • the antibody genetically engineered antibody obtained by modifying and/or modifying the above single domain antibody or antigen binding portion thereof is also within the scope of the present invention.
  • the single domain antibodies provided herein comprise CDR1, CDR2 and CDR3 sequences, wherein one or more of these CDR sequences comprise a specific amino acid sequence based on a single domain antibody of the invention or a conservative modification thereof, and wherein the antibody retains an antibody of the invention It has the functional characteristics of identifying and/or combining HLA-A2/SLLMWITQC.
  • conservative sequence modification refers to an amino acid modification that does not significantly affect or alter the binding characteristics of an antibody comprising the amino acid sequence. Such conservative modifications include amino acid substitutions, additions and deletions.
  • Modifications can be introduced into the antibodies of the invention by techniques well known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis.
  • Conservative amino acid substitution refers to the replacement of an amino acid residue with an amino acid residue having a similar side chain.
  • a family of amino acid residues having similar side chains has been defined in the art.
  • one or more amino acid residues within the CDR regions of an antibody of the invention can be substituted for other amino acid residues from the same side chain family, and the above-described functions of altered antibody retention can be detected using the in vitro affinity assays described herein.
  • CDR grafting One type of variable region engineering that can be performed is CDR grafting.
  • the antibody interacts with the target antigen primarily through amino acid residues located in the complementarity determining regions (CDRs). For this reason, the amino acid sequences within the CDRs are more diverse between the individual antibodies than the sequences outside the CDRs. Since the CDR sequences are responsible for most antibody-antigen interactions, recombinant antibodies that mimic the properties of the particular antibody present can be expressed by constructing an expression vector comprising a CDR sequence from a particular antibody present, which is grafted to From the backbone sequences of different antibodies with different properties, these backbone sequences can be obtained from public DNA databases or published references.
  • variable region modification is to mutate the amino acid sequence within the CDR1, CDR2 and/or CDR3 regions to improve one or more binding properties (e.g., affinity) of the antibody of interest.
  • Site-directed mutagenesis or PCR-mediated mutagenesis can be performed to introduce mutations, effects on antibody binding, or other target functional properties, which can be evaluated using the assays described herein and provided in the Examples.
  • Conservative sequence modifications are preferably introduced.
  • the mutation may be an amino acid substitution, addition or deletion, but is preferably substituted. Moreover, typically no more than 5 residues are altered within the CDR regions.
  • Still another object of the present invention is to provide a biological material related to the above single domain antibody or the above derivative.
  • the biological material related to the above single domain antibody or the above derivative provided by the present invention is any one of the following (f1) to (f4):
  • (f4) A host cell comprising the nucleic acid molecule of (f1) or (f2) or the vector of (f3).
  • (g1) a DNA molecule represented by SEQ ID No. 13 or SEQ ID No. 14 or SEQ ID No. 15 or SEQ ID No. 16 or SEQ ID No. 17;
  • (g2) a DNA molecule having 75% or more of the identity with the (g1) defined nucleotide sequence, and encoding the above single domain antibody or fusion protein;
  • nucleic acid molecules of the invention can be obtained using conventional molecular biology techniques.
  • nucleic acids encoding antibodies can be obtained from libraries.
  • the product is a drug.
  • Tumors that can be treated with the antibodies of the invention include, but are not limited to, tumors such as melanoma, breast cancer, prostate cancer, lung cancer, ovarian cancer, thyroid cancer, liver cancer, bladder cancer or gastric cancer.
  • the T cells can be modified in vitro by using the antibody or fusion protein of the present invention to obtain T cells after arming, and the T cells are amplified after being armed, and then returned to the subject, and the armed T cells can be specific. Identify tumors for in vivo tumor immunotherapy. Modification of T cells can be achieved by conventional methods well known to those skilled in the art.
  • the HLA-A2/SLLMWITQC of the present invention is an HLA-A2/SLLMWITQC antigen complex which is a complex of the antigenic peptide SLLMWITQC and the antigen molecule HLA-A2.
  • the HLA-A2/SLLMWITQC antibody referred to in this patent is a single domain antibody.
  • a single domain antibody differs from SCFV in that it contains only one variable region of the antibody heavy chain, approximately half the size of SCFV, and is the smallest fully functional antigen-binding fragment with weak immunogenicity; easier to penetrate through the vessel wall Solid tumors are beneficial to the treatment of tumors.
  • Single domain antibodies directed against HLA-A2/SLLMWITQC have not been reported.
  • the present invention is directed to the technical problems existing in the prior art, and the antibodies with higher affinity are screened from the phage single domain library by three rounds of biological panning, and the obtained antibodies are cloned into a prokaryotic/eukaryotic expression vector, and the human The Fc fusion gene is expressed, transfected into a host cell, and an Fc fusion protein is obtained.
  • the single domain antibody and Fc fusion protein provided by the invention can specifically recognize and bind HLA-A2/SLLMWITQC antigen complex, and can be developed into a treatment for melanoma, breast cancer, prostate cancer, lung cancer, ovarian cancer. , thyroid cancer, liver cancer, bladder cancer, advanced gastric cancer and other antibody drugs.
  • FIG. 1 is a schematic diagram of phage ELISA detection and data analysis of the first plate after three rounds of panning in the present invention.
  • Figure 3 is a schematic diagram of a plasmid map in which a single domain antibody of the present invention is fused to express Fc in pET22b.
  • the single domain antibody is ligated to the Fc by linker (G4S).
  • Figure 4 is a diagram showing the reduced SDS-PAGE of the fusion protein M6-A4-Fc expressed in pET22b of the present invention. Marker's strips are from 14, 25, 30, 40, 50, 70, 100, 120, 160 KD. Line1 is a reduced M6-F9-Fc, approximately 43KD.
  • Figure 7 is a diagram showing the specificity detection and data analysis of the fusion protein M6-A4-Fc of the present invention for different antigens.
  • B The light absorption value at 650 nm on the ordinate, the H, A, H, H, H .
  • HLA-A2/ITDQVPFSV antigen on the abscissa 1, 2, 3, and 4, HLA-A2/NLVPMVATV antigen, HLA-A2/RMFPNAPYL antigen, HLA-A2/SLLMWITQC antigen .
  • Figure 9 is a graph showing the intermolecular interaction and affinity constant of the fusion protein M6-F9-Fc and the HLA-A2/SLLMWITQC complex in the present invention.
  • the abscissa is time
  • the ordinate is the response value (RU) of the intermolecular interaction
  • 1 is the reference channel
  • 2 is the experimental channel.
  • the HLA-A2/SLLMWITQC antigen complex in the following examples refers to a complex of the antigenic peptide SLLMWITQC and the antigen molecule HLA-A2, which is described in the literature "Paul F. Robbins etc, Generation of NY-ESO-1-specific CD4_and CD8_T Cells by a Single Peptide with Dual MHC Class I and Class II Specificities: A New Strategy for Vaccine Design, CANCER RESEARCH 62, 3630-3635, July 1, 2002", the public is available from Tianjin Tianrui Biotechnology Co., Ltd.
  • the phage-containing supernatant was precipitated with 5% PEG (PEG800 and 300 mM NaCl adjusted to a concentration of 5%), then resuspended in PBS, and ssDNA was prepared using QIAprep Spin M13 kit (purchased from Qiagen).
  • a well-separated single phage was selected and inoculated into a 15 ml culture tube containing 2 to 3 ml of 2 x TY medium containing 25 ⁇ g/ml kanamycin. Incubate at 37 ° C, 250 rpm for 12 to 16 h. The infected supernatant was transferred to a 1.5 ml sterile microcentrifuge tube and centrifuged at 4 ° C for 2 min at maximum speed on a microfuge. The supernatant was transferred to a new tube and stored at 4 °C.
  • the prepared phage library was inoculated into 100 ml of 2 x TY medium containing 60 ⁇ g/ml ampicillin, and cultured at 37 ° C, shaking at 250 rpm until the OD600 was 0.8, and BM13 was added to a concentration of 2 ⁇ 10 7 pfu/ml. Incubate at 37 ° C, 300 rpm for 1 h, add 25 ⁇ g / ml kanamycin, continue to culture at 37 ° C for 14 ⁇ 18h. The bacterial solution was centrifuged, and the supernatant was precipitated with 5% PEG, and then resuspended in 5% MPBS for use.
  • the light absorption values of the respective holes are as shown in FIGS. 1B and 2B.
  • A ELISA were coated with antigen HLA-A2/SLLMWITQC; the antibodies in each well were different.
  • 89-96 is A12, B12, C12, D12, E12, F12, G12, H12.
  • Clones with A650nm above 0.8 in Figures 1 and 2 were selected for sequencing to obtain a plurality of different amino acid sequences.
  • the clone corresponding to the amino acid sequence shown in SEQ ID No. 10 was named M6-F9, and the corresponding single domain antibody was a single domain antibody M6-F9;
  • the clone corresponding to the amino acid sequence shown in SEQ ID No. 11 was named M6-A4, the corresponding single domain antibody is single domain antibody M6-A4.
  • the clone corresponding to the amino acid sequence shown in SEQ ID No. 12 was named M6-C7, and the corresponding single domain antibody was the single domain antibody M6-C7.
  • the amino acid sequence of the single domain antibody M6-C7 is shown in SEQ ID No. 12, and the coding gene sequence is shown in SEQ ID No. 15.
  • the amino acid sequence of the CDR1 of the complementarity determining region of the single domain antibody M6-C7 is as shown in SEQ ID No. 7
  • the amino acid sequence of the CDR2 of the complementarity determining region is as shown in SEQ ID No. 8
  • the amino acid sequence of the CDR3 of the complementarity determining region is SEQ. ID No.9 is shown.
  • Fusion protein M6-A4-Fc specifically recognizes HLA-A2/SLLMWITQC complex

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

提供一种可特异性识别HLA-A2/SLLMWITQC复合物的单域抗体,所述单域抗体包含具有特异性识别作用的CDR1,CDR2和CDR3氨基酸序列;能够利用所述单域抗体制备多种融合蛋白及多特异性抗体,用于制备治疗黑色素瘤,乳腺癌、前列腺癌、肺癌、卵巢癌、甲状腺癌、肝癌、膀胱癌、晚期胃癌等的抗体药。

Description

一种识别HLA-A2分子与SLLMWITQC短肽形成的复合物的单域抗体 技术领域
本发明属于肿瘤免疫治疗技术领域,具体涉及一种识别HLA-A2分子与SLLMWITQC短肽形成的复合物的单域抗体。
背景技术
寻找和鉴定肿瘤抗原,一直是肿瘤免疫治疗的一个重要方向。近年发现了大量肿瘤相关抗原和肿瘤特异性抗原,其中NY-ESO-1在肿瘤免疫治疗中极具发展潜力。NY-ESO-1是近年新发现的一种抗原,由于具有较强的免疫原性,因而在肿瘤免疫治疗研究中备受瞩目。
NY-ESO-1最初是由Chen(chen YT et al:Cancer J,208-217,2000)等从食道癌的cDNA表达文库中发现的一种具有很强免疫原性的抗原蛋白,此蛋白在多种恶性肿瘤中均有表达,但在正常组织几乎不表达。NY-ESO-1在多种组织类型肿瘤中呈不同程度的表达。通过免疫组织化学染色发现,NY-ESO-1蛋白在以下肿瘤中有高的表达频率:神经母细胞瘤(82%)、滑膜肉瘤(80%)、恶性黑色素瘤(46%)和卵巢上皮癌(43%)。RT-PCR检测显示,NY-ESO-1的mRNA在前列腺癌、膀胱癌、乳腺癌、多发性骨髓瘤和肝细胞癌中有较高表达,但其中许多通过IHC检测时,其表达频率较低。也有报道显示,包括肺癌、食管癌和子宫癌细胞中NY-ESO-1的表达频率介于20%~40%。
在NY-ESO-1的mRNA呈阳性的恶性黑色素瘤患者中,50%的患者体内存在针对NY-ESO-1的自发性体液免疫反应,而在正常人体内不存在此种免疫反应。另有研究显示,小部分患者的肿瘤外周血中可检测到NY-ESO-1的高亲和力自身抗体。其抗肿瘤机制可能与其氨基酸序列中157-170的表位多肽被人类白细胞抗原HLA-A2分子提呈有关,从而诱导特异性CTC和CD+4、CD+8的免疫应答。基于以上研究,在肿瘤生物治疗方面的研究上,NY-ESO-1抗原又成为研究的热点,尤其作为基因修饰的TCR,CART,TCR样抗体的优势靶点,备受研究者的关注。
NY-ESO-1(157-165,氨基酸序列为SLLMWITQC)是HLA-A2限制型优势表位。以下NY-ESO-1(157-165,氨基酸序列为SLLMWITQC)均简写为HLA-A2/SLLMWITQC。
如果能制备出识别MHC多肽复合物的抗体分子,并表达至细胞表面,就可以将T细胞免疫和成熟的抗体技术相结合,开发出一种兼具抗体和T细胞优势的新型T细胞修饰治疗技术。作为这类技术的先驱,巴斯德研究所的Kourilsky实验室早在1993年就成功地制备出单克隆抗体,能特异性识别和MHCI类分子结合的T细胞表位多肽。两年后,丹麦技术大学Andersen等使用噬菌体展示技术,获得可特异性识别流感病毒多肽的抗体,并可抑制相应病毒的感染。美国国立卫生研究院的Germain研究组,使用HLA-A2转基因小鼠,获得分泌识别OVA经抗原加工的主导多肽H-2Kb复合物的抗体的杂交瘤细胞。这种具有TCR特异性的抗体被用来定位、定量特异性多肽与MHC分子复合物,为研究抗原加工与递呈的机制提 供了新的工具。
这类识别多肽MHC复合物的抗体,因具有T细胞受体功能,被称作TCR-like抗体,有时也叫做TCR-mimic抗体。为了方便和修饰T细胞的CAR-T及TCR-T相区别,将这类具有MHC多肽复合物特异性的抗体命名为MAR(MHC Antigen Receptor)。MAR作为新型的识别MHC多肽复合物的分子与CAR相比,因具有天然T细胞受体的功能,沿用生命进化过程中获得的自我异体识别机制,即可识别肿瘤胞外抗原,也可识别通过抗原加工形成的肿瘤内抗原,因而具有更广泛的应用,尤其针对实体瘤抗原,具有得天独厚的优势。和TCR相比,MAR转入T细胞后,不存在与内源性TCR亚基错配的问题;而且作为抗体,比天然TCR具有与生俱来更高的亲和力,MAR可能成为最有发展前途的修饰T细胞用于肿瘤治疗的一类分子。
文献中报导的大多数产生的MAR分子基本上局限于在细胞水平上特异性识别MHC复合物或用于推测这些复合物,证明其实际应用的文献不多。Willensen等将MAGE-A1多肽特异性,HLA-A1限制性的MAR用反转录病毒武装T细胞后,证明MAR-A1具有特异性识别HLA-A1/MAGE-A1双阳性黑色素瘤细胞,诱导T细胞释放干扰素,并在体外特异性杀伤这些黑色素瘤细胞,首次证实这类抗体的生物学功能(Chames P et al:PANS 2000,97(14):7969-74)。在此基础上,Gao等将MAR连接跨膜蛋白片段及Zeta链胞内信号片段后,成功武装NK或T细胞,这种MAR-NK/MAR-T不但能杀伤HLA-A2阳性黑色素瘤细胞,而且可以抑制人黑色素瘤在免疫缺陷小鼠体内的生长(zhang et al:Immunol Cell Biol2013,91(10):615-24;zhang et al:Sci Rep 2014,4:3571)。首次证实MAR修饰效应细胞可以抑制肿瘤细胞在动物体内的生长,为进一步开展临床研究用于治疗癌症打下了基础。
Schuberth等在进行的一项临床前研究中,设计了NY-ESO-1肽157-165特异性的TCR-T细胞,并直接将这些改造后的抗NY-ESO-1-T1-CD28/CD3ζT细胞回输给NY-ESO-1(+)小鼠模型,发现大量IFN-γ等细胞因子的分泌,在体内外均能发挥抗肿瘤效应,对小鼠具有保护作用(Schuberth PC et al:Gene ther,386-395,2013)。
Robbins研究小组将NY-ESO-1抗原特异性TCR基因修饰的T细胞回输给6名滑膜细胞肉瘤患者和11名恶性黑素瘤患者,结果4名滑膜细胞肉瘤患者和5名恶性黑素瘤患者取得了明显的治疗效果,包括2名完全缓解的患者,而且无一例发生明显的不良反应(Robbins et al.:J Clin Oncol.2011 Mar 1;29(7):917-24)。Robbins在I/II期试验的结果证明,NY-ESO-1-LAGE-1 TCR工程化的T细胞是安全的。20例抗原阳性患者在自体干细胞移植后2d接受了平均2.4×10 9工程T细胞,其中,16例晚期疾病患者(80%)观察到令人鼓舞的临床反应,中位无进展生存期为19.1个月(Robbins et al.:Nat Med 2015 Aug;21(8):914-21.)。Adaptimmune(US 20160159881 A1)开发的NY-ESO靶向T细胞疗法已经获得了FDA 授予的孤儿药资格,适应症为软组织肉瘤(包括包括滑膜肉瘤、黏液样圆形脂肪肉瘤等),在I/II期临床试验中,NY-ESO-1SPEAR T细胞疗法在滑膜肉瘤患者的治疗中表现为安全有效(NCT01343043)。Adaptimmune还展示了正在进行的NY-ESO SPEAR T细胞疗法联合/不联合PD-1抑制剂Keytruda(pembrolizumab)治疗多发性骨髓瘤的一项临床试验设计(NCT03168438)。而之前,NY-ESOSPEAR T细胞治疗已经在多发性骨髓瘤中进行了一项单一剂量I/II期临床试验,在经过自体干细胞移植后的100天内,有91%的患者发生缓解(20/22)。
发明公开
本发明的第一个目的是提供一种识别HLA-A2/SLLMWITQC的单域抗体。
本发明提供的单域抗体包括互补决定区CDR1、互补决定区CDR2和互补决定区CDR3,所述单域抗体为如下(a)-(c)中任一种:
(a)所述单域抗体的互补决定区CDR1为如下(a1)或(a2)或(a3):
(a1)包括SEQ ID No.1所示的氨基酸序列;
(a2)SEQ ID No.1所示的氨基酸序列;
(a3)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
所述单域抗体的互补决定区CDR2为如下(a4)或(a5)或(a6):
(a4)包括SEQ ID No.2所示的氨基酸序列;
(a5)SEQ ID No.2所示的氨基酸序列;
(a6)将SEQ ID No.2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
所述单域抗体的互补决定区CDR3为如下(a7)或(a8)或(a9):
(a7)包括SEQ ID No.3所示的氨基酸序列;
(a8)SEQ ID No.3所示的氨基酸序列;
(a9)将SEQ ID No.3所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
(b)所述单域抗体的互补决定区CDR1为如下(b1)或(b2)或(b3):
(b1)包括SEQ ID No.4所示的氨基酸序列;
(b2)SEQ ID No.4所示的氨基酸序列;
(b3)将SEQ ID No.4所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
所述单域抗体的互补决定区CDR2为如下(b4)或(b5)或(b6):
(b4)包括SEQ ID No.5所示的氨基酸序列;
(b5)SEQ ID No.5所示的氨基酸序列;
(b6)将SEQ ID No.5所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
所述单域抗体的互补决定区CDR3为如下(b7)或(b8)或(a9):
(b7)包括SEQ ID No.6所示的氨基酸序列;
(b8)SEQ ID No.6所示的氨基酸序列;
(b9)将SEQ ID No.6所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
(c)所述单域抗体的互补决定区CDR1为如下(c1)或(c2)或(c3):
(c1)包括SEQ ID No.7所示的氨基酸序列;
(c2)SEQ ID No.7所示的氨基酸序列;
(c3)将SEQ ID No.7所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
所述单域抗体的互补决定区CDR2为如下(c4)或(c5)或(c6):
(c4)包括SEQ ID No.8所示的氨基酸序列;
(c5)SEQ ID No.8所示的氨基酸序列;
(c6)将SEQ ID No.8所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
所述单域抗体的互补决定区CDR3为如下(c7)或(c8)或(c9):
(c7)包括SEQ ID No.9所示的氨基酸序列;
(c8)SEQ ID No.9所示的氨基酸序列;
(c9)将SEQ ID No.9所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列。
具体地,所述单域抗体为如下(d1)或(d2):
(d1)SEQ ID No.10或SEQ ID No.11或SEQ ID No.12所示的氨基酸序列;
(d2)将SEQ ID No.10或SEQ ID No.11或SEQ ID No.12所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列。
本发明的另一个目的是提供上述单域抗体的衍生物。
本发明提供的衍生物为如下(e1)-(e9)中任一种:
(e1)由上述单域抗体与至少1个具治疗或识别功能的多肽分子制备而成的融合蛋白;
(e2)含有上述单域抗体的多特异或多功能分子;
(e3)含有上述单域抗体的组合物;
(e4)含有上述单域抗体的免疫偶联物;
(e5)将上述单域抗体或其抗原结合部分进行修饰和/或改造后得到的抗体;
(e6)含有上述互补决定区的重链变区或轻链变区;
(e7)含有上述互补决定区的scFv或抗体;
(e8)含有上述互补决定区中的一个或者两个或者两个以上的氨基酸序列,且至少与一个互补决定区的氨基酸序列具有至少79%同源性;
(e9)含有上述单域抗体的框架区中的一个或者两个或者两个以上的氨基 酸序列,且至少与一个框架区的氨基酸序列具有至少90%同源性。
上述衍生物中,所述融合蛋白是将上述单域抗体与至少1个具治疗或识别功能的多肽分子直接融合得到的,或通过接头肽与1个或1个以上的具治疗或识别功能的多肽分子连接得到的。
上述衍生物中,所述具治疗或识别功能的多肽分子为人源Fc蛋白。
所述融合蛋白是将上述单域抗体与人源Fc蛋白融合得到的Fc融合蛋白。上述单域抗体融合人源Fc蛋白后,由单价抗体成为双价抗体,亲和力有所提高。
所述Fc融合蛋白的具体制备方法包括如下步骤:将上述单域抗体的编码基因和人源Fc蛋白的编码基因导入宿主细胞,得到重组细胞;培养所述重组细胞,得到所述融合蛋白。
具体地,所述单域抗体的编码基因和所述人源Fc蛋白的编码基因是通过重组载体导入宿主细胞;
所述重组载体为将含有所述单域抗体的编码基因和所述人源Fc蛋白的编码基因的片段插入表达载体的多克隆位点中得到的。
具体地,所述含有所述单域抗体的编码基因和所述人源Fc蛋白的编码基因的片段为SEQ ID No.16或SEQ ID No.17所示的DNA分子。
具体地,所述表达载体为pET22b载体或pcDNA3.1载体。
具体地,所述宿主细胞为E.coli/DE3细胞或293F细胞。
上述衍生物中,所述组合物可为药物组合物,其含有与药学上可接受的载体。本发明的药物组合物可在联合治疗中施用,即与其他药剂联用。文中所用术语“药学上可接受的载体”包括生理学相容的任何和所有溶剂、分散介质、包衣、抗细菌和抗真菌剂、等渗和吸收延迟剂等。优选地,该载体适合于静脉内、肌内、皮下、肠胃外、脊柱或表皮施用(如通过注射或输注)。根据施用途径,可将活性化合物即抗体、免疫偶联物或双特异性分子或多特异性分子包被于一种材料中,以保护该化合物免于可使该化合物失活的酸和其他天然条件的作用。
本发明的药物组合物可包含一种或多种药学上可接受的盐。文中所用术语“药学上可接受的盐”是指保持了亲代化合物的所需生物活性且不引起任何不想要的毒理学作用的盐。这样的盐的例子包括酸加成盐和碱加成盐。酸加成盐包括那些由无毒性无机酸如盐酸、硝酸、磷酸、硫酸、氢溴酸、氢碘酸、亚磷酸等衍生的盐,以及由无毒性有机酸如脂族单羧酸和二羧酸、苯基取代的链烷酸、羟基链烷酸、芳族酸、脂族和芳族磺酸等衍生的盐。碱加成盐包括那些由碱土金属如钠、钾、镁、钙等衍生的盐,以及由无毒性有机胺如N,N’-二苄基乙二胺、N-甲基葡糖胺、氯普鲁卡因、胆碱、二乙醇胺、乙二胺、普鲁卡因等衍生的盐。
本发明的药物组合物也可含有药学上可接受的抗氧化剂。药学上可接受的抗氧化剂的例子包括:(1)水溶性抗氧化剂,如抗坏血酸、盐酸半胱氨酸、硫 酸氢钠、焦亚硫酸钠,亚硫酸钠等;(2)油溶性抗氧化剂,如棕榈酸抗坏血酸酯、丁羟茴醚(BHA)、丁羟甲苯(DHT)、卵磷脂、没食子酸丙酯、α-生育酚等;(3)金属螯合剂,如柠檬酸、乙二胺四乙酸(EDTA)、山梨糖醇、酒石酸、磷酸等。
可用于本发明的药物组合物中的适当的水性或非水性载体的例子包括水,乙醇,多元醇(如甘油、丙二醇、聚乙二醇等),及其适当的混合物,植物油如橄榄油,和可注射的有机酯如油酸乙酯。例如通过应用包衣材料如卵磷脂,在分散液的情况下通过维持所需的颗粒大小,以及通过应用表面活性剂,可维持适当的流动性。
在实际应用中,这些组合物也可含有佐剂,如防腐剂、润湿剂、乳化剂和分散剂。可以通过灭菌程序或通过包含各种抗细菌和抗真菌剂如对羟基苯甲酸酯、氯代丁醇、苯酚山梨酸等来确保防止存在微生物。
本发明的组合物可以利用本领域公知的一种或多种方法通过一种或多种施用途径施用。本领域技术人员应当明白,施用途径和/或方式根据需要的结果而不同。
本发明的组合物具有体外和体内治疗应用。例如,这些分子可以施用于体外或离体培养的细胞,或者体内施用于人类受试者,以治疗、预防或诊断多种疾病。文中使用的术语“受试者”包括人和非人动物。非人动物包括所有脊椎动物,例如哺乳动物和非哺乳动物,例如非人灵长类动物、绵羊、狗、猫、牛、马、鸡、两栖类动物和爬行类动物。
上述衍生物中,所述免疫偶联物可为由上述单域抗体与治疗性剂如细胞毒素、药物(例如免疫抑制剂)或放射性毒素偶联,得到的偶联物。这些偶联物称为“免疫偶联物”。包括一个或多个细胞毒素的免疫偶联物称作“免疫毒素”。细胞毒素或细胞毒性剂包括对细胞有害(例如杀伤)的任何试剂。实例包括紫杉醇、细胞松弛素B、短杆菌肽D、溴化乙啶、吐根碱、丝裂霉素、表鬼臼毒吡喃葡糖苷、表鬼臼毒噻吩糖苷、长春新碱、长春碱、秋水仙素、阿霉素、柔红霉素、二羟基炭疽菌素二酮、米托蒽醌、光辉霉素、放线菌素D、l-脱氢睾酮、糖皮质激素、普鲁卡因、丁卡因、利多卡因、普萘洛尔和嘌呤霉素和它们的类似物或同系物。治疗剂还包括,例如,抗代谢物(例如,氨甲喋呤、6-巯基嘌呤、6-硫代鸟嘌呤、阿糖胞苷、5-氟尿嘧唳、氨烯咪胺(decarbazine),烧化剂(例如,氮芥、thioepa苯丁酸氮芥、苯丙氨酸氮芥、卡莫司汀(BSNU)和洛莫司汀(CCNU)、环磷酰胺、白消安、二溴甘露糖醇、链唑霉素、丝裂霉素C和顺-二氯二胺铂(II)(DDP)顺铂),氨茴霉素类(例如,柔红菌素(以前称为道诺霉素)和阿霉素),抗生素(例如,放线菌素D、博来霉素、光辉霉素和安曲霉素(AMC)),和抗有丝分裂剂(例如,长春新碱和长春碱)。能与本发明抗体偶联的治疗性细胞毒素的其他优选例子包括倍癌霉素、刺孢霉素、美坦生、auristatin,和它们的衍生物。将细胞毒素与本发明的抗体偶联可以利用本领域可用的接头技术。
本发明的抗体也可与放射性同位素偶联,产生细胞毒性放射性药物,也被称为放射性免疫偶联物。能够与诊断或治疗性使用的抗体偶联的放射性同位素的例子包括但不限于碘 131、铟 111、钇 90和镥 177。制备放射性免疫偶联物的方法在本领域中已经建立。放射性免疫偶联物的例子可以作为商品获得,包括Zevalin TM(IDEC Pharmaceuticals)和Bexxar TM(Corixa Pharmaceuticals),能够利用类似的方法使用本发明的抗体制备放射性免疫偶联物。
本发明的抗体偶联物可用于修饰特定的生物学反应,且药物部分不应理解为局限于经典的化学治疗剂。例如,药物部分可以是具有需要的生物活性的蛋白质或多肽。这样的蛋白质可包括,例如,具有酶活性的毒素或其活性片段,如相思豆毒蛋白、蓖麻毒蛋白A、假单胞菌外毒素或白喉毒素;蛋白质,如肿瘤坏死因子或干扰素-γ;或生物学反应调节物,如淋巴因子、白细胞介素-1(IL-1)、白细胞介素-2(IL-2)、白细胞介素-6(IL-6)、粒细胞巨噬细胞集落刺激因子(GM-CSF)、粒细胞集落刺激因子(G-CSF)或其他生长因子。
将上述单域抗体或其抗原结合部分进行修饰和/或改造后得到的抗体基因工程改造的抗体也属于本发明的保护范围。本发明提供的单域抗体包含CDR1、CDR2和CDR3序列,其中这些CDR序列中的一个或多个包含基于本发明的单域抗体的特定氨基酸序列或其保守修饰,并且其中该抗体保留本发明抗体具有的识别和/或结合HLA-A2/SLLMWITQC的功能特性。文中所用的术语“保守序列修饰”是指不会显著影响或改变含该氨基酸序列的抗体的结合特征的氨基酸修饰。这样的保守修饰包括氨基酸替代、添加和缺失。可以通过本领域公知的技术,如定点诱变和PCR介导的诱变,向本发明的抗体中引入修饰。保守氨基酸替代是指将氨基酸残基替代为一个具有相似侧链的氨基酸残基。具有相似侧链的氨基酸残基家族在本领域中已经定义。这些家族包括:具有碱性侧链(例如赖氨酸、精氨酸、组氨酸)、酸性侧链(例如天冬氨酸、谷氨酸)、不带电荷极性侧链(例如甘氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸、酪氨酸、半胱氨酸、色氨酸)、非极性侧链(例如丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸)、β-分支侧链(例如苏氨酸、缬氨酸、异亮氨酸)和芳族侧链(例如酪氨酸、苯丙氨酸、色氨酸、组氨酸)的氨基酸。因此,本发明抗体的CDR区内的一个或多个氨基酸残基可以被替代为来自相同侧链家族的其他氨基酸残基,并且可以用本文所述的体外亲和力试验检测改变的抗体保留的上述功能。
可以进行的一种类型的可变区工程化是CDR移植。抗体主要是通过位于互补决定区(CDR)中的氨基酸残基与靶抗原相互作用。由于这个原因,CDR内的氨基酸序列比CDR外的序列在各个抗体之间更加多样化。由于CDR序列负责大多数抗体-抗原相互作用,因此通过构建如下的表达载体可以表达模拟该特定存在抗体的特性的重组抗体:该表达载体包含来自特定存在抗体的CDR序列,该 CDR序列被移植到来自具有不同特性的不同抗体的骨架序列上,这些骨架序列可以从公共DNA数据库或发表的参考文献中获得。
另一种类型的可变区修饰是将CDR1、CDR2和/或CDR3区内的氨基酸序列突变,从而改善目标抗体的一种或多种结合特性(例如亲和力)。可以进行定点诱变或PCR介导的诱变,以引入突变,对抗体结合的影响,或者其他目标功能特性,可以用文中所述以及在实施例中提供的试验来评价。优选引入(如上文所述的)保守序列修饰。突变可以是氨基酸替代、添加或缺失,但是优选替代。而且,一般在CDR区内改变不超过5个残基。
本发明的工程化抗体包括例如为了改善抗体性质而对其骨架残基进行了修饰的抗体。进行这样的骨架修饰一般是为了降低抗体的免疫原性。所述骨架修饰涉及对骨架区内、或者甚至一个或多个CDR区内的一个或多个残基进行突变,以除去T细胞表位,从而降低该抗体的潜在的免疫原性。
上述衍生物中,所述框架区为SEQ ID No.10第1-26位、第36-49位、第56-97位、第109-119位,或SEQ ID No.11第1-26位、第36-49位、第56-97位、第110-120位,或SEQ ID No.12第1-26位、第36-49位、第56-97位、第109-119位。
在本文中使用的术语“同源性”可描述两个或更多氨基酸序列相似程度,第一个氨基酸序列和第二个氨基酸序列之间同源性的百分比可以通过公式:(第一个氨基酸序列中与第二个氨基酸序列中相应位置处的氨基酸序列相同的氨基酸残基的数量)/(第一个氨基酸序列中氨基酸总数)*100%来计算,其中第二个氨基酸序列只能够的某个氨基酸的缺失、插入、替换或添加(与第一个氨基酸相比)被认为是有差别。同源性百分比也可以利用已知的用于序列匹配的计算机运算程序如NCBI Blast获得。
本发明还有一个目的是提供与上述单域抗体或上述衍生物相关的生物材料。
本发明提供的与上述单域抗体或上述衍生物相关的生物材料为如下(f1)-(f4)中任一种:
(f1)编码上述单域抗体的核酸分子;
(f2)编码上述融合蛋白的核酸分子;
(f3)含有(f1)或(f2)所述的核酸分子的载体;
(f4)含有(f1)或(f2)所述的核酸分子或(f3)所述的载体的宿主细胞。
上述生物材料中,所述核酸分子为如下(g1)-(g3)中任一种:
(g1)SEQ ID No.13或SEQ ID No.14或SEQ ID No.15或SEQ ID No.16或SEQ ID No.17所示的DNA分子;
(g2)与(g1)限定的核苷酸序列具有75%或75%以上同一性,且编码上述单域抗体或融合蛋白的DNA分子;
(g3)在严格条件下与(g1)或(g2)限定的核苷酸序列杂交,且编码上述单域抗体或融合蛋白的DNA分子。
上述生物材料中,所述核酸分子可以为编码各互补决定区或单域抗体或融合蛋白氨基酸序列的核苷酸序列,通过遗传密码子可以随时获得相应核酸分子的具体序列。由于遗传密码子具有兼并性,该核酸分子可以根据不同的应用目的不同。在本文中使用的术语“密码子”又称三联体密码子,指对应于某种氨基酸的核苷酸三联体。在转译过程中决定该种氨基酸插入生长中多肽链的位置。
本发明的核酸分子可以利用常规分子生物学技术获得。对于从免疫球蛋白基因文库中获得的抗体(例如使用噬菌体展示技术),编码抗体的核酸可以从文库中获得。
上述生物材料中,所述载体中的所述核酸序列或者至少部分序列可以通过合适的表达系统进行表达,以得到相应的蛋白质或多肽;所述表达系统包括细菌、酵母菌、丝状真菌、哺乳动物细胞、昆虫细胞、植物细胞或无细胞表达系统。
本发明还有一个目的是提供上述单域抗体或上述衍生物或上述生物材料的新用途。
本发明提供了上述单域抗体或上述衍生物或上述生物材料在如下(h1)-(h4)中任一种中的应用:
(h1)特异性识别和/或结合HLA-A2/SLLMWITQC;
(h2)制备特异性识别和/或结合HLA-A2/SLLMWITQC的产品;
(h3)肿瘤免疫治疗;
(h4)制备肿瘤免疫治疗的产品。
上述应用中,所述产品为药物。
可以应用本发明的抗体治疗的肿瘤包括但不限于黑色素瘤、乳腺癌、前列腺癌、肺癌、卵巢癌、甲状腺癌、肝癌、膀胱癌或胃癌等肿瘤。
在实际应用中,可用本发明的抗体或融合蛋白对T细胞在体外进行修饰,得到武装后T细胞,武装后T细胞增殖放大后,将其放回受试者体内,武装T细胞可特异性识别肿瘤,用于体内肿瘤免疫治疗。T细胞的修饰可通过本领域技术人员公知的常规方法实现。
本发明的HLA-A2/SLLMWITQC为HLA-A2/SLLMWITQC抗原复合物,所述HLA-A2/SLLMWITQC抗原复合物是抗原肽SLLMWITQC与抗原分子HLA-A2的复合物。
本专利所涉及的HLA-A2/SLLMWITQC抗体为单域抗体。单域抗体不同于SCFV,它仅含有抗体重链的一个可变区,大小约是SCFV的一半,是最小的全功能性的抗原结合片段,免疫原性较弱;更易通过血管壁,穿透实体瘤,有利于肿瘤的治疗。针对HLA-A2/SLLMWITQC的单域抗体还未见报道。
本发明针对现有技术中存在的技术问题,通过三轮生物淘选,从噬菌体单域文库中筛选得到亲和力较高的抗体,并将得到的抗体克隆至原核/真核表达载 体中,与人源Fc融合表达,转染宿主细胞,获得Fc融合蛋白。经体外亲和力的验证:本发明提供的单域抗体及Fc融合蛋白均可特异性识别并结合HLA-A2/SLLMWITQC抗原复合物,可开发成治疗黑色素瘤,乳腺癌、前列腺癌、肺癌、卵巢癌、甲状腺癌、肝癌、膀胱癌、晚期胃癌等的抗体药。
本发明进一步通过下面的实施例进行阐述,不应将该实施例理解为进一步的限制。
附图说明
图1为本发明中的三轮淘选后第一板噬菌体ELISA检测及数据分析示意图。A:ELISA所有孔均包被抗原HLA-A2/SLLMWITQC;B:数据分析,纵坐标为各孔在650nm下的光吸收值,横坐标为96个孔。
图2为本发明中的三轮淘选后第二板噬菌体ELISA检测及数据分析示意图。A:ELISA所有孔均包被抗原HLA-A2/SLLMWITQC;B:数据分析,纵坐标为各孔在650nm下的光吸收值,横坐标为96个孔。
图3为本发明中的单域抗体在pET22b中融合表达Fc的质粒图谱示意图。单域抗体与Fc之间通过linker(G4S)连接。
图4为本发明中的pET22b中表达的融合蛋白M6-A4-Fc的还原SDS-PAGE图。Marker的条带从小到大依次为14,25,30,40,50,70,100,120,160KD。Line1为还原态的M6-F9-Fc,大约43KD。
图5为本发明中的单域抗体在pcDNA3.1中融合表达Fc的质粒图谱示意图。单域抗体与Fc之间通过限制性酶连接,且单域抗体前有信号肽以及kozak序列。
图6为本发明中的pcDNA3.1中表达的融合蛋白M6-F9-Fc的SDS-PAGE图。A为纯化后融合蛋白M6-F9-Fc的还原电泳图,B为纯化后融合蛋白M6-F9-Fc的非还原电泳图。Marker的条带从小到大依次为14,25,30,40,50,70,100,120,160KD。Line1和Line2分别为还原态M6-F9-Fc和非还原态M6-F9-Fc。
图7为本发明中的融合蛋白M6-A4-Fc对不同抗原的特异性检测以及数据分析图。A:酶标板A、B两行包被抗原HLA-A2/ITDQVPFSV,C、D两行包被抗原HLA-A2/NLVPMVATV,E、F两行包被抗原HLA-A2/RMFPNAPYL,G、H两行包被抗原HLA-A2/SLLMWITQC;line 1为纯化后的M6-A4-Fc,line 2为阴性对照MB。B:纵坐标为650nm下的光吸收值,横坐标1,2,3,4分别对应HLA-A2/ITDQVPFSV抗原,HLA-A2/NLVPMVATV抗原,HLA-A2/RMFPNAPYL抗原,HLA-A2/SLLMWITQC抗原。
图8为本发明中的融合蛋白M6-F9-Fc对不同抗原的特异性检测以及数据分析图。A:酶标板A、B两行包被抗原HLA-A2/ITDQVPFSV,C、D两行包被抗原HLA-A2/NLVPMVATV,E、F两行包被抗原HLA-A2/RMFPNAPYL,G、H两行包被抗原HLA-A2/SLLMWITQC;line 1为纯化后的M6-F9-Fc,line 2为阴性对照MB。B:纵坐标为650nm下的光吸收值,横坐标1,2,3,4分别为HLA-A2/ITDQVPFSV抗原,HLA-A2/NLVPMVATV抗原,HLA-A2/RMFPNAPYL抗原,HLA-A2/SLLMWITQC抗 原。
图9为本发明中的融合蛋白M6-F9-Fc与HLA-A2/SLLMWITQC复合物分子间相互作用及亲和力常数测定图。横坐标为时间,纵坐标为分子间相互结合的响应值(RU),1为参比通道,2为实验通道。
实施发明的最佳方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中的HLA-A2/SLLMWITQC抗原复合物是指抗原肽SLLMWITQC与抗原分子HLA-A2的复合物,记载于文献“Paul F.Robbins etc,Generation of NY-ESO-1-specific CD4_and CD8_T Cells by a Single Peptide with Dual MHC Class I and Class II Specificities:A New Strategy for Vaccine Design,CANCER RESEARCH 62,3630–3635,July 1,2002”中,公众可从天津天锐生物科技有限公司获得。
实施例1 筛选特异性结合HLA-A2/SLLMWITQC复合物的单域抗体
1.1单域抗体噬菌体文库制备
1.1.1辅助噬菌体的制备
将M13KE噬菌体(购自NEB#N0316S)复制子用AlwnI和AfeI(购自NEB)双酶切,同时人工合成基因片段也用AlwnI和AfeI双酶切,然后用T4连接酶连接在一起。连接后转染TG1得到辅助噬菌体BM13。如此,M13KE噬菌体复制子中的如下序列:tctggtggtggttctggtggcggctctgagggtggtggctctgagggtggcggttctgagggtggcggctctgagggaggcggttccggtggtggctct被人工合成基因序列所取代,即在噬菌体GIII编码区域,添加了胰蛋白酶切割序列,一旦用作辅助噬菌体时,增加胰蛋白酶消化步骤,减少不含融合目的基因蛋白噬菌体的数目。
人工合成基因序列如下:CCA GCC GGC CTT TCT GAG GGG TCG ACT ATA GAA GGA CGA GGG GCC CAC GAA GGA GGT GGG GTA CCC GGT TCC GAG GGT。
1.1.2噬菌体文库构建
1.1.2.1载体构建
将pUC19(购自NEB)用HindIII和NdeI(购自NEB)双酶切,加入基于DP47抗体序列的重链人工单域抗体序列。单域抗体表达框架中,单域抗体与GIII蛋白融合,中间加入Myc和VSV-G标签,用于纯化或鉴定,构建成噬菌体展示载体pBG3。
1.1.2.2 ssDNA模板制备
大肠杆菌菌株CJ236(购自NEB)缺乏功能性dUTPase和uracil-N glycosylase,可以产生尿嘧啶化单链DNA模板。将pBG3质粒转染进入CJ236并涂布在含Carbenicillin(50μg/ml)和chloramphenicol(15μg/ml)琼脂平板上,培养过夜。挑选平板上筛选出的单个菌落到3ml 2×TY肉汤培养基中(含上述同 样浓度的双抗),37℃,250rpm条件下培养过夜。次日取0.3ml过夜培养物加入30ml新鲜2×TY肉汤培养基中(Carbenicillin 50μg/ml),持续3-4小时培养,使OD600=0.4-0.6,加入辅助噬菌体(按细菌:噬菌体个数比1:10加入),37℃,150rpm离心1小时,将细菌沉淀重悬于60ml 2×TY双抗培养基中,25℃,250rpm培养22小时,离心弃沉淀。含噬菌体的上清液用5%PEG(PEG800和300mM NaCl调至浓度为5%)沉淀,然后重悬于PBS中,使用QIAprep Spin M13试剂盒(购自Qiagen)制备出ssDNA。
1.1.2.3文库制备
1.1.2.3.1用KunKel方法制备如下CDR突变寡核苷酸链(由金唯智公司合成):
Figure PCTCN2017118287-appb-000001
1.1.2.3.2寡核苷酸链的磷酸化
将人工合成的寡核苷酸链加入100ul 50mM Tris-HCl(Tris碱购自索莱宝,用盐酸调PH至7.5可得)中,得到磷酸化体系,磷酸化体系含下列成份:5U T4多核苷酸激酶、10mM MgCl 2、1mM ATP及5mM DTT。将磷酸化体系在37℃反应1小时后,得到磷酸化的寡核苷酸。用PCR纯化试剂盒(购自天根)纯化磷酸化的寡核苷酸链。
1.1.2.3.3磷酸化的寡核苷酸与ssDNA退火结合
将磷酸化的寡核苷酸和Uracilated ssDNA(磷酸化寡核苷酸:ssDNA=3:1,ssDNA为1.1.2.2制备所得)溶于含有10mM MgCl 2的50mM Tris-HCl缓冲液(pH7.5)中,90℃反应2分钟后降至25℃(每分钟降低1℃/min),得到退火结合的磷酸化寡核苷酸与ssDNA复合物。
1.1.2.3.4 dsDNA合成
将0.55mM ATP,0.8mM dNTPs,5mM DTT,15U T4 DNA合成酶及15U T7 DNA合成酶加入退火结合的磷酸化寡核苷酸与ssDNA复合物中:在20℃下保温3小时后,得到dsDNA。用Qiaquick PCR纯化试剂盒(购自Qiagen)纯化dsDNA。 将纯化后的DNA转化至电转感受态TG1中。
1.2 BM13辅助噬菌体以及噬菌体文库的增殖
1.2.1 BM13辅助噬菌体的增殖
从基本琼脂培养基平板上挑取一个大肠杆菌TG1(购于武汉淼灵)的新鲜单菌落,接种到20ml 2×TY培养基中,温和摇动,37℃培养至OD600约为0.8备用。将1.1.1中制备的原始BM13辅助噬菌体用2×TY培养基制备一系列10倍稀释的BM13噬菌体。各稀释度分别取10μl与200μl TG1(OD600=0.8)菌液混匀,振荡器温和震荡3s,并与上层琼脂培养基混匀,倾倒在预先平衡室温的TY平板上。转动平板以确保菌体和上层琼脂分布均匀。待上层培养基凝固后,于37℃生化培养箱倒置培养过夜。
次日挑选分离良好的单个噬菌体接种于装有2~3ml含25μg/ml卡那霉素的2×TY培养基的15ml培养管中。37℃,250rpm震荡培养12~16h。将感染上清液转移至1.5ml无菌微量离心管,在微量离心机上,以最大转速,4℃离心2min。上清液转移至新管中4℃保存。
1.2.2噬菌体文库的增殖
将制备好的噬菌体文库接种至100ml含60μg/ml氨苄青霉素的2×TY培养基中,37℃,250rpm震荡培养至OD600为0.8时,加入BM13至浓度为2×10 7pfu/ml。37℃,300rpm培养1h,加入25μg/ml卡那霉素,37℃继续培养14~18h。将菌液离心,上清液用5%PEG沉淀,然后重悬于5%MPBS中备用。
1.3筛选HLA-A2/SLLMWITQC复合物的单域抗体
1.3.1生物淘选
链酶亲和素免疫磁珠(购自Invitrogen cat no.SKU#112-05D)取25μl,加入一定量的生物素化的HLA-A2/SLLMWITQC,室温结合5min。PBST及PBS洗2~3次。MPBS封闭2h,PBST及PBS洗2~3次。将噬菌体文库加入磁珠中,室温孵育2h。
移走未结合文库,磁珠用PBST及PBS各洗10次。向磁珠中加入0.01%胰酶溶液,室温孵育1H。得胰酶洗脱液。
将胰酶洗脱液加入到30ml TG1(OD600=0.5)中,按1.2中方法增殖第一次洗脱文库。
如此进行第二轮、第三轮淘选。挑取三轮淘选后所得的单菌落至96孔板中。按1.2中文库增殖方法制备出培养物上清液。
1.3.2 ELISA鉴定
取一定量上清液做ELISA鉴定。见图1A和图2A。
ELISA具体步骤如下:用包被缓冲液将已知抗原稀释至1~10μg/ml,每孔加0.1ml,4℃过夜;次日洗涤3次;加一定稀释的待检样品0.1ml于上述已包被之反应孔中,置37℃孵育1小时,洗涤;加入新鲜稀释的酶标第二抗体(anti-KM13-HRP 1:5000)0.1ml,37℃孵育60分钟,洗涤;最后一遍用DDW洗涤。于各反应孔中加入临时配制的TMB底物溶液0.1ml,37℃10~30分钟。用高 级读板机在650nm波长下读板。
各孔光吸收值如如图1B和图2B。其中,A:ELISA所有孔均包被抗原HLA-A2/SLLMWITQC;每孔中抗体各不相同。B:数据分析,纵坐标为各孔在650nm下的光吸收值,横坐标为96个孔,其中,1-8为A1、B1、C1、D1、E1、F1、G1、H1,9-16为A2、B2、C2、D2、E2、F2、G2、H2,依次类推,89-96为A12、B12、C12、D12、E12、F12、G12、H12。
选择图1和2中A650nm在0.8以上的克隆进行测序,得到多个不同的氨基酸序列。将SEQ ID No.10所示的氨基酸序列对应的克隆命名为M6-F9,其对应的单域抗体为单域抗体M6-F9;将SEQ ID No.11所示的氨基酸序列对应的克隆命名为M6-A4,其对应的单域抗体为单域抗体M6-A4。将SEQ ID No.12所示的氨基酸序列对应的克隆命名为M6-C7,其对应的单域抗体为单域抗体M6-C7。
单域抗体M6-F9的氨基酸序列如SEQ ID No.10所示,编码基因序列如SEQ ID No.13所示。其中,单域抗体M6-F9的互补决定区CDR1的氨基酸序列如SEQ ID No.1所示、互补决定区CDR2的氨基酸序列如SEQ ID No.2所示、互补决定区CDR3的氨基酸序列如SEQ ID No.3所示。
单域抗体M6-A4的氨基酸序列如SEQ ID No.11所示,编码基因序列如SEQ ID No.14所示。其中,单域抗体M6-A4的互补决定区CDR1的氨基酸序列如SEQ ID No.4所示、互补决定区CDR2的氨基酸序列如SEQ ID No.5所示、互补决定区CDR3的氨基酸序列如SEQ ID No.6所示。
单域抗体M6-C7的氨基酸序列如SEQ ID No.12所示,编码基因序列如SEQ ID No.15所示。其中,单域抗体M6-C7的互补决定区CDR1的氨基酸序列如SEQ ID No.7所示、互补决定区CDR2的氨基酸序列如SEQ ID No.8所示、互补决定区CDR3的氨基酸序列如SEQ ID No.9所示。
实施例2 融合蛋白M6-A4-Fc和M6-F9-Fc的制备
一、融合蛋白M6-A4-Fc的制备
1、重组载体的构建
将SEQ ID No.16所示的DNA分子(其包括M6-A4单域抗体序列、linker(G4S)与人源Fc序列)克隆到pET22b载体的NcoⅠ和XhoⅠ限制性内切酶位点间,得到重组载体pET22b-sdAb-linker-Fc,其结构如图3所示。
2、重组细胞的构建及培养
将重组载体pET22b-sdAb-linker-Fc转化至E.coli/DE3中,第二天挑单克隆,37℃,220rpm震荡培养至OD600约0.5时,加入IPTG(工作浓度为1mM)后,18℃,220rpm诱导表达20h。收集菌体后,用PBS(PH7.4)重悬均匀后超声破碎。超声破碎条件:600W,超声2sec,间隔6sec,共10min,16℃。超声后4℃12000rpm离心10min。
3、M6-A4-Fc融合蛋白的鉴定
M6-A4-Fc的超声清液用ProteinA纯化后跑SDS-PAG,见图4。Marker的条带 从小到大依次为14,25,30,40,50,70,100,120,160KD。Line1为还原态的M6-F9-Fc,大约43KD。
二、融合蛋白M6-F9-Fc的制备
1、重组载体的构建
将SEQ ID No.17所示的DNA分子(其包括Kozak序列及信号肽、M6-F9单域抗体序列、人源Fc序列及标签序列)克隆到pcDNA3.1的HindⅢ和XbaI限制性内切酶位点间,得到重组载体pcDNA3.1-sdAb-Fc,其结构如图5所示。
2、重组细胞的构建及培养
将重组载体pcDNA3.1-sdAb-Fc瞬时转染到293F细胞(ThermoFi sher,A14527)中,培养4天后离心,收集上清液,并用Protein A纯化。
3、M6-F9-Fc融合蛋白的鉴定
M6-F9融合Fc的蛋白纯化后跑SDS-PAG,见图6。其中,A为纯化后融合蛋白M6-F9-Fc的还原电泳图,B为纯化后融合蛋白M6-F9-Fc的非还原电泳图。Marker的条带从小到大依次为14,25,30,40,50,70,100,120,160KD。Line1和Line2分别为还原态M6-F9-Fc和非还原态M6-F9-Fc。
实施例3 融合蛋白M6-A4-Fc和M6-F9-Fc特异性识别HLA-A2/SLLMWITQC复合物
一、融合蛋白M6-A4-Fc特异性识别HLA-A2/SLLMWITQC复合物
ELISA检测纯化后融合抗体M6-A4-Fc对不同抗原的亲和力。加入TMB 20min后用高级读板机在650nm波长下读板。对不同抗原的特异性鉴定酶标板A、B两行包被抗原HLA-A2/ITDQVPFSV,C、D两行包被抗原HLA-A2/NLVPMVATV,E、F两行包被抗原HLA-A2/RMFPNAPYL,G、H两行包被抗原HLA-A2/SLLMWITQC;每个孔中所加入的单域抗体均为纯化后的M6-A4-Fc,500ng/孔。其中,Line 1的八个孔中均孵育一抗为M6-A4-Fc,line 2为阴性对照MB。每种抗体对一种抗原的亲和检测反应均有两个重复孔(图7A)。
酶标板加入TMB 20min后用高级读板机在650nm波长下读板,数据整理如图7B。纵坐标为650nm下的光吸收值,图中显示A650均为两个重复孔的平均值。横坐标1,2,3,4为HLA-A2/ITDQVPFSV抗原,HLA-A2/NLVPMVATV抗原,HLA-A2/RMFPNAPYL抗原,HLA-A2/SLLMWITQC抗原。
结果显示融合蛋白只对HLA-A2/SLLMWITQC表现较高亲和力,对其它三个抗原基本不结合。
二、融合蛋白M6-F9-Fc特异性识别HLA-A2/SLLMWITQC复合物
ELISA检测纯化后融合抗体M6-F9-Fc对不同抗原的亲和力。其中,ELISA固定抗原方法同前,每一纵列中从上向下抗原依次为HLA-A2/ITDQVPFSV抗原、HLA-A2/NLVPMVATV抗原、HLA-A2/RMFPNAPYL抗原和HLA-A2/SLLMWITQC抗原,每个抗原两个重复孔;每一纵列中加入同一个单域抗体(图8A)。
酶标板加入TMB 20min后用高级读板机在650nm波长下读板,数据整理如图 8B。纵坐标为650nm下的光吸收值,图中显示A650均为两个重复孔的平均值。横坐标1,2,3,4为HLA-A2/ITDQVPFSV抗原,HLA-A2/NLVPMVATV抗原,HLA-A2/RMFPNAPYL抗原,HLA-A2/SLLMWITQC抗原。
结果显示融合蛋白M6-F9-Fc只对HLA-A2/SLLMWITQC表现较高亲和力,对其它三个抗原基本不结合。
实施例4融合蛋白M6-F9-Fc与HLA-A2/SLLMWITQC复合物分子间相互作用及亲和力常数测定
利用等离子共振技术进行融合蛋白M6-F9-Fc与HLA-A2/SLLMWITQC的相互作用及亲和力常数测定。实验选用链霉亲和素偶联的传感芯片(senser chip SA),以HBS+EP+为流动相缓冲液。在传感芯片的一个通道上固定不相关抗原HLA-A2/RMFPNAPYL作为参比抗原,另一个通道上固定HLA-A2/SLLMWITQC作为实验抗原,参比抗原用来检测背景结合情况。稀释融合抗体M6-F9-Fc,从20nm到335nm浓度进行进样,样品同时流经固定有HLA-A2/RMFPNAPYL和HLA-A2/SLLMWITQC的通道表面。实验所得数据由BiacoreT200仪器进行采集并分析,见图9,其中1为参比通道,2为实验通道;并用反应动力学曲线以1:1binding模型进行拟合,并计算结合速率常数(Ka),解离速率常数(Kd)和亲和力常数(KD)。
实验结果表明,融合抗体M6-F9-Fc与HLA-A2/SLLMWITQC发生特异性结合,与参比抗原无交叉反应,不结合。结合速率常数为1.48E+04(1/Ms),解离速率常数9.23E-04(1/s),亲和力常数为6.25E-08(M)。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。
工业应用
本发明提供了一种可特异性识别HLA-A2/SLLMWITQC复合物的单域抗体,所述单域抗体包含具有特异性识别作用的CDR1、CDR2和CDR3氨基酸序列,并利用所述单域抗体制备得到可特异性识别HLA-A2/SLLMWITQC复合物的融合蛋白,在生物医学领域具有广泛的应用前景,可开发成治疗黑色素瘤、乳腺癌、前列腺癌、肺癌、卵巢癌、甲状腺癌、肝癌、膀胱癌或晚期胃癌等的抗体药。

Claims (16)

  1. 一种识别HLA-A2/SLLMWITQC的单域抗体,所述单域抗体包括互补决定区CDR1、互补决定区CDR2和互补决定区CDR3,所述单域抗体为如下(a)-(c)中任一种:
    (a)所述单域抗体的互补决定区CDR1为如下(a1)或(a2)或(a3):
    (a1)包括SEQ ID No.1所示的氨基酸序列;
    (a2)SEQ ID No.1所示的氨基酸序列;
    (a3)将SEQ ID No.1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
    所述单域抗体的互补决定区CDR2为如下(a4)或(a5)或(a6):
    (a4)包括SEQ ID No.2所示的氨基酸序列;
    (a5)SEQ ID No.2所示的氨基酸序列;
    (a6)将SEQ ID No.2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
    所述单域抗体的互补决定区CDR3为如下(a7)或(a8)或(a9):
    (a7)包括SEQ ID No.3所示的氨基酸序列;
    (a8)SEQ ID No.3所示的氨基酸序列;
    (a9)将SEQ ID No.3所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
    (b)所述单域抗体的互补决定区CDR1为如下(b1)或(b2)或(b3):
    (b1)包括SEQ ID No.4所示的氨基酸序列;
    (b2)SEQ ID No.4所示的氨基酸序列;
    (b3)将SEQ ID No.4所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
    所述单域抗体的互补决定区CDR2为如下(b4)或(b5)或(b6):
    (b4)包括SEQ ID No.5所示的氨基酸序列;
    (b5)SEQ ID No.5所示的氨基酸序列;
    (b6)将SEQ ID No.5所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
    所述单域抗体的互补决定区CDR3为如下(b7)或(b8)或(a9):
    (b7)包括SEQ ID No.6所示的氨基酸序列;
    (b8)SEQ ID No.6所示的氨基酸序列;
    (b9)将SEQ ID No.6所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
    (c)所述单域抗体的互补决定区CDR1为如下(c1)或(c2)或(c3):
    (c1)包括SEQ ID No.7所示的氨基酸序列;
    (c2)SEQ ID No.7所示的氨基酸序列;
    (c3)将SEQ ID No.7所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
    所述单域抗体的互补决定区CDR2为如下(c4)或(c5)或(c6):
    (c4)包括SEQ ID No.8所示的氨基酸序列;
    (c5)SEQ ID No.8所示的氨基酸序列;
    (c6)将SEQ ID No.8所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列;
    所述单域抗体的互补决定区CDR3为如下(c7)或(c8)或(c9):
    (c7)包括SEQ ID No.9所示的氨基酸序列;
    (c8)SEQ ID No.9所示的氨基酸序列;
    (c9)将SEQ ID No.9所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列。
  2. 根据权利要求1所述的单域抗体,其特征在于:所述单域抗体为如下(d1)或(d2):
    (d1)SEQ ID No.10或SEQ ID No.11或SEQ ID No.12所示的氨基酸序列;
    (d2)将SEQ ID No.10或SEQ ID No.11或SEQ ID No.12所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有相同功能的氨基酸序列。
  3. 权利要求1或2所述的单域抗体的衍生物,为如下(e1)-(e9)中任一种:
    (e1)由权利要求1或2所述的单域抗体与至少1个具治疗或识别功能的多肽分子制备而成的融合蛋白;
    (e2)含有权利要求1或2所述的单域抗体的多特异或多功能分子;
    (e3)含有权利要求1或2所述的单域抗体的组合物;
    (e4)含有权利要求1或2所述的单域抗体的免疫偶联物;
    (e5)将权利要求1或2所述的单域抗体或其抗原结合部分进行修饰和/或改造后得到的抗体;
    (e6)含有权利要求1中所述的互补决定区的重链变区或轻链变区;
    (e7)含有权利要求1中所述的互补决定区的scFv或抗体;
    (e8)含有权利要求1中所述的互补决定区中的一个或者两个或者两个以上的氨基酸序列,且至少与一个互补决定区的氨基酸序列具有至少79%同源性;
    (e9)含有权利要求1或2所述的单域抗体的框架区中的一个或者两个或者两个以上的氨基酸序列,且至少与一个框架区的氨基酸序列具有至少90%同源性。
  4. 根据权利要求3所述的衍生物,其特征在于:
    所述融合蛋白是将权利要求1或2所述的单域抗体与至少1个具治疗或识别功能的多肽分子直接融合得到的,或通过接头肽与1个或1个以上的具治疗 或识别功能的多肽分子连接得到的。
  5. 根据权利要求4所述的衍生物,其特征在于:
    所述具治疗或识别功能的多肽分子为人源Fc蛋白。
  6. 根据权利要求3所述的衍生物,其特征在于:
    所述免疫偶联物含有药学上可接受的载体。
  7. 与权利要求1或2所述的单域抗体或权利要求3-6任一所述的衍生物相关的生物材料,为如下(f1)-(f4)中任一种:
    (f1)编码权利要求1或2所述的单域抗体的核酸分子;
    (f2)编码权利要求3中所述的融合蛋白的核酸分子;
    (f3)含有(f1)或(f2)所述的核酸分子的载体;
    (f4)含有(f1)或(f2)所述的核酸分子或(f3)所述的载体的宿主细胞。
  8. 根据权利要求7所述的生物材料,其特征在于:
    所述核酸分子为如下(g1)-(g3)中任一种:
    (g1)SEQ ID No.13或SEQ ID No.14或SEQ ID No.15或SEQ ID No.16或SEQ ID No.17所示的DNA分子;
    (g2)与(g1)限定的核苷酸序列具有75%或75%以上同一性,且编码权利要求1或2所述的单域抗体或权利要求3中所述的融合蛋白的DNA分子;
    (g3)在严格条件下与(g1)或(g2)限定的核苷酸序列杂交,且编码权利要求1或2所述的单域抗体或权利要求3中所述的融合蛋白的DNA分子。
  9. 权利要求1或2所述的单域抗体或权利要求3-6任一所述的衍生物或权利要求7或8所述的生物材料在如下(h1)-(h4)中任一种中的应用:
    (h1)特异性识别和/或结合HLA-A2/SLLMWITQC;
    (h2)制备特异性识别和/或结合HLA-A2/SLLMWITQC的产品;
    (h3)肿瘤免疫治疗;
    (h4)制备肿瘤免疫治疗的产品。
  10. 根据权利要求9所述的应用,其特征在于:所述产品为药物。
  11. 根据权利要求9或10所述的应用,其特征在于:所述肿瘤为黑色素瘤、乳腺癌、前列腺癌、肺癌、卵巢癌、甲状腺癌、肝癌、膀胱癌或胃癌。
  12. 权利要求3中所述的融合蛋白的制备方法,包括如下步骤:将权利要求1或2所述的单域抗体的编码基因和人源Fc蛋白的编码基因导入宿主细胞,得到重组细胞;培养所述重组细胞,得到所述融合蛋白。
  13. 根据权利要求12所述的方法,其特征在于:所述单域抗体的编码基因和所述人源Fc蛋白的编码基因是通过重组载体导入宿主细胞;
    所述重组载体为将含有所述单域抗体的编码基因和所述人源Fc蛋白的编码基因的片段插入表达载体的多克隆位点中得到的。
  14. 根据权利要求13所述的方法,其特征在于:所述含有所述单域抗体的 编码基因和所述人源Fc蛋白的编码基因的片段为SEQ ID No.16或SEQ ID No.17所示的DNA分子。
  15. 根据权利要求13所述的方法,其特征在于:所述表达载体为pET22b载体或pcDNA3.1载体。
  16. 根据权利要求12或13所述的方法,其特征在于:所述宿主细胞为E.coli/DE3细胞或293F细胞。
PCT/CN2017/118287 2016-12-28 2017-12-25 一种识别hla-a2分子与sllmwitqc短肽形成的复合物的单域抗体 WO2018121475A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611240366.1 2016-12-28
CN201611240366.1A CN107686522A (zh) 2016-12-28 2016-12-28 一种识别hla‑a2/sllmwitqc的单域抗体

Publications (1)

Publication Number Publication Date
WO2018121475A1 true WO2018121475A1 (zh) 2018-07-05

Family

ID=61152304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118287 WO2018121475A1 (zh) 2016-12-28 2017-12-25 一种识别hla-a2分子与sllmwitqc短肽形成的复合物的单域抗体

Country Status (2)

Country Link
CN (1) CN107686522A (zh)
WO (1) WO2018121475A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872347A (zh) * 2018-08-30 2020-03-10 天津天锐生物科技有限公司 一种识别hla-a2分子与itdqvpfsv短肽形成的复合物的单域抗体
CN113912695B (zh) * 2019-07-24 2023-05-30 暨南大学 靶向cd133的结合蛋白及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068201A2 (en) * 2002-02-13 2003-08-21 Technion Research & Development Foundation Ltd. High affinity antibody having a tcr-like specificity and use in detection and treatment
WO2010106431A2 (en) * 2009-03-20 2010-09-23 Ludwig Institute For Cancer Research Ltd High affinity t-cell receptor-like ny-eso-1 peptide antibodies, methods, and uses thereof
CN102120772A (zh) * 2010-01-08 2011-07-13 中国科学院微生物研究所 一种嵌合抗体及免疫细胞
WO2013105856A1 (en) * 2012-01-13 2013-07-18 Apo-T B.V. Aberrant cell-restricted immunoglobulins provided with a toxic moiety

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723832B1 (en) * 1996-10-03 2004-04-20 Ludwig Institute For Cancer Research Isolated peptides corresponding to amino acid sequences of NY-ESO-1, which bind to MHC Class I and MHC Class II molecules, and uses thereof
CN101001868A (zh) * 2004-06-17 2007-07-18 曼康公司 表位类似物
EP3068449B1 (en) * 2013-11-11 2017-10-04 Georgia Tech Research Corporation Functionalized microgels with fibrin binding elements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068201A2 (en) * 2002-02-13 2003-08-21 Technion Research & Development Foundation Ltd. High affinity antibody having a tcr-like specificity and use in detection and treatment
WO2010106431A2 (en) * 2009-03-20 2010-09-23 Ludwig Institute For Cancer Research Ltd High affinity t-cell receptor-like ny-eso-1 peptide antibodies, methods, and uses thereof
CN102120772A (zh) * 2010-01-08 2011-07-13 中国科学院微生物研究所 一种嵌合抗体及免疫细胞
WO2013105856A1 (en) * 2012-01-13 2013-07-18 Apo-T B.V. Aberrant cell-restricted immunoglobulins provided with a toxic moiety

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HELD G., ET AL.: "Dissecting cytotoxic T cell responses towards the NY -ESO-1 protein by peptide/MHC-specific antibody fragments", EUROPEAN JOURNAL OF IMMUNOLOGY, 31 October 2004 (2004-10-31), XP009063063 *
HELD G., ET AL.: "MHC/Peptide-Specific Interaction of the Humoral Immune System: A New Category of Antibodies", THE JOURNAL OF IMMUNOLOGY, vol. 195, no. 9, 28 September 2015 (2015-09-28), pages 4210 - 4217, XP055513233 *

Also Published As

Publication number Publication date
CN107686522A (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
US11912768B2 (en) Single domain antibody and derivative proteins thereof against CTLA4
WO2018121473A1 (zh) 一种识别人血清白蛋白的单域抗体
CN109096396B (zh) 一种抗pd-l1人源化纳米抗体及其应用
CN107216389B (zh) 抗pd-l1纳米抗体及其编码序列和用途
JP6873992B2 (ja) プログラム死リガンド(pdl1)に対する単一ドメイン抗体およびその誘導体タンパク質
JP7450594B2 (ja) 治療分子
CN107686520B (zh) 抗pd-l1纳米抗体及其应用
ES2445695T3 (es) Moléculas de unión con base en fibronectina mejorada y usos de las mismas
CN109475617B (zh) 抗lag-3抗体及其应用
JP2018531039A6 (ja) プログラム死リガンド(pdl1)に対する単一ドメイン抗体およびその誘導体タンパク質
WO2011051327A2 (en) Small antibody-like single chain proteins
WO2015184941A1 (zh) 一种cd7纳米抗体、其编码序列及应用
CN107683289A (zh) IL13RAα2结合剂和其在癌症治疗中的用途
WO2018133873A1 (zh) Pd-l1结合多肽或化合物
CN109929037B (zh) 针对程序性死亡配体的结合物及其应用
CN101389791A (zh) 融合蛋白文库的产生和筛选方法及其应用
WO2021068949A1 (zh) 抗人Trop-2抗体及其应用
WO2022117040A1 (zh) 抗人b7-h3抗体及其应用
WO2018121475A1 (zh) 一种识别hla-a2分子与sllmwitqc短肽形成的复合物的单域抗体
WO2018121474A1 (zh) 一种识别hla-a2分子与rmfpnapyl短肽形成的复合物的单域抗体
US8263744B2 (en) Binding proteins that bind to EpCAM linked to an effector molecule
WO2018121476A1 (zh) 一种识别hla-a2分子与nlvpmvatv短肽形成的复合物的单域抗体
CN113461825A (zh) 一种抗pd-l2纳米抗体及其应用
WO2024093147A1 (zh) 一种特异性结合CD44的v5外显子的抗体及其用途
WO2023173393A1 (zh) 结合b7-h3的抗体及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888593

Country of ref document: EP

Kind code of ref document: A1