WO2018121413A1 - 多功能数字x射线影像方舱 - Google Patents

多功能数字x射线影像方舱 Download PDF

Info

Publication number
WO2018121413A1
WO2018121413A1 PCT/CN2017/117807 CN2017117807W WO2018121413A1 WO 2018121413 A1 WO2018121413 A1 WO 2018121413A1 CN 2017117807 W CN2017117807 W CN 2017117807W WO 2018121413 A1 WO2018121413 A1 WO 2018121413A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ray
printer
rotating
prosthesis
Prior art date
Application number
PCT/CN2017/117807
Other languages
English (en)
French (fr)
Inventor
高欣
梁志远
Original Assignee
中国科学院苏州生物医学工程技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州生物医学工程技术研究所 filed Critical 中国科学院苏州生物医学工程技术研究所
Publication of WO2018121413A1 publication Critical patent/WO2018121413A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/25Housings, e.g. machine housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G3/00Ambulance aspects of vehicles; Vehicles with special provisions for transporting patients or disabled persons, or their personal conveyances, e.g. for facilitating access of, or for loading, wheelchairs
    • A61G3/001Vehicles provided with medical equipment to perform operations or examinations

Definitions

  • the present invention relates to a medical device device, and more particularly to a multifunctional digital X-ray image square cabin.
  • the existing equipment can not meet the first-aid needs for the injured.
  • the existing X-ray diagnostic vehicle can only provide two-dimensional perspective images, which can not provide three-dimensional structure imaging, which is not only conducive to accurate diagnosis, but also not conducive to treatment. The three-dimensional space of the lesion is accurately located.
  • the X-ray detection system in the existing XCY2002-1/200 field X-ray diagnostic vehicle still adopts the filming mode, and the digital detector is not used, which seriously reduces the working efficiency of the system.
  • the power supply system of this X-ray diagnostic vehicle still uses 380V power supply, and it needs to rely on the external 30kW power station trailer to supply power to it, which increases the risk of leakage during heavy rain, and is also not conducive to difficult transportation in the wild.
  • a new X-ray medical image cabin which can provide not only traditional X-ray fluoroscopic images and conventional radiographs, but also CT image information, which can quickly and secure three-dimensional parts of the whole body.
  • Structural imaging and 3D printing which will replace the transmission or storage of a large number of surgical instruments and customized repairs Body needs. This can reduce the cost of shipping to the surgical site and reduce the time it takes to create an implant to repair the implant or tool.
  • the invention mainly solves the technical problem that the X-ray medical image cabin has very high ground requirements on the working site, and mainly provides a cage CT scanning device, which reduces the volume and weight of the CT scanner and reduces the rotation of the rotating component.
  • the movement and fixation of the auxiliary CT scanner makes the CT scanner more widely available.
  • the present invention primarily provides devices and procedures for producing tools and/or prostheses suitable for surgical procedures.
  • the present invention provides an image cabin with three-dimensional (3D) printing capabilities that would replace the need to send or store a large number of surgical instruments and customized restorations. This can reduce the cost of shipping to the surgical site and reduce the time it takes to create an implant to repair the implant or tool.
  • the cabin can contain scanners, computers, 3D printers, and raw materials for printing surgical instruments or prostheses.
  • the present invention thus overcomes the need to store and/or store a large number of medical devices, instruments, and prostheses at a medical facility when the medical devices, instruments, and prostheses can be quickly printed in the field. This device and method will allow for the rapid construction of a mobile surgical center with just 3D Express printing.
  • the method and apparatus of the present invention will allow direct virtual private network (VPN) image sharing so that doctors on site can receive images and cooperate with other physicians to assist them in obtaining appropriate implants/prostheses and for specific procedures. Troubleshoot the design. This is very beneficial because many difficult trauma situations are usually manifested in their own challenging positions (eg, on the battlefield or theater of military operations).
  • the apparatus and method of the present invention facilitates providing patients with the highest standards of care.
  • the apparatus and method of the present invention can also access a database that stores information related to medical devices, instruments, and prostheses. It can also have the ability to make customized implants in the field in a scanning and printing process and create lifesaving and therapeutic devices that can assist the patient when needed. With all of these features, the present disclosure can reduce the shipping weight of the necessary surgical equipment, reduce the time of final implantation of the life-saving medical implantable device, and create an operating room within hours. Raw materials can be supplied and delivered in a pre-packaged, proprietary manner.
  • prosthesis and “plurality of prosthesis” as used in the present invention are used to indicate the type of implant, bone substitute, tissue replacement, prosthesis or even in the device and The entire organ designed and created by the disclosed method.
  • prosthesis may refer to a customized facial implant (bone or soft tissue implantation), facial fracture and repair, a small ear deformity stent, an eye prosthesis, a nasal prosthesis, a maxillary prosthesis.
  • Body sacral prosthesis, septum prosthesis, cranial prosthesis, mandibular replacement (bone graft print), maxillary replacement, custom soft tissue implant (all areas of the body including but not limited to airway stents)
  • Vascular stent, transplant percutaneous or surgical vessel Occlusion devices
  • hand/limb implants/prostheses joint replacements (eg wrist/finger joints), large joint replacements (eg hips, knees, shoulders), spinal column replacements, long bone substitutes ( Femur, humerus, humerus, humerus, ulna, humerus), thoracic replacement, pelvic defect repair, large joint replacement, non-implantable restoration (eg, finger, other appendages, limbs, orthotics or fillings), A combination thereof, or other suitable implant.
  • non-implantable restoration eg, finger, other appendages, limbs, orthotics or fillings
  • a multifunctional digital X-ray image capsule comprising:
  • Vehicle cone beam CT imaging system Vehicle cone beam CT slide structure, vehicle X-ray image information processing system, 3D printer and 220V vehicle power supply system.
  • the on-vehicle cone beam CT imaging system of the image cabin adopts a cone beam CT imaging mode based on a flat panel detector, and the cone beam CT imaging system is suspended from the top of the cabin and made as needed according to the needs of the top rail structure. Imaging is performed at different locations on the scanning bed.
  • the cone beam CT imaging system performs 360° rotation exposure centering on the slip ring.
  • the imaged object is reconstructed three-dimensionally to obtain the three-dimensional internal structure information of the imaged object, and the image is displayed on the display device; the image is sent to the printer. ; and print the instrument or prosthesis based on the image on the printer.
  • the on-vehicle cone beam CT imaging system comprises:
  • the cage rotating member includes a first rotating fitting, a second rotating fitting, and an edge connecting the first rotating fitting and the second rotating fitting
  • a rotating accessory is disposed on the frame by a slewing bearing, the cage rotating member and the frame are annular structures, the center of the ring is used as a scanning hole of the CT scanner, and the imaging system has symmetry along the center of the axis
  • An X-ray source assembly and a detector assembly disposed on the sidewall of the second rotating fitting, the X-ray source assembly and the detector assembly being fixed to a second rotating fitting, the detector assembly correspondingly receiving the same An exiting ray of the X-ray source assembly; and a turbine assembly disposed obliquely on the first rotating assembly, the large gear meshing therewith being fixedly disposed on a side of the frame different from the first rotating accessory, the first rotating accessory
  • the axes of the frame, the large gear and the second rotating component are coincident, and the turbine assembly drives the cage
  • the outer ring of the slewing bearing is mounted on the inner ring of the frame, the radius of the outer ring of the first rotating component is smaller than the radius of the inner ring of the frame, and the slewing bearing is matched with the frame by the slewing bearing.
  • a ball or a roller is disposed between a side wall of the outer ring of the first rotating component and the frame, and an outer wall of the inner ring of the frame is provided with a groove for accommodating the ball or the roller;
  • the frame radius is between the large gear and the first rotating accessory, and the large gear is disposed as a helical gear and is fixed to the frame by bolts.
  • the turbine assembly includes: a turbine shaft that is mounted on the cage-type rotating member via a bottom plate, the bottom plate being fastened to the edge of the cage-type rotating member by a profile, the turbine shaft The two ends are respectively supported by the bottom plate by a rolling bearing; the worm is connected to the turbine shaft through an internal spline, and one end of the turbine shaft is connected to the engine through a brake device, and the other end is provided with a butterfly spring and a gland,
  • a switch the brake switch is provided with a groove at one end, the groove is matched with the convex portion of the initial rod, and the other end is fixed at a position of the bottom plate close to the engine.
  • the brake switch passes through the concave switch. The groove is caught by the projection of the initial rod, that
  • the cage rotating component is mounted with a computer A located at a lower portion of the detector assembly and equipped with a power supply and an instruction processor, the detector assembly including an image preprocessing device, and the image preprocessing device Processing the first image signal, the first image signal having an image portion showing the subject and a margin portion disposed around the image portion, wherein the remaining white detecting portion detects the first image signal a remaining white portion; a region of interest setting unit that sets an initial region of interest corresponding to the image portion of the first image signal based on a margin portion detected by the margin detecting unit; The area image generating unit generates a region of interest image signal indicating the initial region of interest set by the region of interest setting unit.
  • the region of interest image generating unit includes a cutout unit that cuts out the initial region of interest set by the region of interest setting unit from the first image signal, and an enlargement/reduction portion. Generating an image corresponding to the display object of the first image signal to enlarge or reduce an image of the initial region of interest cut out from the first image signal by the cutout portion as the image signal of the region of interest .
  • the cage-type rotating component is mounted with a display
  • the display is composed of an industrial computer B, an AC-DC power supply and a graphic display
  • the industrial computer B is mounted on one side of the rotating component, and the other A graphic display is mounted on the edge of the side, and the graphic display is variable in position and viewing angle, and the AC-DC power supply supplies power to the industrial computer B
  • the display displays an image output by the image processing device.
  • the cage type rotating component is mounted with a wireless data communication module, including: a first memory configured to store the clinical data; and a transmitter configured to be according to the first a communication protocol to transmit the clinical data; a receiver configured to receive enhanced data in accordance with a second communication protocol; and a second memory configured to store the enhanced data.
  • the enhancement data is based on the clinical data.
  • the mobile device is equipped with an emergency stop button switch and a ray indicator light.
  • the bottom of the mobile device is provided with an isolation transformer and a graphics processing computer, and a storage medium connected to the graphics processing computer is mounted on the panel, and the graphics processing computer prefabricates the three-dimensional CT image reconstruction algorithm.
  • the power supply mode is a slip ring type power supply.
  • the three-dimensional printer comprises: an image acquisition device, an autoclave or other device for sterilizing the output of the 3D printer, and a scanner for verifying the printed product.
  • the invention also provides a method of using the same.
  • An image of the desired surgical instrument or prosthesis is acquired using an image acquisition device within the three-dimensional printer, an image acquisition device remote from the three-dimensional printer, or by accessing a database having stored image data associated therewith.
  • the image is then sent to the printer for printing.
  • the present disclosure provides an apparatus and method for an overspeed prototype of a prosthesis/tool for surgical applications.
  • One suitable application for the express container of the present disclosure is in the military as it allows the creation of mobile military medical facilities within a few hours.
  • the 3D printer can be placed in advance before it is needed. Other applications and features are described in more detail below.
  • 3D printing may include, but is not limited to, methods such as: fused deposition molding, filament filament fabrication, robocasting, electron beam molding, direct metal laser sintering, electron beam melting, selection Laser smelting, selective thermal sintering, selective laser sintering, gypsum-based 3D printing, laminated solid fabrication, stereolithography, and digital light processing. It is also possible to use a process of "decrease" manufacturing.
  • the image acquisition device will transmit an image of the desired prosthesis to the computer. The final image with or without correction is sent to the producer.
  • the maker uses a subtractive method to produce a prosthesis in which the prosthesis can be chiseled from a solid implantable material.
  • the reduction method may include lathe processing of the prosthesis, cutting, stamping, grinding or engraving with a laser, water or air knife cutting tool.
  • the present invention means that the prosthesis and/or instrument is printed or fabricated within the same surgical procedure or at the same surgical location as the location at which the image from which the prosthesis is based.
  • Currently available devices or methods may indicate “rapid prototyping”, but this typically means that when a particular portion of the image is acquired, it is then issued for remote printing in a process that may take several weeks.
  • the use of the terms “speeding prototype” and “in operation” distinguishes the invention from these processes.
  • the desired prosthesis can be provided during the surgical procedure.
  • One of the most unique aspects of the invention is that for the patient, the scanning and image processing of the patient, as well as the printing of the prosthesis or other implantable device, can be done under a single anesthesia.
  • a software program or algorithm can be embedded on the computer and the acquired image will be shown on a monitor or other display.
  • Software programs can allow doctors, technicians, with or without input from the patient himself
  • the scanned image is customized to the desired settings or characteristics.
  • the final image (if applicable, the customized image) is then sent to a printer or maker for creation. As previously discussed, the printer or maker is in the express container along with the computer. This drastically reduces the amount of time required to produce a prosthesis for use in a surgical procedure.
  • the image acquisition device, computer, and printer or maker are co-located within the three-dimensional printer.
  • the computer, printer, sterilization device, and verification scanner can be co-located in the cabin.
  • the apparatus and method of the present disclosure are positioned to enable overspeed prototyping, thereby eliminating or significantly reducing the amount of delay in obtaining the desired prosthesis or instrument.
  • the time period during which the printer or maker provides the prosthesis can be varied after the final image is obtained. The time period can range from ten minutes to twenty-four hours, or any sub-range therebetween. The time period can also be from thirty minutes to twelve hours, or any subrange between them.
  • the actual surgical procedure for the patient can occur within the cabin.
  • the present invention also contemplates that the surgical procedure can occur outside of the shelter to allow the shelter to be used as a production room for the prosthesis or surgical tool being produced.
  • the shelter can be used to print the desired tool or prosthesis and package it for delivery to other facilities or locations.
  • the package can be completed in a sterile manner if desired.
  • the three-dimensional printer of the present invention can be deployed on the ground of an existing hospital facility.
  • the user can print the desired tool or prosthesis and the express container can be packaged in a sterile package.
  • the user can then transport the portion of the package to a location where the surgical procedure will be performed.
  • the apparatus and method of the present invention can produce a complete operating room with a disposable instrument that can be passed
  • the method of the invention is constructed quickly ( ⁇ 24 hours) and inexpensively. Therefore, for doctors and anesthesiologists, the only inventory that needs to be provided to build the instrument will be the design from the database and the raw materials used for printing.
  • the digital X-ray image cabin can be deployed for emergency on-site medical assistance.
  • the digital X-ray image capsule of the present invention can also be used in existing medical facilities (such as urban hospitals), which may be valuable and have additional flexibility to perform standard capabilities that may or may not be facilities. Part of the surgery.
  • the use of digital X-ray image cabins in the application of the invention may also facilitate the presence of storage space in these facilities, which may be used for stock customized or non-customized implants.
  • the apparatus and method of the present invention can provide a means of changing the manner in which support for building a hospital. This will provide the required cost savings and will enable the on-site physician to use the equipment and prosthesis needed to provide a better quality of care for the patient.
  • the printer or maker of the present invention can also eliminate the time associated with sterilization of implantable prostheses in currently available devices and methods.
  • this time is significantly reduced or eliminated altogether.
  • the printer or maker provided by the apparatus and method of the present invention can provide a sterilized prosthesis for immediate use. In the case where the prosthesis is produced by computer-guided lathe processing, the processing of the prosthesis will likely still require sterilization, but the lathe processing can be faster than printing, so the additional time for sterilization should not be too long.
  • Materials suitable for the prosthesis of the present invention may vary. Materials may include polylactic acid and acrylonitrile butadiene styrene approved for implantable devices. Other materials envisioned may include rubber, photocurable polymers, metals, ceramics, and implantable entities that are immersed in antibiotics.
  • the devices and methods of the present invention can provide surgical planning models and cutting guidelines for physicians and patients.
  • a doctor can hold a model of a bone or skull and plan a plan for where an incision or bone resection will be performed.
  • the doctor can also explain to the patient or the caregiver or guardian of the patient.
  • the square or other suitable modular container of the present invention can be used for three dimensional printing in military applications, other applications are envisioned.
  • the shelter of the present invention can be used in any application where its mobility at various locations is useful for providing convenient medical and/or laboratory services. For example, in areas of natural disasters where power infrastructure and access equipment may be disrupted, medical centers in the area have been compromised, or other remote areas in war zones that are not necessarily in war.
  • the three-dimensional printing aspect of the present invention is particularly advantageous, but the cabin of the present invention may also include other medical equipment, tools, or pre-made or printed prostheses.
  • FIG. 1 is a schematic view showing a perspective imaging mode of an X-ray medical image cabin of the present invention.
  • Fig. 3 exemplarily shows multi-image picture processing.
  • FIG. 4 is a three-dimensional printing process according to an embodiment of the present invention.
  • the processing apparatus 1 of the present embodiment is connected to an endoscope 2 (mirror body), a light source device 3, a display device 4, and an X-ray device 5, and the endoscope 2 is introduced into a subject, and
  • the imaging unit 21 that generates an endoscopic image signal by imaging the inside of the subject, and the light source device 3 generates the illumination light L and supplies it to the distal end of the endoscope 2 via the optical cable 22, and the display device 4 is used.
  • the X-ray device 5 generates an X-ray image signal
  • the processing device 1 performs predetermined image processing on the endoscopic image signal input from the endoscope 2.
  • predetermined image processing is performed on the X-ray image signal input from the X-ray device 5, and an image corresponding to the composite image signal is displayed on the display device 4, which is an endoscopic image in which the image processing is arranged.
  • the signal and the X-ray signal are combined and obtained.
  • the processing device 1 displays a composite image signal on a display screen of the display device 4, which displays two screens of a screen on which an image corresponding to the X-ray image signal and a screen on which the endoscopic image signal is displayed. It is represented by a sub screen.
  • the processing device 1 controls the operations of the endoscope 2, the light source device 3, and the display device 4.
  • the processing device 1 includes an input unit 11, a control unit 12, an image processing unit 13, a display control unit 14, an output unit 15, and a storage unit 16.
  • the input unit 11 is realized by an operation device such as a mouse, a keyboard, and a touch panel, and accepts input of various pieces of instruction information. Specifically, the input unit 11 receives information (for example, ID, date of birth, name, etc.) of the subject examined by the endoscope 2 and the X-ray apparatus 5, and identification information (for example, ID and inspection of the endoscope 2). The input item), the identification number of the X-ray device 5, and the input of various instruction information such as the inspection content.
  • the control unit 12 is realized using a CPU or the like.
  • the control unit 12 controls the processing operations of the respective units of the processing device 1.
  • the control unit 12 controls the operation of the processing device 1 by performing instruction information or data transmission for each configuration of the processing device 1.
  • the control unit 12 is connected to each of the components of the imaging unit 21 and the light source device 3 and the display device 4 via the respective cables, and also controls the operations of the imaging unit 21, the light source device 3, and the display device 4.
  • the image processing unit 13 performs predetermined signal processing on the endoscopic image signal generated by the imaging unit 21 and the X-ray image signal input from the X-ray device 5 under the control of the control unit 12.
  • the image processing unit 13 includes a margin detecting unit 13a, a region of interest cutout 13b (a region of interest setting unit and a cutout portion), an enlargement/reduction unit 13c, an endoscopic image processing unit 13d, and a combining unit 13e.
  • the X-ray image signal is an image signal having an image portion of a subject to be visualized by an operator and a margin portion provided around the image portion. The remaining white portion is a uniform area of uniform brightness or color.
  • the remaining white detecting portion 13a detects a margin portion in the X-ray image signal by detecting a change in brightness or color of the X-ray image signal.
  • the attention area cutout section 13b sets an initial region of interest corresponding to the image portion in the X-ray image signal based on the margin portion of the X-ray image signal detected by the margin detection unit 13a, and cuts out from the X-ray image signal.
  • the initial focus area for this setting is set.
  • the enlargement/reduction unit 13c generates an enlargement or reduction corresponding to the size of the X-ray image display screen of the display device 5 as the display target of the X-ray image signal, and the initial cut-out by the annotation region cutout portion 13b from the X-ray image signal.
  • the image signal obtained by the attention area is used as the attention area image signal indicating the initial attention area.
  • the endoscopic image processing unit 13d performs optical black subtraction processing, gain adjustment processing, image signal synchronization processing, gamma correction processing, and white balance (WB) adjustment on the endoscopic image signal input from the endoscope 2.
  • Various image processing such as processing, color matrix operation processing, color reproduction processing, and edge emphasis processing.
  • the synthesizing unit 13e generates and outputs a composite image signal which is an image of the region of interest image signal generated by the enlargement/reduction unit 13c and the endoscopic image signal processed by the endoscopic image processing unit 13d. And got it.
  • the display control unit 14 generates a display image signal for display on the display device 4 based on the composite image signal output from the synthesizing unit 13e, and converts the generated display image signal from a digital signal to an analog signal, and then converts the converted image signal.
  • the image signal of the analog signal is changed to a format such as a high definition mode and output to the presentation device 4. Further, there is a case where the display device 4 has a part of the function of the display control unit 14.
  • the output unit 15 is realized by a speaker, a printer, or the like, and the output unit 15 outputs information related to the display processing of the endoscopic image signal and the X-ray image signal in accordance with the control of the control unit 12.
  • the storage unit 16 is realized using a volatile memory or a nonvolatile memory, and the storage unit 16 stores various programs for operating the processing device 1, the endoscope 2, and the light source device 3.
  • the storage unit 16 temporarily stores information in the processing of the processing device 1.
  • the storage unit 16 may be configured using a memory card or the like mounted from the outside of the processing device 1.
  • a three dimensional printing process (100) in accordance with the present invention is illustrated.
  • the user can acquire an image using an optical scanning device (101), a medical imaging device (102), a tactile or touch image (103), or through a database (104) of previously stored instruments or anatomical data.
  • the image is then downloaded and processed by the computer (105).
  • the computer can display an image to the user or physician for further manipulation (106).
  • the image is then sent to the printer for printing (107).
  • the verification scanner can optionally verify the correctness of the final printed product (108).
  • the final printed product may also be sterilized using a sterilization device, such as an autoclave (109).
  • step (105a) there may also be an optional step (105a) between the downloading step (105) and the displaying step (106). Due to deficiencies in image acquisition techniques, when a body part or instrument is scanned, there may be missing information, gaps or "holes" in the final image. If the image is sent to a printer or maker, it will be incomplete and thus unsuitable.
  • step (105a) the image can be compared to standard data for a prosthesis or tool that can be stored in a database. Any gap in the acquired image can be filled.
  • processing device 1: processing device; 2: endoscope; 3: light source device; 4: display device; 5: X-ray device; 11: input unit; 12: control unit; 13: image processing unit; 13a: residual white detecting unit; : attention area cut-out section; 13c: enlargement/reduction unit; 13d: endoscopic image processing unit; 13e: synthesis unit; 14: display control unit; 15: output unit; 16: storage unit;
  • the X-ray image cabin of the present invention can also be used in applications where mobility is not a primary concern.
  • existing hospital facilities may require the ability to quickly print tools or prostheses, which may currently have no or no space to do so.
  • the X-ray image capsule of the present invention can be easily deployed on the ground of existing hospital facilities, such as in unused areas of the parking lot, parking garage, roof or ground of the facility. Whether or not the capability is required, the cabin of the present invention can be deployed regardless of the presence or absence of an existing facility.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种多功能数字X射线影像方舱,不仅可提供传统的X射线透视图像和常规摄片,还可以提供CT影像信息,可对全身任何部位进行快速的三维结构成像并能提供3D打印,其将替代对发送或贮存大量的手术仪器及定制的修复体的需求。这可以减少到手术场所的运送成本、以及减少创建手术的修复植入物或工具的时间。可被用于在各种位置处其移动性对于提供便利的医疗和/或实验室服务有用的任何应用。例如,在电力基础设施及进入装备可能被中断的自然灾害区域,该区域的医疗中心已受危害,或者其它在非必须处于战争的战区中的偏远区域。

Description

多功能数字X射线影像方舱 技术领域
本发明涉及一种医疗器械设备,更具体地说,本发明涉及一种多功能数字X射线影像方舱。
背景技术
代战争的残酷性、军事任务的特殊性、灾害救助的多发性,对伤病员快速救治提出了更高要求。当前,我军各级卫勤保障单位必须依托以新装备,提供快速、安全的救治。要使战时或非军事任务卫勤保障达到这样的能力,当务之急是要让新一代卫勤装备与实战保障需求“无缝链接”。近年来,我军卫勤装备系统数字化、信息化水平不断提高,野战方舱、医院船、列车医院等一批先进的卫勤装备相继问世,实现了野战机动医院与全军中心医院互联互通、远程会诊,对部队恢复、保持和提高战斗力起到了重要功效。
但是,作为卫勤装备中重要的检查工具——X射线诊断车,现有装备却无法满足对伤员的急救需求。特别是野战或救灾过程中,对于颅脑损伤的快速诊断和紧急救治,现有X射线诊断车只能提供二维透视图像,无法提供三维结构成像,不仅不利于准确诊断,而且也不利于治疗中病灶的三维空间准确定位。此外现有的XCY2002-1/200型野战X线诊断车中的X射线探测系统仍旧采用拍片模式,没有采用数字化探测器,严重降低了系统的工作效率。此种X线诊断车的供电系统仍旧采用380V电源,需依靠外接30kW电站挂车为其供电,在暴雨天气增加漏电危险,同时也不利于野外艰苦条件运输。
再者,在手术中,可能需要多种多样的可用仪器和假体来治疗患者。在一些应用中,紧急性可以是高的。例如,当治疗炸伤的军人时,伤情通常严重且需要尽快处理。此外,在军事和非军事应用中,执业医师均可能执行要求使用工具和/或替换假体的手术。这些执业者可能受限于空间、或者可以被带入现场的装备的数量及类型。
要跟上现代战争和灾害救助的快节奏,以及满足伤员救治的更高需求,我军需要具有更佳性能的医疗野战装备,其中可提供多模成像功能的X射线医学影像方舱将会极大提高卫勤保障的能力。
发明内容
针对以上情况,拟研制一辆新型X射线医学影像方舱,该方舱不仅可提供传统的X射线透视图像和常规摄片,其还可以提供CT影像信息,可对全身任何部位进行快速的三维结构成像并能提供3D打印,其将替代对发送或贮存大量的手术仪器及定制的修复 体的需求。这可以减少到手术场所的运送成本、以及减少创建手术的修复植入物或工具的时间。
本发明主要解决的是X射线医学影像方舱对工作场地的地面要求非常高的技术问题,主要提供一种笼型CT扫描装置,通过减小CT扫描仪的体积、重量、减少转动部件的转动弧度和整机的震动幅度,同时通过平衡校正来消除传动偏心力等措施来减轻和消除CT扫描仪自身的震动量来减少对工作地面的要求,进一步通过带有中控刹车机制的移动装置来辅助CT扫描仪的移动和固定,使得CT扫描仪的使用场地更广。
本发明主要提供用于生产适合于手术程序的工具和/或假体的装置及过程。本发明提供一种具有三维(3D)打印能力的影像方舱,其将替代对发送或贮存大量的手术仪器及定制的修复体的需求。这可以减少到手术场所的运送成本、以及减少创建手术的修复植入物或工具的时间。方舱可以包含扫描仪、计算机、3D打印机及用于打印手术仪器或假体的原材料。因而本发明克服了当可以在现场快速打印医疗设备、仪器和假体时,对运送和/或在医疗设施处储存大量的医疗设备、仪器和假体的需求。本设备及方法将允许只需3D快运打印即可快速构建移动手术中心。
本发明的方法及设备将允许直接虚拟私人网络(VPN)图像共享,以使在现场的医生可以接收图像,并且与其他医师合作来协助他们获取适当的植入物/假体以及针对特定手术的疑难解决设计。因为多种困难的外伤情况通常表现在其自身处于具挑战性的位置中(如,在军事行动的战场或战区上),所以这是非常有益的。本发明的设备及方法有助于对患者提供最高标准的护理。
本发明的设备及方法也可以访问储存与医疗设备、仪器和假体相关的信息的数据库。其也可以具有以扫描和打印方法在现场做出定制的植入物并且在需要时创建能够帮助患者的救生和治疗设备的能力。通过全部这些特性,本公开可以减少必要的手术装备的运送重量,减少救生医疗可植入设备的最后植入的时间,以及在数小时内创建手术室。原材料可以通过预包装的专有方式来供应和递送。
为易于描述,本发明中所使用的术语“假体”和“多个假体”用于指示植入物的类型、骨替换物、组织替换物、假体或甚至可以在设备中且以本公开的方法而设计及创建的整个器官。因而,如在本发明中所用的,术语“假体”可指示定制的面部植入物(骨或软组织植入),面部骨折及修复,小耳畸形支架,眼假体,鼻假体,上颌假体,腭假体,中隔假体,颅顶假体,下颌骨替换物(骨移植打印物),上颌骨替换物,定制的软组织植入物(身体的全部区域包括但不限于气道支架、血管支架、移植、经皮或手术血管 闭塞设备),手/肢体植入物/假体,关节替换物(如腕/指的小关节),大关节替换物(如,髋、膝、肩),脊柱体替换物,长骨替换物(股骨、胫骨、腓骨、桡骨、尺骨、肱骨),胸腔替换物,骨盆缺损修复,大关节替换物,不可植入的修复体(如,指、其它附属体、四肢、矫正物或充填体),其组合,或其它适合的植入物。
为了实现根据本发明的这些目的和其它优点,提供了一种多功能数字X射线影像方舱,包括:
车载锥束CT成像系统、车载锥束CT滑轨结构、车载X线影像信息处理系统、三维打印机和220V车载供电系统。
优选的,所述影像方舱的车载锥束CT成像系统采用基于平板探测器的锥束CT成像模式,利用顶部滑轨结构,将锥束CT成像系统吊于方舱顶部并使其根据需要在扫描床的不同位置进行成像。锥束CT成像系统以滑环为中心进行360°旋转曝光,通过锥束CT重建技术,对成像物体进行三维重构,获得成像物体三维内部结构信息,在显示设备上显示图像;向打印机发送图像;以及根据打印机上的图像来打印仪器或假体。
优选的,所述车载锥束CT成像系统包括:
机架,其垂直架设在CT扫描仪的移动装置上;笼型旋转部件,包括第一旋转配件、第二旋转配件以及连接所述第一旋转配件和所述第二旋转配件的棱边,第一旋转配件通过回转轴承转动设置在所述机架上,所述笼型旋转部件和机架为圆环状结构,圆环中心作为CT扫描仪的扫描孔;成像系统,其具有沿轴中心对称设置在所述第二旋转配件同侧壁上的X射线源组件和探测器组件,所述X射线源组件与所述探测器组件固定在第二旋转配件,所述探测器组件对应接收来自所述X射线源组件的出射线;以及倾斜设置在第一旋转配件上的涡轮组件,与其啮合的大齿轮固定设置在机架的异于所述第一旋转配件的一面,所述第一旋转配件、机架、大齿轮和第二旋转配件的轴线重合,涡轮组件靠电机带动所述笼型旋转部件绕大齿轮周向旋转,电缆通过所述笼型旋转部件连接电源与所述成像系统;其中,所述X射线源组件以锥形束作为出射光束,所述成像系统以动态容积扫描方式旋转一周以完成对目标物的扫描成像过程。
优选的,所述回转轴承的外圈安装在所述机架的内圈上,第一旋转配件外圈半径小于所述机架内圈半径,且通过所述回转轴承与所述机架间隙配合,所述第一旋转配件的外圈突出的一侧壁与所述机架之间设置滚珠或滚子,所述机架内圈外壁上设有可容纳所述滚珠或滚子的凹槽;所述机架半径介于大齿轮和第一旋转配件之间,所述大齿轮设置成斜齿轮,通过螺栓固定在所述机架上。
优选的,所述涡轮组件包括:涡轮轴,其通过底板架设在所述笼型旋转部件上,所述底板通过型材紧固于所述笼型旋转部件的所述棱边上,所述涡轮轴两端分别用滚动轴承支撑于底板上;蜗杆,通过内花键与所述涡轮轴相连接,所述涡轮轴一端通过制动装置连接发动机,另一端装有蝶形弹簧和压盖,在通过在所述蜗杆和所述大齿轮之间啮合传递力时在涡轮轴上作用一个轴向力,直接带动所述笼型旋转部件进行绕轴旋转,且根据电机的转向而正转或反转;制动开关,所述制动开关一端设有凹槽,凹槽与初始杆的凸起部配合,另一端固定于所述底板靠近发动机的位置,当电机不工作时,所述制动开关通过凹槽与所述初始杆的凸起部卡住,即为初始位置。
优选的,所述笼型旋转部件上安装有工控机A,位于所述探测器组件的下部,并配套有电源和指令处理器,所述探测器组件包括图像预处理装置,该图像预处理装置对第一图像信号进行处理,该第一图像信号具有显现被摄体的影像部分和设置于所述影像部分的周围的余白部分,其特征在于:余白检测部,其检测所述第一图像信号中的所述余白部分;关注区域设定部,其根据所述余白检测部所检测出的余白部分,设定与所述第一图像信号中的所述影像部分对应的初始关注区域;以及关注区域图像生成部,其生成关注区域图像信号,该关注区域图像信号表示所述关注区域设定部所设定的所述初始关注区域。
优选的,所述关注区域图像生成部具有:切出部,其从所述第一图像信号中切出由所述关注区域设定部所设定的所述初始关注区域;以及放大缩小部,其生成对应于所述第一图像信号的显示对象而放大或缩小由所述切出部从所述第一图像信号中切出的所述初始关注区域后的图像,作为所述关注区域图像信号。
优选的,所述笼型旋转部件上安装有显示器,显示器由工控机B、AC-DC电源和图形显示器组成,所述工控机B安装于所述旋转部件的一侧的棱边上,另一侧的棱边上安装图形显示器,且所述图形显示器可变位置和观看角度,所述AC-DC电源为工控机B供电;所述显示器显示所述图像处理装置输出的图像。
优选的,所述笼型旋转部件上安装有无线数据通信模块,包括:第一存储器,所述第一存储器被构造成存储所述临床数据;发送器,所述发送器被构造成根据第一通信协议来发送所述临床数据;接收器,所述接收器被构造成根据第二通信协议来接收增强数据;以及第二存储器,所述第二存储器被构造成存储所述增强数据。所述增强数据建立于所述临床数据的基础上。
优选的,所述移动装置上安装紧急停止按钮开关和射线指示灯。
优选的,所述移动装置的底部设置隔离变压器和一台图形处理计算机,与所述图形处理计算机连接的存储介质安装在面板上,所述图形处理计算机预制三维CT图像重建算法。
优选的,所述供电方式为滑环式供电。
优选的,三维打印机包括:图像获取设备、用于为3D打印机的输出灭菌的高压灭菌器或其它设备、以及验证打印产品的扫描仪。本发明同样提供使用其的方法。采用三维打印机内的图像获取设备、与三维打印机远程的图像获取设备,或者通过访问具有与其相关的已存图像数据的数据库而获取期望的手术仪器或假体的图像。图像然后被发送到打印机以打印。以这种方式,本公开提供用于手术应用的修复体/工具的超速原型的设备及方法。一种适合的用于本公开的快运容器的应用是在军事中,因其允许在几小时内创建移动军事医疗设施。三维打印机可以在其需要之前而被预先放置。下面将较为详细地描述其它应用和特性。
在三维(3D)打印的环境中讨论本发明的设备及方法。3D打印可包括但不限于:诸如方法:熔融沉积成型、熔融长丝(filament)制作、自动注浆成型(robocasting)、电子束无模制作、直接金属激光烧结、电子束熔炼(melting)、选择性激光熔炼、选择性热烧结、选择性激光烧结、基于石膏的3D打印、叠层实体制造、光固化成型(stereolithography)及数字光处理。也可采用“减量”制造的过程。在该实施例中,同上所述,图像获取设备将发送期望的假体的图像到计算机。有修正或无修正的最终图像被发送到制作器。制作器使用减量方法来生产假体,其中假体可以由实心的可植入的材料来凿削。减量方法可包括车床加工假体,以激光、水或气刀切削工具切削,冲压,磨削或雕刻。
通过“手术中使用”,本发明意指假体和/或仪器在相同的手术程序内或者在与获取假体所基于的图像的位置相同的手术位置而打印或制作。目前可用的设备或方法可指示“快速原型”,但这典型地意指当获取特定部分的图像时,然后在可需要数周的过程中将其发出以便远程打印。使用术语“超速原型”及“手术中”,使本发明有别于这些过程。在本发明的方法中,可以在手术程序期间提供所需的假体。该发明最独特的方面之一是对于患者来说,患者的扫描和图像的处理,以及修复体或其它可植入的设备的打印都可以在单次麻醉下完成。
软件程序或算法可以被嵌入计算机上,并且可以使得所获取的图像将在监视器或其它显示器上示出。软件程序可以允许医生、技师,在无论有或没有来自患者自己的输入 时,将扫描的图像定制为所期望的设置或特性。最终图像(如适用,被定制的图像)然后被发送到打印机或制作器以便创建。如先前讨论的,打印机或制作器与计算机一同处于快运容器内。这大幅地降低生产在手术程序中使用的假体所需的时间量。
在一个实施例中,图像获取设备、计算机及打印机或制作器共同放置在三维打印机内。在另一个实施例中,计算机、打印机、灭菌设备及验证扫描仪可以共同放置在方舱内。无论哪种方式,本公开的设备及方法被定位以使超速原型为可能,从而消除或显著降低获得所需的假体或仪器的延时量。取决于医疗程序的特定类型,在获得最终图像之后打印机或制作器提供假体的时间周期可以变化。该时间周期的范围可以是从十分钟到二十四小时,或任何在其间的子范围。时间周期也可以是从三十分钟到十二小时,或任何在其间的子范围。
当本发明的三维打印机被用于手术应用中时,对患者的实际手术程序可以在方舱内发生。本发明也预期手术程序可以在方舱的外面发生,以使方舱用作所生产的假体或手术工具的制作室。方舱可以被用于打印期望的工具或假体,并且将其包装以便递送到其它设施或位置。如需要,包装可以以灭菌方式而完成。作为非限制性示例,本发明的三维打印机可以被部署在现有医院设施的地上。用户能打印期望的工具或假体,并且快运容器可以将其包装于灭菌包装中。用户然后可以将包装的部分运输到将实施手术程序的场所。
关于军事应用,士兵当前在战场上被稳定,并且撤离到第二场所(如,战后)以做进一步医疗护理。采用在该发明中所讨论的方法,更决定性的手术可发生在士兵由任务战区撤离之前,这可意味着挽救他们的生命、视力或四肢。使用本发明的数字X射线影像方舱和已存储的与手术仪器和假体相关的数据的数据库,本发明的设备及方法可以生产具有用完即弃型仪器的完整的手术室,其可以通过该发明的方法而被快速(<24小时)且价格低廉地构建。因此,对于医生和麻醉师,需要被提供来构建仪器的仅有的库存将是来自数据库的设计和用于打印的原材料。这些可被用于构建从植入物和解剖刀到柔性或加强的气管导管、气管切开插管或气道支架的任何物体。最后,在目前可用的方法下购买植入物或假体的成本可以是极高的。本发明的用于打印患者的特定植入物的设备及方法,将节省军队大笔资金,因为其将消除对可变成未灭菌的且引起外伤性感染的大库存的可植入修复体的需求。
其它适合用于本发明的方舱的应用可能是在受灾区域中。伴随着诸如飓风或地震的自然灾害,传统的或目前可用的电力系统及医疗服务可能被中断。在这种状况下,本发 明的数字X射线影像方舱可以被部署用于紧急现场医疗救助。本发明的数字X射线影像方舱也可以用于现有医疗设施中(如城市医院),该医疗设施的空间可能很宝贵并且具有附加灵活性,以执行可以是或可以不是设施的标准能力的部分的手术。在该发明的应用中数字X射线影像方舱的使用也可有利于在这些设施中腾出现有存储空间,其可以用于库存定制或非定制的植入物。
本发明的包括数据库的设备及方法,可以提供改变支持构建医院的方式的手段。这将提供所需的成本节约,并且将使现场的医师可使用所需的设备及修复体,以为患者提供更好的护理质量。
本发明的打印机或制作器也可以消除在目前可用的设备及方法中与可植入的假体的灭菌相关的时间。目前,当医生在打印延时之后接收可植入的假体时,存在与假体的灭菌相关的附加时间,其进一步增加程序的成本及对患者的风险。然而,采用本发明的设备及方法,该时间被显著降低或完全消除。本发明的设备及方法所提供的打印机或制作器可以提供以便立即使用的已灭菌的假体。在假体经由计算机引导的车床加工而生产的情况下,假体的加工将很可能仍然要求灭菌,但是车床加工过程可以比打印更迅速,所以灭菌所用的附加时间不应该过长。
适合于本发明的假体的材料可能不同。材料可以包括对于可植入设备核准的聚乳酸和丙烯腈·丁二烯·苯乙烯。预想的其它材料可包括橡胶、光固化聚合物、金属、陶瓷和可植入的浸入抗生素的实体。
除了适合于患者体内的植入假体以外,本发明的设备及方法可以为医生和患者提供手术计划模型及切削指南。例如,医生可以持有骨或颅骨的模型,并且制定何处将实施切口或骨切除的计划。医生也可以同样对患者或者患者的照料者或监护人说明。
如上所述,尽管本发明的方舱或其它适合的模块化容器可以被用于军事应用中的三维打印,但也可预想其它应用。本发明的方舱可被用于其中在各种位置处其移动性对于提供便利的医疗和/或实验室服务有用的任何应用。例如,在电力基础设施及进入装备可能被中断的自然灾害区域,该区域的医疗中心已受危害,或者其它在非必须处于战争的战区中的偏远区域。本发明的三维打印方面特别地有利,但本发明的方舱也可包含其它医疗装备、工具或被预制作或打印的假体。
附图说明
图1是本发明的X射线医学影像方舱透视成像模式示意图。
图2为本发明中的车载锥束CT成像系统。
图3示例性给出多影像画面处理。
图4为本发明实施例提供的三维打印过程。
具体实施方式
如图3所示,本实施方式的处理装置1与内窥镜2(镜体)、光源装置3、显示装置4、X射线装置5连接,该内窥镜2具有导入到被检体内,对被检体的体内进行拍摄而生成内窥镜图像信号的摄像部21,该光源装置3生成照明光L并经由光导线缆22而供给到内窥镜2的前端,该显示装置4由使用了液晶或有机EL(ElectroLuminescence:电致发光)的显示器等构成,该X射线装置5生成X射线图像信号,且该处理装置1对从内窥镜2输入的内窥镜图像信号实施规定的图像处理并且也对从X射线装置5输入的X射线图像信号实施规定的图像处理,并使与合成图像信号对应的图像显示于显示装置4,该合成图像信号是排列了图像处理后的内窥镜图像信号和X射线信号并合成而得到的。处理装置1使合成图像信号显示于显示装置4的显示画面上,该合成图像信号将显示有与X射线图像信号对应的图像的画面和显示有内窥镜图像信号的画面这两个画面作为主副画面而表示。处理装置1对内窥镜2、光源装置3以及显示装置4的动作进行控制。
处理装置1具有输入部11、控制部12、图像处理部13、显示控制部14、输出部15、以及存储部16。
输入部11使用鼠标、键盘和触摸面板等操作设备来实现,并接受各种指示信息的输入。具体而言,输入部11接受内窥镜2和X射线装置5进行检查的被检体的信息(例如ID、出生年月日、姓名等)、内窥镜2的识别信息(例如ID和检查对应项目)、X射线装置5的识别编号、以及检查内容等各种指示信息的输入。
控制部12使用CPU等来实现。控制部12控制处理装置1的各部的处理动作。控制部12通过进行针对处理装置1的各结构的指示信息或数据的传送等来控制处理装置1的动作。控制部12经由各线缆与摄像部21、光源装置3的各结构部位以及显示装置4连接,从而也对摄像部21、光源装置3以及表示装置4的动作进行控制。
图像处理部13根据控制部12的控制,对摄像部21所生成的内窥镜图像信号和从X射线装置5输入的X射线图像信号进行规定的信号处理。图像处理部13具有余白检测部13a、关注区域切出部13b(关注区域设定部和切出部)、放大缩小部13c、内窥镜图像处理部13d、以及合成部13e。X射线图像信号是具有操作人员所关注的显现被摄体的影像部分和设置于影像部分的周围的余白部分的图像信号。余白部分是亮度或颜色均匀的均匀区域。
余白检测部13a通过检测X射线图像信号的亮度或颜色的变化来检测出X射线图像信号中的余白部分。
关注区域切出部13b根据余白检测部13a所检测出的X射线图像信号中的余白部分,设定与X射线图像信号中的影像部分对应的初始关注区域,并且从X射线图像信号中切出该设定的初始关注区域。
放大缩小部13c对应于作为X射线图像信号的表示对象的表示装置5的X射线图像表示画面的大小,而生成放大或缩小关由注区域切出部13b从X射线图像信号中切出的初始关注区域而得到的图像信号,作为表示初始关注区域的关注区域图像信号。
内窥镜图像处理部13d对从内窥镜2输入的内窥镜图像信号,进行包含光学黑减法处理、增益调整处理、图像信号的同步化处理、伽马校正处理、白平衡(WB)调整处理、颜色矩阵运算处理、颜色再现处理以及边缘强调处理等在内的各种图像处理。
合成部13e生成并输出合成图像信号,该合成图像信号是排列了由放大缩小部13c所生成的关注区域图像信号和被内窥镜图像处理部13d实施了处理后的内窥镜图像信号并合成而得到的。
显示控制部14根据合成部13e输出的合成图像信号而生成用于显示于显示装置4的显示用图像信号,并在将生成的显示用图像信号从数字信号转换为模拟信号之后,将转换后的模拟信号的图像信号变更为高清晰方式等格式并输出给表示装置4。另外,也存在显示装置4具有显示控制部14的作用的一部分的情况。
输出部15使用扬声器或打印机等来实现,且该输出部15根据控制部12的控制而输出与内窥镜图像信号和X射线图像信号的显示处理有关的信息。
存储部16使用易失性存储器或非易失性存储器来实现,且该存储部16存储有用于使处理装置1、内窥镜2以及光源装置3动作的各种程序。存储部16暂时存储处理装置1的处理中的信息。存储部16也可以使用从处理装置1的外部安装的存储卡等构成。
参照图3,示出了根据本发明的三维打印过程(100)。首先,用户可以采用光学扫描设备(101)、医学成像设备(102)、触觉或触摸映像(103)或通过前述储存的仪器或解剖数据的数据库(104)而获取图像。然后图像由计算机(105)下载及处理。可选地,计算机可以向用户或医师显示图像以进一步操纵(106)。在该步骤之后,然后将图像发送到打印机以便打印(107)。验证扫描仪可选地可以验证最终打印的产品正确性(108)。同样可选地,最终打印的产品也可以采用灭菌设备来灭菌,如高压灭菌器(109)。
在下载步骤(105)和显示步骤(106)之间,还可以有可选步骤(105a)。由于图像获取技术中的缺陷,当身体部分或仪器被扫描时,在最终图像中可能存在缺失信息、缝隙或“孔洞”。如果该图像被发送到打印机或制作器,将是不完全且因而不适合的。在步骤(105a)期间,图像可以与针对可以在数据库中储存的假体或工具的标准数据相比较。所获取的图像中的任何缝隙可以被填充。
标号说明
1:处理装置;2:内窥镜;3:光源装置;4:显示装置;5:X射线装置;11:输入部;12:控制部;13:图像处理部;13a:余白检测部;13b:关注区域切出部;13c:放大缩小部;13d:内窥镜图像处理部;13e:合成部;14:显示控制部;15:输出部;16:存储部;21:摄像部。
本发明的X射线影像方舱也可以被用于其中移动性不是首要关注点的应用中。例如,现有医院设施可能需要快速打印工具或假体的能力,而其目前可能没有能力或者没有空间这样做。本发明的X射线影像方舱可以容易地被部署在现有医院设施的地面上,例如在停车场、停车库、屋顶或设施的地面的未使用区域中。无论是否需要该能力,无论是否存在现有设施,本发明的方舱均可以被部署。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (8)

  1. 一种多功能数字X射线影像方舱,其特征在于:包括
    车载锥束CT成像系统、车载锥束CT滑轨结构、车载X线影像信息处理系统、三维打印机和220V车载供电系统。
  2. 根据权利要求1所述的多功能数字X射线影像方舱,其特征在于:所述车载锥束CT成像系统采用基于平板探测器的锥束CT成像模式,利用顶部滑轨结构,将锥束CT成像系统吊于方舱顶部并使其根据需要在扫描床的不同位置进行成像。锥束CT成像系统以滑环为中心进行360°旋转曝光,通过锥束CT重建技术,对成像物体进行三维重构,获得成像物体三维内部结构信息,在显示设备上显示图像;向打印机发送图像;以及根据打印机上的图像来打印仪器或假体。
  3. 根据权利要求1所述的多功能数字X射线影像方舱,其特征在于:所述车载锥束CT成像系统包括机架,其垂直架设在CT扫描仪的移动装置上;笼型旋转部件,包括第一旋转配件、第二旋转配件以及连接所述第一旋转配件和所述第二旋转配件的棱边,第一旋转配件通过回转轴承转动设置在所述机架上,所述笼型旋转部件和机架为圆环状结构,圆环中心作为CT扫描仪的扫描孔;成像系统,其具有沿轴中心对称设置在所述第二旋转配件同侧壁上的X射线源组件和探测器组件,所述X射线源组件与所述探测器组件固定在第二旋转配件,所述探测器组件对应接收来自所述X射线源组件的出射线;以及倾斜设置在第一旋转配件上的涡轮组件,与其啮合的大齿轮固定设置在机架的异于所述第一旋转配件的一面,所述第一旋转配件、机架、大齿轮和第二旋转配件的轴线重合,涡轮组件靠电机带动所述笼型旋转部件绕大齿轮周向旋转,电缆通过所述笼型旋转部件连接电源与所述成像系统;其中,所述X射线源组件以锥形束作为出射光束,所述成像系统以动态容积扫描方式旋转一周以完成对目标物的扫描成像过程。
  4. 根据权利要求3所述的多功能数字X射线影像方舱,其特征在于:所述笼型旋转部件上安装有工控机A,位于所述探测器组件的下部,并配套有电源和指令处理器,所述探测器组件包括图像预处理装置,该图像预处理装置对第一图像信号进行处理,该第一图像信号具有显现被摄体的影像部分和设置于所述影像部分的周围的余白部分,其特征在于:余白检测部,其检测所述第一图像信号中的所述余白部分;关注区域设定部,其根据所述余白检测部所检测出的余白部分,设定与所述第一图像信号中的所述影像部分对应的初始关注区域;以及关注区域图像生成部,其生成关注区域图像信号,该关注区域图像信号表示所述关注区域设定部所设定的所述初始关注区域。
  5. 根据权利要求1所述的多功能数字X射线影像方舱,其特征在于:所述三维打印机包括图像获取设备、用于为3D打印机的输出灭菌的高压灭菌器或其它设备、以及验证打印产品的扫描仪。
  6. 根据权利要求5所述的多功能数字X射线影像方舱,其特征在于:三维打印过程或者对患者的实际手术程序在方舱内发生,或者对患者的预期手术程序在方舱的外面发生,以使方舱用作所生产的假体或手术工具的制作室,所述三维打印过程包括步骤:
    或者访问与多个手术仪器或假体相关的已存储的数据的数据库,或者扫描目标,以获取所述手术仪器或假体的图像;
    选择与所述多个手术仪器或假体中的一个相关的图像;
    在显示设备上显示所述图像;
    向打印机发送所述图像;以及
    根据在所述打印机上的所述图像来打印所述仪器或假体。
  7. 根据权利要求6所述的多功能数字X射线影像方舱,其特征在于:在手术程序内,在单次麻醉期间执行所述方法步骤。
  8. 根据权利要求6所述的多功能数字X射线影像方舱,三维打印包括但不限于:熔融沉积成型、熔融长丝制作、自动注浆成型、电子束无模制作、直接金属激光烧结、电子束熔炼、选择性激光熔炼、选择性热烧结、选择性激光烧结、基于石膏的3D打印、叠层实体制造、光固化成型及数字光处理。
PCT/CN2017/117807 2016-12-26 2017-12-21 多功能数字x射线影像方舱 WO2018121413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611271465.6A CN106859868B (zh) 2016-12-26 2016-12-26 多功能数字x射线影像方舱
CN201611271465.6 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018121413A1 true WO2018121413A1 (zh) 2018-07-05

Family

ID=59165306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117807 WO2018121413A1 (zh) 2016-12-26 2017-12-21 多功能数字x射线影像方舱

Country Status (2)

Country Link
CN (1) CN106859868B (zh)
WO (1) WO2018121413A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115957075A (zh) * 2022-12-27 2023-04-14 明峰医疗系统股份有限公司 一种基于ct-dr的多功能救护车

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106859868B (zh) * 2016-12-26 2019-01-15 中国科学院苏州生物医学工程技术研究所 多功能数字x射线影像方舱
CN106725572B (zh) * 2016-12-26 2020-09-11 中国科学院苏州生物医学工程技术研究所 低剂量数字x射线影像方舱
CN106901770A (zh) * 2017-03-13 2017-06-30 淄博润承知识产权代理有限公司 一种具有三维打印的车载ct
CN107669290A (zh) * 2017-11-10 2018-02-09 苏州瑞派宁科技有限公司 一种无线传输ct系统以及ct系统的无线传输方法
CN109124667B (zh) * 2018-07-23 2022-09-06 中国科学院苏州生物医学工程技术研究所 一种笼型ct扫描仪用调节装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203866A (zh) * 1997-06-04 1999-01-06 中国人民解放军第一四八医院 野战计算机x光断层摄影机车
JP2004089571A (ja) * 2002-09-03 2004-03-25 Tatsuo Kumazaki X線ct装置と治療対象者の搬送システム
CN101262819A (zh) * 2005-09-13 2008-09-10 皇家飞利浦电子股份有限公司 Ct散射的直接测量及校正
CN105232076A (zh) * 2015-09-28 2016-01-13 中国科学院苏州生物医学工程技术研究所 小型床旁ct扫描仪
CN105287064A (zh) * 2015-10-21 2016-02-03 青岛尤尼科技有限公司 一种假肢接受腔及其3d打印制备方法
CN106725572A (zh) * 2016-12-26 2017-05-31 中国科学院苏州生物医学工程技术研究所 低剂量数字x射线影像方舱
CN106859868A (zh) * 2016-12-26 2017-06-20 中国科学院苏州生物医学工程技术研究所 多功能数字x射线影像方舱

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070101A1 (en) * 2002-02-15 2003-08-28 Breakaway Imaging, Llc Gantry ring with detachable segment for multidimensional x-ray- imaging
WO2003103496A1 (en) * 2002-06-11 2003-12-18 Breakaway Imaging, Llc Cantilevered gantry apparatus for x-ray imaging
CN102697517A (zh) * 2012-06-25 2012-10-03 苏州生物医学工程技术研究所 移动ct扫描仪及操作方法
JP2015032060A (ja) * 2013-07-31 2015-02-16 富士フイルム株式会社 医療支援システム
CN105125232B (zh) * 2015-09-28 2019-01-15 中国科学院苏州生物医学工程技术研究所 具有dr拍片功能的ct扫描仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203866A (zh) * 1997-06-04 1999-01-06 中国人民解放军第一四八医院 野战计算机x光断层摄影机车
JP2004089571A (ja) * 2002-09-03 2004-03-25 Tatsuo Kumazaki X線ct装置と治療対象者の搬送システム
CN101262819A (zh) * 2005-09-13 2008-09-10 皇家飞利浦电子股份有限公司 Ct散射的直接测量及校正
CN105232076A (zh) * 2015-09-28 2016-01-13 中国科学院苏州生物医学工程技术研究所 小型床旁ct扫描仪
CN105287064A (zh) * 2015-10-21 2016-02-03 青岛尤尼科技有限公司 一种假肢接受腔及其3d打印制备方法
CN106725572A (zh) * 2016-12-26 2017-05-31 中国科学院苏州生物医学工程技术研究所 低剂量数字x射线影像方舱
CN106859868A (zh) * 2016-12-26 2017-06-20 中国科学院苏州生物医学工程技术研究所 多功能数字x射线影像方舱

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115957075A (zh) * 2022-12-27 2023-04-14 明峰医疗系统股份有限公司 一种基于ct-dr的多功能救护车
CN115957075B (zh) * 2022-12-27 2024-06-04 明峰医疗系统股份有限公司 一种基于ct-dr的多功能救护车

Also Published As

Publication number Publication date
CN106859868A (zh) 2017-06-20
CN106859868B (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
WO2018121413A1 (zh) 多功能数字x射线影像方舱
WO2018121411A1 (zh) 低剂量数字x射线影像方舱
Phan et al. Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis
US20150343708A1 (en) Medical 3d printing conex
Bagaria et al. Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures
US20140371897A1 (en) Co-located scanning, printing and/or machining devices for medical constructs
Li et al. Revision of complex acetabular defects using cages with the aid of rapid prototyping
CA2884665C (en) Method for producing patient-specific plate
US20150343709A1 (en) Database and marketplace for medical devices
Salgueiro et al. Experience with the use of prebent plates for the reconstruction of mandibular defects
EP3238664B1 (en) System for producing artificial osseous tissue
CN106901770A (zh) 一种具有三维打印的车载ct
KR20180125793A (ko) 인공 치아 시술용 영상 정합을 위한 서비스 장치 및 이를 위한 이미지 정합 방법
Juergens et al. Navigation-guided harvesting of autologous iliac crest graft for mandibular reconstruction
Kumar et al. Impact of three dimensional printing in orthopedics
Grützner et al. Computer-assisted LISS plate osteosynthesis of proximal tibia fractures: feasibility study and first clinical results
Elgalal et al. Custom implant design and surgical pre-planning using rapid prototyping and anatomical models for the repair of orbital floor fractures
Hafez et al. Highlighting the medical applications of 3D printing in Egypt
Łęgosz et al. The use of mixed reality in custom-made revision hip arthroplasty: a first case report
Sukegawa et al. Intraoperative navigation-assisted surgical orbital floor reconstruction in orbital fracture treatment: a case report
Zimmerer et al. Intraoperative Imaging and Postoperative Quality Control
Guiñales et al. Virtual Planning and Intraoperative Navigation in Craniomaxillofacial Surgery.
Kotela et al. Revision Hip Arthroplasty in Patient with Acetabulum Migration into Subperitoneal Space—A Case Report
Iwama et al. Use of Tomosynthesis at the Aizawa Hospital
Hegab The cutting edge in oral and maxillofacial surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887178

Country of ref document: EP

Kind code of ref document: A1