WO2018121175A1 - Method for constructing constitutive parameter of metamaterial for preparing waveform beam splitting module - Google Patents

Method for constructing constitutive parameter of metamaterial for preparing waveform beam splitting module Download PDF

Info

Publication number
WO2018121175A1
WO2018121175A1 PCT/CN2017/114047 CN2017114047W WO2018121175A1 WO 2018121175 A1 WO2018121175 A1 WO 2018121175A1 CN 2017114047 W CN2017114047 W CN 2017114047W WO 2018121175 A1 WO2018121175 A1 WO 2018121175A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
splitting module
beam splitting
preparing
formula
Prior art date
Application number
PCT/CN2017/114047
Other languages
French (fr)
Chinese (zh)
Inventor
张晨
邓力
李书芳
张贯京
葛新科
高伟明
张红治
Original Assignee
深圳市景程信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景程信息科技有限公司 filed Critical 深圳市景程信息科技有限公司
Publication of WO2018121175A1 publication Critical patent/WO2018121175A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J40/00Photoelectric discharge tubes not involving the ionisation of a gas

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module.
  • OAM orbital angular momentum
  • OAM communication is to use the order of the electromagnetic wave eigenmode of the OAM mode (value, as a new parameter dimension resource available for modulation or multiplexing, that is, using different direct representations of different coding states or different information channels, thereby A new way to further improve the spectral efficiency. Because of the infinite range of values, theoretically OAM communication has the potential to increase the amount of information carried by electromagnetic waves indefinitely.
  • the inventors propose a method capable of dividing an input signal wave source into an arbitrary input wave source, and the basis of the method is to prepare an input signal wave source according to specific needs.
  • the waveform splitting module is divided into arbitrary input waves.
  • the metamaterial is especially suitable for the preparation of the waveform splitting module because of its own characteristics. In order to implement the above method, the acquisition of the constitutive parameters of the metamaterial is crucial.
  • the present invention provides a method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module, the waveform beam splitting module for dividing an input wave source into an arbitrary path beam;
  • the method for constructing the constitutive parameters of the metamaterial used to prepare the waveform beam splitting module comprises the following steps:
  • the coordinate point between the virtual space OA'B' (x, y, z) and the coordinate point of the physical space ⁇ ( ⁇ ', y', ⁇ ') Transforming the relationship, using the Jacobian matrix ⁇ to obtain the transformation relationship coefficient;
  • the first formula is a functional relationship between coordinate points in the virtual space OA'B' (x, y, z) and coordinate points in the physical space OAB ( ⁇ ', y', ⁇ ');
  • the second formula is a formula for calculating the relative dielectric constant and relative magnetic permeability of the metamaterial.
  • the x. , y. They are the X-axis and y-axis coordinates of coordinate point 0 in physical space; x A and x B are the X-axis coordinates of coordinate points A and B in physical space, respectively; y A , y B
  • is the transformed value of the relative permittivity of the i-th row and j-th column
  • is the transformed value of the relative magnetic permeability of the i-th row and j-column
  • the value of the dielectric constant is the value of the permeability of the metamaterial of the i-th row and the j-th column in free space
  • T is the transposition operation of the Jacobian matrix A, and the original row in the Jacobian matrix A becomes Column arrangement
  • i is the row number of the Jacobian matrix A
  • j is the column number of the Jacobian matrix A.
  • ⁇ ′ is a relative magnetic permeability value of the simplified metamaterial for preparing the waveform sub-module
  • ⁇ ′ is a relative dielectric constant value of the super metamaterial used for preparing the waveform splitting module
  • the virtual space OA'B' (x, y, z) is a sectoral area with a specific central angle
  • the physical space is an OAB (x', y ', ⁇ ') isosceles triangle with a apex angle of ⁇
  • the area, r is the radius of the virtual space OA'B' ( ⁇ , ⁇ , ⁇ );
  • L is the distance from the coordinate point 0 to the line segment ⁇ .
  • the constitutive parameters of the metamaterial used to prepare the waveform beam splitting module can be constructed by the method of the present invention, based on which the metamaterial used to prepare the waveform beam splitting module can be determined And the beam splitting module prepared based on the metamaterial can divide an input signal wave source into an arbitrary input wave source, so that the ⁇ beam of any way can be obtained at the same time, thereby deploying more diverse antennas in a certain space. Improve the reliability of communication systems.
  • FIG. 1 is a flow chart of a preferred embodiment of a method of constructing constitutive parameters of a metamaterial for preparing a waveform beam splitting module of the present invention.
  • FIG. 2 is a waveform splitting module prepared based on the constitutive parameters obtained by the present invention, dividing a ⁇ beam into two
  • FIG. 4 is a diagram showing simulation results of electric field Ez and power density by dividing an OAM beam into upper and lower beams and transforming the cross section of the cylinder in a preferred embodiment of the present invention.
  • a method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module the waveform beam splitting module for dividing an input wave source into an arbitrary path beam;
  • Figure 1 there is shown a flow chart of a preferred embodiment of a method of constructing a constitutive parameter of a metamaterial for use in preparing a waveform beam splitting module.
  • the method for constructing the constitutive parameter of the metamaterial for preparing the waveform beam splitting module comprises the following steps:
  • the SO is combined with the coordinate point of the virtual space OA'B ' (x, y, z) and the coordinate point of the physical space OAB ( ⁇ ', y', ⁇ ')
  • the transformation relationship using the Jacobian matrix A to obtain the transformation relationship coefficient
  • the virtual space OA'B' (x, y, z) coincides with the origin O of the physical space OAB (x ', y', ⁇ ' ), and the virtual space OA
  • the following transformation relationship exists between the coordinate points of 'B' (x, y, z) and the coordinate points of the physical space OAB ( ⁇ ', y', ⁇ '):
  • the Jacobian matrix A of the transformation relationship coefficients a, b, and c is:
  • the x. , y. They are the x-axis and y-axis coordinates of the coordinate point O in the physical space; x A and x B are the X-axis coordinates of the coordinate points A and B in the physical space, respectively; y A , y B
  • the first formula is a functional relationship between coordinate points of the virtual space OA'B' (x, y, z) and coordinate points of the physical space OAB ( ⁇ ', y', ⁇ ').
  • the second formula is a formula for calculating the relative dielectric constant and relative magnetic permeability of the metamaterial.
  • the first formula is:
  • x', y', z' is totally different for x, y, z, and the specific algorithm is that x' is partial to x, y, and z, respectively. Then y' is partial to ⁇ , y, and z, and finally z' is partial to ⁇ , y, and z.
  • ⁇ ' is the transformed value of the relative dielectric constant of the i-th row and the j-th column, and ⁇ ' the i-th row and the j-th column are the transformed values of the relative magnetic permeability; ⁇ is the i-th in the physical space.
  • the value of the dielectric constant of the metamaterial of row j, ⁇ is the value of the permeability of the metamaterial of the i-th row and the j-th column in the physical space, and T is the transposition operation of the Jacobian matrix A, in the Jacobian matrix A
  • the original rows are arranged in columns, i is the row number of the Jacobian matrix A, and j is the column number of the Jacobian matrix A.
  • the result of the formula (IV) is substituted into the second formula (V), and the obtained result can be expressed by the formula (VI).
  • the virtual space OA'B' (x, y, z) is a sector-shaped area with a specific central angle, and the physical space is an OAB ( ⁇ ', ⁇ ' of the vertex angle. ⁇ ' ) Isosceles triangle area.
  • r is the radius of the virtual space OA'B' (x, y, z);
  • L is the distance from the coordinate point 0 to the line segment AB.
  • ⁇ ' is the relative permeability value of the simplified metamaterial used to prepare the waveform beam splitting module
  • ⁇ ' is the relative dielectric constant value of the simplified metamaterial used to prepare the waveform beam splitting module
  • step S03 The constitutive parameters of the metamaterial used to prepare the waveform beam splitting module can be further simplified by step S03, which is advantageous for determining the metamaterial according to the simplified constitutive parameter.
  • the metamaterial for preparing the waveform beam splitting module can be determined, and the waveform splitting module prepared based on the metamaterial can Divide an input signal source into an arbitrary input source (as shown in Figure 2).
  • the embodiment further includes the following steps:
  • the scaling factor is n
  • step S05 Determine a first functional relationship between the plane wavefront and the target vortex wavefront by using a method of transforming optics based on a scaling factor.
  • step S05 is specifically:
  • the obtained result is the first functional relationship between the planar wavefront and the target vortex wavefront
  • is the azimuth in the yoz plane of the transformed cylinder in the virtual space (ie, the space before the transformation), 0 ⁇ ⁇ ⁇ 2 ⁇ ; the initial coordinate is the coordinate position at which the input source beam of the transformed cylinder is initially transformed.
  • the value of ⁇ ' in the physical space is a function of the virtual space coordinates (x, y, z); the value of y' in the physical space; and the z' in the physical space. value.
  • the first functional relationship is a transformation of coordinates (x, y, z) in the original space (virtual space) into coordinates (x', y', ⁇ ') in the new space (physical space)
  • the relationship, as shown in the formula, is that the above changes are mainly to transform the X coordinate in the original space, and y and ⁇ remain unchanged.
  • the result is a virtual space OA'B' (x, y, z determined according to the topological charge of the vortex beam with a specific topological charge)
  • the transformation relationship between the coordinate points in the physical space OAB ( ⁇ ', y', ⁇ ') can be expressed by the formula (X).
  • ⁇ ' is the azimuth angle in the yoz plane of the transformed cylinder in the physical space (ie, the transformed space), 0 ⁇ ⁇ ⁇ 2 ⁇ ; is a transform cylinder in physical space The radius of the yoz plane upconverting cylinder.
  • the virtual space OA'B' (x, y, z) coincides with the origin O of the physical space OAB (x ', y', ⁇ ' ).
  • the result of the formula (X) is substituted into the second formula (the result of V can be expressed by the formula XI).
  • the person can use the corresponding metamaterial to achieve the constitutive parameters of the above-described calculated metamaterial for preparing the transforming cylinder.
  • the wave velocity obtained by the transformation of the plane beam by the transformed cylinder should be a typical Laguerre Gaussian wave velocity, that is, its power density is a ring shape.
  • Figure 3 is the inventor of the multi-physics coupled analysis software (CMSOL), according to the above conditions, simulated transformation of the cylindrical exit surface Power density simulation diagram. 3 illustrates an OAM beam in which a transform cylinder prepared by constructing a metamaterial constitutive parameter for transforming a cylinder according to the above method can efficiently transform a planar beam into a corresponding topological charge.
  • CMSOL multi-physics coupled analysis software
  • the metamaterial for preparing the waveform beam splitting module and the metamaterial for preparing the transforming cylinder can be determined, and the waveform splitting module prepared based on the metamaterial can An input signal source is divided into arbitrary input wave sources, and the arbitrary input wave sources generate OAM beams through respective corresponding transform cylinders. Therefore, an OAM beam of an arbitrary path can be generated from one input source (planar beam) and the same, and more diversity antennas can be deployed in a certain space to improve the reliability of the communication system.
  • the inventors based on the method of the above embodiment, and assuming that the waveform splitting module can divide an input wave source into two upper and lower beams, Multiphysics Integration Analysis Software (CMSOL) simulation simulates an OAM beam into two upper and lower beams and transforms the cylinder. The result is shown in Figure 4.
  • CMSOL Multiphysics Integration Analysis Software
  • FIG. 4 shows a two-dimensional planar electric field diagram of a two-way OAM generator.
  • the function is to divide a beam with a plane wavefront into upper and lower two paths, and then input it to a transforming cylinder, and finally obtain two OAM beams.
  • the middle position is the input source, and there are two rectangles on the top and bottom, which indicate the cross section of the transform cylinder.
  • the width of the rectangle is twice the radius of the transform cylinder 2r, and the height of the rectangle is the thickness a of the transform cylinder.
  • the left side is set to 0, and the right side is set to ⁇ /2.
  • Figure 4 shows two parts.
  • the output beam has a distinct difference, indicating that the transform cylinder acts as a phase control, verifying the correctness of the method of the present invention.
  • the input signal wave source is divided into an arbitrary input wave source, and the OAM beam generator of the OAM beam with different topological charge is obtained in the same way, that is, a plane beam is split into the beam generator of the OAM beam of any way, and More diversity antennas are deployed in the determined space to improve the reliability of the communication system.
  • the constitutive parameters of the metamaterial used to prepare the waveform beam splitting module can be constructed by the method of the present invention, based on which the metamaterial used to prepare the waveform beam splitting module can be determined And the beam splitting module prepared based on the metamaterial can divide an input signal wave source into an arbitrary input wave source, so that an OAM beam of an arbitrary path can be obtained at the same time, thereby deploying more diverse antennas in a certain space. Improve the reliability of communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Provided in the present invention is a method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module. The waveform beam splitting module is used for dividing an input wave source into any number of paths of wave beams. The method comprises the following steps: according to a beam splitting requirement of a waveform beam splitting module, in conjunction with a transformation relationship between coordinate points in a virtual space OA'B' (x, y, z) and coordinate points in a physical space OAB (x', y', z'), using a Jacobian matrix A to obtain a transformation relationship coefficient; and substituting the transformation relationship coefficient into a first formula, and substituting an obtained result into a second formula to obtain a constitutive parameter of a metamaterial for preparing the waveform beam splitting module. Based on the constitutive parameter of a metamaterial for preparing a waveform beam splitting module, the metamaterial for preparing the waveform beam splitting module can be determined, and the beam splitting module prepared based on the metamaterial can divide an input signal wave source into any number of paths of input wave sources.

Description

用于制备波形分束模块的超材料的本构参数的构建方法  Method for constructing constitutive parameters of metamaterial for preparing waveform beam splitting module
技术领域 Technical field
[0001] 本发明涉及无线通信技术领域, 尤其涉及一种用于制备波形分束模块的超材料 的本构参数的构建方法。  [0001] The present invention relates to the field of wireless communication technologies, and in particular, to a method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module.
背景技术  Background technique
[0002] 现有技术中, 人们经常采用多个不同的天线同吋传送一种信息, 这样可以减小 信道衰落的影响, 进一步提高通讯系统的可靠性。 电磁波不仅具有能量, 而且 还可具有轨道角动量 (OAM) , OAM是电磁波的基本物理特性, 反映电磁波围 绕传播方向轴的方位角方向的相位变化参数。 对于任意频率的电磁波, 全部 OA M波束构成一组相互正交的、 数目无限多的本征模式。 OAM通信就是利用 OAM 模式这一组电磁波本征模式的阶数 (取值 , 作为新的可供调制或复用的参数 维度资源, 即利用不同直代表不同编码状态或不同信息通道, 从而幵辟进一步 提高频谱效率的新途径。 由于 ^直具有无限取值范围, 理论上 OAM通信具有可无 限增加电磁波承载信息量的潜力。  [0002] In the prior art, a plurality of different antennas are often used to transmit one type of information, which can reduce the influence of channel fading and further improve the reliability of the communication system. The electromagnetic wave not only has energy, but also has orbital angular momentum (OAM). OAM is the basic physical characteristic of electromagnetic waves, and reflects the phase change parameter of the azimuth direction of the electromagnetic wave around the propagation direction axis. For electromagnetic waves of any frequency, all OA M beams form a set of mutually orthogonal, infinite number of eigenmodes. OAM communication is to use the order of the electromagnetic wave eigenmode of the OAM mode (value, as a new parameter dimension resource available for modulation or multiplexing, that is, using different direct representations of different coding states or different information channels, thereby A new way to further improve the spectral efficiency. Because of the infinite range of values, theoretically OAM communication has the potential to increase the amount of information carried by electromagnetic waves indefinitely.
[0003] 现有技术中, 为了产生多路 OAM波束, 往往是在每一路上都设置一个输入信 号源, 这就使得在确定的空间内, 如何部署更多的分集天线, 成为提高通通信 系统可靠性的障碍。  [0003] In the prior art, in order to generate a multi-channel OAM beam, an input signal source is often disposed on each path, which makes it possible to deploy more diversity antennas in a certain space to become an improved communication system. Barriers to reliability.
[0004] 为了解决现有技术中的技术问题, 本发明人提出一种能够将一个输入信号波源 分成任意路输入波源的方法, 本方法的基础在于根据具体需要制备出用于将一 个输入信号波源分成任意路输入波源的波形分束模块, 超材料因为其自身的特 性尤其适用于制备波形分束模块, 而为了具体实现上述方法, 超材料的本构参 数的获得就显得至关重要了。  [0004] In order to solve the technical problems in the prior art, the inventors propose a method capable of dividing an input signal wave source into an arbitrary input wave source, and the basis of the method is to prepare an input signal wave source according to specific needs. The waveform splitting module is divided into arbitrary input waves. The metamaterial is especially suitable for the preparation of the waveform splitting module because of its own characteristics. In order to implement the above method, the acquisition of the constitutive parameters of the metamaterial is crucial.
[0005] 因此, 需要一种用于制备波形分束模块的超材料的本构参数的构建方法。  [0005] Therefore, there is a need for a method of constructing constitutive parameters of a metamaterial for preparing a waveform beam splitting module.
技术问题  technical problem
[0006] 本发明的目的在于提供了一种用于制备波形分束模块的超材料的本构参数的构 建方法, 旨在解决如何构建用于制备波形分束模块的超材料的本构参数的技术 问题。 [0006] It is an object of the present invention to provide a method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module, which aims to solve how to construct a constitutive parameter of a metamaterial for preparing a waveform beam splitting module. Technology Question.
问题的解决方案  Problem solution
技术解决方案  Technical solution
[0007] 为实现上述目的, 本发明提供了一种用于制备波形分束模块的超材料的本构参 数的构建方法, 所述波形分束模块用于将一个输入波源分成任意路波束; 所述 用于制备波形分束模块的超材料的本构参数的构建方法包括以下步骤:  [0007] In order to achieve the above object, the present invention provides a method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module, the waveform beam splitting module for dividing an input wave source into an arbitrary path beam; The method for constructing the constitutive parameters of the metamaterial used to prepare the waveform beam splitting module comprises the following steps:
[0008] 根据波形分束模块的分束需求, 结合虚拟空间 OA'B' (x, y, z) 的坐标点与物 理空间 ΟΑΒ (χ' , y', ζ' ) 的坐标点之间的变换关系, 利用雅克比矩阵 Α获得变 换关系系数;  [0008] According to the splitting requirement of the waveform splitting module, the coordinate point between the virtual space OA'B' (x, y, z) and the coordinate point of the physical space χ (χ', y', ζ') Transforming the relationship, using the Jacobian matrix Α to obtain the transformation relationship coefficient;
[0009] 将所述变换关系系数代入第一公式中, 并将所得结果代入第二公式中, 获得用 于制备波形分束模块的超材料的本构参数;  [0009] substituting the transformation relationship coefficient into the first formula, and substituting the obtained result into the second formula to obtain a constitutive parameter of the metamaterial used to prepare the waveform beam splitting module;
[0010] 所述第一公式为虚拟空间 OA'B' (x, y, z) 中的坐标点与物理空间 OAB (χ', y', ζ' ) 中的坐标点之间的函数关系;  [0010] The first formula is a functional relationship between coordinate points in the virtual space OA'B' (x, y, z) and coordinate points in the physical space OAB (χ', y', ζ');
[0011] 所述第二公式为超材料的相对介电常数和相对磁导率的计算公式。  [0011] The second formula is a formula for calculating the relative dielectric constant and relative magnetic permeability of the metamaterial.
[0012] 其中, 所述虚拟空间 OA'B' (x , y, z) 的坐标点与物理空间 OAB (χ', y', z' ) 的坐标点之间的变换关系为: [0012] wherein, the transformation relationship between the coordinate point of the virtual space OA'B' (x, y, z) and the coordinate point of the physical space OAB (χ', y', z') is:
Figure imgf000004_0001
Figure imgf000004_0001
[0014] 其中 a、 b、 c、 d、 e和 f为所述变换关系系数。 Where a, b, c, d, e, and f are the transformation relationship coefficients.
[0015] 其中 所述变换关系系数 a、 b和 c的雅克比矩阵 A为:  [0015] wherein the Jacobian matrix A of the transformation relationship coefficients a, b, and c is:
Figure imgf000004_0002
[0017] 所述变换关系系数 d、 e和 f的雅克比矩阵 A为:
Figure imgf000004_0002
[0017] The Jacobian matrix A of the transformation relationship coefficients d, e, and f is:
[0018] [0018]
Figure imgf000005_0001
Figure imgf000005_0001
[0019] 其中, 所述 x。, y。分别为物理空间中坐标点 0的 X轴, y轴坐标; x A, x B分别 为物理空间中坐标点 A和 B的 X轴坐标; y A, y B [0019] wherein, the x. , y. They are the X-axis and y-axis coordinates of coordinate point 0 in physical space; x A and x B are the X-axis coordinates of coordinate points A and B in physical space, respectively; y A , y B
分别为物理空间中坐标点 A和 B的 y轴坐标; x A., x B.分别为虚拟空间中坐标点 A 和 B的 X轴坐标; y A., y B.分别为虚拟空间中坐标点 A和 B的 y轴坐标。 They are the y-axis coordinates of the coordinate points A and B in the physical space; x A ., x B . are the X-axis coordinates of the coordinate points A and B in the virtual space respectively; y A ., y B . are the coordinates in the virtual space respectively. The y-axis coordinates of points A and B.
[0020] 其中, 所述第一公式为:  [0020] wherein the first formula is:
[0021]
Figure imgf000005_0002
[0021]
Figure imgf000005_0002
[0022] 其中, 所述第二公式为: [0022] wherein the second formula is:
[0023]
Figure imgf000005_0003
其中, ε 为第 i行 j列的相对介电常数的变换后的值, μ 为第 i行 j列的相对磁导 率的变换后的值; 为物理空间中第 i行 j列的超材料的介电常数的值, 为自由 空间中第 i行 j列的超材料的磁导率的值, T为对雅克比矩阵 A进行转置运算, 雅克 比矩阵 A中原来的行都变成按列排列, i为雅克比矩阵 A的行序号, j为雅克比矩 阵 A的列序号。 [0025] 其中, 所述用于制备波形分束模块的超材料的本构参数的构建方法还包括以下 步骤:
[0023]
Figure imgf000005_0003
Where ε is the transformed value of the relative permittivity of the i-th row and j-th column, μ is the transformed value of the relative magnetic permeability of the i-th row and j-column; is the meta-material of the i-th row and the j-th column in the physical space The value of the dielectric constant is the value of the permeability of the metamaterial of the i-th row and the j-th column in free space, T is the transposition operation of the Jacobian matrix A, and the original row in the Jacobian matrix A becomes Column arrangement, i is the row number of the Jacobian matrix A, and j is the column number of the Jacobian matrix A. [0025] wherein, the method for constructing the constitutive parameter of the metamaterial for preparing the waveform beam splitting module further comprises the following steps:
[0026] 基于所述用于制备波形分束模块的超材料的本构参数, 利用第三公式获得简化 后的用于制备波形分束模块的超材料的本构参数; 所述第三公式为:  [0026] based on the constitutive parameter of the metamaterial for preparing the waveform beam splitting module, using the third formula to obtain a simplified constitutive parameter of the metamaterial for preparing the waveform beam splitting module; :
Figure imgf000006_0001
Figure imgf000006_0001
[0028] 其中, μ'为简化后的用于制备波形分 模块的超材料的相对磁导率值, ε'为简 化后的用于制备波形分束模块的超材料的相对介电常数值, 所述虚拟空间 OA'B' (x,y,z) 为带有特定圆心角 Θ的扇形区域, 所述物理空间为顶角为 Θ的 OAB (x',y ' ,ζ' ) 等腰三角形区域, r是虚拟空间 OA'B' (χ,γ,ζ) 的半径; L为坐标点 0到线段 ΑΒ的距离。 Wherein μ′ is a relative magnetic permeability value of the simplified metamaterial for preparing the waveform sub-module, and ε′ is a relative dielectric constant value of the super metamaterial used for preparing the waveform splitting module, The virtual space OA'B' (x, y, z) is a sectoral area with a specific central angle ,, the physical space is an OAB (x', y ', ζ') isosceles triangle with a apex angle of Θ The area, r is the radius of the virtual space OA'B' (χ, γ, ζ); L is the distance from the coordinate point 0 to the line segment ΑΒ.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0029] 根据具体的分束需求, 可通过本发明的方法构建用于制备波形分束模块的超材 料的本构参数, 基于该本构参数, 能够确定用于制备波形分束模块的超材料, 并使得基于该超材料制备出的分束模块能够将一个输入信号波源分成任意路输 入波源, 从而能够同吋获得任意路的 ΟΑΜ波束, 进而能在确定的空间内部署更 多的多样性天线, 提高通通信系统可靠性。  [0029] Depending on the specific beam splitting requirements, the constitutive parameters of the metamaterial used to prepare the waveform beam splitting module can be constructed by the method of the present invention, based on which the metamaterial used to prepare the waveform beam splitting module can be determined And the beam splitting module prepared based on the metamaterial can divide an input signal wave source into an arbitrary input wave source, so that the ΟΑΜ beam of any way can be obtained at the same time, thereby deploying more diverse antennas in a certain space. Improve the reliability of communication systems.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0030] 图 1是本发明用于制备波形分束模块的超材料的本构参数的构建方法优选实施 例的流程图。  1 is a flow chart of a preferred embodiment of a method of constructing constitutive parameters of a metamaterial for preparing a waveform beam splitting module of the present invention.
[0031] 图 2是基于本发明获得的本构参数而制备的波形分束模块将一路 ΟΑΜ波束分成 2 is a waveform splitting module prepared based on the constitutive parameters obtained by the present invention, dividing a ΟΑΜ beam into two
Ν路波束的示意图。 Schematic diagram of the beam of the road.
[0032] 图 3是本发明的优选实施例中, 当拓扑电荷 L=1吋, 在 CMSOL中仿真出的变换 圆柱出射面上的功率密度仿真图。 3 is a simulation simulated in CMSOL when the topological charge L=1吋 in a preferred embodiment of the present invention. A power density simulation of the exit surface of the cylinder.
[0033] 图 4是本发明的优选实施例中, 将一个 OAM波束分成上下两路波束并通过变换 圆柱横截面的电场 Ez和功率密度仿真结果图。  4 is a diagram showing simulation results of electric field Ez and power density by dividing an OAM beam into upper and lower beams and transforming the cross section of the cylinder in a preferred embodiment of the present invention.
实施该发明的最佳实施例  BEST MODE FOR CARRYING OUT THE INVENTION
本发明的最佳实施方式  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] 下面结合具体实施例对本发明做进一步的详细说明, 以下实施例是对本发明的 解释, 本发明并不局限于以下实施例。 The present invention will be further described in detail with reference to the preferred embodiments thereof. The following examples are illustrative of the invention, and the invention is not limited to the following examples.
[0035] 在本发明的一个优选实施例中, 一种用于制备波形分束模块的超材料的本构参 数的构建方法, 所述波形分束模块用于将一个输入波源分成任意路波束; 参考 图 1所示, 是本发明用于制备波形分束模块的超材料的本构参数的构建方法优选 实施例的流程图。 在本实施例中, 所述用于制备波形分束模块的超材料的本构 参数的构建方法包括以下步骤: [0035] In a preferred embodiment of the present invention, a method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module, the waveform beam splitting module for dividing an input wave source into an arbitrary path beam; Referring to Figure 1, there is shown a flow chart of a preferred embodiment of a method of constructing a constitutive parameter of a metamaterial for use in preparing a waveform beam splitting module. In this embodiment, the method for constructing the constitutive parameter of the metamaterial for preparing the waveform beam splitting module comprises the following steps:
[0036] SO 根据波形分束模块的分束需求, 结合虚拟空间 OA'B ' (x, y, z) 的坐标 点与物理空间 OAB (χ' , y', ζ' ) 的坐标点之间的变换关系, 利用雅克比矩阵 A 获得变换关系系数; [0036] According to the splitting requirement of the waveform splitting module, the SO is combined with the coordinate point of the virtual space OA'B ' (x, y, z) and the coordinate point of the physical space OAB (χ', y', ζ') The transformation relationship, using the Jacobian matrix A to obtain the transformation relationship coefficient;
[0037] 需要说明的是, 本发明中, 令虚拟空间 OA'B' (x, y, z) 与物理空间 OAB (x ', y', ζ' ) 的原点 O重合, 此吋虚拟空间 OA'B' (x , y, z) 的坐标点与物理空间 OAB (χ' , y', ζ' ) 的坐标点之间存在以下变换关系:  [0037] It should be noted that, in the present invention, the virtual space OA'B' (x, y, z) coincides with the origin O of the physical space OAB (x ', y', ζ ' ), and the virtual space OA The following transformation relationship exists between the coordinate points of 'B' (x, y, z) and the coordinate points of the physical space OAB (χ', y', ζ'):
[0038]  [0038]
:·]》??= +,: :·]》 ? ? = +,:
(I) ; (I);
[0039] 其中, a、 b、 c、 d、 e和 f为所述变换关系系数。  Wherein a, b, c, d, e, and f are the transformation relationship coefficients.
[0040] 所述变换关系系数 a、 b和 c的雅克比矩阵 A为: [0040] The Jacobian matrix A of the transformation relationship coefficients a, b, and c is:
[0041] ' Ί
Figure imgf000008_0001
[0041] ' Ί
Figure imgf000008_0001
[0042] 所述变换关系系数 d、 e和 f的雅克比矩阵 A为:  [0042] The Jacobian matrix A of the transformation relationship coefficients d, e, and f is:
[0043] [0043]
Figure imgf000008_0002
Figure imgf000008_0002
m  m
[0044] 其中, 所述 x。, y。分别为物理空间中坐标点 O的 x轴, y轴坐标; x A, x B分别 为物理空间中坐标点 A和 B的 X轴坐标; y A, y B [0044] wherein, the x. , y. They are the x-axis and y-axis coordinates of the coordinate point O in the physical space; x A and x B are the X-axis coordinates of the coordinate points A and B in the physical space, respectively; y A , y B
分别为物理空间中坐标点 A和 B的 y轴坐标; x A., x B.分别为虚拟空间中坐标点 A 和 B的 X轴坐标; y A., y B.分别为虚拟空间中坐标点 A和 B的 y轴坐标。 They are the y-axis coordinates of the coordinate points A and B in the physical space; x A ., x B . are the X-axis coordinates of the coordinate points A and B in the virtual space respectively; y A ., y B . are the coordinates in the virtual space respectively. The y-axis coordinates of points A and B.
[0045] S02、 将所述变换关系系数代入第一公式中, 并将所得结果代入第二公式中, 获得用于制备波形分束模块的超材料的本构参数。  [0045] S02. Substituting the transformation relationship coefficient into the first formula, and substituting the obtained result into the second formula, obtaining a constitutive parameter of the metamaterial used to prepare the waveform beam splitting module.
[0046] 所述第一公式为虚拟空间 OA'B' (x, y, z) 的坐标点与物理空间 OAB (χ', y' , ζ') 的坐标点之间的函数关系。  [0046] The first formula is a functional relationship between coordinate points of the virtual space OA'B' (x, y, z) and coordinate points of the physical space OAB (χ', y', ζ').
[0047] 所述第二公式为超材料的相对介电常数和相对磁导率的计算公式。  [0047] The second formula is a formula for calculating the relative dielectric constant and relative magnetic permeability of the metamaterial.
[0048] 在本实施例中, 所述第一公式为: [0048] In this embodiment, the first formula is:
[0049]
Figure imgf000008_0003
[0049]
Figure imgf000008_0003
IV  IV
[0050] 即 x'、 y'、 z'整体对 x、 y、 z的全微分, 具体的算法是 x'分别对 x、 y、 z求偏导, 然后是 y'对 χ、 y、 z分别求偏导, 最后是 z'分别对 χ、 y、 z求偏导。 [0050] That is, x', y', z' is totally different for x, y, z, and the specific algorithm is that x' is partial to x, y, and z, respectively. Then y' is partial to χ, y, and z, and finally z' is partial to χ, y, and z.
[0051] 将所述第一函数关系代入第一公式 (IV) 中, 所得结果即为根据所需获得的涡 旋波束的拓扑电荷而确定的虚拟空间 OA'B' (x, y, z) 中的坐标点与物理空间 O [0051] Substituting the first functional relationship into the first formula (IV), the result is a virtual space OA'B' (x, y, z) determined according to the topological charge of the vortex beam required to be obtained. Coordinate points and physical space in O
AB (χ' , y', ζ' ) 中的坐标点之间的变换关系。 The transformation relationship between coordinate points in AB (χ' , y', ζ' ).
[0052] 所述第二公式为:  [0052] The second formula is:
[0053] [0053]
ΑΑ I  ΑΑ I
肩 4)  Shoulder 4)
v  v
[0054] 其中, ε' 为第 i行 j列的相对介电常数的变换后的值, μ' 第 i行 j列的为相对磁导 率的变换后的值; ε 为物理空间中第 i行 j列的超材料的介电常数的值, μ 为物理 空间中第 i行 j列的超材料的磁导率的值, T为对雅克比矩阵 A进行转置运算, 雅克 比矩阵 A中原来的行都变成按列排列, i为雅克比矩阵 A的行序号, j为雅克比矩 阵 A的列序号。  Where ε' is the transformed value of the relative dielectric constant of the i-th row and the j-th column, and μ' the i-th row and the j-th column are the transformed values of the relative magnetic permeability; ε is the i-th in the physical space. The value of the dielectric constant of the metamaterial of row j, μ is the value of the permeability of the metamaterial of the i-th row and the j-th column in the physical space, and T is the transposition operation of the Jacobian matrix A, in the Jacobian matrix A The original rows are arranged in columns, i is the row number of the Jacobian matrix A, and j is the column number of the Jacobian matrix A.
[0055] 在本实施例中, 将公式 (IV) 结果代入第二公式 (V) , 所得结果可用公式 ( VI) 表示。  In the present embodiment, the result of the formula (IV) is substituted into the second formula (V), and the obtained result can be expressed by the formula (VI).
Figure imgf000009_0001
Figure imgf000009_0001
VI  VI
[0057] 需要说明的是, 所述虚拟空间 OA'B' (x,y,z) 为带有特定圆心角的扇形区域, 所述物理空间为顶角为的 OAB (χ',γ' ,ζ' ) 等腰三角形区域。 r是虚拟空间 OA'B' (x,y,z) 的半径; L为坐标点 0到线段 AB的距离。  [0057] It should be noted that the virtual space OA'B' (x, y, z) is a sector-shaped area with a specific central angle, and the physical space is an OAB (χ', γ' of the vertex angle. ζ' ) Isosceles triangle area. r is the radius of the virtual space OA'B' (x, y, z); L is the distance from the coordinate point 0 to the line segment AB.
[0058] S03、 基于所述用于制备波形分束模块的超材料的本构参数, 利用第三公式获 得简化后的用于制备波形分束模块的超材料的本构参数; 所述第三公式为:
Figure imgf000010_0001
[0058] S03. Obtain a simplified constitutive parameter of the metamaterial for preparing the waveform beam splitting module by using a third formula based on the constitutive parameter of the metamaterial for preparing the waveform splitting module; The formula is:
Figure imgf000010_0001
(vn) 。  (vn).
[0060] 其中, μ'为简化后的用于制备波形分束模块的超材料的相对磁导率值, ε'为简 化后的用于制备波形分束模块的超材料的相对介电常数值。  Wherein μ' is the relative permeability value of the simplified metamaterial used to prepare the waveform beam splitting module, and ε' is the relative dielectric constant value of the simplified metamaterial used to prepare the waveform beam splitting module .
[0061] 通过步骤 S03可将用于制备波形分束模块的超材料的本构参数进一步简化, 有 利于根据该简化后的本构参数确定超材料。  [0061] The constitutive parameters of the metamaterial used to prepare the waveform beam splitting module can be further simplified by step S03, which is advantageous for determining the metamaterial according to the simplified constitutive parameter.
[0062] 基于上述步骤获得的用于制备波形分束模块的超材料的本构参数, 能够确定用 于制备波形分束模块的超材料, 并使得基于该超材料制备出的波形分束模块能 够将一个输入信号波源分成任意路输入波源 (如图 2所示) 。  [0062] Based on the constitutive parameters of the metamaterial for preparing the waveform beam splitting module obtained in the above steps, the metamaterial for preparing the waveform beam splitting module can be determined, and the waveform splitting module prepared based on the metamaterial can Divide an input signal source into an arbitrary input source (as shown in Figure 2).
[0063] 现有技术中, 为了产生 ΟΑΜ波束, 往往需要将输入信号源发出的波束中的平 面波前经变换圆柱变换成涡旋波前, 从而形成涡旋波束; 实现上述过程可通过 螺旋相位板 SPP、 计算全息方法 hol0gmm、 石墨烯反射阵方法 Gmphene reflectarray. 超表面方法 metasurface等实现, 近年来还出现了通过变换介质来实 现的方法。 超材料因为其自身的特性尤其适用于制备变换圆柱。 [0063] In the prior art, in order to generate a chirp beam, it is often necessary to transform a plane wavefront transformed beam in a beam from an input signal source into a vortex wavefront to form a vortex beam; the above process can be performed by a spiral phase plate. SPP, computational holography method hol 0 gmm, graphene reflection array method Gmphene reflectarray. Ultra-surface method metasurface, etc., in recent years, there have also been methods implemented by transforming media. Metamaterials are particularly suitable for the preparation of transforming cylinders because of their own properties.
[0064] 为了进一步实现从一个输入源 (平面波束) 同吋获得任意路带有不同拓扑荷数 的 OAM波束, 本实施例还包括以下步骤:  [0064] In order to further obtain an OAM beam with an arbitrary path with different topological charge from an input source (plane beam), the embodiment further includes the following steps:
[0065] S04、 根据所述带有特定拓扑电荷的涡旋波束的拓扑电荷获得比例系数。  [0065] S04. Obtain a scaling factor according to the topological charge of the vortex beam with a specific topological charge.
[0066] 本实施例中, 所述比例系数为 n; [0066] In this embodiment, the scaling factor is n;
[0067] [0067]
1,  1,
(VIII) ; (VIII);
[0068] 其中, L为拓扑电荷, α为变换圆柱厚度, λ为输入源的真空波长。  [0068] wherein L is a topological charge, α is a transformed cylinder thickness, and λ is a vacuum wavelength of the input source.
[0069] S05、 基于比例系数, 利用变换光学的方法确定平面波前和目标涡旋波前之间 的第一函数关系。 [0070] 本实施例中, 所述步骤 S05具体为: [0069] S05. Determine a first functional relationship between the plane wavefront and the target vortex wavefront by using a method of transforming optics based on a scaling factor. [0070] In this embodiment, the step S05 is specifically:
[0071] 将步骤 S04获得的比例系数代入第一函数关系式中进行计算, 所得结果即为平 面波前和目标涡旋波前之间的第一函数关系;  [0071] Substituting the proportional coefficient obtained in step S04 into the first functional relational expression, the obtained result is the first functional relationship between the planar wavefront and the target vortex wavefront;
[0072] 所述第一函数关系式为:  [0072] The first function relationship is:
[0073]  [0073]
Figure imgf000011_0001
Figure imgf000011_0001
(IX) ;  (IX);
[0074] 其中, c为与初始坐标相关的常数, 0.3≤c≤0.55, 优选为 0.4; 6=tan 1 (z/y) ,Where c is a constant associated with the initial coordinates, 0.3≤c≤0.55, preferably 0.4; 6=tan 1 (z/y),
Θ为虚拟空间 (即变换前的空间) 中变换圆柱 yoz平面中的方位角, 0< θ < 2π; 所述初始坐标为变换圆柱的输入源波束幵始被变换的坐标位置。 Θ is the azimuth in the yoz plane of the transformed cylinder in the virtual space (ie, the space before the transformation), 0< θ < 2π; the initial coordinate is the coordinate position at which the input source beam of the transformed cylinder is initially transformed.
[0075] 需要说明的是, 所述为物理空间中 χ'的值, 是关于虚拟空间坐标 (x, y, z) 的函数; 为物理空间中 y'的值; 为物理空间中 z'的值。 [0075] It should be noted that the value of χ' in the physical space is a function of the virtual space coordinates (x, y, z); the value of y' in the physical space; and the z' in the physical space. value.
[0076] 所述第一函数关系式是将原始空间 (虚拟空间) 中的坐标 (x, y, z) 变换到 新空间 (物理空间) 中的坐标 (x', y', ζ') 的关系, 如公式 Π可知, 上述变化 主要是对原始空间中 X坐标进行变换, y和 ζ保持不变。 [0076] The first functional relationship is a transformation of coordinates (x, y, z) in the original space (virtual space) into coordinates (x', y', ζ') in the new space (physical space) The relationship, as shown in the formula, is that the above changes are mainly to transform the X coordinate in the original space, and y and ζ remain unchanged.
[0077] S06、 将所述第一函数关系代入第一公式中, 并将所得结果代入第二公式中, 获得用于制备变换圆柱的超材料的本构参数。 [0077] S06. Substituting the first functional relationship into the first formula, and substituting the obtained result into the second formula to obtain a constitutive parameter of the metamaterial for preparing the transforming cylinder.
[0078] 将所述第一函数关系代入第一公式中, 所得结果即为根据所述带有特定拓扑电 荷的涡旋波束的拓扑电荷而确定的虚拟空间 OA'B' (x, y, z) 中的坐标点与物 理空间 OAB (χ' , y', ζ') 中的坐标点之间的变换关系, 具体可用公式 (X) 表 示。 [0078] Substituting the first functional relationship into the first formula, the result is a virtual space OA'B' (x, y, z determined according to the topological charge of the vortex beam with a specific topological charge) The transformation relationship between the coordinate points in the physical space OAB (χ', y', ζ') can be expressed by the formula (X).
[0079]
Figure imgf000012_0001
[0079] [0079]
Figure imgf000012_0001
(X) 。  (X).
[0080] 其中, e'=tan -i (z7y') , θ'为物理空间 (即变换后的空间) 中变换圆柱 yoz平面 中的方位角, 0 < θ < 2π ; 为物理空间中变换圆柱 yoz平面上变换圆柱的半径。  Wherein e'=tan -i (z7y'), θ' is the azimuth angle in the yoz plane of the transformed cylinder in the physical space (ie, the transformed space), 0 < θ < 2π; is a transform cylinder in physical space The radius of the yoz plane upconverting cylinder.
[0081] 需要说明的是, 本发明中, 令虚拟空间 OA'B' (x, y, z) 与物理空间 OAB (x ', y', ζ' ) 的原点 O重合。  It should be noted that in the present invention, the virtual space OA'B' (x, y, z) coincides with the origin O of the physical space OAB (x ', y', ζ ' ).
[0082] 在本实施例中, 将公式 (X) 结果代入第二公式 (V 所得结果可用公式 XI) 表示。  In the present embodiment, the result of the formula (X) is substituted into the second formula (the result of V can be expressed by the formula XI).
Figure imgf000012_0002
Figure imgf000012_0002
(XI) ;  (XI);
[0084] 需要说明的是,
Figure imgf000012_0003
[0084] It should be noted that
Figure imgf000012_0003
(χπ) 。  (χπ).
[0085] 基于上述公式 (XI) 计算的结果, 即用于制备变换圆柱的超材料的本构参数; 所述变换圆柱用于将平面波束变换成带有拓扑电荷的涡旋波束; 本领域技术人 员即能用相应的超材料实现上述计算出的用于制备变换圆柱的超材料的本构参 数。 当拓扑电荷 L为 1吋, 平面波束经变换圆柱变换后得到的波速应该是一个典型 的拉盖尔高斯波速, 即它的功率密度为一个圆环形状。 图 3是本发明人在多物理 场耦合分析软件 (CMSOL) 中, 根据上述条件, 仿真出的变换圆柱出射面上的 功率密度仿真图。 图 3说明根据上述方法构建用于制备变换圆柱的超材料本构参 数制备出的变换圆柱能够有效的将平面波束变换成相应拓扑荷数的 OAM波束。 a result of calculation based on the above formula (XI), that is, a constitutive parameter of a metamaterial for preparing a transforming cylinder; the transforming cylinder is used to transform a planar beam into a vortex beam with a topological charge; The person can use the corresponding metamaterial to achieve the constitutive parameters of the above-described calculated metamaterial for preparing the transforming cylinder. When the topological charge L is 1 吋, the wave velocity obtained by the transformation of the plane beam by the transformed cylinder should be a typical Laguerre Gaussian wave velocity, that is, its power density is a ring shape. Figure 3 is the inventor of the multi-physics coupled analysis software (CMSOL), according to the above conditions, simulated transformation of the cylindrical exit surface Power density simulation diagram. 3 illustrates an OAM beam in which a transform cylinder prepared by constructing a metamaterial constitutive parameter for transforming a cylinder according to the above method can efficiently transform a planar beam into a corresponding topological charge.
[0086] 基于上述步骤获得的超材料本构参数, 能够确定用于制备波形分束模块的超材 料和用于制备变换圆柱的超材料, 并使得基于该超材料制备出的波形分束模块 能够将一个输入信号波源分成任意路输入波源, 所述任意路输入波源经过各自 对应的变换圆柱生成 OAM波束。 因此, 能够从一个输入源 (平面波束) , 同吋 生成任意路的 OAM波束, 进而能在确定的空间内部署更多的分集天线, 提高通 通信系统可靠性。 [0086] Based on the metamaterial constitutive parameters obtained in the above steps, the metamaterial for preparing the waveform beam splitting module and the metamaterial for preparing the transforming cylinder can be determined, and the waveform splitting module prepared based on the metamaterial can An input signal source is divided into arbitrary input wave sources, and the arbitrary input wave sources generate OAM beams through respective corresponding transform cylinders. Therefore, an OAM beam of an arbitrary path can be generated from one input source (planar beam) and the same, and more diversity antennas can be deployed in a certain space to improve the reliability of the communication system.
[0087] 为了进一步确定本发明的试验效果, 在本发明的一个具体实施例中, 本发明人 基于上述实施例的方法, 并假设波形分束模块能够将一个输入波源分成上下两 路波束, 通过多物理场耦合分析软件 (CMSOL) 仿真模拟将一个 OAM波束分成 上下两路波束并通过变换圆柱, 结果如图 4所示。  In order to further determine the test effect of the present invention, in a specific embodiment of the present invention, the inventors based on the method of the above embodiment, and assuming that the waveform splitting module can divide an input wave source into two upper and lower beams, Multiphysics Integration Analysis Software (CMSOL) simulation simulates an OAM beam into two upper and lower beams and transforms the cylinder. The result is shown in Figure 4.
[0088] 在本具体实施例中, 以上路变换为例, 中心角 θ=30°, x。=0, y。=0, x A=-0.2 , x B=0.2, x A=-0.1 , x B.=0.1, y A=0.6, y B=0.6, y A.=0.1, y B.=0.1进而根据雅克 比矩阵 A计算获得变换关系系数&、 b、 c、 d、 e和 f的值, a=2; b=0; c=0; d=0; e=0; f=0= [0088] In the present embodiment, the above path is transformed into an example, the center angle θ=30°, x. =0, y. =0, x A =-0.2 , x B =0.2, x A =-0.1 , x B .=0.1, y A =0.6, y B =0.6, y A .=0.1, y B .=0.1 and then according to Jacques Calculate the values of the transformation relationship coefficients &, b, c, d, e, and f from the matrix A, a=2; b=0; c=0; d=0; e=0; f=0=
[0089] 将这些变换关系系数带回函数关系式, 计算其对应的雅克比矩阵 A, 最后根据 上述公式算出超材料区域最终的相对介电常数和相对磁导率。 这种方法具有普 遍适用性, 根据实际需求, 就能够获得任意路轨道角动量的波束。  [0089] These transformation relationship coefficients are brought back to the functional relationship, and the corresponding Jacobian matrix A is calculated. Finally, the final relative permittivity and relative permeability of the metamaterial region are calculated according to the above formula. This method has universal applicability, and it is possible to obtain a beam of arbitrary orbital angular momentum according to actual needs.
[0090] 图 4显示的是一个两路 OAM产生器的 2维平面电场图, 功能是将一路带有平面 波前的波束分成上下两路, 然后输入给变换圆柱, 最后得到两路 OAM波束。 在 图 4中, 中间位置为输入源, 上下有两个长方形, 表示的是变换圆柱的横截面, 长方形的宽是两倍的变换圆柱半径 2r, 长方形高为变换圆柱的厚度 a。 为了在二 维图形中能看出变换圆柱对平面波束相位的调控, 我们将长方形分成左右两部 分, 左边设置调控相位为 0, 右边设置调控相位为 π/2, 通过图 4可以看出两部分 输出的波束有着明显的区别, 说明变换圆柱起到了相位调控的作用, 验证了本 发明的方法的正确性。  [0090] FIG. 4 shows a two-dimensional planar electric field diagram of a two-way OAM generator. The function is to divide a beam with a plane wavefront into upper and lower two paths, and then input it to a transforming cylinder, and finally obtain two OAM beams. In Figure 4, the middle position is the input source, and there are two rectangles on the top and bottom, which indicate the cross section of the transform cylinder. The width of the rectangle is twice the radius of the transform cylinder 2r, and the height of the rectangle is the thickness a of the transform cylinder. In order to see the transformation of the plane of the plane beam in the two-dimensional graph, we divide the rectangle into two parts, the left side is set to 0, and the right side is set to π/2. Figure 4 shows two parts. The output beam has a distinct difference, indicating that the transform cylinder acts as a phase control, verifying the correctness of the method of the present invention.
[0091] 因此根据具体需求, 我们可基于本发明的方法的计算结果, 能够制备出能将一 个输入信号波源分成任意路输入波源, 进而同吋获得任意路带有不同拓扑荷数 的 OAM波束的 OAM波束产生器, 即将一个平面波束同吋分成任意路的 OAM波 束的波束产生器, 进而能在确定的空间内部署更多的分集天线, 提高通通信系 统可靠性。 [0091] Therefore, according to the specific needs, we can prepare a can based on the calculation result of the method of the present invention. The input signal wave source is divided into an arbitrary input wave source, and the OAM beam generator of the OAM beam with different topological charge is obtained in the same way, that is, a plane beam is split into the beam generator of the OAM beam of any way, and More diversity antennas are deployed in the determined space to improve the reliability of the communication system.
[0092]  [0092]
[0093] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。  The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention, and the equivalent structure or equivalent process transformations made by the description of the present invention and the contents of the drawings may be directly or indirectly applied to other related The technical field is equally included in the scope of patent protection of the present invention.
工业实用性  Industrial applicability
[0094] 根据具体的分束需求, 可通过本发明的方法构建用于制备波形分束模块的超材 料的本构参数, 基于该本构参数, 能够确定用于制备波形分束模块的超材料, 并使得基于该超材料制备出的分束模块能够将一个输入信号波源分成任意路输 入波源, 从而能够同吋获得任意路的 OAM波束, 进而能在确定的空间内部署更 多的多样性天线, 提高通通信系统可靠性。  [0094] Depending on the specific beam splitting requirements, the constitutive parameters of the metamaterial used to prepare the waveform beam splitting module can be constructed by the method of the present invention, based on which the metamaterial used to prepare the waveform beam splitting module can be determined And the beam splitting module prepared based on the metamaterial can divide an input signal wave source into an arbitrary input wave source, so that an OAM beam of an arbitrary path can be obtained at the same time, thereby deploying more diverse antennas in a certain space. Improve the reliability of communication systems.

Claims

权利要求书 Claim
[权利要求 1] 一种用于制备波形分束模块的超材料的本构参数的构建方法, 所述波 形分束模块用于将一个输入波源分成任意路波束, 其特征在于, 所述 用于制备波形分束模块的超材料的本构参数的构建方法包括以下步骤 : 根据波形分束模块的分束需求, 结合虚拟空间 OA'B' (x, y, z) 的坐标点与物理空间 OAB (χ' , y', ζ' ) 的坐标点之间的变换关系, 利用雅克比矩阵 Α获得变换关系系数; 将所述变换关系系数代入第一 公式中, 并将所得结果代入第二公式中, 获得用于制备波形分束模块 的超材料的本构参数; 所述第一公式为虚拟空间 OA'B' (x, y, z) 中的坐标点与物理空间 OAB (χ' , y', ζ' ) 中的坐标点之间的函数关 系; 所述第二公式为超材料的相对介电常数和相对磁导率的计算公式  [Claim 1] A method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module, the waveform beam splitting module for dividing an input wave source into an arbitrary path beam, wherein the The method for constructing the constitutive parameter of the metamaterial of the waveform beam splitting module comprises the following steps: combining the coordinate point of the virtual space OA'B' (x, y, z) with the physical space OAB according to the splitting requirement of the waveform splitting module The transformation relationship between the coordinate points of (χ', y', ζ'), using the Jacobian matrix Α to obtain the transformation relationship coefficient; substituting the transformation relationship coefficient into the first formula, and substituting the result into the second formula Obtaining a constitutive parameter of the metamaterial for preparing the waveform beam splitting module; the first formula is a coordinate point in the virtual space OA'B' (x, y, z) and a physical space OAB (χ', y' , a functional relationship between coordinate points in ζ' ); the second formula is a formula for calculating the relative permittivity and relative permeability of metamaterials
[权利要求 2] 根据权利要求 1所述的用于制备波形分束模块的超材料的本构参数的 构建方法, 其特征在于, 所述虚拟空间 OA'B' (x, y, z) 中的坐标 点与物理空间 OAB (χ' , y', ζ' ) 中的坐标点之间的变换关系为: [Claim 2] The method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module according to claim 1, wherein said virtual space OA'B' (x, y, z) The transformation relationship between the coordinate points and the coordinate points in the physical space OAB (χ', y', ζ') is:
Figure imgf000015_0001
Figure imgf000015_0001
; 其中, a、 b、 c、 d、 e和 f为所述变换关系系数。 Where a, b, c, d, e, and f are the transformation relationship coefficients.
[权利要求 3] 根据权利要求 1所述的用于制备波形分束模块的超材料的本构参数的 构建方法, 其特征在于, 所述变换关系系数 a、 b和 c的雅克比矩阵 A 为:  [Claim 3] The method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module according to claim 1, wherein the Jacobian matrix A of the transformation relationship coefficients a, b, and c is :
Figure imgf000015_0002
; 所述变换关系系数 d、 e和 f的雅克比矩阵 A为:
Figure imgf000015_0002
The Jacobian matrix A of the transformation relationship coefficients d, e, and f is:
Figure imgf000016_0001
Figure imgf000016_0001
; 其中, 所述 x。, y。分别为物理空间中坐标点 Ο的 χ轴, y轴坐标; X A , x B分别为物理空间中坐标点 A和 B的 X轴坐标; y A, y B分别为物理 空间中坐标点 A和 B的 y轴坐标; X A., X B.分别为虚拟空间中坐标点 A 和 B的 X轴坐标; y A., y B.分别为虚拟空间中坐标点 A和 B的 y轴坐标。 Wherein the x. , y. They are the χ-axis and y-axis coordinates of the coordinate point 物理 in the physical space; XA and x B are the X-axis coordinates of the coordinate points A and B in the physical space respectively; y A and y B are the coordinate points A and B in the physical space respectively. The y-axis coordinates; X A ., X B . are the X-axis coordinates of the coordinate points A and B in the virtual space respectively; y A ., y B . are the y-axis coordinates of the coordinate points A and B in the virtual space, respectively.
[权利要求 4] 根据权利要求 1所述的用于制备波形分束模块的超材料的本构参数的 构建方法, 其特征在于, 所述第一公式为:
Figure imgf000016_0002
[Claim 4] The method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module according to claim 1, wherein the first formula is:
Figure imgf000016_0002
[权利要求 5] 根据权利要求 1所述的用于制备波形分束模块的超材料的本构参数的 构建方法, 其特征在于, 所述第二公式为:
Figure imgf000016_0003
[Claim 5] The method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module according to claim 1, wherein the second formula is:
Figure imgf000016_0003
; 其中, ε' 为第 i行 j列的相对介电常数的变换后的值, μ' 为第 i行 j列 的相对磁导率的变换后的值; ε 为物理空间中第 i行 j列的超材料的相 对介电常数的值, μ 为物理空间中第 i行 j列的超材料的相对磁导率的 值, T为对雅克比矩阵 A进行转置运算, 雅克比矩阵 A中原来的行都变 成按列排列, i为雅克比矩阵 A的行序号, j为雅克比矩阵 A的列序号。  Where ε' is the transformed value of the relative permittivity of the i-th row and j-th column, μ' is the transformed value of the relative magnetic permeability of the i-th row and j-column; ε is the i-th row in the physical space j The value of the relative permittivity of the supermaterial of the column, μ is the value of the relative permeability of the metamaterial of the i-th row and the j-th column in the physical space, T is the transposition operation of the Jacobian matrix A, and the Jacobian matrix A The original rows are arranged in columns, i is the row number of the Jacobian matrix A, and j is the column number of the Jacobian matrix A.
[权利要求 6] 根据权利要求 1所述的用于制备波形分束模块的超材料的本构参数的 构建方法, 其特征在于, 所述用于制备波形分束模块的超材料的本构 参数的构建方法还包括以下步骤: 基于所述用于制备波形分束模块的 超材料的本构参数, 利用第三公式获得简化后的用于制备波形分束模 块的超材料的本构参数; 所述第三公式为: [Claim 6] The method for constructing a constitutive parameter of a metamaterial for preparing a waveform beam splitting module according to claim 1, wherein the constitutive parameter of the metamaterial for preparing a waveform beam splitting module The method of constructing further includes the following steps: based on the method for preparing a waveform beam splitting module The constitutive parameter of the metamaterial, the constitutive parameter of the simplified metamaterial for preparing the waveform beam splitting module is obtained by the third formula; the third formula is:
Figure imgf000017_0001
Figure imgf000017_0001
; 其中, μ'为简化后的用于制备波形分束模块的超材料的相对磁导率 值, ε'为简化后的用于制备波形分束模块的超材料的相对介电常数值 , 所述虚拟空间 ΟΑ'Β' (χ,γ,ζ) 为带有特定圆心角 Θ的扇形区域, 所 述物理空间为顶角为 Θ的 ΟΑΒ (χ',γ' ,ζ' ) 等腰三角形区域, r是虚拟空 间 ΟΑ'Β' (χ,γ,ζ) 的半径; L为坐标点 0到线段 ΑΒ的距离。  Where μ' is the relative permeability value of the simplified metamaterial used to prepare the waveform beam splitting module, and ε' is the relative dielectric constant value of the simplified metamaterial used to prepare the waveform beam splitting module. The virtual space ΟΑ 'Β' (χ, γ, ζ) is a sectoral region with a specific central angle ,, which is a 三角形 (,', γ', ζ') isosceles triangle region with a apex angle Θ , r is the radius of the virtual space ΟΑ 'Β' (χ, γ, ζ); L is the distance from the coordinate point 0 to the line segment ΑΒ.
PCT/CN2017/114047 2016-12-31 2017-11-30 Method for constructing constitutive parameter of metamaterial for preparing waveform beam splitting module WO2018121175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611267051.6 2016-12-31
CN201611267051.6A CN108268682A (en) 2016-12-31 2016-12-31 It is used to prepare the construction method of the constitutive parameter of the Meta Materials of waveform beam splitting module

Publications (1)

Publication Number Publication Date
WO2018121175A1 true WO2018121175A1 (en) 2018-07-05

Family

ID=62707808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114047 WO2018121175A1 (en) 2016-12-31 2017-11-30 Method for constructing constitutive parameter of metamaterial for preparing waveform beam splitting module

Country Status (2)

Country Link
CN (1) CN108268682A (en)
WO (1) WO2018121175A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090109103A1 (en) * 2007-10-31 2009-04-30 Searete Llc, A Limited Liability Corporation Electromagnetic compression apparatus, methods, and systems
CN101978462A (en) * 2008-02-29 2011-02-16 希尔莱特有限责任公司 Electromagnetic cloaking and translation apparatus, methods, and systems
CN102112919A (en) * 2008-05-30 2011-06-29 希尔莱特有限责任公司 Focusing and sensing apparatus, methods, and systems
WO2016183129A1 (en) * 2015-05-12 2016-11-17 Board Of Regents, The University Of Texas System Systems and methods incorporating spatially-variant anisotropic metamaterials for electromagnetic compatibility

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313330B2 (en) * 2002-08-13 2007-12-25 Samsung Electronics Co., Ltd. Redundant apparatus and method for gigabit ethernet passive optical network system and frame format thereof
CN105750181B (en) * 2016-03-11 2017-12-19 南京大学 A kind of device using acoustic metamaterial generation sound rotational field
CN105866981A (en) * 2016-04-20 2016-08-17 中国科学院光电技术研究所 Broadband electromagnetic wave phase control method and super-surface sub-wavelength structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090109103A1 (en) * 2007-10-31 2009-04-30 Searete Llc, A Limited Liability Corporation Electromagnetic compression apparatus, methods, and systems
CN101978462A (en) * 2008-02-29 2011-02-16 希尔莱特有限责任公司 Electromagnetic cloaking and translation apparatus, methods, and systems
CN102112919A (en) * 2008-05-30 2011-06-29 希尔莱特有限责任公司 Focusing and sensing apparatus, methods, and systems
WO2016183129A1 (en) * 2015-05-12 2016-11-17 Board Of Regents, The University Of Texas System Systems and methods incorporating spatially-variant anisotropic metamaterials for electromagnetic compatibility

Also Published As

Publication number Publication date
CN108268682A (en) 2018-07-10

Similar Documents

Publication Publication Date Title
Ataloglou et al. Microwave Huygens’ metasurfaces: Fundamentals and applications
Benini et al. Phase-gradient meta-dome for increasing grating-lobe-free scan range in phased arrays
Jiang et al. Wideband transmit arrays based on anisotropic impedance surfaces for circularly polarized single-feed multibeam generation in the Q-band
US8217847B2 (en) Low loss, variable phase reflect array
Epstein et al. Arbitrary antenna arrays without feed networks based on cavity-excited omega-bianisotropic metasurfaces
Fan et al. Broadband tunable lossy metasurface with independent amplitude and phase modulations for acoustic holography
Xu et al. Extreme beam-forming with impedance metasurfaces featuring embedded sources and auxiliary surface wave optimization
Vashist et al. A review on the development of Rotman lens antenna
Yi et al. 3D printed broadband transformation optics based all-dielectric microwave lenses
Miao et al. Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface
Li et al. An arbitrarily curved acoustic metasurface for three-dimensional reflected wave-front modulation
WO2018121174A1 (en) Method for constructing constitutive parameter of metamaterial based on transformation optics
Yi et al. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens
Kosulnikov et al. Simple link-budget estimation formulas for channels including anomalous reflectors
Longhi et al. Array synthesis of circular huygens metasurfaces for antenna beam-shaping
CN204696244U (en) A kind of 1-bit microwave anisotropy electromagnetism coding Meta Materials
Suárez et al. Experimental validation of linear aperiodic array for grating lobe suppression
CN104809282B (en) The figuration field source building method aided in based on metallic cylinderses
WO2018121175A1 (en) Method for constructing constitutive parameter of metamaterial for preparing waveform beam splitting module
Barati et al. Acoustic multi emission lens via transformation acoustics
Schuster et al. REACH/PREACH—A physical optics based tool for simulation of radome effects on antenna patterns
Tu et al. Exponential and generalized Dolph-Chebyshev functions for flat-top array beampattern synthesis
Deng et al. Conformal array design on arbitrary polygon surface with transformation optics
Qu et al. Wideband High-Intensity Self-Bending Bessel-Like Beam Metasurface-Based Launcher for Wireless Applications
Shirmohammadkarimi et al. Generalized Phase-Polarization Cancellation for Broadband Radar Cross-Section Reduction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885500

Country of ref document: EP

Kind code of ref document: A1