WO2018121171A1 - 一种生命探测装置及其应用 - Google Patents

一种生命探测装置及其应用 Download PDF

Info

Publication number
WO2018121171A1
WO2018121171A1 PCT/CN2017/113864 CN2017113864W WO2018121171A1 WO 2018121171 A1 WO2018121171 A1 WO 2018121171A1 CN 2017113864 W CN2017113864 W CN 2017113864W WO 2018121171 A1 WO2018121171 A1 WO 2018121171A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
life
target space
space
unit
Prior art date
Application number
PCT/CN2017/113864
Other languages
English (en)
French (fr)
Inventor
宋启军
王婵
冉国侠
李锋
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2018121171A1 publication Critical patent/WO2018121171A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/766Chemiluminescence; Bioluminescence of gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0037NOx
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • G01N33/0063General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a threshold to release an alarm or displaying means

Definitions

  • the invention relates to a life detecting device and an application thereof, and belongs to the technical field of detecting devices.
  • NO can be slowly oxidized in the air to produce reddish brown NO 2 , which has a pungent odor, is highly toxic, has a strong stimulating effect on the respiratory system, and is easy to cause cough, asthma, chest pain, emphysema, etc. Bad symptoms.
  • NO is a new type of intracellular messenger molecule, which is almost all parts of the body; it is not toxic by itself, but it is easy to cross the cell membrane, and it is highly diffusible and easily binds to hemoglobin in the blood, thus causing blood hypoxia. And cause central nervous system paralysis. Based on this, people's research on NO is still focused on the monitoring of atmospheric pollutants, human respiratory diseases and the diagnosis of Alzheimer's disease.
  • the common life detectors mainly include acoustic vibration life detectors, radar life detectors, and infrared life detectors.
  • the sonic vibration life detector can achieve fast search, and the price is low, the instrument is light, but if the sound signal propagates through the debris fragments, it will produce a great attenuation, which will affect the signal acquisition.
  • the external environment can also cause interference with the propagation of sound signals.
  • Radar life detectors can penetrate obstacles such as stones or concrete, which are several meters or even tens of meters, to detect survivors under the rubble. As long as the survivors have physiological characteristics such as breathing, heartbeat and other life information, they can be detected by the radar.
  • Infrared detectors can detect survivors in dark environments and clearly present their status, which is important for rescue work.
  • infrared rays are easily absorbed by other media such as water vapor or glass, making it difficult to achieve accurate measurements.
  • the present invention first provides a life detecting device comprising a detecting unit, a data transmitting unit and a data processing unit; the detecting unit is for detecting nitric oxide in a target space, and the data transmitting unit is for detecting a unit
  • the generated data signal is passed to a data processing unit for converting the data signal generated by the detection unit into a NO content value.
  • the target space refers to the relative isolation from the outside world, limited import and export, and poor natural ventilation. It is enough to accommodate one person to enter a limited space for unconventional, non-continuous operation or temporary hedging and waiting for rescue. Such as space stations, underwater work vessels, underground safe-haven facilities and other special spaces; or bank treasury, institutional archives, with a confidential space.
  • the detecting unit may operate by detecting the NO content by using an ultraviolet-visible spectroscopy method, a chemiluminescence method, a spectrophotometry method, an electrochemical method, a chromatography method, a fluorescence analysis method, or the like.
  • the detection unit operates on the principle that NO in the target space reacts with O 3 to generate excited state nitrogen dioxide (NO 2 *), and NO 2 * releases energy during return to the ground state. It emits light and reacts with the intensity of NO to reflect the concentration of NO.
  • NO 2 * excited state nitrogen dioxide
  • the detection unit, the data transmission unit and the data processing unit may be integrated.
  • the detecting unit may be an existing nitrogen oxide analyzer or a chemiluminescent nitrogen oxide analyzer.
  • the detection unit is a NO sensor.
  • the data transmission unit comprises a first communication module and a second communication module, which are respectively connected in communication with the detection unit and the data processing unit.
  • the data transmission unit can perform data transmission by using a wireless signal.
  • the life detecting device further comprises a power source, such as a solar cell.
  • the life detecting device further includes an alarm device that issues an alarm signal when the NO content obtained by the data processing unit reaches the determination of the inflection point.
  • the data processing unit converts the data signal generated by the detecting unit into a NO concentration.
  • the data processing unit has a display screen that is capable of displaying changes in NO concentration over time.
  • the invention also provides a method for detecting life, which can adopt the foregoing life detecting device or other devices capable of achieving the same purpose, including the following steps:
  • the base value of the obtained NO content may be the NO content in the background environment in which the target space is measured by the detecting unit, or may be an empirical value of the NO content in the background environment in which the artificial input target space is located.
  • the target space may be relatively isolated from the outside world, restricted in import and export, and poor in natural ventilation, and is sufficient for accommodating one person to enter a limited space for engaging in unconventional, non-continuous operations or temporary hedging and waiting for rescue.
  • the background environment may be a target space in the presence of an inanimate body, which reflects the original state of the ambient air quality.
  • the NO content of the detection target space should be as high as possible and accurate.
  • the principle of chemiluminescence detection of NO is that NO reacts with O 3 to form excited state nitrogen dioxide (NO 2 *), and NO 2 * releases energy and emits light during returning to the ground state, and reacts NO by luminous intensity. concentration.
  • the chemiluminescence method has high sensitivity, short response time, and wide linear range.
  • Comparing the NO content of the target space with the base value means determining whether there is a statistically significant difference between the NO content and the base value of the target space (P ⁇ 0.05). When the NO content of the target space rises significantly compared with the base value, it can be determined that the target space has a living life; when there is no significant difference between the NO content of the target space and the base value, it can be determined that the target space has no living life. .
  • the present invention also provides a method for monitoring vital signs, which may employ the aforementioned life detecting device or other device capable of achieving the same purpose, including the following steps:
  • the method for determining the inflection point includes, but is not limited to, a moving average method, a continuous curve derivation method, a Taylor formula judgment method, and the like.
  • the life described in the present invention mainly refers to the survival consciousness with growth, development, reproduction, metabolism, stress, evolution, movement, and behavioral characteristics.
  • the living body mainly refers to an independent individual with a life form, which can respond to external stimuli.
  • the living body of the present invention also specifically refers to mammals including humans whose respiratory metabolic processes can have a significant influence on ambient air components.
  • NO As an active ingredient in human exhaled gases, NO is not harmful, and it is different from CO 2 , CO, NH 3 , H 2 S, etc., and is not produced by animal and plant spoilage, and has specificity.
  • NO gradually gradually decays into a stable gas component after exhalation from the human body, and the content of the active ingredient is closely related to human activities, and the number of people is large, and the amount of exhalation is large when the activity is severe. Therefore, as a life-indicating gas, NO accurately measures the change of its content, which not only reflects the presence and quantity of people in the environment, but also determines their living conditions.
  • the invention provides a life detecting device based on monitoring the change of NO content and an application thereof, which can accurately determine the presence or absence of vital signs in the target space, ensure the rapid and efficient rescue work after the disaster, and can also be used for bank treasury, archives and the like. Anti-theft monitoring provides protection.
  • Figure 1 shows the cumulative variation of NO gas concentration over time in a 1 m 3 space. (Set the amount of ventilation per person to 4L/min, and the concentration of NO in the exhaled breath is 15ppb.)
  • Figure 2 shows the variation of the concentration of NO gas in different volumes of different volumes. (Set the per-ventilation volume to 4L/min, and the NO concentration in the exhaled breath is 15ppb. Among them, the solid line represents 1m 3 space for 1 person, the dotted line represents 10 people for 50m 3 space, and the dotted line represents 1 person for 5m 3 space.)
  • Figure 3 shows a person's NO changes when he stops breathing for nearly 400 minutes in a 1 m 3 space. (Set the amount of ventilation per person to 4 L/min, and the concentration of NO in the exhaled breath is 15 ppb.)
  • Fig. 4 shows changes in the concentration of NO gas after a person stops breathing in a different volume of space.
  • the solid line represents 1m 3 space for 1 person
  • the dotted line represents 10 people for 50m 3 space
  • the dotted line represents 1 person for 5m 3 space.
  • Figure 5 shows the change in NO concentration in a 5 m 3 space.
  • the solid line indicates that after 600 minutes, the person stops breathing and stops the change of NO after ventilation
  • the broken line shows the case where the person stops breathing but the ventilation continues to work. (Set the amount of ventilation per person to 4L/min, and the concentration of NO in the exhaled breath is 15ppb.)
  • Figure 7 shows the variation of NO concentration in the space of three testers entering and leaving 30m 3 .
  • Figure 8 shows the variation of NO concentration in the space of five testers entering and leaving 70m 3 .
  • Figure 12 is a graph showing changes in NO concentration in a confined space of five testers entering and exiting 30 m 3 in the presence of interfering gas. Among them, (a) the ventilation system is closed and (b) the ventilation system is normally open.
  • Embodiment 1 Design principle of life detecting device
  • the theoretical model of the design of the life detecting device includes the following assumed conditions: (1) The space in which the human body is located is a semi-closed space with a certain amount of fresh air input, and an equal amount of exhaust gas is discharged to ensure the normal breathing of the human body. (2) In addition to the human body breathing, there is no additional NO input in the system (such as the burning of other organisms or substances); (3) the gas exhaled by the human body and the original gas in the space can be evenly mixed in a short time.
  • the concentration of NO in the semi-closed space at the t+1 minute is written as follows:
  • C t+1 is the concentration of NO in the semi-closed space at the t+1 minute
  • q is the percentage remaining after NO gas decay per minute
  • C t is the concentration of NO in the semi-closed space at the t minute
  • V 0 is the volume of a semi-closed space
  • C b is the concentration of NO in the gas exhaled by the human body
  • V b is the volume of gas exhaled by the human body
  • V out is the total exhaust volume, that is, the total volume of gas exhaled by the gas exhaled by the human body and the semi-enclosed space to the outside.
  • the change of NO gas in the confined space can be obtained in more different situations.
  • the NO gas concentration can reach about 3ppb after 20 hours, which can be detected by the equipment.
  • the concentration in the system is only 2.99ppb, the increase is not obvious. That is to say, after 10 hours, the concentration of NO gas in the system has basically reached the equilibrium value.
  • NO reactive oxygen species
  • NO 2 * excited state nitrogen dioxide
  • NO 2 * releases energy and emits light during returning to the ground state
  • the luminescence intensity is used.
  • the concentration of NO is reacted.
  • the inflection point is judged by the moving average method, that is, for each additional time interval, a new data is added, and a long-term data is removed to obtain a new average value.
  • NO content was measured at different detection units are arranged in time series: x 1, x 2 ... x t, in accordance with the moving average method may be expressed:
  • x t is the latest observation value
  • N is the number of historical data participating in the moving average
  • F t+1 is the next predicted value, that is, the predicted value is a set of historical data (actual value) closest to the predicted period.
  • Average results.
  • the smoothing curve obtained by the moving average shows the extreme value F max , the nth moment,
  • F n is determined as the inflection point and the system can prompt the alarm.
  • a chemiluminescence analyzer detects NO, and a person's life activity is determined by monitoring changes in NO concentration in a close chamber.
  • Figure 6 in which the air intake system is used to control the input of fresh air and the discharge of waste; the research system is a closed environment with a shower room; the test system is a NO analyzer that integrates the detection unit and the data transmission unit.
  • the air intake system is used to control the input of fresh air and the discharge of waste
  • the research system is a closed environment with a shower room
  • the test system is a NO analyzer that integrates the detection unit and the data transmission unit.
  • TH-2001 type chemiluminescence NOx analyzer of Wuhan Yuhong Environmental Protection Industry Development Co., Ltd. data acquisition system, ie data processing unit, calculates and displays the change of NO content with time.
  • the total environmental volume V 0 is set to 30000L
  • the NO concentration C b in the human exhaled breath is 30ppb
  • the breath exhalation gas V b per person is 10L/min
  • the environment is discharged to the outside 30L/min, then V out It is 60L/min.
  • C 1 0.2 ppb
  • the concentration of NO in the environment changes with time as shown in Fig. 7(a).
  • the concentration of NO in the environment increases with time.
  • V out set V out to 60L/min (breathing exhalation 60L/min, semi-enclosed space to the outside to discharge 0L/min), V 0 is 7000L, human body exhaled NO amount C b is 30ppb, human body breathe out
  • C 1 0.2 ppb
  • the concentration of NO in the space changes with time as shown in Fig. 8(a).
  • the concentration of NO in the environment increases with time.
  • Fig. 7(a) when the ventilation system is turned off, the decrease in the NO content is only due to the attenuation of the self concentration, and therefore, the rate of decrease becomes slow.
  • Ventilation system the person opens before leaving, closes after leaving
  • Impurity gases gasoline, xylene, paint, etc.
  • the smooth curve is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种生命探测装置及其应用,属于检测设备技术领域。生命探测装置,包括探测单元、数据传输单元和数据处理单元,探测单元用于探测目标空间的一氧化氮。一种基于监测一氧化氮含量变化的生命探测装置及其应用,能精准判断目标空间中有无生命体征,确保灾后救援工作快速、高效进行,还能为银行金库、档案馆等场合的防盗监控提供保障。

Description

一种生命探测装置及其应用 技术领域
本发明涉及一种生命探测装置及其应用,属于检测设备技术领域。
背景技术
众所周知,NO在空气中能够被缓慢氧化生成红棕色的NO2,具有刺激性气味,其毒性较大,对呼吸系统有强烈的刺激作用,进入人体易引起咳嗽、气喘、胸痛、肺气肿等不良症状。此外,NO是一种新型的细胞内信使分子,几乎遍及机体的各个部分;其本身并无毒性,但极易穿过细胞膜,扩散性强,容易结合血液中的血红素,从而造成血液缺氧而引起中枢神经麻痹。基于此,人们对NO的研究仍集中在大气污染物的监测、人体呼吸道疾病和阿尔茨默氏症的诊断等领域。
目前常见的生命探测器主要有声波震动生命探测器、雷达生命探测器、红外生命探测器等。声波振动生命探测器可实现快速搜索,而且价格低廉、仪器轻便,但是若声音信号经废墟碎片传播时会产生很大的衰减,对信号采集造成影响。此外,外界环境随声音信号的传播也会产生干扰。雷达生命探测仪可穿透书数米甚至数十米的石块或混凝土等障碍物进而对废墟下的幸存者进行探测。只要幸存者还有呼吸、心跳等代表生命信息的生理特征,都能被雷达探测到。但是外界坏境的干扰以及仪器运行时的背景噪声会对探测结果造成很大影响。红外线探测仪能对黑暗环境下的幸存者进行探测,并能将其状况清晰呈现,对救援工作有重要意义。但是红外线很容易被水蒸气或者玻璃等其它介质吸收,难以实现精准测量。
发明内容
为此,本发明首先提供了一种生命探测装置,包括探测单元、数据传输单元和数据处理单元;所述探测单元用于探测目标空间的一氧化氮,所述数据传输单元用于将探测单元产生的数据信号传递到数据处理单元,所述数据处理单元用于将探测单元产生的数据信号,转换成NO的含量数值。
所述目标空间,指与外界相对隔离、进出口受限、自然通风不良,足够容纳一人进入从事非常规、非连续作业或暂时避险、等待救援的有限空间。如宇宙空间站、水下工作船、井下避险设施等特殊空间;又或是银行金库、机关档案馆类,具有机要性的密闭空间。
在本发明的一种实施方式中,所述探测单元的工作原理可以是应用紫外-可见光谱法、化学发光法、分光光度法、电化学法、色谱法和荧光分析法等检测NO含量。
在本发明的一种实施方式中,所述探测单元的工作原理是目标空间中的NO与O3反应生 成激发态二氧化氮(NO2*),NO2*在返回基态的过程中释放能量并发光,通过发光强度来反应NO的浓度。
在本发明的一种实施方式中,所述探测单元、数据传输单元和数据处理单元可以整合在一起。
在本发明的一种实施方式中,所述探测单元可以是现有的氮氧化物分析仪或者化学发光氮氧化物分析仪。
在本发明的一种实施方式中,所述探测单元是一种NO传感器。
在本发明的一种实施方式中,所述数据传输单元包括第一通信模块和第二通信模块,分别与探测单元和数据处理单元通信连接。所述数据传输单元可以通过无线信号进行数据传输。
在本发明的一种实施方式中,所述生命探测装置还包括电源,例如太阳能电池。
在本发明的一种实施方式中,所述生命探测装置还包括警报装置,当数据处理单元得到的NO含量达到判断拐点时,发出警报信号。
在本发明的一种实施方式中,所述数据处理单元将探测单元产生的数据信号计算转换成NO浓度。
在本发明的一种实施方式中,所述数据处理单元具有显示屏,能够显示NO浓度随时间的变化情况。
本发明还提供一种探测生命的方法,可以采用前述生命探测装置或其他能实现相同目的的装置,包括以下步骤:
(1)获得NO含量的基值,
(2)探测目标空间的NO含量,
(3)将目标空间的NO含量与基指进行比较。
所述获得NO含量的基值可以是通过探测单元测得目标空间所处背景环境中的NO含量,也可以是人为输入目标空间所处背景环境中的NO含量的经验值。
所述目标空间,可以是与外界相对隔离、进出口受限、自然通风不良,足够容纳一人进入从事非常规、非连续作业或暂时避险、等待救援的有限空间。如宇宙空间站、水下工作船、井下避险设施等特殊空间;又或是银行金库、机关档案馆类,具有机要性的密闭空间。
所述背景环境,可以是无生命体存在时的目标空间,它反映环境空气质量的原始状态。
所述探测目标空间的NO含量应尽量能采用灵敏度高、准确性好的测定方法。例如化学发光法,化学发光法检测NO的原理是NO与O3反应生成激发态二氧化氮(NO2*),NO2*在返回基态的过程中释放能量并发光,通过发光强度来反应NO的浓度。化学发光法灵敏度高、 响应时间短、线性范围宽。
所述将目标空间的NO含量与基值进行比较,是指判断目标空间的NO含量与基值是否存在统计学意义上的显著差异(P<0.05)。当目标空间的NO含量与基值相比,显著上升时,即可判定目标空间有活体生命;当目标空间的NO含量与基值相比,无显著差异时,即可判定目标空间无活体生命。
本发明还提供一种监测生命体征的方法,可以采用前述生命探测装置或其他能实现相同目的的装置,包括以下步骤:
(1)获得特定时间、目标空间中生命体正常生命活动状态下,空气中NO含量的值,作为初始值,
(2)持续或间歇测定目标空间的NO含量,当目标空间的NO含量与初始值相比,出现下降或上升拐点时,系统提示异常。
所述拐点的判断方法包括但不限于移动平均法、连续曲线求导法、泰勒公式判断法等。
本发明所述生命,主要是指具有生长、发育、繁殖、代谢、应激、进化、运动、行为特征的生存意识。生命体,主要是指有生命形态的独立个体,能对外界刺激做出相应反应。本发明所述生命体还特指其呼吸代谢过程能够对环境空气成分产生显著影响的包括人类在内的哺乳动物。
作为人体呼出气体中的一种活性成分,NO并非百害而无一利,它不同于CO2、CO、NH3、H2S等,不会由动植物腐败产生,具有特异性。我们发现NO从人体呼出后会逐步自然衰变为一种稳定的气体成分,且该活性成分的含量与人体活动密切相关,人数多,活动剧烈时呼出量也大。因此,NO作为生命指示性气体,对其含量的变化进行精准测定,不仅能反映环境中人员的存在和数量,还可判断出他们的生存状态。本发明提供了一种基于监测NO含量变化的生命探测装置及其应用,能精准判断目标空间中有无生命体征,确保灾后救援工作快速、高效进行,还能为银行金库、档案馆等场合的防盗监控提供保障。
附图说明
图1一人在1m3空间里NO气体浓度随时间的累积变化情况。(设定每人换气量为4L/min,呼出气中NO浓度为15ppb。)
图2不同人数不同体积的空间中NO气体的浓度变化情况。(设定每人换气量为4L/min,呼出气中NO浓度为15ppb。其中,实线代表1人1m3空间,虚线代表10人50m3空间,点线代表1人5m3空间。)
图3一人在1m3空间中近400min时停止呼吸,其NO变化情况。(设定每人换气量为4 L/min,呼出气中NO浓度为15ppb。)
图4不同人数不同体积的空间中人停止呼吸后NO气体的浓度变化情况。(设定每人换气量为4L/min,呼出气中NO浓度为15ppb。其中,实线代表1人1m3空间,虚线代表10人50m3空间,点线代表1人5m3空间。)
图5一人在5m3的空间中NO浓度变化情况。其中,实线表示600min后人停止呼吸并且停止换气后的NO变化情况,虚线则为人停止呼吸但是换气继续工作的情况。(设定每人换气量为4L/min,呼出气中NO浓度为15ppb。)
图6测试系统示意图
图7三名测试员进出30m3的空间NO浓度变化图。(a)模拟曲线图和(b)生命探测装置实测图。
图8五名测试员进出70m3的空间NO浓度变化图。(a)模拟曲线图和(b)生命探测装置实测图。
图9七名测试员进出70m3的空间NO浓度变化图
图10六名测试员进出70m3的空间NO浓度变化图
图11在有/无干扰气体条件下环境中NO浓度变化图
图12在干扰气体存在下,五名测试员进出30m3的密闭空间NO浓度变化图。其中,(a)换气系统关闭和(b)换气系统常开。
具体实施方式
实施例1 生命探测装置的设计原理
设计生命探测装置的理论模型,包括以下假定的条件:(1)人体所处的空间为一种半封闭空间,有定量的新鲜空气输入,同时有等量的废气排出,以保证人体正常呼吸需求;(2)设定除了人体呼吸外,体系里没有额外的NO输入(如其它生物或物质的燃烧);(3)人体呼出的气体与空间中原有的气体能在短时间内混合均匀。
半封闭空间内人持续呼吸时NO气体浓度的变化推导过程如下:
以第t分钟半封闭空间内的NO的物质的量,加上第t+1分钟内产生的NO的物质的量,然后减去第t+1分钟所排出的NO的物质的量,再乘以NO的衰减系数,得到第t+1分钟时半封闭空间内NO的量。第t+1分钟时半封闭空间内NO的浓度写成如下表达式:
Figure PCTCN2017113864-appb-000001
Ct+1为第t+1分钟时半封闭空间内NO的浓度;
q为每分钟NO气体衰减后剩余的百分量;
Ct为第t分钟时半封闭空间内NO的浓度;
V0是半封闭空间的体积;
Cb为人体呼吸呼出的气体中NO的浓度;
Vb为人体呼吸呼出的气体体积;
Vout为总排气量,即人体呼吸所呼出的气体和半封闭空间向外部排出的气体的总体积。(1)半封闭空间内人持续呼吸时NO气体浓度的变化情况
例如:Vout为8L/min(呼吸呼气4L/min,半封闭空间向外部排出4L/min),V0为1000L,人体呼出NO量Cb为15ppb,人体呼吸呼出气体Vb为4L/min,半衰期是3.5h,即q=0.9976,则可以得到Ct+1=0.9896Ct+0.0594,从而得到通式Ct=5.711+(C1-5.711)×0.9896t-1。当C1=0.0582ppb,则半密闭空间内NO的浓度随时间变化的情况见图1。
由图1可知,1人在1m3空间里,NO的浓度随时间延长而增加,大约十小时后趋于稳定,其最后浓度可达5.7ppb,完全可以被检测到。
同理,可以得到更多不同情况下密闭空间中NO气体的变化情况,如图2所示,当1人在5m3空间里,20小时后NO气体浓度也能达到约3ppb,可以被设备检测到。即使此人在系统里生活一周(10080min),体系里的浓度也仅为2.99ppb,增加并不明显。也就是说在10小时后系统里NO气体的浓度已基本达到平衡值。
(2)半封闭空间里从有人到无人时NO气体浓度的变化
t时刻后空间里的人不再呼吸时,只有空间的换气和气体成分的自然衰减对体系浓度造成改变。此后NO的浓度为:
Figure PCTCN2017113864-appb-000002
例如:总体积和换气的体积不变,则Cn=Ct(0.9936)n-t。在图1的基础上,假设1m3空间里,1人在380min后停止了呼吸,则C=5.603ppb,q=0.9976。NO气体浓度变化如图3所示。同理,在图2中1人在5m3空间里的情形下,若人体突然停止呼吸,NO浓度变化情况如图4中点线曲线所示。
(3)半封闭空间里人停止了呼吸且换气系统也停止了工作
如图5所示,当换气系统停止工作时,NO浓度的变化只来源于自身的衰减,此时NO浓 度随着时间的下降趋势变缓。
实施例2 模拟生命探测
此处,以化学发光法检测NO为例,其原理为NO与O3反应生成激发态二氧化氮(NO2*),NO2*在返回基态的过程中释放能量并发光,通过发光强度来反应NO的浓度。
拐点判断采用移动平均法,即每增加一个时间间隔,就增加一个新近数据,去掉一个远期数据,得到一个新的平均值。设探测单元不同时间下测得NO含量序列为:x1,x2…xt,根据移动平均法可以表示:
Figure PCTCN2017113864-appb-000003
式中:xt为最新观察值,N为参加移动平均的历史数据的个数,Ft+1为下一期预测值,即预测值是离预测期最近的一组历史数据(实际值)平均的结果。移动平均得到的平滑曲线出现极值Fmax后,第n时刻,
Figure PCTCN2017113864-appb-000004
此处
Figure PCTCN2017113864-appb-000005
为所有预测期相对标准偏差的平均值,则Fn判为拐点,系统可提示报警。
在半封闭环境,选取不同体积的空间为实验对象,化学发光分析仪检测NO,通过监控密室内NO浓度的变化来判定人员生命活动。图6所示,其中,进气系统用于控制新鲜空气的输入以及废弃的排出;研究系统为办密闭环境,带有淋洗房;测试系统为整合里探测单元、数据传输单元的NO分析仪,例如武汉宇虹环保产业发展有限公司的TH-2001型化学发光氮氧化物分析仪;数据采集系统即数据处理单元,计算和显示NO含量随时间的变化情况。
(1)参照图6搭建实验装置,检查整个系统的气密性,开机运行NO分析仪,待仪器运行稳定后进行操作。
(2)打开进气系统,开始对研究系统进行换气。待NO浓度稳定,开始测试。
(3)考查不同人数的测试员通过淋洗房进入密闭空间后NO的浓度值,经一定时间后,人离开密闭空间,监测并记录密室内NO浓度随时间的变化。
(4)改变密闭空间的大小,重复上述实验。
测试一:
(1)研究对象:30m3的密闭空间
(2)测试人数:试验者3名
(3)换气系统:常开。
根据公式(1),设定环境总体积V0为30000L,人体呼出气中NO浓度Cb为30ppb,每人呼吸呼出气体Vb为10L/min,环境向外部排出30L/min,那么Vout为60L/min。而半衰期 是3.5h,即q=0.9976,则可以得到Ct+1=0.9956 Ct+0.0298,通式为Ct=6.772+(C1-6.772)×0.9956t-1。当C1=0.2ppb,则环境中NO的浓度随时间变化的情况见图7(a)。环境中NO浓度随着时间增加而增大,当t=60min时,人离开密闭空间,NO含量明显下降。
另一方面,采用生命探测装置对上述过程进行检测,测试结果如图7(b)所示。很明显,NO含量的变化趋势与图7(a)中模拟曲线基本一致,说明本方法切实可行。那么,对所测得的数据进行五点平均移动得到平滑曲线,在t=61min时NO浓度出现最大值,Fmax=1.75123,第64min时NO浓度值为F(t=64)=1.61588,且
Figure PCTCN2017113864-appb-000006
可确定空间无生命体征,系统报警。
测试二:
(1)研究对象:70m3的密闭空间
(2)测试人数:试验者5名
(3)换气系统:关闭
根据公式(1),设定Vout为60L/min(呼吸呼气60L/min,半封闭空间向外部排出0L/min),V0为70000L,人体呼出NO量Cb为30ppb,人体呼吸呼出气体Vb为60L/min,半衰期是3.5h,即q=0.9976,则可以得到Ct+1=0.9965 Ct+0.0256,从而得到通式Ct=7.767+(C1-7.767)×0.9965t-1。当C1=0.2ppb,则空间内NO的浓度随时间变化的情况见图8(a)。环境中NO浓度随着时间增加而增大,当t=60min时,人离开密闭空间,NO含量明显下降。与图7(a)相比,当换气系统关闭时,NO含量的降低仅来源于自身浓度的衰减,因此,下降速率变缓。
为了进一步验证模拟试验的准确性,采用生命探测装置对上述过程进行检测,测试结果如图8(b)所示。很明显,NO含量的变化趋势与图8(a)中模拟曲线基本一致,说明本方法切实可行。采用移动平均法进行平滑曲线,发现在t=59min时NO浓度出现最大值,Fmax=1.4889;第62min时,NO浓度值为F(t=62)=1.38022,且
Figure PCTCN2017113864-appb-000007
可确定空间无生命体征,系统报警。
测试三:
(1)研究对象:70m3的密闭空间
(2)测试人数:试验者7名
(3)换气系统:常开
当7人在密闭空间1h后离开,记录期间NO的浓度变化情况,测试结果如图9所示。当人进入密闭空间1h后,NO浓度增大到1.8ppb,人离开后10min,NO浓度下降到0.8ppb(降低了56%)。结果表明,在70m3空间下,7名测试员的NO含量的变化能被明显检测。同时,根据移动平均法求得平滑曲线,在t=61min时,Fmax=1.6162,第65min时刻,
Figure PCTCN2017113864-appb-000008
Figure PCTCN2017113864-appb-000009
可确定空间无生命体征,系统报警。
测试四:
(1)研究对象:70m3的密闭空间
(2)测试人数:试验者6名
(3)换气系统:人离开前开启,离开后关闭
当6人在密闭空间1h后离开,记录期间NO的浓度变化情况,测试结果如图10所示。当人进入后,NO浓度增大到0.9ppb,人离开后关闭换气系统,约30min能看到NO浓度降到0.4ppb(降低了56%)。结果表明,70m3空间下,6名测试员的NO含量的变化能被明显检测。同时,根据移动平均法求得平滑曲线,在t=62min时Fmax=0.88376,第67min时刻,
Figure PCTCN2017113864-appb-000010
可确定空间无生命体征,系统报警。
测试五:
(1)研究对象:30m3的密闭空间
(2)测试人数:试验者5名
(3)杂质气体:汽油、二甲苯、油漆等
为了考察环境中杂质气体的影响,选用常见影响物进行测试,如图11所示,当有杂质气体存在的条件下,对生命探测装置测得的基线值并无太大影响,说明杂质气体对NO浓度检测没有干扰。在这种前提下,监测5人在空间停留30min后离开NO浓度的变化情况,并考查换气系统开/关对NO衰减的影响,测试结果如图12所示。在30m3空间下,5名测试员的NO含量能明显检测到,30min后,NO浓度涨到1.8-2.0ppb;随后人离开密室,NO浓度明显下降。当人离开后,换气系统开或关,能直接影响NO含量的衰减速率;对照图12(a)和12(b),换气系统常开时,NO含量的变化来源于系统向外排出的以及自身衰减的,因此,下降速率快。
根据移动平均法求得平滑曲线,当换气系统关闭时,在t=31min时NO含量出现最大值,Fmax=1.64844,第35min时刻,
Figure PCTCN2017113864-appb-000011
可确定空间无人存在,系统报警。当换气系统常开时,在t=32min时NO含量出现最大值,Fmax=1.4605,第34min时刻,
Figure PCTCN2017113864-appb-000012
可确定空间无生命体征,系统报警。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (12)

  1. 一种生命探测装置,其特征在于,包括探测单元、数据传输单元和数据处理单元;所述探测单元用于探测目标空间的一氧化氮,所述数据传输单元用于将探测单元产生的数据信号传递到数据处理单元,所述数据处理单元用于将探测单元产生的数据信号,转换成NO的含量数值。
  2. 根据权利要求1所述的一种生命探测装置,其特征在于,所述探测单元的工作原理是应用紫外-可见光谱法、化学发光法、分光光度法、电化学法、色谱法或荧光分析法等检测NO含量。
  3. 根据权利要求1或2所述的一种生命探测装置,其特征在于,所述探测单元的工作原理是目标空间中的NO与O3反应生成激发态二氧化氮,NO2*在返回基态的过程中释放能量并发光,通过发光强度来反应NO的浓度。
  4. 根据权利要求1所述的一种生命探测装置,其特征在于,所述探测单元、数据传输单元和数据处理单元整合在一起;所述数据传输单元包括第一通信模块和第二通信模块,分别与探测单元和数据处理单元通信连接;所述数据传输单元通过无线信号进行数据传输。
  5. 根据权利要求1所述的一种生命探测装置,其特征在于,所述生命探测装置还包括电源和警报装置。
  6. 一种探测生命的方法,其特征在于,包括以下步骤:
    (1)获得NO含量的基值,
    (2)探测目标空间的NO含量,
    (3)将目标空间的NO含量与基指进行比较。
  7. 根据权利要求6所述的方法,其特征在于,所述获得NO含量的基值是通过探测单元测得目标空间所处背景环境中的NO含量,或人为输入目标空间所处背景环境中的NO含量的经验值。
  8. 根据权利要求6所述的方法,其特征在于,所述将目标空间的NO含量与基值进行比较,是指判断目标空间的NO含量与基值是否存在统计学意义上的显著差异;当目标空间的NO含量与基值相比,显著上升时,即可判定目标空间有活体生命;当目标空间的NO含量与基值相比,无显著差异时,即可判定目标空间无活体生命。
  9. 根据权利要求6所述的方法,其特征在于,采用权利要求1~5任一所述的装置来探测生命。
  10. 一种监测生命体征的方法,其特征在于,包括以下步骤:
    (1)获得特定时间、目标空间中生命体正常生命活动状态下,空气中NO含量的值,作为初始值,
    (2)持续或间歇测定目标空间的NO含量,当目标空间的NO含量与初始值相比,出现下降或上升拐点时,系统提示异常。
  11. 根据权利要求10所述的方法,其特征在于,所述拐点的判断方法包括但不限于移动平均法、连续曲线求导法、泰勒公式判断法等。
  12. 根据权利要求10所述的方法,其特征在于,采用权利要求1~5任一所述的装置来监测生命体征。
PCT/CN2017/113864 2016-12-26 2017-11-30 一种生命探测装置及其应用 WO2018121171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611214848.XA CN106680429A (zh) 2016-12-26 2016-12-26 一种生命探测装置及其应用
CN201611214848.X 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018121171A1 true WO2018121171A1 (zh) 2018-07-05

Family

ID=58871587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113864 WO2018121171A1 (zh) 2016-12-26 2017-11-30 一种生命探测装置及其应用

Country Status (2)

Country Link
CN (1) CN106680429A (zh)
WO (1) WO2018121171A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680429A (zh) * 2016-12-26 2017-05-17 江南大学 一种生命探测装置及其应用
CN109270216A (zh) * 2018-09-28 2019-01-25 深圳市龙华区中心医院 一种呼出气一氧化氮含量检测系统及其检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080228096A1 (en) * 2007-03-15 2008-09-18 Jaffe Michael B End-Tidal Gas Estimation System and Method
CN205484273U (zh) * 2016-03-16 2016-08-17 孟瑶 便携式环境空气检测系统
CN105911232A (zh) * 2016-07-09 2016-08-31 夏百战 一种空气污染物检测设备
CN106053437A (zh) * 2016-05-05 2016-10-26 苏州市江海通讯发展实业有限公司 一种化学发光法测定no的装置及其检测方法
CN106680429A (zh) * 2016-12-26 2017-05-17 江南大学 一种生命探测装置及其应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201434911Y (zh) * 2009-01-08 2010-03-31 无锡骏聿科技有限公司 用于飞行体上的生命活体探测装置
US9389212B2 (en) * 2011-02-28 2016-07-12 Honeywell International Inc. NOx gas sensor including nickel oxide
CN102548024B (zh) * 2011-12-28 2014-09-10 北京邮电大学 一种灾后搜救生命探测方法及生命探测装置
CN102540229B (zh) * 2011-12-31 2014-04-16 北京邮电大学 一种生命探测装置互定位方法及生命探测装置
CN203083983U (zh) * 2012-12-26 2013-07-24 中国地震局地壳应力研究所 用于废墟生命探测的二氧化碳检测装置
CN203311585U (zh) * 2013-06-18 2013-11-27 湖南华诺星空电子技术有限公司 车用生命探测装置
CN104698455A (zh) * 2013-12-06 2015-06-10 北京天必达科技有限公司 雷达生命探测系统及方法
BR112016018076B1 (pt) * 2014-02-19 2022-03-15 Mallinckrodt Hospital Products IP Limited Métodos para compensar a longo prazo a sensibilidade do sentido de sensores de gases eletroquímicos expostos a óxido nítrico
CN204671126U (zh) * 2015-02-11 2015-09-30 南京信息工程大学 一种基于电磁波生命探测仪的信号处理系统
CN205157781U (zh) * 2015-05-29 2016-04-13 绵阳市德麾自动化科技有限公司 一种用于探测静态目标的生命探测仪
CN205642447U (zh) * 2016-05-12 2016-10-12 西安建筑科技大学 一种用于塌方救援的生命探测球
CN205749448U (zh) * 2016-05-30 2016-11-30 张潇予 一种多功能气体检测仪
CN105974492B (zh) * 2016-06-27 2019-06-07 湖南正申科技有限公司 多功能生命探测仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080228096A1 (en) * 2007-03-15 2008-09-18 Jaffe Michael B End-Tidal Gas Estimation System and Method
CN205484273U (zh) * 2016-03-16 2016-08-17 孟瑶 便携式环境空气检测系统
CN106053437A (zh) * 2016-05-05 2016-10-26 苏州市江海通讯发展实业有限公司 一种化学发光法测定no的装置及其检测方法
CN105911232A (zh) * 2016-07-09 2016-08-31 夏百战 一种空气污染物检测设备
CN106680429A (zh) * 2016-12-26 2017-05-17 江南大学 一种生命探测装置及其应用

Also Published As

Publication number Publication date
CN106680429A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
Castillejos et al. Effects of ambient ozone on respiratory function and symptoms in Mexico City schoolchildren.
Bernard et al. Outdoor swimming pools and the risks of asthma and allergies during adolescence
Lanki et al. Can we identify sources of fine particles responsible for exercise-induced ischemia on days with elevated air pollution? The ULTRA study
Thickett et al. Occupational asthma caused by chloramines in indoor swimming-pool air
Romieu et al. Exhaled breath malondialdehyde as a marker of effect of exposure to air pollution in children with asthma
Pepys Laboratory Methods in Clinical Allergy: Skin Tests for Immediate, Type I, Allergic Reactions
Maestrelli et al. 6 Personal Exposure to Particulate Matter Is Associated With Worse Health Perception in Adult Asthma
CN203365324U (zh) 一种基于腔衰荡光谱技术的糖尿病检测装置
Lee et al. A review of the association between air pollutant exposure and allergic diseases in children
CN101292158A (zh) 确定挥发性组分血液浓度的方法和设备
EP2223105B1 (en) Method for testing the function of a device
Seys et al. An outbreak of swimming-pool related respiratory symptoms: an elusive source of trichloramine in a municipal indoor swimming pool
WO2018121171A1 (zh) 一种生命探测装置及其应用
Isa et al. The impact of exposure to indoor pollutants on allergy and lung inflammation among school children in Selangor, Malaysia: an evaluation using factor analysis
Honda et al. Occupational asthma induced by the fungicide tetrachloroisophthalonitrile.
Wilczok et al. Urinary hippuric acid concentration after occupational exposure to toluene.
Predieri et al. Determination of nitrogen trichloride (NCl3) levels in the air of indoor chlorinated swimming pools: an impinger method proposal
Shiraishi Levels of formaldehyde, phenol and ethanol in dissection room air and measures for reduction
Bonvallot et al. Derivation of a toxicity reference value for nitrogen trichloride as a disinfection by-product
Deshpande et al. Development of arsenic testing field kit—a tool for rapid on-site screening of arsenic contaminated water sources
King et al. Eye and respiratory symptoms in poultry processing workers exposed to chlorine by‐products
Berglund et al. Theory and methods for odor evaluation
Jaffe Brief history of time and volumetric capnography
Ferris Jr Tests to assess effects of low levels of air pollutants on human health
Ramos-Bonilla et al. Ambient air pollution alters heart rate regulation in aged mice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887413

Country of ref document: EP

Kind code of ref document: A1