WO2018120048A1 - 带有复合材料的电磁屏蔽件的屏蔽线缆 - Google Patents

带有复合材料的电磁屏蔽件的屏蔽线缆 Download PDF

Info

Publication number
WO2018120048A1
WO2018120048A1 PCT/CN2016/113572 CN2016113572W WO2018120048A1 WO 2018120048 A1 WO2018120048 A1 WO 2018120048A1 CN 2016113572 W CN2016113572 W CN 2016113572W WO 2018120048 A1 WO2018120048 A1 WO 2018120048A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielded cable
layer
thermoplastic
shielding layer
carbon nanotube
Prior art date
Application number
PCT/CN2016/113572
Other languages
English (en)
French (fr)
Inventor
李章刚
Original Assignee
德尔福派克电气系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德尔福派克电气系统有限公司 filed Critical 德尔福派克电气系统有限公司
Priority to PCT/CN2016/113572 priority Critical patent/WO2018120048A1/zh
Publication of WO2018120048A1 publication Critical patent/WO2018120048A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients

Definitions

  • the present invention generally relates to shielded cables and, more particularly, to a cable having a shield formed from a polymeric composite comprising carbon nanotubes.
  • Electromagnetic shielding is used in cables involving electromagnetic interference (EMI) or radio frequency interference (RFI).
  • EMI electromagnetic interference
  • RFID radio frequency interference
  • a ground shield around the conductor is used to form a Faraday cage to suppress unwanted electromagnetic energy reception or transmission.
  • Wire mesh and metal foil have been used to provide shielding in the cable. However, the metal foil may not be thick enough or have a gap that does not provide sufficient shielding. Braided wire mesh can reduce cable flexibility and increase weight, which is undesirable in applications that are particularly sensitive to quality, such as automotive or aerospace.
  • Conductive composite materials have also been used to provide shielding in cables that use resin substrates loaded with conductive particles such as graphite, metal fibers, or electroplated metal fibers. Composite materials can be more easily formed into shields than metal parts because they can be coextruded with the insulating layer.
  • a shielded cable includes an elongated center conductor formed of a first electrically conductive material, an inner insulating layer formed of a first insulating material axially surrounding the center conductor, and a shielding layer axially surrounding the inner insulating layer.
  • the barrier layer is formed of a polymeric material and contains from 0.5% to 4.0% by weight of single-walled carbon nanotube particles.
  • the thickness of the shielding layer is in the range of 0.28 to 2.0 millimeters (mm).
  • the resistance of the shield can range from 5 to 150 ⁇ -meter.
  • the polymer material forming the shielding layer can be selected from the list of the following materials: polyvinyl chloride, polypropylene, Polyethylene, styrenic block copolymers, thermoplastic olefins, thermoplastic polyurethanes, thermoplastic polyamides, thermoplastic copolyesters, and elastomeric alloys.
  • the first conductive material forming the center conductor may be selected from a list of copper-based materials and aluminum-based materials.
  • the first insulating material forming the inner insulating layer may be selected from the list of materials: polyvinyl chloride, polypropylene, polyethylene, styrene block copolymer, thermoplastic olefin, thermoplastic polyurethane, thermoplastic polyamide, thermoplastic copolyester, and Elastomer alloy.
  • the shielded cable can further include an elongated drain conductor formed from a second electrically conductive material that extends generally parallel to the center conductor and is axially surrounded by the shielding layer.
  • the second electrically conductive material forming the draining conductor may be selected from a list of copper based materials and aluminum based materials.
  • the shielded cable may further include an outer insulating layer formed of a second insulating material that axially surrounds the shield layer.
  • the second insulating material forming the outer insulating layer may be selected from the list of materials: polyvinyl chloride, polypropylene, polyethylene, styrene block copolymer, thermoplastic olefin, thermoplastic polyurethane, thermoplastic polyamide, thermoplastic copolyester, and Elastomer alloy.
  • FIG. 1 is a cross-sectional view of a shielded coaxial cable according to a first embodiment
  • FIG. 2 is a cross-sectional view of a shielded coaxial cable in accordance with a second embodiment.
  • FIG. 1 shows a non-limiting example of a shielded cable, which in this example is a coaxial cable 100.
  • coaxial cable 100 includes a single elongated center conductor, i.e., center conductor 102, which is formed from a conductive material such as a copper-based or aluminum-based material.
  • the copper-based material may be pure copper or a copper alloy having copper as a main component.
  • the aluminum-based material may be pure aluminum or an aluminum alloy having aluminum as a main component.
  • the center conductor 102 is axially surrounded by an inner insulating layer 104 that axially surrounds the center conductor, which is formed of a first insulating material such as polyvinyl chloride (PVC), polypropylene (PP), poly Ethylene (PE), or thermoplastic elastomer (TPE), wherein TPE comprises styrene block copolymer (TPE-s), thermoplastic olefin (TPE-o), thermoplastic polyurethane (TPU), thermoplastic polyamide, thermoplastic copolyester And elastomeric alloys (TPE-v).
  • a first insulating material such as polyvinyl chloride (PVC), polypropylene (PP), poly Ethylene (PE), or thermoplastic elastomer (TPE), wherein TPE comprises styrene block copolymer (TPE-s), thermoplastic olefin (TPE-o), thermoplastic polyurethane (TPU), thermoplastic polyamide, thermoplastic cop
  • TPE material K, M, V, And For All of the above are manufactured by KRAIBURG-TPE; SANTOPRENE manufactured by ExxonMobil, TERMOTON manufactured by Termopol Polimer, ARNITEL manufactured by DSM, SOLPRENE manufactured by Dynasol, ENGAGE manufactured by Dow Chemical, HYTREL manufactured by DuPont, manufactured by ELASTO. DRYFLEX and MEDIPRENE, as well as KRATON manufactured by Kraton Polymers.
  • the inner insulating layer 104 can be formed by pressing a first insulating material onto the center wire 102.
  • the inner insulating layer 104 itself is axially surrounded by a shielding layer 106 formed of a conductive composite material, the conductive composite material being 0.5% to 4.0% by weight of single-walled carbon nanotube particles and such as PVC, PP, A polymer material composition such as PE or TPE that forms the remainder of the composite.
  • the addition of carbon nanotube particles to the polymeric material provides electrical conductivity to the composite.
  • the radial thickness of the shield layer 106 is in the range of 0.28 to 2.0 millimeters (mm).
  • Single-walled carbon nanotube particles are used because they provide faster electron transfer than multi-walled carbon nanotube particles, thus providing superior shielding properties at higher frequencies.
  • the shielding layer 106 can be formed by pressing a polymer material containing carbon nanotube particles onto the inner insulating layer 104.
  • the inventors have discovered that the concentration of carbon nanotube particles can decrease as the thickness of the shield layer 106 increases.
  • the inventors have found that the following combination of carbon nanotube particle concentration and shielding thickness in a PVC based material provides 40 to 50 dB shielding, which is sufficient for many automotive applications, as shown in Table 1 below.
  • coaxial cable 100 also includes a drain conductor, hereinafter referred to as drain wire 108, which is configured to increase the connection between shield layer 106 and the ground connection of shield layer 106.
  • the drain wire 108 extends generally parallel to the center conductor and is axially surrounded by the shield layer 106.
  • the drain wire 108 is formed of a conductive material such as a copper-based or aluminum-based material. Alternative embodiments of coaxial cable 100 without a drain wire are also contemplated.
  • FIG. 1 further shows that the coaxial cable 100 includes an outer insulating layer 110 that axially surrounds the shield layer 106.
  • the outer insulating layer 110 is formed of a second insulating material such as PVC, PP, PE or TPE. Alternative embodiments of coaxial cable 100 without an outer insulating layer are also contemplated.
  • the outer insulating layer 110 may be formed by pressing a second insulating material onto the shield layer 106.
  • FIG. 2 shows another non-limiting example of a shielded cable 200 having a plurality of center conductors, such as four center conductors 202A-202D.
  • Each of the center conductors 202A-202D is axially surrounded by separate inner insulating layers 204A-204D, and all of the inner insulating layers 204A-204D are surrounded by an intermediate insulating layer 212.
  • the intermediate insulating layer 212 may be formed of an insulating tube in which the center wires 202A-202D are placed or an insulating film wrapped around the center wires 202A-202D.
  • the intermediate insulating layer 212 is axially surrounded by a shielding layer 206 formed of a conductive composite material containing 0.5% to 4.0% in a polymer-based material such as PVC, PP, PE or TPE ( Single-walled carbon nanotube particles by weight.
  • the radial thickness of the shield layer 206 is in the range of 0.28 to 2.0 mm.
  • Shielded cable 200 also includes a drain wire 208 that extends generally parallel to the center conductor and is axially surrounded by shield layer 206. Alternative embodiments of shielded cable 200 without a drain wire are also contemplated.
  • the shielded cable 200 further includes an outer insulating layer 210 that axially surrounds the shield layer 206. Alternative embodiments of shielded cable 200 without an outer insulating layer are also contemplated. Other embodiments of the shielded cable 200 are contemplated that have fewer or more than four center conductors 202.
  • a shielded casing for an electrical connector and an electronic device forms an outer casing made of an insulating material such as polybutylene terephthalate (PBT), Polyamide (PA, NYLON, NYLON 66), polycarbonate (PC), acrylonitrile butadiene styrene (ABS), or mixtures thereof containing 0.5% to 4.0% by weight of a single wall
  • PBT polybutylene terephthalate
  • PA Polyamide
  • NYLON NYLON
  • PC polycarbonate
  • ABS acrylonitrile butadiene styrene
  • the carbon nanotube particles have a thickness ranging from 0.28 to 2.0 mm (mm).
  • shielded cables 100, 200 are provided.
  • the cable includes a shield layer 106 surrounding the center conductors 102, 202A-202D, which is formed from a conductive composite material that contains 0.5% to 4.0% in a polymeric substrate such as PVC, PP, PE or TPE (by weight) Single-walled carbon nanotube particles.
  • the shielding layers 106, 206 can be formed by extruding a composite material onto an insulating layer. Since the percentage of carbon nanotube particles is so low, the physical property in which the polymer material changes significantly is only conductivity. Other physical properties such as softness, abrasion resistance, color, etc. remain essentially unchanged. Carbon nanotubes are much lighter than wire mesh shields.
  • the composite shield layers 106, 206 are not subjected to the gap experienced by the foil shield, which reduces the shielding efficiency. Since the shielding layers 106, 206 are primarily composed of a polymeric material that is typically used to form the outer insulating layer, the cable may not require a separate outer insulating layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Insulated Conductors (AREA)

Abstract

一种屏蔽的线缆(100、200),其包括:由导电材料形成的细长中心导体、轴向地包围中心导体的由绝缘材料形成的内绝缘层(104、204),以及轴向地包围内绝缘层(104、204)的屏蔽层(106、206)。屏蔽层(106、206)由聚合物材料形成。屏蔽层(106、206)含有按重量计0.5%至4.0%的单壁的碳纳米管颗粒。屏蔽层(106、206)的厚度在从0.28至2.0毫米(mm)的范围内。

Description

带有复合材料的电磁屏蔽件的屏蔽线缆 技术领域
本发明总的涉及屏蔽线缆,更具体来讲,涉及具有屏蔽件的线缆,该屏蔽件由含有碳纳米管的聚合复合物形成。
背景技术
电磁屏蔽用于涉及电磁干扰(EMI)或射频干扰(RFI)的线缆中。围绕导体的接地屏蔽件用来形成法拉第笼以抑制不需要的电磁能的接收或播送。人们已经采用金属丝网和金属箔来提供线缆中的屏蔽。然而,金属箔可能不足够厚或具有不能提供充分屏蔽的间隙。编织的金属丝网可降低线缆柔性并增大重量,这在诸如汽车或航天的对质量尤为敏感的应用中是不理想的。人们还已经使用导电的复合材料来提供线缆中的屏蔽,该导电的复合材料使用加载有诸如石墨的导电颗粒、金属纤维或电镀金属的纤维的树脂基材。复合材料可以比金属部件更容易地形成为屏蔽件,因为它们可与绝缘层共同挤压出来,然而,这些材料通常需要相当高的导电颗粒对基材树脂比,这影响了复合材料的重量和物理特性。因此,仍然需要一种容易形成但保持基材树脂的低重量和其他物理特性的复合屏蔽材料。
背景技术中所讨论的主题内容不应被假定为由于其在背景技术中提及了而仅是现有技术的事情。同样地,背景技术中提及的或与背景技术主题相关联的问题不应被假定为先前已经在现有技术中被认识了。背景技术中的主题仅仅代表了不同的方法,其在各种方法中和方法本身也可以是发明。
发明内容
根据本发明的一个实施例,提供一种屏蔽的线缆。该屏蔽的线缆包括由第一导电材料形成的细长的中心导体、轴向地包围中心导体的由第一绝缘材料形成的内绝缘层,以及轴向地包围内绝缘层的屏蔽层。该屏蔽层由聚合物材料形成,并含有0.5%至4.0%(按重量计)的单壁的碳纳米管颗粒。屏蔽层的厚度在0.28至2.0毫米(mm)的范围内。屏蔽层的电阻可以在5至150Ω-米的范围内。
形成屏蔽层的聚合物材料可选自由以下材料构成的列表:聚氯乙烯、聚丙烯、 聚乙烯、苯乙烯嵌段共聚物、热塑性烯烃、热塑性聚氨酯、热塑性聚酰胺、热塑性共聚酯以及弹性体合金。形成中心导体的第一导电材料可选自由铜基材料和铝基材料构成的列表。形成内绝缘层的第一绝缘材料可选自由以下材料构成的列表:聚氯乙烯、聚丙烯、聚乙烯、苯乙烯嵌段共聚物、热塑性烯烃、热塑性聚氨酯、热塑性聚酰胺、热塑性共聚酯以及弹性体合金。
屏蔽的线缆还可进一步包括由第二导电材料形成的细长的排扰导体,第二导电材料大致平行于中心导体延伸,并轴向地被屏蔽层包围。形成排扰导体的第二导电材料可选自由铜基材料和铝基材料构成的列表。
屏蔽的线缆可进一步包括由第二绝缘材料形成的外绝缘层,其轴向地包围屏蔽层。形成外绝缘层的第二绝缘材料可选自由以下材料构成的列表:聚氯乙烯、聚丙烯、聚乙烯、苯乙烯嵌段共聚物、热塑性烯烃、热塑性聚氨酯、热塑性聚酰胺、热塑性共聚酯以及弹性体合金。
阅读以下对本发明优选实施例的详细描述,本发明的其他特征和优点将显现得更加清晰,本发明的优选实施例是借助于仅为非限制性实例并参照附图给出的。
附图说明
现将参照附图借助于实例来描述本发明,附图中:
图1是根据第一实施例的屏蔽同轴线缆的截面图;以及
图2是根据第二实施例的屏蔽同轴线缆的截面图。
具体实施方式
本文描述的是屏蔽线缆的各种实施例,屏蔽线缆为由聚合物材料形成屏蔽层包围中心导体,聚合物材料包含单壁的碳纳米管颗粒或粉末,以便产生能够提供电磁屏蔽的导电聚合物。
图1示出屏蔽线缆的非限制性实例,在该实例中线缆为同轴电缆100。如图1所示,同轴电缆100包括单一细长的中心导体,即,中心导线102,其由诸如铜基或铝基材料的导电材料形成。如在本文中使用的,铜基材料可以是纯铜或具有作为主要成分的铜的铜合金。同样地,如在本文中使用的,铝基材料可以是纯铝或具有作为主要成分的铝的铝合金。
中心导线102被内绝缘层104轴向地包围,内绝缘层104轴向地包围中心导 体,其由诸如以下材料的第一绝缘材料形成:聚氯乙烯(PVC)、聚丙烯(PP)、聚乙烯(PE),或热塑性弹性体(TPE),其中TPE包括苯乙烯嵌段共聚物(TPE-s)、热塑性烯烃(TPE-o)、热塑性聚氨酯(TPU)、热塑性聚酰胺、热塑性共聚酯以及弹性体合金(TPE-v)。TPE材料的实例是
Figure PCTCN2016113572-appb-000001
Figure PCTCN2016113572-appb-000002
K、
Figure PCTCN2016113572-appb-000003
M、
Figure PCTCN2016113572-appb-000004
V、
Figure PCTCN2016113572-appb-000005
Figure PCTCN2016113572-appb-000006
以及For
Figure PCTCN2016113572-appb-000007
以上所有由KRAIBURG-TPE制造;由ExxonMobil制造的SANTOPRENE、由Termopol Polimer制造的TERMOTON、由DSM制造的ARNITEL、由Dynasol制造的SOLPRENE、由Dow Chemical制造的ENGAGE、由DuPont制造的HYTREL、由ELASTO制造的DRYFLEX和MEDIPRENE,以及由Kraton Polymers制造的KRATON。为了验证材料为热塑性弹性体,材料必须具有以下三个主要特征:延展而调节伸长度的能力,一旦消除应力,便返回到接近于其原始形状的某些东西;可在高温下作为熔化物处理;以及没有显著的蠕变。内绝缘层104可通过将第一绝缘材料挤压到中心导线102上来形成。
内绝缘层104本身被屏蔽层106轴向地包围,屏蔽层106由导电复合材料形成,导电复合材料由0.5%至4.0%(按重量计)的单壁碳纳米管颗粒和诸如PVC、PP、PE或TPE之类的聚合物材料组成,后者形成该复合材料其余的百分比。将碳纳米管颗粒添加到聚合物材料中为复合材料提供了导电性。屏蔽层106的径向厚度在0.28至2.0毫米(mm)范围内。使用单壁的碳纳米管颗粒,这是因为它们比多壁碳纳米管颗粒提供更快的电子转移,因此在较高频率下提供超好的屏蔽特性。屏蔽层106可通过将含有碳纳米管颗粒的聚合物材料挤压到内绝缘层104上来形成。
发明人已经发现,碳纳米管颗粒的浓度可随着屏蔽层106厚度增加而减小。发明人已经找到,PVC基材料中碳纳米管颗粒浓度和屏蔽厚度的以下组合提供了40至50dB的屏蔽,这对于许多汽车的应用是足够的,所述组合如下面表1所示。
碳纳米管颗粒的百分比(按重量计) 屏蔽层厚度(mm)
0.5% 2.0mm
0.7% 1.5mm
1.0% 1.0mm
2.1% 0.5mm
4.0% 0.28mm
表1
如图1所示,同轴电缆100还包括排扰导体,以下其被称作排扰线108,其构造成提高屏蔽层106和屏蔽层106的接地连接之间连接。排扰线108大致平行于中心导体延伸并被屏蔽层106轴向地包围。排扰线108由诸如铜基或铝基材料的导电材料形成。也可以设想没有排扰线的同轴电缆100的替代的实施例。
图1进一步显示,同轴电缆100包括轴向地包围屏蔽层106的外绝缘层110。外绝缘层110由诸如PVC、PP、PE或TPE那样的第二绝缘材料形成。也可以设想没有外绝缘层的同轴电缆100的替代的实施例。外绝缘层110可通过将第二绝缘材料挤压到屏蔽层106上来形成。
图2示出屏蔽线缆200的另一非限制性实例,屏蔽线缆200具有多个中心导线,例如四个中心导线202A-202D。每个中心导线202A-202D被独立的内绝缘层204A-204D轴向地包围,所有的内绝缘层204A-204D被中间绝缘层212包围。中间绝缘层212可由其中放置中心导线202A-202D的绝缘管或围绕中心导线202A-202D包裹起来的绝缘膜形成。中间绝缘层212被屏蔽层206轴向地包围,屏蔽层206由导电的复合材料形成,导电的复合材料在诸如PVC、PP、PE或TPE那样的聚合物基材料中含有0.5%至4.0%(按重量计)的单壁的碳纳米管颗粒。屏蔽层206的径向厚度在0.28至2.0mm的范围内。屏蔽线缆200还包括排扰线208,排扰线208大致平行于中心导体延伸并被屏蔽层206轴向地包围。也可以设想没有排扰线的屏蔽线缆200的替代的实施例。屏蔽的线缆200进一步包括轴向地包围屏蔽层206的外绝缘层210。也可以设想没有外绝缘层的屏蔽的线缆200的替代的实施例。可以设想该屏蔽的线缆200的其他的实施例,它们具有少于或多于四个的中心导线202。
根据本发明的其他实施例,用于电气连接器和电子装置的屏蔽外壳(未示出)形成用绝缘材料制成的外壳,绝缘材料诸如是聚对苯二甲酸丁二醇酯(PBT)、聚酰胺(PA、NYLON、NYLON66)、聚碳酸酯(PC)、丙烯腈-丁二烯-苯乙烯(ABS),或它们的混合物,其中含有0.5%至4.0%(按重量计)的单壁的碳纳米管颗粒,并具有从0.28至2.0毫米(mm)范围内的厚度。
因此,提供了屏蔽的线缆100、200。线缆包括包围中心导线102、202A-202D的屏蔽层106,其由导电复合材料形成,复合材料在诸如PVC、PP、PE或TPE那样的聚合物基材中含有0.5%至4.0%(按重量计)的单壁的碳纳米管颗粒。 屏蔽层106、206可通过将复合材料挤压到绝缘层上来形成。因为碳纳米管颗粒的百分比如此低,所以聚合物材料发生显著变化的物理特性只是导电性。诸如柔软性、耐磨性、颜色之类的其他物理特性基本上保持不变。碳纳米管远比金属丝网屏蔽轻得多。此外,复合的屏蔽层106、206不经受箔屏蔽所经历的间隙,这会降低屏蔽效率。由于屏蔽层106、206主要由通常用来形成外绝缘层的聚合物材料组成,线缆可不需要分开的外绝缘层。
尽管本发明已经借助于其优选的实施例进行了描述,但并不意图局限于此,相反,只意欲将本发明限制到附后权利要求书中所阐述的范围。此外,使用第一、第二等的术语,并不表示重要性的任何次序,而相反,术语第一、第二等是用来分辨出一个元件与另一元件的区别。而且,使用一、一个等并不表示数量的限制,而相反,其表示存在着至少一个所涉及的物项。

Claims (15)

  1. 一种屏蔽线缆(100、200),包括:
    由第一导电材料形成的细长中心导体(102、202A-202D);
    轴向地包围中心导体(102、202A-202D)的由第一绝缘材料形成的内绝缘层(104、204);以及
    轴向地包围内绝缘层(104、204)的由聚合物材料形成的屏蔽层(106、206),所述聚合物材料含有按重量计0.5%至4.0%的单壁的碳纳米管颗粒,其中,屏蔽层(106、206)的厚度在从0.28至2.0毫米的范围内。
  2. 如权利要求1所述的屏蔽线缆(100、200),其特征在于,聚合物材料选自由以下材料构成的列表:聚氯乙烯、聚丙烯、聚乙烯、苯乙烯嵌段共聚物、热塑性烯烃、热塑性聚氨酯、热塑性聚酰胺、热塑性共聚酯以及弹性体合金。
  3. 如权利要求1所述的屏蔽线缆(100、200),其特征在于,还包括由第二导电材料形成的细长排扰导体(108、208),其大致平行于中心导体(102、202A-202D)延伸,并轴向地被屏蔽层(106、206)包围。
  4. 如权利要求3所述的屏蔽线缆(100、200),其特征在于,形成排扰导体(108、208)的第二导电材料选自以下材料组成的列表:铜基材料和铝基材料列表。
  5. 如权利要求1所述的屏蔽线缆(100、200),其特征在于,形成中心导体(102、202A-202D)的第一导电材料选自以下材料组的材料列表:铜基材料和铝基材料列表。
  6. 如权利要求1所述的屏蔽线缆(100、200),其特征在于,还包括由第二绝缘材料形成并轴向地包围屏蔽层(106、206)的外绝缘层(110、210)。
  7. 如权利要求6所述的屏蔽线缆(100、200),其特征在于,形成外绝缘层(110、210)的第二绝缘材料选自由以下材料组成的列表:聚氯乙烯、聚丙烯、聚乙烯、苯乙烯嵌段共聚物、热塑性烯烃、热塑性聚氨酯、热塑性聚酰胺、热塑性共聚酯以及弹性体合金。
  8. 如权利要求1所述的屏蔽线缆(100、200),其特征在于,形成内绝缘层(104、204)的第一绝缘材料选自由以下材料组成的列表:聚氯乙烯、聚丙烯、聚乙烯、苯乙烯嵌段共聚物、热塑性烯烃、热塑性聚氨酯、热塑性聚酰胺、热塑性共聚酯以及弹性体合金。
  9. 如权利要求1所述的屏蔽线缆(100、200),其特征在于,形成屏蔽层(106、206)的聚合物材料含有按重量计0.5%至4.0%的单壁的碳纳米管颗粒,且其中,屏蔽层(106、206)的厚度在从0.28至1.0mm的范围内。
  10. 如权利要求1所述的屏蔽线缆(100、200),其特征在于,形成屏蔽层(106、206)的聚合物材料含有按重量计0.5%的单壁的碳纳米管颗粒,且其中,屏蔽层(106、206)的厚度为2.0mm。
  11. 如权利要求1所述的屏蔽线缆(100、200),其特征在于,形成屏蔽层(106、206)的聚合物材料含有按重量计0.7%的单壁的碳纳米管颗粒,且其中,屏蔽层(106、206)的厚度为1.5mm。
  12. 如权利要求1所述的屏蔽线缆(100、200),其特征在于,形成屏蔽层(106、206)的聚合物材料含有按重量计1.0%的单壁的碳纳米管颗粒,且其中,屏蔽层(106、206)的厚度为1.0mm。
  13. 如权利要求1所述的屏蔽线缆(100、200),其特征在于,形成屏蔽层(106、206)的聚合物材料含有按重量计2.1%的单壁的碳纳米管颗粒,且其中,屏蔽层(106、206)的厚度为0.5mm。
  14. 如权利要求1所述的屏蔽线缆(100、200),其特征在于,形成屏蔽层(106、206)的聚合物材料含有按重量计4.0%的单壁的碳纳米管颗粒,且其中,屏蔽层(106、206)的厚度为0.28mm。
  15. 如权利要求1所述的屏蔽线缆(100、200),其特征在于,屏蔽层(106、206)的电阻在5至150Ω-米的范围内。
PCT/CN2016/113572 2016-12-30 2016-12-30 带有复合材料的电磁屏蔽件的屏蔽线缆 WO2018120048A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113572 WO2018120048A1 (zh) 2016-12-30 2016-12-30 带有复合材料的电磁屏蔽件的屏蔽线缆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113572 WO2018120048A1 (zh) 2016-12-30 2016-12-30 带有复合材料的电磁屏蔽件的屏蔽线缆

Publications (1)

Publication Number Publication Date
WO2018120048A1 true WO2018120048A1 (zh) 2018-07-05

Family

ID=62707694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113572 WO2018120048A1 (zh) 2016-12-30 2016-12-30 带有复合材料的电磁屏蔽件的屏蔽线缆

Country Status (1)

Country Link
WO (1) WO2018120048A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11651870B2 (en) * 2019-03-29 2023-05-16 Prysmian S.P.A. Cable with semi-conducting outermost layer
WO2023174246A1 (zh) * 2022-03-14 2023-09-21 吉林省中赢高科技有限公司 新型屏蔽材料的连接器总成及车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948381A (zh) * 2006-10-27 2007-04-18 东华大学 一种导电高分子材料及其制备方法
CN102321338A (zh) * 2011-07-15 2012-01-18 吉林大学 聚醚醚酮基复合电磁屏蔽材料及其制备方法
CN102617918A (zh) * 2012-04-11 2012-08-01 四川大学 一种高韧性导电高分子复合材料的制备方法
US20130048337A1 (en) * 2011-08-24 2013-02-28 Tyco Electronics Corporation Carbon-based substrates with organometallic fillers
CN103113732A (zh) * 2013-03-19 2013-05-22 中国科学院长春应用化学研究所 一种导电高分子复合材料及其制备方法
CN103794278A (zh) * 2014-02-08 2014-05-14 苏州科宝光电科技有限公司 舰船用压力传感器电缆
CN104900337A (zh) * 2015-06-24 2015-09-09 苗玉霞 用于计算机的数据线缆
CN105244107A (zh) * 2015-10-16 2016-01-13 安徽蓝德集团股份有限公司 一种抗冲击阻燃控制电缆
CN106046638A (zh) * 2016-07-14 2016-10-26 东莞市成天泰电线电缆有限公司 一种超光滑半导电屏蔽电缆专用料及其屏蔽电缆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948381A (zh) * 2006-10-27 2007-04-18 东华大学 一种导电高分子材料及其制备方法
CN102321338A (zh) * 2011-07-15 2012-01-18 吉林大学 聚醚醚酮基复合电磁屏蔽材料及其制备方法
US20130048337A1 (en) * 2011-08-24 2013-02-28 Tyco Electronics Corporation Carbon-based substrates with organometallic fillers
CN102617918A (zh) * 2012-04-11 2012-08-01 四川大学 一种高韧性导电高分子复合材料的制备方法
CN103113732A (zh) * 2013-03-19 2013-05-22 中国科学院长春应用化学研究所 一种导电高分子复合材料及其制备方法
CN103794278A (zh) * 2014-02-08 2014-05-14 苏州科宝光电科技有限公司 舰船用压力传感器电缆
CN104900337A (zh) * 2015-06-24 2015-09-09 苗玉霞 用于计算机的数据线缆
CN105244107A (zh) * 2015-10-16 2016-01-13 安徽蓝德集团股份有限公司 一种抗冲击阻燃控制电缆
CN106046638A (zh) * 2016-07-14 2016-10-26 东莞市成天泰电线电缆有限公司 一种超光滑半导电屏蔽电缆专用料及其屏蔽电缆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11651870B2 (en) * 2019-03-29 2023-05-16 Prysmian S.P.A. Cable with semi-conducting outermost layer
WO2023174246A1 (zh) * 2022-03-14 2023-09-21 吉林省中赢高科技有限公司 新型屏蔽材料的连接器总成及车辆

Similar Documents

Publication Publication Date Title
US9901018B1 (en) Electrically conductive hybrid polymer material
US7413474B2 (en) Composite coaxial cable employing carbon nanotubes therein
CN108780681A (zh) 通信用屏蔽电线
US10485149B2 (en) Composite formulation and composite article
US20150371737A1 (en) Twisted pair cable with shielding arrangement
EP3281210B1 (en) Cable shielding assembly and process of producing cable shielding assembly
WO2012137850A1 (ja) 通信ケーブル
WO2018120048A1 (zh) 带有复合材料的电磁屏蔽件的屏蔽线缆
JP7388527B2 (ja) 通信用電線
JP6460668B2 (ja) 導電性樹脂組成物及びシールドケーブル
US9953737B2 (en) Electrical wire with a central aluminum wire surrounded by at least one copper wire
JP2012119231A (ja) 同軸ケーブル
EP3281205B1 (en) Article with composite shield and process of producing an article with a composite shield
JP2022111740A (ja) 通信用電線
US20120103658A1 (en) Coaxial cable center conductor having multiple precoat layers
JP2017062995A (ja) ワイヤーハーネス
JP6558564B2 (ja) 送電ケーブル
JP2016058306A (ja) 可動部用ケーブル
CN111418028A (zh) 碳纳米管包覆电线
JP2011222201A (ja) 同軸ケーブル及びその加工品
JPWO2019083028A1 (ja) カーボンナノチューブ被覆電線
WO2017047500A1 (ja) 絶縁電線
KR20190023112A (ko) 탄소마이크로코일-탄소나노코일 하이브리드 소재를 포함하는 카본페이퍼
WO2013099783A1 (ja) ケーブル
JP2019014911A (ja) 導電性樹脂組成物及びシールドケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925717

Country of ref document: EP

Kind code of ref document: A1