WO2018120006A1 - Printed circuit board with integrated positive temperature coefficient device - Google Patents

Printed circuit board with integrated positive temperature coefficient device Download PDF

Info

Publication number
WO2018120006A1
WO2018120006A1 PCT/CN2016/113459 CN2016113459W WO2018120006A1 WO 2018120006 A1 WO2018120006 A1 WO 2018120006A1 CN 2016113459 W CN2016113459 W CN 2016113459W WO 2018120006 A1 WO2018120006 A1 WO 2018120006A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pcb
layers
disposed
ptc
Prior art date
Application number
PCT/CN2016/113459
Other languages
French (fr)
Inventor
Ellen Li
Steven Hu
Bing Wang
Jesse ZHOU
Original Assignee
Littelfuse Electronics (Shanghai) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Littelfuse Electronics (Shanghai) Co., Ltd. filed Critical Littelfuse Electronics (Shanghai) Co., Ltd.
Priority to PCT/CN2016/113459 priority Critical patent/WO2018120006A1/en
Priority to CN201680091743.1A priority patent/CN110741524B/en
Priority to TW106146286A priority patent/TW201841450A/en
Publication of WO2018120006A1 publication Critical patent/WO2018120006A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • H05K1/0257Overvoltage protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/021Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient formed as one or more layers or coatings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/117Pads along the edge of rigid circuit boards, e.g. for pluggable connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/073High voltage adaptations
    • H05K2201/0738Use of voltage responsive materials, e.g. voltage switchable dielectric or varistor materials

Definitions

  • the present disclosure generally relates to printed circuit boards (PCBs) .
  • PCBs printed circuit boards
  • the present disclosure relates to a PCB that has an integrated positive temperature coefficient (PTC) device that may be used with a Universal Serial Bus (USB) cable.
  • PTC positive temperature coefficient
  • USB Universal Serial Bus
  • a Universal Serial Bus (USB) interface includes a differential pair of signals (D+and D-) for signaling and also provides power and ground.
  • a USB cable can only provide a certain amount of current.
  • the USB 2.0 standard allows for a maximum output current of 500 mA
  • the USB 3.0 standard allows a maximum output current of 900 mA.
  • the delivery of power through a USB cable occurs using an output voltage of 5V.
  • modern mobile device batteries typically have a storage capacity of several thousand milliamps. The charging of such batteries, even at the increased output currents allowed in the USB 3.0 standard, would thus be delayed if the power is delivered using a 5V output voltage. This charging delay is exacerbated since a switching power supply associated with the USB cable, the USB cable, and the receiving device all present a resistance to the output current.
  • the USB cable interface may get dirty such that a dust particle or other slightly conductive object couples between the supply voltage pin (the pin delivering the output voltage) and one of the differential signaling pins D+ and D-.
  • the USB cable itself may become frayed from twisting by a user such that a slightly conductive path exists between the supply voltage wire and one of the wires for the D+ and D-signals. The result is a short between supply voltage and one of the differential data signals in the USB cable.
  • a short between supply voltage and one of the differential data signals in the USB cable may cause overheating and damage to the USB cable and/or a device coupled to the USB cable.
  • an apparatus includes a first cable plug assembly.
  • the apparatus further includes a printed circuit board (PCB) having a plurality of layers, the PCB to couple to the first cable plug assembly.
  • a positive temperature coefficient (PTC) device may be disposed on a first layer of the plurality of layers, a second layer of the plurality of layers may be disposed over the first layer of the plurality of layers.
  • a printed circuit board (PCB) apparatus may include first and second PCB layers.
  • the PCB apparatus may also include a third PCB layer disposed between the first and second PCB layers.
  • a PTC device may be disposed on the third PCB layer.
  • FIG. 1 illustrates Universal Serial Bus cable arrangement, according to an exemplary embodiment of this disclosure
  • FIG. 2 illustrates a printed circuit board (PCB) , according to an exemplary embodiment of this disclosure
  • FIG. 3 illustrates a cross section view of the PCB, as viewed from the perspective of line I-I shown in FIG. 2, according to an exemplary implementation
  • FIG. 4 illustrates a positive temperature coefficient (PTC) device embodied as a PTC chip, according to an exemplary embodiment of this disclosure.
  • PTC positive temperature coefficient
  • FIG. 1 illustrates Universal Serial Bus (USB) cable arrangement 100, according to an exemplary embodiment of this disclosure.
  • USB Universal Serial Bus
  • Other types of cable arrangements may also be implemented in the manner described in this disclosure.
  • the USB cable arrangement 100 may include a first cable plug assembly 104 and a second cable plug assembly 106.
  • the first cable plug assembly 104 may be coupled to a user equipment, such as a mobile telephone, a tablet computer, consumer wearable device, or the like.
  • the first cable plug assembly 104 is to be coupled to a load device, such as user equipment, that receives at least a voltage via the USB cable arrangement 100.
  • the second plug assembly 106 may be coupled to another user equipment, such as an AC to DC power supply, a computing device, or the like.
  • the second plug assembly 106 is to be coupled to a voltage supply device, such as a user equipment, that supplies a voltage that is to be conveyed by the USB cable arrangement 100.
  • the USB cable arrangement 100 may include a plurality of signal lines 108, 110, 112 and 114.
  • the signal line 108 is coupled to ground.
  • the signal lines 110 and 112 are associated with differential data signals, such as D- and D+, respectively.
  • additional differential data signal lines, or other data signal lines may be included with the cable arrangement 100.
  • the signal line 114 is coupled to a voltage source, where the voltage source is to provide a voltage, such as 5V, 9V, 12V or 19V that is conveyed over the signal line 114.
  • the USB cable arrangement 100 may further include a positive temperature coefficient (PTC) device 102.
  • PTC positive temperature coefficient
  • the PTC device 102 is a coupled between the voltage in (Vin) of the second cable plug assembly 106 and the voltage out (Vout) of the first cable plug assembly 104.
  • the PTC device 102 may be, in one implementation, a conducting polymer layer that separates two or more electrodes.
  • the polymer layer of the PTC device 102 will begin to heat and turn from a solid to a semisolid state, expanding as it does so.
  • the expansion causes conductive layers within the polymer of the PTC device 102 to begin to break so that the PTC device 102 shifts from a low resistance state to a high resistance state.
  • current flow through the PTC device 102 drops dramatically. Once the fault is eliminated and current flow returns to normal, the polymer cools and contracts, returning to its low-resistance state as the conducting chains come back into contact with each other. Therefore, the PTC device 102 is functional to prevent an excessive current on the signal line 114 from reaching a load coupled to the first cable plug assembly 104.
  • the PTC device 102 may be associated with a printed circuit board (PCB) 116.
  • the PCB 116 may be an integral part of the USB cable arrangement 100.
  • the PCB 116 may directly interface with the first cable plug assembly 104.
  • the PCB 116 may be an integral part of the first cable plug assembly 114.
  • the PTC device 102 may be integrated between layers of the PCB 116.
  • FIG. 2 illustrates the PCB 116, according to an exemplary implementation.
  • the PCB 116 may include the PTC device 102.
  • the PCB 116 may include a plurality of circuit trace lines 202 that are usable to couple the PCB 116 to the first cable plug assembly 104.
  • the PCB 116 may include one or more circuit coupling points 204.
  • the signal lines 108, 110, 112 and 114 may be coupled to the one or more circuit coupling points 204 using solder or the like.
  • the plurality of circuit trace lines 202 may be coupled to the first cable plug assembly 104 using solder or the like.
  • FIG. 3 illustrates a cross section view of the PCB 116, as viewed from the perspective of line I-I shown in FIG. 2, according to an exemplary implementation.
  • the PCB 116 may include a plurality of PCB layers.
  • the PCB 116 may include a first layer 302, a second layer 304 disposed over the first layer 302 and a third layer 306 also disposed over the first layer 302.
  • the first layer 302 is sandwiched between the second layer 304 and the third layer 306.
  • the second layer 304 is disposed above the first layer 302, and the third layer 306 is disposed below the first layer 302.
  • at least a portion of the second layer 304 is in direct contact with the first layer 302.
  • at least a portion of the third layer 306 may be in direct contact with the first layer 302.
  • the PTC device 102 is encapsulated by the first layer 302.
  • the PTC device 102 may be entirely or at least partially surrounded by an encapsulant material 308.
  • the encapsulant material 308 may be a resin, epoxy, or the like.
  • the PTC device 102 is mounted to a surface of the first layer 302.
  • the PTC device 102 is encapsulated by a material of the first layer 302. As described in the following, the PTC device 102 may be a PTC chip.
  • the PTC device 102 may be electrically coupled to the second layer 304 by way of one or more vias 310, and the one or more vias 310 may be coupled to one or more circuit trace lines 311 associated with the second layer 304. Furthermore, the PTC device 102 may be electrically coupled to the third layer 306 by way of one or more vias 312, and the one or more vias 312 may be coupled to one or more circuit trace lines 313 associated with the third layer 306.
  • the one or more circuit trace lines 311 and 313 may be made of copper foil, copper plating, or the like.
  • a contact pad 314 may be disposed on a surface of the second layer 304. Similarly, a contact pad 316 may be disposed on a surface of the third layer 306. The contact pads 314 and 316 provide electrical contact to the PTC device 102 by way of the vias 310 and 312 and the one or more circuit trace lines 311 and 313.
  • the PCB 116 may be arranged and coupled as part of a cable arrangement to allow current to flow through the PTC device 102 by way of the one or more vias 310 and 312.
  • the one or more the vias 310 may be coupled to Vin via the signal line 114
  • the one or more vias 312 may be coupled to Vout also via the signal line 114.
  • the Vin is solder coupled to the PTC device 102 by way of the contact pad 314, and the Vout is solder coupled to the PTC device 102 by way of the contact pad 316. Therefore, the PTC device 102 may be functional to mitigate an undesirable overcurrent condition on the signal line 114.
  • FIG. 4 illustrates the PTC device 102 embodied as a PTC chip 400, according to an exemplary embodiment of this disclosure.
  • the PTC chip 400 in one implementation, includes a conductive particle filled polymer layer 402.
  • the conductive particle filled polymer layer 402 may be disposed between a first electrode 404 and a second electrode 406.
  • the conductive particle fill may include gold, nickel, silver metal material, or the like, and carbon, TiC , tungsten carbide (WC) , or the like, semiconductor material; and the polymer may be polyethylene and/or polypropylene high crystal polymer.
  • the polymer layer 402 of the PTC chip 400 When current that passes through the PTC chip 400 exceeds a rated limit, the polymer layer 402 of the PTC chip 400 will begin to heat and turn from a crystalline state to an amorphous state, expanding as it does so. The expansion causes conductive layers within the polymer of the PTC chip 400 to begin to break so that the PTC chip 400 shifts from a low resistance state to a high resistance state. As a result, current flow through the PTC chip 400 drops dramatically. Once the fault is eliminated and current flow returns to normal, the polymer layer 402 cools and contracts, returning to its low-resistance state as the conducting chains come back into contact with each other. Therefore, the PTC chip 400 is functional, when implemented for example with the PCB 116, to prevent an excessive current on the signal line 114 from reaching a load coupled to the first cable plug assembly 104.
  • USB cable arrangements and PCBs having integrated PTC devices are disclosed, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the spirit and scope of the claims of the application. Other modifications may be made to adapt a particular situation or material to the teachings disclosed above without departing from the scope of the claims. Therefore, the claims should not be construed as being limited to any one of the particular embodiments disclosed, but to any embodiments that fall within the scope of the claims.

Abstract

An apparatus includes a first cable plug (104) assembly. The apparatus further includes a printed circuit board (PCB) (116) having a plurality of layers, the PCB (116) to couple to the first cable plug (104) assembly. A positive temperature coefficient (PTC) device (102) may be disposed on a first layer (302) of the plurality of layers, and a second layer (304) of the plurality of layers may be disposed over the first layer (302) of the plurality of layers.

Description

PRINTED CIRCUIT BOARD WITH INTEGRATED POSITIVE TEMPERATURE COEFFICIENT DEVICE BACKGROUND
Field
The present disclosure generally relates to printed circuit boards (PCBs) . In particular, the present disclosure relates to a PCB that has an integrated positive temperature coefficient (PTC) device that may be used with a Universal Serial Bus (USB) cable.
Description of Related Art
A Universal Serial Bus (USB) interface includes a differential pair of signals (D+and D-) for signaling and also provides power and ground. With regard to the delivery of power, a USB cable can only provide a certain amount of current. For example, the USB 2.0 standard allows for a maximum output current of 500 mA whereas the USB 3.0 standard allows a maximum output current of 900 mA. Traditionally, the delivery of power through a USB cable occurs using an output voltage of 5V. But modern mobile device batteries typically have a storage capacity of several thousand milliamps. The charging of such batteries, even at the increased output currents allowed in the USB 3.0 standard, would thus be delayed if the power is delivered using a 5V output voltage. This charging delay is exacerbated since a switching power supply associated with the USB cable, the USB cable, and the receiving device all present a resistance to the output current.
To enable a rapid charge mode in light of the output current limitations and associated losses from device resistances, it is conventional to use markedly higher output voltages over the USB cable. For example, rather than use the default USB output voltage of 5V,  rapid charging modes have been developed that use 9V, 12V, or even 19V. The increased voltages allow the switching power supply to deliver more power over the USB cable without exceeding the maximum output current limitations.
Although rapid charging modes are advantageous, problems have arisen with regard to their implementation. For example, the USB cable interface may get dirty such that a dust particle or other slightly conductive object couples between the supply voltage pin (the pin delivering the output voltage) and one of the differential signaling pins D+ and D-. Alternatively, the USB cable itself may become frayed from twisting by a user such that a slightly conductive path exists between the supply voltage wire and one of the wires for the D+ and D-signals. The result is a short between supply voltage and one of the differential data signals in the USB cable. A short between supply voltage and one of the differential data signals in the USB cable may cause overheating and damage to the USB cable and/or a device coupled to the USB cable.
Accordingly, there is a need in the art for improved protection against shorts over data interfaces. Other problems with conventional short protection techniques in USB cables and other implementations will become apparent in view of the disclosure below.
SUMMARY
This Summary is provided to introduce a selection of concepts in a simplified form further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is this Summary intended as an aid in determining the scope of the claimed subject matter.
According to one implementation, an apparatus includes a first cable plug assembly. The apparatus further includes a printed circuit board (PCB) having a plurality of layers, the PCB to couple to the first cable plug assembly. A positive temperature coefficient  (PTC) device may be disposed on a first layer of the plurality of layers, a second layer of the plurality of layers may be disposed over the first layer of the plurality of layers.
According to another implementation, a printed circuit board (PCB) apparatus may include first and second PCB layers. The PCB apparatus may also include a third PCB layer disposed between the first and second PCB layers. A PTC device may be disposed on the third PCB layer.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates Universal Serial Bus cable arrangement, according to an exemplary embodiment of this disclosure;
FIG. 2 illustrates a printed circuit board (PCB) , according to an exemplary embodiment of this disclosure;
FIG. 3 illustrates a cross section view of the PCB, as viewed from the perspective of line I-I shown in FIG. 2, according to an exemplary implementation; and
FIG. 4 illustrates a positive temperature coefficient (PTC) device embodied as a PTC chip, according to an exemplary embodiment of this disclosure.
DETAILED DESCRIPTION
FIG. 1 illustrates Universal Serial Bus (USB) cable arrangement 100, according to an exemplary embodiment of this disclosure. Other types of cable arrangements may also be implemented in the manner described in this disclosure.
The USB cable arrangement 100 may include a first cable plug assembly 104 and a second cable plug assembly 106. In one implementation, the first cable plug assembly 104 may be coupled to a user equipment, such as a mobile telephone, a tablet computer, consumer wearable device, or the like. In general, the first cable plug assembly 104 is to be coupled to a  load device, such as user equipment, that receives at least a voltage via the USB cable arrangement 100. Furthermore, the second plug assembly 106 may be coupled to another user equipment, such as an AC to DC power supply, a computing device, or the like. In general, the second plug assembly 106 is to be coupled to a voltage supply device, such as a user equipment, that supplies a voltage that is to be conveyed by the USB cable arrangement 100.
The USB cable arrangement 100 may include a plurality of  signal lines  108, 110, 112 and 114. The signal line 108 is coupled to ground. The  signal lines  110 and 112 are associated with differential data signals, such as D- and D+, respectively. Although not illustrated, additional differential data signal lines, or other data signal lines, may be included with the cable arrangement 100. The signal line 114 is coupled to a voltage source, where the voltage source is to provide a voltage, such as 5V, 9V, 12V or 19V that is conveyed over the signal line 114.
The USB cable arrangement 100 may further include a positive temperature coefficient (PTC) device 102. In one to implementation, the PTC device 102 is a coupled between the voltage in (Vin) of the second cable plug assembly 106 and the voltage out (Vout) of the first cable plug assembly 104.
The PTC device 102 may be, in one implementation, a conducting polymer layer that separates two or more electrodes. When current that passes through the PTC device 102 exceeds a rated limit, the polymer layer of the PTC device 102 will begin to heat and turn from a solid to a semisolid state, expanding as it does so. The expansion causes conductive layers within the polymer of the PTC device 102 to begin to break so that the PTC device 102 shifts from a low resistance state to a high resistance state. As a result, current flow through the PTC device 102 drops dramatically. Once the fault is eliminated and current flow returns to normal,  the polymer cools and contracts, returning to its low-resistance state as the conducting chains come back into contact with each other. Therefore, the PTC device 102 is functional to prevent an excessive current on the signal line 114 from reaching a load coupled to the first cable plug assembly 104.
In one implementation, the PTC device 102 may be associated with a printed circuit board (PCB) 116. The PCB 116 may be an integral part of the USB cable arrangement 100. In a particular implementation, the PCB 116 may directly interface with the first cable plug assembly 104. In another implementation, the PCB 116 may be an integral part of the first cable plug assembly 114. As will be described in the following, the PTC device 102 may be integrated between layers of the PCB 116.
FIG. 2 illustrates the PCB 116, according to an exemplary implementation. The PCB 116, as already disclosed, may include the PTC device 102. The PCB 116 may include a plurality of circuit trace lines 202 that are usable to couple the PCB 116 to the first cable plug assembly 104. Furthermore, the PCB 116 may include one or more circuit coupling points 204. The signal lines 108, 110, 112 and 114 may be coupled to the one or more circuit coupling points 204 using solder or the like. Similarly, the plurality of circuit trace lines 202 may be coupled to the first cable plug assembly 104 using solder or the like.
FIG. 3 illustrates a cross section view of the PCB 116, as viewed from the perspective of line I-I shown in FIG. 2, according to an exemplary implementation. The PCB 116 may include a plurality of PCB layers. In particular, the PCB 116 may include a first layer 302, a second layer 304 disposed over the first layer 302 and a third layer 306 also disposed over the first layer 302. In one implementation, the first layer 302 is sandwiched between the second layer 304 and the third layer 306. In a particular implementation, the second layer 304 is  disposed above the first layer 302, and the third layer 306 is disposed below the first layer 302. In one implementation, at least a portion of the second layer 304 is in direct contact with the first layer 302. Similarly, at least a portion of the third layer 306 may be in direct contact with the first layer 302.
In one implementation, the PTC device 102 is encapsulated by the first layer 302. For example, the PTC device 102 may be entirely or at least partially surrounded by an encapsulant material 308. The encapsulant material 308 may be a resin, epoxy, or the like. In another example, the PTC device 102 is mounted to a surface of the first layer 302. In yet another example, the PTC device 102 is encapsulated by a material of the first layer 302. As described in the following, the PTC device 102 may be a PTC chip.
The PTC device 102 may be electrically coupled to the second layer 304 by way of one or more vias 310, and the one or more vias 310 may be coupled to one or more circuit trace lines 311 associated with the second layer 304. Furthermore, the PTC device 102 may be electrically coupled to the third layer 306 by way of one or more vias 312, and the one or more vias 312 may be coupled to one or more circuit trace lines 313 associated with the third layer 306. The one or more  circuit trace lines  311 and 313 may be made of copper foil, copper plating, or the like. A contact pad 314 may be disposed on a surface of the second layer 304. Similarly, a contact pad 316 may be disposed on a surface of the third layer 306. The  contact pads  314 and 316 provide electrical contact to the PTC device 102 by way of the  vias  310 and 312 and the one or more  circuit trace lines  311 and 313.
In one implementation, the PCB 116 may be arranged and coupled as part of a cable arrangement to allow current to flow through the PTC device 102 by way of the one or  more vias  310 and 312. For example, the one or more the vias 310 may be coupled to Vin via  the signal line 114, and the one or more vias 312 may be coupled to Vout also via the signal line 114. In one implementation, the Vin is solder coupled to the PTC device 102 by way of the contact pad 314, and the Vout is solder coupled to the PTC device 102 by way of the contact pad 316. Therefore, the PTC device 102 may be functional to mitigate an undesirable overcurrent condition on the signal line 114.
FIG. 4 illustrates the PTC device 102 embodied as a PTC chip 400, according to an exemplary embodiment of this disclosure. As illustrated, the PTC chip 400, in one implementation, includes a conductive particle filled polymer layer 402. The conductive particle filled polymer layer 402 may be disposed between a first electrode 404 and a second electrode 406. The conductive particle fill may include gold, nickel, silver metal material, or the like, and carbon, TiC , tungsten carbide (WC) , or the like, semiconductor material; and the polymer may be polyethylene and/or polypropylene high crystal polymer. When current that passes through the PTC chip 400 exceeds a rated limit, the polymer layer 402 of the PTC chip 400 will begin to heat and turn from a crystalline state to an amorphous state, expanding as it does so. The expansion causes conductive layers within the polymer of the PTC chip 400 to begin to break so that the PTC chip 400 shifts from a low resistance state to a high resistance state. As a result, current flow through the PTC chip 400 drops dramatically. Once the fault is eliminated and current flow returns to normal, the polymer layer 402 cools and contracts, returning to its low-resistance state as the conducting chains come back into contact with each other. Therefore, the PTC chip 400 is functional, when implemented for example with the PCB 116, to prevent an excessive current on the signal line 114 from reaching a load coupled to the first cable plug assembly 104.
While exemplary USB cable arrangements and PCBs having integrated PTC devices are disclosed, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the spirit and scope of the claims of the application. Other modifications may be made to adapt a particular situation or material to the teachings disclosed above without departing from the scope of the claims. Therefore, the claims should not be construed as being limited to any one of the particular embodiments disclosed, but to any embodiments that fall within the scope of the claims.

Claims (14)

  1. An apparatus, comprising:
    a first cable plug assembly;
    a printed circuit board (PCB) having a plurality of layers, the PCB to couple to the first cable plug assembly; and
    a positive temperature coefficient (PTC) device disposed on a first layer of the plurality of layers, a second layer of the plurality of layers disposed over the first layer of the plurality of layers.
  2. The apparatus according to claim 1, wherein a third layer of the plurality of layers disposed over the first layer of the plurality of layers.
  3. The apparatus according to claim 2, wherein the first layer of the plurality of layers is sandwiched between the second and third layers of the plurality of layers.
  4. The apparatus according to claim 1, further comprising a supply voltage line coupled to the first cable plug assembly, the PTC device coupled to the supply voltage line.
  5. The apparatus according to claim 4, further comprising a second cable plug assembly, the supply voltage line coupled between the first cable plug assembly and the second cable plug assembly.
  6. The apparatus according to claim 1, further comprising at least one via disposed through the second layer of the plurality of layers, the at least one via electrically coupled to the PTC device.
  7. The apparatus according to claim 1, further comprising at least a plurality of vias disposed through the second layer of the plurality of layers, the plurality of vias electrically coupled to the PTC device.
  8. The apparatus according to claim 2, further comprising first via disposed through the second layer of the plurality of layers, the first via electrically coupled to the PTC device.
  9. The apparatus according to claim 2, further comprising a second via disposed through the third layer of the plurality of layers, the second via electrically coupled to the PTC device.
  10. The apparatus according to claim 1, wherein the first cable assembly is a Universal Serial Bus (USB) plug to couple to a user equipment.
  11. An printed circuit board (PCB) apparatus, comprising:
    first and second PCB layers;
    a third PCB layer disposed between the first and second PCB layers; and
    a positive temperature coefficient (PTC) device disposed on the third PCB layer.
  12. The PCB apparatus according claim 11, further comprising a Universal Serial Bus (USB) plug coupled to the PCB apparatus.
  13. The PCB apparatus according to claim 11, wherein the first PCB layer includes a first via disposed therein and the second PCB layer includes a second via disposed therein, the first and second vias coupled to the PTC device.
  14. The PCB apparatus according to claim 11, further comprising a supply voltage line coupled to the PTC device.
PCT/CN2016/113459 2016-12-30 2016-12-30 Printed circuit board with integrated positive temperature coefficient device WO2018120006A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/113459 WO2018120006A1 (en) 2016-12-30 2016-12-30 Printed circuit board with integrated positive temperature coefficient device
CN201680091743.1A CN110741524B (en) 2016-12-30 2016-12-30 Printed circuit board with integrated positive temperature coefficient device
TW106146286A TW201841450A (en) 2016-12-30 2017-12-28 Apparatus having positive temperature coefficient device and printed circuit board apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113459 WO2018120006A1 (en) 2016-12-30 2016-12-30 Printed circuit board with integrated positive temperature coefficient device

Publications (1)

Publication Number Publication Date
WO2018120006A1 true WO2018120006A1 (en) 2018-07-05

Family

ID=62706608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113459 WO2018120006A1 (en) 2016-12-30 2016-12-30 Printed circuit board with integrated positive temperature coefficient device

Country Status (3)

Country Link
CN (1) CN110741524B (en)
TW (1) TW201841450A (en)
WO (1) WO2018120006A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090027821A1 (en) * 2007-07-26 2009-01-29 Littelfuse, Inc. Integrated thermistor and metallic element device and method
CN101692360A (en) * 2009-09-10 2010-04-07 广东风华高新科技股份有限公司 Chip type thermal resistor and manufacturing method thereof
CN103545889A (en) * 2013-10-25 2014-01-29 Tcl通讯(宁波)有限公司 USB charging system, charger, mobile terminal and charging control method
CN204103529U (en) * 2014-07-31 2015-01-14 惠州比亚迪电子有限公司 Charger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090027821A1 (en) * 2007-07-26 2009-01-29 Littelfuse, Inc. Integrated thermistor and metallic element device and method
CN101692360A (en) * 2009-09-10 2010-04-07 广东风华高新科技股份有限公司 Chip type thermal resistor and manufacturing method thereof
CN103545889A (en) * 2013-10-25 2014-01-29 Tcl通讯(宁波)有限公司 USB charging system, charger, mobile terminal and charging control method
CN204103529U (en) * 2014-07-31 2015-01-14 惠州比亚迪电子有限公司 Charger

Also Published As

Publication number Publication date
CN110741524A (en) 2020-01-31
TW201841450A (en) 2018-11-16
CN110741524B (en) 2023-12-15

Similar Documents

Publication Publication Date Title
US9190833B2 (en) Integrated thermistor and metallic element device and method
US20160336741A1 (en) Usb controller esd protection apparatus and method
US20040109275A1 (en) Integrated overvoltage and overcurrent device
US20090142959A1 (en) Video display connector having protection circuit
US7813113B2 (en) Expansion interface module having protection circuit
CN110474391B (en) Charging circuit and electronic device
CN113922351A (en) DC power attachment device
US20170033518A1 (en) Variations in usb-c contact length to improve disconnect sequence
US11456565B2 (en) Connector with integrated resettable thermal fuse
WO2018120006A1 (en) Printed circuit board with integrated positive temperature coefficient device
US6811410B2 (en) Integrated circuit socket with capacitors and shunts
CN211654981U (en) Battery protection plate and electronic equipment
CN111682607B (en) Charging structure and electronic equipment
CN107799704A (en) Battery unit and the routing cell for battery unit
US8767363B2 (en) Methods and arrangements including circuit breaking means in a power supply system
WO2017201738A1 (en) Battery protecting board, battery, and mobile terminal
WO2020191648A1 (en) Usb cable with integrated overcurrent and over temperature protection
CN115483508A (en) Battery protection plate, battery pack, and electronic apparatus
JP7087751B2 (en) Battery monitoring device
JP2008130508A (en) Rush current supressing connector
CN214589162U (en) Electric device
TWI683483B (en) Connector structure for increasing power supply current
CN212725304U (en) Interface packaging structure and electronic equipment
JPH08180942A (en) Connector
CN218550256U (en) Battery protection plate and chargeable and dischargeable battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925909

Country of ref document: EP

Kind code of ref document: A1