WO2018119936A1 - 一种波达方向角估计方法及装置 - Google Patents

一种波达方向角估计方法及装置 Download PDF

Info

Publication number
WO2018119936A1
WO2018119936A1 PCT/CN2016/113205 CN2016113205W WO2018119936A1 WO 2018119936 A1 WO2018119936 A1 WO 2018119936A1 CN 2016113205 W CN2016113205 W CN 2016113205W WO 2018119936 A1 WO2018119936 A1 WO 2018119936A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel phase
phase matrix
matrix
subchannel
channel
Prior art date
Application number
PCT/CN2016/113205
Other languages
English (en)
French (fr)
Inventor
王洁
Original Assignee
深圳天珑无线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳天珑无线科技有限公司 filed Critical 深圳天珑无线科技有限公司
Priority to PCT/CN2016/113205 priority Critical patent/WO2018119936A1/zh
Publication of WO2018119936A1 publication Critical patent/WO2018119936A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured

Definitions

  • the present application relates to the field of antenna technologies, and in particular, to a method and apparatus for estimating a direction of arrival direction.
  • the Angle of Arrival refers to the angle of arrival of the spatial signal, that is, the direction angle at which each signal reaches the array reference element.
  • AOA has broad application prospects in the fields of wireless communication, radar, wireless positioning, and wireless detection.
  • the AOA information can be used to estimate the orientation of the target, thereby improving the quality of wireless communication and realizing the detection and location of the target.
  • the multi-antenna technology is generally used to estimate the AOA information of the target based on the measurement information of the array antenna.
  • the AOA information of the target is estimated mainly by using a phase offset generated when different AOA signals reach a plurality of different antennas. The more the number of antennas, the more accurate the AOA estimation results obtained.
  • the existing AOA estimation method can obtain a more accurate AOA estimation result; however, when the number of antennas is small, the existing AOA estimation method is used to perform AOA estimation, and the accuracy of the obtained estimation result is greatly reduced.
  • the need for accurate estimation of AOA in the case where the number of antennas is small cannot be satisfied, and the versatility is poor.
  • the embodiment of the present application provides a method and device for estimating the direction of arrival of the direction of arrival, which is used to solve the problem that the prior AOA estimation method has lower accuracy and less versatility when the number of antennas is smaller. Poor question.
  • the embodiment of the present application provides a method for estimating a direction of arrival direction, which is implemented on a system including a transmitting end and a receiving end, and is executed on the receiving end, where the receiving end is provided with M antennas, and M is greater than or equal to An integer of 3, the transmitting end transmits data to the receiving end on the N carriers, where N is an integer greater than or equal to 5; the method includes:
  • the direction of arrival angle information of the plurality of azimuths is estimated based on the plurality of subchannel phase matrices.
  • the foregoing aspect and any possible implementation manner further provide an implementation manner of extracting a plurality of subchannel phase matrices from the channel phase matrix, including:
  • the rectangular frame is moved in the first phase matrix to obtain a plurality of subchannel phase matrices, and each subchannel phase matrix is different.
  • any possible implementation manner further provide an implementation manner of estimating direction of arrival direction information of multiple orientations according to the plurality of subchannel phase matrices, including:
  • the direction of arrival angle information of the plurality of orientations is estimated using the second channel phase matrix.
  • the direction of arrival angle information of the plurality of orientations is obtained.
  • represents a first channel phase matrix
  • ⁇ i,j represents channel phase information measured from the jth carrier by the ith antenna, where 1 ⁇ i ⁇ M,1 ⁇ j ⁇ N;
  • the second channel phase matrix is:
  • ⁇ * represents the second channel phase matrix
  • the embodiment of the present application provides a method for estimating a direction of arrival angle, which is applied to a system including a transmitting end and a receiving end, where the device is located at the receiving end, and the receiving end is provided with M antennas, M For an integer greater than or equal to 3, the transmitting end transmits data to the receiving end on N carriers, and N is an integer greater than or equal to 5; the device includes:
  • An acquiring unit configured to measure channel phase information of the M antennas on the N carriers, to obtain a first channel phase matrix
  • An extracting unit configured to extract, from the first channel phase matrix, a plurality of subchannel phase matrices, wherein the number of elements in each subchannel phase matrix is smaller than the number of elements in the first channel phase matrix;
  • an estimating unit configured to estimate direction of arrival direction information of the plurality of azimuths according to the plurality of subchannel phase matrices.
  • extracting unit includes:
  • the estimating unit includes:
  • a first obtaining subunit configured to reconstruct a channel phase matrix by using each subchannel phase matrix, To the second channel phase matrix
  • a second acquiring subunit configured to estimate direction of arrival direction information of the plurality of orientations by using the second channel phase matrix.
  • the direction of arrival angle information of the plurality of orientations is obtained.
  • represents a first channel phase matrix
  • ⁇ i,j represents channel phase information measured from the jth carrier by the ith antenna, where 1 ⁇ i ⁇ M,1 ⁇ j ⁇ N;
  • the second channel phase matrix is:
  • ⁇ * represents the second channel phase matrix
  • the method for estimating the direction of arrival direction is implemented on a system including a transmitting end and a receiving end, and is implemented on the receiving end, where the receiving end is provided with M antennas, and M is an integer greater than or equal to 3, and is sent.
  • the terminal transmits data to the receiving end on N carriers, and N is an integer greater than or equal to 5.
  • the channel phase information of the M antennas on the N carriers is measured to obtain a first channel phase matrix, and then, from A plurality of subchannel phase matrices are extracted from a channel phase matrix, and the number of elements in each subchannel phase matrix is smaller than the number of elements in the first channel phase matrix.
  • the direction of arrival of the plurality of azimuths is estimated according to the plurality of subchannel phase matrices. information.
  • the characteristics of multi-carrier communication are supported by the transmitting end and the receiving end, and the deviation of each carrier frequency is utilized.
  • different carriers will form different phase differences of the received signals on different antennas.
  • a plurality of subchannel phase matrices are extracted in the first channel phase information, which increases the number of effective measurement information, so that an accurate estimation of the AOA can be realized with a smaller number of antennas, and the versatility is high.
  • the technical solution provided by the embodiment of the present application can obtain a relatively accurate AOA estimation result when the number of antennas is small, and solves the AOA obtained by the existing AOA estimation method when the number of antennas is small.
  • the accuracy of the estimation results is low and the versatility is poor.
  • FIG. 1 is a schematic flow chart of a method for estimating a direction of arrival direction provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of extracting a number of subchannel phase matrices from a first channel phase matrix
  • FIG. 3 is a functional block diagram of a direction of arrival angle estimating apparatus provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe the channel phase matrix in embodiments of the present application, these channel phase matrices should not be limited to these terms. These terms are only used to distinguish channel phase matrices from each other.
  • first channel phase matrix may also be referred to as a second channel phase matrix without departing from the scope of the embodiments of the present application.
  • second channel phase matrix may also be referred to as a first channel phase matrix.
  • the word “if” as used herein may be interpreted as “when” or “when” or “in response to determining” or “in response to detecting.”
  • the phrase “if determined” or “if detected (conditions or events stated)” may be interpreted as “when determined” or “in response to determination” or “when detected (stated condition or event) “Time” or “in response to a test (condition or event stated)”.
  • An embodiment of the present application provides a method for estimating a direction of arrival direction.
  • the method is applied to a system including a receiving end and a transmitting end, and is implemented on a receiving end.
  • the receiving end is provided with M antennas, and M is an integer greater than or equal to 3, and is sent.
  • the terminal transmits data to the receiving end on N carriers, and N is an integer greater than or equal to 5.
  • the receiver can use M antennas arranged at equal intervals, and the spacing of the antennas is 1/2 of the wavelength of the communication carrier.
  • the number of the receiving end and the transmitting end is not particularly limited, the number of receiving ends is at least one, and the number of transmitting ends is at least one.
  • the following is a specific example of a system including a receiving end and a transmitting end. It can be understood that, between any one of the receiving end and any one of the transmitting end including the plurality of receiving ends and the plurality of transmitting ends, it can be understood that The wireless ranging method is the same as this one, and will not be described again.
  • the embodiment of the present application does not specifically limit the types of the receiving end and the transmitting end.
  • the receiving end may include, but is not limited to, a receiving node, a receiving device, a base station, and the like;
  • the transmitting end may include, but is not limited to, a sending node, a sending device, a base station, and the like.
  • the physical layer of the receiving end and the transmitting end can adopt multi-carrier modulation, so that data can be simultaneously transmitted on the N carriers between the receiving end and the transmitting end.
  • FIG. 1 is a schematic flowchart of a method for estimating a direction of arrival direction according to an embodiment of the present application. As shown in FIG. 1 , the method includes the following steps:
  • the number of elements in each subchannel phase matrix is smaller than the number of elements in the first channel phase matrix.
  • data transmission is performed between the receiving end and the transmitting end by using multiple carriers, and therefore, channel phase information of each antenna on each carrier can be measured.
  • the measured first channel phase matrix can be expressed as:
  • represents a first channel phase matrix
  • ⁇ i,j represents channel phase information measured from the jth carrier by the ith antenna, where 1 ⁇ i ⁇ M,1 ⁇ j ⁇ N;
  • the receiver may extract a plurality of subchannel phase matrices in the first channel phase matrix by using different carrier frequency differences and signal phase differences caused by antenna position differences, and each subchannel phase matrix element Not the same.
  • Extracting a number of subchannel phase matrices in the first channel phase matrix may include the following steps:
  • the order of the movement of the rectangular frame in the first phase matrix or the movement rule can be preset according to actual needs, which is not specifically limited in the embodiment of the present application.
  • the movement rule of the rectangular frame may be preset to move from top to bottom, or from left to right; another convenience may be that the rectangular frame is continuously moved, or the preset rectangular frame is moved at intervals.
  • the rectangular frame can be continuously moved from left to right and from top to bottom in the first channel phase matrix, and each time it is moved, a phase matrix different from the previously obtained subchannel can be obtained. Subchannel phase matrix.
  • FIG. 2 is a schematic diagram of extracting several subchannel phase matrices from the first channel phase matrix.
  • the receiving end uses three antennas to receive channel phase information on 30 carriers, and the obtained first channel phase matrix is:
  • ⁇ i,j represents channel phase information measured from the jth carrier using the ith antenna.
  • the rectangular frame has a width of 2 and a length of 15. If the preset movement rule is: continuous movement from left to right and top right to bottom in the first channel phase matrix by using the rectangular frame.
  • the first subchannel phase matrix extracted by the rectangular frame in the first channel phase matrix is:
  • the second sub-pixel extracted from the first channel phase matrix by using the rectangular frame The channel phase matrix is:
  • the last (32th) subchannel phase matrix extracted by the rectangular frame in the first channel phase matrix is:
  • +1) 32 subchannel phase matrices.
  • the sub-channel phase matrices obtained in the embodiments of the present application are different, which means that the elements in the respective channel phase matrices are subchannel phase matrices composed of channel phase information of different carriers collected on different antennas. Instead of referring to the value of each element in the subchannel phase matrix, the values are different. It can be understood that, in some special cases, the elements in any two self-channel phase matrices obtained are from different antennas and carriers, but there may be cases where the measured phase information is the same.
  • the application example is not particularly limited.
  • the plurality of subchannel phase matrices extracted in the first channel phase matrix may simulate channel phase information measured by different antennas on different carriers, and based on the obtained subchannel phase matrices, It is possible to estimate the direction of arrival angle information of a plurality of orientations.
  • the direction of arrival angle information of the plurality of orientations is estimated.
  • the bit matrix is reconstructed into a B x C second channel phase matrix.
  • the second channel phase matrix is:
  • ⁇ * represents the second channel phase matrix
  • the second channel phase matrix may be used to estimate the direction of arrival information of the multiple directions, including the following steps:
  • the direction of arrival angle information of the plurality of orientations is obtained.
  • the embodiment of the present application provides a specific implementation manner for estimating the direction of arrival direction in a specific application scenario.
  • the multi-carrier transmitter and receiver are designed with the BCM4313 chip to meet the Wireless-Fidelity (WiFi) standard, support 2.4 GHz and 5 GHz dual-band operation, and provide 30 carriers for data transmission.
  • Transmitter and receiver antennas are all SMA Interface 6dB gain omnidirectional dual-band antenna, can support 2.4GHz, 5GHz dual-band operation.
  • the receiver is received by three antennas, and each antenna constitutes a line array with an antenna spacing of 6.25 cm.
  • the receiver receives channel phase information of 30 carriers on three antennas, obtains a first channel phase matrix as shown in FIG. 2, and then uses a 2 ⁇ 15 rectangular frame from left to right in the first channel phase matrix. From the top to the bottom of the continuous movement, the above 32 subchannel phase matrices are obtained. Then, the elements in the subchannel phase matrix obtained in each rectangular frame are recombined into 2 ⁇ 15 matrix data into a 30 ⁇ 1 measurement vector in the order of the preceding and following columns, and then all 32 rectangular frames are The measured measurement vectors are combined into a 30 ⁇ 32 second channel phase matrix, which can be expressed as:
  • the covariance matrix C of the second channel phase matrix ⁇ * is obtained, and then the eigenvalue decomposition is performed on the covariance matrix C and the eigenvectors with the eigenvalue of 0 are extracted, and then the orthogonal vectors of the eigenvectors are obtained and utilized.
  • the obtained orthogonal vector obtains the AOA matrix, and the AOA information of multiple orientations can be obtained based on the obtained AOA matrix.
  • the estimation accuracy of the existing AOA estimation method can only reach 20 degrees, and only one AOA from different directions can be distinguished and identified; Given the AOA estimation method, the AOA estimation accuracy can reach 8 degrees, and can distinguish and identify AOA from 2 different directions.
  • the phase matrix of each subchannel extracted in the first channel phase matrix utilizes the phase difference characteristics of the multi-antenna and multi-carrier pair received signals, and the measured channel phase information is significantly enriched compared to the first channel phase matrix. The amount of information, and thus, can improve the accuracy of the AOA's estimation results. Thus, even with a small number of antennas, a more accurate AOA estimation result can be obtained.
  • the AOA estimation method given in the embodiment of the present application is also applicable to a wireless router with a small number of antennas.
  • the execution body of S101 to S103 may be a direction of arrival angle estimation device, and The device may be located at the receiving end of the application, or may be a plug-in or a software development kit (SDK) in the application of the receiving end, which is not specifically limited in this embodiment of the present application.
  • SDK software development kit
  • the application may be an application (nativeApp) installed on the terminal, or may be a web application (webApp) of the browser on the terminal, which is not limited by the embodiment of the present application.
  • the method for estimating the direction of arrival direction is implemented in a system including a transmitting end and a receiving end, and is implemented on the receiving end, where the receiving end is provided with M antennas, M is an integer greater than or equal to 3, and the transmitting end is on N carriers.
  • the data is transmitted to the receiving end, and N is an integer greater than or equal to 5.
  • the channel phase information of the M antennas on the N carriers is measured to obtain a first channel phase matrix, and then, from the first channel phase matrix.
  • a plurality of subchannel phase matrices are extracted, and the number of elements in each subchannel phase matrix is smaller than the number of elements in the first channel phase matrix.
  • the direction of arrival direction information of the plurality of azimuths is estimated according to the plurality of subchannel phase matrices.
  • the characteristics of multi-carrier communication are supported by the transmitting end and the receiving end, and the deviation of each carrier frequency is utilized.
  • different carriers will form different phase differences of the received signals on different antennas.
  • a plurality of subchannel phase matrices are extracted in the first channel phase information, which increases the number of effective measurement information, so that an accurate estimation of the AOA can be realized with a smaller number of antennas, and the versatility is high.
  • the technical solution provided by the embodiment of the present application can obtain a relatively accurate AOA estimation result when the number of antennas is small, and solves the AOA obtained by the existing AOA estimation method when the number of antennas is small.
  • the accuracy of the estimation results is low and the versatility is poor.
  • the embodiment of the present application further provides an apparatus embodiment for implementing the steps and methods in the foregoing method embodiments.
  • the direction of arrival estimation device is applied to a system including a transmitting end and a receiving end.
  • the device is located at the receiving end, and the receiving end is provided with M antennas, M is an integer greater than or equal to 3, and the transmitting end is N.
  • the carrier transmits data to the receiving end, and N is an integer greater than or equal to 5.
  • FIG. 3 is a functional block diagram of the direction of arrival angle estimating apparatus provided by the embodiment of the present application.
  • the device comprises:
  • the obtaining unit 31 is configured to measure channel phase information of the M antennas on the N carriers, to obtain a first channel phase matrix
  • the extracting unit 32 is configured to extract a plurality of subchannel phase matrices from the first channel phase matrix, and the number of elements in each subchannel phase matrix is smaller than the number of elements in the first channel phase matrix;
  • the estimating unit 33 is configured to estimate the direction of arrival angle information of the plurality of azimuths according to the plurality of subchannel phase matrices.
  • the extracting unit 32 includes:
  • the obtaining sub-unit 322 is configured to move in the first phase matrix by using a rectangular frame to obtain a plurality of sub-channel phase matrices, and the sub-channel phase matrices are different.
  • the estimating unit 33 includes:
  • a first obtaining subunit 331, configured to reconstruct a channel phase matrix by using each subchannel phase matrix to obtain a second channel phase matrix
  • the second obtaining sub-unit 332 is configured to estimate the direction of arrival angle information of the plurality of azimuths by using the second channel phase matrix.
  • the second obtaining subunit 332 is specifically configured to:
  • the direction of arrival angle information of a plurality of orientations is obtained.
  • the first channel phase matrix is:
  • represents a first channel phase matrix
  • ⁇ i,j represents channel phase information measured from the jth carrier by the ith antenna, where 1 ⁇ i ⁇ M,1 ⁇ j ⁇ N;
  • the second channel phase matrix is:
  • ⁇ * represents the second channel phase matrix
  • the method for estimating the direction of arrival direction is implemented in a system including a transmitting end and a receiving end, and is implemented on the receiving end, where the receiving end is provided with M antennas, M is an integer greater than or equal to 3, and the transmitting end is on N carriers.
  • the data is transmitted to the receiving end, and N is an integer greater than or equal to 5.
  • the channel phase information of the M antennas on the N carriers is measured to obtain a first channel phase matrix, and then, from the first channel phase matrix.
  • a plurality of subchannel phase matrices are extracted, and the number of elements in each subchannel phase matrix is smaller than the number of elements in the first channel phase matrix.
  • the direction of arrival direction information of the plurality of azimuths is estimated according to the plurality of subchannel phase matrices.
  • the characteristics of multi-carrier communication are supported by the transmitting end and the receiving end, and the deviation of each carrier frequency is utilized.
  • different carriers will form different phase differences of the received signals on different antennas.
  • a plurality of subchannel phase matrices are extracted in the first channel phase information, which increases the number of effective measurement information, so that an accurate estimation of the AOA can be realized with a smaller number of antennas, and the versatility is high.
  • the technical solution provided by the embodiment of the present application can be more accurate when the number of antennas is small.
  • the AOA estimation result solves the problem that the existing AOA estimation method has lower accuracy and less versatility in the AOA estimation result obtained when the number of antennas is small.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present application. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk. The medium to store the program code.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请实施例提供了一种波达方向角估计方法及装置。本申请实施例提供的波达方向角估计方法执行于包括发送端和接收端的系统,执行于接收端上,接收端布设有M根天线,M为大于等于3的整数,发送端在N个载波上传输数据给接收端,N为大于等于5的整数,首先,通过测量M根天线分别在N个载波上的信道相位信息,得到第一信道相位矩阵,然后,从第一信道相位矩阵中提取若干子信道相位矩阵,各子信道相位矩阵中元素数目均小于第一信道相位矩阵中元素数目,进而,根据若干子信道相位矩阵,估计多个方位的波达方向角信息。因此,本申请实施例提供的技术方案能够解决现有的AOA估计方法在天线数量较少时得到的AOA估计结果的准确度较低,通用性较差的问题。

Description

一种波达方向角估计方法及装置 技术领域
本申请涉及天线技术领域,尤其涉及一种波达方向角估计方法及装置。
背景技术
波达方向角(Angle of arrival,AOA)指空间信号的到达方向角,也就是各个信号到达阵列参考阵元的方向角。AOA估计在无线通信、雷达、无线定位、无线探测等领域有着广泛的应用前景。利用AOA信息可以估计目标的方位,从而可以提高无线通信的质量、实现对目标的探测与定位。
现有技术中,一般利用多天线技术基于阵列天线的测量信息估计目标的AOA信息。具体的,现有技术中主要利用不同AOA信号到达多个不同的天线时产生的相位偏移量来估计目标的AOA信息。天线的数量越多,得到的AOA估计结果越准确。
在实现本申请过程中,发明人发现现有技术中至少存在如下问题:
当天线数量较多时,现有的AOA估计方法可以获得较为精确的AOA估计结果;但是,当天线数量较小时,使用现有的AOA估计方法进行AOA的估计,得到的估计结果准确度大幅降低,不能满足天线较少的情况下对AOA进行准确估计的需求,通用性较差。
发明内容
有鉴于此,本申请实施例提供了一种波达方向角估计方法及装置,用以解决现有的AOA估计方法在天线数量较少时得到的AOA估计结果的准确度较低,通用性较差的问题。
一方面,本申请实施例提供了一种波达方向角估计方法,执行于包括发送端和接收端的系统,执行于所述接收端上,所述接收端布设有M根天线,M为大于等于3的整数,所述发送端在N个载波上传输数据给所述接收端,N为大于等于5的整数;所述方法包括:
测量M根天线分别在N个载波上的信道相位信息,得到第一信道相位矩阵;
从所述第一信道相位矩阵中提取出若干子信道相位矩阵,各子信道相位矩阵中元素数目均小于所述第一信道相位矩阵中元素数目;
根据所述若干子信道相位矩阵,估计多个方位的波达方向角信息。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,从所述信道相位矩阵中提取出若干子信道相位矩阵,包括:
构造矩形框,所述矩形框的宽度为E,长度为F,E≤M,F≤N,且E=M与F=N不同时存在;
利用所述矩形框在所述第一相位矩阵中移动,获得若干子信道相位矩阵,各子信道相位矩阵均不相同。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据所述若干子信道相位矩阵,估计多个方位的波达方向角信息,包括:
利用各子信道相位矩阵重新构造信道相位矩阵,得到第二信道相位矩阵;
利用所述第二信道相位矩阵,估计多个方位的波达方向角信息。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,利用所述第二信道相位矩阵,估计多个方位的波达方向角信息,包括:
获取第二信道相位矩阵的协方差矩阵;
对协方差矩阵进行特征值分解,获取特征值为0的特征向量;
获取所述特征值为0的特征向量的正交向量;
根据所述正交向量,获得波达方向角矩阵;
根据所述波达方向角矩阵,得到多个方位的波达方向角信息。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第一信道相位矩阵为:
Figure PCTCN2016113205-appb-000001
其中,Φ表示第一信道相位矩阵,Φi,j表示利用第i根天线从第j个载波上测 量到的信道相位信息,其中,1≤i≤M,1≤j≤N;
相应的,所述第二信道相位矩阵为:
Figure PCTCN2016113205-appb-000002
其中,Φ*表示第二信道相位矩阵。
另一方面,本申请实施例提供了一种波达方向角估计装置,应用于包括发送端和接收端的系统,所述装置位于所述接收端上,所述接收端布设有M根天线,M为大于等于3的整数,所述发送端在N个载波上传输数据给所述接收端,N为大于等于5的整数;所述装置包括:
获取单元,用于测量M根天线分别在N个载波上的信道相位信息,得到第一信道相位矩阵;
提取单元,用于从所述第一信道相位矩阵中提取出若干子信道相位矩阵,各子信道相位矩阵中元素数目均小于所述第一信道相位矩阵中元素数目;
估计单元,用于根据所述若干子信道相位矩阵,估计多个方位的波达方向角信息。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述提取单元,包括:
构造子单元,用于构造矩形框,所述矩形框的宽度为E,长度为F,E≤M,F≤N,且E=M与F=N不同时存在;
获取子单元,用于利用所述矩形框在所述第一相位矩阵中移动,获得若干子信道相位矩阵,各子信道相位矩阵均不相同。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述估计单元,包括:
第一获取子单元,用于利用各子信道相位矩阵重新构造信道相位矩阵,得 到第二信道相位矩阵;
第二获取子单元,用于利用所述第二信道相位矩阵,估计多个方位的波达方向角信息。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第二获取子单元,具体用于:
获取第二信道相位矩阵的协方差矩阵;
对协方差矩阵进行特征值分解,获取特征值为0的特征向量;
获取所述特征值为0的特征向量的正交向量;
根据所述正交向量,获得波达方向角矩阵;
根据所述波达方向角矩阵,得到多个方位的波达方向角信息。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述第一信道相位矩阵为:
Figure PCTCN2016113205-appb-000003
其中,Φ表示第一信道相位矩阵,Φi,j表示利用第i根天线从第j个载波上测量到的信道相位信息,其中,1≤i≤M,1≤j≤N;
相应的,所述第二信道相位矩阵为:
Figure PCTCN2016113205-appb-000004
其中,Φ*表示第二信道相位矩阵。
上述技术方案中的一个技术方案具有如下有益效果:
本申请实施例提供的波达方向角估计方法执行于包括发送端和接收端的系统,执行于接收端上,接收端布设有M根天线,M为大于等于3的整数,发送 端在N个载波上传输数据给接收端,N为大于等于5的整数,具体的,通过测量M根天线分别在N个载波上的信道相位信息,得到第一信道相位矩阵,然后,从第一信道相位矩阵中提取出若干子信道相位矩阵,各子信道相位矩阵中元素数目均小于第一信道相位矩阵中元素数目,进而,根据若干子信道相位矩阵,估计多个方位的波达方向角信息。本申请实施例中,利用发送端与接收端支持多载波通信的特性,并利用各载波频率的偏差,通过多载波传输数据时,不同载波在不同天线上将形成不同的接收信号相位差,因此,在第一信道相位信息中提取出来若干子信道相位矩阵,增加了有效测量信息的数目,从而,就能够利用较少数量的天线就实现对AOA的精确估计,通用性较高。相较于现有的AOA估计方法,本申请实施例提供的技术方案能够在天线数量较少时得到较为准确的AOA估计结果,解决了现有的AOA估计方法在天线数量较少时得到的AOA估计结果的准确度较低,通用性较差的问题。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例所提供的波达方向角估计方法的流程示意图;
图2是从第一信道相位矩阵中提取若干子信道相位矩阵的示意图;
图3是本申请实施例所提供的波达方向角估计装置的功能方块图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本申请实施例中可能采用术语第一、第二、第三等来描述信道相位矩阵,但这些信道相位矩阵不应限于这些术语。这些术语仅用来将信道相位矩阵彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一信道相位矩阵也可以被称为第二信道相位矩阵,类似地,第二信道相位矩阵也可以被称为第一信道相位矩阵。
取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
实施例一
本申请实施例给出一种波达方向角估计方法,该方法应用于包括接收端和发送端的系统,执行于接收端上,接收端布设有M根天线,M为大于等于3的整数,发送端在N个载波上传输数据给接收端,N为大于等于5的整数。
接收机可以采用M根等间距布设的天线,天线的间距为通信载波波长的1/2。
需要说明的是,本申请实施例中对接收端和发送端的数目不进行特别限定,接收端的数目为至少一个,发送端的数目为至少一个。为了便于说明本 方案,以下以包括一个接收端与一个发送端的系统为例进行具体说明,可以理解的是,对于包括有多个接收端和多个发送端的系统中的任意一个接收端与任意一个发送端之间的无线测距方法与本方案相同,不再进行赘述。
本申请实施例对于接收端和发送端的类型不进行特别限定。例如,接收端可以包括但不限于:接收节点、接收设备和基站等;发送端可以包括但不限于:发送节点、发送设备和基站等。
具体的,接收端与发送端的物理层均可以采用多载波调制,如此,接收端与发送端之间可以在N个载波上同时传输数据。
具体的,请参考图1,其为本申请实施例所提供的波达方向角估计方法的流程示意图,如图1所示,该方法包括以下步骤:
S101,测量M根天线分别在N个载波上的信道相位信息,得到第一信道相位矩阵。
S102,从第一信道相位矩阵中提取出若干子信道相位矩阵。
具体的,各子信道相位矩阵中元素数目均小于第一信道相位矩阵中元素数目。
S103,根据若干子信道相位矩阵,估计多个方位的波达方向角信息。
本申请实施例中,接收端与发送端之间通过多载波进行数据传输,因此,可以测量到每根天线在各个载波上的信道相位信息。
具体的,测量得到的第一信道相位矩阵可以表示为:
Figure PCTCN2016113205-appb-000005
其中,Φ表示第一信道相位矩阵,Φi,j表示利用第i根天线从第j个载波上测量到的信道相位信息,其中,1≤i≤M,1≤j≤N;
本申请实施例中,接收机可以利用不同的载波频率的差异以及天线的位置差异引起的信号相位差异,在第一信道相位矩阵中提取出若干个子信道相位矩阵,各子信道相位矩阵的元素各不相同。
在第一信道相位矩阵中提取若干子信道相位矩阵,可以包括以下步骤:
构造矩形框,该矩形框的宽度为E,长度为F,E≤M,F≤N,且E=M与F=N不同时存在,
然后,利用矩形框在第一信道相位矩阵中移动,获得若干子信道相位矩阵,各子信道相位矩阵均不相同。
可以理解的是,矩形框在第一相位矩阵中的移动顺序或移动规则可以根据实际需要进行预设,本申请实施例对此不进行特别限定。例如,可以预设矩形框的移动规则为由上至下移动,或者,由左至右移动;另一方便,可以预设矩形框连续移动,或者,预设矩形框间隔移动等。
在一个具体的实现过程中,可以利用该矩形框在第一信道相位矩阵中由左至右、右上至下的连续移动,每移动一次,就能得到一个与之前得到的子信道相位矩阵不同的子信道相位矩阵。
具体的,请参考图2,其为从第一信道相位矩阵中提取若干子信道相位矩阵的示意图。
如图2所示,该接收端采用3根天线接收30个载波上的信道相位信息,得到的第一信道相位矩阵为:
Figure PCTCN2016113205-appb-000006
其中,Φi,j表示利用第i根天线从第j个载波上测量到的信道相位信息。
如图2所示,矩形框的宽度为2,长度为15。若预设的移动规则为:利用利用该矩形框在第一信道相位矩阵中由左至右、右上至下的连续移动。
如图2所示,利用该矩形框在第一信道相位矩阵中提取出来的第1个子信道相位矩阵为:
Figure PCTCN2016113205-appb-000007
如图2所示,利用该矩形框在第一信道相位矩阵中提取出来的第2个子 信道相位矩阵为:
Figure PCTCN2016113205-appb-000008
依次类推,利用该矩形框在第一信道相位矩阵中提取出来的最后一个(第32个)子信道相位矩阵为:
Figure PCTCN2016113205-appb-000009
如此,可以得到举行框结构的数目为B=(N-F+1)×(M-E+1)个,如图2所示,得到B=(30-15+1)×(3-2+1)=32个子信道相位矩阵。
需要说明的是,本申请实施例中得到的各子信道相位矩阵各不相同是指各自信道相位矩阵中的元素是在不同的天线上采集到的不同载波的信道相位信息构成的子信道相位矩阵,而不是指子信道相位矩阵中每个元素的数值各不相同。可以理解的是,在一些特殊的情况下,得到的任意两个自信道相位矩阵中的元素虽然来自于不完全相同的天线和载波,但是,可能会存在测得的相位信息相同的情况,本申请实施例对此不进行特别限定。
本申请实施例中,在第一信道相位矩阵中提取出来的若干个子信道相位矩阵可以模拟不同的天线在不同载波上测量得到的信道相位信息,基于此,根据得到的若干个子信道相位矩阵,也可以估计多个方位的波达方向角信息。
在一个具体的实现过程中,该过程可以通过以下方式实现:
利用各子信道相位矩阵重新构造信道相位矩阵,得到第二信道相位矩阵,
然后,利用第二信道相位矩阵,估计多个方位的波达方向角信息。
对于在第一信道相位矩阵中提取出来的B个子信道相位矩阵,可以按照先行后列的顺序,将E×F的子信道相位矩阵重新构造为A×1的测量向量,其中,A=E×F。这样,就可以将所有的B个子信道相位矩阵重新构造为一个A×B的第二信道相位矩阵。
或者,也可以按照先列后行的顺序,将E×F的子信道相位矩阵重新构造为1×C的测量向量,其中,C=F×E,这样,就可以将所有的B个子信道相 位矩阵重新构造为一个B×C的第二信道相位矩阵。
为了便于理解,以构造一个A×B的第二信道相位矩阵为例进行说明。
若获得的第一信道相位矩阵为:
Figure PCTCN2016113205-appb-000010
那么,相应的,第二信道相位矩阵为:
Figure PCTCN2016113205-appb-000011
其中,Φ*表示第二信道相位矩阵。
本申请实施例中,在得到第二信道相位矩阵之后,就可以利用第二信道相位矩阵,估计多个方位的波达方向信息,包括以下步骤:
获取第二信道相位矩阵的协方差矩阵;
对协方差矩阵进行特征值分解,获取特征值为0的特征向量;
获取所述特征值为0的特征向量的正交向量;
根据所述正交向量,获得波达方向角矩阵;
根据所述波达方向角矩阵,得到多个方位的波达方向角信息。
具体的,第二信道相位矩阵的协方差矩阵可以表示为:C=Φ**)H,其中,(Φ*)H为第二信道相位矩阵的共轭转置矩阵,H表示共轭转置。
为了更充分的说明本方案,本申请实施例给出在一个具体的应用场景中进行波达方向角估计的具体实现方式。
具体的,多载波发射机以及接收机均采用BCM4313芯片设计,满足无线相容性认证(WIreless-Fidelity,WiFi)标准,支持2.4GHz以及5GHz双频段工作,可提供30个载波进行数据传输。发射机、接收机天线均采用SMA 接口6dB增益全向双频天线,可支持2.4GHz、5GHz双频工作。其中,接收机采用3根天线接收,各天线组成线阵,天线间距6.25厘米。
接收机在3个天线上接收30个载波的信道相位信息,得到如图2所示的第一信道相位矩阵,然后,利用2×15的矩形框在第一信道相位矩阵中由左至右、由上至下的连续移动,得到上述的32个子信道相位矩阵。然后,将每个矩形框中得到的子信道相位矩阵中的元素,按照先行后列的顺序将2×15的矩阵数据重新组合为30×1的测量向量,然后,将所有的32个矩形框测量得到的测量向量组合成30×32的第二信道相位矩阵,可以表示为:
Figure PCTCN2016113205-appb-000012
之后,获取这个第二信道相位矩阵Φ*的协方差矩阵C,然后,对协方差矩阵C进行特征值分解并提取特征值为0的特征向量,再求取这些特征向量的正交向量,利用得到的正交向量获得AOA矩阵,就可以基于得到的AOA矩阵,获得多个方位的AOA信息。
当仅利用3根天线上测量的信道相位信息进行AOA估计,现有的AOA估计方法的估计精度仅能达到20度,且仅能区分和识别1个来自不同方向的AOA;而本申请实施例给出的AOA估计方法,AOA的估计精度可以达到8度以内,且可以区分和识别来自2个不同方向的AOA。这是由于第一信道相位矩阵中提取出来的各个子信道相位矩阵利用了多天线及多载波对接收信号的相位差异特点,相较于第一信道相位矩阵,明显丰富了测量得到的信道相位信息的信息量,从而,能够提高AOA的估计结果的准确度。如此,即便利用数量较少的天线,也可以得到较为准确的AOA估计结果。
本申请实施例给出的AOA估计方法还适用于天线数量较少的无线路由器。需要说明的是,S101~S103的执行主体可以为波达方向角估计装置,该 装置可以位于接收端的应用,或者还可以为位于接收端的应用中的插件或软件开发工具包(Software Development Kit,SDK)等功能单元,本申请实施例对此不进行特别限定。可以理解的是,所述应用可以是安装在终端上的应用程序(nativeApp),或者还可以是终端上的浏览器的一个网页程序(webApp),本申请实施例对此不进行限定。
本申请实施例的技术方案具有以下有益效果:
本申请实施例提供的波达方向角估计方法执行于包括发送端和接收端的系统,执行于接收端上,接收端布设有M根天线,M为大于等于3的整数,发送端在N个载波上传输数据给接收端,N为大于等于5的整数,具体的,通过测量M根天线分别在N个载波上的信道相位信息,得到第一信道相位矩阵,然后,从第一信道相位矩阵中提取出若干子信道相位矩阵,各子信道相位矩阵中元素数目均小于第一信道相位矩阵中元素数目,进而,根据若干子信道相位矩阵,估计多个方位的波达方向角信息。本申请实施例中,利用发送端与接收端支持多载波通信的特性,并利用各载波频率的偏差,通过多载波传输数据时,不同载波在不同天线上将形成不同的接收信号相位差,因此,在第一信道相位信息中提取出来若干子信道相位矩阵,增加了有效测量信息的数目,从而,就能够利用较少数量的天线就实现对AOA的精确估计,通用性较高。相较于现有的AOA估计方法,本申请实施例提供的技术方案能够在天线数量较少时得到较为准确的AOA估计结果,解决了现有的AOA估计方法在天线数量较少时得到的AOA估计结果的准确度较低,通用性较差的问题。
实施例二
基于上述实施例一所提供的波达方向角估计方法,本申请实施例进一步给出实现上述方法实施例中各步骤及方法的装置实施例。
本申请实施例给出的波达方向角估计装置应用于包括发送端和接收端的系统,装置位于接收端上,接收端布设有M根天线,M为大于等于3的整数,发送端在N个载波上传输数据给接收端,N为大于等于5的整数。
具体的,请参考图3,其为本申请实施例所提供的波达方向角估计装置的功能方块图。如图3所示,该装置包括:
获取单元31,用于测量M根天线分别在N个载波上的信道相位信息,得到第一信道相位矩阵;
提取单元32,用于从第一信道相位矩阵中提取出若干子信道相位矩阵,各子信道相位矩阵中元素数目均小于第一信道相位矩阵中元素数目;
估计单元33,用于根据若干子信道相位矩阵,估计多个方位的波达方向角信息。
具体的,本申请实施例中,提取单元32,包括:
构造子单元321,用于构造矩形框,矩形框的宽度为E,长度为F,E≤M,F≤N,且E=M与F=N不同时存在;
获取子单元322,用于利用矩形框在第一相位矩阵中移动,获得若干子信道相位矩阵,各子信道相位矩阵均不相同。
具体的,本申请实施例中,估计单元33,包括:
第一获取子单元331,用于利用各子信道相位矩阵重新构造信道相位矩阵,得到第二信道相位矩阵;
第二获取子单元332,用于利用第二信道相位矩阵,估计多个方位的波达方向角信息。
具体的,第二获取子单元332,具体用于:
获取第二信道相位矩阵的协方差矩阵;
对协方差矩阵进行特征值分解,获取特征值为0的特征向量;
获取特征值为0的特征向量的正交向量;
根据正交向量,获得波达方向角矩阵;
根据波达方向角矩阵,得到多个方位的波达方向角信息。
在一个具体的实现过程中,第一信道相位矩阵为:
Figure PCTCN2016113205-appb-000013
其中,Φ表示第一信道相位矩阵,Φi,j表示利用第i根天线从第j个载波上测量到的信道相位信息,其中,1≤i≤M,1≤j≤N;
相应的,第二信道相位矩阵为:
Figure PCTCN2016113205-appb-000014
其中,Φ*表示第二信道相位矩阵。
由于本实施例中的各单元能够执行图1所示的方法,本实施例未详细描述的部分,可参考对图1的相关说明。
本申请实施例的技术方案具有以下有益效果:
本申请实施例提供的波达方向角估计方法执行于包括发送端和接收端的系统,执行于接收端上,接收端布设有M根天线,M为大于等于3的整数,发送端在N个载波上传输数据给接收端,N为大于等于5的整数,具体的,通过测量M根天线分别在N个载波上的信道相位信息,得到第一信道相位矩阵,然后,从第一信道相位矩阵中提取出若干子信道相位矩阵,各子信道相位矩阵中元素数目均小于第一信道相位矩阵中元素数目,进而,根据若干子信道相位矩阵,估计多个方位的波达方向角信息。本申请实施例中,利用发送端与接收端支持多载波通信的特性,并利用各载波频率的偏差,通过多载波传输数据时,不同载波在不同天线上将形成不同的接收信号相位差,因此,在第一信道相位信息中提取出来若干子信道相位矩阵,增加了有效测量信息的数目,从而,就能够利用较少数量的天线就实现对AOA的精确估计,通用性较高。相较于现有的AOA估计方法,本申请实施例提供的技术方案能够在天线数量较少时得到较为准确 的AOA估计结果,解决了现有的AOA估计方法在天线数量较少时得到的AOA估计结果的准确度较低,通用性较差的问题。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机装置(可以是个人计算机,服务器,或者网络装置等)或处理器(Processor)执行本申请各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (10)

  1. 一种波达方向角估计方法,其特征在于,执行于包括发送端和接收端的系统,执行于所述接收端上,所述接收端布设有M根天线,M为大于等于3的整数,所述发送端在N个载波上传输数据给所述接收端,N为大于等于5的整数;所述方法包括:
    测量M根天线分别在N个载波上的信道相位信息,得到第一信道相位矩阵;
    从所述第一信道相位矩阵中提取出若干子信道相位矩阵,各子信道相位矩阵中元素数目均小于所述第一信道相位矩阵中元素数目;
    根据所述若干子信道相位矩阵,估计多个方位的波达方向角信息。
  2. 根据权利要求1所述的方法,其特征在于,从所述信道相位矩阵中提取出若干子信道相位矩阵,包括:
    构造矩形框,所述矩形框的宽度为E,长度为F,E≤M,F≤N,且E=M与F=N不同时存在;
    利用所述矩形框在所述第一相位矩阵中移动,获得若干子信道相位矩阵,各子信道相位矩阵均不相同。
  3. 根据权利要求2所述的方法,其特征在于,根据所述若干子信道相位矩阵,估计多个方位的波达方向角信息,包括:
    利用各子信道相位矩阵重新构造信道相位矩阵,得到第二信道相位矩阵;
    利用所述第二信道相位矩阵,估计多个方位的波达方向角信息。
  4. 根据权利要求3所述的方法,其特征在于,利用所述第二信道相位矩阵,估计多个方位的波达方向角信息,包括:
    获取第二信道相位矩阵的协方差矩阵;
    对协方差矩阵进行特征值分解,获取特征值为0的特征向量;
    获取所述特征值为0的特征向量的正交向量;
    根据所述正交向量,获得波达方向角矩阵;
    根据所述波达方向角矩阵,得到多个方位的波达方向角信息。
  5. 根据权利要求3所述的方法,其特征在于,所述第一信道相位矩阵为:
    其中,Φ表示第一信道相位矩阵,Φi,j表示利用第i根天线从第j个载波上测量到的信道相位信息,其中,1≤i≤M,1≤j≤N;
    相应的,所述第二信道相位矩阵为:
    Figure PCTCN2016113205-appb-100002
    其中,Φ*表示第二信道相位矩阵。
  6. 一种波达方向角获取装置,其特征在于,应用于包括发送端和接收端的系统,所述装置位于所述接收端上,所述接收端布设有M根天线,M为大于等于3的整数,所述发送端在N个载波上传输数据给所述接收端,N为大于等于5的整数;所述装置包括:
    获取单元,用于测量M根天线分别在N个载波上的信道相位信息,得到第一信道相位矩阵;
    提取单元,用于从所述第一信道相位矩阵中提取出若干子信道相位矩阵,各子信道相位矩阵中元素数目均小于所述第一信道相位矩阵中元素数目;
    估计单元,用于根据所述若干子信道相位矩阵,估计多个方位的波达方向角信息。
  7. 根据权利要求6所述的装置,其特征在于,所述提取单元,包括:
    构造子单元,用于构造矩形框,所述矩形框的宽度为E,长度为F,E≤M,F≤N,且E=M与F=N不同时存在;
    获取子单元,用于利用所述矩形框在所述第一相位矩阵中移动,获得若干 子信道相位矩阵,各子信道相位矩阵均不相同。
  8. 根据权利要求7所述的装置,其特征在于,所述估计单元,包括:
    第一获取子单元,用于利用各子信道相位矩阵重新构造信道相位矩阵,得到第二信道相位矩阵;
    第二获取子单元,用于利用所述第二信道相位矩阵,估计多个方位的波达方向角信息。
  9. 根据权利要求8所述的装置,其特征在于,所述第二获取子单元,具体用于:
    获取第二信道相位矩阵的协方差矩阵;
    对协方差矩阵进行特征值分解,获取特征值为0的特征向量;
    获取所述特征值为0的特征向量的正交向量;
    根据所述正交向量,获得波达方向角矩阵;
    根据所述波达方向角矩阵,得到多个方位的波达方向角信息。
  10. 根据权利要求8所述的装置,其特征在于,所述第一信道相位矩阵为:
    Figure PCTCN2016113205-appb-100003
    其中,Φ表示第一信道相位矩阵,Φi,j表示利用第i根天线从第j个载波上测量到的信道相位信息,其中,1≤i≤M,1≤j≤N;
    相应的,所述第二信道相位矩阵为:
    Figure PCTCN2016113205-appb-100004
    其中,Φ*表示第二信道相位矩阵。
PCT/CN2016/113205 2016-12-29 2016-12-29 一种波达方向角估计方法及装置 WO2018119936A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113205 WO2018119936A1 (zh) 2016-12-29 2016-12-29 一种波达方向角估计方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113205 WO2018119936A1 (zh) 2016-12-29 2016-12-29 一种波达方向角估计方法及装置

Publications (1)

Publication Number Publication Date
WO2018119936A1 true WO2018119936A1 (zh) 2018-07-05

Family

ID=62707784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113205 WO2018119936A1 (zh) 2016-12-29 2016-12-29 一种波达方向角估计方法及装置

Country Status (1)

Country Link
WO (1) WO2018119936A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965593A (zh) * 2020-07-10 2020-11-20 北京邮电大学 一种信号的波达方向确定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968046A (zh) * 2006-10-19 2007-05-23 北京交通大学 阵列天线mc-cdma系统用户信号波达方向估计方法
CN102156275A (zh) * 2010-12-29 2011-08-17 北京遥测技术研究所 一种用于无人机的测角方法
CN103152093A (zh) * 2011-12-06 2013-06-12 中兴通讯股份有限公司 二维到达角的获取方法和装置
US20150116147A1 (en) * 2013-10-31 2015-04-30 Southwest Research Institute Determination of Integrity of Incoming Signals of Satellite Navigation System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968046A (zh) * 2006-10-19 2007-05-23 北京交通大学 阵列天线mc-cdma系统用户信号波达方向估计方法
CN102156275A (zh) * 2010-12-29 2011-08-17 北京遥测技术研究所 一种用于无人机的测角方法
CN103152093A (zh) * 2011-12-06 2013-06-12 中兴通讯股份有限公司 二维到达角的获取方法和装置
US20150116147A1 (en) * 2013-10-31 2015-04-30 Southwest Research Institute Determination of Integrity of Incoming Signals of Satellite Navigation System

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965593A (zh) * 2020-07-10 2020-11-20 北京邮电大学 一种信号的波达方向确定方法及装置
CN111965593B (zh) * 2020-07-10 2024-03-08 北京邮电大学 一种信号的波达方向确定方法及装置

Similar Documents

Publication Publication Date Title
CN110463147B (zh) 解码符号的方法以及接收并解码符号的接收器
Soltanaghaei et al. Multipath triangulation: Decimeter-level wifi localization and orientation with a single unaided receiver
CN105611627B (zh) 基于双天线的wlan接入点aoa的估计方法
US9804256B2 (en) Apparatus and method for determining the location of a mobile device using multiple wireless access points
US10433274B2 (en) Apparatus and method for calibrating a wireless access point comprising an array of multiple antennas
EP2422210B1 (en) Orientation and localization system
US9084217B2 (en) Single-site localization via multipath fingerprinting
US20160334498A1 (en) Apparatus and method for determining the location of a mobile device using multiple wireless access points
US20110199263A1 (en) Method and apparatus for estimating angle of arrival
US9641357B1 (en) System and method for mmWave channel estimation
US9763216B2 (en) Radiator localization
Schüssel Angle of arrival estimation using WiFi and smartphones
CN109738861A (zh) 一种基于Wi-Fi信道状态信息的三维联合估计方法
WO2018119949A1 (zh) 信道状态信息相位的校正方法及装置
JP2023508338A (ja) 干渉計による位置検知
CN111405657B (zh) 一种基于csi的到达角与到达时间差单接入点定位方法
Qian et al. Localization of coherent signals without source number knowledge in unknown spatially correlated Gaussian noise
US11754658B2 (en) Radio station for client localization in multipath indoor environment
US10595165B2 (en) Device location tracking with tag antenna switching
WO2018119936A1 (zh) 一种波达方向角估计方法及装置
Zhang et al. Wico: Robust indoor localization via spectrum confidence estimation
KR101447027B1 (ko) 다중 안테나 시스템의 빔포밍 장치 및 방법
US20210349171A1 (en) Using recursive phase vector subspace estimation to localize and track client devices
Kim et al. Time-of-arrival estimation through WLAN physical layer systems
WO2024140796A1 (zh) 传输处理方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925449

Country of ref document: EP

Kind code of ref document: A1