WO2018119562A1 - 一种数据传输方法及基站 - Google Patents

一种数据传输方法及基站 Download PDF

Info

Publication number
WO2018119562A1
WO2018119562A1 PCT/CN2016/112053 CN2016112053W WO2018119562A1 WO 2018119562 A1 WO2018119562 A1 WO 2018119562A1 CN 2016112053 W CN2016112053 W CN 2016112053W WO 2018119562 A1 WO2018119562 A1 WO 2018119562A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
data
base station
pmi
data stream
Prior art date
Application number
PCT/CN2016/112053
Other languages
English (en)
French (fr)
Inventor
郏寅
王智鹰
阙程晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/112053 priority Critical patent/WO2018119562A1/zh
Publication of WO2018119562A1 publication Critical patent/WO2018119562A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method and a base station.
  • LTE system downlink transmission includes Single-User Multi-Input Multi-Output (SU-MIMO) and Multi-User-Multiple Input Multiple Output (Multiple-User MIMO, MU - MIMO) two ways.
  • SU-MIMO transmits data to only one user equipment (UE) on the same time-frequency resource
  • MU-MIMO transmits data to multiple users simultaneously on the same time-frequency resource.
  • Both SU-MIMO and MU-MIMO can use the space division multiplexing technology to transmit multiple data streams on the same time-frequency resource.
  • MU-MIMO will have a larger performance gain than SU-MIMO if the advantage of space division multiplexing between users is fully utilized, but this requires MU-MIMO to have a higher probability of user pairing.
  • the downlink primary transmission mode of SU-MIMO is Transmission Mode (TM) 4
  • the transmission modes of MU-MIMO include but are not limited to TM8, TM9, and TM10.
  • the user equipment supporting the MU-MIMO transmission mode has a low penetration rate. Take TM9 as an example. Because the penetration rate of TM9 user equipment is low, that is, the proportion of user equipment supporting TM9 technology is low, the number of user equipments that can participate in MU-MIMO pairing at the same time is very limited, which greatly limits MU. - MIMO plays its due advantage.
  • Embodiments of the present invention relate to a data transmission method and a base station. Solving the prior art TM9 users has a very limited pairing probability, and it is difficult to effectively exploit the MU-MIMO advantage.
  • the embodiment of the present invention provides a data transmission method, where the method includes: the base station sends a rank indication and a PMI greater than or equal to 2 to the first user equipment, where the first user equipment uses a transmission mode. a SU-MIMO mode based on codebook precoding; the base station to the second user equipment Sending a rank indication equal to 1, wherein the transmission mode used by the second user equipment is a non-codebook precoding based MU-MIMO mode; the base station sends the first user equipment and the second user equipment At least two streams of data, wherein the at least two streams of data use the same time-frequency resource, and the at least two streams of data include the data stream A, wherein the data stream A carries data sent to the first user equipment, The at least two streams of data include a data stream B, where the data stream B carries data sent to the second user equipment, wherein the rank indication greater than or equal to 2 and the PMI are used to indicate the Determining, by the first user equipment, data of the first user equipment, data of the
  • the data transmission method provided by the embodiment of the present invention can pair the user equipments of the SU-MIMO and MU-MIMO transmission modes, fully utilize the advantages of the MU-MIMO, and improve the gain of the communication system.
  • the method further includes: the base station receiving feedback information from the first user equipment on the at least two streams of data; and the base station according to the received feedback information of the data stream A It is determined whether the data in the data stream A is to be retransmitted.
  • the embodiment of the present invention may pair the TM4 user equipment in the SU-MIMO mode and the TM9 user equipment in the MU-MIMO mode.
  • the TM4 user After receiving the at least two streams of data sent by the base station, the TM4 user solves the data stream B and feeds back the base station NACK.
  • the base station will ignore the NACK feedback of the TM4 user to data stream B. It is determined whether to retransmit the data in the data stream A based only on the feedback information of the TM4 user on the data stream A.
  • the PMI matrix includes at least two column vectors; the base station sends at least two streams of data to the first user equipment and the second user equipment, including: the base station uses the first And transmitting, by the base station, weighting the data stream A; and transmitting, by the base station, weighting the data stream B by using a second transmission weight; wherein the first transmission weight is the data stream A a matrix for beamforming, the first transmission weight includes at least one column vector, and the second transmission weight is a matrix for beamforming the data stream B, the first transmission weight and the The PMI matrix is related.
  • the column vector of the first transmission weight may be equal to or different from a phase factor of at least one of the at least two column vectors of the PMI matrix, such that the SU-MIMO is demodulated according to the PMI matrix and the CRS.
  • the user equipment can obtain the data stream A in at least two streams of data sent by the base station.
  • the first time-frequency location of the data stream B includes CSI-RS information; and the base station performs weighting on the data stream A by using a first transmission weight, including: the base station Performing a puncturing process at a first time-frequency location of the data stream A, the puncturing process of not transmitting data at the first time-frequency location; the base station using the first transmission weight for the The data stream A after the hole processing is weighted and transmitted.
  • the puncturing process may be performed at the corresponding position of the data stream A transmitted to the SU-MIMO user equipment. In order to avoid the data stream A from causing interference to the corresponding position of the data stream B.
  • the method further includes: determining, by the base station, an intermediate weight of the first user equipment according to a channel characteristic of the first user equipment; the base station according to a channel of the second user equipment Determining an intermediate weight of the second user equipment; the base station demodulating a PMI matrix used by the first user equipment, an intermediate weight of the first user equipment, and an intermediate weight of the second user equipment The value determines the first transmit weight and the second transmit weight.
  • the PMI matrix used by the first user equipment demodulation is one of N candidate PMI matrices, and N is an integer greater than 1; the base station according to the N candidate PMI matrices and the first Determining, by the correlation between an intermediate weight of the user equipment and the intermediate weight of the second user equipment, the first transmission weight and the second transmission weight; wherein the first transmission weight and the first Related to a PMI matrix, the second transmission weight is related to an intermediate weight of the second user equipment, where the first PMI matrix is an intermediate right of the N candidate PMI matrices with the first user equipment The value, the PMI matrix of which the correlation of the intermediate weights of the second user equipment is the largest.
  • the embodiment of the present invention uses the maximum correlation weight selection algorithm to perform weighted transmission on the TM4 user and the TM9 user by using an appropriate algorithm to improve the reliability of the transmission.
  • an embodiment of the present invention provides a base station, where the base station includes: a transmitter, Transmitting, to the first user equipment, a rank indication and a PMI greater than or equal to 2, wherein the transmission mode used by the first user equipment is a codebook precoding based SU-MIMO mode; the transmitter is further configured to The second user equipment sends a rank indication equal to 1, wherein the transmission mode used by the second user equipment is a non-codebook precoding based out MU-MIMO mode; the transmitter is further configured to be the first The user equipment and the second user equipment send at least two streams of data, wherein the at least two streams of data use the same time-frequency resource, and the at least two streams of data include the data stream A, and the data stream A carries the same For the data of the first user equipment, the at least two streams of data include a data stream B, where the data stream B carries data sent to the second user equipment, where the rank greater than or equal to 2 And the PMI is used to instruct the first user equipment to obtain
  • the base station further includes: a receiver, configured to receive feedback information from the first user equipment on the at least two streams of data; and a processor, configured to: according to the received data stream The feedback information of A determines whether the transmitter is instructed to retransmit the data in the data stream A.
  • the PMI matrix includes at least two column vectors; the transmitter is specifically configured to perform weighted transmission on the data stream A using a first transmission weight; and use a second transmission weight And performing weighting on the data stream B; wherein the first transmission weight is a matrix for beamforming the data stream A, and the first transmission weight includes at least one column vector, where The second transmission weight is a matrix for beamforming the data stream B, and the first transmission weight is related to the PMI matrix.
  • the first time-frequency location of the data stream B includes CSI-RS information
  • the processor is further configured to perform a puncturing process at the first time-frequency location of the data stream A
  • the puncturing process refers to not transmitting data at the first time-frequency position
  • the transmitter is configured to perform weighting and then transmitting the punctured data stream A by using the first transmission weight.
  • the processor is further configured to: according to the channel of the first user equipment Determining an intermediate weight of the first user equipment; determining an intermediate weight of the second user equipment according to a channel characteristic of the second user equipment; and demodulating a used PMI matrix according to the first user equipment
  • the intermediate weight of the first user equipment and the intermediate weight of the second user equipment determine the first transmission weight and the second transmission weight.
  • the PMI matrix used by the first user equipment demodulation is one of N candidate PMI matrices, and N is an integer greater than 1.
  • the processor is specifically configured to use the N Determining, by the correlation between the intermediate PMI of the first user equipment and the intermediate weight of the second user equipment, the first transmission weight and the second transmission weight; wherein The first transmission weight is related to the first PMI matrix, and the second transmission weight is related to the intermediate weight of the second user equipment, where the first PMI matrix is in the N candidate PMI matrices A PMI matrix having the greatest correlation between the intermediate weight of the first user equipment and the intermediate weight of the second user equipment.
  • the data transmission method and the base station provided by the embodiments of the present invention implement a multi-user multi-mode hybrid transmission scheme based on the SU-MIMO user and the MU-MIMO user, which can effectively improve the pairing probability of the MU-MIMO user.
  • the embodiments of the present invention can effectively utilize the advantages of MU-MIMO and improve the performance gain of the communication system.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are for a clearer description of the present disclosure.
  • the technical solutions of the embodiments of the present invention are not limited to the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention may be known as the evolution of the network architecture and the appearance of new service scenarios. The same applies to similar technical issues.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the communication system includes a base station 110, a SU-MIMO user equipment 120, and a MU-MIMO user equipment 130.
  • the number of SU-MIMO user equipments or MU-MIMO user equipments may be more than one, and FIG. 1 only shows one for each of the examples for illustration.
  • the technology described in this embodiment of the present invention may be used in an LTE system, or other wireless communication systems using various radio access technologies, for example, using code division multiple access, frequency division multiple access, time division multiple access, orthogonal frequency division multiple access, Single-cell MU-MIMO or Coordinated Multipoint Transmission (CoMP) MU-MIMO system with access technology such as single carrier frequency division multiple access.
  • code division multiple access frequency division multiple access
  • time division multiple access time division multiple access
  • orthogonal frequency division multiple access Single-cell MU-MIMO or Coordinated Multipoint Transmission (CoMP) MU-MIMO system with access technology such as single carrier frequency division multiple access.
  • CoMP Coordinated Multipoint Transmission
  • the terms “network” and “system” are often used interchangeably in this application, but will be understood by those skilled in the art.
  • the user equipment referred to in the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices (WDs), computing devices, or other processing devices connected to wireless modems, and various forms.
  • the base station (BS) involved in the present application is a network device deployed in a radio access network to provide wireless communication functions for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station functions may be different, for example, in an LTE network, called an evolved NodeB (eNB or eNodeB), in the fifth generation 5G. Or NR network, called new radio node B (NR-NB) and so on.
  • eNB evolved NodeB
  • NR-NB new radio node B
  • the foregoing user equipments in the present application may be collectively referred to as UEs
  • the foregoing network devices that provide wireless communication functions for the UEs may be collectively referred to as base stations.
  • the pairing of MU-MIMO users is only performed between users supporting MU-MIMO technology such as TM9.
  • the cooperation between TM4 users and TM9 users is realized by time-frequency division, that is, only different time-frequency resources can be TM4 users do SU-MIMO transmission, or TM9 users do MU-MIMO transmission. Due to the low penetration rate of TM9 user equipment, most of the online users are TM4 users. TM4 users and TM9 users are staggered on time-frequency resources, causing most of the time-frequency resources to be sent to TM4 users, making the pairing probability of TM9 users very limited, and it is difficult to effectively exploit the advantages of MU-MIMO.
  • base station 110 transmits at least two streams of data to SU-MIMO user equipment 120 and MU-MIMO user equipment 130.
  • the data stream A includes the data sent to the SU-MIMO user equipment 120, and the data stream B is further included in the at least two streams of data.
  • the base station 110 performs beamforming on the data stream A and the data stream B by using different beamforming matrices, so that the same time-frequency resource transmits data to the SU-MIMO user equipment 120 and the MU-MIMO user equipment 130.
  • At least one of data stream A or data stream B may comprise multi-stream data. That is to say, in at least two streams of data, data carried by the SU-MIMO user equipment 120 or data carried by the bearer to the MU-MIMO user equipment 130 is at least first class.
  • the SU-MIMO user equipment 120 determines the PMI matrix used for demodulation according to the Precoding Matrix Indicator (PMI) information and the Rank indication information sent by the base station 110, and then carries the PMI matrix according to the PMI matrix and the data stream A.
  • the cell-specific reference signal (CRS) demodulates at least the first-class data in at least two streams of data to obtain data of the SU-MIMO user equipment 120.
  • the MU-MIMO user equipment 130 determines, according to the rank indication information sent by the base station 110, demodulates at least the first-class data in at least two streams of data according to a Demodulation Reference Signal (DMRS) carried in the data stream B, to obtain a MU.
  • DMRS Demodulation Reference Signal
  • the matrix of the beamforming of the data stream A by the base station 110 is related to the PMI matrix used by the SU-MIMO user equipment 120 for demodulation, and the base station 110 performs the wave of the data stream B.
  • the beamformed matrix is related to the channel characteristics of the MU-MIMO user equipment 130, wherein the DMRS in data stream B carries information about the matrix of beamforming the data stream B. Therefore, the SU-MIMO user equipment 120 and the MU-MIMO user equipment 130 can demodulate respective data from at least two streams of data.
  • the base station implements appropriate beamforming on the data of the SU-MIMO user equipment and the data of the MU-MIMO user equipment, and performs weighted transmission on one time-frequency resource to implement the SU-MIMO based user.
  • the multi-user multi-mode hybrid transmission scheme of the MU-MIMO user can effectively improve the pairing probability of the MU-MIMO user.
  • the communication system provided by the embodiment of the present invention can effectively utilize the advantages of MU-MIMO and improve the performance gain of the communication system.
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present invention. As shown in FIG. 2, the embodiment includes steps S201 to S203.
  • step S201 the base station sends a rank indication and a PMI greater than or equal to 2 to the first user equipment, where the transmission mode used by the first user equipment is a codebook-based precoding based SU-MIMO mode.
  • the user equipment in the SU-MIMO mode may be a TM4 user equipment.
  • the base station sends the PMI and the rank indication information for the first user equipment to select the corresponding PMI matrix from the PMI selectable range.
  • the protocol specifies that the PMI matrix can be selected from [0 to 15], and the base station delivers the PMI indicator i corresponding to the corresponding PMI matrix in the range of [0-15].
  • the rank indication is to indicate the number of column vectors of the PMI matrix. For example, if the rank indication is 2, the PMI includes 2 column vectors.
  • the PMI indicator i and the rank indicator delivered by the base station jointly determine the PMI matrix used by the SU-MIMO mode user equipment demodulation.
  • the base station sends a rank indication greater than or equal to 2 to the TM4 user equipment.
  • Rank 2 indicates that the rank indication is 2
  • Rank 3 indicates that the rank indication is 3, and so on.
  • the base station sends a rank indication greater than 2
  • more than two pieces of data transmitted by the base station received by the TM4 user equipment are not only the first-class data but the data of the TM4 user.
  • the TM4 user equipment may determine a corresponding demodulation PMI matrix according to the relevant rank indication and the PMI, and then demodulate the data according to the PMI matrix.
  • the rank indication sent by the base station is 2
  • the base station indicates, by using Downlink Control Information (DCI), that the TM4 user equipment is Rank2 and indicates a Rank2 PMI.
  • DCI Downlink Control Information
  • the user equipment in the MU-MIMO mode may be a TM5 user equipment.
  • the TM5 user equipment uses the PMI matrix for demodulation.
  • the base station needs to deliver a rank indication and a PMI equal to 1 to the TM5 user equipment.
  • the at least two streams of data include a data stream C, and the data stream C carries data sent to the TM5 user.
  • the matrix in which the base station beamforms data stream C is related to the PMI matrix used by the TM5 user demodulation.
  • the data stream C can replace the status of the aforementioned data stream A or data stream B, and the specific method is similar to the TM4 and TM9 pairing.
  • the pairing of the TM5 user and the TM4 user can be implemented by referring to the method described in the following embodiments.
  • the data stream C will replace the aforementioned data stream B; and the pairing of the TM5 user and the TM9 user can also be realized.
  • the data stream C will replace the foregoing.
  • Data stream A The embodiment of the present invention mainly uses a TM4 user and a TM9 user as an example to describe a multi-user multi-mode hybrid transmission scheme provided by an embodiment of the present invention.
  • the base station sends a rank indication greater than or equal to 2 to the TM4 user equipment, and no improvement is made to the TM4 user equipment side. Therefore, referring to the existing SU-MIMO transmission technology, the TM4 user equipment receives a rank indication greater than or equal to 2 indicating that at least two streams of data need to be solved.
  • the method further includes: the base station receiving feedback information from the first user equipment on the at least two streams of data; the base station determining, according to the received feedback information of the data stream A, whether to Retransmit the data in data stream A.
  • the TM4 user since only the first-class data of the two streams received by the TM4 user is its own, and the first-class data is other users, the TM4 user cannot always solve the first-class data, and feeds the negative response to the base station (Negative Acknowledgement, NACK) information, but the base station knows this situation, will do the ignore processing, and will not initiate a retransmission. Therefore, the base station determines whether to retransmit the data in the data stream A based only on the feedback information of the data stream A. The base station ignores the received feedback information NACK from the TM4 user to the data stream B and does not retransmit the data stream B to the TM4 user equipment.
  • NACK Negative Acknowledgement
  • step S202 the base station sends a rank indication equal to 1 to the second user equipment, where the second The transmission mode used by the user equipment is a MU-MIMO mode based on non-codebook-based precoding.
  • the user equipment in the MU-MIMO mode may be a TM8, TM9 or TM10 user equipment.
  • the downlink indication in the downlink DCI signaling sent by the base station is Rank1, and the base station does not need to deliver the PMI.
  • the TM9 user can extract the data of the data stream B according to the DMRS, and does not need to perform additional operations on the base station side. Processing.
  • the base station sends at least two streams of data to the first user equipment and the second user equipment, where at least two streams of data use the same time-frequency resources.
  • the at least two streams of data include a data stream A, where the data stream A carries data sent to the first user equipment, and the at least two stream data includes a data stream B, and the bearer in the data stream B is sent to the Two user device data.
  • the rank indication greater than or equal to 2 and the PMI information are used to indicate that the first user equipment obtains data of the first user equipment from the at least two streams of data according to a PMI matrix and a CRS.
  • the PMI matrix is determined according to the rank indication greater than or equal to 2 and the PMI, where the rank indication equal to 1 is used to instruct the second user equipment to obtain the second from the at least two streams of data according to the DMRS.
  • User device data is determined according to the rank indication greater than or equal to 2 and the PMI, where the rank indication equal to 1 is used to instruct the second user equipment to obtain the second
  • the PMI matrix includes at least two column vectors; the base station sends at least two streams of data to the first user equipment and the second user equipment, including: the base station uses the first And transmitting, by the base station, weighting the data stream A; and transmitting, by the base station, weighting the data stream B by using a second transmission weight; wherein the first transmission weight is the data stream A A matrix for beamforming, the first transmission weight comprising at least one column vector.
  • the second transmission weight is a matrix for beamforming the data stream B, and the first transmission weight is related to the PMI matrix.
  • the first transmit weight includes a column vector that may be equal to or different from one or at least one of the at least two column vectors of the PMI matrix.
  • the at least first-class data of the at least two streams of data is data of the first user equipment, that is, the data stream A, and the data stream A may include multi-stream data, and accordingly, the first transmission weight may include multiple columns. vector.
  • data stream A includes two streams of data, and correspondingly, the first shot
  • the weight includes two column vectors.
  • the rank indication of the first user equipment delivered by the base station is greater than or equal to 3. That is, the PMI matrix used by the first user equipment demodulation will include at least 3 column vectors.
  • the base station performs weighted transmission on the data stream A by using two column vectors of the first transmission weight.
  • the two column vectors of the first transmit weight may be equal to or different from the two column vectors of the PMI matrix by one phase factor.
  • the second transmit weight may not be equal or have a corresponding relationship with the remaining column vectors of the PMI matrix.
  • the TM4 user is assigned to data stream A
  • the TM9 user is assigned to data stream B. Since the demodulation of the TM4 user is based on the PMI, if the PMI of the Rank2 delivered to the TM4 user is then Can be equal to w 1 or differ by one phase factor, and No need to equal w 2 .
  • the first time-frequency location of the data stream B includes channel state information-reference signal (CSI-RS) information; the base station uses the first transmit weight value pair The data stream A is weighted and transmitted, and the base station performs a puncturing process at a first time-frequency position of the data stream A, where the puncturing process refers to not transmitting data at the first time-frequency position; The base station uses the first transmission weight to weight the data stream A after the puncturing process and then transmits the data stream A. In order to avoid the data stream A from causing interference to the corresponding position of the data stream B.
  • CSI-RS channel state information-reference signal
  • a reference signal may also be referred to as a pilot.
  • RS reference signal
  • both the TM4 mode and the TM9 mode have CRS pilots, but the TM9 mode will have more CSI-RS pilots and DMRS pilots than the TM4 mode, and the three pilots are time-frequency shifted from each other. Since the TM4 user does not know the CSI-RS pilot and the DMRS pilot, in the scheme of the TM4 user and the TM9 user mixed pairing, for the TM4 user, the CSI-RS pilot position can be punctured, that is, no data is transmitted. In order to prevent the data of the TM4 user equipment from interfering with the data of the corresponding location of the TM9 user equipment.
  • Data can be transmitted at the DMRS pilot position.
  • the corresponding pilot signal is transmitted according to the protocol at the CSI-RS pilot position, and the pilot signal is transmitted at the port 7 or port 8 according to the protocol at the DMRS pilot position.
  • the pilot signal is transmitted at the port 7 or port 8 according to the protocol at the DMRS pilot position.
  • the puncturing processing or other processing may be flexibly performed according to actual needs, and details are not described herein.
  • the method of the embodiment further includes: determining, by the base station, an intermediate weight of the first user equipment according to a channel characteristic of the first user equipment; the base station according to the second user equipment The channel feature determines an intermediate weight of the second user equipment; the base station demodulates a PMI matrix used by the first user equipment, an intermediate weight of the first user equipment, and the second user equipment The intermediate weight determines the first transmission weight and the second transmission weight.
  • the PMI matrix used by the first user equipment demodulation is one of N candidate PMI matrices, and N is an integer greater than 1.
  • the N candidate PMI matrices can be specified in advance by the protocol, for example, the PMI index i can be selected in the range [0-15]. Determining, by the base station, the first transmission weight and the second transmission right according to the correlation between the intermediate candidate weights of the first user equipment and the intermediate weight of the second user equipment. a value; wherein the first transmit weight is related to the first PMI matrix, for example, the column vector of the first transmit weight may be the same as or different from the at least one column vector of the first PMI matrix by one phase factor.
  • the second transmission weight is related to an intermediate weight of the second user equipment, where the first PMI matrix is an intermediate weight of the N candidate PMI matrices with the first user equipment, and the The PMI matrix with the largest correlation of the intermediate weights of the two user equipments.
  • the base station may feedback PMI or other means of obtaining the principal eigenvector of the estimated TM4 TM9 users and user channels, respectively, to V TM4, V TM9.
  • the base station by a suitable algorithm, such as zero-forcing feature vector (Eigenvector Zero-Forcing, EZF) algorithm to obtain an intermediate weight TM4 users and users are TM9 W TM4, W TM9.
  • EZF zero-forcing feature vector
  • the PMI indicator i Maximum, then the PMI indicator i and the rank indicating rank2 jointly determine the PMI matrix As the first PMI matrix. Then the final weight of the base station The PMI indicated by the base station to the TM4 user is i.
  • the TM4 user is in the first stream
  • the TM9 user is in the second stream, that is, the first stream data is the data stream A
  • the second stream data is the data stream B.
  • the PMI indicator i Maximum, then the PMI indicator i and the rank indicating rank2 jointly determine the PMI matrix As the first PMI matrix. Then the final weight of the base station The PMI indicated by the base station to the TM4 user is i.
  • the TM4 user is in the second stream, and the TM9 user is in the first stream, that is, the first stream data is the data stream B, and the second stream data is the data stream A.
  • the first transmission weight can be Column vector The same, but also with A phase factor difference. Or, if the PMI indicator i At the maximum, the first transmission weight is Column vector The same, but also with A phase factor difference.
  • the embodiment of the present invention uses the maximum correlation weight selection algorithm to perform weighted transmission on the TM4 user and the TM9 user by using an appropriate algorithm to improve the reliability of the transmission.
  • This application performs beamforming on TM4 users and TM9 users, and pairs TM4 users and TM9 users into MU-MIMO transmission.
  • the multi-user space-division multiplexing effect is fully utilized, and the purpose of increasing the pairing probability is achieved.
  • the prior art cannot match the TM4 user and the TM9 user, and cannot solve the low pairing probability due to the low permeability of the TM9 user.
  • the embodiment of the present invention can effectively improve the pairing probability of the MU-MIMO user equipment such as the TM9 by using an appropriate pairing algorithm and a multi-user multi-mode hybrid transmission scheme. Effectively take advantage of MU-MIMO and improve the performance gain of communication systems.
  • an embodiment of the present invention provides a base station, which is used to implement the data transmission method provided in the foregoing embodiment.
  • the base station includes: a transmitter 310, a receiver 320, and a processor. 330.
  • the transmitter 310 of the base station is configured to send a rank indication and a PMI greater than or equal to 2 to the first user equipment, where the transmission mode used by the first user equipment is a codebook precoding based SU-MIMO mode.
  • the transmitter 310 is further configured to send a rank indication equal to 1 to the second user equipment, where the transmission mode used by the second user equipment is a non-codebook precoding based MU-MIMO mode.
  • the transmitter 310 is further configured to send at least two streams of data to the first user equipment and the second user equipment, where the at least two streams of data use the same time-frequency resource, and the at least two streams of data include a data stream A, the data stream A carrying the data sent to the first user equipment, the at least two streams of data including the data stream B, the data stream B carrying the bearer to the second user equipment Data, wherein the rank indication greater than or equal to 2 and the PMI are used to indicate that the first user equipment obtains data of the first user equipment from the at least two streams of data according to a PMI matrix and a CRS, where The PMI matrix is determined according to the rank indication greater than or equal to 2 and the PMI, where the rank indication equal to 1 is used to instruct the second user equipment to obtain the second from the at least two streams of data according to the DMRS.
  • User device data User device data.
  • the receiver 320 of the base station is configured to receive feedback information from the first user equipment for the at least two streams of data; the processor 330 is configured to receive, according to the received data stream A, The feedback information determines whether the transmitter 310 is instructed to retransmit the data in the data stream A.
  • the PMI matrix includes at least two column vectors; the transmitter 310 of the base station is specifically configured to perform weighted transmission on the data stream A using a first transmission weight; using a second transmission right The value is transmitted after weighting the data stream B; wherein the first transmission weight is a matrix for beamforming the data stream A, and the first transmission weight includes at least one column vector.
  • the second transmission weight is a matrix for beamforming the data stream B, and the first transmission weight is related to the PMI matrix.
  • the column vector of the first transmit weight may be equal to or differ from one at least one of the at least two column vectors of the PMI matrix by one phase factor.
  • the first time-frequency location of the data stream B includes CSI-RS information; the processor 330 of the base station is further configured to perform a puncturing process at the first time-frequency location of the data stream A.
  • the puncturing process refers to not transmitting data at the first time-frequency position; the transmitter 310 is specifically configured to use the first transmission weight to weight the data stream A after the puncturing process and then transmit.
  • the processor 330 of the base station is further configured to determine an intermediate weight of the first user equipment according to a channel characteristic of the first user equipment; and determine, according to a channel characteristic of the second user equipment An intermediate weight of the second user equipment; determining, according to the PMI matrix used by the first user equipment, the intermediate weight of the first user equipment, and the intermediate weight of the second user equipment. a transmit weight and the second transmit weight.
  • the PMI matrix used by the first user equipment demodulation is one of N candidate PMI matrices, and N is an integer greater than 1.
  • the processor 330 of the base station is specifically configured to use the N candidates. Determining, by the correlation between the intermediate weight of the first user equipment and the intermediate weight of the second user equipment, the first transmission weight and the second transmission weight; wherein, the A transmit weight is associated with the first PMI matrix.
  • the column vector of the first transmit weight may be the same as or different from the at least one column vector of the first PMI matrix by one phase factor.
  • the second transmission weight is related to an intermediate weight of the second user equipment, where the first PMI matrix is an intermediate weight of the N candidate PMI matrices with the first user equipment, and the The PMI matrix with the largest correlation of the intermediate weights of the two user equipments.
  • the base station shown in Figure 3 may also include a memory for storing relevant data, such as data to be transmitted.
  • the memory can also store program instructions that perform functions of the various units.
  • the above base station may also include more or fewer units. For the specific implementation process of each unit, refer to the introduction in the foregoing data transmission method embodiment, so as to implement the foregoing embodiments shown in FIG. 1 and FIG.
  • the base station includes: a transmitting unit 410, a receiving unit 420, and a processing unit 430.
  • the transmitter 310 in the foregoing embodiment of FIG. 3 may be configured by a transmitting unit. 410 instead.
  • the receiver 320 can be replaced by the receiving unit 420.
  • Processor 330 can be replaced by processing unit 430.
  • processing unit 430 For the processing involved in each unit in FIG. 4, refer to the specific embodiments shown in FIG. 1 to FIG. 3, which are not described herein.
  • non-transitory media such as random access memory, read only memory, flash memory, hard disk, solid state disk, magnetic tape, floppy disk, optical disc, and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例涉及一种数据传输方法及基站,该方法包括:基站向第一用户设备发送大于或等于2的秩指示和预编码矩阵指示PMI,其中,所述第一用户设备使用的传输模式为基于码本预编码的单用户-多输入多输出SU-MIMO模式;所述基站向第二用户设备发送等于1的秩指示,其中,所述第二用户设备使用的传输模式为基于非码本预编码的多用户-多输入多输出MU-MIMO模式;所述基站向所述第一用户设备和所述第二用户设备发送至少两流数据,其中,所述至少两流数据使用的时频资源相同。本发明实施例提供的数据传输方法及基站可以有效发挥MU-MIMO的优势,提高通信系统的性能增益。

Description

一种数据传输方法及基站 技术领域
本发明涉及通信技术领域,尤其涉及一种数据传输方法及基站。
背景技术
长期演进(Long Term Evolution,LTE)系统下行发射包括单用户-多输入多输出(Single-User Multi-Input Multi-Output,SU-MIMO)和多用户-多输入多输出(Multiple-User MIMO,MU-MIMO)两种方式。SU-MIMO在同一时频资源上仅给一个用户设备(user equipment,UE)发送数据,而MU-MIMO则在同一时频资源上给多个用户同时发送数据。SU-MIMO和MU-MIMO两种方式均可采用空分复用技术实现同一时频资源上传输多个数据流。
从理论上说,如果充分利用用户间的空分复用优势,MU-MIMO相对SU-MIMO将有较大的性能增益,但是这要求MU-MIMO有较高的用户配对概率。目前SU-MIMO的下行主要传输模式为传输模式(Transmission Mode,TM)4,MU-MIMO的传输模式包括但不限于TM8、TM9以及TM10。支持MU-MIMO传输模式的用户设备的渗透率较低。以TM9为例进行说明,由于TM9用户设备的渗透率较低,即支持TM9技术的用户设备比例较低,同一时间能够参与MU-MIMO配对的用户设备数量很有限,这极大的限制了MU-MIMO发挥其应有的优势。
发明内容
本发明实施例涉及一种数据传输方法及基站。解决现有技术TM9用户的配对概率很有限,很难有效发挥MU-MIMO优势的问题。
在第一方面,本发明实施例提供了一种数据传输方法,该方法包括:基站向第一用户设备发送大于或等于2的秩指示和PMI,其中,所述第一用户设备使用的传输模式为基于码本预编码的SU-MIMO模式;所述基站向第二用户设备 发送等于1的秩指示,其中,所述第二用户设备使用的传输模式为基于非码本预编码的MU-MIMO模式;所述基站向所述第一用户设备和所述第二用户设备发送至少两流数据,其中,所述至少两流数据使用的时频资源相同,所述至少两流数据中包括数据流A,所述数据流A中承载发给所述第一用户设备的数据,所述至少两流数据中包括数据流B,所述数据流B中承载发给所述第二用户设备的数据,其中,所述大于或等于2的秩指示和所述PMI用于指示所述第一用户设备根据PMI矩阵和CRS从所述至少两流数据中得到所述第一用户设备的数据,所述PMI矩阵根据所述大于或等于2的秩指示和所述PMI确定,所述等于1的秩指示用于指示所述第二用户设备根据DMRS从所述至少两流数据中得到所述第二用户设备的数据。
具体地,本发明实施例提供的数据传输方法可以将SU-MIMO和MU-MIMO两种传输模式的用户设备进行配对,充分发挥MU-MIMO的优势,提高通信系统增益。
在可选的实施例中,该方法还包括:所述基站接收来自所述第一用户设备对所述至少两流数据的反馈信息;所述基站根据接收到的所述数据流A的反馈信息确定是否要重传所述数据流A中的数据。
具体地,本发明实施例可以将SU-MIMO模式下如TM4用户设备和MU-MIMO模式下如TM9用户设备配对。TM4用户接收到基站发送的至少两流数据后,解不对数据流B,反馈基站NACK。基站将忽略TM4用户对数据流B的NACK反馈。仅根据TM4用户对数据流A的反馈信息确定是否重传数据流A中的数据。
在可选的实施例中,所述PMI矩阵包括至少两个列向量;所述基站向所述第一用户设备和所述第二用户设备发送至少两流数据,包括:所述基站使用第一发射权值对所述数据流A进行加权后发射;所述基站使用第二发射权值对所述数据流B进行加权后发射;其中,所述第一发射权值为对所述数据流A进行波束赋形的矩阵,所述第一发射权值包括至少一个列向量,所述第二发射权值为对所述数据流B进行波束赋形的矩阵,所述第一发射权值与所述PMI矩阵相关。
具体地,所述第一发射权值的列向量可与所述PMI矩阵的至少两个列向量中的至少一个列向量相等或相差一个相位因子,使得根据PMI矩阵和CRS解调的SU-MIMO用户设备可以在基站发送的至少两流数据中解得数据流A。
在可选的实施例中,所述数据流B的第一时频位置包括CSI-RS信息;所述基站使用第一发射权值对所述数据流A进行加权后发射,包括:所述基站在所述数据流A的第一时频位置进行打孔处理,所述打孔处理指在所述第一时频位置不发送数据;所述基站使用所述第一发射权值对所述打孔处理后的数据流A进行加权后发射。
具体地,当发送给MU-MIMO用户设备的数据流B包括CSI-RS时,可以在发送给SU-MIMO用户设备的数据流A的相应位置进行打孔处理。以免数据流A对数据流B的相应位置造成干扰。
在可选的实施例中,该方法还包括:所述基站根据所述第一用户设备的信道特征确定所述第一用户设备的中间权值;所述基站根据所述第二用户设备的信道特征确定所述第二用户设备的中间权值;所述基站根据所述第一用户设备解调使用的PMI矩阵、所述第一用户设备的中间权值以及所述第二用户设备的中间权值确定所述第一发射权值和所述第二发射权值。
在可选的实施例中,所述第一用户设备解调使用的PMI矩阵为N个候选PMI矩阵中的一个,N为大于1的整数;所述基站根据N个候选PMI矩阵与所述第一用户设备的中间权值、所述第二用户设备的中间权值的相关性,确定所述第一发射权值和所述第二发射权值;其中,所述第一发射权值与第一PMI矩阵相关,所述第二发射权值与所述第二用户设备的中间权值相关,所述第一PMI矩阵为所述N个候选PMI矩阵中与所述第一用户设备的中间权值、所述第二用户设备的中间权值的相关性最大的PMI矩阵。
具体地,本发明实施例通过最大相关性权值选择算法,对TM4用户和TM9用户采用适当的算法进行加权发射,提高传输的可靠性。
在第二方面,本发明实施例提供了一种基站,该基站包括:发射器,用 于向第一用户设备发送大于或等于2的秩指示和PMI,其中,所述第一用户设备使用的传输模式为基于码本预编码的SU-MIMO模式;所述发射器,还用于向第二用户设备发送等于1的秩指示,其中,所述第二用户设备使用的传输模式为基于非码本预编码的出MU-MIMO模式;所述发射器,还用于向所述第一用户设备和所述第二用户设备发送至少两流数据,其中,所述至少两流数据使用的时频资源相同,所述至少两流数据中包括数据流A,所述数据流A中承载发给所述第一用户设备的数据,所述至少两流数据中包括数据流B,所述数据流B中承载发给所述第二用户设备的数据,其中,所述大于或等于2的秩指示和所述PMI用于指示所述第一用户设备根据PMI矩阵和CRS从所述至少两流数据中得到所述第一用户设备的数据,所述PMI矩阵根据所述大于或等于2的秩指示和所述PMI确定,所述等于1的秩指示用于指示所述第二用户设备根据DMRS从所述至少两流数据中得到所述第二用户设备的数据。
在可选的实施例中,该基站还包括:接收器,用于接收来自所述第一用户设备对所述至少两流数据的反馈信息;处理器,用于根据接收到的所述数据流A的反馈信息确定是否指示所述发射器重传所述数据流A中的数据。
在可选的实施例中,所述PMI矩阵包括至少两个列向量;所述发射器,具体用于使用第一发射权值对所述数据流A进行加权后发射;使用第二发射权值对所述数据流B进行加权后发射;其中,所述第一发射权值为对所述数据流A进行波束赋形的矩阵,所述第一发射权值包括至少一个列向量,所述第二发射权值为对所述数据流B进行波束赋形的矩阵,所述第一发射权值与所述PMI矩阵相关。
在可选的实施例中,所述数据流B的第一时频位置包括CSI-RS信息;所述处理器,还用于在所述数据流A的第一时频位置进行打孔处理,所述打孔处理指在所述第一时频位置不发送数据;所述发射器,具体用于使用所述第一发射权值对所述打孔处理后的数据流A进行加权后发射。
在可选的实施例中,所述处理器还用于根据所述第一用户设备的信道特 征确定所述第一用户设备的中间权值;根据所述第二用户设备的信道特征确定所述第二用户设备的中间权值;根据所述第一用户设备解调使用的PMI矩阵、所述第一用户设备的中间权值以及所述第二用户设备的中间权值确定所述第一发射权值和所述第二发射权值。
在可选的实施例中,所述第一用户设备解调使用的PMI矩阵为N个候选PMI矩阵中的一个,N为大于1的整数;所述处理器,具体用于根据所述N个候选PMI矩阵与所述第一用户设备的中间权值、所述第二用户设备的中间权值的相关性,确定所述第一发射权值和所述第二发射权值;其中,所述第一发射权值与第一PMI矩阵相关,所述第二发射权值与所述第二用户设备的中间权值相关,所述第一PMI矩阵为所述N个候选PMI矩阵中与所述第一用户设备的中间权值、所述第二用户设备的中间权值的相关性最大的PMI矩阵。
基于上述技术方案,本发明实施例提供的数据传输方法及基站,实现了基于SU-MIMO用户和MU-MIMO用户的多用户多模式混合发射的方案,能够有效的提高MU-MIMO用户的配对概率。本发明实施例可以有效发挥MU-MIMO的优势,提高通信系统的性能增益。
附图说明
图1为本发明实施例提供的通信系统架构示意图;
图2为本发明实施例提供的数据传输方法流程示意图;
图3为本发明实施例提供的一种基站结构示意图;
图4为本发明实施例提供的又一种基站结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发 明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
图1为本发明实施例提供的通信系统架构示意图。如图1所示,该通信系统包括基站110、SU-MIMO用户设备120以及MU-MIMO用户设备130。在一个可能的示例中,SU-MIMO用户设备或MU-MIMO用户设备的数量可不止一个,图1仅各示出一个为例以进行说明。
本发明实施例描述的技术可以用于LTE系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的单小区MU-MIMO或协作多点传输(Coordinated Multipoint Transmission,CoMP)MU-MIMO系统。此外,还可以适用于LTE系统后续的演进系统,如第五代5G系统或新空口(New Radio,NR)系统等。
本申请中名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本申请所涉及到的用户设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备(wearable device,WD)、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment)等等。本申请所涉及到的基站(base station,BS)是一种部署在无线接入网中用以为终端提供无线通信功能的网络设备。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进型基站(evolved NodeB,eNB或者eNodeB),在第五代5G或NR网络中,称为新空口基站(new radio NodeB,NR-NB)等等。为方便描述,本申请中上述的用户设备可以统称为UE,上述为UE提供无线通信功能的网络设备可以统称为基站。
目前,MU-MIMO用户的配对仅在TM9等支持MU-MIMO技术的用户之间进行,TM4用户和TM9用户之间的配合是通过时频分割实现的,即在不同时频资源上只能是TM4用户做SU-MIMO发送,或者TM9用户做MU-MIMO发送。由于TM9用户设备渗透率不高,大部分在网用户是TM4用户。TM4用户和TM9用户在时频资源上错开,导致大部分时频资源都在发送TM4用户,使得TM9用户的配对概率很有限,很难有效发挥MU-MIMO的优势。
在一个可能的实施例中,基站110向SU-MIMO用户设备120和MU-MIMO用户设备130发送至少两流数据。其中,设该至少两流数据中包括据流A,该数据流A中承载发给SU-MIMO用户设备120的数据;设该至少两流数据中还包括数据流B,该数据流B中承载发给MU-MIMO用户设备130的数据。其中,基站110采用不同的波束赋形矩阵对数据流A和数据流B进行波束赋形,实现在同一个时频资源对SU-MIMO用户设备120和MU-MIMO用户设备130发送数据。
在一个可能的实施例中,数据流A或数据流B中的至少一个可包括多流数据。也就是说,至少两流数据中,承载发给SU-MIMO用户设备120的数据或承载发给MU-MIMO用户设备130的数据占至少一流。
SU-MIMO用户设备120根据基站110下发的预编码矩阵指示(Precoding Matrix Indicator,PMI)信息和秩(Rank)指示信息确定其解调使用的PMI矩阵,然后根据PMI矩阵和数据流A中携带的小区专有参考信号(Cell-specific Reference Signal,CRS)对至少两流数据中的至少一流数据进行解调,得到SU-MIMO用户设备120的数据。
MU-MIMO用户设备130根据基站110下发的秩指示信息确定根据数据流B中携带的解调参考信号(Demodulation Reference Signal,DMRS)对至少两流数据中的至少一流数据进行解调,得到MU-MIMO用户设备130的数据。
在一个可能的实施例中,基站110对数据流A进行波束赋形的矩阵与SU-MIMO用户设备120解调使用的PMI矩阵相关,基站110对数据流B进行波 束赋形的矩阵与MU-MIMO用户设备130的信道特征相关,其中,数据流B中的DMRS携带了对数据流B进行波束赋形的矩阵的信息。因此,SU-MIMO用户设备120和MU-MIMO用户设备130可以从至少两流数据中解调得到各自的数据。
本申请涉及的通信系统中,基站通过对SU-MIMO用户设备的数据和MU-MIMO用户设备的数据分别进行适当的波束赋形,在一个时频资源上加权发射,实现了基于SU-MIMO用户和MU-MIMO用户的多用户多模式混合发射的方案,能够有效的提高MU-MIMO用户的配对概率。本发明实施例提供的通信系统可以有效发挥MU-MIMO的优势,提高通信系统的性能增益。
相应地,图2为本发明实施例提供的数据传输方法流程示意图,如图2所示,该实施例包括步骤S201-步骤S203。
在步骤S201,基站向第一用户设备发送大于或等于2的秩指示和PMI,其中,该第一用户设备使用的传输模式为基于码本预编码(codebook-based precoding)的SU-MIMO模式。
具体地,SU-MIMO模式下的用户设备可以是TM4用户设备。
需要说明的是,基站下发PMI和秩指示信息用于第一用户设备从PMI可选范围内选取相应的PMI矩阵。例如,在一个可能中,协议规定好PMI矩阵可选范围为[0~15],基站下发PMI指标i对应[0~15]范围内对应的相关PMI矩阵。秩指示以指示PMI矩阵的列向量个数。例如秩指示为2则PMI包括2个列向量。简而言之,基站下发的PMI指标i和秩指示共同确定SU-MIMO模式用户设备解调使用的PMI矩阵。
在一个可能的示例中,基站向TM4用户设备下发大于或等于2的秩指示。其中Rank2表示秩指示为2,Rank3表示秩指示为3等等。当基站下发大于2的秩指示时,可能TM4用户设备接收的基站发射的至少两流数据中不止一流数据为TM4用户的数据。具体地,TM4用户设备可根据相关的秩指示和PMI确定对应的解调PMI矩阵,再根据PMI矩阵解调数据。以基站下发的秩指示为2 为例,由于功率限制,配对的两个用户设备的发射功率都是总功率的一半。因此,对于TM4用户,基站通过下行控制信息(Downlink Control Information,DCI)指示TM4用户设备为Rank2,并且指示一个Rank2PMI。
另外,在一个可能的实施例中,MU-MIMO模式下的用户设备可以是TM5用户设备。其中,TM5用户设备使用PMI矩阵进行解调。基站需要向TM5用户设备下发等于1的秩指示和PMI。同时,设该至少两流数据中包括数据流C,该数据流C中承载发给TM5用户的数据。基站对数据流C进行波束赋形的矩阵与TM5用户解调使用的PMI矩阵相关。数据流C可替代前述数据流A或数据流B的地位,具体方法与TM4和TM9配对类似。可参见以下实施例中描述的方法实现TM5用户和TM4用户的配对,此时数据流C将替代前述数据流B;也可实现TM5用户和TM9用户的配对,此时,数据流C将替代前述数据流A。本发明实施例主要以TM4用户与TM9用户为例,说明本发明实施例提供的多用户多模式混合发射方案。
需要说明的是,基站向TM4用户设备下发大于或等于2的秩指示,对于TM4用户设备侧,并不做任何改进。因此,参考现有SU-MIMO传输技术,TM4用户设备接收到大于或等于2的秩指示表明需要解至少两流数据。
在一个可能的示例中,该方法还包括:该基站接收来自所述第一用户设备对所述至少两流数据的反馈信息;该基站根据接收到的所述数据流A的反馈信息确定是否要重传数据流A中的数据。
具体地,由于TM4用户接收的两流数据中只有一流数据是自己的,另外一流数据是别的用户的,因此TM4用户总是不能解对一流的数据,而向基站反馈否定应答(Negative Acknowledgement,NACK)信息,但是基站是知道这个情况的,会做忽略处理,并不会发起重传。因此,基站只根据数据流A的反馈信息确定是否要重传数据流A中的数据。基站忽略接收的来自TM4用户对数据流B的反馈信息NACK,不向TM4用户设备重传数据流B。
在步骤S202,基站向第二用户设备发送等于1的秩指示,其中,该第二 用户设备使用的传输模式为基于非码本预编码(non-codebook-based precoding)的MU-MIMO模式。
具体地,MU-MIMO模式下的用户设备可以是TM8、TM9或TM10用户设备。
在一个可能的示例中,对于TM9用户,基站发送的下行DCI信令中秩指示为Rank1,基站不需要下发PMI,TM9用户能够根据DMRS解出数据流B的数据,不需要基站侧做额外的处理。
在步骤S203,基站向第一用户设备和第二用户设备发送至少两流数据,其中,至少两流数据使用的时频资源相同。该至少两流数据中包括数据流A,该数据流A中承载发给所述第一用户设备的数据,该至少两流数据中包括数据流B,该数据流B中承载发给所述第二用户设备的数据。其中,所述大于或等于2的秩指示和所述PMI信息用于指示所述第一用户设备根据PMI矩阵和CRS从所述至少两流数据中得到所述第一用户设备的数据。该PMI矩阵根据所述大于或等于2的秩指示和所述PMI确定,所述等于1的秩指示用于指示所述第二用户设备根据DMRS从所述至少两流数据中得到所述第二用户设备的数据。
在一个可能的实施例中,所述PMI矩阵包括至少两个列向量;所述基站向所述第一用户设备和所述第二用户设备发送至少两流数据,包括:所述基站使用第一发射权值对所述数据流A进行加权后发射;所述基站使用第二发射权值对所述数据流B进行加权后发射;其中,所述第一发射权值为对所述数据流A进行波束赋形的矩阵,所述第一发射权值包括至少一个列向量。所述第二发射权值为对所述数据流B进行波束赋形的矩阵,所述第一发射权值与所述PMI矩阵相关。例如,所述第一发射权值包括的列向量可与所述PMI矩阵的至少两个列向量中的至少一个列向量相等或相差一个相位因子。
其中,所述至少两流数据中至少一流数据为第一用户设备的数据,即为数据流A,该数据流A可包括多流数据,相应地,第一发射权值将可包括多个列向量。在一个可能的示例中,数据流A包括两流数据,相应地,第一发射 权值包括两个列向量。基站下发第一用户设备的秩指示大于或等于3。即第一用户设备解调使用的PMI矩阵将至少包括3个列向量。则基站通过第一发射权值的两个列向量对数据流A进行加权发射。该第一发射权值的两个列向量可与该PMI矩阵的两个列向量相等或相差一个相位因子。第二发射权值与该PMI矩阵的其余列向量可不相等或不存在相应关系。
具体地,对于两个用户的权值,假设最终基站发射的权值为W=[w1 w2],w1和w2都是一个列向量,w1是数据流A的发射权值,w2是数据流B的发射权值。假设TM4用户分配在数据流A,TM9用户分配在数据流B。由于TM4用户的解调靠的是PMI,如果下发给TM4用户的Rank2的PMI为
Figure PCTCN2016112053-appb-000001
Figure PCTCN2016112053-appb-000002
可以等于w1或者相差一个相位因子,而
Figure PCTCN2016112053-appb-000003
不需要等于w2
在一个可能的实施例中,所述数据流B的第一时频位置包括信道状态信息参考信号(channel state information-reference signal,CSI-RS)信息;所述基站使用第一发射权值对所述数据流A进行加权后发射,包括:所述基站在所述数据流A的第一时频位置进行打孔处理,所述打孔处理指在所述第一时频位置不发送数据;所述基站使用所述第一发射权值对所述打孔处理后的数据流A进行加权后发射。以免数据流A对数据流B的相应位置造成干扰。
具体地,参考信号(Reference Signal,RS)又可称作导频。根据协议规定,TM4模式和TM9模式都有CRS导频,但是TM9模式会比TM4模式多出CSI-RS导频和DMRS导频,并且三种导频是时频相互错开的。由于TM4用户并不知道CSI-RS导频和DMRS导频,因此在TM4用户与TM9用户混合配对的方案下,对于TM4用户,在CSI-RS导频位置可以进行打孔处理,即不发送数据,以免TM4用户设备的数据对TM9用户设备相应位置的数据造成干扰。在DMRS导频位置可以发送数据。对于TM9用户,在CSI-RS导频位置按照协议发送相应的导频信号,在DMRS导频位置按照协议在端口(port)7或者port 8发送导频信号。另外,在TM4用户与TM8用户混合配对的方案下,对于TM8模 式没有CSI-RS导频,因此TM4用户和TM8用户混合配对时,TM4用户不需要在CSI-RS导频处打孔。因此,对于其他传输模式的SU-MIMO和MU-MIMO用户设备的混合配对方案,可根据实际需要,灵活进行打孔处理或其他处理,在此将不做赘述。
在一个可能的实施例中,该实施例方法还包括:所述基站根据所述第一用户设备的信道特征确定所述第一用户设备的中间权值;所述基站根据所述第二用户设备的信道特征确定所述第二用户设备的中间权值;所述基站根据所述第一用户设备解调使用的PMI矩阵、所述第一用户设备的中间权值以及所述第二用户设备的中间权值确定所述第一发射权值和所述第二发射权值。
在一个可能的实施例中,所述第一用户设备解调使用的PMI矩阵为N个候选PMI矩阵中的一个,N为大于1的整数。其中,N个候选PMI矩阵可由协议提前规定好,例如PMI指标i可选范围[0~15]。所述基站根据N个候选PMI矩阵与所述第一用户设备的中间权值、所述第二用户设备的中间权值的相关性,确定所述第一发射权值和所述第二发射权值;其中,所述第一发射权值与第一PMI矩阵相关,例如,所述第一发射权值的列向量可与第一PMI矩阵的至少一个列向量相同或相差一个相位因子。所述第二发射权值与所述第二用户设备的中间权值相关,所述第一PMI矩阵为所述N个候选PMI矩阵中与所述第一用户设备的中间权值、所述第二用户设备的中间权值的相关性最大的PMI矩阵。
具体地,基站可通过PMI反馈或者其他手段获得TM4用户和TM9用户的信道的主特征向量的估计,分别设为VTM4、VTM9。基站可以通过适当的算法,如特征向量迫零(Eigenvector Zero-Forcing,EZF)算法求得TM4用户和TM9用户的中间权值分别为WTM4、WTM9
对于某一Rank2 PMI
Figure PCTCN2016112053-appb-000004
定义两类相关性:
Figure PCTCN2016112053-appb-000005
Figure PCTCN2016112053-appb-000006
遍历所有的Rank2PMI,对所有两类相关性排序,找到最大的相关性,假设以下两种情况:
若PMI指标i的
Figure PCTCN2016112053-appb-000007
最大,则PMI指标i和秩指示rank2共同确定的PMI矩阵
Figure PCTCN2016112053-appb-000008
做为第一PMI矩阵。则基站最终的加权
Figure PCTCN2016112053-appb-000009
基站下发给TM4用户的PMI指示为i。基站发送的两流数据中,TM4用户在第一流,TM9用户在第二流,即第一流数据为数据流A,第二流数据为数据流B。
若PMI指标i的
Figure PCTCN2016112053-appb-000010
最大,则PMI指标i和秩指示rank2共同确定的PMI矩阵
Figure PCTCN2016112053-appb-000011
做为第一PMI矩阵。则基站最终的加权
Figure PCTCN2016112053-appb-000012
基站下发给TM4用户的PMI指示为i。基站发送的两流数据中,TM4用户在第二流,TM9用户在第一流,即第一流数据为数据流B,第二流数据为数据流A。
在上述两种情况中,若PMI指标i的
Figure PCTCN2016112053-appb-000013
最大,则第一发射权值可与
Figure PCTCN2016112053-appb-000014
的列向量
Figure PCTCN2016112053-appb-000015
相同,也可与
Figure PCTCN2016112053-appb-000016
相差一个相位因子。或,若PMI指标i的
Figure PCTCN2016112053-appb-000017
最大时,则第一发射权值与
Figure PCTCN2016112053-appb-000018
的列向量
Figure PCTCN2016112053-appb-000019
相同,也可与
Figure PCTCN2016112053-appb-000020
相差一个相位因子。
本发明实施例通过上述最大相关性权值选择算法,对TM4用户和TM9用户采用适当的算法进行加权发射,提高传输的可靠性。
本申请对TM4用户和TM9用户进行了波束赋型,将TM4用户和TM9用户配对做MU-MIMO发射。充分发挥了多用户的空分复用效果,达到了增加配对概率的目的。现有技术无法将TM4用户和TM9用户进行配对,无法解决由于TM9用户低渗透率导致的低配对概率。本发明实施例利用适当的配对算法和多用户多模式混合发射的方案能够有效的提升TM9等MU-MIMO用户设备的配对概率。有效发挥MU-MIMO的优势,提高通信系统的性能增益。
相应地,本发明实施例提供一种基站,用以实现前述实施例中提供的数据传输方法。如图3所示,该基站包括:发射器310、接收器320以及处理器 330。
该基站的发射器310用于向第一用户设备发送大于或等于2的秩指示和PMI,其中,所述第一用户设备使用的传输模式为基于码本预编码的SU-MIMO模式。
该发射器310还用于向第二用户设备发送等于1的秩指示,其中,所述第二用户设备使用的传输模式为基于非码本预编码的MU-MIMO模式。
该发射器310还用于向所述第一用户设备和所述第二用户设备发送至少两流数据,其中,所述至少两流数据使用的时频资源相同,所述至少两流数据中包括数据流A,所述数据流A中承载发给所述第一用户设备的数据,所述至少两流数据中包括数据流B,所述数据流B中承载发给所述第二用户设备的数据,其中,所述大于或等于2的秩指示和所述PMI用于指示所述第一用户设备根据PMI矩阵和CRS从所述至少两流数据中得到所述第一用户设备的数据,所述PMI矩阵根据所述大于或等于2的秩指示和所述PMI确定,所述等于1的秩指示用于指示所述第二用户设备根据DMRS从所述至少两流数据中得到所述第二用户设备的数据。
在一个可能的实施例中,该基站的接收器320用于接收来自所述第一用户设备对所述至少两流数据的反馈信息;处理器330用于根据接收到的所述数据流A的反馈信息确定是否指示所述发射器310重传所述数据流A中的数据。
在一个可能的实施例中,所述PMI矩阵包括至少两个列向量;该基站的发射器310具体用于使用第一发射权值对所述数据流A进行加权后发射;使用第二发射权值对所述数据流B进行加权后发射;其中,所述第一发射权值为对所述数据流A进行波束赋形的矩阵,所述第一发射权值包括至少一个列向量。所述第二发射权值为对所述数据流B进行波束赋形的矩阵,所述第一发射权值与所述PMI矩阵相关。例如,所述第一发射权值的列向量可与所述PMI矩阵的至少两个列向量中的至少一个列向量相等或相差一个相位因子。
在一个可能的实施例中,数据流B的第一时频位置包括CSI-RS信息;该基站的处理器330还用于在所述数据流A的第一时频位置进行打孔处理,所述打孔处理指在所述第一时频位置不发送数据;发射器310具体用于使用所述第一发射权值对所述打孔处理后的数据流A进行加权后发射。
在一个可能的实施例中,该基站的处理器330还用于根据所述第一用户设备的信道特征确定所述第一用户设备的中间权值;根据所述第二用户设备的信道特征确定所述第二用户设备的中间权值;根据所述第一用户设备解调使用的PMI矩阵、所述第一用户设备的中间权值以及所述第二用户设备的中间权值确定所述第一发射权值和所述第二发射权值。
在一个可能的实施例中,第一用户设备解调使用的PMI矩阵为N个候选PMI矩阵中的一个,N为大于1的整数;该基站的处理器330具体用于根据所述N个候选PMI矩阵与所述第一用户设备的中间权值、所述第二用户设备的中间权值的相关性,确定所述第一发射权值和所述第二发射权值;其中,所述第一发射权值与第一PMI矩阵相关,例如,所述第一发射权值的列向量可与第一PMI矩阵的至少一个列向量相同或相差一个相位因子。所述第二发射权值与所述第二用户设备的中间权值相关,所述第一PMI矩阵为所述N个候选PMI矩阵中与所述第一用户设备的中间权值、所述第二用户设备的中间权值的相关性最大的PMI矩阵。
图3所示的基站还可包括存储器,用于存储相关数据,例如待传输的数据。存储器还可存储执行执行各单元功能的程序指令。上述基站还可包括更多或更少的单元。各单元的具体执行过程可参见前述数据传输方法实施例中的介绍,以实现前述图1、图2所示的实施例为准。
另外,本发明实施例提供的基站还可以采用的实现方式如下,用以实现前述本发明实施例中的数据传输方法。如图4所示,该基站包括:发送单元410、接收单元420以及处理单元430。
在可选的实施例中,前述图3的实施例中的发射器310可以由发送单元 410代替。接收器320可以由接收单元420代替。处理器330可以由处理单元430代替。图4中各单元涉及的处理过程可参见前述图1-图3所示的具体实施例,在此不做赘述。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令处理器完成,所述的程序可以存储于计算机可读存储介质中,所述的存储介质是非短暂性(non-transitory)介质,例如随机存取存储器,只读存储器,快闪存储器,硬盘,固态硬盘,磁带(magnetic tape),软盘(floppy disk),光盘(optical disc)及其任意组合。
以上,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (12)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    基站向第一用户设备发送大于或等于2的秩指示和预编码矩阵指示PMI,其中,所述第一用户设备使用的传输模式为基于码本预编码的单用户-多输入多输出SU-MIMO模式;
    所述基站向第二用户设备发送等于1的秩指示,其中,所述第二用户设备使用的传输模式为基于非码本预编码的多用户-多输入多输出MU-MIMO模式;
    所述基站向所述第一用户设备和所述第二用户设备发送至少两流数据,其中,所述至少两流数据使用的时频资源相同,所述至少两流数据中包括数据流A,所述数据流A中承载发给所述第一用户设备的数据,所述至少两流数据中包括数据流B,所述数据流B中承载发给所述第二用户设备的数据,其中,所述大于或等于2的秩指示和所述PMI用于指示所述第一用户设备根据PMI矩阵和小区专用参考信号CRS从所述至少两流数据中得到所述第一用户设备的数据,所述PMI矩阵根据所述大于或等于2的秩指示和所述PMI确定,所述等于1的秩指示用于指示所述第二用户设备根据解调参考信号DMRS从所述至少两流数据中得到所述第二用户设备的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述基站接收来自所述第一用户设备对所述至少两流数据的反馈信息;
    所述基站根据接收到的所述数据流A的反馈信息确定是否要重传所述数据流A中的数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述PMI矩阵包括至少两个列向量;
    所述基站向所述第一用户设备和所述第二用户设备发送至少两流数据,包括:
    所述基站使用第一发射权值对所述数据流A进行加权后发射;
    所述基站使用第二发射权值对所述数据流B进行加权后发射;
    其中,所述第一发射权值为对所述数据流A进行波束赋形的矩阵,所述第一发射权值包括至少一个列向量,所述第二发射权值为对所述数据流B进行波束赋形的矩阵,所述第一发射权值与所述PMI矩阵相关。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述数据流B的第一时频位置包括信道状态信息参考信号CSI-RS信息;
    所述基站使用第一发射权值对所述数据流A进行加权后发射,包括:
    所述基站在所述数据流A的第一时频位置进行打孔处理,所述打孔处理指在所述第一时频位置不发送数据;
    所述基站使用所述第一发射权值对所述打孔处理后的数据流A进行加权后发射。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    所述基站根据所述第一用户设备的信道特征确定所述第一用户设备的中间权值;
    所述基站根据所述第二用户设备的信道特征确定所述第二用户设备的中间权值;
    所述基站根据所述第一用户设备解调使用的PMI矩阵、所述第一用户设备的中间权值以及所述第二用户设备的中间权值确定所述第一发射权值和所述第二发射权值。
  6. 根据权利要求5所述的方法,其特征在于,所述第一用户设备解调使用的PMI矩阵为N个候选PMI矩阵中的一个,N为大于1的整数;
    所述基站根据所述第一用户设备解调使用的PMI矩阵、所述第一用户设备的中间权值以及所述第二用户设备的中间权值确定所述第一发射权值和所述第二发射权值,包括:
    所述基站根据所述N个候选PMI矩阵与所述第一用户设备的中间权值、 所述第二用户设备的中间权值的相关性,确定所述第一发射权值和所述第二发射权值;其中,所述第一发射权值与第一PMI矩阵相关,所述第二发射权值与所述第二用户设备的中间权值相关,所述第一PMI矩阵为所述N个候选PMI矩阵中与所述第一用户设备的中间权值、所述第二用户设备的中间权值的相关性最大的PMI矩阵。
  7. 一种基站,其特征在于,所述基站包括:
    发射器,用于向第一用户设备发送大于或等于2的秩指示和预编码矩阵指示PMI,其中,所述第一用户设备使用的传输模式为基于码本预编码的单用户-多输入多输出SU-MIMO模式;
    所述发射器,还用于向第二用户设备发送等于1的秩指示,其中,所述第二用户设备使用的传输模式为基于非码本预编码的多用户-多输入多输出MU-MIMO模式;
    所述发射器,还用于向所述第一用户设备和所述第二用户设备发送至少两流数据,其中,所述至少两流数据使用的时频资源相同,所述至少两流数据中包括数据流A,所述数据流A中承载发给所述第一用户设备的数据,所述至少两流数据中包括数据流B,所述数据流B中承载发给所述第二用户设备的数据,其中,所述大于或等于2的秩指示和所述PMI用于指示所述第一用户设备根据PMI矩阵和小区专用参考信号CRS从所述至少两流数据中得到所述第一用户设备的数据,所述PMI矩阵根据所述大于或等于2的秩指示和所述PMI确定,所述等于1的秩指示用于指示所述第二用户设备根据解调参考信号DMRS从所述至少两流数据中得到所述第二用户设备的数据。
  8. 根据权利要求7所述的基站,其特征在于,所述基站还包括:
    接收器,用于接收来自所述第一用户设备对所述至少两流数据的反馈信息;
    处理器,用于根据接收到的所述数据流A的反馈信息确定是否指示所述 发射器重传所述数据流A中的数据。
  9. 根据权利要求7或8所述的基站,其特征在于,所述PMI矩阵包括至少两个列向量;
    所述发射器,具体用于使用第一发射权值对所述数据流A进行加权后发射;使用第二发射权值对所述数据流B进行加权后发射;其中,所述第一发射权值为对所述数据流A进行波束赋形的矩阵,所述第一发射权值包括至少一个列向量,所述第二发射权值为对所述数据流B进行波束赋形的矩阵,所述第一发射权值与所述PMI矩阵相关。
  10. 根据权利要求7至9任一项所述的基站,其特征在于,所述数据流B的第一时频位置包括信道状态信息参考信号CSI-RS信息;
    所述处理器,还用于在所述数据流A的第一时频位置进行打孔处理,所述打孔处理指在所述第一时频位置不发送数据;
    所述发射器,具体用于使用所述第一发射权值对所述打孔处理后的数据流A进行加权后发射。
  11. 根据权利要求7至10任一项所述的基站,其特征在于,所述处理器还用于根据所述第一用户设备的信道特征确定所述第一用户设备的中间权值;根据所述第二用户设备的信道特征确定所述第二用户设备的中间权值;根据所述第一用户设备解调使用的PMI矩阵、所述第一用户设备的中间权值以及所述第二用户设备的中间权值确定所述第一发射权值和所述第二发射权值。
  12. 根据权利要求11所述的基站,其特征在于,所述第一用户设备解调使用的PMI矩阵为N个候选PMI矩阵中的一个,N为大于1的整数;所述处理器,具体用于根据所述N个候选PMI矩阵与所述第一用户设备的中间权值、所述第二用户设备的中间权值的相关性,确定所述第一发射权值和所述第二发射权值;其中,所述第一发射权值与第一PMI矩阵相关,所述第二发射权值与所述第二用户设备的中间权值相关,所述第一PMI矩阵为所述N个候选 PMI矩阵中与所述第一用户设备的中间权值、所述第二用户设备的中间权值的相关性最大的PMI矩阵。
PCT/CN2016/112053 2016-12-26 2016-12-26 一种数据传输方法及基站 WO2018119562A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112053 WO2018119562A1 (zh) 2016-12-26 2016-12-26 一种数据传输方法及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112053 WO2018119562A1 (zh) 2016-12-26 2016-12-26 一种数据传输方法及基站

Publications (1)

Publication Number Publication Date
WO2018119562A1 true WO2018119562A1 (zh) 2018-07-05

Family

ID=62706607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112053 WO2018119562A1 (zh) 2016-12-26 2016-12-26 一种数据传输方法及基站

Country Status (1)

Country Link
WO (1) WO2018119562A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008024773A2 (en) * 2006-08-21 2008-02-28 Qualcomm Incorporated Approach to a unified su-mimo/mu-mimo operation
US20090323849A1 (en) * 2008-06-30 2009-12-31 Interdigital Patent Holdings, Inc. Method and apparatus for performing multiple-input multiple-output wireless communications
CN102164027A (zh) * 2010-02-24 2011-08-24 华为技术有限公司 预编码矩阵索引反馈方法和装置
CN103905098A (zh) * 2012-12-24 2014-07-02 电信科学技术研究院 一种mimo调度的方法、系统及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008024773A2 (en) * 2006-08-21 2008-02-28 Qualcomm Incorporated Approach to a unified su-mimo/mu-mimo operation
US20090323849A1 (en) * 2008-06-30 2009-12-31 Interdigital Patent Holdings, Inc. Method and apparatus for performing multiple-input multiple-output wireless communications
CN102164027A (zh) * 2010-02-24 2011-08-24 华为技术有限公司 预编码矩阵索引反馈方法和装置
CN103905098A (zh) * 2012-12-24 2014-07-02 电信科学技术研究院 一种mimo调度的方法、系统及设备

Similar Documents

Publication Publication Date Title
EP2891260B1 (en) Method and wireless terminal for mitigating downlink interference
JP6407897B2 (ja) 無線通信システムにおいて3次元ビームフォーミングのためのチャネル状態情報を報告する方法およびそのための装置
US9537549B2 (en) Method, terminal and base station for multi-user interference suppression
JP5905484B2 (ja) 無線ネットワークにおける周期的なチャネル状態報告のための装置及びその方法
US20200014449A1 (en) Method for reporting csi in wireless communication system and apparatus therefor
US8923427B2 (en) Codebook sub-sampling for frequency-selective precoding feedback
CN108494450B (zh) 确定预编码矩阵指示的方法、接收设备和发送设备
CN106537809B (zh) 在无线接入系统中发送信道状态信息的方法和设备
EP3565154A1 (en) Configuration of coordinated multipoint transmission hypotheses for channel state information reporting
EP3402105B1 (en) Method by which terminal receives downlink signal from base station in wireless communication system, and device therefor
JP2018530943A (ja) 無線通信システムにおいてランク指示子のビットサイズ決定方式及びそのための装置
US20180212661A1 (en) Method and apparatus for reporting channel state information and electronic device
WO2013088374A2 (en) Enhanced demodulation reference signal (dm-rs) design
EP2517375B1 (en) Telecommunication transmission method and system
CN114268419A (zh) 用户设备、用户设备的方法以及系统
US20180219598A1 (en) Method for reporting csi in wireless communication system and device for same
US10505779B2 (en) Method and apparatus for obtaining downlink channel information and network side device
US11888564B2 (en) Method for quantization of combination coefficients associated with frequency domain compression
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
CN106160925A (zh) 用于多用户层叠传输的cqi增强的方法及装置
CN109478972B (zh) 切换状态的方法、网络设备和终端设备
WO2017166185A1 (zh) 一种协调多用户间干扰的方法及基站
WO2016145952A1 (zh) 信道状态测量导频的处理方法及装置
WO2018119562A1 (zh) 一种数据传输方法及基站
WO2021158911A1 (en) Method of sounding reference signal (srs)-assisted sd beam and fd vector reporting for type ii channel state information (csi)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925066

Country of ref document: EP

Kind code of ref document: A1