WO2018117413A1 - Superabsorbent polymer and method for producing same - Google Patents

Superabsorbent polymer and method for producing same Download PDF

Info

Publication number
WO2018117413A1
WO2018117413A1 PCT/KR2017/012618 KR2017012618W WO2018117413A1 WO 2018117413 A1 WO2018117413 A1 WO 2018117413A1 KR 2017012618 W KR2017012618 W KR 2017012618W WO 2018117413 A1 WO2018117413 A1 WO 2018117413A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
super absorbent
aliphatic alcohol
weight
absorbent polymer
Prior art date
Application number
PCT/KR2017/012618
Other languages
French (fr)
Korean (ko)
Inventor
손정민
이혜민
한장선
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170146287A external-priority patent/KR102193459B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780047582.0A priority Critical patent/CN109563275B/en
Priority to US16/322,347 priority patent/US11066496B2/en
Priority to EP17883448.7A priority patent/EP3467009B1/en
Publication of WO2018117413A1 publication Critical patent/WO2018117413A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a super absorbent polymer and a method for producing the same. More specifically, the present invention relates to a super absorbent polymer having improved water absorption and transmittance, and a method for preparing the same.
  • Super Absorbent Polymer is from 500 to 500
  • a method for producing such a super absorbent polymer a method by reverse phase suspension polymerization or a method by aqueous solution polymerization is known.
  • Reverse phase suspension polymerization is disclosed, for example, in Japanese Patent Laid-Open Nos. 56-161408, 57-158209, and 57-198714.
  • a thermal polymerization method is carried out in a kneader having a plurality of shafts while breaking and angled, and a photopolymerization method in which a high concentration aqueous solution is irradiated with ultraviolet rays on a belt to perform polymerization and drying at the same time. Etc. are known.
  • the hydrous gel polymer obtained through the polymerization reaction as described above is generally identical to the hydrous gel polymer obtained through the polymerization reaction as described above.
  • Permeability in products using superabsorbent polymers is a measure of the fluidity of the liquid to be absorbed. Permeability may vary depending on the characteristics of the particle size distribution of the crosslinked resin, the particle shape and the connectivity of the openings between the particles, the surface modification of the swollen gel, and the like. The fluidity of the liquid passing through the swollen particles depends on the permeability of the super absorbent polymer composition. When the permeability is low, the liquid cannot easily flow through the super absorbent polymer composition.
  • One method of increasing permeability in superabsorbent polymers is to perform surface crosslinking reaction after polymerization of the resin, in which silica or clay is added together with the surface crosslinking agent.
  • silica or clay is added together with the surface crosslinking agent.
  • US Pat. Nos. 5,140,076 and C. 4,734,478 disclose the addition of silica during surface crosslinking of dry superabsorbent resin powders.
  • an object of the present invention is to provide a method for preparing a super absorbent polymer having improved absorption and transmittance by adding a C6 or more aliphatic alcohol during surface crosslinking.
  • a hydrogel polymer by thermally polymerizing or photopolymerizing a monomer composition including an acrylic acid monomer having a acidic group and at least a portion of the acidic group is neutralized and a polymerization initiator Forming a;
  • It provides a method for producing a super absorbent polymer comprising the step of performing a surface modification by heating the polymer mixed with the surface cross-linking agent and C6 or more aliphatic alcohol.
  • a crosslinked polymer obtained by polymerizing and internally crosslinking a monomer composition having an acidic group and containing an acrylic acid monomer in which at least a portion of the acidic group is neutralized; And a super absorbent polymer comprising a surface modification layer formed on the surface of the crosslinked polymer,
  • the centrifugal water holding capacity (CRC) measured according to the EDANA method WSP 241.3 is 25 to 35 g / g
  • the pressure absorption capacity (AUL) of 0.7 psi measured according to the EDANA method WSP 242.3 is 20 to 30 g / g
  • It provides a super absorbent polymer having a surface tension of 65 to 73 mN / m.
  • the superabsorbent polymer having improved water absorption and permeability can be prepared by modifying the surface of the super absorbent polymer.
  • the method for producing a super absorbent polymer of the present invention has an acid group and is Forming a hydrogel polymer by thermally polymerizing or photopolymerizing a monomer composition comprising at least a portion of an acidic group neutralized with an acrylic acid monomer and a polymerization initiator; Drying the hydrogel polymer; Pulverizing the dried polymer; Mixing a ground crosslinker and a C6 or higher aliphatic alcohol of a core-shell structure in the pulverized polymer; And heating the polymer in which the surface crosslinking agent and the C6 or higher aliphatic alcohol are mixed to perform surface modification.
  • the monomer composition which is a raw material of the super absorbent polymer has an acidic group and includes at least partly weighted acrylic acid monomer and a polymerization initiator of the acidic group.
  • the acrylic acid monomer is a compound represented by the following formula (1):
  • R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the acrylic acid monomer includes at least one member selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts thereof.
  • the acrylic acid monomer may have an acid group and at least a part of the acid group may be neutralized.
  • those which have been partially neutralized with alkyl materials such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like can be used.
  • the neutralization degree of the acrylic acid-based monomer may be 40 to 95 mole 0/0, or 40 to 80 mole 0/0, or 45 to 75 mole 0/0.
  • the range of neutralization can be adjusted according to the final physical properties. However, if the degree of neutralization is too high, the neutralized monomer is precipitated and the polymerization proceeds smoothly. On the contrary, if the degree of neutralization is too low, the absorbency of the polymer may not only be greatly reduced, but may exhibit properties such as ' elastic rubber ', which is difficult to handle.
  • the concentration of the acrylic acid monomer is a raw material of the super absorbent polymer. And consider, such as from about 20 to about 60 weight 0/0, preferably, may be about 40 to about 50 weight 0/0, the polymerization time and banung conditions for monomer composition comprising a solvent may be an appropriate concentration . However, when the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics. On the contrary, when the concentration is too high, a part of the monomer may be precipitated or the grinding efficiency of the polymerized hydrogel polymer may be low. Etc. may cause problems in the process and may decrease the physical properties of the super absorbent polymer.
  • the polymerization initiator used in the polymerization in the method for producing a super absorbent polymer of the present invention is not particularly limited as long as it is generally used for producing the super absorbent polymer.
  • the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method.
  • a thermal polymerization initiator may further include a thermal polymerization initiator.
  • the photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal, acyl phosphine and alpha-amhwketone — one from the group — could be used.
  • acylphosphine a commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used. .
  • a wider variety of photoinitiators are well described in Reinhold Schwalm's book 'UV Coatings: Basics, Recent Developments and New Application' (Elsevier 2007) pi 15, but are not limited to the examples described above.
  • the photopolymerization initiator may be included in a concentration of from about 0.01 to about 1.0 weight 0/0 for singgi monomer composition.
  • concentration of this photopolymerization initiator When too low, the polymerization rate may be slow, and when the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
  • the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid.
  • persulfate-based initiators include sodium persulfate (Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), and ammonium persulfate (NH 4 ).
  • azo initiators examples include 2, 2-azobis- (2-amidinopropane) dihydrochloride, 2, 2-azobis (2-amidinopropane) dihydrochloride, 2 2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride
  • the thermal polymerization initiator may be included in a concentration of about 0.001 to about 0.5% by weight based on the monomer composition.
  • concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of the addition of the thermal polymerization initiator may be insignificant.
  • concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be small and the physical properties may be uneven. Can be.
  • the monomer composition may further include an internal gauze as a raw material of the super absorbent polymer.
  • the internal crosslinking agent include a crosslinking agent having one or more ethylenically unsaturated groups while having at least one functional group capable of reacting with the acrylic acid monomer; Or the crosslinking agent which has a 2 or more functional group which can react with the substituent formed by the substituent of the said acrylic acid type monomer, and / or hydrolysis of a monomer can be used.
  • the internal crosslinking agent includes ⁇ , ⁇ '-methylenebisacrylamide, trimethyl propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol di (meth) Acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, nucleic acid diol di (meth) ) Acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate Pentaeryes, tetraacrylate, triarylamine, ethylene glycol diglycidyl ether, At least
  • These internal cross-linking agent is included at a concentration of about 0.01 to about 0.5 0/0 with respect to the monomer composition, it is possible to cross-link the polymerized polymer.
  • the monomer composition of the super absorbent polymer may further include additives such as thickeners, plasticizers, storage stabilizers, antioxidants and the like as necessary.
  • Raw materials such as acrylic acid monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents, and additives having an acidic group and neutralized at least a portion of the acidic groups may be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation of the composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanedi , Propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene Glycol ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate and ⁇ , ⁇ -dimethylacetamide It can be used in combination of one or more selected from.
  • the solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, when the thermal polymerization is usually carried out, it can be carried out in a semi-unggi with a stirring shaft such as kneader, when the polymerization proceeds,
  • a stirring shaft such as kneader
  • the above-described polymerization method is an example, and the present invention is not limited to the above-described polymerization method.
  • the hydrogel polymer obtained by thermal polymerization by supplying hot air or by heating the reaction machine may have a semi-unger, such as a kneader having a stirring shaft.
  • the hydrogel polymer discharged to the mandrel outlet may be in the form of several centimeters to several millimeters.
  • the size of the water-containing gel polymer obtained may vary depending on the concentration and the injection rate of the monomer composition to be injected, a water-containing gel polymer having a weight average particle diameter of 2 to 50 mm can be obtained.
  • the form of the hydrogel polymer generally obtained may be a hydrogel gel polymer on the sheet having a width of the belt.
  • the monomer composition is then fed so as to obtain a polymer on a sheet having a thickness of about 0.5 to about 5 cm, which depends on the ancestors, the concentration of the monomer and the concentration and the rate of injection. It is desirable to.
  • the normal water content of the gel-like function, the polymer obtained in this manner can be about 40 to about 80 wt. 0/0.
  • water content in the present specification, "water content"'
  • the content of water to the total weight of the hydrogel polymer is the weight of the hydrogel polymer, minus the weight of the dried polymer. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer through infrared heating and drying. At this time, the drying condition is to increase the temperature to about 180 ° C at room temperature and then maintained at 180 ° C. The total drying time is set to 20 minutes, including 5 minutes of temperature rise step, the moisture content is measured.
  • the pulverizer used is not limited in configuration, specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Includes any one selected from the group of grinding machines consisting of cutter mills, disc mills, shred crushers, crushers, choppers and disc cutters Although it is possible, it is not limited to the above-mentioned example.
  • the grinding step may be pulverized so that the particle size of the hydrogel polymer is about 2 to about 10mm.
  • the drying temperature of the drying step may be about 150 to about 250 ° C. If the drying temperature is less than 150 ° C., the drying time is too long and there is a fear that the physical properties of the superabsorbent resin to be formed is lowered, if the drying temperature exceeds 250 ° C, only the polymer surface is dried too much, Fine powder may generate
  • the drying is at a temperature of about 150 to about 200 ° C, more
  • Article 26 Preferably at a temperature of about 160 to about 180 ° C.
  • drying time in consideration of the process efficiency, it may proceed for about 20 to about 90 minutes, but is not limited thereto.
  • the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content of the polymer after such a drying step may be about 0.1 to about 10% by weight.
  • the polymer powder obtained after the grinding step may have a particle diameter of about 150 to about 850. Mills used to grind to such particle diameters are specifically pin mills, hammer mills, screw mills, mills, disc mills or jogs. Although a jog mill or the like may be used, the present invention is not limited to the above-described example.
  • a separate process of classifying the polymer powder obtained after grinding according to the particle diameter may be performed.
  • a polymer having a particle size of about 150 to about 850 may be classified, and only a polymer powder having such a particle size may be manufactured through a surface modification step.
  • the ground polymer is added to the ground polymer by adding a surface cross-linking agent and a C6 or higher aliphatic alcohol. Perform a surface modification step for.
  • the surface modification is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a surface crosslinking agent, thereby forming a super absorbent polymer having more improved physical properties.
  • a surface modification layer (surface crosslinked layer) is formed on the surface of the pulverized polymer particles.
  • the surface modification may be carried out by a conventional method of increasing the crosslinking density of the surface of a polymer particle, for example, by mixing and crosslinking the pulverized polymer with a solution containing a surface crosslinking agent.
  • the surface crosslinking agent is applied to the surface of the super absorbent polymer particles.
  • this reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the interior of the particles.
  • the surface crosslinked superabsorbent resin particles thus have a higher degree of crosslinking in the vicinity of the surface than in the interior.
  • a method of adding porous silica or clay to the surface crosslinking agent was used.
  • the surface crosslinking reaction may be performed to obtain an effect of improving permeability without deterioration of water holding capacity or pressure absorbing ability.
  • the hydroxyl group (-OH) of the C6 or higher aliphatic alcohol reacts chemically with the surface of the ground polymer and the C6 or higher alkyl chain is present on the surface of the polymer. Accordingly, when the superabsorbent polymer product is made of a polymer having C6 or more aliphatic alcohol bonded to the surface, when the superfine ZL high-absorbent water is absorbed by water-absorbing water, Due to the C6 or more and the long alkyl chain present on the surface, the hoeed resin particles can be prevented from agglomerating or agglomerating with each other under high pressure, and thus have improved permeability. In addition, the alkyl chains impart hydrophobicity to the polymer surface, making it easier to permeate and diffuse moisture.
  • the C6 or higher aliphatic alcohols include C6 to C20 primary, secondary, or tertiary alcohols, and preferably C6 to C16 primary alcohols. More preferably stearyl alcohol, lauryl alcohol, And cetyl alcohol (cetyl alcohol) may be used one or more selected from the group consisting of, but the present invention is not limited thereto.
  • the content of the C6 or more aliphatic alcohol is about 0.001 to about 2 parts by weight, or about 0.01 to about 1 parts by weight, preferably about 0.01 to about 0.5 parts by weight, more preferably, based on 100 parts by weight of the pulverized polymer. About 05 to about 0.3 parts by weight may be used.
  • the content of C6 or more aliphatic alcohol is too small, the effect of improving the permeability due to the addition of C6 or more aliphatic alcohol is hardly exhibited, and when it is included too much, it can prevent water from penetrating and lead to a decrease in water-retaining ability.
  • the C6 or higher aliphatic alcohol may be added separately before mixing the surface crosslinking agent with the ground polymer, or may be added together with the surface crosslinking agent.
  • the method of adding the said surface crosslinking agent and C6 or more aliphatic alcohol to the said pulverized polymer there is no limitation in the structure about the method of adding the said surface crosslinking agent and C6 or more aliphatic alcohol to the said pulverized polymer.
  • the surface crosslinking agent and C6 or more aliphatic alcohol and polymer powder are mixed in a reaction tank, or the surface crosslinking agent and C6 or more aliphatic alcohol are sprayed on the polymer powder, and the polymer and the surface crosslinking agent and C6 or more aliphatic alcohol are continuously added to the mixer which is operated continuously. Supplying and mixing can be used.
  • the C6 or higher aliphatic alcohol since the C6 or higher aliphatic alcohol has low solubility in water, it may be dryly mixed in a powder state, or may be mixed with a polymer by spraying after melting the mixture to a temperature above the melting point.
  • C6 or more aliphatic alcohol in powder or liquid form when mixing the surface crosslinking agent and C6 or more aliphatic alcohol to a polymer, before mixing the surface crosslinking agent, C6 or more aliphatic alcohol in powder or liquid form must first be mixed with the polymerizer. Can be.
  • the surface crosslinking agent When the surface crosslinking agent is added, water may be further mixed together and added in the form of a surface crosslinking solution.
  • water When water is added, there is an advantage that the surface crosslinker can be evenly dispersed in the polymer. At this time, the amount of added water is used to induce even dispersion of the surface crosslinking agent, prevent aggregation of the polymer powder, and at the same time optimize the surface penetration depth of the surface crosslinking agent.
  • the compound which can react with the functional group which a polymer has is not limited in the structure.
  • the surface crosslinking agent may be a polyhydric alcohol compound; Epoxy compounds; Polyamine compounds; Haloepoxy compound; Condensation products of haloepoxy compounds; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; And it may be used one or more selected from the group consisting of alkylene carbonate compounds.
  • examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3 -Pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanedi, 1,5-pentanediol, 1,6- nucleic acid
  • One or more selected from the group consisting of diols and 1,2-cyclonucleic acid dimethanol can be used.
  • ethylene glycol diglycidyl ether and glycidol may be used as the epoxy compound
  • ethylene diamine, diethylene triamine, triethylene tetraamine, tetraethylene pentamine, pentaethylene nucleomine may be used as polyamine compounds.
  • At least one selected from the group consisting of polyethyleneimine and polyamide polyamine can be used.
  • ⁇ epi—chlorohydrin, epibromohydrin— and ⁇ -methylepichlorohydrin can be used.
  • 2-oxazolidinone etc. can be used as a mono-, di-, or a polyoxazolidinone compound, for example.
  • alkylene carbonate compound ethylene carbonate etc. can be used. These may be used alone or in combination with each other.
  • alkylene carbonate compound ethylene carbonate etc.
  • ethylene carbonate etc. can be used alone or in combination with each other.
  • C2-C10 polyhydric alcohol compounds can be used including these 1 or more types in these surface crosslinking agents.
  • the amount of the surface crosslinking agent to be added may be appropriately selected depending on the kind of the surface crosslinking agent to be added or the reaction conditions.
  • About 100 parts by weight about 0.001 to about 5 parts by weight, preferably about 0.01 to about 3 parts by weight, more preferably about 0.05 to about 2 parts by weight may be used.
  • the content of the surface crosslinking agent is too small, the surface crosslinking reaction hardly occurs, and if 100 parts by weight of the polymer exceeds 5 parts by weight, excessive phenomenon of surface crosslinking reaction may cause deterioration of absorption capacity and physical properties. .
  • the superabsorbent polymer obtained according to the production method of the present invention has improved permeability by preventing the swollen resin particles from crowding with each other by distributing C6 or more aliphatic alcohol on the surface.
  • the super absorbent polymer according to the manufacturing method of the present invention minimizes the deterioration of physical properties of the super absorbent polymers such as water retention and pressurized absorbent capacity, and has a relatively strong physical bond with the polymer resin, thereby impacting the movement. Due to the small number of separations, the variation of physical properties is small even during long-term transportation and storage.
  • the temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source.
  • the type of heat medium that can be used may be a heated fluid such as steam, hot air, hot oil, etc., but the present invention is not limited thereto, and the temperature of the heat medium to be supplied is the means of the heat medium, the temperature increase rate and the temperature increase It may be appropriately selected in consideration of the target temperature.
  • the heat source directly supplied is electricity
  • the super absorbent polymer prepared by the manufacturing method of the present invention may have improved permeability without deteriorating physical properties such as water-retaining capacity and pressure-absorbing capacity.
  • P defined by Equation 1 below may satisfy a range of 0.85 to 1.20.
  • CRC means the water capacity (unit: g / g) measured according to EDANA WSP 241.3,
  • AUL stands for absorbed pressure of 0.7 psi (unit: g / g) measured according to EDANA method WSP 242.3,
  • SFC means solution permeability (Saline Flow Conductivity, cm 3 * sec / g).
  • P of Equation 1 is a parameter for evaluating the balance of water holding capacity, pressure absorbing ability, and liquid permeability, and the closer to 1, the physical properties of the water holding capacity, pressure absorbing ability, and liquid permeability are harmonized. .
  • the super absorbent polymer prepared by the production method of the present invention wherein P calculated by the formula 1 is about 0.85 or more, or about 0.90 or more, or about 0.95 or more, and about 1.2 or less, or about 1.15 or less. Or about 1.10 or less.
  • the super absorbent polymer prepared by the above method has a water retention capacity (CRC) of about 25 g / g or more, or about 26 g / g or more, or about 27 g / g or more, measured according to the EDANA method WSP 241.3. , Up to about 35 g / g, or up to about 30 g / g, or up to about 29 g / g.
  • CRC water retention capacity
  • the super absorbent polymer prepared by the above production method has a pressure absorption capacity (AUL) of 0.7 psi measured according to the EDANA method WSP 242.3 of about 20 g / g or more, or about 12 g / g or more, or about 24 g / at least about 30 g / g, or at most about 28 g / g, Or about 27 g / g or less.
  • AUL pressure absorption capacity
  • the superabsorbent polymer prepared by the above method is about 45 * ⁇ 7 cm 3 * sec / g or more, or about 48 * 10 "7 cm 3 * sec / g or more, or about 50 * 10 7 cm 3 * about 80 * 1 (T 7 cm 3 * sec / g or less, or about 70 * 1 (T 7 cm 3 * sec / g or less, or about 65 * l (T 7 cm 3 * sec /) It may have a solution permeability (SFC: Saline Flow Conductivity) of less than or equal to g.
  • SFC Saline Flow Conductivity
  • solution permeability is US published patent No. It can be measured according to the method disclosed in [0184] to [0189] of column 16 of 2009-0131255.
  • a crosslinked polymer having an acidic group and polymerized and internally crosslinked a monomer composition comprising an acrylic acid monomer in which at least a portion of the acidic group is neutralized; And a super absorbent polymer comprising a surface modification layer formed on the surface of the crosslinked polymer, wherein the centrifugal water retention capacity (CRC) measured according to EDANA method WSP 241.3 is 25 to 35 g / g, and measured according to EDANA method WSP 242.3. It provides a super absorbent polymer having a pressure absorption capacity (AUL) of 20 to 30 g / g and a surface tension of 65 to 73 mN / m.
  • AUL pressure absorption capacity
  • the crosslinked polymer obtained by polymerizing and internally crosslinking the monomer composition including the acidic group and the monomer composition including the acrylic acid monomer in which at least a portion of the acidic group is neutralized is the same as described above in the method for preparing the super absorbent polymer of the present invention.
  • the superabsorbent resin of the present invention has improved absorption ability and permeability by adding C6 or more aliphatic alcohol to modify the surface of the superabsorbent resin in the surface crosslinking process for the crosslinked polymer.
  • the hydroxyl groups of the C6 or higher aliphatic alcohols are chemically bound to the surface of the polymer and an alkyl chain of C6 or more is present on the surface of the polymer. Accordingly, when the polymer bound to the C6 or higher aliphatic alcohol absorbs moisture and swells, the swelling 3 ⁇ 4 resin particles are swollen or aggregated with each other due to the high pressure due to the C6 or longer alkyl chain present on the polymer surface. Can be prevented to have improved transmittance.
  • the superabsorbent polymer of the present invention has a surface tension of 65 mN / m or more, or 67 mN / m or more, or 70 mN / m or more, and may have a range of 73 mN / m or less, or 72 mN / m or less.
  • the surface tension of the superabsorbent polymer is a measure for evaluating urine leakage in a diaper containing the superabsorbent polymer due to its physical properties different from the water-retaining capacity, pressure-absorbing capacity, and permeability.
  • the surface tension swells the superabsorbent polymer in saline, and means the surface tension measured for the saline, and when the surface tension of the superabsorbent polymer is low, urine leakage is likely to occur in a diaper manufactured therein. .
  • the superabsorbent polymer of the present invention it is possible to produce a high-quality sanitary article by reducing the possibility of leakage by having an appropriate range of surface tension while maintaining a high water retention and permeability.
  • the superabsorbent polymer of the present invention is about 45 * ⁇ 7 cm 3 * sec / g or more, or about 48 * 10 "7 cm 3 * sec / g or more, or about 50 * KT 7 cm 3 * sec / g or more While about 80 * 10 -7 cm 3 * sec / g or less, or about 70 * 10 -7 cm 3 * sec / g or less, or about 65 * 1 ( 7 cm 3 * sec / g or less) It may have Saline Flow Conductivity.
  • the super absorbent polymer of the present invention has a water retention capacity (CRC) of about 25 g / g or more, or about 26 g / g or more, or about 27 g / g or more, measured according to the EDANA method WSP 241.3, and about 35 g. up to / g, or up to about 30 g / g, or up to about 29 g / g.
  • CRC water retention capacity
  • CRC centrifugal conservative capacity
  • W 0 (g) is the weight of the resin (g)
  • W t (g) is the device weight (g) measured after dehydration at 250G for 3 minutes using a centrifuge without using resin
  • W 2 (g) was immersed in 0.9 mass% of physiological saline at room temperature for 30 minutes, and then dehydrated at 250 G for 3 minutes using a centrifuge.
  • Article 26 It is the measured device weight (g).
  • the superabsorbent polymer of the present invention has a pressurized absorption capacity (AUL) of 0.7 psi measured according to the EDANA method WSP 242.3 of about 20 g / g or more, or about 22 g / g or more, or about 24 g / g or more, About 30 g / g or less, or about 28 g / g or less, or about 27 g / g or less.
  • AUL pressurized absorption capacity
  • the pressure absorption capacity (AUL) may be represented by the following Equation 2:
  • AUL (g / g) [W4 (g)-W3 (g)] / W0 (g)
  • W0 (g) is the weight of resin (g),
  • W3 (g) is the sum of the weight of the resin and the weight of the device capable of applying a load to the resin (g),
  • W4 (g) is the sum of the weight (g) of the weight of the absorbed resin and the weight of the device capable of applying a load to the absorbent resin after hydrating the resin for 60 minutes under a load (0.7 psi).
  • the super absorbent polymer of the present invention may have improved transmittance without deteriorating physical properties such as water-retaining capacity and pressure-absorbing capacity.
  • P of the superabsorbent polymer of the present invention can satisfy the range of 0.85 to 120 defined by the following formula (1).
  • CRC means the water holding capacity (unit: g / g) measured according to EDANA method WSP 24L3,
  • AUL means the absorbency under pressure of 0.7 psi (unit: g / g) measured according to EDANA method WSP 242.3,
  • SFC means solution permeability (Saline Flow Conductivity, cm 3 * sec / g).
  • P in Equation 1 is a parameter for evaluating the balance of water retention capacity, pressure absorption capacity, and liquid permeability, and the closer to 1, the water retention capacity, pressure absorption capacity, and
  • the superabsorbent polymer of the present invention has a P of about 0.85 or more, or about 0.90 or more, or about 0.95 or more, and P calculated by Equation 1 is about 1.20 or less. 1.15 or less. Or about 1.10 or less.
  • the super absorbent polymer of the present invention has improved permeability due to the alkyl chain present in the surface modification layer, and does not deteriorate physical properties such as water holding capacity and pressure absorbing capacity, and there is no separation phenomenon due to impact during movement. Even less variation in physical properties appears, it is possible to have improved permeability by preventing the particles from being packed or aggregated with each other.
  • the alkyl chain imparts hydrophobicity to the polymer surface, thereby making it easier to permeate and diffuse moisture.
  • the obtained gel-shaped resin was spread out on a stainless wire gauze having a pore size of 600 / mm3 in a thickness of about 30 mm, and in a 180 ° C hot air oven for 30 minutes. Dried.
  • the dry polymer thus obtained is pulverized using a grinder,
  • 0.1 parts by weight of stearyl alcohol was dryly mixed with 100 parts by weight of the base resin powder, followed by mixing by spraying a surface crosslinking solution including 1 part by weight of ethylene carbonate, 4 parts by weight of water, and 0.02 parts by weight of silica, and mixing the mixture with a stirrer and a double jacket. Put into a container consisting of proceeded the surface crosslinking reaction at 185 ° C for 60 minutes. Then, the surface-treated powder was classified into a standard mesh of ASTM standard to obtain a super absorbent polymer powder having a particle size of 150 to 850.
  • Example 1 a superabsorbent polymer powder was obtained in the same manner as in Example 1 except that 0.05 parts by weight of stearyl alcohol was mixed with 100 parts by weight of the base resin powder.
  • Example 3 a superabsorbent polymer powder was obtained in the same manner as in Example 1 except that 0.05 parts by weight of stearyl alcohol was mixed with 100 parts by weight of the base resin powder.
  • Base resin was prepared in the same manner as in Example 1.
  • Example 1 a super absorbent polymer powder was obtained in the same manner as in Example 1 except that 0.1 part by weight of lauryl alcohol was dry mixed instead of 0.1 part by weight of stearyl alcohol to 100 parts by weight of the base resin powder.
  • Example 5 a super absorbent polymer powder was obtained in the same manner as in Example 1, except that 0.1 part by weight of stearyl alcohol and ⁇ part of lauryl alcohol were dryly mixed together with 100 parts by weight of the base resin powder.
  • Example 6
  • Example 1 a superabsorbent polymer powder was obtained in the same manner as in Example 1 except that 2 parts by weight of stearyl alcohol was dryly mixed with 100 parts by weight of the base resin powder.
  • Example 7
  • Example 1 a super absorbent polymer powder was obtained in the same manner as in Example 1, except that 0.1 part by weight of cetyl alcohol was dry mixed with 100 parts by weight of base resin powder instead of stearyl alcohol ⁇ part by weight. Comparative Example 1
  • Example 2 Except that the stearyl alcohol was not mixed in the same manner as in Example 1 to obtain a super absorbent polymer powder. Comparative Example 2
  • Comparative Example 1 except that the temperature of the surface crosslinking reaction was 195 ° C. was prepared in the same manner as in Comparative Example 1 to obtain a super absorbent polymer powder. Comparative Example 3
  • Example 1 a super absorbent polymer powder was obtained in the same manner as in Example 1 except that 0.05 parts by weight of silica filler (DM30S) was dry mixed instead of stearyl alcohol.
  • silica filler D30S
  • the resin Wo (g) (about 0.2g) obtained through Examples and Comparative Examples was uniformly sealed in a non-woven bag and then immersed in physiological saline (0.9% by weight) at room temperature. . After 30 minutes had elapsed, water was removed from the bag for 3 minutes under the conditions of 250 G using a centrifuge, and the mass W 2 (g) of the bag was measured. Moreover, the mass Wg) at that time was measured after performing the same operation without using resin. Using each mass obtained, CRC (g / g) was computed according to the following formula.
  • the piston which is able to evenly spread the absorbent resin W 0 (g) (0.16 g) on the wire mesh under the conditions of room temperature and 50% humidity, and has a load of 0.7 psi on it even more, is slightly smaller than the outer diameter of 25 mm
  • the inner wall of the cylinder has no gap and the up and down movement is not disturbed.
  • the weight W 3 (g) of the apparatus was measured.
  • a 90 mm diameter and 5 mm thick glass filter was placed inside a 150 mm diameter petri dish, and physiological saline consisting of 9 wt% sodium chloride was brought to the same level as the top surface of the glass filter.
  • One sheet of filter paper having a diameter of 90 mm was placed thereon.
  • the measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load. After 1 hour raise the measuring device and remove its weight W 4 (g). Measured.
  • AUL (g / g) [W 4 (g)-W 3 (g)] / W 0 (g)
  • Saline Flow Conductivity is described in US published patent no. It was measured according to the method disclosed in [0184] to [0189] of column 16 of 2009-0131255.
  • Example 4 27.4 24.8 50 71.44 0.96
  • Example 5 26.9 25.3 60 71.53 1.15
  • Example 6 27 25.0 60 71.53 1.06
  • Example 7 27.2 24.9 52 71.55 1.00 Comparative Example 1 27.1 24.0 42 71.57 0.82 Comparative Example 2 26.3 25.0 62 71.64 1.21 Comparative Example 3 26.4 24.3 85 71.34 1.68
  • is a value calculated by Equation 1 below.
  • Comparative Example 1 was not satisfactory when the C6 or more aliphatic alcohol is not used.
  • Comparative Example 2 the permeability was improved by increasing the surface crosslinking temperature, but the CRC was decreased.
  • the surface crosslinking reaction was carried out ' mixing the inorganic filler as in Comparative Example 3, the permeability was improved, but both CRC and AUL were not good.
  • the superabsorbent polymer prepared by the manufacturing method of the present invention can be seen that not only high water holding capacity and high pressure absorbing capacity but also high permeability.

Abstract

The present invention relates to a superabsorbent polymer and a method for producing the same. According to the method for producing a superabsorbent polymer of the present invention, a superabsorbent polymer having an improved absorption capacity and permeability can be produced.

Description

【발명의 명칭】  [Name of invention]
고흡수성 수지 및 이의 제조 방법  Super Absorbent Resin and Method for Making the Same
【기술분야】 Technical Field
관련출원 (들ᅵ과의 상호인용  Reciprocal Citation with Related Application (s)
본 출원은 2016년 12월 20일자 한국 특허 출원 제 10-2016-0174935호 및 2017년 1 1월 3일자 한국 특허 출원 제 10-2017-0146287호에 기초한 우선 권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용 은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0174935 of December 20, 2016 and Korean Patent Application No. 10-2017-0146287 of January 3, 2017, the corresponding Korean patent All content disclosed in the literature of the applications is included as part of this specification.
본 발명은 고흡수성 수지 및 이의 제조 방법에 관한 것이다. 보다 상세하게는, 향상된 흡수능과 투과도를 갖는 고흡수성 수지 및 이의 제조방법에 관한 것이다.  The present invention relates to a super absorbent polymer and a method for producing the same. More specifically, the present invention relates to a super absorbent polymer having improved water absorption and transmittance, and a method for preparing the same.
【발명의 배경이 되는 기술】 [Technique to become background of invention]
고흡수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 Super Absorbent Polymer (SAP) is from 500 to 500
1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다. It is a synthetic polymer material that can absorb up to 1,000 times of water, and each developer names it with different names such as SAM (Super Absorbency Material) and AGM (Absorbent Gel Material). Such super absorbent polymers have been put into practical use as physiological tools, and are currently used in gardening soil repair agents, civil engineering, building index materials, seedling sheets, food fresheners in addition to sanitary products such as paper diapers for children, and It is widely used as a material for steaming.
상기와 같은 고흡수성 수지를 제조하는 방법으로는 역상현탁증합에 의한 방법 또는 수용액 중합에 의한 방법 등이 알려져 있다. 역상현탁중합에 대해서는 예를 들면 일본 특개소 56-161408, 특개소 57-158209, 및 특개소 57-198714 등에 개시되어 있다. 수용액 중합에 의한 방법으로는 또 다시, 여러 개의 축을 구비한 반죽기 내에서 중합겔을 파단, 넁각하면서 중합하는 열중합 방법, 및 고농도 수용액을 벨트상에서 자외선 둥을 조사하여 중합과 건조를 동시에 행하는 광중합 방법 등이 알려져 있다.  As a method for producing such a super absorbent polymer, a method by reverse phase suspension polymerization or a method by aqueous solution polymerization is known. Reverse phase suspension polymerization is disclosed, for example, in Japanese Patent Laid-Open Nos. 56-161408, 57-158209, and 57-198714. As a method of aqueous solution polymerization, a thermal polymerization method is carried out in a kneader having a plurality of shafts while breaking and angled, and a photopolymerization method in which a high concentration aqueous solution is irradiated with ultraviolet rays on a belt to perform polymerization and drying at the same time. Etc. are known.
상기와 같은 중합 반웅을 거쳐 얻은 함수겔상 중합체는 일반적으로  The hydrous gel polymer obtained through the polymerization reaction as described above is generally
조 건조공정을 거쳐 분쇄한 뒤 분말상의 제품으로 시판된다. article It is ground through a drying process and marketed as a powder product.
고흡수성 수지를 이용한 제품에서 투과도 (permeability)은 흡수되는 액체의 유동성을 측정하는 척도이다. 투과도는 가교결합된 수지의 입자 크기 분포, 입자 형상 및 입자들 사이의 개구부의 연결성, 팽윤된 겔의 표면 개질 등의 특성에 따라 달라질 수 있다. 고흡수성 수지 조성물의 투과도에 따라 팽윤된 입자들을 통과하는 액체의 유동성이 달라진다. 투과도가 낮으면 액체가 고흡수성 수지 조성물을 통하여 용이하게 유동할수 없게 된다.  Permeability in products using superabsorbent polymers is a measure of the fluidity of the liquid to be absorbed. Permeability may vary depending on the characteristics of the particle size distribution of the crosslinked resin, the particle shape and the connectivity of the openings between the particles, the surface modification of the swollen gel, and the like. The fluidity of the liquid passing through the swollen particles depends on the permeability of the super absorbent polymer composition. When the permeability is low, the liquid cannot easily flow through the super absorbent polymer composition.
고흡수성 수지에서 투과도를 증가시키는 한 가지 방법으로 수지 중합 후 표면 가교 반웅을 수행하는 방법이 있으며 이때 표면 가교제와 함께 실리카 (silica)나 클레이 (clay) 등을 첨가하는 방법이 이용되어 왔다. 예를 들면, 미국 특허 제 5,140,076호 및 게 4,734,478호는 건조 고흡수성 수지 분말의 표면 가교결합 중의 실리카의 첨가를 개시하고 있다.  One method of increasing permeability in superabsorbent polymers is to perform surface crosslinking reaction after polymerization of the resin, in which silica or clay is added together with the surface crosslinking agent. For example, US Pat. Nos. 5,140,076 and C. 4,734,478 disclose the addition of silica during surface crosslinking of dry superabsorbent resin powders.
그러나, 상기 실리카나 클레이 둥을 첨가함에 따라 투과도는 향상되나 이에 비례하여 보수능 또는 가압 흡수능의 저하가 나타나고 이동시 외부의 물리적 충격에 의해 고흡수성 수지와 분리되기 쉬운 문제점이 있다.  However, as the silica or the clay is added, the permeability is improved, but in proportion thereto, there is a problem in that the water holding capacity or the pressure absorbing capacity is deteriorated and it is easy to be separated from the super absorbent polymer by external physical impact during movement.
【발명의 내용】 [Content of invention]
【해결하려는 과제】  [Problem to solve]
상기와 같은 종래 기술의 문제점을 해결하고자, 본 발명은 표면가교시 C6 이상의 지방족 알코올을 첨가하여 향상된 흡수능과 투과도를 갖는 고흡수성 수지의 제조방법을 제공하는 것을 목적으로 한다.  In order to solve the problems of the prior art as described above, an object of the present invention is to provide a method for preparing a super absorbent polymer having improved absorption and transmittance by adding a C6 or more aliphatic alcohol during surface crosslinking.
【과제의 해결 수단】 [Measures of problem]
상기의 목적을 달성하기 위하여, 본 발명의 일 측면에 따르면, 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 중합 개시제를 포함하는 모노머 조성물에 열중합 또는 광중합을 진행하여 함수겔상 중합체를 형성하는 단계;  In order to achieve the above object, according to an aspect of the present invention, a hydrogel polymer by thermally polymerizing or photopolymerizing a monomer composition including an acrylic acid monomer having a acidic group and at least a portion of the acidic group is neutralized and a polymerization initiator Forming a;
상기 함수겔상 중합체를 건조하는 단계;  Drying the hydrogel polymer;
상기 건조된 중합체를 분쇄하는 단계; 분쇄된 중합체에 표면 가교제 및 C6 이상의 지방족 알코올을 흔합하는 단계; 및 Pulverizing the dried polymer; Mixing a surface crosslinker and a C6 or higher aliphatic alcohol in the ground polymer; And
상기 표면 가교제 및 C6 이상의 지방족 알코올을 흔합한 중합체를 승온하여 표면 개질을 수행하는 단계를 포함하는 고흡수성 수지의 제조방법을 제공한다.  It provides a method for producing a super absorbent polymer comprising the step of performing a surface modification by heating the polymer mixed with the surface cross-linking agent and C6 or more aliphatic alcohol.
본 발명의 다른 일 측면에 따르면,  According to another aspect of the present invention,
산성기를 가지며 상가 산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 모노머 조성물을 중합 및 내부 가교시킨 가교 중합체; 및 상기 가교 중합체의 표면에 형성된 표면 개질층으로 이루어진 고흡수성 수지에 있어서,  A crosslinked polymer obtained by polymerizing and internally crosslinking a monomer composition having an acidic group and containing an acrylic acid monomer in which at least a portion of the acidic group is neutralized; And a super absorbent polymer comprising a surface modification layer formed on the surface of the crosslinked polymer,
EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능 (CRC)이 25 내지 35 g/g 이고, EDANA 법 WSP 242.3에 따라 측정한 0.7 psi의 가압 흡수능 (AUL)이 20 내지 30 g/g이고, 표면 장력 (surface tension)이 65 내지 73 mN/m 인, 고흡수성 수지를 제공한다.  The centrifugal water holding capacity (CRC) measured according to the EDANA method WSP 241.3 is 25 to 35 g / g, the pressure absorption capacity (AUL) of 0.7 psi measured according to the EDANA method WSP 242.3 is 20 to 30 g / g, It provides a super absorbent polymer having a surface tension of 65 to 73 mN / m.
【발명의 효과】 【Effects of the Invention】
본 발명의 고흡수성 수지의 제조 방법에 따르면, 표면 가교 공정시 C6 이상의 지방족 알코올을 첨가하여 고흡수성 수지의 표면을 개질함으로써 향상된 흡수능과 투과도를 갖는 고흡수성 수지를 제조할 수 있다.  According to the manufacturing method of the super absorbent polymer of the present invention, by adding a C6 or more aliphatic alcohol during the surface crosslinking process, the superabsorbent polymer having improved water absorption and permeability can be prepared by modifying the surface of the super absorbent polymer.
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
본 발명은 다양한 변경을 가할ᅳ수 았고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.  As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
이하, 본 발명의 일 실시예에 따른 고흡수성 수지 및 이의 제조 방법에 대해 상세히 설명한다. 본 발명의 고흡수성 수지의 제조 방법은 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 중합 개시제를 포함하는 모노머 조성물에 열중합 또는 광중합을 진행하여 함수겔상 중합체를 형성하는 단계; 상기 함수겔상 중합체를 건조하는 단계; 상기 건조된 중합체를 분쇄하는 단계; 분쇄된 증합체에 표면 가교제 및 코어-쉘 구조의 C6 이상의 지방족 알코올을 흔합하는 단계; 및 상기 표면 가교제 및 C6 이상의 지방족 알코올을 흔합한 중합체를 승온하여 표면 개질을 수행하는 단계를 포함한다. Hereinafter, a super absorbent polymer and a method for preparing the same according to an embodiment of the present invention will be described in detail. The method for producing a super absorbent polymer of the present invention has an acid group and is Forming a hydrogel polymer by thermally polymerizing or photopolymerizing a monomer composition comprising at least a portion of an acidic group neutralized with an acrylic acid monomer and a polymerization initiator; Drying the hydrogel polymer; Pulverizing the dried polymer; Mixing a ground crosslinker and a C6 or higher aliphatic alcohol of a core-shell structure in the pulverized polymer; And heating the polymer in which the surface crosslinking agent and the C6 or higher aliphatic alcohol are mixed to perform surface modification.
본 발명의 고흡수성 수지의 제조 방법에서, 상기 고흡수성 수지의 원료 물질인 모노머 조성물은 산성기를 가지며 상기 산성기의 적어도 일부가중화된 아크릴산계 단량체 및 중합 개시제를 포함한다.  In the method for producing a super absorbent polymer of the present invention, the monomer composition which is a raw material of the super absorbent polymer has an acidic group and includes at least partly weighted acrylic acid monomer and a polymerization initiator of the acidic group.
상기 아크릴산계 단량체는 하기 화학식 1로 표시되는 화합물이다: The acrylic acid monomer is a compound represented by the following formula (1):
[화학식 1] [Formula 1]
R'-COO 1 R'-COO 1
상기 화학식 1에서,  In Chemical Formula 1,
R1은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond,
M1은 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다. 바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다. M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt. Preferably, the acrylic acid monomer includes at least one member selected from the group consisting of acrylic acid, methacrylic acid and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts thereof.
여기서, 상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알킬리 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 아크릴산계 단량체의 중화도는 40 내지 95 몰0 /0, 또는 40 내지 80 몰0 /0, 또는 45 내지 75 몰0 /0일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기. 어려을 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 '탄성 고무와 같은 성질을 나타낼 수 있다. Here, the acrylic acid monomer may have an acid group and at least a part of the acid group may be neutralized. Preferably, those which have been partially neutralized with alkyl materials such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like can be used. In this case, the neutralization degree of the acrylic acid-based monomer may be 40 to 95 mole 0/0, or 40 to 80 mole 0/0, or 45 to 75 mole 0/0. The range of neutralization can be adjusted according to the final physical properties. However, if the degree of neutralization is too high, the neutralized monomer is precipitated and the polymerization proceeds smoothly. On the contrary, if the degree of neutralization is too low, the absorbency of the polymer may not only be greatly reduced, but may exhibit properties such as ' elastic rubber ', which is difficult to handle.
상기 아크릴산계 단량체의 농도는, 상기 고흡수성 수지의 원료 물질 및 용매를 포함하는 모노머 조성물에 대해 약 20 내지 약 60 중량0 /0, 바람직하게는 약 40 내지 약 50 중량0 /0로 될 수 있으며, 중합 시간 및 반웅 조건 등을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다. The concentration of the acrylic acid monomer is a raw material of the super absorbent polymer. And consider, such as from about 20 to about 60 weight 0/0, preferably, may be about 40 to about 50 weight 0/0, the polymerization time and banung conditions for monomer composition comprising a solvent may be an appropriate concentration . However, when the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and there may be a problem in economics. On the contrary, when the concentration is too high, a part of the monomer may be precipitated or the grinding efficiency of the polymerized hydrogel polymer may be low. Etc. may cause problems in the process and may decrease the physical properties of the super absorbent polymer.
본 발명의 고흡수성 수지 제조 방법에서 중합시 사용되는 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다.  The polymerization initiator used in the polymerization in the method for producing a super absorbent polymer of the present invention is not particularly limited as long as it is generally used for producing the super absorbent polymer.
구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또는 UV조사에 따른 광중합 개시제를 사용할 수 있다. 다만 광중합 방법에 의하더라도, 자외선 조사 둥의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반웅인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.  Specifically, the polymerization initiator may use a thermal polymerization initiator or a photopolymerization initiator according to UV irradiation depending on the polymerization method. However, even with the photopolymerization method, since a certain amount of heat is generated by irradiation of ultraviolet radiation and some heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, it may further include a thermal polymerization initiator.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.  The photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파-아미노케톤 (α- amhwketone)으로ᅳᅳ이루어진 —군에서— 선택—되는-하나—이상을 사용할—수 았다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸- 벤조일-트리메틸 포스핀 옥사이드 (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 'UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)' pi 15에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.  Examples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal, acyl phosphine and alpha-amhwketone — one from the group — could be used. On the other hand, as a specific example of acylphosphine, a commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used. . A wider variety of photoinitiators are well described in Reinhold Schwalm's book 'UV Coatings: Basics, Recent Developments and New Application' (Elsevier 2007) pi 15, but are not limited to the examples described above.
상기 광중합 개시제는 싱기 모노머 조성물에 대하여 약 0.01 내지 약 1.0 중량0 /0의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다. The photopolymerization initiator may be included in a concentration of from about 0.01 to about 1.0 weight 0/0 for singgi monomer composition. The concentration of this photopolymerization initiator When too low, the polymerization rate may be slow, and when the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2S208), 과황산칼륨 (Potassium persulfate; K2S208), 과황산암모늄 (Ammonium persulfate;(NH4)2S208) 등이 있으며, 아조 (Azo)계 개시제의 예로는 2, 2-아조비스 -(2-아미디노프로판)이염산염 (2, 2- azobis(2-amidinopropane) dihydrochloride), 2, 2-아조비스 -(N, N- 디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N, N- dimethylene)isobutyramidine dihydrochloride), 2-In addition, the thermal polymerization initiator may be used at least one selected from the group consisting of persulfate initiator, azo initiator, hydrogen peroxide and ascorbic acid. Specifically, examples of persulfate-based initiators include sodium persulfate (Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), and ammonium persulfate (NH 4 ). 2 S 2 0 8 ), and examples of azo initiators include 2, 2-azobis- (2-amidinopropane) dihydrochloride, 2, 2-azobis (2-amidinopropane) dihydrochloride, 2 2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride
(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2, 2- 아조비스 [2-(2-이미다졸린 -2-일)프로판] 디하이드로클로라이드 (2,2-azobis[2-(2- imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스 -(4-시아노발레릭 산) (4,4- azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다. (Carbamoylazo) isobutyronitrile (2- (carbamoylazo) isobutylonitril), 2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2,2-azobis [ 2- (2-imidazolin-2-yl) propane] dihydrochloride), 4,4-azobis- (4-cyanovaleric acid) (4,4- azobis- (4-cyanovaleric acid)), and the like. More various thermal polymerization initiators are well specified in Odian's Principle of Polymerization (Wiley, 1981), p203, and are not limited to the examples described above.
상기 열중합 개시제는 상기 모노머 조성물에 대하여 약 0.001 내지 약 0.5 중량%의 농도로 포함될 수 있다. 이러한 열 중합 개시제의 농도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열증합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 -개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.  The thermal polymerization initiator may be included in a concentration of about 0.001 to about 0.5% by weight based on the monomer composition. When the concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, and the effect of the addition of the thermal polymerization initiator may be insignificant. When the concentration of the thermal polymerization initiator is too high, the molecular weight of the superabsorbent polymer may be small and the physical properties may be uneven. Can be.
본 발명의 일 실시예에 따르면, 상기 모노머 조성물은 고흡수성 수지의 원료 물질로서 내부 가 제를 더 포함할 수 있다. 상기 내부 가교제로는 상기 아크릴산계 단량체와 반웅할 수 있는 관능기를 1개 이상 가지면서, 에틸렌성 불포화기를 1개 이상 갖는 가교제; 혹은 상기 아크릴산계 단량체의 치환기 및 /또는 단량체의 가수분해에 의해 형성된 치환기와 반웅할 수 있는 관능기를 2개 이상 갖는 가교제를 사용할 수 있다.  According to an embodiment of the present invention, the monomer composition may further include an internal gauze as a raw material of the super absorbent polymer. Examples of the internal crosslinking agent include a crosslinking agent having one or more ethylenically unsaturated groups while having at least one functional group capable of reacting with the acrylic acid monomer; Or the crosslinking agent which has a 2 or more functional group which can react with the substituent formed by the substituent of the said acrylic acid type monomer, and / or hydrolysis of a monomer can be used.
6 조 상기 내부 가교제의 구체적인 예로는, Ν,Ν'-메틸렌비스아크릴아미드, 트리메틸를프로판 트리 (메타)아크릴레이트, 에틸렌글리콜 다이 (메타)아크릴레이트, 폴리에틸렌글리콜 (메타)아크릴레이트, 프로필렌글리콜 다이 (메타)아크릴레이트, 폴리프로필렌글리콜 (메타)아크.릴레이트, 부탄다이올다이 (메타)아크릴레이트, 부틸렌글리콜다이 (메타)아크릴레이트, 다이에틸렌글리콜 다이 (메타)아크릴레이트, 핵산다이올다이 (메타)아크릴레이트, 트리에틸렌글리콜 다이 (메타)아크릴레이트, 트리프로필렌글리콜 다이 (메타)아크릴레이트, 테트라에틸렌글리콜 다이 (메타)아크릴레이트, 다이펜타에리스리를 펜타아크릴레이트, 글리세린 트리 (메타)아크릴레이트, 펜타에리스를 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종 이상을사용할 수 있다. 6 sets Specific examples of the internal crosslinking agent include Ν, Ν'-methylenebisacrylamide, trimethyl propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol di (meth) Acrylate, polypropylene glycol (meth) acrylate, butanediol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, nucleic acid diol di (meth) ) Acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate Pentaeryes, tetraacrylate, triarylamine, ethylene glycol diglycidyl ether, At least one member selected from the ropil glycol, the group consisting of glycerin, and ethylene carbonate may be used.
이러한 내부 가교제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 0.5 중량0 /0의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다. These internal cross-linking agent is included at a concentration of about 0.01 to about 0.5 0/0 with respect to the monomer composition, it is possible to cross-link the polymerized polymer.
본 발명의 제조방법에서, 고흡수성 수지의 상기 모노머 조성물은 필요에 따라 증점제 (thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.  In the production method of the present invention, the monomer composition of the super absorbent polymer may further include additives such as thickeners, plasticizers, storage stabilizers, antioxidants and the like as necessary.
상술한 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 모노머 조성물 용액의 형태로 준비될 수 있다.  Raw materials such as acrylic acid monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents, and additives having an acidic group and neutralized at least a portion of the acidic groups may be prepared in the form of a monomer composition solution dissolved in a solvent.
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디을, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 를루엔, 크실렌, 부틸로락톤, 카르비톨, 메틸셀로솔브아세테이트 및 Ν,Ν-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다. The solvent that can be used at this time can be used without limitation of the composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanedi , Propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene Glycol ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate and Ν, Ν-dimethylacetamide It can be used in combination of one or more selected from.
상기 용매는 모노머 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.  The solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
한편, 이와 같은 모노머 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다.  On the other hand, if the method of forming a hydrogel polymer by thermally polymerizing or photopolymerizing such a monomer composition is also the polymerization method normally used, there will be no restriction | limiting in particular in a structure.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더 (kneader)와 같은 교반축을 가진 반웅기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.  Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, when the thermal polymerization is usually carried out, it can be carried out in a semi-unggi with a stirring shaft such as kneader, when the polymerization proceeds, Although possible to proceed in a reactor with a conveyor belt, the above-described polymerization method is an example, and the present invention is not limited to the above-described polymerization method.
일 예로, 상술한 바와 같이 교반축을 구비한 니더 (kneader)와 같은 반웅기에, 열풍을 공급하거나 반웅기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반웅기에 구비된 교반축의 형태에 따라, 반웅기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 모노머 조성물의 농도 및 주입속도 둥에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2 내지 50 mm 인 함수겔상 중합체가 얻어질 수 있다.  For example, as described above, the hydrogel polymer obtained by thermal polymerization by supplying hot air or by heating the reaction machine may have a semi-unger, such as a kneader having a stirring shaft. The hydrogel polymer discharged to the mandrel outlet may be in the form of several centimeters to several millimeters. Specifically, the size of the water-containing gel polymer obtained may vary depending on the concentration and the injection rate of the monomer composition to be injected, a water-containing gel polymer having a weight average particle diameter of 2 to 50 mm can be obtained.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔상 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 증―합 스트의 듯께 fe- 입되—는—단량체—조상물와 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 내자 약 5cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다.  In addition, when the photopolymerization is performed in a semi-unggi equipped with a movable conveyor belt as described above, the form of the hydrogel polymer generally obtained may be a hydrogel gel polymer on the sheet having a width of the belt. The monomer composition is then fed so as to obtain a polymer on a sheet having a thickness of about 0.5 to about 5 cm, which depends on the ancestors, the concentration of the monomer and the concentration and the rate of injection. It is desirable to. In the case of supplying the monomer composition to such an extent that the thickness of the polymer on the sheet is too thin, it is not preferable because the production efficiency is low, and when the thickness of the polymer on the sheet exceeds 5 cm, the polymerization reaction does not occur evenly over the entire thickness. You may not.
이때 이와 같은 방법으로 얻어진 함수겔상 중합체의 통상 함수율은 약 40 내지 약 80 중량0 /0일 수 있다. 한편, 본 명세서 전체에서 "함수율' '은 The normal water content of the gel-like function, the polymer obtained in this manner can be about 40 to about 80 wt. 0/0. On the other hand, in the present specification, "water content"'
8 조 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180°C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다. 8 sets The content of water to the total weight of the hydrogel polymer is the weight of the hydrogel polymer, minus the weight of the dried polymer. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer through infrared heating and drying. At this time, the drying condition is to increase the temperature to about 180 ° C at room temperature and then maintained at 180 ° C. The total drying time is set to 20 minutes, including 5 minutes of temperature rise step, the moisture content is measured.
다음에, 얻어진 함수겔상중합체를 건조하는 단계를 수행한다.  Next, the step of drying the obtained hydrogel polymer is performed.
이때 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는 단계를 더 거칠 수 있다.  At this time, if necessary to coarse grinding before drying to increase the efficiency of the drying step may be more rough.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer), 터보 커터 (Turbo cutter), 터보 글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crusher), 파쇄기 (Crusher), 초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다. 이때 분쇄 단계는 함수겔상 증합체의 입경이 약 2 내지 약 10mm로 되도록 분쇄할 수 있다.  At this time, the pulverizer used is not limited in configuration, specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutting machine Includes any one selected from the group of grinding machines consisting of cutter mills, disc mills, shred crushers, crushers, choppers and disc cutters Although it is possible, it is not limited to the above-mentioned example. At this time, the grinding step may be pulverized so that the particle size of the hydrogel polymer is about 2 to about 10mm.
입경이 2mm 미만으로 분쇄하는 것은 함수겔상 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 웅집되는 현상이 나타날 수도 있다. 한편, 입경이 10mm초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미하다-.  Grinding to a particle diameter of less than 2 mm is not technically easy due to the high water content of the hydrogel polymer, and may also cause a phenomenon in which the crushed particles cross each other. On the other hand, when the particle size is pulverized in excess of 10mm, the effect of increasing the efficiency of the subsequent drying step is insignificant.
상기와 같이 분쇄되거나, 흑은 분쇄 단계를 거치지 않은 중합 직후의 함수겔상 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 약 150 내지 약 250°C일 수 있다. 건조 온도가 150°C 미만인 경우, 건조 .시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 250°C를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 150 내지 약 200°C의 온도에서, 더욱 Drying is performed on the hydrous gel polymer immediately after the polymerization as described above or after the black has not undergone the grinding step. At this time, the drying temperature of the drying step may be about 150 to about 250 ° C. If the drying temperature is less than 150 ° C., the drying time is too long and there is a fear that the physical properties of the superabsorbent resin to be formed is lowered, if the drying temperature exceeds 250 ° C, only the polymer surface is dried too much, Fine powder may generate | occur | produce in the grinding | pulverization process made and there exists a possibility that the physical property of the superabsorbent polymer formed finally may fall. Thus preferably the drying is at a temperature of about 150 to about 200 ° C, more
9 26조 바람직하게는 약 160 내지 약 180°C의 온도에서 진행될 수 있다. 9 Article 26 Preferably at a temperature of about 160 to about 180 ° C.
한편, 건조 시간의 경우에는 공정 효율 둥을 고려하여, 약 20 내지 약 90분 동안 진행될 수 있으나, 이에 한정되지는 않는다.  On the other hand, in the case of drying time, in consideration of the process efficiency, it may proceed for about 20 to about 90 minutes, but is not limited thereto.
상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10중량%일 수 있다.  If the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The water content of the polymer after such a drying step may be about 0.1 to about 10% by weight.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄하는 단계를 수행한다.  Next, the step of pulverizing the dried polymer obtained through this drying step is carried out.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 약 150 내지 약 850 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 를 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.  The polymer powder obtained after the grinding step may have a particle diameter of about 150 to about 850. Mills used to grind to such particle diameters are specifically pin mills, hammer mills, screw mills, mills, disc mills or jogs. Although a jog mill or the like may be used, the present invention is not limited to the above-described example.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 약 150 내지 약 850 인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 표면 개질 단계를 거쳐 제품화할수 있다.  In addition, in order to manage the physical properties of the super absorbent polymer powder to be finalized after such a grinding step, a separate process of classifying the polymer powder obtained after grinding according to the particle diameter may be performed. Preferably, a polymer having a particle size of about 150 to about 850 may be classified, and only a polymer powder having such a particle size may be manufactured through a surface modification step.
다음에, 분쇄된 중합체에 표면 가교제 및 C6 이상의 지방족 알코올을 첨가하여 흔_힙:할다 —다을ᅳ에ᅳ이-들ᅳ흔ᅳ합물에—열을ᅳ가하아 승은함—으로써―상쟈 분쇄된 중합체에 대해 표면 개질 단계를 수행한다.  Next, the ground polymer is added to the ground polymer by adding a surface cross-linking agent and a C6 or higher aliphatic alcohol. Perform a surface modification step for.
상기 표면 개질은 표면 가교제의 존재 하에 상기 분쇄된 중합체의 표면에 가교 반응을 유도함으로써, 보다 향상된 물성을 갖는 고흡수성 수지를 형성시키는 단계이다. 이러한 표면 개질을 통해 상기 분쇄된 증합체 입자의 표면에는 표면 개질층 (표면 가교층)이 형성된다.  The surface modification is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a surface crosslinking agent, thereby forming a super absorbent polymer having more improved physical properties. Through such surface modification, a surface modification layer (surface crosslinked layer) is formed on the surface of the pulverized polymer particles.
상기 표면 개질은 중합체 입자 표면의 가교 결합 밀도를 증가시키는 통상의 방법으로 수행될 수 있으며, 예를 들어, 표면 가교제를 포함하는 용액과 상기 분쇄된 중합체를 흔합하여 가교 반응시키는 방법으로  The surface modification may be carried out by a conventional method of increasing the crosslinking density of the surface of a polymer particle, for example, by mixing and crosslinking the pulverized polymer with a solution containing a surface crosslinking agent.
10 26조 수행될 수 있다. 10 26 sets Can be performed.
또한 일반적으로, 표면 가교제는 고흡수성 수지 입자의 표면에 도포된다. 따라서 , 이 반웅은 고흡수성 수지 입자의 표면 상에서 일어나며 , 이는 입자 내부에는 실질적으로 영향을 미치지 않으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교 결합된 고흡수성 수지 입자는 내부에서보다 표면 부근에서 더 높은 가교 결합도를 갖는다. 한편 고흡수성 수지의 투과도를 높이기 위해 종래 기술에서는 표면 가교제에 더하여 다공성인 실리카 (silica)나 클레이 (clay) 둥을 첨가하는 방법을 사용하였다. 그런데 상기 실리카나 클레이 등은 다공성을 가지므로 이들을 첨가함에 따라 투과도는 향상되나 이에 비례하여 보수능 또는 가압 흡수능의 저하가 나타나고 고흡수성 수지와 물리적 결합이 견고하지 못하여 이동시 외부의 물리적 층격에 의해 고흡수성 수지와 분리되기 쉬운 문제점이 있다.  Also, in general, the surface crosslinking agent is applied to the surface of the super absorbent polymer particles. Thus, this reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the interior of the particles. The surface crosslinked superabsorbent resin particles thus have a higher degree of crosslinking in the vicinity of the surface than in the interior. On the other hand, in order to increase the permeability of the super absorbent polymer in the prior art, a method of adding porous silica or clay to the surface crosslinking agent was used. However, since silica and clay have a porosity, the permeability is improved by adding them, but in proportion thereto, the water retention capacity or the pressure absorption capacity is deteriorated, and the superabsorbent polymer is not firmly bonded to the superabsorbent polymer. There is a problem that is easy to separate from the resin.
그러나, 본 발명의 제조방법에서는 C6, 즉 탄소수 6 이상의 지방족 알코올을 표면 가교제와 함께 첨가하여 표면 가교 반웅을 수행함으로써 보수능 또는 가압 흡수능의 저하 없이 투과도를 향상시키는 효과를 얻을 수 있다.  However, in the production method of the present invention, by adding C6, that is, aliphatic alcohol having 6 or more carbon atoms, together with the surface crosslinking agent, the surface crosslinking reaction may be performed to obtain an effect of improving permeability without deterioration of water holding capacity or pressure absorbing ability.
상기 C6 이상의 지방족 알코올의 히드록시기 (-OH)는 상기 분쇄된 중합체의 표면 반웅하여 화학적으로 결합되고, C6 이상의 알킬 체인이 상기 중합체의 표면에 존재하게 된다. 이에 따라, 상기 C6 이상의 지방족 알코올이 표면에 결합된 중합체로 고흡수성 수지 제품을 제조하게 되면, ᅳ상 ZL고 -흡 성ᅳ수 가― 수분을-흡수하여ᅳ팽ᅳ윤될一때 7 상기ᅳ중합체ᅳ표면에一 존재하는 C6 이상와 긴 알킬 체인으로 인하여 괭윤된 수지 입자들이 높아진 압력에 따라 서로 응집되거나 뭉쳐지는 것을 방지하여 향상된 투과도를 가질 수 있다. 또한, 알킬 체인이 중합체 표면에 소수성을 부여함으로써 수분의 투과 및 확산을 보다 용이하게 할수 있다.  The hydroxyl group (-OH) of the C6 or higher aliphatic alcohol reacts chemically with the surface of the ground polymer and the C6 or higher alkyl chain is present on the surface of the polymer. Accordingly, when the superabsorbent polymer product is made of a polymer having C6 or more aliphatic alcohol bonded to the surface, when the superfine ZL high-absorbent water is absorbed by water-absorbing water, Due to the C6 or more and the long alkyl chain present on the surface, the hoeed resin particles can be prevented from agglomerating or agglomerating with each other under high pressure, and thus have improved permeability. In addition, the alkyl chains impart hydrophobicity to the polymer surface, making it easier to permeate and diffuse moisture.
본 발명의 일 실시예에 따르면, 상기 C6 이상의 지방족 알코올로 C6 내지 C20의 1차, 2차, 또는 3차 알코올을 예로 들 수 있으며, 바람직하게는 C6 내지 C16의 1차 알코올을 사용할 수 있다. 보다 바람직하게는 스테아릴 알코올 (stearyl alcohol), 라우릴 알코올 (lauryl alcohol), 및 세틸 알코올 (cetyl alcohol)로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있으나, 본 발명이 이에 제한되는 것은 아니다. According to one embodiment of the present invention, the C6 or higher aliphatic alcohols include C6 to C20 primary, secondary, or tertiary alcohols, and preferably C6 to C16 primary alcohols. More preferably stearyl alcohol, lauryl alcohol, And cetyl alcohol (cetyl alcohol) may be used one or more selected from the group consisting of, but the present invention is not limited thereto.
상기 C6 이상의 지방족 알코올의 함량은 상기 분쇄된 중합체 100 중량부에 대해, 약 0.001 내지 약 2 중량부, 또는 약 0.01 내지 약 1 증량부, 바람직하게는 약 0.01 내지 약 0.5 증량부, 더욱 바람직하게는 약 으 05 내지 약 0.3 중량부를 사용할 수 있다. C6 이상의 지방족 알코올의 함량이 지나치게 적으면, C6 이상의 지방족 알코올의 첨가로 인한 투과도 향상의 효과가 거의 나타나지 않으며, 너무 많이 포함되는 경우, 수분이 침투하는 것을 방해하여 보수능의 저하를 초래할 수 있다.  The content of the C6 or more aliphatic alcohol is about 0.001 to about 2 parts by weight, or about 0.01 to about 1 parts by weight, preferably about 0.01 to about 0.5 parts by weight, more preferably, based on 100 parts by weight of the pulverized polymer. About 05 to about 0.3 parts by weight may be used. When the content of C6 or more aliphatic alcohol is too small, the effect of improving the permeability due to the addition of C6 or more aliphatic alcohol is hardly exhibited, and when it is included too much, it can prevent water from penetrating and lead to a decrease in water-retaining ability.
상기 C6 이상의 지방족 알코올은 표면 가교제를 분쇄된 중합체에 흔합하기 전에 별도로 첨가하거나, 또는 상기 표면 가교제와 함께 첨가할 수 있다.  The C6 or higher aliphatic alcohol may be added separately before mixing the surface crosslinking agent with the ground polymer, or may be added together with the surface crosslinking agent.
또한 상기 표면 가교제 및 C6 이상의 지방족 알코을을 상기 분쇄된 중합체에 첨가하는 방법에 대해서는 그 구성의 한정은 없다. 표면 가교제 및 C6 이상의 지방족 알코을과 중합체 분말을 반응조에 넣고 흔합하거나, 중합체 분말에 표면 가교제 및 C6 이상의 지방족 알코을올 분사하는 방법, 연속적으로 운전되는 믹서에 중합체와 표면 가교제 및 C6 이상의 지방족 알코올을 연속적으로 공급하여 흔합하는 방법 등을 사용할수 있다.  In addition, there is no limitation in the structure about the method of adding the said surface crosslinking agent and C6 or more aliphatic alcohol to the said pulverized polymer. The surface crosslinking agent and C6 or more aliphatic alcohol and polymer powder are mixed in a reaction tank, or the surface crosslinking agent and C6 or more aliphatic alcohol are sprayed on the polymer powder, and the polymer and the surface crosslinking agent and C6 or more aliphatic alcohol are continuously added to the mixer which is operated continuously. Supplying and mixing can be used.
한편 상기 C6 이상의 지방족 알코올은 물에 대한 용해도가 낮으므로, 분말 상태로 건식 흔합하거나, 녹는점 이상으로 온도를 높여 액상으로 만든 후 분사하는 방식으로 중합체에 흔합할 수 있다.  Meanwhile, since the C6 or higher aliphatic alcohol has low solubility in water, it may be dryly mixed in a powder state, or may be mixed with a polymer by spraying after melting the mixture to a temperature above the melting point.
본 발명—의— 일―실시예에 따르면, 상기 표면 가교제 및 C6 이상의 지방족 알코올을 중합체에 흔합할 때, 상기 표면 가교제를 흔합하기 전에 분말 또는 액상 형태의 C6 이상의 지방족 알코올을 먼저 증합체에 흔합할 수 있다.  According to one embodiment of the present invention, when mixing the surface crosslinking agent and C6 or more aliphatic alcohol to a polymer, before mixing the surface crosslinking agent, C6 or more aliphatic alcohol in powder or liquid form must first be mixed with the polymerizer. Can be.
상기 표면 가교제 첨가시, 추가로 물을 함께 흔합하여 표면 가교 용액의 형태로 첨가할 수 있다. 물을 첨가하는 경우, 표면 가교제가 중합체에 골고루 분산될 수 있는 이점이 있다. 이때, 추가되는 물의 함량은 표면 가교제의 고른 분산을 유도하고 중합체 분말의 뭉침 현상을 방지함과 동시에 표면 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 중합체  When the surface crosslinking agent is added, water may be further mixed together and added in the form of a surface crosslinking solution. When water is added, there is an advantage that the surface crosslinker can be evenly dispersed in the polymer. At this time, the amount of added water is used to induce even dispersion of the surface crosslinking agent, prevent aggregation of the polymer powder, and at the same time optimize the surface penetration depth of the surface crosslinking agent.
12 조 100 중량부에 대해, 약 1 내지 약 10 중량부의 비율로 첨가되는 것이 바람직하다. 12 sets It is preferably added at a ratio of about 1 to about 10 parts by weight, relative to 100 parts by weight.
또한, 상기 표면 가교제로는 중합체가 갖는 관능기와 반응 가능한 화합물이라면 그 구성의 한정이 없다.  Moreover, as said surface crosslinking agent, if the compound which can react with the functional group which a polymer has is not limited in the structure.
바람직하게는 생성되는 고흡수성 수지의 특성을 향상시키기 위해, 상기 표면 가교제로 다가 알콜 화합물; 에폭시 화합물; 폴리아민 화합물; 할로에폭시 화합물; 할로에폭시 화합물의 축합 산물; 옥사졸린 화합물류; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 환상 우레아 화합물; 다가 금속염; 및 알킬렌 카보네이트 화합물로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.  Preferably, in order to improve the properties of the resulting super absorbent polymer, the surface crosslinking agent may be a polyhydric alcohol compound; Epoxy compounds; Polyamine compounds; Haloepoxy compound; Condensation products of haloepoxy compounds; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; And it may be used one or more selected from the group consisting of alkylene carbonate compounds.
구체적으로, 다가 알콜 화합물의 예로는 모노-, 디-, 트리-, 테트라- 또는 폴리에틸렌 글리콜, 모노프로필렌 글리콜, 1,3-프로판디올, 디프로필렌 글리콜, 2,3,4-트리메틸 -1,3-펜탄디올, 폴리프로필렌 글리콜, 글리세를, 폴리글리세를, 2-부텐 -1,4-디올, 1,4-부탄디올, 1,3-부탄디을, 1,5-펜탄디올, 1,6- 핵산디올, 및 1,2-사이클로핵산디메탄올로 이루어진 군에서 선택되는 1 종 이상을사용할 수 있다.  Specifically, examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3 -Pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanedi, 1,5-pentanediol, 1,6- nucleic acid One or more selected from the group consisting of diols and 1,2-cyclonucleic acid dimethanol can be used.
또한, 에폭시 화합물로는 에틸렌 글리콜 디글리시딜 에테르 및 글리시돌 등을 사용할 수 있으며, 폴리아민 화합물류로는 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라아민, 테트라에틸렌펜타민, 펜타에틸렌핵사민, 폴리에틸렌이민 및 폴리아미드폴리아민로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.  In addition, ethylene glycol diglycidyl ether and glycidol may be used as the epoxy compound, and ethylene diamine, diethylene triamine, triethylene tetraamine, tetraethylene pentamine, pentaethylene nucleomine may be used as polyamine compounds. , At least one selected from the group consisting of polyethyleneimine and polyamide polyamine can be used.
크-리고- -할로에폭시 화합물ᅳ로는ᅳ에피—클로로히드린, 에피브ᅳ로모히드린— 및 α-메틸에피클로로히드린을 사용할 수 있다. 한편, 모노-, 디- 또는 폴리옥사졸리디논 화합물로는 예를 들어 2-옥사졸리디논 등을 사용할 수 있다. As the k-rigo-haloepoxy compound, ᅳ epi—chlorohydrin, epibromohydrin— and α -methylepichlorohydrin can be used. In addition, 2-oxazolidinone etc. can be used as a mono-, di-, or a polyoxazolidinone compound, for example.
그리고, 알킬렌 카보네이트 화합물로는 에틸렌 카보네이트 등을 사용할 수 있다. 이들을 각각 단독으로 사용하거나 서로 조합하여 사용할 수도 있다. 한편, 표면 가교 공정의 효율을 높이기 위해, 이들 표면 가교제 중에서 1 종 이상의 탄소수 2 내지 10의 다가 알코올 화합물류를 1 종 이상 포함하여 사용할 수 있다.  And as an alkylene carbonate compound, ethylene carbonate etc. can be used. These may be used alone or in combination with each other. On the other hand, in order to improve the efficiency of a surface crosslinking process, 1 or more types of C2-C10 polyhydric alcohol compounds can be used including these 1 or more types in these surface crosslinking agents.
13 26조 상기 첨가되는 표면 가교제의 함량은 구체적으로 추가되는 표면 가교제의 종류나 반응 조건에 따라 적절히 선택될 수 있지만, 통상 중합체13 Article 26 The amount of the surface crosslinking agent to be added may be appropriately selected depending on the kind of the surface crosslinking agent to be added or the reaction conditions.
100 중량부에 대해, 약 0.001 내지 약 5 중량부, 바람직하게는 약 0.01 내지 약 3 중량부, 더욱 바람직하게는 약 0.05 내지 약 2 중량부를 사용할 수 있다. About 100 parts by weight, about 0.001 to about 5 parts by weight, preferably about 0.01 to about 3 parts by weight, more preferably about 0.05 to about 2 parts by weight may be used.
표면 가교제의 함량이 지나치게 적으면, 표면 가교 반응이 거의 일어나지 않으며, 중합체 100 중량부에 대해, 5 증량부를 초과하는 경우, 과도한 표면 가교 반웅의 진행으로 인해 흡수능력 및 물성의 저하 현상이 발생할 수 있다.  If the content of the surface crosslinking agent is too small, the surface crosslinking reaction hardly occurs, and if 100 parts by weight of the polymer exceeds 5 parts by weight, excessive phenomenon of surface crosslinking reaction may cause deterioration of absorption capacity and physical properties. .
본 발명의 제조방법에 따라 수득된 고흡수성 수지는 C6 이상의 지방족 알코올이 표면에 분포함으로써 팽윤된 수지 입자들이 서로 웅집되는 것을 방지하여 향상된 투과도를 가진다. 또한 본 발명의 제조방법에 따른 고흡수성 수지는 실리카나 클레이를 첨가한 경우와 달리, 보수능과 가압 흡수능 등의 고흡수성 수지의 물성 저하를 최소화하고 중합체 수지와의 물리적 결합이 비교적 견고하여 이동시 충격에 의한 분리 현상이 적어 장기간 수송 및 보관시에도 물성 편차가 적게 나타난다.  The superabsorbent polymer obtained according to the production method of the present invention has improved permeability by preventing the swollen resin particles from crowding with each other by distributing C6 or more aliphatic alcohol on the surface. In addition, unlike the case of adding silica or clay, the super absorbent polymer according to the manufacturing method of the present invention minimizes the deterioration of physical properties of the super absorbent polymers such as water retention and pressurized absorbent capacity, and has a relatively strong physical bond with the polymer resin, thereby impacting the movement. Due to the small number of separations, the variation of physical properties is small even during long-term transportation and storage.
상기 표면 가교제 및 C6 이상의 지방족 알코올이 첨가된 중합체 입자에 대해 약 160 내지 약 200 °C , 바람직하게는 약 170 내지 약 190 °C의 온도에서 약 20 내지 약 100 분, 바람직하게는 약 30 내지 약 90 분 동안 가열시킴으로써 표면 가교제에 의한 표면 가교 반응과, C6, 이상의 지방족 알코올의 결합 반웅, 및 건조가 동시에 이루어질 수 있다. 가교 반응 온도가 160 °C 머만이커나 반응 시간이 너무 짧을 경우 표면 가교 반웅이 제대로 일어나지 않아 투과도가 낮아질 수 있고, 200 °C를 초과하거나 반웅 시간이 너무 길 경우 보수능이 저하되는 문제가 발생할 수 있다. About 20 to about 100 minutes, preferably about 30 to about at a temperature of about 160 to about 200 ° C, preferably about 170 to about 190 ° C for the polymer particles to which the surface crosslinking agent and C6 or more aliphatic alcohol is added By heating for 90 minutes, the surface crosslinking reaction by the surface crosslinking agent, the binding reaction of C6 or more aliphatic alcohol, and drying can be simultaneously performed. The cross-linking reaction temperature of 160 ° C meoman acres and the reaction time is too short, if the surface cross-linked banung does not occur because it is possible lower the transmission rate, exceeding 200 ° C, or the banung time may experience so the beam SAT decreases when the road correctly have.
표면 가교 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를  The temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source. At this time, as the type of heat medium that can be used may be a heated fluid such as steam, hot air, hot oil, etc., but the present invention is not limited thereto, and the temperature of the heat medium to be supplied is the means of the heat medium, the temperature increase rate and the temperature increase It may be appropriately selected in consideration of the target temperature. On the other hand, the heat source directly supplied is electricity
14 조 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다. 14 sets Heating, gas heating method, but the present invention is not limited to the above-described examples.
상기 본 발명의 제조방법으로 제조된 고흡수성 수지는, 보수능과 가압 흡수능 등의 물성을 저하시키지 않으면서 향상된 투과도를 가질 수 있다.  The super absorbent polymer prepared by the manufacturing method of the present invention may have improved permeability without deteriorating physical properties such as water-retaining capacity and pressure-absorbing capacity.
예를 들어, 상기 제조방법으로 제조된 고흡수성 수지는, 하기 식 1로 정의되는 P가 0.85 내지 .1.20의 범위를 만족할 수 있다.  For example, in the superabsorbent polymer prepared by the above method, P defined by Equation 1 below may satisfy a range of 0.85 to 1.20.
[식 1] [Equation 1]
P= SFC*107/(CRC+AUL) P = SFC * 10 7 / (CRC + AUL)
상기 식 1에서,  In Formula 1,
CRC는 EDANA 법 WSP 241.3에 따라 측정한 보수능 (단위: g/g)을 의미하고,  CRC means the water capacity (unit: g / g) measured according to EDANA WSP 241.3,
AUL은 EDANA 법 WSP 242.3에 따라 측정한 0.7 psi의 가압 흡수능 (단위 : g/g)을 의미하며 ,  AUL stands for absorbed pressure of 0.7 psi (unit: g / g) measured according to EDANA method WSP 242.3,
SFC는 용액 투과도 (Saline Flow Conductivity, 단위: cm3*sec/g)를 의미한다. SFC means solution permeability (Saline Flow Conductivity, cm 3 * sec / g).
상기 식 1의 P는 보수능, 가압흡수능, 및 통액성의 밸런스 (balance)를 평가할 수 있는 파라미터로, 1에 가까울수록 보수능, 가압흡수능, 및 통액성이 조화된 물성을 나타내는 것으로 볼 수 있다.  P of Equation 1 is a parameter for evaluating the balance of water holding capacity, pressure absorbing ability, and liquid permeability, and the closer to 1, the physical properties of the water holding capacity, pressure absorbing ability, and liquid permeability are harmonized. .
상기 본 발명의 제조방법으로 제조된 고흡수성 수지는, 상기 식 1로 계산되는 P가 약 0.85 이상, 또는 약 0.90 이상, 또는 약 0.95 이상이면서, 약 1.2으이하, 또는 약 1.15 이하. 또는 약 1.10 이하로 조화된 물성을 가질 수 있다.  The super absorbent polymer prepared by the production method of the present invention, wherein P calculated by the formula 1 is about 0.85 or more, or about 0.90 or more, or about 0.95 or more, and about 1.2 or less, or about 1.15 or less. Or about 1.10 or less.
또한, 상기 제조방법으로 제조된 고흡수성 수지는, EDANA 법 WSP 241.3에 따라 측정한 보수능 (CRC)이 약 25 g/g 이상, 또는 약 26 g/g 이상, 또는 약 27 g/g 이상이면서, 약 35 g/g 이하, 또는 약 30 g/g 이하, 또는 약 29 g/g 이하의 범위를 가질 수 있다.  In addition, the super absorbent polymer prepared by the above method has a water retention capacity (CRC) of about 25 g / g or more, or about 26 g / g or more, or about 27 g / g or more, measured according to the EDANA method WSP 241.3. , Up to about 35 g / g, or up to about 30 g / g, or up to about 29 g / g.
또한, 상기 제조방법으로 제조된 고흡수성 수지는, EDANA 법 WSP 242.3에 따라 측정한 0.7 psi의 가압 흡수능 (AUL)이 약 20 g/g 이상, 또는 약 12 g/g 이상, 또는 약 24 g/g 이상이면서 , 약 30 g/g 이하, 또는 약 28 g/g 이하, 또는 약 27g/g 이하의 범위를 가질수 있다. In addition, the super absorbent polymer prepared by the above production method has a pressure absorption capacity (AUL) of 0.7 psi measured according to the EDANA method WSP 242.3 of about 20 g / g or more, or about 12 g / g or more, or about 24 g / at least about 30 g / g, or at most about 28 g / g, Or about 27 g / g or less.
또한, 상기 제조방법으로 제조된 고흡수성 수지는, 약 45* ΚΓ7 cm3*sec/g 이상, 또는 약 48* 10"7 cm3*sec/g 이상 또는, 약 50*10 7 cm3*sec/g 이상이면서, 약 80*1(T7 cm3*sec/g 이하, 또는 약 70*1(T7 cm3*sec/g 이하, 또는 약 65*l(T7 cm3*sec/g 이하의 용액 투과도 (SFC: Saline Flow Conductivity)를 가질 수 있다. In addition, the superabsorbent polymer prepared by the above method is about 45 * ΚΓ 7 cm 3 * sec / g or more, or about 48 * 10 "7 cm 3 * sec / g or more, or about 50 * 10 7 cm 3 * about 80 * 1 (T 7 cm 3 * sec / g or less, or about 70 * 1 (T 7 cm 3 * sec / g or less, or about 65 * l (T 7 cm 3 * sec /) It may have a solution permeability (SFC: Saline Flow Conductivity) of less than or equal to g.
상기 용액 투과도는 미국 공개 특허 No. 2009-0131255의 column 16의 [0184] 내지 [0189]에 개시된 방법에 따라 측정할 수 있다.  The solution permeability is US published patent No. It can be measured according to the method disclosed in [0184] to [0189] of column 16 of 2009-0131255.
본 발명의 다른 일 구현예에 따르면, 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 모노머 조성물을 중합 및 내부 가교시킨 가교 중합체; 및 상기 가교 중합체의 표면에 형성된 표면 개질층으로 이루어진 고흡수성 수지에 있어서, EDANA법 WSP 241.3에 따라 측정한 원심분리 보수능 (CRC)이 25 내지 35 g/g 이고, EDANA 법 WSP 242.3에 따라 측정한 0.7 psi의 가압 흡수능 (AUL)이 20 내지 30 g/g이고, 표면 장력 (surface tension)이 65 내지 73 mN/m인, 고흡수성 수지를 제공한다.  According to another embodiment of the present invention, a crosslinked polymer having an acidic group and polymerized and internally crosslinked a monomer composition comprising an acrylic acid monomer in which at least a portion of the acidic group is neutralized; And a super absorbent polymer comprising a surface modification layer formed on the surface of the crosslinked polymer, wherein the centrifugal water retention capacity (CRC) measured according to EDANA method WSP 241.3 is 25 to 35 g / g, and measured according to EDANA method WSP 242.3. It provides a super absorbent polymer having a pressure absorption capacity (AUL) of 20 to 30 g / g and a surface tension of 65 to 73 mN / m.
상기 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 모노머 조성물을 중합 및 내부 가교시킨 가교 중합체에 대해서는 앞서, 본 발명의 고흡수성 수지의 제조방법에서 설명한 바와 같다.  The crosslinked polymer obtained by polymerizing and internally crosslinking the monomer composition including the acidic group and the monomer composition including the acrylic acid monomer in which at least a portion of the acidic group is neutralized is the same as described above in the method for preparing the super absorbent polymer of the present invention.
본 발명의 고흡수성 수지는, 상기 가교 중합체에 대한 표면 가교 공정시 C6 이상의 지방족 알코을을 첨가하여 고흡수성 수지의 표면을 개질함으로써-향상된 흡수능과 투과도를 갖는다.  The superabsorbent resin of the present invention has improved absorption ability and permeability by adding C6 or more aliphatic alcohol to modify the surface of the superabsorbent resin in the surface crosslinking process for the crosslinked polymer.
상기 C6 이상의 지방족 알코 ¾의 히드록시기는 상기 중합체의 표면 반웅하여 화학적으로 결합되고, C6 이상의 알킬 체인이 상기 중합체의 표면에 존재하게 된다. 이에 따라, 상기 C6 이상의 지방족 알코을이 표면에 결합된 중합체가 수분을 흡수하여 팽윤될 때, 상기 중합체 표면에 존재하는 C6 이상의 긴 알킬 체인으로 인하여 팽윤 ¾ 수지 입자들이 높아진 압력에 따라 서로 웅집되거나 뭉쳐지는 것을 방지하여 향상된 투과도를 가질 수 있다.  The hydroxyl groups of the C6 or higher aliphatic alcohols are chemically bound to the surface of the polymer and an alkyl chain of C6 or more is present on the surface of the polymer. Accordingly, when the polymer bound to the C6 or higher aliphatic alcohol absorbs moisture and swells, the swelling ¾ resin particles are swollen or aggregated with each other due to the high pressure due to the C6 or longer alkyl chain present on the polymer surface. Can be prevented to have improved transmittance.
또한, 본 발명의 고흡수성 수지는 표면 장력 (surface tension)이 65 mN/m 이상, 또는 67 mN/m 이상, 또는 70 mN/m 이상이면서, 73 mN/m 이하, 또는 72 mN/m 이하의 범위를 가질 수 있다. In addition, the superabsorbent polymer of the present invention has a surface tension of 65 mN / m or more, or 67 mN / m or more, or 70 mN / m or more, and may have a range of 73 mN / m or less, or 72 mN / m or less.
고흡수성 수지의 표면 장력은 보수능, 가압흡수능, 투과도와는 다른 물성으로 상기 고흡수성 수지를 포함하는 기저귀에서의 소변 누출 (leakage)을 평가할 수 있는 척도이다. 상기 표면 장력은 고흡수성 수지를 염수에 팽윤시키고, 해당 염수에 대해 측정한 표면 장력을 의미하며, 고흡수성 수지의 표면 장력이 낮을 경우 이를 포함하여 제조되는 기저귀 등에서 소변이 새는 현상이 발생할 가능성이 높다. 본 발명의 고흡수성 수지에 따르면, 높은 보수능과 투과도를 유지하면서도 적정한 범위의 표면 장력을 가짐으로써 누출 발생 가능성을 줄여 고품질의 위생용품을 생산할 수 있다. 또한, 본 발명의 고흡수성 수지는 약 45* ΐσ7 cm3*sec/g 이상, 또는 약 48* 10"7 cm3*sec/g 이상 또는, 약 50*KT7 cm3*sec/g 이상이면서, 약 80*10-7 cm3*sec/g 이하, 또는 약 70*10-7 cm3*sec/g 이하, 또는 약 65*1( 7 cm3*sec/g 이하의 용액 투과도 (SFC: Saline Flow Conductivity)를 가질 수 있다. The surface tension of the superabsorbent polymer is a measure for evaluating urine leakage in a diaper containing the superabsorbent polymer due to its physical properties different from the water-retaining capacity, pressure-absorbing capacity, and permeability. The surface tension swells the superabsorbent polymer in saline, and means the surface tension measured for the saline, and when the surface tension of the superabsorbent polymer is low, urine leakage is likely to occur in a diaper manufactured therein. . According to the superabsorbent polymer of the present invention, it is possible to produce a high-quality sanitary article by reducing the possibility of leakage by having an appropriate range of surface tension while maintaining a high water retention and permeability. In addition, the superabsorbent polymer of the present invention is about 45 * ΐσ 7 cm 3 * sec / g or more, or about 48 * 10 "7 cm 3 * sec / g or more, or about 50 * KT 7 cm 3 * sec / g or more While about 80 * 10 -7 cm 3 * sec / g or less, or about 70 * 10 -7 cm 3 * sec / g or less, or about 65 * 1 ( 7 cm 3 * sec / g or less) It may have Saline Flow Conductivity.
상기 용액 투과도는 미국 공개 특허 No. 2009-0131255의 column 16의 The solution permeability is US published patent No. Of column 16 of 2009-0131255
[0184] 내지 [0189]에 개시된 방법에 따라 측정할 수 있다. It can be measured according to the method disclosed in [0184] to [0189].
또한, 본 발명의 고흡수성 수지는 EDANA 법 WSP 241.3에 따라 측정한 보수능 (CRC)이 약 25 g/g 이상, 또는 약 26 g/g 이상, 또는 약 27 g/g 이상이면서, 약 35 g/g 이하, 또는 약 30 g/g 이하, 또는 약 29 g/g 이하의 범위를 가질 수 있다.  In addition, the super absorbent polymer of the present invention has a water retention capacity (CRC) of about 25 g / g or more, or about 26 g / g or more, or about 27 g / g or more, measured according to the EDANA method WSP 241.3, and about 35 g. up to / g, or up to about 30 g / g, or up to about 29 g / g.
상기 원심분리 보수능 (CRC)은 EDANA 법 WSP 241.3에 따라 측정한 것으로,하가수학식 1로 표시될 수 있다:  The centrifugal conservative capacity (CRC) is measured according to EDANA method WSP 241.3, which can be represented by Equation 1:
[수학식 1]  [Equation 1]
CRC (g/g) = {[W2(g) - W,(g)]AV0(g)} - 1 CRC (g / g) = {[W 2 (g)-W, (g)] AV 0 (g)}-1
ᄉ이 "기 수학식 1에서, In the equation " 1,
W0(g)는 수지의 무게 (g)이고, W 0 (g) is the weight of the resin (g),
Wt(g)는 수지를 사용하지 않고, 원심분리기를 사용하여 250G로 3분간 탈수한후에 측정한 장치 무게 (g)이고, W t (g) is the device weight (g) measured after dehydration at 250G for 3 minutes using a centrifuge without using resin,
W2(g)는 상온에 0.9 질량 %의 생리식염수에 수지를 30분 동안 침수한 후에, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 수지를 W 2 (g) was immersed in 0.9 mass% of physiological saline at room temperature for 30 minutes, and then dehydrated at 250 G for 3 minutes using a centrifuge.
17 26조 포함하여 측정한 장치 무게 (g)이다. Article 26 It is the measured device weight (g).
또한, 본 발명의 고흡수성 수지는 EDANA 법 WSP 242.3에 따라 측정한 0.7 psi의 가압 흡수능 (AUL)이 약 20 g/g 이상, 또는 약 22 g/g 이상, 또는 약 24 g/g 이상이면서, 약 30 g/g 이하, 또는 약 28 g/g 이하, 또는 약 27g/g 이하의 범위를 가질 수 있다.  In addition, the superabsorbent polymer of the present invention has a pressurized absorption capacity (AUL) of 0.7 psi measured according to the EDANA method WSP 242.3 of about 20 g / g or more, or about 22 g / g or more, or about 24 g / g or more, About 30 g / g or less, or about 28 g / g or less, or about 27 g / g or less.
상기 가압 흡수능 (AUL)는 하기 수학식 2로 표시될 수 있다:  The pressure absorption capacity (AUL) may be represented by the following Equation 2:
[수학식 2]  [Equation 2]
AUL(g/g) = [W4(g) - W3(g)]/W0(g)  AUL (g / g) = [W4 (g)-W3 (g)] / W0 (g)
상기 수학식 2에서,  In Equation 2,
W0(g)는 수지의 무게 (g)이고,  W0 (g) is the weight of resin (g),
W3(g)는 수지의 무게 및 상기 수지에 하중을 부여할 수 있는 장치 무게의 총합 (g)이고,  W3 (g) is the sum of the weight of the resin and the weight of the device capable of applying a load to the resin (g),
W4(g)는 하중 (0.7 psi) 하에 60분 동안 상기 수지에 수분을 공급한 후의 수분이 흡수된 수지의 무게 및 상기 흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합 (g)이다.  W4 (g) is the sum of the weight (g) of the weight of the absorbed resin and the weight of the device capable of applying a load to the absorbent resin after hydrating the resin for 60 minutes under a load (0.7 psi).
또한 본 발명의 고흡수성 수지는, 보수능과 가압 흡수능 등의 물성을 저하시키지 않으면서 향상된 투과도를 가질 수 있다.  In addition, the super absorbent polymer of the present invention may have improved transmittance without deteriorating physical properties such as water-retaining capacity and pressure-absorbing capacity.
예를 들어, 본 발명의 고흡수성 수지는, 하기 식 1로 정의되는 P가 0.85 내지 120의 범위를 만족할 수 있다.  For example, P of the superabsorbent polymer of the present invention can satisfy the range of 0.85 to 120 defined by the following formula (1).
[식 1]  [Equation 1]
P= SFC*107/(CRC+AUL) P = SFC * 10 7 / (CRC + AUL)
상기 식 -1에서,  In the above formula -1,
CRC는 EDANA 법 WSP 24L3에 따라 측정한 보수능 (단위: g/g)을 의미하고,  CRC means the water holding capacity (unit: g / g) measured according to EDANA method WSP 24L3,
AUL은 EDANA 법 WSP 242.3에 따라 측정한 0.7 psi의 가압 흡수능 (단위 : g/g)을 의미하며,  AUL means the absorbency under pressure of 0.7 psi (unit: g / g) measured according to EDANA method WSP 242.3,
SFC는 용액 투과도 (Saline Flow Conductivity, 단위: cm3*sec/g)를 의미한다. SFC means solution permeability (Saline Flow Conductivity, cm 3 * sec / g).
상기 식 1의 P는 보수능, 가압흡수능, 및 통액성의 밸런스 (balance)를 평가할 수 있는 파라미터로, 1에 가까을수록 보수능, 가압흡수능, 및  P in Equation 1 is a parameter for evaluating the balance of water retention capacity, pressure absorption capacity, and liquid permeability, and the closer to 1, the water retention capacity, pressure absorption capacity, and
18 조 통액성이 조화된 물성을 나타내는 것으로 볼 수 있다. 18 sets It can be seen that the physical properties are in harmony with the liquidity.
본 발명의 고흡수성 수지는, 상기 식 1로 계산되는 P가 약 0.85 이상, 또는 약 0.90 이상, 또는 약 0.95 이상이면서, 약 1.20 이하, 또는 약. 1.15 이하. 또는 약 1.10 이하로 조화된 물성을 가질 수 있다.  The superabsorbent polymer of the present invention has a P of about 0.85 or more, or about 0.90 or more, or about 0.95 or more, and P calculated by Equation 1 is about 1.20 or less. 1.15 or less. Or about 1.10 or less.
상기와 같이 본 발명의 고흡수성 수지는 표면 개질층에 존재하는 알킬 체인으로 안하여 향상된 투과도를 가지며 보수능과 가압흡수능 등의 물성을 저하시키지 않고 이동시 충격에 의한 분리현상이 없어 장기간 수송 및 보관시에도 물성 편차가 적게 나타나며, 입자들이 서로 웅집되거나 뭉쳐지는 것을 방지하여 향상된 투과도를 가질 수 있다. 또한, 알킬 체인이 중합체 표면에 소수성을 부여함으로써 수분의 투과 및 확산을 보다 용이하게 할 수 있다.  As described above, the super absorbent polymer of the present invention has improved permeability due to the alkyl chain present in the surface modification layer, and does not deteriorate physical properties such as water holding capacity and pressure absorbing capacity, and there is no separation phenomenon due to impact during movement. Even less variation in physical properties appears, it is possible to have improved permeability by preventing the particles from being packed or aggregated with each other. In addition, the alkyl chain imparts hydrophobicity to the polymer surface, thereby making it easier to permeate and diffuse moisture.
본 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.  The invention is explained in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.
<실시예> <Example>
고흡수성 수지의 제조  Preparation of Super Absorbent Resin
실시예 1  Example 1
교반기, 질소 투입기, 온도계를 장착한 3L 유리 용기에 아크릴산 500g, 에특실 (15)-트리메티를프로판트리아크릴레이트 (Ethoxylated (15) trimethylolpropanetriacrylate) 3g과 디페닐 (2,4,6-트리메틸벤조일) -포스핀 옥시드 0:04g을一첨가하여 용해시킨 후, 24.5% 수산화나트륨 용액 896.4g을 첨가하여 질소를 연속적으로 투입하면서 수용성 불포화 단량체 수용액을 제조하였다. 상기 수용성 불포화 단량체 수용액을 70°C로 넁각하였다. 이 수용액 500g을 가로 250mm, 세로 250mm, 높이 30mm의 스테인레스 재질의 용기에 가하고 자외선을 조사 (조사량: 10mV/cm2)하여 90초 동안 UV중합을 실시하여 함수겔상 중합체를 수득하였다. 수득한 함수겔상 중합체를 2mm * 2mm 크기로 분쇄한 후, 함수량을 측정한 결과 40.1%이었다. 500 g of acrylic acid, 3 g of ethoxylated (15) trimethylolpropanetriacrylate, and diphenyl (2,4,6-trimethylbenzoyl) in a 3 L glass vessel equipped with a stirrer, a nitrogen injector and a thermometer After dissolving by adding 0:04 g of phosphine oxide, 896.4 g of 24.5% sodium hydroxide solution was added thereto to continuously add nitrogen to prepare a water-soluble unsaturated monomer solution. The aqueous unsaturated monomer aqueous solution was quenched to 70 ° C. 500 g of this aqueous solution was added to a stainless steel container having a width of 250 mm, a length of 250 mm, and a height of 30 mm, followed by UV polymerization (irradiation: 10 mV / cm 2 ) to perform UV polymerization for 90 seconds to obtain a hydrous gel polymer. After the obtained hydrogel polymer was pulverized to a size of 2mm * 2mm, the water content was measured, it was 40.1%.
얻어진 겔형 수지를 600/迎의 구멍 크기를 갖는 스테인레스 와이어 거즈 위에 약 30mm 두께로 펼쳐 놓고 180°C 열풍 오븐에서 30분 동안 건조하였다. 이렇게 얻어진 건조 중합체를 분쇄기를 사용하여 분쇄하고,The obtained gel-shaped resin was spread out on a stainless wire gauze having a pore size of 600 / mm3 in a thickness of about 30 mm, and in a 180 ° C hot air oven for 30 minutes. Dried. The dry polymer thus obtained is pulverized using a grinder,
ASTM 규격의 표준 망체로 분급하여 150 내지 850 zm의 입자 크기를 갖는 베이스 수지 분말을 얻었다. Classification was carried out to standard meshes of ASTM specifications to obtain a base resin powder having a particle size of 150 to 850 zm.
상기 베이스 수지 분말 100 중량부에 스테아릴 알코올 0.1 중량부를 건식으로 흔합한 후, 에틸렌카보네이트 1 중량부, 물 4 중량부, 실리카 0.02 증량부를 포함하는 표면 가교 용액을 분사하여 흔합하고 이를 교반기와 이중 자켓으로 이루어진 용기에 넣어 185 °C에서 60분간 표면 가교 반응을 진행하였다. 이후 표면 처리된 분말을 ASTM 규격의 표준 망체로 분급하여 150 내지 850 의 입자크기를 갖는 고흡수성 수지 분말을 얻었다. 실시예 2 0.1 parts by weight of stearyl alcohol was dryly mixed with 100 parts by weight of the base resin powder, followed by mixing by spraying a surface crosslinking solution including 1 part by weight of ethylene carbonate, 4 parts by weight of water, and 0.02 parts by weight of silica, and mixing the mixture with a stirrer and a double jacket. Put into a container consisting of proceeded the surface crosslinking reaction at 185 ° C for 60 minutes. Then, the surface-treated powder was classified into a standard mesh of ASTM standard to obtain a super absorbent polymer powder having a particle size of 150 to 850. Example 2
상기 실시예 1 에서, 베이스 수지 분말 100 중량부에 스테아릴 알코올을 0.05 중량부 흔합한 것을 제외하고는 실시예 1과 동일하게 제조하여 고흡수성 수지 분말을 얻었다. 실시예 3  In Example 1, a superabsorbent polymer powder was obtained in the same manner as in Example 1 except that 0.05 parts by weight of stearyl alcohol was mixed with 100 parts by weight of the base resin powder. Example 3
베이스 수지는 상기 실시예 1 과 동일하게 준비하였다.  Base resin was prepared in the same manner as in Example 1.
상기 베이스 수지 분말 100 중량부에 에틸렌카보네이트 1 중량부, 스테아릴 알코을 0.1 중량부, 물 4 중량부, 실리카 0.02 중량부를 포함하는 표면 가교 용액을 분사하여 흔합하고 이를 교반기와 이중 자켓으로 이루어진 용기에 넣어 185 °C에서 60분간 표면 가교 반웅을 진행하였다. 이후ᅳ표면—처리된ᅳ분말을ᅳ ASTM一규격—의—표준ᅳ망체로 분급하여 ΙΤΰ 내지 850 의 입자 크기를 갖는 고흡수성 수지 분말을 얻었다. 실시예 4 To 100 parts by weight of the base resin powder by spraying a surface crosslinking solution containing 1 part by weight of ethylene carbonate, 0.1 part by weight of stearyl alcohol, 4 parts by weight of water, 0.02 parts by weight of silica, and mixed in a container consisting of a stirrer and a double jacket The surface crosslinking reaction was performed for 60 minutes at 185 ° C. Since surface eu-eu-cost powder processing eu ASTM standard一-the-body and to the classification standard eu network having a grain size of 850 u ΙΤΰ to obtain a water-absorbent resin powder. Example 4
상기 실시예 1 에서, 베이스 수지 분말 100 중량부에 스테아릴 알코올 0.1 중량부 대신 라우릴 알코올 0.1 중량부를 건식으로 흔합한 것을 제외하고는 실시예 1과 동일하게 제조하여 고흡수성 수지 분말을 얻았다. 실시예 5 상기 실시예 1 에서, 베이스 수지 분말 100 증량부에 스테아릴 알코올 0.1 중량부와 라우릴 알코올 ι 중량부를 함께 건식으로 흔합한 것을 제외하고는 실시예 1과 동일하게 제조하여 고흡수성 수지 분말을 얻었다. 실시예 6 In Example 1, a super absorbent polymer powder was obtained in the same manner as in Example 1 except that 0.1 part by weight of lauryl alcohol was dry mixed instead of 0.1 part by weight of stearyl alcohol to 100 parts by weight of the base resin powder. Example 5 In Example 1, a super absorbent polymer powder was obtained in the same manner as in Example 1, except that 0.1 part by weight of stearyl alcohol and π part of lauryl alcohol were dryly mixed together with 100 parts by weight of the base resin powder. Example 6
상기 실시예 1 에서, 베이스 수지 분말 100 증량부에 스테아릴 알코올 으2 중량부를 건식으로 흔합한 것을 제외하고는 실시예 1과 동일하게 제조하여 고흡수성 수지 분말을 얻었다. 실시예 7  In Example 1, a superabsorbent polymer powder was obtained in the same manner as in Example 1 except that 2 parts by weight of stearyl alcohol was dryly mixed with 100 parts by weight of the base resin powder. Example 7
상기 실시예 1 에서, 베이스 수지 분말 100 중량부에 스테아릴 알코올 ι 중량부 대신 세틸 알코올 0.1 중량부를 건식으로 흔합한 것을 제외하고는 실시예 1과 동일하게 제조하여 고흡수성 수지 분말을 얻었다. 비교예 1  In Example 1, a super absorbent polymer powder was obtained in the same manner as in Example 1, except that 0.1 part by weight of cetyl alcohol was dry mixed with 100 parts by weight of base resin powder instead of stearyl alcohol ι part by weight. Comparative Example 1
상기 실시예 1 에서, 스테아릴 알코올을 흔합하지 않은 것을 제외하고는 실시예 1과 동일하게 제조하여 고흡수성 수지 분말을 얻었다. 비교예 2  In Example 1, except that the stearyl alcohol was not mixed in the same manner as in Example 1 to obtain a super absorbent polymer powder. Comparative Example 2
상기 비교예 1 에서, 표면 가교 반응의 온도를 195 °C로 한 것을 제외하고는 비교예 1과 동일하게 제조하여 고흡수성 수지 분말을 얻었다. 비교예 3  In Comparative Example 1, except that the temperature of the surface crosslinking reaction was 195 ° C. was prepared in the same manner as in Comparative Example 1 to obtain a super absorbent polymer powder. Comparative Example 3
상기 실시예 1 에서, 스테아릴 알코을 대신 실리카 필러 (DM30S) 0.05 중량부를 건식으로 흔합한 것을 제외하고는 실시예 1과 동일하게 제조하여 고흡수성 수지 분말을 얻었다.  In Example 1, a super absorbent polymer powder was obtained in the same manner as in Example 1 except that 0.05 parts by weight of silica filler (DM30S) was dry mixed instead of stearyl alcohol.
<실험예 > Experimental Example
상기 실시예들 및 비교예들에서 제조한 고흡수성 수지에 대하여, 다음과 같은 방법으로 물성을 평가하였다. Regarding the super absorbent polymers prepared in Examples and Comparative Examples, The physical properties were evaluated in the following manner.
(1)원심분리 보수능 (CRC: Centrifuge Retention Capacity) 각 수지의 무하중하 흡수 배율에 의한 보수능을 EDANA WSP 241.3에 따라 측정하였다. (1) Centrifuge Retention Capacity (CRC) Centrifuge Retention Capacity (CRC) was measured according to EDANA WSP 241.3.
구체적으로, 실시예 및 비교예를 통해 각각 얻은 수지 Wo(g) (약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한 후, 상온에서 생리식염수 (0.9 중량 %)에 침수시켰다. 30분 경과 후, 원심 분리기를 이용하여 250G의 조건 하에서 상기 봉투로부터 3분간 물기를 빼고, 봉투의 질량 W2(g)을 측정하였다. 또, 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W g)을 측정하였다. 얻어진 각 질량을 이용하여 다음과 같은 식에 따라 CRC(g/g)를 산출하였다. Specifically, the resin Wo (g) (about 0.2g) obtained through Examples and Comparative Examples was uniformly sealed in a non-woven bag and then immersed in physiological saline (0.9% by weight) at room temperature. . After 30 minutes had elapsed, water was removed from the bag for 3 minutes under the conditions of 250 G using a centrifuge, and the mass W 2 (g) of the bag was measured. Moreover, the mass Wg) at that time was measured after performing the same operation without using resin. Using each mass obtained, CRC (g / g) was computed according to the following formula.
[수학식 1]  [Equation 1]
CRC (g/g) = {[W2(g) - \ν!(8)]Αν0(§)} - 1 CRC (g / g) = {[W 2 (g)-\ ν! ( 8 )] Αν 0 ( § )}-1
(2)가압흡수능 (AUL: Absorbency under Load) (2) Absorbency under Load (AUL)
각 수지의 0.7 psi의 가압 흡수능을, EDANA법 WSP 242.3에 따라 측정하였다. 구체적으로, 내경 25 mm의 플라스틱의 원통 바닥에 스테인레스제 0.7 psi of pressure-absorbing capacity of each resin was measured according to the EDANA method WSP 242.3. Specifically, stainless steel is formed on the cylindrical bottom of plastic having an inner diameter of 25 mm.
400 mesh 철망을 장착시켰다. 상온 및 습도 50%의 조건 하에서 철망 상에 흡수성 수지 W0(g) (0.16 g)을 균일하게 살포하고, 그 위에 0.7 psi의 하중을 균일하게 더 부여할 수 있는 피스톤은 외경 25 mm 보다 약간 작고 원통의 내벽과 름이 없고 상하 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다. 400 mesh wire mesh was mounted. The piston, which is able to evenly spread the absorbent resin W 0 (g) (0.16 g) on the wire mesh under the conditions of room temperature and 50% humidity, and has a load of 0.7 psi on it even more, is slightly smaller than the outer diameter of 25 mm The inner wall of the cylinder has no gap and the up and down movement is not disturbed. At this time, the weight W 3 (g) of the apparatus was measured.
직경 150 mm의 페트로 접시의 내측에 직경 90mm 및 두께 5mm의 유리 필터를 두고, 으9 중량% 염화나트륨으로 구성된 생리식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 90mm의 여과지 1장을 실었다. 여과지 위에 상기 측정 장치를 싣고, 액을 하중 하에서 1시간 동안 흡수시켰다. 1시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다. A 90 mm diameter and 5 mm thick glass filter was placed inside a 150 mm diameter petri dish, and physiological saline consisting of 9 wt% sodium chloride was brought to the same level as the top surface of the glass filter. One sheet of filter paper having a diameter of 90 mm was placed thereon. The measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load. After 1 hour raise the measuring device and remove its weight W 4 (g). Measured.
얻어진 각 질량을 이용하여 다음 식에 따라 가압 흡수능 (g/g)을 산출하였다.  Using each mass obtained, the pressure absorption capacity (g / g) was computed according to following Formula.
[수학식 2]  [Equation 2]
AUL(g/g) = [W4(g) - W3(g)]/W0(g) AUL (g / g) = [W 4 (g)-W 3 (g)] / W 0 (g)
(3)용액 투과도 (SFC: Saline Flow Conductivity) (3) Saline Flow Conductivity (SFC)
용액 투과도 (SFC: Saline Flow Conductivity)는 미국 공개 특허 No. 2009- 0131255의 column 16의 [0184] 내지 [0189]에 개시된 방법에 따라 측정하였다.  Saline Flow Conductivity (SFC) is described in US published patent no. It was measured according to the method disclosed in [0184] to [0189] of column 16 of 2009-0131255.
(4)표면 장력 (Surface tension) (4) Surface tension
모든 과정은 항온항습실 (온도 23±2°C, 상대습도 45±10%)에서 진행하였다. All procedures were conducted in a constant temperature and humidity room (temperature 23 ± 2 ° C, relative humidity 45 ± 10%).
0.9 중량% 염화나트륨으로 구성된 생리식염수 150g을 250mL 비이커에 담고 마그네틱 바로 교반하였다. 고흡수성 수지 l.Og을 교반 중인 용액에 넣어 3분간 교반한 후 교반을 멈추고 팽윤된 고흡수성 수지가 바닥에 가라앉도록 15분 이상 방치하였다.  150 g of physiological saline consisting of 0.9 wt% sodium chloride was placed in a 250 mL beaker and stirred with a magnetic bar. The superabsorbent polymer l.Og was added to the stirring solution, stirred for 3 minutes, the stirring was stopped, and left for at least 15 minutes to allow the swollen superabsorbent resin to settle to the bottom.
그 후 상층액 (표면의 바로 밑 부분의 용액)을 피펫으로 추출하고 다른 깨끗한 컵으로 옮긴 후 표면 장력 측정기 (surface tensionmeter Kruss K11/K100)를 이용하여 표면 장력을 측정하였다. 상키 실—서예들과 -비교예들에 관한 물성값을 하기 표 1에 기재하였다.  The supernatant (the solution just below the surface) was then pipetted and transferred to another clean cup and surface tension was measured using a surface tensionmeter Kruss K11 / K100. Physical property values for the wicking room—calligraphy and comparative examples are shown in Table 1 below.
【표 1】 Table 1
Figure imgf000024_0001
Figure imgf000024_0001
23 조 실시예 4 27.4 24.8 50 71.44 0.96 실시예 5 26.9 25.3 60 71.53 1.15 실시예 6 27 25.0 60 71.53 1.06 실시예 7 27.2 24.9 52 71.55 1.00 비교예 1 27.1 24.0 42 71.57 0.82 비교예 2 26.3 25.0 62 71.64 1.21 비교예 3 26.4 24.3 85 71.34 1.68 23 trillion Example 4 27.4 24.8 50 71.44 0.96 Example 5 26.9 25.3 60 71.53 1.15 Example 6 27 25.0 60 71.53 1.06 Example 7 27.2 24.9 52 71.55 1.00 Comparative Example 1 27.1 24.0 42 71.57 0.82 Comparative Example 2 26.3 25.0 62 71.64 1.21 Comparative Example 3 26.4 24.3 85 71.34 1.68
* 상기 표 1에서 , Ρ는 하기 식 1로 계산되는 값이다. * In Table 1, Ρ is a value calculated by Equation 1 below.
[식 1]  [Equation 1]
P= SFC* 107/(CRC+AUL) P = SFC * 10 7 / (CRC + AUL)
상기 표 1을 참조하면, 상기 실시예 1 내지 7과 같이 본 발명의 방법에 따라 제조된 고흡수성 수지는 우수한 흡수능 및 투과도 물성을 발현함을 알 수 있다.  Referring to Table 1, it can be seen that the super absorbent polymer prepared according to the method of the present invention as in Examples 1 to 7 exhibits excellent absorption and permeability properties.
비교예 1은 C6 이상의 지방족 알코올을 사용하지 않은 경우로 투과도 물성이 만족스럽지 못하였다. 비교예 2에서는 표면 가교 온도를 높힘으로써 투과도는 향상되었지만 CRC가 하락하였다. 한편, 비교예 3과 같이 무기 필러를' 흔합하여 표면 가교 반응을 수행한 경우 투과도는 향상되었으나 CRC와 AUL이 모두 좋지 않았다. Comparative Example 1 was not satisfactory when the C6 or more aliphatic alcohol is not used. In Comparative Example 2, the permeability was improved by increasing the surface crosslinking temperature, but the CRC was decreased. On the other hand, when the surface crosslinking reaction was carried out ' mixing the inorganic filler as in Comparative Example 3, the permeability was improved, but both CRC and AUL were not good.
일반적으로 투과도가 높은 경우 보수능과 가압 흡수능이 낮아지는 경향이 있다. 즉 가교도가 높고 함수겔의 강도가 높은 경우에 투과도가 높다. 그래서 보수능 Γ가압ᅳ흡수능 및 투과도를 동시에 높이는 데에는 어려움이 있다. 그러나 상기 실시예 및 비교예들의 결과로부터 알 수 있듯이 본 발명의 제조방법에 의해 제조된 고흡수성 수지는 보수능과 가압 흡수능이 높을 뿐만 아니라 투과도 또한 높음을 알 수 있다. 이러한 결과는 표면 가교 반웅에 투입된 C6 이상의 지방족 알코올이 흡수성 수지 표면에 위치하여 중합체가 서로 뭉치는 것을 방지함으로써 투과도를 높이는 역할을 하기 때문인 것으로 분석할 수 있다. 또한, 표면 장력도 높여 소변 누출 (leakage) 방지 효과가 있음을 알수 있다.  In general, when the permeability is high, the water holding capacity and the absorbing pressure tend to be lowered. That is, when the degree of crosslinking is high and the strength of the hydrogel is high, the permeability is high. Therefore, it is difficult to simultaneously increase the water retention capacity Γ pressure absorption capacity and transmittance. However, as can be seen from the results of the above examples and comparative examples, the superabsorbent polymer prepared by the manufacturing method of the present invention can be seen that not only high water holding capacity and high pressure absorbing capacity but also high permeability. These results can be analyzed that the C6 or more aliphatic alcohol added to the surface crosslinking reaction is located on the surface of the absorbent resin to prevent the polymers from agglomerating, thereby increasing the permeability. In addition, it can be seen that the surface tension is also increased to prevent urine leakage.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 중합 개시제를 포함하는 모노머 조성물에 열중합 또는 광중합을 진행하여 함수겔상 중합체를 형성하는 단계;  Forming a hydrogel polymer by thermally polymerizing or photopolymerizing a monomer composition including an acrylic acid monomer and a polymerization initiator having an acidic group and at least a portion of the acidic group neutralized;
상기 함수겔상중합체를 건조하는 단계;  Drying the hydrogel polymer;
상기 건조된 중합체를 분쇄하는 단계;  Pulverizing the dried polymer;
분쇄된 증합체에 표면 가교제 및 C6 이상의 지방족 알코을을 흔합하는 단계; 및  Mixing a surface crosslinker and a C6 or higher aliphatic alcohol in the pulverized polymer; And
상기 표면 가교제 및 C6 이상의 지방족 알코을웁 흔합한 중합체를 승온하여 표면 개질을 수행하는 단계를 포함하는 고흡수성 수지의 제조 방법.  Method for producing a super absorbent polymer comprising the step of heating the surface cross-linking agent and C6 or more aliphatic alcohol up to the polymer mixture.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 C6 이상의 지방족 알코올은 C6 내지 C20의 1차, 2차, 또는 3차 알코올을 포함하는, 고흡수성 수지의 제조 방법.  The C6 or higher aliphatic alcohol comprises a C6 to C20 primary, secondary, or tertiary alcohol, a method for producing a super absorbent polymer.
【청구항 3】 [Claim 3]
제 2항에 있어서,  The method of claim 2,
상기 C6 이상의 지방족 알코을은 스테아릴 알코을, 라우릴 알코을, 및 세틸 알코올로 이루어진 군으로부터 선택되는ᅳ 1종 아상을 포함하는, 고흡수성 수지의 제조 방법.  The C6 or higher aliphatic alcohol comprises stearyl alcohol, lauryl alcohol, and C. 1 type of subphase selected from the group consisting of cetyl alcohol.
【청구항 4】 [Claim 4]
저 U항에 있어서,  In that U term,
상기 C6 이상의 지방족 알코올은 상기 분쇄된 중합체 100 중량부에 대해 0.001 내지 2 중량부로 흔합하는, 고흡수성 수지의 제조방법. 【청구항 5】  The C6 or more aliphatic alcohol is mixed with 0.001 to 2 parts by weight with respect to 100 parts by weight of the pulverized polymer, a method for producing a super absorbent polymer. [Claim 5]
25 대체용지 (규칙 제 26조) 제 1항에 있어서, 25 Alternative Sites (Article 26) The method of claim 1,
상기 C6 이상의 지방족 알코올은 표면 가교제를 분쇄된 중합체에 흔합하기 전에 별도로 첨가하거나 상기 표면 가교제와 함께 첨가하는, 고흡수성 수지의 제조 방법.  Wherein said C6 or higher aliphatic alcohol is added separately or together with said surface crosslinking agent before mixing said surface crosslinking agent to the pulverized polymer.
【청구항 6】 [Claim 6]
거 11항에 있어서,  According to claim 11,
상기 표면 개질을 수행하는 단계는 상기 표면 가교제 및 C6 이상의 지방족 알코올이 첨가된 중합체 입자를 160 내지 200°C로 가열함으로써 수행하는, 고흡수성 수지의 제조 방법. The step of performing the surface modification is carried out by heating the polymer particles to which the surface crosslinking agent and C6 or more aliphatic alcohol is added to 160 to 200 ° C., the method of producing a super absorbent polymer.
【청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 고흡수성 수지는 하기 식 1로 정의되는 P가 0.85 내지 1.20의 범위인, 고흡수성 수지의 제조 방법:  The superabsorbent polymer, P is defined by the following formula 1, the range of 0.85 to 1.20, manufacturing method of superabsorbent resin:
[식 1]  [Equation 1]
P- SFC*107/(CRC+AUL) P- SFC * 10 7 / (CRC + AUL)
상기 식 1에서,  In Formula 1,
CRC는 EDANA 법 WSP 241.3에 따라 측정한 보수능 (단위: g/g)을 의미하고,  CRC means the water capacity (unit: g / g) measured according to EDANA WSP 241.3,
AUL은 EDANA 법 WSP 242.3에 따라 측정한 0.7 psi의 가압 흡수능 (단위: g/g)을一의미하며 ,  AUL means a pressure absorbing capacity of 0.7 psi (unit: g / g) measured according to the EDANA WSP 242.3.
SFC는 용액 투과도 (Saline Flow Conductivity, 단위: cm3*sec/g)를 의미한다. SFC means solution permeability (Saline Flow Conductivity, cm 3 * sec / g).
【청구항 8】 [Claim 8]
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체를 포함하는 모노머 조성물을 중합 및 내부 가교시킨 가교 중합체; 및 상기 가교 중합체의 표면에 형성된 표면 개질층으로 이루어진 고흡수성 수지에 있어서,  A crosslinked polymer having an acidic group and polymerized and internally crosslinked in a monomer composition comprising an acrylic acid monomer in which at least a portion of the acidic group is neutralized; And a super absorbent polymer comprising a surface modification layer formed on the surface of the crosslinked polymer,
26 대체용지 (규칙 제 26조) EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능 (CRC)이 25 내지 35 g/g 이고, EDANA 법 WSP 242.3에 따라 측정한 0.7 psi의 가압 흡수능 (AUL)이 20 내지 30 g/g이고, 표면 장력 (surface tension)이 65 내지 73 mN/m 인, 고흡수성 수지. 26 Alternative Sites (Article 26) The centrifugal water holding capacity (CRC) measured according to the EDANA method WSP 241.3 is 25 to 35 g / g, the pressure absorption capacity (AUL) of 0.7 psi measured according to the EDANA method WSP 242.3 is 20 to 30 g / g, and the surface Superabsorbent polymer having a surface tension of 65 to 73 mN / m.
【청구항 9】 [Claim 9]
제 8 항에 있어서,  The method of claim 8,
상기 표면 개질층은 C6 이상의 알킬기를 포함하는, 고흡수성 수지의 제조 방법.  The surface modification layer comprises a C6 or more alkyl group, a method for producing a super absorbent polymer.
【청구항 10] [Claim 10]
제 8 항에 있어서,  The method of claim 8,
상기 고흡수성 수지는 45*10 7 내지 80*ΐσ7 cm3*sec/g의 용액 투과도 (SFC: Saline Flow Conductivity)를 갖는, 고흡수성 수지의 제조 방법 . The super absorbent polymer has a solution permeability (SFC: Saline Flow Conductivity) of 45 * 10 7 to 80 * ΐσ 7 cm 3 * sec / g.
【청구항 11 ] 【Claim 11】
제 8항에 있어서,  The method of claim 8,
하기 식 1로 정의되는 P가 0.85 내지 1.20의 범위인, 고흡수성 수지: [식 1]  A superabsorbent polymer, wherein P defined by the following formula 1 is in the range of 0.85 to 1.20: [Formula 1]
P= SFC* 107/(CRC+AUL) P = SFC * 10 7 / (CRC + AUL)
상기 식 1에서,  In Formula 1,
CRC는 EDANA 법 WSP—241:3에 따라 측정한 보수능 (단위: g/g)을 의미하고,  CRC means the water capacity (unit: g / g) measured according to the EDANA Act WSP—241: 3,
AUL은 EDANA 법 WSP 242.3에 따라 측정한 0.7 psi의 가압 흡수능 (단위: g/g)을 의미하며,  AUL means the absorbency under pressure of 0.7 psi (unit: g / g) measured according to EDANA method WSP 242.3,
SFC는 용액 투과도 (Saline Flow Conductivity, 단위: cm3*sec/g)를 의미한다. SFC means solution permeability (Saline Flow Conductivity, cm 3 * sec / g).
27 대체용지 (규칙 제 26조) 27 Alternative Sites (Article 26)
PCT/KR2017/012618 2016-12-20 2017-11-08 Superabsorbent polymer and method for producing same WO2018117413A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780047582.0A CN109563275B (en) 2016-12-20 2017-11-08 Superabsorbent polymer and method of making the same
US16/322,347 US11066496B2 (en) 2016-12-20 2017-11-08 Super absorbent polymer and method for preparing same
EP17883448.7A EP3467009B1 (en) 2016-12-20 2017-11-08 Superabsorbent polymer and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160174935 2016-12-20
KR10-2016-0174935 2016-12-20
KR10-2017-0146287 2017-11-03
KR1020170146287A KR102193459B1 (en) 2016-12-20 2017-11-03 Super absorbent polymer and preparation method for the same

Publications (1)

Publication Number Publication Date
WO2018117413A1 true WO2018117413A1 (en) 2018-06-28

Family

ID=62626515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012618 WO2018117413A1 (en) 2016-12-20 2017-11-08 Superabsorbent polymer and method for producing same

Country Status (1)

Country Link
WO (1) WO2018117413A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161408A (en) 1980-05-19 1981-12-11 Kao Corp Production of water-absorbing resin
JPS57158209A (en) 1981-03-25 1982-09-30 Kao Corp Production of bead-form highly water-absorbing polymer
JPS57198714A (en) 1981-05-29 1982-12-06 Sumitomo Chem Co Ltd Production of hydrogel
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
US5140076A (en) 1990-04-02 1992-08-18 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method of treating the surface of an absorbent resin
KR20050036975A (en) * 2002-08-23 2005-04-20 바스프 악티엔게젤샤프트 Superabsorbent polymers and method of manufacturing the same
US20090131255A1 (en) 2005-09-30 2009-05-21 Nippon Shokubai Co., Ltd. Aqueous-liquid-absorbing agent and its production process
JP5558096B2 (en) * 2007-03-01 2014-07-23 株式会社日本触媒 Particulate water-absorbing agent mainly composed of water-absorbing resin
KR20140107346A (en) * 2011-12-27 2014-09-04 가부시키가이샤 리브도 코포레이션 Water-absorbent resin powder and absorber and absorbent article using the same
KR101511820B1 (en) * 2008-12-26 2015-04-13 산다이야 폴리마 가부시키가이샤 Absorbing resin particles, process for producing same, and absorbent and absorbing article both including same
US20160272745A1 (en) * 2012-11-21 2016-09-22 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161408A (en) 1980-05-19 1981-12-11 Kao Corp Production of water-absorbing resin
JPS57158209A (en) 1981-03-25 1982-09-30 Kao Corp Production of bead-form highly water-absorbing polymer
JPS57198714A (en) 1981-05-29 1982-12-06 Sumitomo Chem Co Ltd Production of hydrogel
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
US5140076A (en) 1990-04-02 1992-08-18 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method of treating the surface of an absorbent resin
KR20050036975A (en) * 2002-08-23 2005-04-20 바스프 악티엔게젤샤프트 Superabsorbent polymers and method of manufacturing the same
US20090131255A1 (en) 2005-09-30 2009-05-21 Nippon Shokubai Co., Ltd. Aqueous-liquid-absorbing agent and its production process
JP5558096B2 (en) * 2007-03-01 2014-07-23 株式会社日本触媒 Particulate water-absorbing agent mainly composed of water-absorbing resin
KR101511820B1 (en) * 2008-12-26 2015-04-13 산다이야 폴리마 가부시키가이샤 Absorbing resin particles, process for producing same, and absorbent and absorbing article both including same
KR20140107346A (en) * 2011-12-27 2014-09-04 가부시키가이샤 리브도 코포레이션 Water-absorbent resin powder and absorber and absorbent article using the same
US20160272745A1 (en) * 2012-11-21 2016-09-22 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203
REINHOLD SCHWALM: "UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115

Similar Documents

Publication Publication Date Title
CN110312755B (en) Method for preparing super absorbent polymer
JP6182206B2 (en) Superabsorbent resin and method for producing the same
CN111433261B (en) Superabsorbent polymer composition and method of making the same
EP3415551A1 (en) Method for preparing superabsorbent resin, and superabsorbent resin
JP2021510741A (en) Highly water-absorbent resin and its manufacturing method
EP3521343B1 (en) Absorbent polymer and preparation method therefor
CN111448241B (en) Superabsorbent polymer composition and method of making the same
KR101631297B1 (en) Super Absorbent Polymer Resin And Method for Preparing The Same
JP7184443B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
WO2018004162A1 (en) Method for preparing superabsorbent resin, and superabsorbent resin
US20240110018A1 (en) Preparation Method of Super Absorbent Polymer and Super Absorbent Polymer Therefrom
WO2014112722A1 (en) Method for preparing super absorbent polymer
KR20190114777A (en) Super absorbent polymer and preparation method for the same
JP7191403B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
JP7080539B2 (en) Manufacturing method of highly absorbent resin
KR102193459B1 (en) Super absorbent polymer and preparation method for the same
KR20180073335A (en) Preparation method for super absorbent polymer, and super absorbent polymer
JP2020505477A (en) Super water absorbent resin and method for producing the same
WO2018117413A1 (en) Superabsorbent polymer and method for producing same
CN116802230A (en) Process for the preparation of superabsorbent polymers
EP4249539A1 (en) Preparation method for superabsorbent polymer
JP2024504326A (en) Manufacturing method of super absorbent resin
CN116724072A (en) Method for producing superabsorbent polymers
JP2023540592A (en) Manufacturing method of super absorbent resin
JP2024505659A (en) Manufacturing method of super absorbent resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017883448

Country of ref document: EP

Effective date: 20190103

NENP Non-entry into the national phase

Ref country code: DE