WO2018117185A1 - 磁場印加装置 - Google Patents

磁場印加装置 Download PDF

Info

Publication number
WO2018117185A1
WO2018117185A1 PCT/JP2017/045799 JP2017045799W WO2018117185A1 WO 2018117185 A1 WO2018117185 A1 WO 2018117185A1 JP 2017045799 W JP2017045799 W JP 2017045799W WO 2018117185 A1 WO2018117185 A1 WO 2018117185A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
base
resonance
nuclear magnetic
magnet
Prior art date
Application number
PCT/JP2017/045799
Other languages
English (en)
French (fr)
Inventor
英雄 内海
Original Assignee
英雄 内海
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英雄 内海 filed Critical 英雄 内海
Priority to JP2018558051A priority Critical patent/JP6840398B2/ja
Publication of WO2018117185A1 publication Critical patent/WO2018117185A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/10Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using electron paramagnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance

Definitions

  • the present invention relates to an electron spin resonance / nuclear magnetic resonance imaging apparatus, and more particularly to a magnetic field application apparatus for an electron spin resonance / nuclear magnetic resonance imaging apparatus.
  • Electron spin resonance imaging refers to an analysis / imaging method in which the magnetic moment of unpaired electron spins of free radicals is observed by resonance absorption of electromagnetic waves.
  • Nuclear magnetic resonance imaging MRI is the relaxation rate after stopping the irradiation of electromagnetic waves by irradiating and resonating the magnetic moments of nuclear spins including hydrogen nuclei placed in a strong static magnetic field with pulsed electromagnetic waves.
  • an electron spin that can superimpose an image (MRI) of a tissue containing hydrogen nuclei on an image of free radicals (ESRI) existing in an analysis object.
  • MRI image
  • ESRI free radicals
  • Resonance / nuclear magnetic resonance imaging devices are known.
  • free radicals are indirectly observed by MRI through dynamic nuclear polarization (overhauser effect is one of them) that hyperpolarizes nuclear spins including hydrogen nuclei that interact with free radicals by causing electron spin resonance.
  • An analysis / imaging method DNP-MRI
  • a first magnetic field generating unit that generates a magnetic field of a predetermined size using DNP-MRI, and a magnetic field having a magnitude different from the magnitude of the magnetic field of the first magnetic field generating unit are generated.
  • a measuring apparatus having second magnetic field generating means and measuring means for measuring an image in the previous period object with a different magnetic field by rotating the measuring object.
  • a first magnetic field generation unit that generates a magnetic field having a predetermined magnitude
  • a second magnetic field generation that generates a magnetic field having a magnitude different from the magnitude of the magnetic field of the first magnetic field generation unit.
  • a rotational movement means for sequentially passing the measurement object through the magnetic field of the first and second magnetic field generation means by rotating the first and second magnetic field generation means, and the rotational movement. While the first and second magnetic field generating means are rotating by the means, the images in the measurement object are measured under different magnetic fields without stopping the first and second magnetic field generating means.
  • a measuring device having a measuring means.
  • the magnetic field application device used in the measurement apparatus of Patent Document 1 is, as another embodiment shown in FIG. 8 of Patent Document 1, a first magnetic field generating means for generating a magnetic field of a predetermined magnitude, and the first A second magnetic field generating means for generating a magnetic field having a magnitude different from the magnitude of the magnetic field of the magnetic field generating means, and the first and second magnetic field generating means are rotated to move the measurement object to the first and second.
  • Rotating and moving means for sequentially passing through the magnetic field of the second magnetic field generating means is exemplarily shown, and a weak magnetic magnet for electron spin resonance and a strong magnetic force for nuclear magnetic resonance are respectively provided at the tips of two rings sandwiching the measurement object.
  • a magnet is arranged and the measurement object is fixed, the two rings are rotated, but there is no specific description.
  • Patent Documents 2 and 3 describe the basic configuration of an MRI / ESR resonance imaging apparatus, but do not describe a magnetic field application apparatus that has improved stability and practicality by devising the type and arrangement of magnets. .
  • FIG. 1A is a top view of a magnet house part of a rotary magnetic field application device described in Patent Document 4 that has not yet been published
  • FIG. 1B is a cross-sectional view showing the structure thereof.
  • the magnetic field applying device includes a mandrel 101 along a central axis I, a first base 102 fixed to the mandrel and arranged in a direction in which the board surface is horizontal, and fixed to the mandrel and parallel to the first base.
  • the second base 103 is arranged with a space between them, and the weak magnetic magnet 104 for electron spin resonance and the strong magnetic magnet 105 for nuclear magnetic resonance are arranged on the inner surface of both bases.
  • the mandrel is connected to a drive mechanism (not shown) such as a motor.
  • the measurement site 106 is a position where the magnetic field is the highest and stable, and is generally a region on the trajectory V through which the central portion of the magnet passes, that is, a portion of which overlaps the trajectory.
  • the measurement object (not shown) is fixed to the measurement site 106, and the mandrel 101 is rotated around the central axis I.
  • the substrates 102 and 103 are simultaneously rotated at the same speed, and the measurement object can be placed periodically in a high magnetic field and a low magnetic field while being stationary.
  • a conventional rotary magnetic field application device needs to install and rotate a weak magnetic magnet for electron spin resonance and a strong magnetic magnet for nuclear magnetic resonance on one base. Therefore, for example, the following problems exist. It takes labor and cost to manufacture a substrate having two types of magnets having different magnetic field strengths, and the field cycling method that converts different magnetic field strengths cannot convert the magnetic field at an arbitrary period. That is, in order to optimize the switching timing between the high magnetic field and the low magnetic field, it is necessary to strictly design and adjust the size, type, shape, and positional relationship of the magnets in advance. A base with two types of magnets is unevenly balanced and tends to be unstable. Further, in order to substantially apply the high magnetic field and the low magnetic field once, the base must be rotated once, and the base needs to be rotated at high speed.
  • the present invention solves the above-mentioned conventional problems, and the object of the present invention is that it can be easily manufactured at low cost, can perform magnetic field conversion at an arbitrary period when performing DNP-MRI, and has low labor. And providing a magnetic field application device capable of stable operation.
  • the present invention includes a measurement site fixed at a predetermined position; An electron spin resonance electromagnet installed opposite to the position sandwiching the measurement site; A current control mechanism for supplying current to the electromagnet to adjust and stop; While the current is stopped with respect to the electron spin resonance electromagnet, it is located opposite to the position where the measurement site is sandwiched, and while the current is supplied to the electron spin resonance electromagnet, it is located between the measurement site.
  • a nonexistent nuclear magnetic resonance magnet A nuclear magnetic resonance magnet moving mechanism for disposing the nuclear magnetic resonance magnet at a position sandwiching the measurement site; Provided is a magnetic field applying device.
  • the magnetic field strength applied to the measurement object by the electron spin resonance electromagnet is 1 to 10 millitesla.
  • the nuclear magnetic resonance magnet is a permanent magnet.
  • the nuclear magnetic resonance magnet moving mechanism includes: A first base and a second base parallel to each other across the measurement site, the first base and the second base rotating in parallel with the board surface; Magnets for nuclear magnetic resonance that are placed opposite to each other on a circular arc whose radius is the distance from the center of rotation to the position corresponding to the measurement site on each surface of the first base and the second base. And a mechanism for synchronously rotating the first base and the second base.
  • the first base and the second base are substantially circular, cylindrical, or disk-shaped.
  • the magnetic field intensity applied to the measurement object by the nuclear magnetic resonance magnet is about 0.1 Tesla or more.
  • the magnetic field application device further includes a mechanism for converting the magnetic field at an arbitrary period by synchronizing the current control mechanism and the magnet moving mechanism.
  • the magnetic field application device is for an electron spin resonance / nuclear magnetic resonance imaging device.
  • the present invention also provides an electron spin resonance / nuclear magnetic resonance imaging apparatus including any one of the above-described magnetic field application apparatuses.
  • a magnetic field applying device that can arbitrarily set and change the magnetic field conversion period, can be easily manufactured at low cost, and can be stably operated with low labor.
  • the most sensitive image can be obtained by optimizing the magnetic field application conditions.
  • (A) is what looked at the magnet house part of the rotation type magnetic field application apparatus of patent documents 2 from the upper part
  • (B) is a sectional view showing the structure.
  • (A) is what looked at the magnet house part of the rotary magnetic field application apparatus of this invention from the upper part
  • (B) is the front view which looked at the apparatus from the side. It is sectional drawing of the coil unit used by this invention.
  • (A) is what looked at the magnet house part of the rotary magnetic field application apparatus of this invention from the upper part
  • (B) is the front view which looked at the apparatus from the side. It is a top view which shows the modification of arrangement
  • FIG. 2 is a schematic diagram showing the structure of the magnetic field application apparatus of the present invention.
  • A is the top view which looked at the said apparatus from the top.
  • B is the front view which looked at the said apparatus from the side.
  • the magnetic field applying device includes a mandrel 1 along a central axis I, a first base 2 fixed to the mandrel and arranged in a direction in which the board surface is horizontal, and fixed to the mandrel, with respect to the first base And a second base 3 arranged at intervals in parallel.
  • the base has a board surface, that is, two parallel opposing planes substantially having an area. Each board surface has a function of supporting a pair of magnets at regular intervals.
  • the board surfaces of the first base 2 and the second base 3 are substantially parallel in order to make the magnetic field formed between the pair of magnets uniform.
  • the nuclear magnetic resonance magnet 4 is arranged at any position on the arc whose radius is the distance from the center of rotation to the position corresponding to the measurement site. ing.
  • the surface on which the nuclear magnetic resonance magnets 4 are arranged may be incorporated in both bases, or may be on the outside, inside the first base 2 and outside the second base 3, or the first base. The outside of 2 and the inside of the 2nd base 3 may be sufficient.
  • the magnetic field conversion cycle can be easily set by changing the rotation speed, and the substrate can be manufactured with less labor and low cost.
  • the term “base” simply means both the first base 2 and the second base 3.
  • the shape of the substrate is not particularly limited, but a circular shape is preferable.
  • the base need only be a member having a board surface, and need not be plate-like as a whole.
  • the base may be a plate-like member partially composed of spokes or nets, and may be a box-like member, a cylindrical member, or a disk-like member having a housing that entirely accommodates a magnet.
  • the mandrel 1 is connected to a drive mechanism (not shown) such as a motor.
  • the measurement site 5 is a position where the magnetic field is the highest and stable, and is generally a region on the trajectory V through which the central portion of the magnet for nuclear magnetic resonance passes, that is, a portion of which overlaps the trajectory.
  • the nuclear magnetic resonance magnet it is also possible for the nuclear magnetic resonance magnet to have an outer shape larger than the mandrel.
  • a coil unit 6 having a measurement site 5 is provided between the first base 2 and the second base 3.
  • the measurement site 5 is fixed to the coil unit 6, and generally an RF coil (not shown) is wound around the measurement site 5.
  • the coil unit 6 is fixed to a structure (not shown) that supports a magnetic field application device such as a frame.
  • the coil unit 6 is installed at a position where it does not contact the pair of nuclear magnetic resonance magnets 4.
  • FIG. 3 is a cross-sectional view of the coil unit 6.
  • a pair of electrospin resonance electromagnets 7 are installed facing each other at a position sandwiching the measurement site 5 of the coil unit 6.
  • the gradient magnetic field coil 8 may be provided by being stacked on the electrospin resonance electromagnet 7.
  • the position where the gradient magnetic field coil 8 is installed may be inside or outside the electrospin resonance electromagnet 7.
  • the electrospin resonance electromagnet 7 and the gradient magnetic field coil 8 may be integrally formed.
  • the magnetic field application device of the present invention has a current control mechanism that supplies current to the electrospin resonance electromagnet 7 to adjust and stop the current.
  • the current is supplied while the nuclear magnetic resonance magnet 4 is not present at a position sandwiching the measurement site.
  • a magnetic field for electron spin resonance is applied to the measurement object.
  • the current is stopped while the nuclear magnetic resonance magnet is opposed to the position sandwiching the measurement site.
  • a magnetic field for nuclear magnetic resonance is applied to the measurement object.
  • the electron spin resonance electromagnet 7 not only simply turns on and off the applied magnetic field, but also functions to cancel the leakage magnetic field of the nuclear magnetic resonance magnet 4. That is, the current control mechanism gradually changes the amount of current (including the direction) supplied to the electron spin resonance electromagnet 7 in accordance with the strength of the leakage magnetic field of the nuclear magnetic resonance magnet 4 to limit the electron spin resonance magnetic field as much as possible. It has a mechanism that makes it constant over a wide range.
  • the current control mechanism can be manufactured by combining devices suitable for the purpose such as a bipolar stable power source of a control system suitable for the electrical characteristics of the electromagnet, a magnetic field detection device, a control unit, and software.
  • the current control mechanism controls the amount of current supplied to the electron spin resonance electromagnet 7 to gradually change the pole of the electron spin resonance electromagnet 7 to produce the maximum magnetic force while suppressing the leakage magnetic field and gradually. It is preferable to extend the time of electron spin resonance by maintaining a constant magnetic field while reducing the current amount (power).
  • the nuclear magnetic resonance magnet 4 is disposed at a position sandwiching the measurement site and removed.
  • the periodic arrangement and withdrawal of the nuclear magnetic resonance magnet 4 can be performed, for example, by rotating the first base 2 and the second base 3 at the same speed and at the same speed.
  • Synchronous rotation refers to simultaneous rotation at the same speed. In that case, the arrangement and withdrawal of the nuclear magnetic resonance magnet 4 are performed periodically.
  • the nuclear magnetic resonance magnet 4 does not exist at a position sandwiching the measurement site 5. Therefore, a current is supplied to the electrospin resonance electromagnet 7 and the electron spin resonance magnetic field is applied to the measurement object.
  • FIG. 4 is a schematic diagram showing the structure of the magnetic field application apparatus of the present invention, as in FIG. (A) is the top view which looked at the said apparatus from the top. (B) is the front view which looked at the said apparatus from the side.
  • the nuclear magnetic resonance magnet 4 exists opposite to the position where the measurement site 5 is sandwiched. Therefore, the current to the electron spin resonance electromagnet 7 is stopped, and the magnetic resonance magnetic field is applied to the measurement object.
  • the direction in which the base is arranged is not limited as long as the support and driving of the base are not hindered.
  • the orientation of the base may be any of a vertical orientation in which the board surface is perpendicular to the horizontal plane, a horizontal orientation in which the board surface is parallel to the horizontal plane, and an oblique orientation in which the board surface is neither perpendicular nor parallel to the horizontal plane. .
  • the first base plate 2 and the second base plate 3 rotate synchronously about the central axis I.
  • the base can be driven using a conventionally known driving mechanism such as transmitting the driving force of the motor to the outer periphery of the mandrel or the board surface via a pulley, roller, gear, belt, or the like.
  • the magnet installation area is not limited by the mandrel, so the degree of freedom in magnet placement and dimensions is expanded. Moreover, it is easy to change the distance between the first base and the second base. As a result, it is possible to adjust the dimension of the measurement site to an optimum one according to the dimension of the measurement target.
  • the electrospin resonance electromagnet 7 generates a magnetic field of about ⁇ 10 to +10 millitesla. If the magnetic field strength applied to the measurement object by the electrospin resonance electromagnet 7 is less than about 1 millitesla, the measurement sensitivity tends to be lowered. The greater the ability of the electrospin resonance electromagnet 7 to generate a magnetic field, the better. The greater the magnetic field generation capability of the electron spin resonance electromagnet 7, the greater the ability to cancel the leakage magnetic field of the nuclear magnetic resonance magnet 4.
  • the current control mechanism adjusts the magnetic field applied to the measurement object by the electron spin resonance electromagnet 7 to an appropriate size.
  • the magnetic field strength applied to the measurement object by the electrospin resonance electromagnet 7 is about 1 to 10 millitesla, preferably about 3 to about 7 millitesla, and more preferably about 4 to about 6 millitesla.
  • the permeability of electron spin resonance electromagnetic waves is high, such as a small biological sample or solid sample, it may greatly exceed 10 millitesla.
  • the nuclear magnetic resonance magnet 4 generates a magnetic field of about 0.1 Tesla or more. If the magnetic field generated by the magnet for nuclear magnetic resonance is less than about 0.1 Tesla, the strength of the magnetic field at the measurement site becomes insufficient, and the interval between the magnet pairs cannot be made sufficiently large.
  • the sensitivity and spatial resolution of the electron spin resonance / nuclear magnetic resonance imaging apparatus are improved by increasing the magnetic field applied to the measurement object by the magnetic resonance magnet.
  • the strength of the magnetic field applied to the object to be measured by the nuclear magnetic resonance magnet is preferably about 0.2 to about 2 Tesla, more preferably about 0.3 to about 0.6 Tesla.
  • the interval between the magnet pairs is preferably about 2 cm or more.
  • the interval between the magnet pairs is preferably about 10 cm or more.
  • the interval between the magnet pairs is preferably about 50 cm or more.
  • the upper limit of the distance between the magnet pairs is considered to be about 1 m in consideration of the required magnetic force and the size of the equipment.
  • magnets that can be used for the nuclear magnetic resonance magnet 4 include permanent magnets, electromagnets, and superconducting magnets. These magnets may be used in combination.
  • the type of magnet is appropriately selected in consideration of the required magnetic field size.
  • the nuclear magnetic resonance magnet needs to be rotated in a state of being fixed to the base. In consideration of such usage, a permanent magnet that does not require power supply is desirable.
  • the shape of the magnet is not particularly limited, but a substantially cylindrical or polygonal column may be used.
  • FIG. 5 is a plan view showing a modification of the arrangement of the nuclear magnetic resonance magnets used in the present invention.
  • Three nuclear magnetic resonance magnets 4 are installed on the surface of the first substrate 1.
  • the number of nuclear magnetic resonance magnets to be installed on the board may be two, or four or more. The greater the number of nuclear magnetic resonance magnets, the more uniform the balance of the substrate. Also, the greater the number of nuclear magnetic resonance magnets, the lower the number of rotations of the substrate when performing the measurement. As a result, the magnetic field application device can be stably operated with low labor.
  • the electron spin resonance / nuclear magnetic resonance imaging apparatus of the present invention includes a magnetic field application apparatus of the present invention, an RF pulse irradiation apparatus connected to the magnetic field application apparatus in a normal manner, an apparatus for detecting a signal transmitted from a measurement object, and It has peripheral devices usually used such as an apparatus for imaging the detected signal and, if necessary, a frame for fixing them in an appropriate arrangement.
  • the present invention can be widely used not only as an electron spin resonance / nuclear magnetic resonance imaging apparatus but also as a magnetic resonance imaging apparatus depending on an external magnetic field. That is, the present invention can be applied to all nuclear magnetic resonance imaging methods including a field cycle method in which an external magnetic field affects an image even when electron spin resonance is not performed, and an appropriate external magnetic field in that case is different from the present description.
  • I central axis
  • V orbit through which the center of the magnet passes, 1, 101 ... mandrel, 2, 102 ... the first base, 3, 103 ... second base, 4 ... Magnet for nuclear magnetic resonance, 5, 106 ... measurement site, 6 ... Coil unit, 7 ...
  • Electromagnet for electron spin resonance, 8 Gradient magnetic field coil, 104 ... weak magnetic magnet for electron spin resonance, 105: Strong magnetic magnet for nuclear magnetic resonance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

発明の課題は、外部磁場の変換周期を任意に設定でき、簡単に低コストで製造することができ、低労力で安定した運転が可能な磁場印加装置を提供することである。課題の解決手段は、所定の位置に固定された測定部位と、測定部位を挟む位置に対向して設置された電子スピン共鳴用電磁石と、該電磁石に対して電流を供給し調節し停止する電流制御機構と、電子スピン共鳴用電磁石に対して電流が停止されている間は測定部位を挟む位置に対向して存在し、電子スピン共鳴用電磁石に対して電流が供給されている間は測定部位を挟む位置に存在しない核磁気共鳴用磁石と、核磁気共鳴用磁石を、測定部位を挟む位置に配置し撤収する核磁気共鳴用磁石移動機構とを、備える磁場印加装置である。

Description

磁場印加装置
 本発明は、電子スピン共鳴/核磁気共鳴画像装置に関し、特に、電子スピン共鳴/核磁気共鳴画像装置用磁場印加装置に関する。
 電子スピン共鳴画像法(ESRI)とは、フリーラジカルの不対電子スピンの磁気モーメントを電磁波の共鳴吸収で観測する分析・画像化方法をいう。核磁気共鳴画像法(MRI)とは、強い静磁場中に置いた水素核を含む原子核スピンの磁気モーメントにパルス状の電磁波を照射して共鳴させ、電磁波の照射を停止してからの緩和速度を観測する分析・画像化方法をいう。
 電子スピン共鳴画像法及び核磁気共鳴画像法を利用した分析装置としては、分析対象物に存在するフリーラジカルの画像(ESRI)に、水素原子核を含む組織の画像(MRI)を重畳できる、電子スピン共鳴/核磁気共鳴画像装置が知られている。また、電子スピン共鳴を起こすことでフリーラジカルと相互作用する水素核を含む原子核スピンを超偏極させる動的核偏極(オーバーハウザー効果はその一つ)を通じてMRIで間接的にフリーラジカルを観測する分析・画像化方法(DNP-MRI)が知られている。
 特許文献1には、DNP-MRIを用いた、所定の大きさの磁場を発生させる第1の磁場発生手段と、前記第1の磁場発生手段の磁場の大きさと異なる大きさの磁場を発生させる第2の磁場発生手段と、計測対象物を回転移動させることにより、前期対象物中の画像を異なる磁場かで計測する計測手段と、を有する計測装置が記載されている。また、他の実施形態として、所定の大きさの磁場を発生させる第1の磁場発生手段と、前記第1の磁場発生手段の磁場の大きさと異なる大きさの磁場を発生させる第2の磁場発生手段と、前記第1及び第2の磁場発生手段を回転移動させることにより、前記計測対象物を前記第1及び第2の磁場発生手段の磁場中を順に通過させる回転移動手段と、前記回転移動手段によって前記第1及び第2の磁場発生手段が回転移動している間に、前記第1及び第2の磁場発生手段を停止させることなく、前記計測対象物中の画像を異なる磁場下で計測する計測手段と、を有する計測装置が記載されている。
 特許文献1の計測装置で使用されている磁場印加装置は、特許文献1の図8で他の実施形態として、所定の大きさの磁場を発生させる第1の磁場発生手段と、前記第1の磁場発生手段の磁場の大きさと異なる大きさの磁場を発生させる第2の磁場発生手段と、前記第1及び第2の磁場発生手段を回転移動させることにより、前記計測対象物を前記第1及び第2の磁場発生手段の磁場中を順に通過させる回転移動手段を例示的に示し、測定対象を挟む2つのリングの先端部に、それぞれ、電子スピン共鳴用弱磁力磁石と核磁気共鳴用強磁力磁石とを配置し、測定対象は固定しておきながら、2つのリングを回転させるものであるが具体的記載がない。
 特許文献2及び3には、MRI/ESR共鳴画像装置の基本構成は記載されているが、磁石の種類及び配置を工夫することで安定性及び実用性を高めた磁場印加装置は記載されていない。
特表2011-527222号公報 国際公開公報第97/07412号 国際公開公報第94/03824号 特願2017-515452号
 図1(A)は、未だ出願公開されていない特許文献4に記載の回転型磁場印加装置の磁石ハウス部を上部から見たもの、図1(B)はその構造を示す断面図である。この磁場印加装置は中心軸Iに沿った心棒101と、心棒に固定され、盤面が水平になる向きに配置された第1の基盤102と、心棒に固定され、第1の基盤に対して平行に間隔を開けて配置された第2の基盤103と、両基盤の内側の盤面に配置された電子スピン共鳴用弱磁力磁石104と核磁気共鳴用強磁力磁石105とを有する。心棒はモーター等の駆動機構(非表示)に連結されている。測定部位106は磁場が最も高く安定する位置であり、一般に、磁石の中心部が通過する軌道V上の領域、即ち、その一部が上記軌道と重複する領域である。
 測定を行う際には測定対象物(非表示)を測定部位106に固定し、中心軸Iを中心にして心棒101を回転させる。そのことで基盤102及び103が同時に同一速度で回転し、測定対象物は静止したまま、周期的に、高磁場中及び低磁場中に置かれることができる。
 従来の回転型磁場印加装置(DNP-MRI)は一つの基盤に電子スピン共鳴用弱磁力磁石と核磁気共鳴用強磁力磁石とを設置し、回転させる必要がある。そのために、例えば、次の問題点が存在する。
 磁場強度が異なる二種類の磁石を備えた基盤を製造するために労力及びコストを要し、異なる磁場強度を変換するフィールドサイクリング法で任意の周期で磁場変換できない。即ち、高磁場と低磁場の切り替えタイミングを最適化するために、前もって、磁石の寸法、種類、形状、位置関係を厳密に設計及び調節する必要がある。
 二種類の磁石を備えた基盤はバランスが不均一であり、回転が不安定になり易い。また、実質的に、高磁場及び低磁場を一回印加するために基盤を一回転させなければならず、基盤を高速で回転させる必要がある。
 本発明は上記従来の問題を解決するものであり、その目的とするところは、簡単に低コストで製造することができ、DNP-MRIを実施する際に任意の周期で磁場変換でき、低労力で安定した運転が可能な磁場印加装置を提供することにある。
 本発明は、所定の位置に固定された測定部位と、
 測定部位を挟む位置に対向して設置された電子スピン共鳴用電磁石と、
 該電磁石に対して電流を供給し調節し停止する電流制御機構と、
 電子スピン共鳴用電磁石に対して電流が停止されている間は測定部位を挟む位置に対向して存在し、電子スピン共鳴用電磁石に対して電流が供給されている間は測定部位を挟む位置に存在しない核磁気共鳴用磁石と、
 核磁気共鳴用磁石を、測定部位を挟む位置に配置し撤収する核磁気共鳴用磁石移動機構とを、
備える磁場印加装置を提供する。
 ある一形態においては、前記電子スピン共鳴用電磁石が測定対象物に印加する磁場強度が1~10ミリテスラである。
 ある一形態においては、前記核磁気共鳴用磁石が永久磁石である。
 ある一形態においては、前記核磁気共鳴用磁石移動機構は、
 測定部位を挟む相互に平行な第1の基盤及び第2の基盤であって、それらの盤面と平行に回転する第1の基盤及び第2の基盤、
 第1の基盤及び第2の基盤の各盤面において、回転中心から測定部位に対応する位置までの距離を半径とする円弧上のいずれかの位置に、対向して設置された核磁気共鳴用磁石、及び
 第1の基盤及び第2の基盤を同期回転させる機構
を備えるものである。
 ある一形態においては、前記第1の基盤及び第2の基盤が、実質的に、円形、円筒形又は円盤形である。
 ある一形態においては、前記核磁気共鳴用磁石が測定対象物に印加する磁場強度が約0.1テスラ以上である。
 ある一形態においては、前記磁場印加装置は、電流制御機構と磁石移動機構を同期して任意の周期で磁場を変換する機構を更に有する。
 ある一形態においては、前記磁場印加装置は、電子スピン共鳴/核磁気共鳴画像装置用である。
 また、本発明は、上記のいずれかの磁場印加装置を備える電子スピン共鳴/核磁気共鳴画像装置を提供する。
 本発明によれば、磁場変換周期を任意に設定変更でき、簡単に低コストで製造することができ、低労力で安定した運転が可能な磁場印加装置が提供される。磁場印加条件を最適化することで最も高感度の画像を得ることが可能となる。
(A)は、特許文献2に記載の回転型磁場印加装置の磁石ハウス部を上部から見たもの、(B)はその構造を示す断面図である。 (A)は、本発明の回転型磁場印加装置の磁石ハウス部を上部から見たもの、(B)はその装置を横から見た正面図である。 本発明で使用するコイルユニットの断面図である。 (A)は、本発明の回転型磁場印加装置の磁石ハウス部を上部から見たもの、(B)はその装置を横から見た正面図である。 本発明で使用する核磁気共鳴用磁石の配置の変形例を示す平面図である。
 図2は、本発明の磁場印加装置の構造を示す模式図である。(A)は当該装置を上から見た平面図である。(B)は当該装置を横から見た正面図である。
 この磁場印加装置は、中心軸Iに沿った心棒1と、心棒に固定され、盤面が水平になる向きに配置された第1の基盤2と、心棒に固定され、第1の基盤に対して平行に間隔を開けて配置された第2の基盤3とを有する。
 基盤は、盤面、即ち、実質的に面積を有する、平行な相対する二枚の平面、を有する。それぞれの基盤の盤面は、一対の磁石を一定間隔で支持する機能を奏する。第1の基盤2及び第2の基盤3の盤面は、一対の磁石の間に形成される磁界を均一にするために、実質的に平行である。
 第1の基盤及び第2の基盤の内側の盤面には、回転中心から測定部位に対応する位置までの距離を半径とする円弧上のいずれかの位置に、核磁気共鳴用磁石4が配置されている。核磁気共鳴用磁石4を配置する盤面は、両基盤の中に組み込んでも良く、あるいは外側であってもよく、第1の基盤2の内側と第2の基盤3の外側、又は第1の基盤2の外側と第2の基盤3の内側であってもよい。本発明の磁場印加装置では、基盤に設置する磁石が一種類でよいため、回転速度を変えることで磁場変換周期を容易に設定でき、少ない労力及び低コストで基盤を製造することができる。
 本明細書において単に「基盤」というときは、第1の基盤2及び第2の基盤3の両方を意味する。基盤の形状は特に限定されないが、円形が好ましい。基盤は盤面を有する部材であれば足り、全体的に板状である必要はない。例えば、基盤は一部がスポーク又は網で構成された板状部材であってよく、全体的に磁石を収納するハウジングを有する箱状部材、円筒状部材又は円盤状部材であってもよい。
 心棒1はモーター等の駆動機構(非表示)に連結されている。測定部位5は磁場が最も高く安定する位置であり、一般に、核磁気共鳴用磁石の中心部が通過する軌道V上の領域、即ち、その一部が上記軌道と重複する領域である。しかし、心棒1以外の方法で連結することも可能であり、その場合には心棒は不要である。また、核磁気共鳴用磁石の外形が心棒を超える大きさにすることも可能である。
 第1の基盤2と第2の基盤3の間には、測定部位5を有するコイルユニット6が備えられている。測定部位5はコイルユニット6に固定され、その周囲には、一般に、RFコイル(非表示)が捲かれている。コイルユニット6は、フレーム等の磁場印加装置を支持する構造体(非表示)に固定されている。コイルユニット6は一対の核磁気共鳴用磁石4に接触しない位置に設置される。
 図3は、上記コイルユニット6の断面図である。コイルユニット6の測定部位5を挟む位置に、一対の電子スピン共鳴用電磁石7が対向して設置されている。電子スピン共鳴用電磁石7に積層して、傾斜磁場コイル8を設置してもよい。傾斜磁場コイル8を設置する位置は電子スピン共鳴用電磁石7の内側でも外側でもよい。電子スピン共鳴用電磁石7及び傾斜磁場コイル8は一体的に形成してもよい。
 本発明の磁場印加装置は、電子スピン共鳴用電磁石7に対して電流を供給し調節し停止する電流制御機構を有する。電流は、核磁気共鳴用磁石4が測定部位を挟む位置に存在していない間は供給される。そのことで、測定対象物には電子スピン共鳴用磁場が印加される。一方、電流は、核磁気共鳴用磁石が測定部位を挟む位置に対向して存在している間は停止される。そのことで、測定対象物には核磁気共鳴用磁場が印加される。
 電子スピン共鳴用電磁石7は、印加する磁場を単純にオンオフするだけなく、核磁気共鳴用磁石4の漏洩磁場をキャンセリングする働きもする。即ち、電流制御機構は、核磁気共鳴用磁石4の漏洩磁場の強さに応じて電子スピン共鳴用電磁石7に供給する電流量(向きを含め)を徐々に変え、電子スピン共鳴磁場を限りなく広い範囲で一定にする機構を持つ。電流制御機構は、電磁石の電気特性に適した制御方式のバイポーラ型安定電源、磁場検出装置、制御部及びソフトウェア等の目的に適した装置を組み合わせて製造することができる。
 従って、電流制御機構は、電子スピン共鳴用電磁石7に供給する電流量を制御することで、電子スピン共鳴用電磁石7の極を変えて最大限の磁力を出すことで漏洩磁場を抑えつつ、徐々に電流量(電力)を減じつつ一定の磁場を保つことで、電子スピン共鳴の時間を長くすることが好ましい。
 核磁気共鳴用磁石4は、測定部位を挟む位置に配置され、撤収される。核磁気共鳴用磁石4の周期的な配置及び撤収は、例えば、第1の基盤2及び第2の基盤3を、同期及び等速度で回転させて行うことができる。同期回転とは、同時に同一速度で回転することをいう。その場合、核磁気共鳴用磁石4の配置及び撤収は周期的に行われる。
 図2では、核磁気共鳴用磁石4が測定部位5を挟む位置に存在していない。そのため、電子スピン共鳴用電磁石7に対して電流が供給され、測定対象物に電子スピン共鳴用磁場が印加されている状態にある。
 図4は、図2と同様に、本発明の磁場印加装置の構造を示す模式図である。(A)は当該装置を上から見た平面図である。(B)は当該装置を横から見た正面図である。図4では、核磁気共鳴用磁石4が測定部位5を挟む位置に対向して存在している。そのため、電子スピン共鳴用電磁石7に対する電流は停止され、測定対象物に核磁気共鳴用磁場が印加されている状態にある。
 基盤を配置する向きは、基盤の支持及び駆動に支障がない限り、限定されない。基盤を配置する向きは、盤面が水平面に対して垂直になる縦向き、盤面が水平面に対して平行になる横向き、及び盤面が水平面に対して垂直にも平行にもならない斜め向きのいずれでもよい。
 測定を行う際に、第1の基盤2及び第2の基盤3は中心軸Iを中心にして同期回転する。基盤の駆動は、例えば、モーターの駆動力をプーリー、ローラー、ギア又はベルト等を介して心棒又は盤面の外周部に伝達する等の従来知られた駆動機構を利用して行うことができる。
 基盤を外周部で支持し、基盤の駆動力を外周部に伝達する場合は、磁石が配置される盤面に、第1の基盤及び第2の基盤を支持するための心棒を有しなくてもよい。基盤を外周部で支持する手段の具体例としては、ローラー及びベアリングが挙げられる。
 基盤の盤面に心棒を有しない場合、磁石の設置領域が心棒によって制限されないため、磁石の配置及び寸法の自由度が拡大する。また、第1の基盤と第2の基盤の間隔を変化させ易い。そのことで、測定対象の寸法に応じて測定部位の寸法を最適なものに調節することが可能になる。
 電子スピン共鳴用電磁石7は約-10~+10ミリテスラの磁場を発生させる。電子スピン共鳴用電磁石7が測定対象物に印加する磁場強度が約1ミリテスラ未満であると測定感度が低下し易くなる。電子スピン共鳴用電磁石7が磁場を発生させる能力は大きければ大きいほどよい。電子スピン共鳴用電磁石7の磁場発生能力が大きいほど、核磁気共鳴用磁石4の漏洩磁場をキャンセリングする能力も大きくなる。
 電子スピン共鳴画像を測定する際には、電子スピン共鳴用電磁石7が測定対象物に印加する磁場は電流制御機構が適当な大きさに調節する。電子スピン共鳴用電磁石7が測定対象物に印加する磁場強度は、生体試料の場合には約1~10ミリテスラ、好ましくは約3~約7ミリテスラ、より好ましくは約4~約6ミリテスラである。なお、小さな生物試料や固体試料など電子スピン共鳴電磁波の浸透性が高い場合には、10ミリテスラを大きく超えても良い。
 核磁気共鳴用磁石4は約0.1テスラ以上の磁場を発生させる。核磁気共鳴用磁石が発生する磁場が約0.1テスラ未満であると測定部位における磁場の強度が不十分になり、磁石対の間隔を十分に大きくすることができなくなる。核磁気共鳴用磁石が測定対象物に印加する磁場を大きくすることで電子スピン共鳴/核磁気共鳴画像装置の感度及び空間分解能が向上する。核磁気共鳴用磁石が測定対象物に印加する磁場強度は、好ましくは約0.2~約2テスラであり、より好ましくは約0.3~約0.6テスラである。
 磁石対の間隔は、測定対象物が測定部位に入る寸法に調節する。測定対象が小物又は分離した生体の一部(例えば、歯)等である場合、磁石対の間隔は、約2cm以上であることが好ましい。測定対象が小型動物又は生体の一部(例えば、関節)等である場合、磁石対の間隔は、約10cm以上であることが好ましい。測定対象が大型動物又は人体全部等である場合は、磁石対の間隔は約50cm以上であることが好ましい。磁石対の間隔の上限は必要になる磁力及び設備の寸法等を考慮して、約1mと考えられる。
 核磁気共鳴用磁石4に使用しうる磁石の具体例としては、永久磁石、電磁石、及び超伝導磁石等が挙げられる。これらの磁石は併用してもよい。磁石の種類は、要求される磁場の大きさを考慮して適宜選択される。本発明では、核磁気共鳴用磁石は基盤に固定した状態で回転させる必要があり、かかる使用形態を考慮すると、電力供給が不要の永久磁石が望ましい。磁石の形状は、特に限定されないが、実質的に円柱形又は多角柱形のものを使用してよい。
 図5は、本発明で使用する核磁気共鳴用磁石の配置の変形例を示す平面図である。第1の基盤1の盤面の上に、核磁気共鳴用磁石4が3個設置されている。盤面に設置する核磁気共鳴用磁石の数は2個であっても、4個以上であってもよい。核磁気共鳴用磁石の数が多いほど、基盤のバランスの均一性が向上する。また、核磁気共鳴用磁石の数が多いほど、測定を行う際に、基盤の回転数を低くすることができる。その結果、磁場印加装置の低労力で安定した運転が可能になる。
 本発明の電子スピン共鳴/核磁気共鳴画像装置は、本発明の磁場印加装置、通常の様式により上記磁場印加装置に接続された、RFパルス照射装置、測定対象が発信する信号を検出する装置及び検出した信号を画像化する装置等の通常使用される周辺機器、及び要すれば、これらを適当な配置で固定するフレーム等を有するものである。
 本発明は電子スピン共鳴/核磁気共鳴画像化装置としてだけでなく、外部磁場に依存する磁気共鳴画像装置に広く活用できる。即ち、本発明は電子スピン共鳴を行わない場合でも外部磁場が画像に影響するフィールドサイクル法を含む全ての核磁気共鳴画像法に応用でき、その場合の適正外部磁場は本記載と異なる。
 I…中心軸、
 V…磁石の中心部が通過する軌道、
 1、101…心棒、
 2、102…第1の基盤、
 3、103…第2の基盤、
 4…核磁気共鳴用磁石、
 5、106…測定部位、
 6…コイルユニット、
 7…電子スピン共鳴用電磁石、
 8…傾斜磁場コイル、
 104…電子スピン共鳴用弱磁力磁石、
 105…核磁気共鳴用強磁力磁石。

Claims (9)

  1.  所定の位置に固定された測定部位と、
     測定部位を挟む位置に対向して設置された電子スピン共鳴用電磁石と、
     該電磁石に対して電流を供給し調節し停止する電流制御機構と、
     電子スピン共鳴用電磁石に対して電流が停止されている間は測定部位を挟む位置に対向して存在し、電子スピン共鳴用電磁石に対して電流が供給されている間は測定部位を挟む位置に存在しない核磁気共鳴用磁石と、
     核磁気共鳴用磁石を、測定部位を挟む位置に配置し撤収する核磁気共鳴用磁石移動機構とを、
    備える磁場印加装置。
  2.  前記電子スピン共鳴用電磁石が測定対象物に印加する磁場強度が1~10ミリテスラである請求項1に記載の磁場印加装置。
  3.  前記核磁気共鳴用磁石が永久磁石である請求項1又は2に記載の磁場印加装置。
  4.  前記核磁気共鳴用磁石移動機構は、
     測定部位を挟む相互に平行な第1の基盤及び第2の基盤であって、それらの盤面と平行に回転する第1の基盤及び第2の基盤、
     第1の基盤及び第2の基盤の各盤面において、回転中心から測定部位に対応する位置までの距離を半径とする円弧上のいずれかの位置に、対向して設置された核磁気共鳴用磁石、及び
     第1の基盤及び第2の基盤を同期回転させる機構
    を備えるものである、請求項1~3のいずれか一項に記載の磁場印加装置。
  5.  前記第1の基盤及び第2の基盤が、実質的に、円形、円筒形又は円盤形である請求項4に記載の磁場印加装置。
  6.  前記核磁気共鳴用磁石が測定対象物に印加する磁場強度が約0.1テスラ以上である請求項1~5のいずれか一項に記載の磁場印加装置。
  7.  電流制御機構と磁石移動機構を同期して任意の周期で磁場を変換する機構を更に備える請求項1~6のいずれか一項に記載の磁場印加装置。
  8.  電子スピン共鳴/核磁気共鳴画像装置用である請求項1~7のいずれか一項に記載の磁場印加装置。
  9.  請求項1~7のいずれか一項に記載の磁場印加装置を備える電子スピン共鳴/核磁気共鳴画像装置。
PCT/JP2017/045799 2016-12-21 2017-12-20 磁場印加装置 WO2018117185A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018558051A JP6840398B2 (ja) 2016-12-21 2017-12-20 磁場印加装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-248000 2016-12-21
JP2016248000 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018117185A1 true WO2018117185A1 (ja) 2018-06-28

Family

ID=62627451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045799 WO2018117185A1 (ja) 2016-12-21 2017-12-20 磁場印加装置

Country Status (2)

Country Link
JP (1) JP6840398B2 (ja)
WO (1) WO2018117185A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276241A (ja) * 1996-04-10 1997-10-28 Toshiba Corp 磁気共鳴イメージング装置
JP2007316008A (ja) * 2006-05-29 2007-12-06 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2009291639A (ja) * 2003-02-10 2009-12-17 Hitachi Metals Ltd 磁界発生装置
JP2011527222A (ja) * 2008-07-08 2011-10-27 国立大学法人九州大学 計測装置及び計測方法
WO2016174993A1 (ja) * 2015-04-28 2016-11-03 国立大学法人九州大学 計測装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276241A (ja) * 1996-04-10 1997-10-28 Toshiba Corp 磁気共鳴イメージング装置
JP2009291639A (ja) * 2003-02-10 2009-12-17 Hitachi Metals Ltd 磁界発生装置
JP2007316008A (ja) * 2006-05-29 2007-12-06 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2011527222A (ja) * 2008-07-08 2011-10-27 国立大学法人九州大学 計測装置及び計測方法
WO2016174993A1 (ja) * 2015-04-28 2016-11-03 国立大学法人九州大学 計測装置

Also Published As

Publication number Publication date
JPWO2018117185A1 (ja) 2019-10-31
JP6840398B2 (ja) 2021-03-10

Similar Documents

Publication Publication Date Title
JP6522079B2 (ja) 回転配列永久磁石を用いた携帯型磁気共鳴イメージングシステム
TWI743481B (zh) 用於磁共振成像系統的b磁鐵方法及設備
Li et al. Origami NdFeB flexible magnetic membranes with enhanced magnetism and programmable sequences of polarities
CN113498479A (zh) 校正磁共振成像中的磁滞
US7535229B2 (en) NMR system and method having a permanent magnet providing a rotating magnetic field
JP2002010993A (ja) ローズリングを備えた磁気共鳴装置
KR102350779B1 (ko) 낮은 고조파 펄스 시퀀스를 이용한 저-노이즈 자기 공명 이미징
TW201106393A (en) Permanent-magnet magnetic field generator
JP5574386B2 (ja) 計測装置及び計測方法
CN1524187A (zh) 用魔角技术实现高分辨率磁共振分析的方法
US11169233B2 (en) Hybrid MPI and MRI/CT imaging apparatus and method
JP2000070238A (ja) 磁気共鳴システム
CN102360691A (zh) 一种带有铁环结构的开放式核磁共振磁体系统
WO2018117185A1 (ja) 磁場印加装置
JP2008039699A (ja) 微粒子配向用磁場印加装置及び微粒子構造解析方法
JP5892246B2 (ja) 磁気回路
JP2018051069A (ja) 電子スピン共鳴/核磁気共鳴画像装置用外部磁場発生装置
US9726738B2 (en) Energy-saving method of generating time-varying magnetic gradients for use in MRI
JP2005147693A (ja) 電子スピン共鳴状態測定装置および測定方法
JP2018051068A (ja) 電子スピン共鳴/核磁気共鳴画像装置用外部磁場発生装置
Bagheri et al. A novel scanner architecture for MPI
JP5866720B2 (ja) 磁場印加装置
KR20100043572A (ko) 자기공명장비용 브러쉬리스 모터 및 그 제어방법
JP4034223B2 (ja) Nmr装置用超電導マグネットおよびnmr装置
Schlueter et al. Magic angle rotating field NMR/MRI magnet for in vivo monitoring of tissue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884820

Country of ref document: EP

Kind code of ref document: A1