WO2018117092A1 - Anionic substance-adsorbing agent, method for producing anionic substance-adsorbing agent, apparatus for producing anionic substance-adsorbing agent, and method for recovering anionic substances - Google Patents

Anionic substance-adsorbing agent, method for producing anionic substance-adsorbing agent, apparatus for producing anionic substance-adsorbing agent, and method for recovering anionic substances Download PDF

Info

Publication number
WO2018117092A1
WO2018117092A1 PCT/JP2017/045497 JP2017045497W WO2018117092A1 WO 2018117092 A1 WO2018117092 A1 WO 2018117092A1 JP 2017045497 W JP2017045497 W JP 2017045497W WO 2018117092 A1 WO2018117092 A1 WO 2018117092A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
anionic substance
concentration
amount
anionic
Prior art date
Application number
PCT/JP2017/045497
Other languages
French (fr)
Japanese (ja)
Inventor
宮崎 博
陽 藤野
Original Assignee
合同会社Jfr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017161168A external-priority patent/JP2018099668A/en
Application filed by 合同会社Jfr filed Critical 合同会社Jfr
Priority to CA3047527A priority Critical patent/CA3047527A1/en
Priority to US16/470,729 priority patent/US20200086295A1/en
Publication of WO2018117092A1 publication Critical patent/WO2018117092A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Definitions

  • the present invention relates to an anionic substance adsorbent, an anionic substance adsorbent production method, an anionic substance adsorbent production apparatus, and an anionic substance recovery method.
  • phosphoric acid is generally produced using phosphorus ore as a raw material, but the reserves of phosphorus ore are limited, and it has been pointed out that phosphorus ore may be depleted in the near future. Therefore, a technique for recovering phosphoric acid from a solution containing phosphoric acid such as waste water is required in order to effectively acquire phosphorus resources while solving the problems of water damage and fishing damage caused by phosphoric acid.
  • Patent Document 1 discloses that a temperature of 110 ° C. or higher is applied under pressure in a state where foamed glass is immersed in an alkaline solution.
  • a method for producing a phosphate ion adsorbent comprising a step of performing a heat treatment in is proposed.
  • the anionic substance adsorbent produced by the method described in Patent Document 1 still has insufficient ability to adsorb an anionic substance and has room for improvement. Further, the method described in Patent Document 1 requires a long time of 2 hours or more for production, which is an industrial problem.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an anionic substance adsorbent excellent in anionic substance adsorbing ability, a production method thereof, and an anionic substance adsorbent production apparatus. And Another object of the present invention is to provide a method for recovering an anionic substance.
  • the present inventors can adsorb excellent anionic substances. It was found that the ability can be adjusted.
  • the present inventors treated the foamed glass with an alkali solution at a high temperature or in a high pressure in an alkaline solution, whereby an adsorbent of an anionic substance having a high phosphate ion adsorption capacity (hereinafter simply referred to as “adsorbent”).
  • adsorbent an adsorbent of an anionic substance having a high phosphate ion adsorption capacity
  • the Ca2p concentration on the adsorbent surface by XPS analysis is 4.0 atomic% or more, or the Na1s concentration is 8.0 atomic% or less, and the half width of the Si2p peak is 2.4 eV or more.
  • Adsorbent for anionic substances is 4.0 atomic% or more, or the Na1s concentration is 8.0 atomic% or less, and the half width of the Si2p peak is 2.4 eV or more.
  • Adsorbent as described in (1) or (2) whose specific gravity is 0.60 g / mL or less.
  • An anionic substance adsorbent comprising a step of treating a foamed glass material in an alkaline solution containing an alkali metal hydroxide in an amount of 4 mol / L or more and having a temperature of 130 ° C. or more over a required time. Manufacturing method.
  • a method for producing an adsorbent of an anionic substance comprising a step of pressurizing a foamed glass material in an alkaline solution at a pressure of 100 atm or higher within 1.5 hours.
  • An anionic substance adsorbent comprising means for treating a foamed glass material over a required time in an alkali solution containing an alkali metal hydroxide in an amount of 4 mol / L or more and at 130 ° C. or more. Manufacturing equipment.
  • An apparatus for producing an adsorbent of an anionic substance comprising means capable of highly pressurizing a foam glass material in an alkaline solution at a pressure of 100 atm or more for 1.5 hours.
  • an anionic substance adsorbent excellent in anionic substance adsorbing ability, a production method thereof, and an anionic substance adsorbent production apparatus Moreover, according to this invention, the recovery method of an anionic substance can be provided.
  • the adsorbent of the anionic substance of the present invention contains foam glass, and the Ca2p concentration on the adsorbent surface by X-ray photoelectron spectroscopy (XPS) analysis is 4.0 atomic% or more or the Na1s concentration is 8.0 atomic% or less. Yes, the full width at half maximum of the Si2p peak is 2.4 eV or more.
  • XPS X-ray photoelectron spectroscopy
  • the adsorbent of the present invention has a high Ca2p concentration of 4.0 atomic% or more on the surface, so that it can effectively adsorb an anionic substance, and in particular, can effectively adsorb an anionic substance in a high concentration range.
  • the Na1s concentration on the surface being as low as 8.0 atomic% or less is the reverse of the high Ca2p concentration, because there is little Na that does not contribute to adsorption of anionic substances, and Ca is effectively exposed, An anionic substance can be adsorbed effectively.
  • the half width of the Si2p peak is as large as 2.4 eV or more, which means that Si forming the basic skeleton of the foamed glass has more SiOX (X is hydrogen, sodium than the SiO 2 on the surface of the adsorbent). , Calcium, etc.), and even when subjected to alkali treatment at a high temperature, SiOX does not collapse as a basic skeleton of the foamed glass and can exhibit a function as an adsorbent. And SiOX contributes to adsorption
  • the adsorbent in which the Ca2p concentration, the Na1s concentration, and the half width of the Si2p peak are defined in the above range is an excellent anionic substance in the entire concentration range from the low concentration range to the high concentration range of the anionic substance. It was revealed that the adsorption ability can be exhibited.
  • the Ca2p concentration on the surface of the adsorbent of the present invention is 4.0 atomic% or more, preferably 6.0 atomic% or more, more preferably 8.0 atomic% or more, More preferably, it is 10 atomic% or more.
  • the upper limit of the Ca2p concentration is, for example, 20 atom% or less (18 atom% or less, 16 atom% or less, 14 atom% or less, etc.) depending on the required adsorption capacity (particularly, phosphate ions and fluoride ions). ).
  • the Na1s concentration on the surface of the adsorbent of the present invention is 8.0 atomic% or less, preferably 6.0 atomic% or less, and preferably 4.0 atomic% or less. More preferred.
  • the lower limit of the Na1s concentration may be, for example, zero (detection limit value or less) or more (1.0 atom% or more, 1.5 atom% or more, etc.) according to the required adsorption capacity.
  • the half width of the Si2p peak of the adsorbent of the present invention is 2.4 eV or more, preferably 2.7 eV or more, and more preferably 3.0 eV or more.
  • the upper limit of the half width of the Si2p peak may be, for example, 4.0 eV or less (3.8 eV or less, 3.6 eV or less, etc.) according to the required adsorption capacity. Note that the peaks disappear when the basic skeleton collapses.
  • the adsorbent of the present invention has a larger surface area capable of adsorbing anionic substances when the specific surface area or pore volume is larger.
  • the specific surface area of the adsorbent of the present invention by the mercury intrusion method is preferably 15 m 2 / g or more, more preferably 30 m 2 / g or more, and 45 m 2 / g or more. More preferably, it is still more preferably 60 m 2 / g or more, and particularly preferably 75 m 2 / g or more.
  • the pore volume of the adsorbent of the present invention by a mercury intrusion method is preferably 1.7 cm 3 / g or more, more preferably 2.0 cm 3 / g or more, and 2.5 cm 3 / g. More preferably, it is more preferably 3.0 cm 3 / g or more, and particularly preferably 3.5 cm 3 / g or more.
  • the upper limit of the specific surface area may be, for example, 200 m 2 / g or less and 150 m 2 / g or less, depending on the required adsorption capacity.
  • the upper limit of the pore volume may be, for example, 8 cm 3 / g or less, 6 cm 3 / g or less, depending on the required adsorption capacity.
  • the surface having an anionic substance adsorbing capacity increases as the specific gravity is smaller.
  • the specific gravity of the adsorbent of the present invention is preferably 0.60 g / mL or less, more preferably 0.55 g / mL or less, and even more preferably 0.50 g / mL or less. preferable.
  • the lower limit of the specific gravity may be, for example, 0.1 g / mL or more (0.15 g / mL or more, 0.2 g / mL or more, 0.25 g / mL or more, etc.) depending on the required adsorption capacity. .
  • the adsorbent of the present invention has, for example, a phosphate ion adsorption capacity of 10 in a phosphate ion solution having a phosphate ion concentration of 3000 mg / L (hereinafter sometimes referred to as “high concentration phosphate ion solution”).
  • high concentration phosphate ion solution 0.0 mg / g or more (20.0 mg / g or more, 30.0 mg / g or more, 40.0 mg / g or more, 50.0 mg / g or more, 60.0 mg / g or more, 70.0 mg / g or more, etc.) is there.
  • the upper limit of the phosphate ion adsorption capacity of the adsorbent is, for example, 300 mg / g or less (250 mg / g or less, 200 mg / g or less, 150 mg / g or less, 100 mg, depending on the required phosphate ion adsorption capacity. / G or less, 50.0 mg / g or less, etc.). Note that the phosphate ion adsorbable amount is only an index of the adsorption ability of the anionic substance adsorbent.
  • the adsorbable amount of phosphate ions in a phosphate ion solution having a phosphate ion concentration of 3000 mg / L is measured by the following method.
  • An adsorbent 2.50 g, 1.20 g, or 0.5 g and 50 mL of a phosphate ion solution having a phosphate ion (PO 4 3 ⁇ ) concentration of 3000 mg / L are placed in a container.
  • hydrochloric acid or sodium hydroxide solution is added to the container to adjust to the desired pH.
  • the container After adjusting the pH, the container is stirred for 2 hours in a thermostat set to 25 ° C. (4) After stirring, the mixture is centrifuged at 3000 rpm for 10 minutes, and the phosphate ion concentration in the supernatant is measured with an absorptiometer by the molybdenum blue method. (5) Based on the measured value, the phosphate ion adsorbable amount (mg / g) is determined.
  • the adsorbent of the present invention is not particularly limited as long as it is used for adsorption of anionic substances.
  • anionic substance to be adsorbed include phosphorus (phosphate ion and the like), fluorine (fluoride ion and the like), boric acid and the like.
  • the present invention is suitable for adsorption of phosphate ions and fluoride ions.
  • the adsorbent of the present invention may be composed only of foamed glass having the above-described characteristics, and may contain other substances and components.
  • the adsorbent of the present invention may be configured to include another substance having an ability to adsorb an anionic substance (for example, a foamed glass different from the foamed glass having the characteristics described above).
  • the manufacturing method of the anionic substance adsorbent according to the first embodiment requires a foamed glass material in an alkali solution containing an alkali metal hydroxide in an amount of 4 mol / L or more and 130 ° C. or more. It has a process of treating over time (hereinafter sometimes referred to as “high temperature alkali treatment”). By such a method, an adsorbent containing foamed glass having the above-described properties can be produced.
  • the foamed glass material in the present invention is a glass having a plurality of pores, and can be produced, for example, by pulverizing glass as a raw material, mixing the pulverized glass and a foaming agent, and firing the mixture. .
  • pulverizing glass as a raw material
  • mixing the pulverized glass and a foaming agent and firing the mixture.
  • raw glass is not particularly limited, soda lime glass, borosilicate glass, aluminosilicate glass and the like can be mentioned.
  • raw glass waste glass derived from glass household electrical appliances such as liquid crystal and plasma displays and automobile glass such as a rearview mirror may be used.
  • the method for pulverizing the raw glass is not particularly limited, and it can be pulverized using a commercially available vibration mill or the like.
  • the particle size of the crushed raw glass (hereinafter sometimes referred to as “crushed glass”) is not particularly limited, but is preferably small so that the crushed glass and the foaming agent are uniformly mixed.
  • the particle size selection is preferable to perform particle size selection using a sieve having an opening of 500 ⁇ m or less after pulverization of the raw glass so that the particle size of the pulverized glass is 500 ⁇ m or less.
  • the particle size is X ⁇ m or less means that the particle has a sieve opening of X ⁇ m.
  • the type of foaming agent to be mixed with the crushed glass is not particularly limited, and materials including SiC, SiN, CaCO 3 , CaCO 3, etc. (for example, shells) can be used. From the viewpoint of easily obtaining glass, a material containing CaCO 3 or CaCO 3 containing Ca is preferably used. Such a foaming agent generates gas at a temperature at which the glass softens. As a result, a large number of pores are formed inside the glass, and a foamed glass material is produced. Moreover, Ca density
  • the content of the foaming agent is not particularly limited, but is preferably 0.1 to 5% by weight, and particularly preferably 0.2 to 2.0% by weight.
  • a material containing at least one of calcium, magnesium, and iron may be added separately from the foaming agent.
  • examples of such materials include calcium hydroxide, magnesium carbonate, magnesium hydroxide, bengara, and ferrite.
  • the addition amount of these materials is not particularly limited, but is preferably 1 to 20% by weight, and particularly preferably 5 to 15% by weight.
  • the firing temperature and time of the mixed material glass (ground glass) and the foaming agent may be appropriately set according to the type of the material glass and the foaming agent so that the material glass is appropriately foamed.
  • the firing temperature may be, for example, 600 to 1150 ° C., but is particularly preferably 800 to 1000 ° C. when soda lime glass is used as the raw glass. If the firing temperature is in such a range, the raw glass is sufficiently softened to appropriately form pores, and the raw glass does not become too soft, so that the formed pores are prevented from being blocked again. it can.
  • the firing time may be, for example, 1 to 60 minutes, preferably 5 to 10 minutes. When the firing time is within such a range, foaming occurs sufficiently, and it can be avoided that the formed pores are closed again or the surface fineness is lost due to the bubbles adhering to each other.
  • the shape of the foamed glass material is not particularly limited, and may be a lump or crushed.
  • the particle diameter of the foamed glass material after pulverization is not particularly limited, but is preferably 2 cm or less, more preferably 1 cm or less, and further preferably 0.6 cm or less.
  • the alkaline solution used in the high-temperature alkali treatment is a solution in which a solute that dissolves in water to form a hydroxyl group is dissolved in water.
  • Type of solute in the alkaline solution is not particularly limited, for example, can be used NaOH, KOH, and one or more alkali solution selected from the group consisting of Na 2 CO 3, Ca (OH ) 2.
  • alkali metal hydroxides such as NaOH or KOH which are strong alkalis are particularly preferable.
  • the amount of the alkali metal hydroxide in the alkali solution is 4 mol / L or more, preferably 5 mol / L or more, preferably 6 mol / L or more from the viewpoint of obtaining foamed glass having the above-mentioned characteristics. More preferably.
  • the amount of adsorbed anionic substances in the foamed glass is saturated at, for example, 4 mol / L or more. According to the method for producing an adsorbent of the present invention, since the treatment is performed at a high temperature of 130 ° C.
  • the amount of the anionic substance adsorbed on the foam glass can be increased as the amount of the alkali metal hydroxide is increased. It became clear that we could do it. There are various reasons for this, but in the conventional manufacturing method, the temperature is insufficient and the reaction between the foam glass material and the alkali metal hydroxide is insufficient, or the Ca concentration in the foam glass material is low. It may be insufficient.
  • the method for producing an adsorbent of the present invention increases the surface of the glass foam having an anionic substance adsorbing capacity by satisfying the above-described conditions, thereby reducing the amount of anionic substance adsorbed so far. It became possible to increase it more than the agent.
  • the upper limit of the amount of alkali metal hydroxide may be, for example, 19 mol / L or less (18 mol / L or less, 17 mol / L or less, etc.) according to the required adsorption capacity.
  • the temperature of the alkaline solution is 130 ° C. or higher, more preferably 140 ° C. or higher, more preferably 150 ° C. or higher, and more preferably 160 ° C. or higher from the viewpoint of obtaining foamed glass having the above-mentioned characteristics. Is more preferable, and it is particularly preferable that the temperature is 170 ° C. or higher. In the conventional method for producing an adsorbent containing foamed glass, even if the temperature of the alkaline solution is generally increased, for example, at 130 ° C. or higher, the adsorbed amount of the anionic substance in the foamed glass is saturated.
  • the adsorption amount of the anionic substance of the foam glass can be increased as the temperature of the alkali solution is increased. It was revealed. There are various reasons for this, but in the conventional manufacturing method, the amount of the alkali metal hydroxide is insufficient and the reaction between the foam glass material and the alkali metal hydroxide is insufficient. It is conceivable that the Ca concentration in the material is insufficient.
  • the method for producing an adsorbent of the present invention increases the surface of the glass foam having an anionic substance adsorbing capacity by satisfying the above-described conditions, thereby reducing the amount of anionic substance adsorbed so far. It became possible to increase it more than the agent.
  • the upper limit of the temperature of the alkaline solution is not particularly limited. However, as the temperature is increased, the danger increases and the energy consumption increases. For example, 300 ° C. or lower (280 ° C. or lower, 260 ° C. or lower, etc.) Also good.
  • the high-temperature alkali treatment step of the present invention at least a part of the high-temperature alkali treatment step may be performed at 130 ° C. or higher, and a step of heating at a temperature lower than 130 ° C. may be included.
  • the time required for the treatment with the alkaline solution is within 1.5 hours (for example, within 1.2 hours, within 1.0 hour, within 50 minutes, within 40 minutes, within 30 minutes, within 20 minutes, within 10 minutes, 5 Within minutes, within 1 minute, etc.).
  • the method for producing an adsorbent of the present invention is simple in that a foamed glass excellent in anionic substance adsorption ability can be produced in such a short time.
  • the lower limit of the treatment time under the above conditions may be, for example, 10 seconds or longer, 30 seconds or longer, 1 minute or longer, 10 minutes or longer, 30 minutes or longer, 1 hour or longer, depending on the required adsorption capacity.
  • the method of pressurization is not particularly limited, and may be performed using an apparatus for performing pressurization, or may be performed by heating in a state where foamed glass and an alkaline solution are contained in a sealed container.
  • the applied pressure can be changed arbitrarily, so that the applied pressure can be increased even when the heating temperature is relatively low.
  • the alkaline solution is heated above 100 ° C.
  • the alkaline solution is pressurized by the vapor pressure of water contained in the alkaline solution. According to the latter method, the alkaline solution can be pressurized without using a special apparatus.
  • the saturated vapor pressure of water at 110 ° C. is approximately 1.4 atm and there is some steam leakage in the sealed container, 1.2. It is preferably at least atmospheric pressure, more preferably at least 1.4 atmospheric pressure, and particularly preferably at least 2 atmospheric pressure.
  • the upper limit of the pressure is not particularly limited, but in consideration of cost, it is better to pressurize without using the above-described apparatus for performing pressurization, for example, 95 atm or less is preferable, and 70 atm More preferred are:
  • the saturated vapor pressure of water at 300 ° C. is approximately 95 atmospheres.
  • the method for producing an adsorbent of an anionic substance according to the second embodiment is a process for pressurizing a foamed glass material in an alkaline solution at a pressure of 100 atm or higher for 1.5 hours (hereinafter referred to as “high pressure process”).
  • high pressure process means pressurization treatment of 100 atm or more.
  • the atmospheric pressure in the high pressure treatment step is not particularly limited as long as it is 100 atm or higher, and may be appropriately set according to the desired adsorbent adsorption capacity.
  • it is preferably 200 atm or more, more preferably 400 atm or more, further preferably 600 atm or more, and more preferably 800 atm or more. More preferably, it is particularly preferably 1000 atm or more.
  • the upper limit of the pressure in the high pressurization step may be, for example, 20000 atm or less (15000 atm or less, 10,000 atm or less, 5000 atm or less, 2000 atm or less, 1500 atm or less, etc.).
  • at least a part of the pressure may be 100 atm or higher, and a step of pressurizing under a condition of less than 100 atm may be included.
  • a foamed glass having an anionic substance adsorbing ability can be produced by high pressure (conditions of 100 atm or more) for a short time such as within 1 minute or less.
  • the lower limit of the high pressurization time under the condition of 100 atm or more may be appropriately set according to the desired adsorption capacity of the adsorbent.
  • it is preferably 10 seconds or longer, 30 seconds or longer, 1 minute or longer, 10 minutes or longer, 30 minutes or longer, 1 hour or longer.
  • an ultra-high pressure apparatus can be used for the high pressure treatment.
  • the high pressurization can be performed by performing a high pressurization treatment with the above-described apparatus in a state where the foamed glass material is contained in an alkaline solution and accommodated in a sealed container.
  • the foamed glass material used in the high pressure treatment step is, for example, a foamed glass material obtained by foaming the above-described raw glass as described in the method for producing the anionic substance adsorbent according to the first embodiment. Can be used.
  • the alkaline solution used in the high pressure treatment step is a solution in which a solute that dissolves in water to form a hydroxyl group is dissolved in water.
  • Type of solute in the alkaline solution is not particularly limited, for example, can be used NaOH, KOH, at least one selected from the group consisting of Na 2 CO 3, Ca (OH ) 2.
  • NaOH or KOH which is a strong alkali is particularly preferable.
  • the concentration of the alkaline solution is preferably 0.5 mol / L or more, more preferably 3 mol / L or more, and further preferably 4 mol / L or more.
  • the amount is 3 mol / L or more, the adsorption amount of the anionic substance (particularly, phosphate ions) is particularly high, and when the amount is 4 mol / L or more, the adsorption amount of the anionic substance (particularly, phosphate ions) is further increased.
  • the concentration of the alkaline solution may be, for example, 19 mol / L or less (18 mol / L or less, 17 mol / L or less, etc.).
  • the temperature in the high pressure treatment step is not particularly limited as long as it is, for example, room temperature to 200 ° C., but is preferably 80 ° C. or higher, more preferably 90 ° C. or higher from the viewpoint of obtaining an adsorbent having the above-described characteristics. .
  • the temperature can be adjusted by the above-described pressure device.
  • the production of the anionic substance adsorbent of the present invention may or may not include a known process different from the high-temperature alkali treatment process and the high-pressure treatment process described above.
  • An example of such a process is a cleaning process.
  • the alkaline solution adhering to the foamed glass can be removed after the high temperature alkali treatment step and the high pressure treatment step.
  • the method for performing this washing is not particularly limited as long as it is a method capable of removing the alkaline solution, and for example, water, an acidic solution, or a pH buffer solution can be used. If there is no problem even if the alkaline solution adheres to the foamed glass, the cleaning process may be omitted.
  • the present invention adsorbs an anionic substance comprising means for treating a foamed glass material for a required time in an alkali solution containing an alkali metal hydroxide in an amount of 4 mol / L or more and 130 ° C. or more. It includes an agent manufacturing apparatus.
  • the present invention uses an apparatus containing an alkali metal hydroxide in an amount of 4 mol / L or more and capable of heat treatment in an alkaline solution at 130 ° C. or higher in the method for producing an adsorbent for anionic substances. it can.
  • the present invention includes an apparatus for producing an adsorbent of an anionic substance, comprising means capable of high pressurization of foamed glass in an alkaline solution at a pressure of 100 atm or higher for 1.5 hours.
  • the present invention can use an apparatus capable of high pressurization of 100 atm or higher in the method for producing an adsorbent of an anionic substance.
  • the present invention includes a method for recovering an anionic substance, which comprises a step of adsorbing an anionic substance on the adsorbent for the anionic substance described above.
  • the adsorbent As a method of adsorbing an anionic substance to the adsorbent, for example, the adsorbent is immersed in a solution containing phosphate ions or fluoride ions, so that the phosphate ions and fluoride ions in the solution are adsorbed. Can be absorbed.
  • the solution containing phosphate ions is not particularly limited as long as the solution contains phosphate ions, and examples thereof include domestic wastewater and agricultural wastewater.
  • the solution containing fluoride ions is not particularly limited as long as it is a liquid containing fluoride ions, and examples thereof include a semiconductor cleaning solution and a hydrofluoric acid-containing solution used for glass processing and cleaning.
  • the pH of the solution containing phosphate ions is not particularly limited, but the pH is preferably 2.4 to 7.7, more preferably 2.8 to 6.8, and 3.8 to 6. More preferably. When the pH is in such a range, the phosphate ion adsorption amount becomes high. In addition, when the pH of the solution containing phosphate ions is outside the above range, a pH adjustment step may be provided in which the pH of the solution containing phosphate ions is within the above range by adding an acid or a base. preferable.
  • the pH of the solution containing fluoride ions is not particularly limited, but the pH is preferably 1.4 to 7.2, more preferably 1.8 to 6.3, and 2.2 to 5.3. More preferably it is.
  • a pH adjustment step may be provided to bring the pH of the solution containing fluoride ions into the above range by adding an acid or a base. preferable.
  • the adsorbent After adsorbing phosphate ions on the adsorbent, the adsorbent may be crushed and used as a raw material for phosphate fertilizer, feed, and the like.
  • an anionic substance for example, phosphate ion
  • a strong acid such as nitric acid
  • the concentration of the strong acid is not particularly limited, but is preferably 0.01 mol / L or more, more preferably 0.05 mol / L or more, and further preferably 0.1 mol / L or more.
  • the recovery rate of anionic substances is high, and when it is 0.1 mol / L, the recovery ratio of anionic substances (particularly phosphate ions) is particularly high.
  • the upper limit of the strong acid concentration is not particularly limited, but may be, for example, 3 mol / L or less.
  • the anionic substance adsorbent from which the anionic substance has been desorbed can adsorb the anionic substance again.
  • adsorbent adsorption capacity (phosphate ion adsorption amount) was evaluated based on the Ca2p concentration and Na1s concentration on the adsorbent surface by XPS analysis.
  • a foamed glass material A manufactured using calcium carbonate as a foaming agent was prepared.
  • this foamed glass material A was subjected to high-temperature alkali treatment with a sodium hydroxide solution having a NaOH concentration of 5.5 mol / L by appropriately adjusting the treatment pressure, treatment temperature, and treatment time, and Ca2p on the surface of the foamed glass.
  • An adsorbent with adjusted concentration and Na1s concentration was produced.
  • the adsorption amount of the phosphate ion of the adsorbent having different Ca2p concentration and Na1s concentration is described in the above-mentioned “Mode for Carrying Out the Invention”. It was measured by the measuring method of possible amount]. The result is shown in FIGS.
  • the foamed glass material A has a large amount of —SiO 2 and a small amount of —SiOX, so the half-value width is narrow. It was confirmed that 2 was small and -SiOX was increased, and the full width at half maximum was increased.
  • -SiOX which is the basic skeleton of glass, remains undisintegrated even after alkali treatment, and this -SiOX contributes to the adsorption of phosphate ions. It exhibits phosphate ion adsorption capacity.
  • the foamed glass material A prepared in Test Example 1 is subjected to high-temperature alkali treatment with a sodium hydroxide solution having a NaOH concentration of 5.5 mol / L by appropriately adjusting the treatment pressure, treatment temperature, and treatment time.
  • a sodium hydroxide solution having a NaOH concentration of 5.5 mol / L by appropriately adjusting the treatment pressure, treatment temperature, and treatment time.
  • an adsorbent in which the specific surface area, pore volume and specific gravity of the foam glass surface were adjusted was produced.
  • suction of the adsorption agent from which a specific surface area, pore volume, and specific gravity each differ was measured by the above-mentioned [measurement method of the adsorption amount of phosphate ion in a high concentration phosphate ion solution], respectively.
  • the results are shown in FIGS. 5 to 7 as phosphorus adsorption amounts [relative amounts].
  • the foam glass material A used in Test Example 1 is subjected to high-temperature alkali treatment at a NaOH concentration of 5.0 mol / L, a treatment pressure of 5 atm, a treatment temperature of 150 ° C., and a treatment time of 30 minutes, resulting in a specific gravity of 0.50 g / mL.
  • Foam glass was produced.
  • the amount of phosphate ion adsorbable was 77.8 mg / g as measured by the above-mentioned [Method for measuring the amount of phosphate ion adsorbable in a high concentration phosphate ion solution]. .
  • the phosphate ion-adsorbable amount was measured by [Method for measuring the adsorbable amount of phosphate ion in a low-concentration phosphate ion solution] described below. The result is shown in FIG.
  • the pH of the phosphate ion solution is adjusted to a desired pH by adding hydrochloric acid or sodium hydroxide solution.
  • a phosphate ion solution in the water tank is collected and measured with an absorptiometer using the molybdenum blue method.
  • the phosphate ion adsorption amount (mg / g) is determined based on the measured value.
  • the operations (2) to (5) are repeated until the phosphate ion adsorption amount of the adsorbent becomes saturated.
  • the total amount of phosphate ions adsorbed until saturation is reached is the phosphate ion adsorbable amount (mg / g).
  • Test Example 4 In Test Example 4, the adsorption ability of the adsorbent for fluoride ions was tested.
  • Test Example 5 In Test Example 5, when the foamed glass material was subjected to alkali treatment, the influence of the NaOH concentration and temperature of the alkaline solution on the phosphate ion adsorption amount was tested.
  • the NaOH concentration of the alkaline solution is 1.0 to 6.5 mol / L
  • the temperature of the alkaline solution is 80 to 180 ° C.
  • the treatment pressure is 0.00.
  • Foamed glass was produced by performing an alkali treatment for 1 hour while appropriately adjusting to 2 to 10 atmospheres. The foamed glass produced under each of these conditions was used as an adsorbent, and the amount of phosphate ion adsorbable by the adsorbent was measured by the above-described method for measuring the amount of phosphate ion adsorbable in a high-concentration phosphate ion solution. .
  • the results are shown in FIGS. 9 and 10 as the phosphorus adsorption amount [relative amount].
  • the adsorbent produced by high-temperature alkali treatment under the condition that the NaOH concentration of the alkali solution is 4.0 mol / L or more and the temperature of the alkali solution is 130 ° C. or more has excellent phosphate ion adsorption ability. It can be seen that
  • Test Example 6 when the foamed glass material was alkali-treated, the relationship between the treatment time and the phosphate ion adsorption amount was tested.
  • the NaOH concentration of the alkaline solution is 5.0, 5.5, 6.5 mol / L
  • the temperature of the alkaline solution is 150, 180 ° C.
  • the treatment While adjusting the pressure to 5, 10 atm, alkali treatment was performed to produce foamed glass.
  • the foamed glass produced under each of these conditions was used as an adsorbent, and the amount of phosphate ion adsorbable was measured by the above-described [Method for measuring the amount of phosphate ion adsorbable in a high-concentration phosphate ion solution].
  • the result is shown in FIG. 11 as the phosphorus adsorption amount [relative amount].
  • Test Example 7 In Test Example 7, the influence of the temperature of the alkaline solution and the treatment pressure on the phosphate ion adsorption amount when the foamed glass material was subjected to high pressure treatment was tested.
  • the NaOH concentration of the alkaline solution is 5.0 mol / L
  • the temperature of the alkaline solution is 80 ° C., 95 ° C.
  • the treatment pressure is 0, 100, 1000.
  • the foamed glass was manufactured by performing high pressure treatment for 1 hour while adjusting to 6000 atm.
  • the foamed glass material B manufactured using silicon carbide for a foaming agent was prepared. And with respect to this foam glass material B, the high pressurization process similar to the foam glass material A was performed, and the foam glass was manufactured.
  • the foamed glass produced under each of these conditions was used as an adsorbent, and the amount of phosphate ion adsorbable was measured by the above-described [Method for measuring the amount of phosphate ion adsorbable in a high-concentration phosphate ion solution].
  • the result is shown in FIG. 12 as the phosphorus adsorption amount [relative amount].
  • the high pressure treatment under the condition of the alkali solution at the temperature of 95 ° C. is higher than the case of the high pressure treatment under the condition of the alkali solution at the temperature of 80 ° C.
  • the phosphorus adsorption amount of the adsorbent increased greatly as the treatment pressure was increased to 100 atm or more.
  • the adsorbent produced by the high pressure treatment of 6000 atm at an alkaline solution temperature of 95 ° C. showed a particularly excellent phosphorus adsorption amount.

Abstract

The purpose of the present invention is to provide: an anionic substance-adsorbing agent having an excellent ability to adsorb anionic substances; a method for producing the anionic substance-adsorbing agent; an apparatus for producing the anionic substance-adsorbing agent; and a method for recovering anionic substances. The present invention pertains to an anionic substance-adsorbing agent which contains foam glass, wherein, as determined by XPS analysis, the concentration of Ca2P is at least 4.0 at% or the concentration of Na1s is at most 8.0 at% on the surface of the adsorbing agent, and the full width at half maximum of the Si2p peak is at least 2.4 eV. It is preferable that the adsorbing agent have a specific surface area of 15 m2/g or greater or a pore volume of 1.7 cm3/g or greater as measured by mercury intrusion porosimetry.

Description

アニオン性物質の吸着剤、アニオン性物質の吸着剤の製造方法、アニオン性物質の吸着剤の製造装置、及びアニオン性物質の回収方法Anionic substance adsorbent, anionic substance adsorbent production method, anionic substance adsorbent production apparatus, and anionic substance recovery method
 本発明は、アニオン性物質の吸着剤、アニオン性物質の吸着剤の製造方法、アニオン性物質の吸着剤の製造装置、及びアニオン性物質の回収方法に関する。 The present invention relates to an anionic substance adsorbent, an anionic substance adsorbent production method, an anionic substance adsorbent production apparatus, and an anionic substance recovery method.
 従来より、産業上発生するアニオン性物質(リン酸イオン、フッ素、ホウ酸等)の回収技術が求められている。例えば、リンは、農産物の成長にとって必須の元素であり、リン酸は従来より肥料として用いられている。このように肥料等として使用されるリン酸が、リン酸イオンとして排水に紛れて閉鎖性水域に流入すると、その水域で富栄養化が発生し、その現象により、生態系に変化が生じる。このような生態系の変化により、水道被害や漁業被害が発生し、これらが問題となっている。他方、リン酸は、一般にリン鉱石を原料として製造されるが、リン鉱石の埋蔵量には限りがあり、近い将来にリン鉱石が枯渇する可能性が指摘されている。よって、リン酸による水道被害や漁業被害の問題を解決しつつ、リン資源を有効に獲得するために、排水等のリン酸を含む溶液からリン酸を回収する技術が必要とされている。 Conventionally, a technique for recovering industrially generated anionic substances (phosphate ions, fluorine, boric acid, etc.) has been demanded. For example, phosphorus is an essential element for the growth of agricultural products, and phosphoric acid has been conventionally used as a fertilizer. Thus, when the phosphoric acid used as a fertilizer etc. is lost to drainage as phosphate ion and flows into a closed water area, eutrophication occurs in the water area, and the ecosystem changes due to the phenomenon. Due to such changes in ecosystems, water damage and fishery damage occur, which are problematic. On the other hand, phosphoric acid is generally produced using phosphorus ore as a raw material, but the reserves of phosphorus ore are limited, and it has been pointed out that phosphorus ore may be depleted in the near future. Therefore, a technique for recovering phosphoric acid from a solution containing phosphoric acid such as waste water is required in order to effectively acquire phosphorus resources while solving the problems of water damage and fishing damage caused by phosphoric acid.
 一方、日本では、年間100万トンを越える使用済みガラスが再利用されず埋め立て等によって廃棄処理されている。特に、ガラス家電製品やバックミラー等の自動車ガラスを作る際には、大量の廃ガラスが発生する。また、今後も太陽光パネル等のガラス製品の廃棄によるさらなる大量の廃ガラスが発生すると予想されている。これらの廃ガラスは埋め立て処理されているものの、埋め立て処理によると、土壌汚染問題や、将来的には廃棄物処分場の建設問題等が懸念されている。この廃棄物問題は、今や社会問題となっており、廃ガラスの新たな有効利用法を見出すことが必要とされている。 On the other hand, in Japan, used glass exceeding 1 million tons per year is disposed of by landfill without being reused. In particular, when making automobile glass such as glass home appliances and rearview mirrors, a large amount of waste glass is generated. In the future, it is expected that a larger amount of waste glass will be generated due to the disposal of glass products such as solar panels. Although these waste glass has been landfilled, according to the landfill treatment, there are concerns about soil contamination problems and construction problems of waste disposal sites in the future. This waste problem is now a social problem, and it is necessary to find a new effective use method of waste glass.
 このような状況下において、廃ガラスを利用しつつリン酸を回収するための技術として、特許文献1には、発泡ガラスをアルカリ溶液中に浸漬させた状態で、加圧下で110℃以上の温度での加熱処理を行う工程を備えるリン酸イオン吸着剤の製造方法が提案されている。 Under such circumstances, as a technique for recovering phosphoric acid while utilizing waste glass, Patent Document 1 discloses that a temperature of 110 ° C. or higher is applied under pressure in a state where foamed glass is immersed in an alkaline solution. A method for producing a phosphate ion adsorbent comprising a step of performing a heat treatment in is proposed.
特開2011-161398号公報JP 2011-161398 A
 しかしながら、特許文献1に記載された方法により製造されたアニオン性物質の吸着剤は、アニオン性物質の吸着能が未だ十分なものでなく、改善の余地を有する。また、特許文献1に記載された方法では製造に2時間以上の長時間を必要とし、工業的な課題となっている。 However, the anionic substance adsorbent produced by the method described in Patent Document 1 still has insufficient ability to adsorb an anionic substance and has room for improvement. Further, the method described in Patent Document 1 requires a long time of 2 hours or more for production, which is an industrial problem.
 本発明は以上の実情に鑑みてなされたものであり、アニオン性物質の吸着能に優れたアニオン性物質の吸着剤、その製造方法、アニオン性物質の吸着剤の製造装置を提供することを目的とする。また、本発明は、アニオン性物質の回収方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an anionic substance adsorbent excellent in anionic substance adsorbing ability, a production method thereof, and an anionic substance adsorbent production apparatus. And Another object of the present invention is to provide a method for recovering an anionic substance.
 本発明者らは、アニオン性物質の吸着剤表面のCa濃度、Na濃度や、SiOX(Xは、水素、ナトリウム、カルシウム等である)の量を調整することにより、優れたアニオン性物質の吸着能を調節できることを見出した。また、本発明者らは、アルカリ溶液中で発泡ガラスを高温でアルカリ処理したり高加圧で処理したりすることで、高いリン酸イオン吸着能を有するアニオン性物質の吸着剤(以下、単に「吸着剤」と称する場合がある。)をより短時間で得られることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。 By adjusting the Ca concentration and Na concentration of the anionic substance adsorbent surface and the amount of SiOX (X is hydrogen, sodium, calcium, etc.), the present inventors can adsorb excellent anionic substances. It was found that the ability can be adjusted. In addition, the present inventors treated the foamed glass with an alkali solution at a high temperature or in a high pressure in an alkaline solution, whereby an adsorbent of an anionic substance having a high phosphate ion adsorption capacity (hereinafter simply referred to as “adsorbent”). The present invention has been completed by finding that it can be obtained in a shorter period of time. More specifically, the present invention provides the following.
 (1) 発泡ガラスを含有し、XPS分析による吸着剤表面のCa2p濃度が4.0原子%以上又はNa1s濃度が8.0原子%以下であり、Si2pピークの半値幅が2.4eV以上であるアニオン性物質の吸着剤。 (1) It contains foamed glass, the Ca2p concentration on the adsorbent surface by XPS analysis is 4.0 atomic% or more, or the Na1s concentration is 8.0 atomic% or less, and the half width of the Si2p peak is 2.4 eV or more. Adsorbent for anionic substances.
 (2) 水銀圧入法による比表面積が15m/g以上または細孔容積が1.7cm/g以上である(1)に記載の吸着剤。 (2) Adsorbent as described in (1) whose specific surface area by mercury intrusion method is 15 m < 2 > / g or more or whose pore volume is 1.7 cm < 3 > / g or more.
 (3) 比重が0.60g/mL以下である(1)又は(2)に記載の吸着剤。 (3) Adsorbent as described in (1) or (2) whose specific gravity is 0.60 g / mL or less.
 (4) リン酸イオン濃度が3000mg/L以上のリン酸イオン溶液におけるリン酸イオン吸着可能量は、10mg/g以上である(1)から(3)いずれかに記載の吸着剤。 (4) The adsorbent according to any one of (1) to (3), wherein a phosphate ion adsorbable amount in a phosphate ion solution having a phosphate ion concentration of 3000 mg / L or more is 10 mg / g or more.
 (5) 発泡ガラス材料を、アルカリ金属水酸化物を4モル/L以上の量で含みかつ130℃以上であるアルカリ溶液中にて所要時間に亘り処理する工程を有する、アニオン性物質の吸着剤の製造方法。 (5) An anionic substance adsorbent comprising a step of treating a foamed glass material in an alkaline solution containing an alkali metal hydroxide in an amount of 4 mol / L or more and having a temperature of 130 ° C. or more over a required time. Manufacturing method.
 (6) 前記所要時間は1.5時間以内である(5)に記載の方法。 (6) The method according to (5), wherein the required time is within 1.5 hours.
 (7) 発泡ガラス材料をアルカリ溶液中で100気圧以上の条件で1.5時間以内高加圧する工程を有する、アニオン性物質の吸着剤の製造方法。 (7) A method for producing an adsorbent of an anionic substance, comprising a step of pressurizing a foamed glass material in an alkaline solution at a pressure of 100 atm or higher within 1.5 hours.
 (8) 前記発泡ガラス材料は、炭酸カルシウムを含む発泡剤で発泡されたものである(5)から(7)いずれかに記載の方法。 (8) The method according to any one of (5) to (7), wherein the foamed glass material is foamed with a foaming agent containing calcium carbonate.
 (9) 発泡ガラス材料を、アルカリ金属水酸化物を4モル/L以上の量で含みかつ130℃以上であるアルカリ溶液中にて所要時間に亘り処理する手段を備える、アニオン性物質の吸着剤の製造装置。 (9) An anionic substance adsorbent comprising means for treating a foamed glass material over a required time in an alkali solution containing an alkali metal hydroxide in an amount of 4 mol / L or more and at 130 ° C. or more. Manufacturing equipment.
 (10) 発泡ガラス材料をアルカリ溶液中で100気圧以上の条件で1.5時間以内高加圧可能な手段を備える、アニオン性物質の吸着剤の製造装置。 (10) An apparatus for producing an adsorbent of an anionic substance, comprising means capable of highly pressurizing a foam glass material in an alkaline solution at a pressure of 100 atm or more for 1.5 hours.
 (11) (1)から(4)に記載の吸着剤、又は(5)から(8)のいずれかに記載の方法で製造された吸着剤にアニオン性物質を吸着させる工程を有する、アニオン性物質の回収方法。 (11) Anionic having a step of adsorbing an anionic substance to the adsorbent according to (1) to (4) or the adsorbent produced by the method according to any of (5) to (8) Material recovery method.
 本発明によれば、アニオン性物質の吸着能に優れたアニオン性物質の吸着剤、その製造方法、アニオン性物質の吸着剤の製造装置を提供することができる。また、本発明によれば、アニオン性物質の回収方法を提供することができる。 According to the present invention, it is possible to provide an anionic substance adsorbent excellent in anionic substance adsorbing ability, a production method thereof, and an anionic substance adsorbent production apparatus. Moreover, according to this invention, the recovery method of an anionic substance can be provided.
吸着剤表面のCa2p濃度とリン吸着量との関係を示すグラフである。It is a graph which shows the relationship between the Ca2p density | concentration of an adsorbent surface, and phosphorus adsorption amount. 吸着剤表面のNa1s濃度とリン吸着量との関係を示すグラフである。It is a graph which shows the relationship between Na1s density | concentration on the adsorbent surface, and phosphorus adsorption amount. 発泡ガラス材料のXPS分析結果を示すグラフである。It is a graph which shows the XPS analysis result of foam glass material. 吸着剤(発泡ガラス)のXPS分析結果を示すグラフである。It is a graph which shows the XPS analysis result of adsorption agent (foamed glass). 吸着剤の比表面積とリン吸着量との関係を示すグラフである。It is a graph which shows the relationship between the specific surface area of adsorption agent, and the amount of phosphorus adsorption. 吸着剤の細孔容積とリン吸着量との関係を示すグラフである。It is a graph which shows the relationship between the pore volume of adsorption agent, and the amount of phosphorus adsorption. 吸着剤の比重とリン吸着量との関係を示すグラフである。It is a graph which shows the relationship between specific gravity of adsorption agent, and phosphorus adsorption amount. 吸着剤のリン吸着処理時間とリン吸着量との関係を示すグラフである。It is a graph which shows the relationship between the phosphorus adsorption processing time of adsorption agent, and phosphorus adsorption amount. アルカリ溶液のNaOH濃度と、リン吸着量との関係を示すグラフである。It is a graph which shows the relationship between the NaOH concentration of an alkaline solution, and phosphorus adsorption amount. アルカリ溶液の温度と、リン吸着量との関係を示すグラフである。It is a graph which shows the relationship between the temperature of an alkaline solution, and phosphorus adsorption amount. 高温アルカリ処理の処理時間と、リン吸着量との関係を示すグラフである。It is a graph which shows the relationship between the processing time of high temperature alkali treatment, and phosphorus adsorption amount. 高加圧処理の処理圧力と、リン吸着量との関係を示すグラフである。It is a graph which shows the relationship between the process pressure of a high pressurization process, and phosphorus adsorption amount.
 以下、本発明の実施形態について説明するが、本発明はこれに限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.
 <アニオン性物質の吸着剤>
 本発明のアニオン性物質の吸着剤は、発泡ガラスを含有し、X線光電子分光(XPS)分析による吸着剤表面のCa2p濃度が4.0原子%以上又はNa1s濃度が8.0原子%以下であり、Si2pピークの半値幅が2.4eV以上である。
<Adsorbent of anionic substance>
The adsorbent of the anionic substance of the present invention contains foam glass, and the Ca2p concentration on the adsorbent surface by X-ray photoelectron spectroscopy (XPS) analysis is 4.0 atomic% or more or the Na1s concentration is 8.0 atomic% or less. Yes, the full width at half maximum of the Si2p peak is 2.4 eV or more.
 本発明の吸着剤は、表面のCa2p濃度が4.0原子%以上と高いことで、アニオン性物質を効果的に吸着でき、特に高濃度域のアニオン性物質を効果的に吸着できる。また、表面のNa1s濃度が8.0原子%以下と低いことは、Ca2p濃度が高いことの裏返しであり、アニオン性物質の吸着に寄与しないNaが少なく、Caが効果的に露出することで、アニオン性物質を効果的に吸着することができる。さらに、Si2pピークの半値幅が2.4eV以上と大きいことは、発泡ガラスの基本骨格をなすSiが、吸着剤の表面においてはSiOと比較してより多くのSiOX(Xは、水素、ナトリウム、カルシウム等である。)を構成していることを示し、高温でアルカリ処理されてもなお、発泡ガラスの基本骨格としてSiOXが崩壊せず、吸着剤としての機能を発揮できることを示している。そして、SiOXは、アニオン性物質の吸着に寄与し、特に低濃度域のアニオン性物質を効果的に吸着できる。このように、Ca2p濃度、Na1s濃度、及びSi2pピークの半値幅が上記範囲に規定された吸着剤は、アニオン性物質の低濃度域~高濃度域の全濃度域において、優れたアニオン性物質の吸着能を発揮することができることが明らかになった。 The adsorbent of the present invention has a high Ca2p concentration of 4.0 atomic% or more on the surface, so that it can effectively adsorb an anionic substance, and in particular, can effectively adsorb an anionic substance in a high concentration range. Moreover, the Na1s concentration on the surface being as low as 8.0 atomic% or less is the reverse of the high Ca2p concentration, because there is little Na that does not contribute to adsorption of anionic substances, and Ca is effectively exposed, An anionic substance can be adsorbed effectively. Furthermore, the half width of the Si2p peak is as large as 2.4 eV or more, which means that Si forming the basic skeleton of the foamed glass has more SiOX (X is hydrogen, sodium than the SiO 2 on the surface of the adsorbent). , Calcium, etc.), and even when subjected to alkali treatment at a high temperature, SiOX does not collapse as a basic skeleton of the foamed glass and can exhibit a function as an adsorbent. And SiOX contributes to adsorption | suction of an anionic substance, and can adsorb | suck anionic substance of a low concentration range effectively especially. As described above, the adsorbent in which the Ca2p concentration, the Na1s concentration, and the half width of the Si2p peak are defined in the above range is an excellent anionic substance in the entire concentration range from the low concentration range to the high concentration range of the anionic substance. It was revealed that the adsorption ability can be exhibited.
 上述した観点から、本発明の吸着剤表面のCa2p濃度は、4.0原子%以上であり、6.0原子%以上であることが好ましく、8.0原子%以上であることがより好ましく、10原子%以上であることがさらに好ましい。他方、Ca2p濃度の上限は、要求される吸着能(特に、リン酸イオンやフッ化物イオン)に応じて、例えば、20原子%以下(18原子%以下、16原子%以下、14原子%以下等)としてもよい。 From the viewpoint described above, the Ca2p concentration on the surface of the adsorbent of the present invention is 4.0 atomic% or more, preferably 6.0 atomic% or more, more preferably 8.0 atomic% or more, More preferably, it is 10 atomic% or more. On the other hand, the upper limit of the Ca2p concentration is, for example, 20 atom% or less (18 atom% or less, 16 atom% or less, 14 atom% or less, etc.) depending on the required adsorption capacity (particularly, phosphate ions and fluoride ions). ).
 また、上述した観点から、本発明の吸着剤の表面のNa1s濃度は、8.0原子%以下であり、6.0原子%以下であることが好ましく、4.0原子%以下であることがより好ましい。他方、Na1s濃度の下限は、要求される吸着能に応じて、例えば、ゼロ(検出限界値以下)以上(1.0原子%以上、1.5原子%以上等)としてもよい。 From the viewpoint described above, the Na1s concentration on the surface of the adsorbent of the present invention is 8.0 atomic% or less, preferably 6.0 atomic% or less, and preferably 4.0 atomic% or less. More preferred. On the other hand, the lower limit of the Na1s concentration may be, for example, zero (detection limit value or less) or more (1.0 atom% or more, 1.5 atom% or more, etc.) according to the required adsorption capacity.
 また、上述した観点から、本発明の吸着剤のSi2pピークの半値幅が2.4eV以上であり、2.7eV以上であることが好ましく、3.0eV以上であることがより好ましい。他方、Si2pピークの半値幅の上限は、要求される吸着能に応じて、例えば、4.0eV以下(3.8eV以下、3.6eV以下等)としてもよい。なお、基本骨格が崩壊するとピークは消滅してしまう。 In addition, from the viewpoint described above, the half width of the Si2p peak of the adsorbent of the present invention is 2.4 eV or more, preferably 2.7 eV or more, and more preferably 3.0 eV or more. On the other hand, the upper limit of the half width of the Si2p peak may be, for example, 4.0 eV or less (3.8 eV or less, 3.6 eV or less, etc.) according to the required adsorption capacity. Note that the peaks disappear when the basic skeleton collapses.
 さらに、本発明の吸着剤は、比表面積又は細孔容積が大きい方が、アニオン性物質の吸着能を有する表面が多くなる。この観点から、本発明の吸着剤の水銀圧入法による比表面積は、15m/g以上であることが好ましく、30m/g以上であることがより好ましく、45m/g以上であることがさらに好ましく、60m/g以上であることがさらに一層好ましく、75m/g以上であることが特に好ましい。また、本発明の吸着剤の水銀圧入法による細孔容積は、1.7cm/g以上であることが好ましく、2.0cm/g以上であることがより好ましく、2.5cm/g以上であることがさらに好ましく3.0cm/g以上であることがさらに一層好ましく、3.5cm/g以上であることが特に好ましい。他方、比表面積の上限は、要求される吸着能に応じて、例えば、200m/g以下、150m/g以下としてもよい。細孔容積の上限は、要求される吸着能に応じて、例えば、8cm/g以下、6cm/g以下としてもよい。 Furthermore, the adsorbent of the present invention has a larger surface area capable of adsorbing anionic substances when the specific surface area or pore volume is larger. From this viewpoint, the specific surface area of the adsorbent of the present invention by the mercury intrusion method is preferably 15 m 2 / g or more, more preferably 30 m 2 / g or more, and 45 m 2 / g or more. More preferably, it is still more preferably 60 m 2 / g or more, and particularly preferably 75 m 2 / g or more. Further, the pore volume of the adsorbent of the present invention by a mercury intrusion method is preferably 1.7 cm 3 / g or more, more preferably 2.0 cm 3 / g or more, and 2.5 cm 3 / g. More preferably, it is more preferably 3.0 cm 3 / g or more, and particularly preferably 3.5 cm 3 / g or more. On the other hand, the upper limit of the specific surface area may be, for example, 200 m 2 / g or less and 150 m 2 / g or less, depending on the required adsorption capacity. The upper limit of the pore volume may be, for example, 8 cm 3 / g or less, 6 cm 3 / g or less, depending on the required adsorption capacity.
 また、本発明の吸着剤は、比重が小さい方が、アニオン性物質の吸着能を有する表面が多くなる。この観点から、本発明の吸着剤の比重は、0.60g/mL以下であることが好ましく、0.55g/mL以下であることがより好ましく、0.50g/mL以下であることがより一層好ましい。他方、比重の下限は、要求される吸着能に応じて、例えば、0.1g/mL以上(0.15g/mL以上、0.2g/mL以上、0.25g/mL以上等)としてもよい。 In the adsorbent of the present invention, the surface having an anionic substance adsorbing capacity increases as the specific gravity is smaller. From this viewpoint, the specific gravity of the adsorbent of the present invention is preferably 0.60 g / mL or less, more preferably 0.55 g / mL or less, and even more preferably 0.50 g / mL or less. preferable. On the other hand, the lower limit of the specific gravity may be, for example, 0.1 g / mL or more (0.15 g / mL or more, 0.2 g / mL or more, 0.25 g / mL or more, etc.) depending on the required adsorption capacity. .
 本発明の吸着剤の比重(g/mL)は、以下の方法により測定する。
 (1) 質量計を用いて、吸着剤(例えば、粒径4mm以上10mm以下の吸着剤)5~10gを量り取る。
 (2) 量り取った吸着剤を水に10分程度浸漬させる。
 (3) 浸漬開始から10分後、ザル等に揚げ、ティッシュ等で表面の水気を拭き取る。
 (4) 吸着剤を最大目盛の半分まで水が入ったメスシリンダーへ投入し、水中に沈める。
 (5) すべての吸着剤が沈んだ時の水の体積を測定し、投入前からの増分を算出する。
 (6) 以下の式で比重を算出する。
  [比重(g/mL)]=[吸着剤質量(g)]/[水の体積の増分(mL)]
The specific gravity (g / mL) of the adsorbent of the present invention is measured by the following method.
(1) Using a mass meter, weigh out 5 to 10 g of an adsorbent (for example, an adsorbent having a particle size of 4 mm to 10 mm).
(2) The measured adsorbent is immersed in water for about 10 minutes.
(3) Ten minutes after the start of soaking, fry to a colander, etc., and wipe off the surface moisture with a tissue or the like.
(4) Put the adsorbent into a graduated cylinder containing water up to half of the maximum scale and submerge it in water.
(5) Measure the volume of water when all the adsorbent sinks, and calculate the increment from before charging.
(6) The specific gravity is calculated by the following formula.
[Specific gravity (g / mL)] = [Adsorbent mass (g)] / [Increment of water volume (mL)]
 本発明の吸着剤は、例えば、リン酸イオン濃度が3000mg/Lのリン酸イオン溶液(以下、「高濃度リン酸イオン溶液」と呼称する場合がある。)におけるリン酸イオン吸着可能量が10.0mg/g以上(20.0mg/g以上、30.0mg/g以上、40.0mg/g以上、50.0mg/g以上、60.0mg/g以上、70.0mg/g以上等)である。他方、吸着剤のリン酸イオン吸着可能量の上限は、要求されるリン酸イオン吸着能に応じて、例えば、300mg/g以下(250mg/g以下、200mg/g以下、150mg/g以下、100mg/g以下、50.0mg/g以下等)としてもよい。なお、リン酸イオン吸着可能量は、アニオン性物質の吸着剤の吸着能の指標に過ぎない。 The adsorbent of the present invention has, for example, a phosphate ion adsorption capacity of 10 in a phosphate ion solution having a phosphate ion concentration of 3000 mg / L (hereinafter sometimes referred to as “high concentration phosphate ion solution”). 0.0 mg / g or more (20.0 mg / g or more, 30.0 mg / g or more, 40.0 mg / g or more, 50.0 mg / g or more, 60.0 mg / g or more, 70.0 mg / g or more, etc.) is there. On the other hand, the upper limit of the phosphate ion adsorption capacity of the adsorbent is, for example, 300 mg / g or less (250 mg / g or less, 200 mg / g or less, 150 mg / g or less, 100 mg, depending on the required phosphate ion adsorption capacity. / G or less, 50.0 mg / g or less, etc.). Note that the phosphate ion adsorbable amount is only an index of the adsorption ability of the anionic substance adsorbent.
 本発明において、リン酸イオン濃度が3000mg/Lのリン酸イオン溶液におけるリン酸イオンの吸着可能量は、以下の方法により測定する。
 [高濃度リン酸イオン溶液におけるリン酸イオンの吸着可能量]
 (1) 吸着剤2.50g、1.20g、又は0.5gと、リン酸イオン(PO 3-)濃度3000mg/Lのリン酸イオン溶液50mLとを容器に収容する。
 (2) 収容後、容器に塩酸又は水酸化ナトリウム溶液を添加して所望のpHに調整する。
 (3) pHの調整後、25℃に設定した恒温槽内で容器を2時間撹拌する。
 (4) 撹拌後、3000rpmで10分間の遠心分離を行い、上澄み液中のリン酸イオン濃度をモリブデンブルー法による吸光光度計により測定する。
 (5) 測定値に基づいて、リン酸イオン吸着可能量(mg/g)を求める。
In the present invention, the adsorbable amount of phosphate ions in a phosphate ion solution having a phosphate ion concentration of 3000 mg / L is measured by the following method.
[Adsorbable amount of phosphate ion in highly concentrated phosphate ion solution]
(1) An adsorbent 2.50 g, 1.20 g, or 0.5 g and 50 mL of a phosphate ion solution having a phosphate ion (PO 4 3− ) concentration of 3000 mg / L are placed in a container.
(2) After storage, hydrochloric acid or sodium hydroxide solution is added to the container to adjust to the desired pH.
(3) After adjusting the pH, the container is stirred for 2 hours in a thermostat set to 25 ° C.
(4) After stirring, the mixture is centrifuged at 3000 rpm for 10 minutes, and the phosphate ion concentration in the supernatant is measured with an absorptiometer by the molybdenum blue method.
(5) Based on the measured value, the phosphate ion adsorbable amount (mg / g) is determined.
 本発明の吸着剤は、アニオン性物質の吸着に用いられるものであれば特に限定されない。吸着対象のアニオン性物質としては、例えば、リン(リン酸イオン等)、フッ素(フッ化物イオン等)、ホウ酸等が挙げられる。特に、本発明は、リン酸イオン及びフッ化物イオンの吸着に適している。 The adsorbent of the present invention is not particularly limited as long as it is used for adsorption of anionic substances. Examples of the anionic substance to be adsorbed include phosphorus (phosphate ion and the like), fluorine (fluoride ion and the like), boric acid and the like. In particular, the present invention is suitable for adsorption of phosphate ions and fluoride ions.
 また、本発明の吸着剤は、上述した特性を有する発泡ガラスのみから構成してもよく、他の物質、成分を含んでもよい。例えば、本発明の吸着剤は、アニオン性物質の吸着能を有する他の物質(例えば、上述した特性を有する発泡ガラスとは異なる発泡ガラス)を含んで構成してもよい。 Further, the adsorbent of the present invention may be composed only of foamed glass having the above-described characteristics, and may contain other substances and components. For example, the adsorbent of the present invention may be configured to include another substance having an ability to adsorb an anionic substance (for example, a foamed glass different from the foamed glass having the characteristics described above).
 <第1の実施形態に係るアニオン性物質の吸着剤の製造方法>
 第1の実施形態に係るアニオン性物質の吸着剤の製造方法は、発泡ガラス材料を、アルカリ金属水酸化物を4モル/L以上の量で含みかつ130℃以上であるアルカリ溶液中にて所要時間に亘り処理する(以下、「高温アルカリ処理」と呼称する場合がある。)工程を有する。かかる方法により、上述の特性を有する発泡ガラスを含む吸着剤を製造できる。
<Method for Producing Adsorbent of Anionic Substance According to First Embodiment>
The manufacturing method of the anionic substance adsorbent according to the first embodiment requires a foamed glass material in an alkali solution containing an alkali metal hydroxide in an amount of 4 mol / L or more and 130 ° C. or more. It has a process of treating over time (hereinafter sometimes referred to as “high temperature alkali treatment”). By such a method, an adsorbent containing foamed glass having the above-described properties can be produced.
 本発明における発泡ガラス材料とは、複数の細孔を有するガラスであり、例えば、原料となるガラスを粉砕し、粉砕したガラスと発泡剤とを混合してから焼成することによって製造することができる。以下、発泡ガラス材料の製造方法の一例をより具体的に説明する。 The foamed glass material in the present invention is a glass having a plurality of pores, and can be produced, for example, by pulverizing glass as a raw material, mixing the pulverized glass and a foaming agent, and firing the mixture. . Hereinafter, an example of the manufacturing method of a foam glass material is demonstrated more concretely.
 本発明における発泡ガラス材料の原料となるガラス(以下、「原料ガラス」と呼称する場合がある。)の種類は特に限定されないが、ソーダ石灰ガラス、ほうケイ酸ガラス、アルミノケイ酸ガラス等が挙げられる。原料ガラスには、液晶、プラズマディスプレイ等のガラス家電製品やバックミラー等の自動車ガラスに由来する廃ガラスを用いてもよい。原料ガラスの粉砕方法は特に限定されず、市販の振動ミル等を用いて粉砕することができる。粉砕後の原料ガラス(以下、「粉砕ガラス」と呼称する場合がある。)の粒径は、特に限定されないが、粉砕ガラスと発泡剤とが均一に混合されるように小さい方が好ましい。例えば、原料ガラスの粉砕後に目開きが500μm以下である篩を用いて粒度選別を行って、粉砕ガラスの粒径が500μm以下になるようにすることが好ましい。なお、本明細書において、「粒径がXμm以下である」とは、篩の目開きがXμmである篩を通りぬけるものであることを意味する。 Although the kind of glass used as the raw material of the foam glass material in the present invention (hereinafter sometimes referred to as “raw glass”) is not particularly limited, soda lime glass, borosilicate glass, aluminosilicate glass and the like can be mentioned. . As the raw glass, waste glass derived from glass household electrical appliances such as liquid crystal and plasma displays and automobile glass such as a rearview mirror may be used. The method for pulverizing the raw glass is not particularly limited, and it can be pulverized using a commercially available vibration mill or the like. The particle size of the crushed raw glass (hereinafter sometimes referred to as “crushed glass”) is not particularly limited, but is preferably small so that the crushed glass and the foaming agent are uniformly mixed. For example, it is preferable to perform particle size selection using a sieve having an opening of 500 μm or less after pulverization of the raw glass so that the particle size of the pulverized glass is 500 μm or less. In the present specification, “the particle size is X μm or less” means that the particle has a sieve opening of X μm.
 粉砕ガラスと混合する発泡剤の種類は、特に限定されず、SiC、SiN、CaCOや、CaCO等を含む材料(例えば、貝殻等)等を用いることができ、特に、上述の特性の発泡ガラスを得やすい点から、Caを含むCaCOやCaCO等を含む材料が好ましく用いられる。このような発泡剤は、ガラスが軟化する温度でガスを発生させるので、その結果、ガラス内部に多数の細孔が形成されて、発泡ガラス材料が製造される。また、Caを含む発泡剤を用いることにより、発泡ガラス表面のCa濃度を高くすることができる。発泡剤の含有量は、特に限定されないが、0.1~5重量%であることが好ましく、0.2~2.0重量%であることが特に好ましい。その理由は、このような範囲内であれば、発泡が十分に起こり、かつ、発泡過剰による発泡ガラス材料の強度低下が生じることを避けることができるからである。また、粉砕ガラスと発泡剤とを混合する際に、発泡剤とは別に、例えば、カルシウム、マグネシウム、鉄のうちの少なくとも1種を含む材料を添加してもよい。このような材料としては、例えば、水酸化カルシウム、炭酸マグネシウム、水酸化マグネシウム、ベンガラ、フェライト等が挙げられる。これら材料の添加量は、特に限定されないが、1~20重量%であることが好ましく、5~15重量%であることが特に好ましい。これら材料を上記範囲内で添加することで、アニオン性物質(特に、リン酸イオンやフッ化物イオン)の吸着量の向上が顕著となる。 The type of foaming agent to be mixed with the crushed glass is not particularly limited, and materials including SiC, SiN, CaCO 3 , CaCO 3, etc. (for example, shells) can be used. From the viewpoint of easily obtaining glass, a material containing CaCO 3 or CaCO 3 containing Ca is preferably used. Such a foaming agent generates gas at a temperature at which the glass softens. As a result, a large number of pores are formed inside the glass, and a foamed glass material is produced. Moreover, Ca density | concentration of foam glass surface can be made high by using the foaming agent containing Ca. The content of the foaming agent is not particularly limited, but is preferably 0.1 to 5% by weight, and particularly preferably 0.2 to 2.0% by weight. The reason is that, within such a range, foaming can occur sufficiently and it is possible to avoid a decrease in strength of the foamed glass material due to excessive foaming. In addition, when the pulverized glass and the foaming agent are mixed, a material containing at least one of calcium, magnesium, and iron may be added separately from the foaming agent. Examples of such materials include calcium hydroxide, magnesium carbonate, magnesium hydroxide, bengara, and ferrite. The addition amount of these materials is not particularly limited, but is preferably 1 to 20% by weight, and particularly preferably 5 to 15% by weight. By adding these materials within the above range, the amount of adsorbed anionic substances (particularly phosphate ions and fluoride ions) is significantly improved.
 混合済みの原料ガラス(粉砕ガラス)と発泡剤との焼成の温度や時間は、原料ガラスが適切に発泡するように、原料ガラスや発泡剤の種類に応じて適宜設定すればよい。焼成温度は、例えば、600~1150℃であってよいが、特に、ソーダ石灰ガラスを原料ガラスとして用いる場合は、800~1000℃であることが好ましい。焼成温度がこのような範囲であれば、原料ガラスが十分に軟化して細孔が適切に形成され、かつ、原料ガラスが柔らかくなりすぎないので形成された細孔が再度塞がることを避けることができる。また、焼成時間は、例えば、1~60分であってよく、好ましくは5~10分である。焼成時間がこのような範囲内であれば、発泡が十分に起こり、かつ、形成された細孔が再度塞がったり泡がくっつきあうことによって表面の微細さが無くなったりすることを避けることができる。 The firing temperature and time of the mixed material glass (ground glass) and the foaming agent may be appropriately set according to the type of the material glass and the foaming agent so that the material glass is appropriately foamed. The firing temperature may be, for example, 600 to 1150 ° C., but is particularly preferably 800 to 1000 ° C. when soda lime glass is used as the raw glass. If the firing temperature is in such a range, the raw glass is sufficiently softened to appropriately form pores, and the raw glass does not become too soft, so that the formed pores are prevented from being blocked again. it can. The firing time may be, for example, 1 to 60 minutes, preferably 5 to 10 minutes. When the firing time is within such a range, foaming occurs sufficiently, and it can be avoided that the formed pores are closed again or the surface fineness is lost due to the bubbles adhering to each other.
 発泡ガラス材料の形状は、特に限定されず、塊状のままであってもよく、粉砕したものであってもよい。粉砕後の発泡ガラス材料の粒径は、特に限定されないが、2cm以下であることが好ましく、1cm以下であることがさらに好ましく、0.6cm以下であることがさらに好ましい。 The shape of the foamed glass material is not particularly limited, and may be a lump or crushed. The particle diameter of the foamed glass material after pulverization is not particularly limited, but is preferably 2 cm or less, more preferably 1 cm or less, and further preferably 0.6 cm or less.
 [高温アルカリ処理工程]
 高温アルカリ処理で使用されるアルカリ溶液は、水に溶解して水酸基を生じさせる溶質が水に溶解した溶液である。アルカリ溶液における溶質の種類は、特に限定されないが、例えば、NaOH、KOH、NaCO、Ca(OH)からなる群から選択される1種以上のアルカリ溶液を用いることができる。これらの中でも強アルカリであるNaOH又はKOH等のアルカリ金属水酸化物が特に好ましい。
[High-temperature alkali treatment process]
The alkaline solution used in the high-temperature alkali treatment is a solution in which a solute that dissolves in water to form a hydroxyl group is dissolved in water. Type of solute in the alkaline solution is not particularly limited, for example, can be used NaOH, KOH, and one or more alkali solution selected from the group consisting of Na 2 CO 3, Ca (OH ) 2. Among these, alkali metal hydroxides such as NaOH or KOH which are strong alkalis are particularly preferable.
 アルカリ溶液中のアルカリ金属水酸化物の量は、上述の特性を有する発泡ガラスを得る点から、4モル/L以上であり、5モル/L以上であることが好ましく、6モル/L以上であることがより好ましい。従来の発泡ガラスを含む吸着剤の製造方法では、一般にアルカリ金属水酸化物の量を多くしても、例えば4モル/L以上で、発泡ガラスのアニオン性物質の吸着量が飽和していたが、本発明の吸着剤の製造方法によれば、130℃以上の高温で処理することから、アルカリ金属水酸化物の量を多くするほど、発泡ガラスのアニオン性物質の吸着量を増大させることができることが明らかになった。これには、様々な理由が考えられるが、従来の製造方法では、温度が不十分で発泡ガラス材料とアルカリ金属水酸化物との反応が不十分であったり、発泡ガラス材料中のCa濃度が不十分であったりすること等が考えられる。これに対して、本発明の吸着剤の製造方法は、上述の条件を満たすことにより、発泡ガラスのアニオン性物質の吸着能を有する表面を増大させ、アニオン性物質の吸着量をこれまでの吸着剤よりも増大させることが可能となった。他方、アルカリ金属水酸化物の量の上限は、要求される吸着能に応じて、例えば、19モル/L以下(18モル/L以下、17モル/L以下等)としてもよい。 The amount of the alkali metal hydroxide in the alkali solution is 4 mol / L or more, preferably 5 mol / L or more, preferably 6 mol / L or more from the viewpoint of obtaining foamed glass having the above-mentioned characteristics. More preferably. In the conventional method for producing an adsorbent containing foamed glass, even if the amount of alkali metal hydroxide is increased, the amount of adsorbed anionic substances in the foamed glass is saturated at, for example, 4 mol / L or more. According to the method for producing an adsorbent of the present invention, since the treatment is performed at a high temperature of 130 ° C. or higher, the amount of the anionic substance adsorbed on the foam glass can be increased as the amount of the alkali metal hydroxide is increased. It became clear that we could do it. There are various reasons for this, but in the conventional manufacturing method, the temperature is insufficient and the reaction between the foam glass material and the alkali metal hydroxide is insufficient, or the Ca concentration in the foam glass material is low. It may be insufficient. On the other hand, the method for producing an adsorbent of the present invention increases the surface of the glass foam having an anionic substance adsorbing capacity by satisfying the above-described conditions, thereby reducing the amount of anionic substance adsorbed so far. It became possible to increase it more than the agent. On the other hand, the upper limit of the amount of alkali metal hydroxide may be, for example, 19 mol / L or less (18 mol / L or less, 17 mol / L or less, etc.) according to the required adsorption capacity.
 アルカリ溶液の温度は、上述の特性を有する発泡ガラスを得る点から、130℃以上であり、140℃以上であることがより好ましく、150℃以上であることがさらに好ましく、160℃以上であることがさらに一層好ましく、170℃以上であることが特に好ましい。従来の発泡ガラスを含む吸着剤の製造方法では、一般にアルカリ溶液の温度を上げても、例えば130℃以上で、発泡ガラスのアニオン性物質の吸着量が飽和していたが、本発明の吸着剤の製造方法によれば、4モル/L以上のアルカリ金属水酸化物の量で処理することから、アルカリ溶液の温度を上げるほど、発泡ガラスのアニオン性物質の吸着量を増大させることができることが明らかになった。これには、様々な理由が考えられるが、従来の製造方法では、アルカリ金属水酸化物の量が不十分で発泡ガラス材料とアルカリ金属水酸化物との反応が不十分であったり、発泡ガラス材料中のCa濃度が不十分であったりすること等が考えられる。これに対して、本発明の吸着剤の製造方法は、上述の条件を満たすことにより、発泡ガラスのアニオン性物質の吸着能を有する表面を増大させ、アニオン性物質の吸着量をこれまでの吸着剤よりも増大させることが可能となった。他方、アルカリ溶液の温度の上限は、特に限定されないが、温度を高くするとその分だけ危険性が増すと共にエネルギー消費が増大するので、例えば、300℃以下(280℃以下、260℃以下等)としてもよい。また、本発明における高温アルカリ処理工程において、少なくとも一部で130℃以上の条件になればよく、130℃未満の条件下で加熱する工程も含んでいてもよい。 The temperature of the alkaline solution is 130 ° C. or higher, more preferably 140 ° C. or higher, more preferably 150 ° C. or higher, and more preferably 160 ° C. or higher from the viewpoint of obtaining foamed glass having the above-mentioned characteristics. Is more preferable, and it is particularly preferable that the temperature is 170 ° C. or higher. In the conventional method for producing an adsorbent containing foamed glass, even if the temperature of the alkaline solution is generally increased, for example, at 130 ° C. or higher, the adsorbed amount of the anionic substance in the foamed glass is saturated. According to this production method, since the treatment is performed with an amount of alkali metal hydroxide of 4 mol / L or more, the adsorption amount of the anionic substance of the foam glass can be increased as the temperature of the alkali solution is increased. It was revealed. There are various reasons for this, but in the conventional manufacturing method, the amount of the alkali metal hydroxide is insufficient and the reaction between the foam glass material and the alkali metal hydroxide is insufficient. It is conceivable that the Ca concentration in the material is insufficient. On the other hand, the method for producing an adsorbent of the present invention increases the surface of the glass foam having an anionic substance adsorbing capacity by satisfying the above-described conditions, thereby reducing the amount of anionic substance adsorbed so far. It became possible to increase it more than the agent. On the other hand, the upper limit of the temperature of the alkaline solution is not particularly limited. However, as the temperature is increased, the danger increases and the energy consumption increases. For example, 300 ° C. or lower (280 ° C. or lower, 260 ° C. or lower, etc.) Also good. In the high-temperature alkali treatment step of the present invention, at least a part of the high-temperature alkali treatment step may be performed at 130 ° C. or higher, and a step of heating at a temperature lower than 130 ° C. may be included.
 アルカリ溶液による処理の所要時間は、1.5時間以内(例えば、1.2時間以内、1.0時間以内、50分以内、40分以内、30分以内、20分以内、10分以内、5分以内、1分以内等)である。本発明の吸着剤の製造方法は、このような短時間で、アニオン性物質の吸着能に優れた発泡ガラスを製造できる点で簡便である。上述の条件下における処理時間の下限は、要求される吸着能に応じて、例えば、10秒以上、30秒以上、1分以上、10分以上、30分以上、1時間以上としてもよい。 The time required for the treatment with the alkaline solution is within 1.5 hours (for example, within 1.2 hours, within 1.0 hour, within 50 minutes, within 40 minutes, within 30 minutes, within 20 minutes, within 10 minutes, 5 Within minutes, within 1 minute, etc.). The method for producing an adsorbent of the present invention is simple in that a foamed glass excellent in anionic substance adsorption ability can be produced in such a short time. The lower limit of the treatment time under the above conditions may be, for example, 10 seconds or longer, 30 seconds or longer, 1 minute or longer, 10 minutes or longer, 30 minutes or longer, 1 hour or longer, depending on the required adsorption capacity.
 なお、上述の高温アルカリ処理工程は、加圧下で行うことが好ましい。加圧の方法は、特に限定されず、加圧を行うための装置を用いて行ってもよく、発泡ガラスとアルカリ溶液を密閉容器中に収容した状態で加熱を行うことによって行ってもよい。前者の場合は、印加する圧力を任意に変化させることができるので、加熱温度が比較的低い場合でも加える圧力を高くすることができる。後者の場合は、アルカリ溶液が100℃より高く加熱されるとアルカリ溶液に含まれる水の蒸気圧によってアルカリ溶液が加圧される。後者の方法によれば、特別な装置を用いることなく、アルカリ溶液を加圧することができる。 In addition, it is preferable to perform the above-mentioned high temperature alkali treatment process under pressure. The method of pressurization is not particularly limited, and may be performed using an apparatus for performing pressurization, or may be performed by heating in a state where foamed glass and an alkaline solution are contained in a sealed container. In the former case, the applied pressure can be changed arbitrarily, so that the applied pressure can be increased even when the heating temperature is relatively low. In the latter case, when the alkaline solution is heated above 100 ° C., the alkaline solution is pressurized by the vapor pressure of water contained in the alkaline solution. According to the latter method, the alkaline solution can be pressurized without using a special apparatus.
 なお、密閉容器を用いてアルカリ溶液を加圧する場合、110℃での水の飽和蒸気圧がほぼ1.4気圧であって、密閉容器に若干の蒸気漏れがあることを考慮すると、1.2気圧以上が好ましく、1.4気圧以上がさらに好ましく、2気圧以上が特に好ましい。本実施形態において圧力の上限は、特に制限はないが、コスト面を考慮すると上述の加圧を行うための装置を用いずに加圧をしたほうがよい、例えば、95気圧以下が好ましく、70気圧以下がさらに好ましい。なお、300℃における水の飽和蒸気圧は、ほぼ95気圧である。 In addition, when pressurizing the alkaline solution using a sealed container, considering that the saturated vapor pressure of water at 110 ° C. is approximately 1.4 atm and there is some steam leakage in the sealed container, 1.2. It is preferably at least atmospheric pressure, more preferably at least 1.4 atmospheric pressure, and particularly preferably at least 2 atmospheric pressure. In the present embodiment, the upper limit of the pressure is not particularly limited, but in consideration of cost, it is better to pressurize without using the above-described apparatus for performing pressurization, for example, 95 atm or less is preferable, and 70 atm More preferred are: The saturated vapor pressure of water at 300 ° C. is approximately 95 atmospheres.
 <第2の実施形態に係るアニオン性物質の吸着剤の製造方法>
 第2の実施形態に係るアニオン性物質の吸着剤の製造方法は、発泡ガラス材料をアルカリ溶液中で100気圧以上の条件で1.5時間以内高加圧する処理(以下、「高加圧処理」と呼称する場合がある。)工程を有する。かかる方法により、上述の特性を有する発泡ガラスを含む吸着剤を製造できる。本明細書において、「高加圧」とは、100気圧以上の加圧処理することをいう。
<Method for Producing Adsorbent of Anionic Substance According to Second Embodiment>
The method for producing an adsorbent of an anionic substance according to the second embodiment is a process for pressurizing a foamed glass material in an alkaline solution at a pressure of 100 atm or higher for 1.5 hours (hereinafter referred to as “high pressure process”). A process). By such a method, an adsorbent containing foamed glass having the above-described properties can be produced. In the present specification, “high pressurization” means pressurization treatment of 100 atm or more.
 [高加圧処理工程]
 高加圧処理工程における気圧は、100気圧以上の条件であれば特に限定されず、所望の吸着剤の吸着能に応じて適宜設定してもよい。例えば、上述の特性の発泡ガラスを得る観点から、200気圧以上であることが好ましく、400気圧以上であることがより好ましく、600気圧以上であることがさらに好ましく、800気圧以上であることがより一層好ましく、1000気圧以上であることが特に好ましい。他方、高加圧工程における圧力の上限は、例えば、20000気圧以下(15000気圧以下、10000気圧以下、5000気圧以下、2000気圧以下、1500気圧以下等)であってよい。また、本発明における高加圧工程において、少なくとも一部で100気圧以上の条件になればよく、100気圧未満の条件下で加圧する工程も含んでいてもよい。
[High pressure treatment process]
The atmospheric pressure in the high pressure treatment step is not particularly limited as long as it is 100 atm or higher, and may be appropriately set according to the desired adsorbent adsorption capacity. For example, from the viewpoint of obtaining foamed glass having the above-mentioned characteristics, it is preferably 200 atm or more, more preferably 400 atm or more, further preferably 600 atm or more, and more preferably 800 atm or more. More preferably, it is particularly preferably 1000 atm or more. On the other hand, the upper limit of the pressure in the high pressurization step may be, for example, 20000 atm or less (15000 atm or less, 10,000 atm or less, 5000 atm or less, 2000 atm or less, 1500 atm or less, etc.). In the high pressurization step of the present invention, at least a part of the pressure may be 100 atm or higher, and a step of pressurizing under a condition of less than 100 atm may be included.
 高加圧処理工程においては、1.5時間以内(例えば、1.2時間以内、1.0時間以内、50分以内、40分以内、30分以内、20分以内、10分以内、5分以内、1分以内等)という短時間の高加圧(100気圧以上の条件)によりアニオン性物質吸着能を有する発泡ガラスを製造できる点で簡便である。100気圧以上の条件下での高加圧時間の下限は、所望の吸着剤の吸着能に応じて適宜設定してもよい。例えば、上述の特性の発泡ガラスを得る観点から、例えば、10秒以上、30秒以上、1分以上、10分以上、30分以上、1時間以上であることが好ましい。 In the high pressure treatment process, within 1.5 hours (for example, within 1.2 hours, within 1.0 hour, within 50 minutes, within 40 minutes, within 30 minutes, within 20 minutes, within 10 minutes, within 5 minutes) It is simple in that a foamed glass having an anionic substance adsorbing ability can be produced by high pressure (conditions of 100 atm or more) for a short time such as within 1 minute or less. The lower limit of the high pressurization time under the condition of 100 atm or more may be appropriately set according to the desired adsorption capacity of the adsorbent. For example, from the viewpoint of obtaining foamed glass having the above characteristics, for example, it is preferably 10 seconds or longer, 30 seconds or longer, 1 minute or longer, 10 minutes or longer, 30 minutes or longer, 1 hour or longer.
 高加圧処理には、例えば、超高圧装置を用いることができる。高加圧には、発泡ガラス材料をアルカリ溶液中に含ませた状態で、密閉容器中に収容した状態で上記の装置による高加圧処理を行うことによって行うことができる。 For example, an ultra-high pressure apparatus can be used for the high pressure treatment. The high pressurization can be performed by performing a high pressurization treatment with the above-described apparatus in a state where the foamed glass material is contained in an alkaline solution and accommodated in a sealed container.
 高加圧処理工程において使用される発泡ガラス材料は、第1の実施形態に係るアニオン性物質の吸着剤の製造方法で説明したように、例えば、上述の原料ガラスを発泡させた発泡ガラス材料を用いることができる。 The foamed glass material used in the high pressure treatment step is, for example, a foamed glass material obtained by foaming the above-described raw glass as described in the method for producing the anionic substance adsorbent according to the first embodiment. Can be used.
 高加圧処理工程において使用されるアルカリ溶液は、水に溶解して水酸基を生じさせる溶質が水に溶解した溶液である。アルカリ溶液における溶質の種類は、特に限定されないが、例えば、NaOH、KOH、NaCO、Ca(OH)からなる群から選択される1種以上を用いることができる。これらの中でも強アルカリであるNaOH又はKOHが特に好ましい。 The alkaline solution used in the high pressure treatment step is a solution in which a solute that dissolves in water to form a hydroxyl group is dissolved in water. Type of solute in the alkaline solution is not particularly limited, for example, can be used NaOH, KOH, at least one selected from the group consisting of Na 2 CO 3, Ca (OH ) 2. Among these, NaOH or KOH which is a strong alkali is particularly preferable.
 溶質がNaOH又はKOHである場合、アルカリ溶液の濃度は、0.5mol/L以上であることが好ましく、3mol/L以上であることがさらに好ましく、4mol/L以上であることがさらに好ましい。3mol/L以上の場合にアニオン性物質(特に、リン酸イオン)の吸着量が特に高くなり、4mol/L以上の場合にアニオン性物質(特に、リン酸イオン)の吸着量がさらに高くなる。また、溶質がNaOH又はKOHである場合、アルカリ溶液の濃度は、例えば、19モル/L以下(18モル/L以下、17モル/L以下等)としてもよい。 When the solute is NaOH or KOH, the concentration of the alkaline solution is preferably 0.5 mol / L or more, more preferably 3 mol / L or more, and further preferably 4 mol / L or more. When the amount is 3 mol / L or more, the adsorption amount of the anionic substance (particularly, phosphate ions) is particularly high, and when the amount is 4 mol / L or more, the adsorption amount of the anionic substance (particularly, phosphate ions) is further increased. When the solute is NaOH or KOH, the concentration of the alkaline solution may be, for example, 19 mol / L or less (18 mol / L or less, 17 mol / L or less, etc.).
 高加圧処理工程における温度は、例えば、室温~200℃であれば、特に限定されないが、上述した特性の吸着剤を得る観点から、80℃以上が好ましく、90℃以上であることがより好ましい。温度は、上述の加圧装置により調節することができる。 The temperature in the high pressure treatment step is not particularly limited as long as it is, for example, room temperature to 200 ° C., but is preferably 80 ° C. or higher, more preferably 90 ° C. or higher from the viewpoint of obtaining an adsorbent having the above-described characteristics. . The temperature can be adjusted by the above-described pressure device.
 本発明のアニオン性物質の吸着剤の製造では、上述の高温アルカリ処理工程及び高加圧処理工程とは異なる公知の工程をさらに含んでもよく、含まなくてもよい。そのような工程としては、洗浄工程を挙げることができる。 The production of the anionic substance adsorbent of the present invention may or may not include a known process different from the high-temperature alkali treatment process and the high-pressure treatment process described above. An example of such a process is a cleaning process.
 洗浄工程においては、上記高温アルカリ処理工程及び高加圧処理工程の後、発泡ガラスに付着したアルカリ溶液を除去することができる。この洗浄を行う方法はアルカリ溶液を除去可能な方法であれば特に限定されず、例えば、水、酸性溶液又はpH緩衝溶液を用いて行うことができる。また、発泡ガラスにアルカリ溶液が付着していても問題がない場合には、洗浄処理の工程は省略してもよい。 In the washing step, the alkaline solution adhering to the foamed glass can be removed after the high temperature alkali treatment step and the high pressure treatment step. The method for performing this washing is not particularly limited as long as it is a method capable of removing the alkaline solution, and for example, water, an acidic solution, or a pH buffer solution can be used. If there is no problem even if the alkaline solution adheres to the foamed glass, the cleaning process may be omitted.
 <アニオン性物質の吸着剤の製造装置>
 本発明は、発泡ガラス材料を、アルカリ金属水酸化物を4モル/L以上の量で含みかつ130℃以上であるアルカリ溶液中にて所要時間に亘り処理する手段を備える、アニオン性物質の吸着剤の製造装置を包含する。
<Anionic substance adsorbent manufacturing equipment>
The present invention adsorbs an anionic substance comprising means for treating a foamed glass material for a required time in an alkali solution containing an alkali metal hydroxide in an amount of 4 mol / L or more and 130 ° C. or more. It includes an agent manufacturing apparatus.
 本発明は、アニオン性物質の吸着剤の製造方法において、アルカリ金属水酸化物を4モル/L以上の量で含みかつ130℃以上のアルカリ溶液中での加熱処理が可能な装置を用いることができる。 The present invention uses an apparatus containing an alkali metal hydroxide in an amount of 4 mol / L or more and capable of heat treatment in an alkaline solution at 130 ° C. or higher in the method for producing an adsorbent for anionic substances. it can.
 また、本発明は、発泡ガラスをアルカリ溶液中で100気圧以上の条件で1.5時間以内高加圧可能な手段を備える、アニオン性物質の吸着剤の製造装置を包含する。 Also, the present invention includes an apparatus for producing an adsorbent of an anionic substance, comprising means capable of high pressurization of foamed glass in an alkaline solution at a pressure of 100 atm or higher for 1.5 hours.
 本発明は、アニオン性物質の吸着剤の製造方法において、100気圧以上の高加圧が可能な装置を用いることができる。 The present invention can use an apparatus capable of high pressurization of 100 atm or higher in the method for producing an adsorbent of an anionic substance.
 <アニオン性物質の回収方法>
 本発明は、上述のアニオン性物質の吸着剤にアニオン性物質を吸着させる工程を有する、アニオン性物質の回収方法を包含する。
<Method for recovering anionic substances>
The present invention includes a method for recovering an anionic substance, which comprises a step of adsorbing an anionic substance on the adsorbent for the anionic substance described above.
 吸着剤にアニオン性物質を吸着させる方法としては、例えば、上記吸着剤をリン酸イオンやフッ化物イオンを含む溶液中に浸漬させることで、該溶液中のリン酸イオン及びフッ化物イオンを吸着剤に吸着させることができる。リン酸イオンを含む溶液としては、リン酸イオンが含まれている液体であれば特に限定されず、例えば、生活排水や農業排水等が挙げられる。フッ化物イオンを含む溶液としては、フッ化物イオンが含まれている液体であれば特に限定されず、例えば、半導体の洗浄液やガラスの加工・洗浄で用いられるフッ酸含有溶液等が挙げられる。 As a method of adsorbing an anionic substance to the adsorbent, for example, the adsorbent is immersed in a solution containing phosphate ions or fluoride ions, so that the phosphate ions and fluoride ions in the solution are adsorbed. Can be absorbed. The solution containing phosphate ions is not particularly limited as long as the solution contains phosphate ions, and examples thereof include domestic wastewater and agricultural wastewater. The solution containing fluoride ions is not particularly limited as long as it is a liquid containing fluoride ions, and examples thereof include a semiconductor cleaning solution and a hydrofluoric acid-containing solution used for glass processing and cleaning.
 リン酸イオンを含む溶液のpHは特に限定されないが、pHが2.4~7.7であることが好ましく、2.8~6.8であることがより好ましく、3.8~6であることがさらに好ましい。pHがこのような範囲にある場合に、リン酸イオン吸着量が高くなる。また、リン酸イオンを含む溶液のpHが上記の範囲外である場合には、酸又は塩基を添加することによってリン酸イオンを含む溶液のpHが上記範囲内にするpH調整工程を備えることが好ましい。フッ化物イオンを含む溶液のpHは特に限定されないが、pHが1.4~7.2であることが好ましく、1.8~6.3あることがより好ましく、2.2~5.3であることがさらに好ましい。pHがこのような範囲にある場合に、フッ化物イオン吸着量が高くなる。また、フッ化物イオンを含む溶液のpHが上記の範囲外である場合には、酸又は塩基を添加することによってフッ化物イオンを含む溶液のpHが上記範囲内にするpH調整工程を備えることが好ましい。 The pH of the solution containing phosphate ions is not particularly limited, but the pH is preferably 2.4 to 7.7, more preferably 2.8 to 6.8, and 3.8 to 6. More preferably. When the pH is in such a range, the phosphate ion adsorption amount becomes high. In addition, when the pH of the solution containing phosphate ions is outside the above range, a pH adjustment step may be provided in which the pH of the solution containing phosphate ions is within the above range by adding an acid or a base. preferable. The pH of the solution containing fluoride ions is not particularly limited, but the pH is preferably 1.4 to 7.2, more preferably 1.8 to 6.3, and 2.2 to 5.3. More preferably it is. When the pH is in such a range, the fluoride ion adsorption amount becomes high. In addition, when the pH of the solution containing fluoride ions is outside the above range, a pH adjustment step may be provided to bring the pH of the solution containing fluoride ions into the above range by adding an acid or a base. preferable.
 吸着剤にリン酸イオンを吸着させた後は、吸着剤を粉砕してリン酸肥料や飼料等の原料としてもよい。 After adsorbing phosphate ions on the adsorbent, the adsorbent may be crushed and used as a raw material for phosphate fertilizer, feed, and the like.
 また、吸着剤を粉砕する代わりに、硝酸等の強酸を用いて吸着剤からアニオン性物質(例えば、リン酸イオン)を脱着させてアニオン性物質を回収してもよい。この場合の、強酸の濃度は、特に限定されないが、0.01mol/L以上が好ましく、0.05mol/L以上がより好ましく、0.1mol/L以上がさらに好ましい。0.05mol/L以上の場合にアニオン性物質(特に、リン酸イオン)の回収率が高くなり、0.1mol/Lの場合にアニオン性物質(特に、リン酸イオン)の回収率が特に高くなる。また、強酸の濃度の上限は、特に限定されないが、例えば、3mol/L以下としてよい。なお、アニオン性物質を脱着させたアニオン性物質吸着剤は、再びアニオン性物質を吸着することができる。 Further, instead of pulverizing the adsorbent, an anionic substance (for example, phosphate ion) may be desorbed from the adsorbent using a strong acid such as nitric acid to recover the anionic substance. In this case, the concentration of the strong acid is not particularly limited, but is preferably 0.01 mol / L or more, more preferably 0.05 mol / L or more, and further preferably 0.1 mol / L or more. When it is 0.05 mol / L or more, the recovery rate of anionic substances (particularly phosphate ions) is high, and when it is 0.1 mol / L, the recovery ratio of anionic substances (particularly phosphate ions) is particularly high. Become. The upper limit of the strong acid concentration is not particularly limited, but may be, for example, 3 mol / L or less. The anionic substance adsorbent from which the anionic substance has been desorbed can adsorb the anionic substance again.
 <試験例1>
 吸着剤の吸着能(リン酸イオンの吸着量)を、XPS分析による吸着剤表面のCa2p濃度とNa1s濃度とに基づき評価した。
<Test Example 1>
The adsorbent adsorption capacity (phosphate ion adsorption amount) was evaluated based on the Ca2p concentration and Na1s concentration on the adsorbent surface by XPS analysis.
 具体的には、発泡剤に炭酸カルシウムを用いて製造された発泡ガラス材料Aを用意した。次に、この発泡ガラス材料Aに対して、処理圧力、処理温度、処理時間を適宜調整してNaOH濃度5.5mol/Lの水酸化ナトリウム溶液による高温アルカリ処理を行って、発泡ガラス表面のCa2p濃度とNa1s濃度とが調整された吸着剤を製造した。そして、Ca2p濃度とNa1s濃度とがそれぞれ異なる吸着剤のリン酸イオンの吸着量を、上述の「発明を実施するための形態」において記載した、[高濃度リン酸イオン溶液におけるリン酸イオンの吸着可能量の測定方法]によりそれぞれ測定した。その結果をリン吸着量[相対量]として、図1及び図2に示す。また、XPS分析による、発泡ガラス材料AのSi2pのピーク域を図3に示し、発泡ガラス材料Aを高温アルカリ処理することにより製造された吸着剤(発泡ガラス)のSi2pのピーク域を図4に示す。 Specifically, a foamed glass material A manufactured using calcium carbonate as a foaming agent was prepared. Next, this foamed glass material A was subjected to high-temperature alkali treatment with a sodium hydroxide solution having a NaOH concentration of 5.5 mol / L by appropriately adjusting the treatment pressure, treatment temperature, and treatment time, and Ca2p on the surface of the foamed glass. An adsorbent with adjusted concentration and Na1s concentration was produced. And the adsorption amount of the phosphate ion of the adsorbent having different Ca2p concentration and Na1s concentration is described in the above-mentioned “Mode for Carrying Out the Invention”. It was measured by the measuring method of possible amount]. The result is shown in FIGS. 1 and 2 as the phosphorus adsorption amount [relative amount]. Further, the peak region of Si2p of the foamed glass material A by XPS analysis is shown in FIG. 3, and the peak region of Si2p of the adsorbent (foamed glass) produced by high-temperature alkali treatment of the foamed glass material A is shown in FIG. Show.
 図1及び図2の結果から、吸着剤表面のCa2p濃度が高いほどリン吸着量が増え、吸着剤表面のNa1s濃度が低いほどリン吸着量が増えることが確認された。そして、吸着剤表面のCa2p濃度が4.0原子%以上であり、Na1s濃度が8.0原子%以下である場合に、いずれもリン酸イオンの吸着可能量が20mg/g以上であり、優れた吸着能を発揮することが確認された。 From the results of FIGS. 1 and 2, it was confirmed that the higher the Ca2p concentration on the adsorbent surface, the higher the phosphorus adsorption amount, and the lower the Na1s concentration on the adsorbent surface, the higher the phosphorus adsorption amount. When the Ca2p concentration on the adsorbent surface is 4.0 atomic% or more and the Na1s concentration is 8.0 atomic% or less, the adsorbable amount of phosphate ions is 20 mg / g or more in both cases. It was confirmed that it exhibited a high adsorption capacity.
 また、図3及び図4の結果から、発泡ガラス材料Aでは、-SiOが多く、-SiOXが少ないため半値幅が狭いのに対し、吸着剤となる発泡ガラスでは、アルカリ処理により、-SiOが少なく-SiOXが多くなり、半値幅が大きくなることが確認された。この半値幅2.4eV以上となる吸着剤(発泡ガラス)は、アルカリ処理されてもなおガラスの基本骨格である-SiOXが崩壊せずに残り、この-SiOXがリン酸イオンの吸着に寄与してリン酸イオン吸着能を発揮する。 From the results of FIGS. 3 and 4, the foamed glass material A has a large amount of —SiO 2 and a small amount of —SiOX, so the half-value width is narrow. It was confirmed that 2 was small and -SiOX was increased, and the full width at half maximum was increased. In this adsorbent (foamed glass) with a half-value width of 2.4 eV or more, -SiOX, which is the basic skeleton of glass, remains undisintegrated even after alkali treatment, and this -SiOX contributes to the adsorption of phosphate ions. It exhibits phosphate ion adsorption capacity.
 <試験例2>
 吸着剤のリン酸イオンの吸着量を、水銀圧入法による比表面積と細孔容積とに基づき評価した。また、吸着剤のリン酸イオンの吸着量を、上述の「発明を実施するための形態」において記載した方法で測定した比重に基づき評価した。
<Test Example 2>
The amount of phosphate ion adsorbed by the adsorbent was evaluated based on the specific surface area and pore volume determined by the mercury intrusion method. Moreover, the adsorption amount of the phosphate ion of the adsorbent was evaluated based on the specific gravity measured by the method described in the above-mentioned “Mode for Carrying Out the Invention”.
 具体的には、試験例1で用意した発泡ガラス材料Aに対して、処理圧力、処理温度、処理時間を適宜調整してNaOH濃度5.5mol/Lの水酸化ナトリウム溶液による高温アルカリ処理を行って、発泡ガラス表面の比表面積、細孔容積及び比重が調整された吸着剤を製造した。そして、比表面積、細孔容積及び比重がそれぞれ異なる吸着剤のリン吸着可能量を、上述の、[高濃度リン酸イオン溶液におけるリン酸イオンの吸着可能量の測定方法]によりそれぞれ測定した。その結果をリン吸着量[相対量]として、図5~図7に示す。 Specifically, the foamed glass material A prepared in Test Example 1 is subjected to high-temperature alkali treatment with a sodium hydroxide solution having a NaOH concentration of 5.5 mol / L by appropriately adjusting the treatment pressure, treatment temperature, and treatment time. Thus, an adsorbent in which the specific surface area, pore volume and specific gravity of the foam glass surface were adjusted was produced. And the amount of phosphorus adsorption | suction of the adsorption agent from which a specific surface area, pore volume, and specific gravity each differ was measured by the above-mentioned [measurement method of the adsorption amount of phosphate ion in a high concentration phosphate ion solution], respectively. The results are shown in FIGS. 5 to 7 as phosphorus adsorption amounts [relative amounts].
 図5の結果から、吸着剤の比表面積が大きいほどリン吸着量が増えることが確認された。また、図6の結果から、吸着剤の細孔容積が大きいほどリン吸着量が増えることが確認された。また、図7の結果から、吸着剤の比重が小さいほどリン吸着量が増えることが確認された。そして、吸着剤の比表面積が15m/g以上、細孔容積が1.7cm/g以上、又は比重が0.60g/mL以下である場合に、いずれもリン酸イオンの吸着可能量が10mg/g以上と優れたリン酸イオン吸着能を発揮することが確認された。 From the result of FIG. 5, it was confirmed that the amount of phosphorus adsorption increases as the specific surface area of the adsorbent increases. Moreover, from the result of FIG. 6, it was confirmed that the amount of phosphorus adsorption increases as the pore volume of the adsorbent increases. Moreover, from the result of FIG. 7, it was confirmed that the amount of phosphorus adsorption increases as the specific gravity of the adsorbent decreases. And, when the specific surface area of the adsorbent is 15 m 2 / g or more, the pore volume is 1.7 cm 3 / g or more, or the specific gravity is 0.60 g / mL or less, the adsorbable amount of phosphate ions is all. It was confirmed that the phosphate ion adsorbing ability was excellent at 10 mg / g or more.
 <試験例3>
 試験例1で用いた発泡ガラス材料Aに対して、NaOH濃度5.0mol/L、処理圧力5気圧、処理温度150℃、処理時間30分で高温アルカリ処理し、比重0.50g/mLとなる発泡ガラスを製造した。この発泡ガラスを吸着剤とし、上述の、[高濃度リン酸イオン溶液におけるリン酸イオンの吸着可能量の測定方法]で測定したところ、リン酸イオン吸着可能量は77.8mg/gであった。この吸着剤を用いて、以下に説明する、[低濃度リン酸イオン溶液におけるリン酸イオンの吸着可能量の測定方法]でリン酸イオン吸着可能量を測定した。その結果を図8に示す。
<Test Example 3>
The foam glass material A used in Test Example 1 is subjected to high-temperature alkali treatment at a NaOH concentration of 5.0 mol / L, a treatment pressure of 5 atm, a treatment temperature of 150 ° C., and a treatment time of 30 minutes, resulting in a specific gravity of 0.50 g / mL. Foam glass was produced. Using this foamed glass as an adsorbent, the amount of phosphate ion adsorbable was 77.8 mg / g as measured by the above-mentioned [Method for measuring the amount of phosphate ion adsorbable in a high concentration phosphate ion solution]. . Using this adsorbent, the phosphate ion-adsorbable amount was measured by [Method for measuring the adsorbable amount of phosphate ion in a low-concentration phosphate ion solution] described below. The result is shown in FIG.
 [低濃度リン酸イオン溶液におけるリン酸イオンの吸着可能量の測定方法]
 (1) 吸着剤2.50gを充填したカラムと、リン酸イオン(PO 3-)濃度30mg/Lのリン酸イオン溶液500mLが入った水槽とを用意する。
 (2) ポンプを用いて水槽内のリン酸イオン溶液を流速1.0mL/minでカラムの下部から上部の方向で流す。カラムを通過した溶液は、再び水槽に回収されて水槽-カラム間の循環を繰り返す。また、循環中はリン酸イオン溶液のpHを塩酸もしくは水酸化ナトリウム溶液を添加して所望のpHに調整する。
 (3) 運転開始から一定時間経過後に水槽内のリン酸イオン溶液を採取し、モリブデンブルー法による吸光光度計により測定する。
 (4) 測定値に基づいて、リン酸イオン吸着量(mg/g)を求める。
 (5) 水槽内のリン酸イオン溶液のPO 3-濃度を30mg/Lに調整する。
 (6) (2)~(5)の操作を吸着剤のリン酸イオン吸着量が飽和となるまで繰り返す。
 (7) 飽和に至るまでのリン酸イオン吸着量の総和をリン酸イオン吸着可能量(mg/g)とする。
[Method for measuring the amount of phosphate ions that can be adsorbed in a low concentration phosphate ion solution]
(1) Prepare a column packed with 2.50 g of an adsorbent and a water tank containing 500 mL of a phosphate ion solution having a phosphate ion (PO 4 3− ) concentration of 30 mg / L.
(2) The phosphate ion solution in the water tank is flowed from the lower part to the upper part of the column at a flow rate of 1.0 mL / min using a pump. The solution that has passed through the column is collected again in the water tank, and the circulation between the water tank and the column is repeated. During the circulation, the pH of the phosphate ion solution is adjusted to a desired pH by adding hydrochloric acid or sodium hydroxide solution.
(3) After a certain time has elapsed from the start of operation, a phosphate ion solution in the water tank is collected and measured with an absorptiometer using the molybdenum blue method.
(4) The phosphate ion adsorption amount (mg / g) is determined based on the measured value.
(5) Adjust the PO 4 3− concentration of the phosphate ion solution in the water tank to 30 mg / L.
(6) The operations (2) to (5) are repeated until the phosphate ion adsorption amount of the adsorbent becomes saturated.
(7) The total amount of phosphate ions adsorbed until saturation is reached is the phosphate ion adsorbable amount (mg / g).
 図8の結果からわかるように、低濃度リン酸イオン溶液におけるリン酸イオンの吸着可能量の測定でも、25000分で72.0mg/gを超えた。つまり、高濃度域のリン酸イオン溶液に対する低濃度リン酸イオン溶液のリン吸着量の達成率は、72.0(mg/g)/77.8(mg/g)×100=92.5(%)となる。このことから、試験例3で用いた吸着剤は、低濃度域から高濃度域までの全濃度域のリン酸イオン溶液に対して、優れたリン酸イオンの吸着能を発揮することが確認された。 As can be seen from the results in FIG. 8, the amount of phosphate ions that can be adsorbed in the low-concentration phosphate ion solution also exceeded 72.0 mg / g in 25,000 minutes. That is, the achievement rate of the phosphorus adsorption amount of the low concentration phosphate ion solution with respect to the high concentration region phosphate ion solution is 72.0 (mg / g) /77.8 (mg / g) × 100 = 92.5 ( %). From this, it was confirmed that the adsorbent used in Test Example 3 exhibits an excellent phosphate ion adsorption ability with respect to the phosphate ion solution in the entire concentration range from the low concentration range to the high concentration range. It was.
 <試験例4>
 試験例4では、吸着剤のフッ化物イオンの吸着能について試験を行った。
<Test Example 4>
In Test Example 4, the adsorption ability of the adsorbent for fluoride ions was tested.
 具体的には、試験例1で製造した吸着剤(Ca2p濃度11.4原子%、Na1s濃度2.5原子%)0.2gと、表1に示すフッ化物イオン濃度のフッ化ナトリウム溶液20mLとを、容器に収容した。そして、容器に塩酸又は水酸化ナトリウム溶液を添加して、所望のpHに調整する。pH調整後、25℃に設定した恒温槽内で容器を一定時間撹拌した。撹拌後3000rpmで10分間の遠心分離を行い、上澄み液中のフッ化物イオン濃度を比色法により測定した。この測定値に基づいてフッ素吸着量[mg/g]を算出した。その結果を表1に示す。 Specifically, 0.2 g of the adsorbent manufactured in Test Example 1 (Ca2p concentration 11.4 atomic%, Na1s concentration 2.5 atomic%), and 20 mL of a sodium fluoride solution having a fluoride ion concentration shown in Table 1 Was stored in a container. Then, hydrochloric acid or sodium hydroxide solution is added to the container to adjust to a desired pH. After pH adjustment, the container was stirred for a certain period of time in a thermostat set at 25 ° C. After stirring, centrifugation was performed at 3000 rpm for 10 minutes, and the fluoride ion concentration in the supernatant was measured by a colorimetric method. Based on this measured value, the fluorine adsorption amount [mg / g] was calculated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、試験例1で製造した吸着剤は、リン酸イオンだけではなく、フッ化物イオンに対しても優れた吸着能を発揮することが確認された。 From the results shown in Table 1, it was confirmed that the adsorbent produced in Test Example 1 exhibits excellent adsorption ability not only for phosphate ions but also for fluoride ions.
 <試験例5>
 試験例5では、発泡ガラス材料をアルカリ処理するに際して、アルカリ溶液のNaOH濃度と温度とがリン酸イオンの吸着量に与える影響を試験した。
<Test Example 5>
In Test Example 5, when the foamed glass material was subjected to alkali treatment, the influence of the NaOH concentration and temperature of the alkaline solution on the phosphate ion adsorption amount was tested.
 具体的には、試験例1で使用した発泡ガラス材料Aに対して、アルカリ溶液のNaOH濃度を1.0~6.5mol/L、アルカリ溶液の温度を80~180℃、処理圧力を0.2~10気圧に適宜調整しながら、1時間アルカリ処理を行って発泡ガラスを製造した。これら各条件で製造された発泡ガラスを吸着剤とし、吸着剤のリン酸イオン吸着可能量を、上述の、[高濃度リン酸イオン溶液におけるリン酸イオンの吸着可能量の測定方法]で測定した。その結果をリン吸着量[相対量]として、図9及び図10に示す。 Specifically, with respect to the foamed glass material A used in Test Example 1, the NaOH concentration of the alkaline solution is 1.0 to 6.5 mol / L, the temperature of the alkaline solution is 80 to 180 ° C., and the treatment pressure is 0.00. Foamed glass was produced by performing an alkali treatment for 1 hour while appropriately adjusting to 2 to 10 atmospheres. The foamed glass produced under each of these conditions was used as an adsorbent, and the amount of phosphate ion adsorbable by the adsorbent was measured by the above-described method for measuring the amount of phosphate ion adsorbable in a high-concentration phosphate ion solution. . The results are shown in FIGS. 9 and 10 as the phosphorus adsorption amount [relative amount].
 図9及び図10の結果からわかるように、アルカリ溶液のNaOH濃度が4.0mol/L以上であって、アルカリ溶液の温度(処理温度)が130℃以上でアルカリ処理して得られた発泡ガラスを吸着剤として用いた場合には、アルカリ溶液の温度が120℃以下である場合に比べ、リン吸着量が大幅に増えた。このことから、アルカリ溶液のNaOH濃度が4.0mol/L以上であって、アルカリ溶液の温度が130℃以上の条件で高温アルカリ処理されて製造された吸着剤は、優れたリン酸イオン吸着能を示すことがわかる。 As can be seen from the results of FIG. 9 and FIG. 10, the foamed glass obtained by alkali treatment with the NaOH concentration of the alkali solution being 4.0 mol / L or more and the temperature (treatment temperature) of the alkali solution being 130 ° C. or more. When adsorbent was used as the adsorbent, the amount of phosphorus adsorbed significantly increased compared to the case where the temperature of the alkaline solution was 120 ° C. or lower. Therefore, the adsorbent produced by high-temperature alkali treatment under the condition that the NaOH concentration of the alkali solution is 4.0 mol / L or more and the temperature of the alkali solution is 130 ° C. or more has excellent phosphate ion adsorption ability. It can be seen that
 <試験例6>
 試験例6では、発泡ガラス材料をアルカリ処理するに際して、処理時間とリン酸イオンの吸着量との関係を試験した。
<Test Example 6>
In Test Example 6, when the foamed glass material was alkali-treated, the relationship between the treatment time and the phosphate ion adsorption amount was tested.
 具体的には、試験例1で使用した発泡ガラス材料Aに対して、アルカリ溶液のNaOH濃度を5.0、5.5、6.5mol/L、アルカリ溶液の温度を150、180℃、処理圧力を5、10気圧に調整しながら、アルカリ処理を行って発泡ガラスを製造した。これら各条件で製造された発泡ガラスを吸着剤とし、リン酸イオン吸着可能量を、上述の、[高濃度リン酸イオン溶液におけるリン酸イオンの吸着可能量の測定方法]で測定した。その結果をリン吸着量[相対量]として、図11に示す。 Specifically, with respect to the foamed glass material A used in Test Example 1, the NaOH concentration of the alkaline solution is 5.0, 5.5, 6.5 mol / L, the temperature of the alkaline solution is 150, 180 ° C., and the treatment. While adjusting the pressure to 5, 10 atm, alkali treatment was performed to produce foamed glass. The foamed glass produced under each of these conditions was used as an adsorbent, and the amount of phosphate ion adsorbable was measured by the above-described [Method for measuring the amount of phosphate ion adsorbable in a high-concentration phosphate ion solution]. The result is shown in FIG. 11 as the phosphorus adsorption amount [relative amount].
 図11の結果から、上記条件のアルカリ処理であれば、10分、30分、1時間という短い反応時間で、優れたリン酸イオン吸着能が得られることがわかり、特にアルカリ溶液が高濃度、高温であるほど処理時間が短くても優れたリン酸イオン吸着能が得られることがわかる。 From the results of FIG. 11, it can be seen that if the alkali treatment is performed under the above conditions, an excellent phosphate ion adsorption ability can be obtained in a reaction time as short as 10 minutes, 30 minutes, and 1 hour. It can be seen that the higher the temperature, the better phosphate ion adsorption ability can be obtained even if the treatment time is short.
 <試験例7>
 試験例7では、発泡ガラス材料を高加圧処理するに際して、アルカリ溶液の温度と処理圧力とがリン酸イオンの吸着量に与える影響を試験した。
<Test Example 7>
In Test Example 7, the influence of the temperature of the alkaline solution and the treatment pressure on the phosphate ion adsorption amount when the foamed glass material was subjected to high pressure treatment was tested.
 具体的には、試験例1で使用した発泡ガラス材料Aに対して、アルカリ溶液のNaOH濃度を5.0mol/L、アルカリ溶液の温度を80℃、95℃、処理圧力を0、100、1000、6000気圧に調整しながら、1時間高加圧処理を行って発泡ガラスを製造した。また、発泡剤に炭化ケイ素を用いて製造された発泡ガラス材料Bを用意した。そして、この発泡ガラス材料Bに対して、発泡ガラス材料Aと同様の高加圧処理を行って発泡ガラスを製造した。これら各条件で製造された発泡ガラスを吸着剤とし、リン酸イオン吸着可能量を、上述の、[高濃度リン酸イオン溶液におけるリン酸イオンの吸着可能量の測定方法]で測定した。その結果をリン吸着量[相対量]として、図12に示す。 Specifically, with respect to the foamed glass material A used in Test Example 1, the NaOH concentration of the alkaline solution is 5.0 mol / L, the temperature of the alkaline solution is 80 ° C., 95 ° C., and the treatment pressure is 0, 100, 1000. The foamed glass was manufactured by performing high pressure treatment for 1 hour while adjusting to 6000 atm. Moreover, the foamed glass material B manufactured using silicon carbide for a foaming agent was prepared. And with respect to this foam glass material B, the high pressurization process similar to the foam glass material A was performed, and the foam glass was manufactured. The foamed glass produced under each of these conditions was used as an adsorbent, and the amount of phosphate ion adsorbable was measured by the above-described [Method for measuring the amount of phosphate ion adsorbable in a high-concentration phosphate ion solution]. The result is shown in FIG. 12 as the phosphorus adsorption amount [relative amount].
 図12の結果からわかるように、アルカリ溶液の温度95℃の条件下での高加圧処理では、アルカリ溶液の温度80℃の条件下での高加圧処理する場合に比べ、発泡ガラス材料A及び発泡ガラス材料Bを用いた場合のいずれも、処理圧力を100気圧以上と大きくするにしたがって、吸着剤のリン吸着量が大きく増えた。また、アルカリ溶液の温度95℃で、6000気圧の高加圧処理で製造された吸着剤では、特に優れたリン吸着量を示すことが確認された。 As can be seen from the results of FIG. 12, the high pressure treatment under the condition of the alkali solution at the temperature of 95 ° C. is higher than the case of the high pressure treatment under the condition of the alkali solution at the temperature of 80 ° C. In addition, in both cases where the foamed glass material B was used, the phosphorus adsorption amount of the adsorbent increased greatly as the treatment pressure was increased to 100 atm or more. Moreover, it was confirmed that the adsorbent produced by the high pressure treatment of 6000 atm at an alkaline solution temperature of 95 ° C. showed a particularly excellent phosphorus adsorption amount.
 <試験例8>
 リン酸イオンを吸着した吸着剤を、硝酸によりリン酸脱着処理を行って、リン酸イオン回収率を試験した。
<Test Example 8>
The adsorbent adsorbing phosphate ions was subjected to phosphate desorption treatment with nitric acid, and the phosphate ion recovery rate was tested.
 具体的には、リン酸イオンを99.6mg/g吸着した吸着剤と、所定の濃度の硝酸溶液とを容器に収容し、25℃に設定した恒温槽内で2時間又は4時間撹拌した。そして、撹拌終了後、3000rpmで10分間の遠心分離を行い、上澄み液中のリン酸イオン濃度をモリブデンブルー法による吸光光度計により測定した。測定値に基づいて、リン酸イオン回収率を算出した。その結果を表2に示す。 Specifically, an adsorbent that adsorbed 99.6 mg / g of phosphate ions and a nitric acid solution having a predetermined concentration were placed in a container and stirred for 2 hours or 4 hours in a thermostatic bath set at 25 ° C. And after completion | finish of stirring, centrifugation for 10 minutes was performed at 3000 rpm, and the phosphate ion density | concentration in a supernatant liquid was measured with the absorptiometer by the molybdenum blue method. Based on the measured value, the phosphate ion recovery rate was calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、リン酸イオンを吸着した吸着剤から高い回収率でリン酸イオンを回収できることが確認された。 From the results in Table 2, it was confirmed that phosphate ions can be recovered at a high recovery rate from the adsorbent that adsorbs phosphate ions.

Claims (11)

  1.  発泡ガラスを含有し、
     XPS分析による吸着剤表面のCa2p濃度が4.0原子%以上又はNa1s濃度が8.0原子%以下であり、Si2pピークの半値幅が2.4eV以上であるアニオン性物質の吸着剤。
    Contains foam glass,
    An adsorbent of an anionic substance in which the Ca2p concentration on the adsorbent surface by XPS analysis is 4.0 atomic% or more or the Na1s concentration is 8.0 atomic% or less and the half width of the Si2p peak is 2.4 eV or more.
  2.  水銀圧入法による比表面積が15m/g以上または細孔容積が1.7cm/g以上である請求項1に記載の吸着剤。 The adsorbent according to claim 1, wherein the adsorbent has a specific surface area of 15 m 2 / g or more or a pore volume of 1.7 cm 3 / g or more by a mercury intrusion method.
  3.  比重が0.60g/mL以下である請求項1又は2に記載の吸着剤。 The adsorbent according to claim 1 or 2, wherein the specific gravity is 0.60 g / mL or less.
  4.  リン酸イオン濃度が3000mg/L以上のリン酸イオン溶液におけるリン酸イオン吸着可能量は、10mg/g以上である請求項1から3いずれかに記載の吸着剤。 The adsorbent according to any one of claims 1 to 3, wherein the phosphate ion adsorbable amount in a phosphate ion solution having a phosphate ion concentration of 3000 mg / L or more is 10 mg / g or more.
  5.  発泡ガラス材料を、アルカリ金属水酸化物を4モル/L以上の量で含みかつ130℃以上であるアルカリ溶液中にて所要時間に亘り処理する工程を有する、アニオン性物質の吸着剤の製造方法。 A method for producing an adsorbent for an anionic substance, comprising a step of treating a foamed glass material for a required time in an alkali solution containing an alkali metal hydroxide in an amount of 4 mol / L or more and 130 ° C. or more. .
  6.  前記所要時間は1.5時間以内である請求項5に記載の方法。 The method according to claim 5, wherein the required time is 1.5 hours or less.
  7.  発泡ガラス材料をアルカリ溶液中で100気圧以上の条件で1.5時間以内高加圧する工程を有する、アニオン性物質の吸着剤の製造方法。 A method for producing an adsorbent for an anionic substance, comprising a step of highly pressurizing a foamed glass material in an alkaline solution at a pressure of 100 atm or more for 1.5 hours.
  8.  前記発泡ガラス材料は、炭酸カルシウムを含む発泡剤で発泡されたものである請求項5から7いずれかに記載の方法。 The method according to any one of claims 5 to 7, wherein the foamed glass material is foamed with a foaming agent containing calcium carbonate.
  9.  発泡ガラス材料を、アルカリ金属水酸化物を4モル/L以上の量で含みかつ130℃以上であるアルカリ溶液中にて所要時間に亘り処理する手段を備える、アニオン性物質の吸着剤の製造装置。 An apparatus for producing an adsorbent for an anionic substance comprising means for treating a foamed glass material in an alkaline solution containing an alkali metal hydroxide in an amount of 4 mol / L or more and having a temperature of 130 ° C. or more over a required time. .
  10.  発泡ガラス材料をアルカリ溶液中で100気圧以上の条件で1.5時間以内高加圧可能な手段を備える、アニオン性物質の吸着剤の製造装置。 An apparatus for producing an adsorbent for an anionic substance, comprising means capable of highly pressurizing a foamed glass material in an alkaline solution at a pressure of 100 atm or more within 1.5 hours.
  11.  請求項1から4いずれかに記載の吸着剤、又は請求項5から8のいずれかに記載の方法で製造された吸着剤にアニオン性物質を吸着させる工程を有する、アニオン性物質の回収方法。 A method for recovering an anionic substance, comprising a step of adsorbing an anionic substance on the adsorbent according to any one of claims 1 to 4 or the adsorbent produced by the method according to any one of claims 5 to 8.
PCT/JP2017/045497 2016-12-19 2017-12-19 Anionic substance-adsorbing agent, method for producing anionic substance-adsorbing agent, apparatus for producing anionic substance-adsorbing agent, and method for recovering anionic substances WO2018117092A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3047527A CA3047527A1 (en) 2016-12-19 2017-12-19 Anionic substance-adsorbing agent, method for producing anionic substance-adsorbing agent, apparatus for producing anionic substance-adsorbing agent, and method for recovering anionic substances
US16/470,729 US20200086295A1 (en) 2016-12-19 2017-12-19 Anionic substance-adsorbing agent, method for producing anionic substance-adsorbing agent, apparatus for producing anionic substance-adsorbing agent, and method for recovering anionic substances

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-245569 2016-12-19
JP2016245569 2016-12-19
JP2017-161168 2017-08-24
JP2017161168A JP2018099668A (en) 2016-12-19 2017-08-24 Anionic substance-adsorbing agent, method for producing anionic substance-adsorbing agent, apparatus for producing anionic substance-adsorbing agent, and method for recovering anionic substances

Publications (1)

Publication Number Publication Date
WO2018117092A1 true WO2018117092A1 (en) 2018-06-28

Family

ID=62626520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045497 WO2018117092A1 (en) 2016-12-19 2017-12-19 Anionic substance-adsorbing agent, method for producing anionic substance-adsorbing agent, apparatus for producing anionic substance-adsorbing agent, and method for recovering anionic substances

Country Status (1)

Country Link
WO (1) WO2018117092A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141930A (en) * 1984-12-17 1986-06-28 Oyo Kikaku:Kk Preparation of adsorbent
JP2011161398A (en) * 2010-02-12 2011-08-25 Tottori Univ Method for manufacturing phosphate ion adsorbent, method for recovering phosphate ion, method for manufacturing phosphate fertilizer, and phosphate ion adsorbent
JP2013158727A (en) * 2012-02-07 2013-08-19 Tottori Univ Fluorine remover and treatment method for fluorine-containing liquid
JP2015013283A (en) * 2013-06-04 2015-01-22 国立大学法人佐賀大学 Ion adsorption material and method for producing the same
JP2015192977A (en) * 2014-03-31 2015-11-05 独立行政法人国立高等専門学校機構 Porous functional material, production method of the same and pollutant removal method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141930A (en) * 1984-12-17 1986-06-28 Oyo Kikaku:Kk Preparation of adsorbent
JP2011161398A (en) * 2010-02-12 2011-08-25 Tottori Univ Method for manufacturing phosphate ion adsorbent, method for recovering phosphate ion, method for manufacturing phosphate fertilizer, and phosphate ion adsorbent
JP2013158727A (en) * 2012-02-07 2013-08-19 Tottori Univ Fluorine remover and treatment method for fluorine-containing liquid
JP2015013283A (en) * 2013-06-04 2015-01-22 国立大学法人佐賀大学 Ion adsorption material and method for producing the same
JP2015192977A (en) * 2014-03-31 2015-11-05 独立行政法人国立高等専門学校機構 Porous functional material, production method of the same and pollutant removal method using the same

Similar Documents

Publication Publication Date Title
JP5382657B2 (en) Phosphate ion adsorbent manufacturing method, phosphate ion recovery method, phosphate fertilizer manufacturing method
Giraldo et al. Pb2+ adsorption from aqueous solutions on activated carbons obtained from lignocellulosic residues
RU2013142832A (en) HIGH PURE GRANULATED SILICON DIOXIDE FOR APPLICATION IN AREAS OF USE OF QUARTZ GLASS
CN104001471B (en) Preparation method of silicon dioxide immobilized hydroxyapatite material
JP5942141B2 (en) Fluorine removing agent, treatment method for fluorine-containing liquid
WO2018117092A1 (en) Anionic substance-adsorbing agent, method for producing anionic substance-adsorbing agent, apparatus for producing anionic substance-adsorbing agent, and method for recovering anionic substances
Davidi et al. Walnut shell activated carbon: optimization of synthesis process, characterization and application for Zn (II) removal in batch and continuous process
JP7437014B2 (en) Anionic substance adsorbent, anionic substance adsorbent manufacturing method, anionic substance adsorbent manufacturing apparatus, and anionic substance recovery method
JP2018099668A (en) Anionic substance-adsorbing agent, method for producing anionic substance-adsorbing agent, apparatus for producing anionic substance-adsorbing agent, and method for recovering anionic substances
CN105664879A (en) Composite adsorption film, preparation method and application of composite adsorption film
TWI754088B (en) Adsorbent for anionic substance, method for producing adsorbent for anionic substance, apparatus for producing adsorbent for anionic substance, and method for recovering anionic substance
CN105457614B (en) A kind of preparation method of the copper absorption agent based on metal-organic framework materials
Li et al. Preparation and amino modification of mesoporous carbon from bagasse via microwave activation and ethylenediamine polymerization for Pb (II) adsorption
CN104724722A (en) Method for treatment of molecular sieve by fluorine-containing alkaline medium
JP2013248555A (en) Cesium adsorbing material, and method for manufacturing the same
WO2011106062A2 (en) Silica remediation in water
KR20180000516A (en) The manufacturing method of open porous filter material made by special foaming process for water treatment system using ozonization means, and therefor the open porous special filter materials for water treatment
Sheha et al. Synthesis and sorption performance of novel sorbents for selective solid-phase extraction of Eu (III) ions from aqueous solutions
CN108002506B (en) Composite manganese-removing filter material and preparation method thereof
Zhou et al. Equilibrium and kinetic studies of phosphate adsorption onto corn straw char supported nano ferric oxide composite
Largitte et al. Kinetics and thermodynamics of the adsorption of lead (II) on a activated carbon from coconut shells
El-Dars et al. TOC reduction in drinking water using anionic surfactant modified bentonite
Ma et al. Kinetic and thermodynamic studies on the adsorption of Zn2+ onto chitosan-aluminium oxide composite material
JP5885161B2 (en) Method for enriching rare earth elements using biotite
CN109231841A (en) A kind of foamed glass material and preparation method thereof reducing water quality fluorine element index

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3047527

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883573

Country of ref document: EP

Kind code of ref document: A1