KR20180000516A - The manufacturing method of open porous filter material made by special foaming process for water treatment system using ozonization means, and therefor the open porous special filter materials for water treatment - Google Patents

The manufacturing method of open porous filter material made by special foaming process for water treatment system using ozonization means, and therefor the open porous special filter materials for water treatment Download PDF

Info

Publication number
KR20180000516A
KR20180000516A KR1020160078590A KR20160078590A KR20180000516A KR 20180000516 A KR20180000516 A KR 20180000516A KR 1020160078590 A KR1020160078590 A KR 1020160078590A KR 20160078590 A KR20160078590 A KR 20160078590A KR 20180000516 A KR20180000516 A KR 20180000516A
Authority
KR
South Korea
Prior art keywords
water treatment
water
liquid mixture
manufacturing
open porous
Prior art date
Application number
KR1020160078590A
Other languages
Korean (ko)
Other versions
KR101936344B1 (en
Inventor
곽재철
Original Assignee
곽재철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 곽재철 filed Critical 곽재철
Priority to KR1020160078590A priority Critical patent/KR101936344B1/en
Publication of KR20180000516A publication Critical patent/KR20180000516A/en
Application granted granted Critical
Publication of KR101936344B1 publication Critical patent/KR101936344B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • B01J19/124Ultraviolet light generated by microwave irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filtering Materials (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

The present invention provides a filter medium for water treatment, and more specifically, to an open-pore-type filter medium for water treatment. According to the present invention, the filter medium is prepared by the following steps: mixing silicon dioxide (SiO_2) and aluminum oxide (Al_2O_3) having a particle size of 10-60 um in a mixing ratio of 1 : 1 to 3 : 1 by mass; adding an aqueous liquid sodium silicate solution thereto in a mass ratio of 70-100% to produce a thick liquid mixture; adding a silicone-based stabilizer and an anionic activator thereto in a mass ratio of 0.1-0.5% each to produce a liquid mixture of base material; and pouring the liquid mixture in a circular mold having a diameter of 20-50 mm to be foamed and dried at 200-250C for 1-3 minutes by being irradiated with microwaves. Compared to the conventional filter media, the open-pore-type filter medium of the present invention dramatically improves adsorption of ozone oxides present in sewage and wastewater; is more environmentally friendly and cost-effective; and is absorbent and permeable with respect to water.

Description

오존을 활용한 수처리 설비에 유용한 특수 발포공법 적용 개방형 다공성 수처리용 여재의 제조방법 및 그 수처리용 개방형 다공성 특수 여재 {THE MANUFACTURING METHOD OF OPEN POROUS FILTER MATERIAL MADE BY SPECIAL FOAMING PROCESS FOR WATER TREATMENT SYSTEM USING OZONIZATION MEANS, AND THEREFOR THE OPEN POROUS SPECIAL FILTER MATERIALS FOR WATER TREATMENT}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an open porous water treatment material and a method for manufacturing the porous porous water treatment material using the porous porous special material for water treatment using an ozone- AND THEREFOR THE OPEN POROUS SPECIAL FILTER MATERIALS FOR WATER TREATMENT}

본 발명은 오존을 이용하여 폐수를 처리하는 수처리 설비에 유용한 개방형 다공성 수처리용 여재의 제조방법에 관한 것이다.The present invention relates to a method for producing an open porous water treatment filter material useful for a water treatment facility for treating wastewater using ozone.

생활하수 및 각종 폐수의 처리를 위한 수처리 설비에 있어서 처리 대상 하수의 원수에 포함되어 있는 각종 유기 화합물 및 무기물과 병원체 등의 종류가 더욱 다양해지고 특히 기존의 처리방식인 염소를 활용한 화학적 처리 방법의 문제점이 부각됨에 따라 깨끗한 물 생산을 위한 고도 정수처리 기술의 개선 및 개발이 요구되어왔으며 이에따라 오존을 활용하여 원수에 포함되어 있는 병원체의 살균뿐만 아니라 각종 유무기 이온성 화합물의 산화를 통한 응집효과 극대화를 위한 수처리 방법이 그 대안으로 활발히 연구되고 있다. In the water treatment facilities for the treatment of domestic sewage and various wastewaters, various types of organic compounds and inorganic substances and pathogens contained in the raw water of the sewage to be treated are becoming more diverse, and in particular, the chemical treatment methods using chlorine As the problem becomes more serious, it has been demanded to improve and develop advanced water treatment technology for clean water production. Therefore, ozone is used to sterilize the pathogen contained in raw water, and to maximize flocculation effect by oxidizing various organic and inorganic ionic compounds The water treatment method is being actively studied as an alternative.

그러나 오존에 의해 원수 속에 응집된 유무기 산화물을 흡착하여 제거하기 위하여 사용되는 여재는 이산화규소(SiO2)와 산화알미늄(Al2O3) 등의 무기소재를 활용하여 제조되고 있으나 무기소재의 특성상 고열에 의해 소재를 용융시킨 후 기공을 형성시키고 이를 형상화하여 생산되고 있으나 이러한 여재의 제조 방법은 그 기공이 폐쇄된 형태로 형성되기 때문에 여재의 표면에서만 흡착효과가 발휘되는 문제점이 있었다. 이에따라 일본에서는 열연신법으로 여재의 표면을 불연성 폴리머로 친수성 코팅 처리하여 흡착효과를 증대시킨 필터를 제조하여 고도 정수처리 시설에 활용하고 있으며 미국의 경우 저밀도 폴리에틸렌 바인더를 혼합한 후 이를 가압하여 다공성 필터를 만들어 활용하고 있으나 제조 비용도 비쌀뿐만 아니라 흡착시 필터의 기공이 막혀 충분한 여과 기능을 발휘하지 못하는 단점이 있었다. 국내의 경우 다양한 방법으로 여재를 개발하여 출시하고 있으나 고온에 의해 기공을 형성시키는 기존의 방법을 극복하지 못해 어려움을 겪고있는 상황이다.However, the filter material used for adsorbing and removing the organic or inorganic oxides aggregated in the raw water by ozone is made of inorganic materials such as silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) However, since the pores are formed in a closed form, the adsorption effect is exerted only on the surface of the filter media. Accordingly, in Japan, a filter having a hydrophilic coating on a surface of a filter medium by a hot-rolling process and having an increased adsorption effect is manufactured and used in an advanced water treatment facility. In the United States, a low-density polyethylene binder is mixed and pressurized to form a porous filter But it has a disadvantage in that not only the manufacturing cost is high but also the pores of the filter are clogged during the adsorption, so that sufficient filtering function can not be exhibited. In Korea, we have developed and released filter media in various ways, but it is difficult to overcome the existing methods of forming pores by high temperature.

이러한 고온에 의해 제조된 여재는 다공성이지만 각각의 기공이 폐쇄된 형태로 형성되기 때문에 수조 내에서 부유되어 흡착된 오존 산화물을 역세척하여 제거하고자 하는 경우 여재들간의 충돌이 일어나 부서짐으로서 장기적인 사용이 어려운 단점이 있으며, 동시에 여재의 내부를 통과하며 흡착이 이루어지지 않고 표면에서만 흡착이 이루어지기 때문에 그 효과가 떨어지는 문제점이 해결되지 않고 있는 실정이다.Since the filter material produced by such a high temperature is porous but each pore is formed in a closed form, when the ozone oxide suspended in the water tank is backwashed and removed, collision occurs between the filter materials, And at the same time, since the adsorbent is adsorbed only on the surface without passing through the inside of the filter media and not being adsorbed, the problem of deteriorating the effect is not solved.

대한민국 특허등록번호 제10-1337984(2013. 12. 02)Korean Patent Registration No. 10-1337984 (December 02, 2013)

전술한 문제점들을 해결하기 위한 본 발명의 목적은, 산화물의 흡착 특성이 우수한 친환경 무기소재인 이산화규소(SiO2)와 산화알미늄(Al2O3)의 혼합물을 사용하여 다공성 여재를 제조하되 1) 여재 내부에 형성되는 기공의 형상을 폐쇄된 기공이 아닌 개방형 기공을 형성시키도록 함으로서 여재의 내외부를 고루 통과하며 산화물이 효율적으로 흡착될 수 있도록 흡착 기능을 최대한 증대시키고, 더욱이 2) 여재 제조시 에너지투입비용이 기존대비 월등히 낮고 제조공정이 단순하여 경제성이 획기적으로 개선된, 오존을 활용한 수처리 공법에 있어서 오존에 의해 형성된 유무기 산화물을 효율적으로 흡착시켜 제거할 수 있는 수처리용 개방형 다공성 여재의 제조방법을 제공함에 있다.DISCLOSURE OF THE INVENTION An object of the present invention to solve the aforementioned problems is to provide a porous filter material by using a mixture of silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ), which are environmentally friendly inorganic materials having excellent adsorption characteristics of oxides, The shape of the pores formed in the filter medium is formed not of the closed pores but of the open pores so that the adsorption function is maximized so that the oxides can be efficiently adsorbed through the inner and outer portions of the filter medium and 2) Manufacture of an open-type porous filter material for water treatment capable of efficiently adsorbing and removing ozone-containing oxide formed by ozone in a water treatment method using ozone, in which the input cost is much lower than that of the conventional method and the manufacturing process is simple and economical efficiency is remarkably improved. Method.

전술한 문제점들을 모두 해결하기 위한 본 발명의 다른 목적은, 전술의 제조방법에 의해 제조된 수처리용 개방형 다공성 여재를 제공함에 있다.It is another object of the present invention to solve all of the above-mentioned problems, and to provide an open porous material for water treatment manufactured by the above-described manufacturing method.

전술의 목적을 달성하기 위한 본 발명에 따른 수처리용 개방형 다공성 여재의 제조방법은, 입자 크기 10~60um의 이산화규소(SiO2)와 산화알미늄(Al2O3)의 혼합 비율을 질량 기준 1:1 내지 3:1로 혼합한 후 여기에 액상 규산나트륨 수용액(통상 물유리라 칭한다)을 질량 기준 상기 혼합물 대비 70 내지 100%를 혼합하여 걸쭉한 형태의 액상 혼합물을 제조한 다음, 질량기준 액상 혼합물 대비 각각 0.1~0.5% 이내의 실리콘 계열 안정제와 음이온 계열의 활성제를 추가 혼합하여 기초 원료인 액상 혼합물을 완성하는 제1단계; 및 상기 액상 혼합물을 직경 20~50mm의 원형 틀(mold)에 부은 다음 마이크로웨이브를 조사(irradiation)하여 200~250℃에서 1~3분 동안 발포시키며 건조시켜 고형의 수처리용 여재를 제조하는 제2단계를 포함하는 것을 특징으로 하며, 상기와 같이 끓이는 방법으로 발포 및 건조 시키면 수분이 기화하며 여재의 내부에서 빠져나며 자연스럽게 기공이 연결되어 모세관과 같은 개방형 기공이 형성되는 원리를 적용한 것이 특징이다. In order to achieve the above object, the present invention provides a method of manufacturing an open porous porous media for water treatment, comprising mixing a silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) 1 to 3: 1, followed by mixing 70 to 100% of a liquid sodium silicate aqueous solution (usually referred to as water glass) on a mass basis with respect to the mixture to prepare a thick liquid mixture, A first step of additionally mixing a silicon-based stabilizer and an anion-based activator within 0.1 to 0.5% to complete a liquid mixture as a base raw material; And the liquid mixture is poured into a mold having a diameter of 20 to 50 mm and then irradiated with microwaves and foamed at 200 to 250 ° C for 1 to 3 minutes and dried to prepare a solid water treatment material The present invention is characterized by applying the principle that when water is evaporated and dried by the boiling method as described above, water is vaporized and escapes from the inside of the filter material and naturally pores are connected to form open pores such as capillaries.

전술의 다른 목적을 달성하기 위한 본 발명에 따른 수처리용 여재는, 수처리용 여재에 있어서, 입자 크기 10~60um의 이산화규소(SiO2)와 산화알미늄(Al2O3)의 혼합 비율을 질량 기준 1:1 내지 3:1로 혼합한 후 여기에 액상 규산나트륨 수용액(통상 물유리라 칭한다)을 질량 기준 70 내지 100%를 혼합하여 걸쭉한 형태의 액상 혼합물을 제조한 다음, 질량대비 각각 0.1~0.5% 이내의 실리콘 계열 안정제와 음이온 계열의 활성제를 추가 혼합하여 기초 원료인 액상 혼합물을 완성하고, 상기 액상 혼합물을 직경 20~50mm의 원형 틀(mold)에 부은 다음 마이크로웨이브를 조사(irradiation)하여 200~250℃에서 1~3분 동안 발포시키며 건조시켜 제조되는 개방형 다공성 수처리용 여재인 것을 특징으로 한다.According to another aspect of the present invention, there is provided a water treatment filter material according to the present invention, wherein a mixture ratio of silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) 1 to 1: 3 to 1: 1 and then mixed with 70 to 100% by mass of a liquid sodium silicate aqueous solution (usually referred to as water glass) to prepare a thick liquid mixture, and then 0.1 to 0.5% By weight of the silicone series stabilizer and the anion series activator are mixed to complete a liquid mixture as a base raw material. The liquid mixture is poured into a mold having a diameter of 20 to 50 mm, And then foamed and dried at 250 ° C for 1 to 3 minutes to form an open porous water treatment media.

본 발명에 따른 개방형 다공성 수처리용 여재는 기존의 1100~1300℃의 고온에서 용융 또는 소성 발포공정을 통해 여재를 제조하던 방식에 대비하여, 200~250℃의 비교적 낮은 온도에서도 발포가 가능하여 그 제조공정 상의 에너지 투입비용을 획기적으로 절감하고, 공정도 더 단순화시켜 제조원가를 크게 절감하였다.The open porous water treatment media according to the present invention can be foamed at a relatively low temperature of 200 to 250 ° C in comparison with a conventional method of manufacturing a filter material through a melting or sintering foaming process at a high temperature of 1100 to 1300 ° C, Significantly lowering the cost of energy input on the process, and simplifying the process, thus significantly reducing the manufacturing cost.

또한, 본 발명에 따른 다공성 수처리용 여재는 친환경적이며 특히 여재의 내부에 개방형 기공이 형성됨으로서 모세관과 같은 효과를 발휘하여 오폐수가 여재의 내외부를 고르게 관통하며 진행됨으로서 오존에 의해 형성된 유무기 산화물을 보다 효율적으로 흡착시켜 그 정수 효과를 극대화 시킬 수 있게 개선되었으며 동시에 수중에 자연스럽게 가라 앉음으로서 역세척시에 부서지는 현상을 줄여주어 그 사용 기간을 증대시켜 여재의 교체비용을 대폭 절감할 수 있도록 하였다.In addition, the porous water treatment media according to the present invention is environmentally friendly, and in particular, the open pores are formed in the filter media, so that the wastewater exerts the same effect as the capillary, and the wastewater permeates the inside and the outside of the filter media uniformly. And it is possible to maximize the effect of the water purification by efficiently adsorbing the water. At the same time, it naturally sinks in the water, thereby reducing the breakage phenomenon during backwashing, thereby increasing the period of use and greatly reducing the replacement cost of the filter media.

따라서, 본원발명은 오존을 활용한 고도 오폐수 정수처리 설비에 유용한 기존대비 성능개선, 친환경성, 및 경제성을 동시에 확보한 개방형 다공성 친환경 수처리용 여재를 제공한다.Accordingly, the present invention provides an open porous eco-friendly water treatment filter material which is capable of improving performance, environmental friendliness, and economy as compared to conventional ones, which is useful for an ozonized ozonated water treatment plant.

도 1과 도 2는 본 발명의 바람직한 일실시예에 따라, 개방형 다공성 여재를 제조하여 기존 여재와 그 단면을 비교한 사진으로서 기존의 여재는 기공이 구분된 폐쇄형으로 형성된 것을 보여주며(도 1), 본 발명에 의한 여재는 여재 내부의 각 기공이 서로 연결되어 개방형으로 형성된 모습의 사진이며(도 2),
도 3과 도 4는 본 발명의 바람직한 일실시예에 따라, 개방형 다공성 여재를 제조하여 기존의 여재와 흡수성을 비교한 사진으로서 각 여재의 표면에 물방울을 떨어뜨려 흡수되는 상태로서 기존 여재는 표면에 떨어뜨린 물방울이 흡수되지 않고 그대로 존재하고 있으며(도 3), 본 발명에 의해 제조된 여재는 표면을 통해 완벽히 흡수된 모습을 보여주고 있고(도 4),
도 5는 본 발명의 바람직한 일실시예에 따라, 개방형 다공성 여재를 제조하여 기존의 여재와 수중에서의 부유 상태를 비교한 것으로서 기존 여재는 물 표면에 부유 상태로 존재하고 있으며, 본 발명에 의한 여재는 수분을 흡수하여 수중에 가라앉은 모습을 보여주고 있는 사진이다.
도 6은 실험용 수처리 설비에 본 발명에 의한 여재를 적용하여 2015년 4월 1일부터 오폐수내에 담겨있는 사진으로 2016년 4월30일 현재까지 변형없이 완전하게 형태를 유지하고 있는 사진이다.
FIG. 1 and FIG. 2 are photographs of an open porous porous media prepared according to a preferred embodiment of the present invention and comparing cross sections of existing porous media with conventional porous media, ), The filter material according to the present invention is a photograph in which the pores in the filter material are connected to each other to form an open shape (Fig. 2)
FIG. 3 and FIG. 4 are photographs comparing an existing filter material and an absorbent property by fabricating an open porous material according to a preferred embodiment of the present invention. As shown in FIG. 3 and FIG. 4, water droplets are dropped on the surface of each filter material, The dropped water droplets are not absorbed (FIG. 3), and the filter material produced by the present invention shows a completely absorbed state through the surface (FIG. 4)
FIG. 5 is a graph comparing the floating state of an existing filter material with that of an open porous filter material according to a preferred embodiment of the present invention. The existing filter material exists in a floating state on the surface of water, Is a photograph that shows how it absorbs moisture and sinks in the water.
FIG. 6 is a photograph of the water contained in the wastewater discharged from April 1, 2015 by applying the filter material according to the present invention to an experimental water treatment plant, which is completely formed without modification until April 30, 2016.

이하, 본 발명의 바람직한 일실시예에 따른 오존을 활용한 고도 오폐수 처리 설비를 위한 개방형 다공성 수처리 여재의 제조 방법 및 그에 따라 제조된 개방형 다공성 수처리 여재를 상세하게 설명한다.Hereinafter, a method for manufacturing an open porous water treatment material for an ozonized wastewater treatment facility using ozone according to a preferred embodiment of the present invention and an open porous water treatment material made thereby will be described in detail.

본 발명의 바람직한 일실시예에 따른 오존을 활용한 수처리 설비에 필요한 다공성 수처리용 여재의 제조방법은, 그 1단계로는, 입자 크기 10~60um의 이산화규소(SiO2)와 산화알미늄(Al2O3)의 혼합 비율을 질량 기준 1:1 내지 3:1로 혼합한 후 여기에 액상 규산나트륨 수용액(통상 물유리라 칭한다)을 질량 기준 혼합물 대비 70 내지 100%를 혼합하여 걸쭉한 형태의 액상 혼합물을 제조한다. 여기서 이산화규소(SiO2)와 산화알미늄(Al2O3)의 입자 크기를 10~60um로 제한하는 이유는 입자의 크기가 60um 보다 클 경우 액상의 혼합물 내부에서 침전되어 혼합물의 상하 부분의 밀도가 달라 발포 특성이 왜곡되는 현상이 발생되며 10um 이하로 입자 크기가 작은 경우에는 가공비용의 과다 및 액상 혼합물의 점도가 높아져 기공 형성이 잘 안되는 문제가 발생되기 때문이다.A method for manufacturing a porous water treatment filter material for ozone-based water treatment equipment according to a preferred embodiment of the present invention includes the steps of: preparing a porous water-treating filter material by mixing silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) is mixed in a mass ratio of 1: 1 to 3: 1, and then a liquid sodium silicate aqueous solution (usually referred to as water glass) is mixed with 70 to 100% of the mass based mixture to form a thick liquid mixture . The reason for limiting the particle size of silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) to 10 to 60 μm is that when the particle size is larger than 60 μm, the liquid is precipitated inside the mixture, A phenomenon in which the foaming characteristics are different may occur. When the particle size is less than 10 μm, the processing cost is excessively high and the viscosity of the liquid mixture becomes high, which results in poor pore formation.

또한, 액상 규산나트륨 수용액의 경우 70% 이하로 혼합하는 경우 액상 혼합물의 농도가 높아 발포가 잘 이루어지지 않는 문제가 있으며, 100% 이상으로 혼합하는 경우 혼합물의 농도가 지나치게 묽어 급격한 발포가 이루어짐에 따라 틀에서 넘쳐 흐르거나 기공의 크기가 비정상적으로 커지며 불균질하게 형성되는 문제가 있기 때문이다.Further, in the case of aqueous liquid sodium silicate aqueous solution, when the mixing ratio is less than 70%, there is a problem that the concentration of the liquid mixture is too high to foam, and when the mixing ratio is more than 100%, the concentration of the mixture is excessively low, This is because there is a problem that overflows in the mold, the size of the pores becomes abnormally large, and the pores are formed heterogeneously.

이렇게 혼합된 액상의 혼합물에 급격한 발포로 인하여 기공의 크기와 분포가 불균질하게 이루어지는 현상을 방지하기 위해 실리콘 계열의 안정제를 질량기준 액상 혼합물 대비 0.1~0.5% 첨가하고, 동시에 발포를 촉진하는 음이온 계면활성제 계열의 활성제를 동일한 비율로 첨가하여 발포 및 성형 전 단계의 기초 원료 물질을 완성한다.In order to prevent the phenomenon that the size and distribution of the pores are uneven due to the sudden foaming in the mixed liquid mixture, 0.1 to 0.5% of the silicon-based stabilizer is added to the mass-based liquid mixture, and at the same time, The activator-based activator is added in the same ratio to complete the raw material raw material before the foaming and molding.

발포를 촉진시키며 동시에 억제하는 안정제와 활성제를 혼합하는 이유는 개방형으로 형성되는 기공의 크기를 작게 유지하고 고르게 분포 시킴으로서 고형으로 형성될 여재의 내외부 비표면적을 가능한한 넓게 형성시켜 흡착 성능을 극대화 시키며 동시에 수중에서 장기간 견딜 수 있는 적정 강도를 유지하기 위한 것이다. 또한 액상규산나트륨 수용액은 이산화규소(SiO2)와 산화알미늄(Al2O3)의 입자를 결합시키는 결합제(binder) 역할을 수행하지만 장기간 수중에 잠겨 있을 경우 수분에 녹아내려 여재가 가루로 분해되기 때문에 이를 방지하기 위하여도 실리콘 계열의 안정제가 부수적으로 가교제의 기능을 발휘하기 때문에 매우 중요하다. The reason for mixing the activator with the stabilizer which promotes foaming and simultaneously inhibits is that the size of the pores formed in the open form is kept small and evenly distributed to maximize the adsorption performance by forming the inner / outer specific surface area of the filter material to be formed into a solid as possible as possible It is intended to maintain adequate strength to withstand long periods in water. In addition, the liquid sodium silicate aqueous solution serves as a binder which binds particles of silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ), but when it is immersed in water for a long time, In order to prevent this, it is very important that the stabilizer of the silicone series additionally exerts the function of the crosslinking agent.

이렇게 제조된 액상의 원료 혼합물을 실리콘 용기로 제작된 틀(mold)에 붓고 뚜껑을 덮은 다음 마이크로웨이브를 조사한다. 실리콘 용기를 사용하는 이유는 전자레인지 같은 마이크로웨이브를 조사하기 위해서는 금속재질의 용기를 사용할 수 없고 동시에 약 200~250℃ 정도의 온도에서 견딜 수 있는 저렴한 재질의 용기는 실리콘 용기가 적합하기 때문이다. The liquid raw material mixture thus prepared is poured into a mold made of a silicon container, covered with a lid, and irradiated with a microwave. The reason for using a silicon container is that it is not possible to use a metal container to irradiate a microwave such as a microwave oven and a silicon container is suitable for an inexpensive container which can withstand a temperature of about 200 to 250 ° C.

마이크로웨이브를 조사하면 틀 내부의 액상 원료가 끓어오르며 발포가 시작된다. 1~3분 정도 마이크로웨이브를 조사하면 1분 이내에 발포가 완료되며 최소 2배로 그 부피가 팽창되고, 그 후 2분 이내에 건조가 이루어지며 성형이 완성된다. 여재의 형태는 틀의 형상에 따라 자유롭게 조절할 수 있으나 비 표면적을 가능한 한 크게 유지하기 위해서는 구형으로 제조하는 것이 가장 바람직하다. When the microwave is irradiated, the liquid raw material inside the mold is boiled and the foaming starts. When the microwave is irradiated for about 1 to 3 minutes, the foaming is completed within 1 minute, the volume is expanded at least twice, and drying is performed within 2 minutes thereafter, and the molding is completed. The shape of the filter media can be freely adjusted according to the shape of the frame, but it is most preferable to manufacture the filter material in a spherical shape in order to keep the specific surface area as large as possible.

이렇게 제조된 구형의 여재를 틀에서 꺼내면 구형 여재의 표면에 여분의 입자들이 붙어 있는 경우가 많으므로 일정한 크기의 용기에 여러 개의 여재를 담아 흔들며 서로 부딪혀주면 표면이 깨끗한 완성된 여재를 제조할 수 있다. When the spherical filter material thus produced is taken out of the mold, extra particles are often attached to the surface of the spherical filter material. Thus, when the filter material is shaken with a plurality of filter materials in a predetermined size, the finished filter material having a clean surface can be manufactured .

한편, 발포단계에서 사용된 마이크로웨이브 오븐은 시중에서 업소용으로 판매하고 있는 제품으로서 그 외형은 400mm(D) X 550mm(W) X 330mm(H) 이며, 그 내형은 370mm(D) X 370mm(W) X 230mm(H)의 크기이며, 그 정격출력은 1.2kW로서 가동시간제어가 가능한 마이크로웨이브 오븐이나, 본 발명은 이에 한정되지 않으며, 그 마이크로웨이브가 상기 발포온도 200~250℃에서 1~3분 동안 발포 가능한 조건의 마이크로웨이브 오븐이면 채용 가능함은 이 기술분야의 당업자에게는 자명하게 이해될 것이다.On the other hand, the microwave oven used in the foaming step is a product sold for commercial use in the market, and its outer shape is 400 mm (D) X 550 mm (W) x 330 mm (H) and its inside shape is 370 mm (D) ) X 230 mm (H), and its rated output is 1.2 kW. The microwave oven is not limited to the microwave oven, It will be appreciated by those skilled in the art that the microwave oven can be employed in conditions that allow foaming for a minute.

특히 도 1 내지 도 6에 보여진 본 발명에 따른 시제품과 기존 유사 제품의 흡수성 관련 실험조건은, 상기 제 1단계에서는 각각 입자의 크기 20~60um 인 이산화규소(SiO2)와 산화알미늄(Al2O3)을 질량기준 1:1의 비율로 혼합한 후 125g을 채취하여 여기에 액상 규산나트륨 수용액을 80cc(질량 112g)을 부어 액상의 혼합물을 제조한 다음, 질량 기준 0.2%(질량 0.47g)의 실리콘 안정제와 질량기준 0.2%(질량 0.47g)의 음이온 계면활성제인 활성제를 혼합하여 기초 원료 혼합물을 제조하였다. 이렇게 제조된 원료 혼합물을 내부 용적 가로, 세로 및 두께 2cm의 정육면체 틀에 담아 뚜껑을 닫은 후 전술한 마이크로웨이브 오븐에 넣어 약 65초 가열 발포 시키고 90초 동안 건조시켜 제조한 시료를 사용하였다.In particular, in the first step, the silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) particles having a particle size of 20 to 60 μm, respectively, 3 ) was mixed at a ratio of 1: 1 by mass and then 125 g was sampled. A liquid mixture was prepared by pouring 80 cc (mass: 112 g) of a liquid sodium silicate aqueous solution into a mixture, and then 0.2% A base stock mixture was prepared by mixing the silicone stabilizer with an activator which is an anionic surfactant of 0.2% (mass 0.47 g) by mass. The thus prepared raw material mixture was placed in a cube-shaped frame having an inner volume of 2 cm in length and a length of 2 cm, closed with a lid, heated in a microwave oven for about 65 seconds, and dried for 90 seconds.

본 발명에 따른 오존을 활용하는 오폐수처리 설비에 유용한 개방형 다공성 수처리용 여재의 제조 방법 및 그에 따른 개방형 다공성 수처리용 여재는, 흡착 기능이 우수한 이산화규소(SiO2)와 산화알미늄(Al2O3)의 혼합물에 물유리를 혼합하여 액상의 혼합물을 만든 후에 안정제와 활성제를 첨가하여 기초 원료 혼합물을 제조하고 마이크로웨이브를 조사하여 발포시키는 일견 단순한 공정처럼 보이나, 이는 본 발명자가 기존문제점을 해결하기 위한 특이한 문제의식 속에 각고의 조건별 대조군 반복 실험 끝에 기존대비 매우 우수한 흡수기능 즉, 투수기능/수중에서의 강도 유지/친환경성/단순공정/경제성을 모두 동시에 달성한 최적의 조성물과 그 비율 및 그 제조공정 조건을 찾아낸 것임은 이 기술분야의 당업자에게는 자명하다.The method for producing an open porous water treatment filter material useful for a wastewater treatment facility utilizing ozone according to the present invention and the open porous water treatment filter material according to the present invention are characterized in that silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) A mixture of water glass is mixed with water glass to prepare a liquid mixture, a stabilizer and an activator are added to prepare a raw material mixture, and the mixture is foamed by irradiating microwaves. However, this is a unique problem In the consciousness, after the control repeated experiment by each condition, the optimum composition, ratio, and the manufacturing process condition which achieves excellent absorption function at the same time, that is, the water permeability function / strength maintenance in water / environment friendliness / simple process / To those skilled in the art.

본원발명과 기존 대조군과의 주요특징의 대비표는 다음과 같다.A comparison table of the main features of the present invention and the existing control group is as follows.

먼저, 기존 여재와 본원발명의 특징을 비교한 결과는 아래의 표 1과 같다.First, the results of comparison between the characteristics of the present invention and the existing filter media are shown in Table 1 below.

비교항목Compare 기존 무기 단열재Existing insulator 본원발명Invention of the present invention 제조 방법Manufacturing method 성형후 약 1000℃ 내외 고온에서 용융 또는 소성시켜 발포
(용융/소성용 대형설비 필요)
After molding, it is melted or fired at a temperature of about 1000 ° C or so,
(Large equipment for melting / firing is required)
적정 혼합물을 제조한 후 마이크로웨이브를 조사하여 약 250℃ 이하의 낮은 온도에서 가열발포
(소형설비/공정 심플)(개선)
After preparing the titration mixture, the mixture was irradiated with microwaves and heated at a temperature of about 250 ° C. or less
(Small facility / simple process) (improvement)
제조공정 온도Manufacturing process temperature 750~1300℃750 ~ 1300 ℃ 250℃ 이하 (개선)250 ℃ or less (improved) 이산화탄소 발생 유무Presence or absence of carbon dioxide 제조공정에서 이산화탄소
다량 발생
In the manufacturing process,
Mass production
전혀 없음 (개선)None at all (improvement)
수분의 투과 속도Permeation rate of moisture 전혀 없음Not at all 10mm/sec 이상(개선)10mm / sec or more (improved)

상기 표 1에서 보는 바와 같이, 본원발명은 기존 여재 제조 방식에 대비하여 제조방법 및 제조설비가 단순하고, 제조공정 온도가 획기적으로 낮으며, 이산화탄소가 전혀 발생하지 않고, 오폐수의 여재 내부 통과 기능이 발현됨으로서 기존 문제점을 모두 동시에 해결하였다.As shown in Table 1, the present invention has the following advantages. That is, the manufacturing method and the manufacturing facility are simple, the manufacturing process temperature is remarkably low, the carbon dioxide is not generated at all, These problems were solved at the same time.

다음으로, 기존 여재를 사용하는 경우와 본원발명의 특징을 비교한 결과는 아래의 표 2와 같다.Next, the results of comparing the characteristics of the present invention with those of using the existing filter media are shown in Table 2 below.

비교항목Compare 기존 여재 사용Use existing filter media 본원발명Invention of the present invention 형태shape 구형rectangle 구형rectangle 수중에서의 부유정도Degree of float in water 부유 됨Floated 가라앉음(개선)Sinking (improvement) 산화물 흡착성능 Oxide adsorption performance 20ppm -> 15ppm20 ppm -> 15 ppm 20ppm->3.5ppm (개선)20ppm-> 3.5ppm (improved) 역세척시 문제점Problems with backwashing 부유되며 여재들의 충돌로 부스러짐Floated and crushed by collision of media 수분이 통과되며 안정적으로 세척 됨 (개선)Water passes through and is stably washed (improved)

상기 표 2에서 보는 바와 같이, 본원발명은 기존 방식으로 생산된 여재를 사용하는 경우에 비하여, 혁신적으로 흡착 성능을 개선하고, 역세척시에도 수분이 여재의 내부를 통과하기 때문에 여재들의 충돌이 일어나는 현상이 없어 여재 사용의 기간이 증가되어 비용 절감의 효과도 거둘 수 있다As shown in the above Table 2, the present invention improves the adsorption performance innovatively as compared with the case of using the filter material produced by the conventional method, and the water content passes through the inside of the filter material even during backwashing, There is no phenomenon, and the period of use of the filter medium is increased, so that the cost reduction effect can be obtained

Claims (2)

오존을 활용한 수처리 설비에 유용한 개방형 다공성 수처용 여재의 제조방법에 있어서,
입자 크기 10~60um의 이산화규소(SiO2)와 산화알미늄(Al2O3)의 혼합 비율을 질량 기준 1:1 내지 3:1로 혼합한 후 여기에 액상 규산나트륨 수용액(통상 물유리라 칭한다)을 질량 기준 70 내지 100%를 혼합하여 걸쭉한 형태의 액상 혼합물을 제조한 다음, 질량대비 각각 0.1~0.5% 이내의 실리콘 계열 안정제와 음이온 계열의 활성제를 추가 혼합하여 기공의 크기와 분포가 조절될 수 있는 기초 원료인 액상 혼합물을 완성하는 제1단계;
상기 액상 혼합물을 직경 20~50mm의 원형 틀(mold)에 부은 다음 마이크로웨이브를 조사(irradiation)하여 200~250℃에서 1~3분 동안 끓이며 발포 및 건조시켜 수분이 기화되며 여재의 내부로부터 빠져나가며 내부에 형성된 기공을 상호 연결시키는 형상을 응용함으로서 모세관과 같은 형상의 다수의 개방형 기공이 형성된 고형의 수처리용 여재를 제조하는 제2단계를 포함하는 것을 특징으로 하는 오존을 활용한 수처리 설비에 유용한 개방형 다공성 수처리 여재의 제조방법
A method for manufacturing an open porous water filter material useful for a water treatment plant utilizing ozone,
(Mixing ratio of silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) in a particle size of 10 to 60 μm is mixed in a mass ratio of 1: 1 to 3: 1, and then a liquid sodium silicate aqueous solution (usually water glass) And 70-100% by mass, respectively, to prepare a thick liquid phase mixture. Then, the size and distribution of the pores can be controlled by additionally mixing the silicon-based stabilizer and the anion-based activator within 0.1 ~ 0.5% A first step of completing a liquid mixture as a basic raw material;
The liquid mixture is poured into a mold having a diameter of 20 to 50 mm and then irradiated with a microwave, boiled at 200 to 250 ° C for 1 to 3 minutes, foamed and dried to evaporate moisture, And a second step of manufacturing a solid water treatment filter material having a plurality of open pores having the same shape as a capillary by applying a shape that interconnects the pores formed in the interior of the filter. Manufacturing method of porous water treatment media
수처리용 여재에 있어서, 입자 크기 10~60um의 이산화규소(SiO2)와 산화알미늄(Al2O3)의 혼합 비율을 질량 기준 1:1 내지 3:1로 혼합한 후 여기에 액상 규산나트륨 수용액(통상 물유리라 칭한다)을 질량 기준 70 내지 100%를 혼합하여 걸쭉한 형태의 액상 혼합물을 제조한 다음, 질량대비 각각 0.1~0.5% 이내의 실리콘 계열 안정제와 음이온 계열의 활성제를 추가 혼합하여 기초 원료인 액상 혼합물을 완성하고, 상기 액상 혼합물을 직경 20~50mm의 원형 틀(mold)에 부은 다음 마이크로웨이브를 조사(irradiation)하여 200~250℃에서 1~3분 동안 발포시키며 건조시켜 제조되는 개방형 다공성 수처리용 여재. In the water treatment filter medium, the mixing ratio of silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) in a particle size of 10 to 60 μm is mixed in a mass ratio of 1: 1 to 3: 1, and then a liquid sodium silicate aqueous solution (Generally referred to as "water glass") is mixed in an amount of 70 to 100% by mass to prepare a thick liquid mixture, and then the silicone-based stabilizer and the anion-based activator within 0.1 to 0.5% The liquid mixture is poured into a mold having a diameter of 20 to 50 mm and then irradiated with microwaves and foamed at 200 to 250 ° C for 1 to 3 minutes and dried to form an open porous water treatment Water Soluble Materials.
KR1020160078590A 2016-06-23 2016-06-23 The manufacturing method of open porous filter material made by special foaming process for water treatment system using ozonization means, and therefor the open porous special filter materials for water treatment KR101936344B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160078590A KR101936344B1 (en) 2016-06-23 2016-06-23 The manufacturing method of open porous filter material made by special foaming process for water treatment system using ozonization means, and therefor the open porous special filter materials for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160078590A KR101936344B1 (en) 2016-06-23 2016-06-23 The manufacturing method of open porous filter material made by special foaming process for water treatment system using ozonization means, and therefor the open porous special filter materials for water treatment

Publications (2)

Publication Number Publication Date
KR20180000516A true KR20180000516A (en) 2018-01-03
KR101936344B1 KR101936344B1 (en) 2019-01-08

Family

ID=61002390

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160078590A KR101936344B1 (en) 2016-06-23 2016-06-23 The manufacturing method of open porous filter material made by special foaming process for water treatment system using ozonization means, and therefor the open porous special filter materials for water treatment

Country Status (1)

Country Link
KR (1) KR101936344B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11094524B2 (en) 2016-09-12 2021-08-17 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing apparatus
CN114951609A (en) * 2022-04-13 2022-08-30 佛山市陶本科技有限公司 Foamed aluminum plate with uniform closed pores and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506612B1 (en) 2003-07-01 2005-08-09 주식회사 일산 하이스트 chlorophyat removeing device
KR101483162B1 (en) 2014-04-07 2015-01-22 (주) 그린솔루션 Device for algae reduction and floating matters removal using infrared sensors and gps

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11094524B2 (en) 2016-09-12 2021-08-17 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing apparatus
CN114951609A (en) * 2022-04-13 2022-08-30 佛山市陶本科技有限公司 Foamed aluminum plate with uniform closed pores and preparation method thereof
CN114951609B (en) * 2022-04-13 2024-04-19 佛山市陶本科技有限公司 Foamed aluminum plate with uniform closed pores and preparation method thereof

Also Published As

Publication number Publication date
KR101936344B1 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
Reiad et al. Adsorptive removal of iron and manganese ions from aqueous solutions with microporous chitosan/polyethylene glycol blend membrane
KR101936344B1 (en) The manufacturing method of open porous filter material made by special foaming process for water treatment system using ozonization means, and therefor the open porous special filter materials for water treatment
Uddin Ahmad et al. Adsorptive removal of resorcinol onto surface modified ordered mesoporous carbon: kinetics and equilibrium study
KR101739286B1 (en) Manufacturing method of adsorbent for phosphorus chemisorption
CN102874805A (en) Method for preparing porous carbon for wastewater treatment
WO2014010417A1 (en) Method for manufacturing cesium adsorbent, and cesium adsorbent
US20140120253A1 (en) Method for regulating the structure and properties of the composite nanoabsorbent
JP5354577B2 (en) Phosphorous adsorbent and production method
CN211198951U (en) Sewage treatment device with microporous ceramic-activated carbon composite material
CN108212082A (en) A kind of production method of environmental protection filtrate
RU2658419C1 (en) Method of underground water treatment
CN105984978A (en) Treatment process of aquatic product processing waste water
CN105198128B (en) A kind of saving type RO pure water production method
CN104353408A (en) Preparation method for modified porous SiO2
Al-Rawajfeh Enhancement of hardness and chloride removal and reduction of Cl2 release and corrosion in electrodeionization units
CN106139931A (en) A kind of hollow-fibre membrane going heavy metal ion and preparation method thereof
RU2358799C1 (en) Method of sorbent preparation for sewage waters purification of formaldehyde
JPS634899A (en) Biological treatment of water
CN111054304A (en) Method for modifying natural zeolite by sodium nitrate combined roasting, product and application thereof
Pankaj et al. Sonochemical decolourisation of Reactive Blue 21 and Acid Red 114 in the presence of TiO2 and Rare Earths
JP7437014B2 (en) Anionic substance adsorbent, anionic substance adsorbent manufacturing method, anionic substance adsorbent manufacturing apparatus, and anionic substance recovery method
RU2447935C1 (en) Method of producing hydrophobic adsorbent for cleaning natural waters and sewage from oil products
JP2002205058A (en) Ultrapure water making method and ultrapure water making apparatus
KR101011603B1 (en) A nano carbon ball for treating wastewater containing dye and method for separating the dye from wastewater using the same
JP2677060B2 (en) How to purify drinking water

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant