WO2018116836A1 - Method for producing polymerizable compound - Google Patents

Method for producing polymerizable compound Download PDF

Info

Publication number
WO2018116836A1
WO2018116836A1 PCT/JP2017/043853 JP2017043853W WO2018116836A1 WO 2018116836 A1 WO2018116836 A1 WO 2018116836A1 JP 2017043853 W JP2017043853 W JP 2017043853W WO 2018116836 A1 WO2018116836 A1 WO 2018116836A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
compound
represented
Prior art date
Application number
PCT/JP2017/043853
Other languages
French (fr)
Japanese (ja)
Inventor
坂本 圭
久美 奥山
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201780071020.XA priority Critical patent/CN109983011A/en
Priority to JP2018557659A priority patent/JPWO2018116836A1/en
Publication of WO2018116836A1 publication Critical patent/WO2018116836A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention is a method for producing a polymerizable compound that can be used for the preparation of an optical film capable of uniform polarization conversion in a wide wavelength range.
  • a retardation plate used in various devices such as a flat panel display device includes a 1 ⁇ 4 wavelength plate that converts linearly polarized light into circularly polarized light, a 1 ⁇ 2 wavelength plate that converts a polarization vibration plane of linearly polarized light by 90 degrees, and the like. There is. These retardation plates can accurately give a phase difference of 1 / 4 ⁇ or 1 / 2 ⁇ of a light wavelength to a specific monochromatic light. However, the conventional retardation plate has a problem that polarized light output through the retardation plate is converted into colored polarized light.
  • the material constituting the retardation plate has wavelength dispersion with respect to the retardation, and distribution occurs in the polarization state for each wavelength for white light that is a composite wave in which light rays in the visible light range are mixed. This is because it is impossible to adjust the input light to polarization having a phase difference of 1 / 4 ⁇ or 1 / 2 ⁇ in all wavelength regions.
  • various studies have been made on a broadband retardation plate capable of giving a uniform retardation to light in a wide wavelength range, that is, a so-called reverse wavelength dispersion plate.
  • Patent Document 1 it is possible to form an optical film excellent in reverse wavelength dispersion, and it is easy to apply to a substrate with a low melting point suitable for processing, and exhibit a liquid crystallinity.
  • a polymerizable compound and a polymerizable composition that are widely available and can be synthesized at low cost have been proposed.
  • Patent Document 2 proposes a polymerizable compound that exhibits a discotic nematic phase and is easy to manufacture.
  • the present invention has been made under such circumstances, and an object thereof is to provide a method for producing a highly pure polymerizable compound in an industrially advantageous manner.
  • the present inventors diligently studied to solve the above problems. As a result, the present inventors can dehydrohalogenate a halogenated product produced as a by-product at any stage of the synthesis process of the polymerizable compound (I), thereby allowing the polymerizable compound ( The idea was that the yield of I) could be increased. Further, as a result of further studies, the present inventors have selected a predetermined halogenated compound as the starting compound of the polymerizable compound (I) and obtained a dehydrohalogenation reaction with the halogenated compound. As a result, it was found that a polymerizable compound (I) having a small halogenated mixture ratio (ie, high purity) can be produced. And the present inventors came to complete this invention through these examinations. Thus, according to the present invention, the following method for producing a polymerizable compound is provided.
  • a method for producing a polymerizable compound represented by the following formula (I) A production method comprising a step of subjecting a composition containing a halogenated compound represented by the following formula (II) to a dehydrohalogenation reaction in an organic solvent in the presence of an aqueous layer containing a basic compound.
  • Ar is any one of groups represented by the following formulas (Ar-1) to (Ar-4); E 1 and E 2 each independently represent —CR 11 R 12 —, —S—, —NR 11 —, —CO—, or —O—, and each of R 11 and R 12 independently represents Represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, Rc is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, a carboxyl group, or a carbon group having 1 to 6 carbon atoms.
  • Fluoroalkyl group alkoxy group having 1 to 6 carbon atoms, thioalkyl group having 1 to 6 carbon atoms, N-alkylamino group having 1 to 6 carbon atoms, N, N-dialkylamino group having 2 to 12 carbon atoms, carbon number
  • p0 is an integer from 0 to 2
  • D 1 and D 2 each independently represents an aromatic hydrocarbon ring group that may have a substituent, or an aromatic heterocyclic group that may have a substituent
  • Z 1 and Z 2 are each independently a single bond, —O—CH 2 —, —CH 2 —O—, —C ( ⁇ O) —O—, —O—C ( ⁇ O) —, — C ( ⁇ O) —S—, —S—C ( ⁇ O)
  • the proportion of the halogenated compound represented by the formula (IV) in the total of the halogenated compound represented by the formula (IV) and the compound represented by the formula (V) is 0.01% by mass or more.
  • the FG 2 is a carboxyl group, The production method according to [9] or [10], wherein b is 1.
  • the proportion of the halogenated compound represented by the formula (VI) in the total of the halogenated compound represented by the formula (VI) and the compound represented by the formula (VII) is 0.01% by mass or more.
  • Rd represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, 6 alkylsulfonyl groups, carboxyl groups, fluoroalkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, thioalkyl groups having 1 to 6 carbon atoms, N-alkylamino groups having 1 to 6 carbon atoms, carbon An N, N-dialkylamino group having 2 to 12 carbon atoms, an N-alkylsulfamoyl group having 1 to 6 carbon atoms, or an N, N-dialkyls
  • Ar is any one of groups represented by the following formulas (Ar-5) to (Ar-9).
  • E 1 , Rc, and p0 represent the same meaning as described above
  • Rd is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, a carboxyl group, or a carbon group having 1 to 6 carbon atoms.
  • Fluoroalkyl group alkoxy group having 1 to 6 carbon atoms, thioalkyl group having 1 to 6 carbon atoms, N-alkylamino group having 1 to 6 carbon atoms, N, N-dialkylamino group having 2 to 12 carbon atoms, carbon number
  • p1 represents an integer of 0 to 5
  • p2 represents an integer of 0 to 4
  • p3 represents an integer of 0 to 3
  • Rc and Rd When a plurality of Rc and Rd are present, they may be the same or different from each other. ]
  • the method for producing a polymerizable compound of the present invention is used for producing the above-described polymerizable compound (I). More specifically, the method for producing a polymerizable compound of the present invention comprises a composition comprising a halogenated compound represented by formula (II) (“halogenated compound (II)”) dissolved in an organic solvent.
  • a method for producing a polymerizable compound (I), comprising a step of subjecting to a dehydrohalogenation reaction in the presence of an aqueous layer containing at least one basic compound.
  • the ratio of the halogenated body which occupies in the product finally obtained by dehydrohalogenating the halogenated substance (II) is reduced.
  • the yield of the polymerizable compound (I) can be increased. Therefore, according to the production method of the present invention, the highly pure polymerizable compound (I) can be advantageously produced industrially.
  • polymerizable compound (I) which is a target product of the production method of the present invention, is a compound used for the production of an optical film. And if polymeric compound (I) is used, the optical film excellent in various characteristics, such as reverse wavelength dispersion, can be produced.
  • the polymerizable compound (I) is a compound represented by the following formula (I).
  • a and d are each independently an integer of 1 to 20, preferably an integer of 2 to 12, more preferably an integer of 4 to 8, and b and c are each Independently, 0 or 1, with 1 being preferred.
  • Ar is any one of groups represented by the following formulas (Ar-1) to (Ar-4).
  • p0 is an integer of 0 to 2, and preferably 0 or 1.
  • Rc is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, a carboxyl group, or a carbon group having 1 to 6 carbon atoms.
  • Fluoroalkyl group alkoxy group having 1 to 6 carbon atoms, thioalkyl group having 1 to 6 carbon atoms, N-alkylamino group having 1 to 6 carbon atoms, N, N-dialkylamino group having 2 to 12 carbon atoms, carbon number
  • An N-alkylsulfamoyl group having 1 to 6 carbon atoms or an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms is represented.
  • the plurality of Rc when there are a plurality of Rc (that is, when p0 is 2), the plurality of Rc may be the same or different from each other. May be.
  • halogen atom for Rc examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a fluorine atom, a chlorine atom, and a bromine atom are preferable.
  • alkyl group having 1 to 6 carbon atoms of Rc examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, and hexyl group.
  • An alkyl group having 1 to 4 carbon atoms is preferable, and a tert-butyl group and a methyl group are particularly preferable.
  • the alkyl group of Rc described above is preferably a chain alkyl group.
  • alkylsulfinyl group having 1 to 6 carbon atoms of Rc examples include methylsulfinyl group, ethylsulfinyl group, propylsulfinyl group, isopropylsulfinyl group, butylsulfinyl group, isobutylsulfinyl group, sec-butylsulfinyl group, tert-butylsulfinyl group, Examples thereof include a pentylsulfinyl group and a hexylsulfinyl group.
  • alkylsulfinyl group having 1 to 4 carbon atoms is preferable, an alkylsulfinyl group having 1 to 2 carbon atoms is more preferable, and a methylsulfinyl group is particularly preferable.
  • alkylsulfonyl group having 1 to 6 carbon atoms of Rc examples include methylsulfonyl group, ethylsulfonyl group, propylsulfonyl group, isopropylsulfonyl group, butylsulfonyl group, isobutylsulfonyl group, sec-butylsulfonyl group, tert-butylsulfonyl group, Examples thereof include a pentylsulfonyl group and a hexylsulfonyl group, preferably an alkylsulfonyl group having 1 to 4 carbon atoms, more preferably an alkylsulfonyl group having 1 to 2 carbon atoms, and particularly preferably a methylsulfonyl group.
  • Examples of the fluoroalkyl group having 1 to 6 carbon atoms of Rc include a fluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, and the like.
  • a fluoroalkyl group having 4 carbon atoms is preferred, a fluoroalkyl group having 1 to 2 carbon atoms is more preferred, and a trifluoromethyl group is particularly preferred.
  • Examples of the alkoxy group having 1 to 6 carbon atoms of Rc include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, etc.
  • An alkoxy group having 1 to 4 carbon atoms is preferable, an alkoxy group having 1 to 2 carbon atoms is more preferable, and a methoxy group is particularly preferable.
  • Examples of the thioalkyl group having 1 to 6 carbon atoms of Rc include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, pentylthio group, hexylthio group and the like.
  • a thioalkyl group having 1 to 4 carbon atoms is preferable, a thioalkyl group having 1 to 2 carbon atoms is more preferable, and a methylthio group is particularly preferable.
  • N-alkylamino group having 1 to 6 carbon atoms of Rc examples include N-methylamino group, N-ethylamino group, N-propylamino group, N-isopropylamino group, N-butylamino group, N-isobutylamino. Group, N-sec-butylamino group, N-tert-butylamino group, N-pentylamino group, N-hexylamino group, and the like.
  • N-alkylamino group having 1 to 4 carbon atoms is preferable, One to two N-alkylamino groups are more preferred, and an N-methylamino group is particularly preferred.
  • N, N-dialkylamino group having 2 to 12 carbon atoms of Rc examples include N, N-dimethylamino group, N-methyl-N-ethylamino group, N, N-diethylamino group, N, N-dipropylamino group Group, N, N-diisopropylamino group, N, N-dibutylamino group, N, N-diisobutylamino group, N, N-dipentylamino group, N, N-dihexylamino group, etc.
  • An N, N-dialkylamino group having 8 carbon atoms is preferred, an N, N-dialkylamino group having 2 to 4 carbon atoms is more preferred, and an N, N-dimethylamino group is particularly preferred.
  • N-alkylsulfamoyl group having 1 to 6 carbon atoms of Rc examples include N-methylsulfamoyl group, N-ethylsulfamoyl group, N-propylsulfamoyl group, N-isopropylsulfamoyl group, N-butylsulfamoyl group, N-isobutylsulfamoyl group, N-sec-butylsulfamoyl group, N-tert-butylsulfamoyl group, N-pentylsulfamoyl group, N-hexylsulfamoyl group A C 1-4 N-alkylsulfamoyl group is preferred, a C 1-2 N-alkylsulfamoyl group is more preferred, and an N-methylsulfamoyl group is particularly preferred.
  • N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms of Rc examples include N, N-dimethylsulfamoyl group, N-methyl-N-ethylsulfamoyl group, N, N-diethylsulfamoyl group.
  • N N-dipropylsulfamoyl group, N, N-diisopropylsulfamoyl group, N, N-dibutylsulfamoyl group, N, N-diisobutylsulfamoyl group, N, N-dipentylsulfamoyl Group, N, N-dihexylsulfamoyl group and the like, N, N-dialkylsulfamoyl group having 2 to 8 carbon atoms is preferable, and N, N-dialkylsulfamoyl group having 2 to 4 carbon atoms is preferable. More preferred is an N, N-dimethylsulfamoyl group.
  • Rc is a halogen atom, tert-butyl group, methyl group, cyano group, nitro group, carboxyl group, methylsulfonyl group, trifluoromethyl group, methoxy group, methylthio group, N-methylamino group, N, N-dimethylamino group, N-methylsulfamoyl group, N, N-dimethylsulfamoyl group, or methylsulfinyl group is preferable.
  • E 1 and E 2 are each independently —CR 11 R 12 —, —S—, —NR 11 —, —CO—, or —O—.
  • R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Examples of the alkyl group having 1 to 4 carbon atoms in R 11 and R 12 include methyl group, ethyl group, n-propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group and the like.
  • An alkyl group having 1 to 2 carbon atoms is preferable, and a methyl group is more preferable.
  • E 1 and E 2 are preferably each independently —S—, —C ( ⁇ O) —, —NH—, or —N (CH 3 ) —.
  • D 1 and D 2 each independently represents an aromatic hydrocarbon ring group which may have a substituent, or a substituent. Represents a good aromatic heterocyclic group.
  • examples of the aromatic hydrocarbon ring group for D 1 and D 2 include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a fluorenyl group.
  • a phenyl group and a naphthyl group are preferable.
  • Examples of the aromatic heterocyclic group of D 1 and D 2 include a phthalimide group, a 1-benzofuranyl group, a 2-benzofuranyl group, an acridinyl group, an isoquinolinyl group, an imidazolyl group, an indolinyl group, a furazanyl group, an oxazolyl group, Razinyl group, oxazolopyridinyl group, oxazolopyridazinyl group, oxazolopyrimidinyl group, quinazolinyl group, quinoxalinyl group, quinolyl group, cinnolinyl group, thiadiazolyl group, thiazolyl group, thiazolopyrazinyl group, thia Zolopyridyl group, thiazolopyridazinyl group, thiazolopyrimidinyl group, thienyl group, triazinyl group, triazolyl group, nap
  • aromatic heterocyclic groups include furanyl group, thienyl group, oxazolyl group, thiazolyl group, benzothiazolyl group, benzoxazolyl group, 1-benzofuranyl group, 2-benzofuranyl group, benzothienyl group, thiazolopyridyl group Groups are preferred.
  • the aromatic hydrocarbon ring group and aromatic heterocyclic group of D 1 and D 2 are a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, a carbon number 1-6 alkylsulfonyl groups, carboxyl groups, fluoroalkyl groups having 1-6 carbon atoms, alkoxy groups having 1-6 carbon atoms, thioalkyl groups having 1-6 carbon atoms, N-alkylamino groups having 1-6 carbon atoms Substituted with an N, N-dialkylamino group having 2 to 12 carbon atoms, an N-alkylsulfamoyl group having 1 to 6 carbon atoms, or an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms.
  • aromatic hydrocarbon ring group and the aromatic heterocyclic group may have one or more substituents selected from the above-described substituents. And when it has a some substituent, a plurality of substituents may mutually be same or different.
  • D 1 and D 2 substituent halogen atoms, alkyl groups having 1 to 6 carbon atoms, alkyl sulfinyl groups having 1 to 6 carbon atoms, alkylsulfonyl groups having 1 to 6 carbon atoms, fluoroalkyl groups having 1 to 6 carbon atoms
  • D 1 and D 2 are preferably each independently any group represented by the following formulas (d-1) to (d-8).
  • Rd represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
  • Alkylsulfonyl group carboxyl group, fluoroalkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, thioalkyl group having 1 to 6 carbon atoms, N-alkylamino group having 1 to 6 carbon atoms, carbon number It represents an N, N-dialkylamino group having 2 to 12 carbon atoms, an N-alkylsulfamoyl group having 1 to 6 carbon atoms, or an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms.
  • P1 is an integer from 0 to 5
  • p2 is an integer from 0 to 4
  • p3 is an integer from 0 to 3
  • p4 is an integer from 0 to 2.
  • p1, p3, and p4 are 0
  • it is preferably 1
  • p2 is preferably an integer of 0 to 3.
  • Rf represents a hydrogen atom or a methyl group.
  • Rd halogen atom, alkyl group having 1 to 6 carbon atoms, alkylsulfinyl group having 1 to 6 carbon atoms, alkylsulfonyl group having 1 to 6 carbon atoms, fluoroalkyl group having 1 to 6 carbon atoms, 1 to 6 carbon atoms
  • alkylsulfonyl group having 1 to 6 carbon atoms a fluoroalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a thioalkyl group having 1 to 6 carbon atoms, an N-alkyl group having 1 to 6 carbon atoms
  • N group N, N-dialkylamino group having 2 to 12 carbon atoms
  • N-alkylsulfamoyl group having 1 to 6 carbon atoms and N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms
  • Rd is preferably a halogen atom, methyl group, cyano group, nitro group, carboxyl group, trifluoromethyl group, methoxy group, methylthio group, N, N-dimethylamino group, or N-methylamino group.
  • D 1 and D 2 are each independently a group represented by the formula (d-1), (d-3), or (d-7). This is particularly preferable in terms of optical characteristics and cost.
  • Ar 1 is more preferably any one of groups represented by the following formulas (Ar-5) to (Ar-9).
  • E 1 , Rc, Rd and p0 to p3 have the same meaning as described above, and preferred examples thereof are also the same as described above.
  • R 13 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms in R 13 include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • Z 1 is preferably —CO—O—.
  • Z 2 is preferably —O—CO—.
  • a 1 and A 2 are each independently a cyclic aliphatic group which may have a substituent or an aromatic group which may have a substituent. Among them, A 1 and A 2 are preferably substituted is also good cyclic aliphatic group.
  • the cycloaliphatic group which may have a substituent is an unsubstituted divalent cycloaliphatic group or a divalent cycloaliphatic group having a substituent.
  • the divalent cycloaliphatic group is a divalent aliphatic group having a cyclic structure and usually having 5 to 20 carbon atoms.
  • Specific examples of the divalent cycloaliphatic group represented by A 1 and A 2 include cyclopentane-1,3-diyl group, cyclohexane-1,4-diyl group, 1,4-cycloheptane-1,4-diyl.
  • cycloalkanediyl groups having 5 to 20 carbon atoms such as cyclooctane-1,5-diyl group; carbon numbers such as decahydronaphthalene-1,5-diyl group and decahydronaphthalene-2,6-diyl group ⁇ 20 bicycloalkanediyl groups and the like.
  • the aromatic group which may have a substituent is an unsubstituted divalent aromatic group or a divalent aromatic group having a substituent.
  • the divalent aromatic group is a divalent aromatic group having an aromatic ring structure and usually having 2 to 20 carbon atoms.
  • divalent aromatic group for A 1 and A 2 examples include 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,6-naphthylene group, 4,4 ′ A bivalent aromatic hydrocarbon ring having 6 to 20 carbon atoms such as a biphenylene group; a furan-2,5-diyl group, a thiophene-2,5-diyl group, a pyridine-2,5-diyl group, a pyrazine And a divalent aromatic heterocyclic group having 2 to 20 carbon atoms such as a -2,5-diyl group.
  • examples of the substituent for the divalent cyclic aliphatic group and the divalent aromatic group of A 1 and A 2 include halogen atoms such as a fluorine atom, a chlorine atom and a bromine atom; a methyl group, an ethyl group and the like. Examples thereof include an alkyl group having 1 to 6 carbon atoms; an alkoxy group having 1 to 5 carbon atoms such as a methoxy group and an isopropoxy group; a nitro group; a cyano group;
  • the cycloaliphatic group and the aromatic group may have at least one substituent selected from the above-described substituents. In addition, when it has two or more substituents, each substituent may be the same or different.
  • L 1 and L 2 are each independently a single bond, —O—, —CO—, —CO—O—, —O—CO—, —NR 14. —CO—, —CO—NR 14 —, —O—CO—O—, —NR 14 —CO—O—, —O—CO—NR 14 —, or —NR 14 —CO—NR 15 —.
  • R 14 and R 15 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • L 1 and L 2 are preferably each independently —O—, —CO—O—, or —O—CO—.
  • the alkyl group having 1 to 6 carbon atoms of R 14 and R 15 include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • B 1 and B 2 are each independently a cyclic aliphatic group which may have a substituent, or an aromatic which may have a substituent. It is a family group. Among these, B 1 and B 2 are preferably aromatic groups that may have a substituent.
  • the cycloaliphatic group which may have a substituent is an unsubstituted divalent cycloaliphatic group or a divalent cycloaliphatic group having a substituent.
  • the divalent cycloaliphatic group is a divalent aliphatic group having a cyclic structure and usually having 5 to 20 carbon atoms.
  • Specific examples of the divalent cycloaliphatic group of B 1 and B 2 include the same as those exemplified as the divalent cycloaliphatic group of A 1 and A 2 .
  • the aromatic group which may have a substituent is an unsubstituted divalent aromatic group or a divalent aromatic group having a substituent.
  • the divalent aromatic group is a divalent aromatic group having an aromatic ring structure and usually having 2 to 20 carbon atoms.
  • Specific examples of the divalent aromatic group for B 1 and B 2 include the same examples as those exemplified as the divalent aromatic group for A 1 and A 2 .
  • substitution of the divalent cycloaliphatic group and divalent aromatic group of A 1 and A 2 examples thereof are the same as those exemplified as the group.
  • Y 1 and Y 2 are each independently a single bond, —O—, —CO—, —CO—O—, —O—CO—, —NR 14 —CO—, —CO—NR 14 —. , —O—CO—O—, —NR 14 —CO—O—, —O—CO—NR 14 —, or —NR 14 —CO—NR 15 —.
  • R 14 and R 15 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Y 1 and Y 2 are preferably each independently —O—, —CO—O—, or —O—CO—.
  • Examples of the alkyl group having 1 to 6 carbon atoms of R 14 and R 15 include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • R 1 and R 2 are each independently a hydrogen atom or a methyl group.
  • R 1 is preferably the same as R 2, and both R 1 and R 2 are more preferably hydrogen atoms.
  • the polymerizable compound (I) preferably has a substantially symmetrical structure with Ar as the center.
  • R 1 , a and b are the same as R 2 , d and c, respectively, and —Y 1 — [B 1 -L 1 ] b —A 1 — Z 1 -(*) and (*)-Z 2 -A 2- [L 2 -B 2 ] c -Y 2- have a symmetrical structure with the side (*) that is bonded to Ar as the center of symmetry. Is preferred.
  • “having a symmetric structure with (*) as the center of symmetry” means, for example, —CO—O — (*) and (*) — O—CO— or —O — (*) and (*). It means having a structure such as —O—, —O—CO — (*) and (*) — CO—O—.
  • composition containing the halogenated compound (II) is subjected to a dehydrohalogenation reaction to give the halogenated compound (II).
  • composition containing the halogenated compound (II) refers to the halogenated compound (II) itself or a dehydrohalide of the halogenated compound (II) and the halogenated compound (II). Means a mixture containing
  • halogenated substance (II) used as the object of dehydrohalogenation reaction is a compound represented by following formula (II).
  • X 1 represents a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, and a chlorine atom is preferred.
  • R 1 and a have the same meaning as in formula (I).
  • G is an organic group, preferably an organic group having 5 to 80 carbon atoms and having at least one aromatic ring.
  • the aromatic ring include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, and a fluorene ring.
  • a benzene ring and a naphthalene ring are preferable.
  • aromatic heterocycle examples include 1H-isoindole-1,3 (2H) -dione ring, 1-benzofuran ring, 2-benzofuran ring, acridine ring, isoquinoline ring, imidazole ring, indole ring, oxadi Azole ring, oxazole ring, oxazolopyrazine ring, oxazolopyridine ring, oxazolopyridazyl ring, oxazolopyrimidine ring, quinazoline ring, quinoxaline ring, quinoline ring, cinnoline ring, thiadiazole ring, thiazole ring, thiazolopyrazine ring , Thiazolopyridine ring, thiazolopyridazine ring, thiazolopyrimidine ring, thiophene ring, triazine ring, triazole ring, naphthyridine
  • aromatic heterocycles include benzothiazole ring, benzoxazole ring, 1-benzofuran ring, 2-benzofuran ring, benzothiophene ring, 1H-isoindole-1,3 (2H) -dione ring, thiophene ring A furan ring, a benzo [c] thiophene ring, an oxazole ring, a thiazole ring, an oxadiazole ring, a pyran ring, a benzoisoxazole ring, a thiadiazole ring, a benzooxadiazole ring, and a benzothiadiazole ring.
  • the halogenated compound (II) is not particularly limited as long as it can be used as a raw material compound of the polymerizable compound (I).
  • the above-described formula (III), ( IV) and halogenated compounds represented by (VI) referred to as “halogenated compound (III)”, “halogenated compound (IV)” and “halogenated compound (VI)”, respectively)).
  • These halides can be synthesized by a known synthesis reaction.
  • the halogenated compound (III) can be produced as a by-product when the polymerizable compound (I) is prepared by a known method, for example.
  • Halogenated compound (III) is a compound represented by the following formula (III).
  • Q represents a group represented by the following formula (III-1) or the following formula (III-2).
  • R 2 represents the same meaning as in formula (I).
  • X 2 in formula (III-2) represents a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, and a chlorine atom is preferred.
  • Ar, Z 1 , Z 2 , A 1 , A 2 , B 1 , B 2 , Y 1 , Y 2 , L 1 , L 2 , R 1 and a to d have the same meaning as in the formula (I).
  • X 1 represents the same meaning as in the formula (II).
  • Halogenated compound (III) is a compound that differs from polymerizable compound (I) only in at least one terminal structure. Therefore, if the halogenated compound (III) is dehydrohalogenated to form a carbon-carbon double bond at the terminal, the polymerizable compound (I) is converted into a dehydrohalogenated product of the halogenated compound (III). Obtainable.
  • halogenated compounds represented by the following formulas (IIIa), (IIIb), and (IIIc) (respectively, “halogenated compound (IIIa)”, “halogen” (Referred to as "Chemical Form (IIIb)” and “Halogenated Form (IIIc)”), and mixtures thereof.
  • the abundance ratio of the halogenated product (IIIa), the halogenated product (IIIb), and the halogenated product (IIIc) in the mixture is not particularly limited.
  • Halogenated compound (IV) is a compound represented by the following formula (IV).
  • FG 1 represents a hydroxyl group, a carboxyl group or an amino group, and preferably a hydroxyl group.
  • R 1 , Y 1 , B 1 and a represent the same meaning as in the formula (I), and X 1 represents the same meaning as in the formula (II).
  • R 1 , Y 1 , B 1 , FG 1 and a represent the same meaning as in formula (IV).
  • a mixture containing the halide (IV) and the compound (V) can be used as the composition containing the halide (IV).
  • the halogenated compound (IV) in the mixture can be converted into the compound (V), whereby the compound (V) having a high purity can be obtained.
  • the ratio of the halide (IV) and the compound (V) in the mixture is not particularly limited, but the ratio of the halide (IV) in the total of the halide (IV) and the compound (V) is It is preferable that it is 0.01 mass% or more and 5 mass% or less, 0.5 mass% or more and 5 mass% or less are more preferable, and 2 mass% or more and 5 mass% or less are still more preferable.
  • the above-mentioned polymerizable compound (I) can be synthesized by using the obtained compound (V) and combining known synthetic reactions. That is, the polymerizable compound (I) uses the compound (V), and various documents (for example, MARCH'S ADVANCED ORGANIC CHEMISTRY (WILEY), Sandler Karo “Functional Group Organic Compound Synthesis Method” by Naoki Inamoto (Sasakawa Shoten)) can be synthesized with reference to the method described.
  • various documents for example, MARCH'S ADVANCED ORGANIC CHEMISTRY (WILEY), Sandler Karo “Functional Group Organic Compound Synthesis Method” by Naoki Inamoto (Sasakawa Shoten)
  • Halogenated compound (VI) is a compound represented by the following formula (VI).
  • FG 2 represents a hydroxyl group, a carboxyl group or an amino group, and a carboxyl group is preferred.
  • R 1 , Y 1 , B 1 , L 1 , A 1 , a and b represent the same meaning as in the formula (I), and X 1 represents the same meaning as in the formula (II).
  • halogenated compound (VI) When the halogenated compound (VI) is dehydrohalogenated, a compound represented by the following formula (VII) (“compound (VII)”) is obtained as a dehydrohalogenated product of the halogenated compound (VI). be able to.
  • R 1 , Y 1 , B 1 , L 1 , A 1 , FG 2 , a and b represent the same meaning as in formula (VI).
  • a mixture containing the halide (VI) and the compound (VII) can be used as the composition containing the halide (VI).
  • the halogenated compound (VI) in the mixture can be converted into the compound (VII) to obtain the compound (VII) with high purity.
  • the ratio of the halogenated compound (VI) to the compound (VII) in the mixture is not particularly limited, but the ratio of the halogenated compound (VI) in the total of the halogenated compound (VI) and the compound (VII) is The content is preferably 0.01% by mass or more and 5% by mass or less, more preferably 0.5% by mass or more and 5% by mass or less, and further preferably 1.5% by mass or more and 5% by mass or less.
  • the polymerizable compound (I) can be synthesized by combining known synthetic reactions. That is, the polymerizable compound (I) uses the compound (VII), and various documents (for example, MARCH'S ADVANCED ORGANIC CHEMISTRY (WILEY), Sandler Karo “Functional Group Organic Compound Synthesis Method” by Naoki Inamoto (Sasakawa Shoten)) can be synthesized with reference to the method described.
  • various documents for example, MARCH'S ADVANCED ORGANIC CHEMISTRY (WILEY), Sandler Karo “Functional Group Organic Compound Synthesis Method” by Naoki Inamoto (Sasakawa Shoten)
  • the dehydrohalogenation reaction is performed in an organic solvent in the presence of an aqueous layer containing at least one basic compound.
  • Organic solvent to be used is not particularly limited as long as it can dissolve the halide (II) and is inert to the reaction.
  • ester solvents such as ethyl acetate, propyl acetate and butyl acetate
  • ketone solvents such as cyclopentanone, methyl ethyl ketone, diethyl ketone and methyl isobutyl ketone
  • Halogenated hydrocarbon solvents such as o-dichlorobenzene
  • ether solvents such as diethyl ether, diisopropyl ether, ethylene glycol dimethyl ether, cyclopentyl methyl ether and tetrahydrofuran
  • aliphatic carbonization such as n-pentane, n-hexane and n-heptane Hydrogen solvents
  • a mixed solvent of an ester solvent and a nitrogen-containing hydrocarbon solvent, a ketone solvent and a nitrogen-containing solvent from the viewpoint of obtaining a desired product with good solubility and high yield of the halogen (II).
  • a mixed solvent with a hydrocarbon solvent is preferable, a mixed solvent of an ester solvent and a nitrogen-containing hydrocarbon solvent is more preferable, and a mixed solvent of ethyl acetate and acetonitrile is particularly preferable.
  • the mixing ratio of both is usually 1: 1 to 4: 1 by volume ratio of the ester solvent and the nitrogen-containing hydrocarbon solvent.
  • the ratio is preferably 2: 1 to 3: 1.
  • Aqueous layer containing basic compound As the basic compound, inorganic basic compounds and organic basic compounds can be used. From the viewpoint of efficiently proceeding with the dehydrohalogenation reaction, it is preferable to use at least an inorganic basic compound as the basic compound, and it is more preferable to use an inorganic basic compound and an organic basic compound in combination. .
  • the water used for the water layer is preferably water that does not contain impurities, such as distilled water.
  • the inorganic basic compound is not particularly limited.
  • metal carbonate, metal hydrogencarbonate, metal hydroxide, etc. are mentioned.
  • the metal carbonate include alkali metal carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate; magnesium carbonate; alkaline earth metal carbonates such as calcium carbonate and barium hydroxide;
  • the metal hydrogen carbonate include alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; magnesium hydrogen carbonate; alkaline earth metal hydrogen carbonates such as calcium hydrogen carbonate;
  • the metal hydroxide include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; magnesium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide;
  • the amount of the inorganic basic compound used is not particularly limited, but to increase the yield of the dehydrohalide and to eliminate the neutralization step after the reaction, with respect to 1 equivalent of the halide (II), It is preferably 1 to 3 equivalents, more preferably 1.5 to 2.5 equivalents.
  • the concentration of the inorganic basic compound in the aqueous layer is not particularly limited, but is 0.5 to 2. in order to increase the yield of dehydrohalide and to omit the neutralization step after the reaction. 5 mol / L is preferable, and 0.5 to 1.5 mol / L is more preferable.
  • organic basic compounds include heterocyclic compounds such as pyridine, picoline, collidine, lutidine, and 4- (dimethylamino) pyridine; tertiary amines such as triethylamine, N, N-diisopropylethylamine, and N, N-dimethylaniline; Etc.
  • a tertiary amine is preferable and triethylamine is more preferable from the viewpoint of increasing the yield of the dehydrohalide.
  • the amount of the organic basic compound used is not particularly limited, but is preferably 1 to 3 equivalents, more preferably 1.2 to 2 equivalents, per 1 equivalent of the halide (II).
  • the reaction is preferably carried out in an inert atmosphere such as argon or nitrogen.
  • the reaction temperature is usually ⁇ 10 ° C. to + 80 ° C., preferably 10 ° C. to 70 ° C., more preferably 20 ° C. to 60 ° C.
  • the reaction time is several minutes to 24 hours, preferably 0.5 to 10 hours.
  • the progress of the reaction can be confirmed by known analytical means (for example, thin layer chromatography, high performance liquid chromatography, gas chromatography).
  • the reaction product is purified by a known separation / purification means such as a distillation method, a column chromatography method, or a recrystallization method, if desired.
  • the dehydrohalogenated product (for example, the target polymerizable compound (I)) can be isolated. Specifically, after removing the aqueous layer (aqueous phase) from the solution after the reaction, the organic layer (organic phase) is washed with water, and then a poor solvent such as an alcohol solvent is added to the organic layer to precipitate crystals. Thus, the target polymerizable compound (I) and the like can be isolated efficiently.
  • the structure of the target product can be identified and confirmed by using analytical means such as NMR spectrum, IR spectrum, and mass spectrum.
  • reaction solution was cooled to 30 ° C., 600 ml of 1M hydrochloric acid was added, and the mixture was extracted with 800 ml of diethyl ether.
  • the diethyl ether layer was washed with 300 ml of saturated aqueous sodium hydrogen carbonate solution and 300 ml of saturated brine, and then dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, diethyl ether was distilled off under reduced pressure using a rotary evaporator to obtain a white solid.
  • reaction solution was cooled to 30 ° C., 300 ml of 1M hydrochloric acid was added, and the mixture was extracted with 120 ml of methyl isobutyl ketone.
  • the methyl isobutyl ketone layer was dried over sodium sulfate, and the sodium sulfate was filtered off.
  • methyl isobutyl ketone was distilled off under reduced pressure using a rotary evaporator to obtain a pale yellow solid. This pale yellow solid was dissolved in 500 ml of ethanol. To this solution, 12.0 g (214 mmol) of potassium hydroxide was added and stirred at 80 ° C. for 1 hour.
  • the temperature of the reaction solution was lowered to 80 ° C., 200 g of distilled water was added, and then the reaction solution was cooled to 10 ° C. to precipitate crystals.
  • the precipitated crystals were separated into solid and liquid by filtration, and the obtained crystals were washed with 150 g of distilled water to obtain 203.0 g of brown crystals.
  • the loss on drying was 36.3% by mass.
  • the ratio (molar ratio) of the monoetherified product to the dietherified product contained in the brown crystals was (monoetherified product / dietherified product), which was 92.0 / 8.0. .
  • the crystals were separated by filtration, and the obtained crystals were washed with a mixed solution of 66.7 g of toluene and 133.3 g of n-heptane. Next, the crystals were added to 144 g of toluene and heated to 40 ° C. to dissolve the crystals. To the resulting solution, 216 g of n-heptane was added dropwise over 1 hour to precipitate crystals, which were then cooled to 5 ° C. as they were.
  • the internal temperature of the reaction solution was lowered to 80 ° C., 200 ml of distilled water was added, and then the reaction solution was cooled to 10 ° C. to precipitate crystals.
  • the precipitated crystals were separated into solid and liquid by filtration, and the obtained crystals were washed with 500 ml of distilled water and vacuum-dried to obtain 123.3 g of brown crystals.
  • the reaction solution internal temperature was lowered to 30 ° C., 70 ml of distilled water was added, and the whole volume was stirred and allowed to stand.
  • the organic layer was separated, and 35 ml of distilled water was added to the obtained organic layer for liquid separation.
  • the organic layer was separated, and 1.4 g of activated carbon was added to the obtained organic layer.
  • the whole volume was stirred at 25 ° C. for 30 minutes, and then filtered to remove the activated carbon.
  • the solvent was distilled off from the filtrate under reduced pressure using a rotary evaporator.
  • the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
  • Step 13 Synthesis of Compound 1
  • 1.13 g (1.58 mmol) of the intermediate L synthesized in Step 12 above was added to 30 ml of chloroform in a nitrogen stream.
  • 864 mg (1.90 mmol) of intermediate K synthesized in the previous Step 11 and 19.8 mg (0.16 mmol) of 4-dimethylaminopyridine were added, and the mixture was cooled to 0 ° C.
  • 239 mg (1.90 mmol) of N, N′-diisopropylcarbodiimide was added to this solution, and the mixture was stirred at room temperature for 1.5 hours.
  • a three-necked reactor equipped with a condenser and a thermometer was charged with 104.77 g (0.9515 mol) of hydroquinone, 100 g (0.7320 mol) of 6-chlorohexanol, 500 ml of distilled water and 100 ml of o-xylene in a nitrogen stream. added. While stirring the whole volume, 35.15 g (0.8784 mol) of sodium hydroxide was further added little by little over 20 minutes so that the internal temperature of the reaction solution did not exceed 40 ° C. After completion of the addition of sodium hydroxide, the contents were heated and reacted for 12 hours under reflux conditions (96 ° C.).
  • the internal temperature of the reaction solution was lowered to 80 ° C., 200 ml of distilled water was added, and then the reaction solution was cooled to 10 ° C. to precipitate crystals.
  • the precipitated crystals were separated into solid and liquid by filtration, and the obtained crystals were washed with 500 ml of distilled water and vacuum-dried to obtain 123.3 g of brown crystals.
  • reaction solution was poured into 1 liter of 0.1N hydrochloric acid aqueous solution and extracted twice with 300 ml of ethyl acetate.
  • the obtained ethyl acetate layer was washed with 300 ml of saturated brine. Thereafter, the ethyl acetate layer was dried over anhydrous sodium sulfate, and sodium sulfate was removed by filtration. Ethyl acetate was distilled off by a rotary evaporator to obtain a pale yellow solid.
  • the obtained solid was analyzed by HPLC, the following intermediate GG ′, which is a halogenated product of intermediate GG, was included in a ratio of 2.1% by mass in the total of intermediate GG and intermediate GG ′. It was.
  • the whole volume was further stirred for 1 hour while maintaining the temperature at 10 ° C or lower.
  • 30 ml of distilled water was added to the obtained reaction solution.
  • the reaction solution was heated to 50 ° C., washed (hydrolyzed) for 2 hours, and the aqueous layer was extracted. Further, 30 ml of distilled water was added to the obtained organic layer, and the whole volume was washed (hydrolyzed) at 50 ° C. for 2 hours, and the aqueous layer was extracted.
  • the obtained organic layer was cooled to 40 ° C., and further washed with 50 ml of a buffer solution (pH: 5.5) composed of acetic acid and sodium acetate at a concentration of 1 mol / liter, and then the buffer solution was extracted. .
  • the obtained organic layer was further washed with 30 ml of distilled water, and then the aqueous layer was extracted.
  • 220 ml of n-hexane was added and then cooled to 0 ° C. to precipitate crystals. Thereafter, the precipitated crystals were collected by filtration. The filtrate was washed with n-hexane and then vacuum-dried to obtain 16.78 g of a mixture N as a white solid.
  • the obtained crystals were analyzed by HPLC, and the monoester and diester were quantified with a calibration curve. As a result, the target monoester was 11.49 g (27.45 mmol), and the diester was 5.29 g. (7.96 mmol) was found to be contained.
  • the obtained crystals were analyzed by 13C-NMR (DMF-d7), and the content of cyclohexanedicarboxylic acid was calculated and found to be below the detection limit. When the mol content was calculated from the respective composition ratios, the monoester content was 77.52 mol% and the diester content was 22.48 mol%.
  • Step 4 Synthesis of Compound 3
  • 524 mg (1.68 mmol) of Intermediate F synthesized in Step 6 of Synthesis Example 1 was added to 30 ml of chloroform in a nitrogen stream.
  • 2.26 g of the mixture N synthesized in the previous Step 3 and 20.5 mg (0.17 mmol) of 4-dimethylaminopyridine were added and cooled to 0 ° C.
  • 509 mg (4.04 mmol) of N, N′-diisopropylcarbodiimide was added to this solution and stirred at room temperature for 1.5 hours.
  • the reaction solution was filtered using a filter medium precoated with silica gel.
  • Toluene was distilled off under reduced pressure from the obtained toluene layer with a rotary evaporator to obtain an oily substance.
  • the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
  • the obtained ethyl acetate layer was dried over anhydrous sodium sulfate, and sodium sulfate was filtered off. After concentration with a rotary evaporator, 80 ml of methanol was added to the resulting residue. The precipitated flesh-colored solid was collected by filtration, and the collected solid was vacuum-dried to obtain 1.49 g of a flesh-colored solid containing Intermediate S as a main component (yield: 22.8 mol%). The obtained solid was used in the next step without further purification.
  • Step 6 Synthesis of Compound 4
  • 1.30 g (2.00 mmol) of the intermediate S synthesized in Step 5 above was added to 30 ml of chloroform in a nitrogen stream.
  • 1.09 g (2.40 mmol) of intermediate K synthesized in Step 11 of Synthesis Example 1 and 24.5 mg (0.20 mmol) of 4-dimethylaminopyridine were added and cooled to 0 ° C.
  • 303 mg (2.40 mmol) of N, N′-diisopropylcarbodiimide was added to the solution, and the mixture was stirred at room temperature for 1.5 hours.
  • reaction solution was filtered using a filter medium pre-coated with silica gel, concentrated under reduced pressure, and 50 ml of methanol was added to the resulting residue.
  • the precipitated white solid was collected by filtration, and the collected solid was vacuum-dried to obtain 2.01 g of compound 4 as a white solid (yield: 89.4 mol%).
  • the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
  • reaction solution was filtered using a filter medium pre-coated with silica gel, concentrated under reduced pressure, and 50 ml of methanol was added to the resulting residue.
  • the precipitated white solid was collected by filtration, and the collected solid was vacuum-dried to obtain 1.77 g of compound 5 as a white solid (yield: 74.7 mol%).
  • the structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
  • Distilled water (80 ml) was added to the resulting reaction solution, and the mixture was washed at 50 ° C. for 4 hours, and then the aqueous layer was extracted.
  • the organic layer was further washed five times with 150 ml of a buffer solution (pH: 5.5) composed of acetic acid and sodium acetate having a concentration of 1.0 mol / liter, and then the buffer solution was extracted.
  • the organic layer was further washed with 100 ml of distilled water and separated. To the obtained organic layer, 400 ml of n-hexane was added to precipitate crystals, and the precipitated crystals were collected by filtration.
  • the obtained solid was analyzed by HPLC, the following compound 7 ′, which is a halide of compound 7, was contained at a ratio of 1.8 mass% in the total of compound 7 and compound 7 ′.
  • Synthesis Example 8 Synthesis of Mixture 7 In a three-necked reactor equipped with a cooler and a thermometer, in a nitrogen stream, 4.15 g (19.87 mmol) of transcyclohexanedicarboxylic acid dichloride 30 g of cyclopentyl methyl ether and tetrahydrofuran 11 Dissolved in 5 g. After this solution was cooled in an ice bath, 5.0 g of the crude intermediate GG obtained in Step 2 of Synthesis Example 3 was added and dissolved. Under an ice bath, 2.01 g (19.87 mmol) of triethylamine was controlled to be 10 ° C. or lower and slowly dropped into this solution.
  • Example 1 Dehydrochlorination Reaction of Compound 1
  • the compound synthesized in Synthesis Example 1 1 1.0 g (0.871 mmol), triethylamine 132 mg (1 .31 mmol) was dissolved in a mixed solvent of 30 ml of ethyl acetate and 15 ml of acetonitrile.
  • 1.5 ml of a 1 mol / L sodium carbonate aqueous solution was added and stirred at 50 ° C. for 4 hours. After completion of the reaction, an aqueous sodium carbonate solution was extracted, and the resulting organic layer was further washed with 30 ml of water.
  • Example 2 Dehydrochlorination Reaction of Compound 2
  • Compound 1 1.0 g (0.871 mmol) was changed to Compound 2: 1.0 g (0.843 mmol) synthesized in Synthesis Example 2. Except for this, the same operation as in Example 1 was performed. As a result, 887 mg of a white solid was obtained. When the obtained solid was analyzed by HPLC, the peak of Compound 2 which was a halogenated compound disappeared completely, and Compound 2 was converted to Compound 3. The structure of the target product was identified by 1 H-NMR.
  • Example 3 Dehydrochlorination Reaction of Crude Compound 3
  • Compound 1 1.0 g (0.871 mmol) was changed to Crude Compound 3: 1.0 g synthesized in Synthesis Example 3, The same operation as in Example 1 was performed. As a result, 952 mg of a white solid was obtained. When the obtained solid was analyzed by HPLC, the peak of Compound 1 as a halogenated product disappeared completely, and Compound 1 was converted to Compound 3. The structure of the target product was identified by 1 H-NMR.
  • Example 4 Dehydrochlorination reaction of Compound 4
  • Compound 1 1.0 g (0.871 mmol) was changed to Compound 4: 1.0 g (0.920 mmol) synthesized in Synthesis Example 4. Except for this, the same operation as in Example 1 was performed. As a result, 902 mg of white solid was obtained. When the obtained solid was analyzed by HPLC, the peak of Compound 4 as a halogenated compound disappeared completely, and Compound 4 was converted to Compound 6. The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
  • Example 5 Dehydrochlorination Reaction of Compound 5
  • Compound 1 1.0 g (0.871 mmol) was changed to Compound 5 synthesized in Synthesis Example 5: 1.0 g (0.890 mmol). Except for this, the same operation as in Example 1 was performed. As a result, 914 mg of white solid was obtained. When the obtained solid was analyzed by HPLC, the peak of Compound 5 which was a halogenated product disappeared completely, and Compound 5 was converted to Compound 6. The structure of the target product was identified by 1 H-NMR.
  • Example 6 Dehydrochlorination Reaction of Crude Compound 6 In Example 1, except that Compound 1: 1.0 g (0.871 mmol) was changed to Crude Compound 6 synthesized in Synthesis Example 6: 1.0 g, The same operation as in Example 1 was performed. As a result, 965 mg of a white solid was obtained. When the obtained solid was analyzed by HPLC, the peak of Compound 4 as a halogenated compound disappeared completely, and Compound 4 was converted to Compound 6. The structure of the target product was identified by 1 H-NMR.
  • Example 7 Dehydrochlorination reaction of intermediate J Intermediate J synthesized in Step 10 of Synthesis Example 1 in a nitrogen stream in a four-necked reactor equipped with a thermometer: 1.0 g (3. 32 mmol) and 505 mg (4.99 mmol) of triethylamine were dissolved in a mixed solvent of 40 ml of ethyl acetate and 20 ml of acetonitrile. To this solution, 9.0 ml of a 1 mol / L sodium carbonate aqueous solution was added and stirred at 50 ° C. for 4 hours.
  • Example 8 Dehydrochlorination Reaction of Intermediate K Intermediate K synthesized in Step 11 of Synthesis Example 1 in a nitrogen stream in a four-necked reactor equipped with a thermometer: 1.0 g (2. 20 mmol) and 334 mg (3.30 mmol) of triethylamine were dissolved in a mixed solvent of 40 ml of ethyl acetate and 20 ml of acetonitrile. To this solution, 8.0 ml of a 1 mol / L sodium carbonate aqueous solution was added and stirred at 50 ° C. for 4 hours.
  • Example 9 Dehydrochlorination reaction of crude intermediate GG
  • crude intermediate GG synthesized in Step 2 of Synthesis Example 3 above 1.0 g, 505 mg (4.99 mmol) of triethylamine was dissolved in a mixed solvent of 40 ml of ethyl acetate and 20 ml of acetonitrile.
  • 9.0 ml of a 1 mol / L sodium carbonate aqueous solution was added and stirred at 50 ° C. for 4 hours.
  • Example 10 Dehydrochlorination reaction of crude compound 7
  • crude compound 7 synthesized in the previous synthesis example 7 in a nitrogen stream 1.0 g (2.20 mmol)
  • 334 mg (3.30 mmol) of triethylamine was dissolved in a mixed solvent of 40 ml of ethyl acetate and 20 ml of acetonitrile.
  • 8.0 ml of a 1 mol / L sodium carbonate aqueous solution was added and stirred at 50 ° C. for 4 hours.
  • Example 11 Dehydrochlorination Reaction of Mixture 7
  • a four-necked reactor equipped with a thermometer 7.25 g of the mixture 7 synthesized in Synthesis Example 7 above in a nitrogen stream, and 2.0 g of triethylamine (19. 71 mmol) was dissolved in a mixed solvent of 200 ml of ethyl acetate and 100 ml of acetonitrile.
  • 50 ml of a 1 mol / L sodium carbonate aqueous solution was added and stirred at 50 ° C. for 4 hours.

Abstract

The purpose of the present invention is to provide a method for industrially advantageously producing a high-purity polymerizable compound. The method of the present invention is for producing a polymerizable compound represented by formula (I), and includes a step in which a composition containing a halogenated compound represented by formula (II) is subjected to a dehydrohalogenation reaction in an organic solvent in the presence of an aqueous layer containing a basic compound.

Description

重合性化合物の製造方法Method for producing polymerizable compound
 本発明は、広い波長域において一様の偏光変換が可能な光学フィルムの調製に使用し得る重合性化合物の製造方法である。 The present invention is a method for producing a polymerizable compound that can be used for the preparation of an optical film capable of uniform polarization conversion in a wide wavelength range.
 フラットパネル表示装置等の各種装置において用いられている位相差板には、直線偏光を円偏光に変換する1/4波長板や直線偏光の偏光振動面を90度変換する1/2波長板等がある。これらの位相差板は、ある特定の単色光に対しては正確に光線波長の1/4λあるいは1/2λの位相差を与えることが可能なものである。
 しかしながら、従来の位相差板には、位相差板を通過して出力される偏光が有色の偏光に変換されてしまうという問題があった。これは、位相差板を構成する材料が位相差について波長分散性を有し、可視光域の光線が混在する合成波である白色光に対しては各波長ごとの偏光状態に分布が生じることから、入力光を全ての波長領域において正確な1/4λあるいは1/2λの位相差の偏光に調整することが不可能であることに起因する。
 このような問題を解決するため、広い波長域の光に対して均一な位相差を与え得る広帯域位相差板、いわゆる逆波長分散性を有する位相差板が種々検討されている。
A retardation plate used in various devices such as a flat panel display device includes a ¼ wavelength plate that converts linearly polarized light into circularly polarized light, a ½ wavelength plate that converts a polarization vibration plane of linearly polarized light by 90 degrees, and the like. There is. These retardation plates can accurately give a phase difference of 1 / 4λ or 1 / 2λ of a light wavelength to a specific monochromatic light.
However, the conventional retardation plate has a problem that polarized light output through the retardation plate is converted into colored polarized light. This is because the material constituting the retardation plate has wavelength dispersion with respect to the retardation, and distribution occurs in the polarization state for each wavelength for white light that is a composite wave in which light rays in the visible light range are mixed. This is because it is impossible to adjust the input light to polarization having a phase difference of 1 / 4λ or 1 / 2λ in all wavelength regions.
In order to solve such a problem, various studies have been made on a broadband retardation plate capable of giving a uniform retardation to light in a wide wavelength range, that is, a so-called reverse wavelength dispersion plate.
 一方、モバイルパソコン、携帯電話等の携帯型の情報端末の高機能化及び普及に伴い、フラットパネル表示装置の厚みを極力薄く抑えることが求められてきている。その結果、構成部材である位相差板の薄層化も求められている。
 薄層化の方法としては、低分子重合性化合物を含有する重合性組成物をフィルム基材に塗布して光学フィルムを形成することにより位相差板を作製する方法が、近年では最も有効な方法とされている。そのため、優れた逆波長分散性を有する光学フィルムを形成可能な重合性化合物またはそれを用いた重合性組成物の開発が多く行われている。
On the other hand, along with the advancement and widespread use of portable information terminals such as mobile personal computers and mobile phones, it has been required to keep the thickness of flat panel display devices as thin as possible. As a result, it is also required to reduce the thickness of the retardation plate that is a constituent member.
As a method for thinning, a method of producing a retardation plate by applying a polymerizable composition containing a low molecular weight polymerizable compound to a film substrate to form an optical film is the most effective method in recent years. It is said that. Therefore, many developments of a polymerizable compound capable of forming an optical film having excellent reverse wavelength dispersion or a polymerizable composition using the same are carried out.
 そして、例えば特許文献1では、逆波長分散性に優れる光学フィルムを形成可能であると共に、加工に適した低い融点を有して基材に塗布することが容易であり、液晶性を示す温度範囲が広く、更に安価で合成可能な重合性化合物および重合性組成物が提案されている。
 また、例えば特許文献2では、ディスコティックネマティック相を発現すると共に、製造が容易である重合性化合物が提案されている。
For example, in Patent Document 1, it is possible to form an optical film excellent in reverse wavelength dispersion, and it is easy to apply to a substrate with a low melting point suitable for processing, and exhibit a liquid crystallinity. A polymerizable compound and a polymerizable composition that are widely available and can be synthesized at low cost have been proposed.
For example, Patent Document 2 proposes a polymerizable compound that exhibits a discotic nematic phase and is easy to manufacture.
国際公開第2014/010325号International Publication No. 2014/010325 特開2009-227667号公報JP 2009-227667 A
 ここで、本発明者らは、逆波長分散性などの性能に優れる光学フィルムを与える化合物として、下記式(I):
Figure JPOXMLDOC01-appb-C000012
〔式(I)中、化学構造を示す記号および添え字の意味は後述する。〕で示される重合性化合物(「重合性化合物(I)」)に着目した。しかしながら、本発明者らの検討によれば、従来の製造方法を用いても、当該重合性化合物を十分に高い収率で製造することは困難な場合があった。例えば、従来の製造方法で所望の重合性化合物を調製すると、重合性化合物の合成に用いるハロゲン含有化合物中の不純物、その他原料化合物中に不純物として混入するハロゲン含有化合物、または、塩類など反応に伴って生成する副生成物の影響に因ると推察されるが、重合性化合物のハロゲン化体が生成する場合があることが、本発明者らの検討で明らかとなった。
Here, as a compound that gives an optical film excellent in performance such as reverse wavelength dispersion, the present inventors have the following formula (I):
Figure JPOXMLDOC01-appb-C000012
[In formula (I), the meaning of symbols and subscripts indicating the chemical structure will be described later. The polymerizable compound represented by the formula ("polymerizable compound (I)") was noted. However, according to the study by the present inventors, it was sometimes difficult to produce the polymerizable compound in a sufficiently high yield even using a conventional production method. For example, when a desired polymerizable compound is prepared by a conventional production method, impurities in a halogen-containing compound used for the synthesis of the polymerizable compound, halogen-containing compounds mixed as impurities in other raw material compounds, or salts are associated with the reaction. Although it is presumed to be due to the influence of by-products generated in this way, it has been clarified by the present inventors that a halogenated form of a polymerizable compound may be produced.
 本発明は、かかる実情のもとになされたものであって、高純度な重合性化合物を、工業的に有利に製造する方法を提供することを目的とする。 The present invention has been made under such circumstances, and an object thereof is to provide a method for producing a highly pure polymerizable compound in an industrially advantageous manner.
 本発明者らは、上記課題を解決すべく鋭意検討した。その結果、本発明者らは、重合性化合物(I)の合成過程の何れかの段階で、副生成物として生成するハロゲン化体を脱ハロゲン化水素反応させれば、上述した重合性化合物(I)の収率を高めることができることに着想した。また、本発明者らは、更なる検討の結果、重合性化合物(I)の原料化合物として、所定のハロゲン化体を敢えて選択し、当該ハロゲン化体を脱ハロゲン化水素反応させることでも、結果としてハロゲン化体の混入割合が少ない(即ち、純度の高い)重合性化合物(I)を製造できることを見出した。そして、本発明者らは、これらの検討を経て、本発明を完成するに至った。
 かくして本発明によれば、下記に示す重合性化合物の製造方法が提供される。
The present inventors diligently studied to solve the above problems. As a result, the present inventors can dehydrohalogenate a halogenated product produced as a by-product at any stage of the synthesis process of the polymerizable compound (I), thereby allowing the polymerizable compound ( The idea was that the yield of I) could be increased. Further, as a result of further studies, the present inventors have selected a predetermined halogenated compound as the starting compound of the polymerizable compound (I) and obtained a dehydrohalogenation reaction with the halogenated compound. As a result, it was found that a polymerizable compound (I) having a small halogenated mixture ratio (ie, high purity) can be produced. And the present inventors came to complete this invention through these examinations.
Thus, according to the present invention, the following method for producing a polymerizable compound is provided.
〔1〕下記式(I)で示される重合性化合物の製造方法であって、
 下記式(II)で示されるハロゲン化体を含む組成物を、有機溶媒中、塩基性化合物を含む水層の存在下で、脱ハロゲン化水素反応に供する工程を含む、製造方法。
〔式(I)中、Arは、下記式(Ar-1)~(Ar-4)で表される基のいずれかであり、
Figure JPOXMLDOC01-appb-C000014
 EおよびEは、それぞれ独立して、-CR1112-、-S-、-NR11-、-CO-、または-O-を表し、R11及びR12は、それぞれ独立して水素原子、または炭素数1~4のアルキル基を表し、
 Rcは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、または炭素数2~12のN,N-ジアルキルスルファモイル基を表し、
 p0は0~2の整数であり、
 DおよびDは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい芳香族複素環基を表し、
 ZおよびZは、それぞれ独立して、単結合、-O-CH-、-CH-O-、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-、-S-C(=O)-、-NR13-C(=O)-、-C(=O)-NR13-、-CF-O-、-O-CF-、-CH-CH-、-CF-CF-、-O-CH-CH-O-、-CH=CH-C(=O)-O-、-O-C(=O)-CH=CH-、-CH-CH-C(=O)-O-、-O-C(=O)-CH-CH-、-CH-CH-O-C(=O)-、-C(=O)-O-CH-CH-、-CH=CH-、-N=CH-、-CH=N-、-N=C(CH)-、-C(CH)=N-、-N=N-、または、-C≡C-を表し、R13は、水素原子または炭素数1~6のアルキル基を表し、
 A、A、BおよびBは、それぞれ独立して、置換基を有していてもよい環状脂肪族基、または置換基を有していてもよい芳香族基を表し、
 Y、Y、LおよびLは、それぞれ独立して、単結合、-O-、-CO-、-CO-O-、-O-CO-、-NR14-CO-、-CO-NR14-、-O-CO-O-、-NR14-CO-O-、-O-CO-NR14-、または-NR14-CO-NR15-を表し、R14およびR15はそれぞれ独立して、水素原子、または炭素数1~6のアルキル基を表し、
 RおよびRは、それぞれ独立して、水素原子、メチル基、または塩素原子を表し、
 aおよびdは、それぞれ独立して、1~20の整数を表し、
 bおよびcは、それぞれ独立して、0または1であり、
 Rcが複数存在する場合、それらは、それぞれ同一であっても、相異なっていてもよい。〕
Figure JPOXMLDOC01-appb-C000015
〔式(II)中、Xはハロゲン原子を表し、
 Gは、有機基を表し、
 Rおよびaは、前記式(I)と同じ意味を表す。〕
[1] A method for producing a polymerizable compound represented by the following formula (I),
A production method comprising a step of subjecting a composition containing a halogenated compound represented by the following formula (II) to a dehydrohalogenation reaction in an organic solvent in the presence of an aqueous layer containing a basic compound.
[In the formula (I), Ar is any one of groups represented by the following formulas (Ar-1) to (Ar-4);
Figure JPOXMLDOC01-appb-C000014
E 1 and E 2 each independently represent —CR 11 R 12 —, —S—, —NR 11 —, —CO—, or —O—, and each of R 11 and R 12 independently represents Represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms,
Rc is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, a carboxyl group, or a carbon group having 1 to 6 carbon atoms. Fluoroalkyl group, alkoxy group having 1 to 6 carbon atoms, thioalkyl group having 1 to 6 carbon atoms, N-alkylamino group having 1 to 6 carbon atoms, N, N-dialkylamino group having 2 to 12 carbon atoms, carbon number An N-alkylsulfamoyl group having 1 to 6 carbon atoms or an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms;
p0 is an integer from 0 to 2,
D 1 and D 2 each independently represents an aromatic hydrocarbon ring group that may have a substituent, or an aromatic heterocyclic group that may have a substituent,
Z 1 and Z 2 are each independently a single bond, —O—CH 2 —, —CH 2 —O—, —C (═O) —O—, —O—C (═O) —, — C (═O) —S—, —S—C (═O) —, —NR 13 —C (═O) —, —C (═O) —NR 13 —, —CF 2 —O—, —O —CF 2 —, —CH 2 —CH 2 —, —CF 2 —CF 2 —, —O—CH 2 —CH 2 —O—, —CH═CH—C (═O) —O—, —O— C (= O) -CH = CH -, - CH 2 -CH 2 -C (= O) -O -, - O-C (= O) -CH 2 -CH 2 -, - CH 2 -CH 2 - O—C (═O) —, —C (═O) —O—CH 2 —CH 2 —, —CH═CH—, —N═CH—, —CH═N—, —N═C (CH 3 )-, -C (CH 3 ) = N-, -N = N-, or -C≡C- R 13 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
A 1 , A 2 , B 1 and B 2 each independently represent a cyclic aliphatic group which may have a substituent, or an aromatic group which may have a substituent,
Y 1 , Y 2 , L 1 and L 2 are each independently a single bond, —O—, —CO—, —CO—O—, —O—CO—, —NR 14 —CO—, —CO —NR 14 —, —O—CO—O—, —NR 14 —CO—O—, —O—CO—NR 14 —, or —NR 14 —CO—NR 15 —, wherein R 14 and R 15 are Each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
R 1 and R 2 each independently represents a hydrogen atom, a methyl group, or a chlorine atom,
a and d each independently represents an integer of 1 to 20,
b and c are each independently 0 or 1,
When a plurality of Rc are present, they may be the same or different. ]
Figure JPOXMLDOC01-appb-C000015
[In Formula (II), X 1 represents a halogen atom;
G represents an organic group,
R 1 and a represent the same meaning as the formula (I). ]
〔2〕前記式(II)で示されるハロゲン化体が、下記式(III)で示されるハロゲン化体である、〔1〕に記載の製造方法。
Figure JPOXMLDOC01-appb-C000016
〔式(III)中、Qは、下記式(III-1)または下記式(III-2)で表され、
Figure JPOXMLDOC01-appb-C000017
  
  [式(III-1)および式(III-2)中、Rは、前記式(I)と同じ意味を表し、式(III-2)中のXは、ハロゲン原子を表す。]
 Xは、前記式(II)と同じ意味を表し、
 Ar、Z、Z、A、A、B、B、Y、Y、L、L、R、およびa~dは、前記式(I)と同じ意味を表す。〕
[2] The production method according to [1], wherein the halide represented by the formula (II) is a halide represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000016
[In the formula (III), Q is represented by the following formula (III-1) or the following formula (III-2);
Figure JPOXMLDOC01-appb-C000017

[In Formula (III-1) and Formula (III-2), R 2 represents the same meaning as in Formula (I), and X 2 in Formula (III-2) represents a halogen atom. ]
X 1 represents the same meaning as in the formula (II),
Ar, Z 1 , Z 2 , A 1 , A 2 , B 1 , B 2 , Y 1 , Y 2 , L 1 , L 2 , R 1 , and a to d have the same meaning as in the formula (I). To express. ]
〔3〕前記XおよびXが塩素原子である、〔2〕に記載の製造方法。 [3] The production method according to [2], wherein X 1 and X 2 are chlorine atoms.
〔4〕前記式(II)で示されるハロゲン化体が、下記式(IV)で示されるハロゲン化体である、〔1〕に記載の製造方法。
Figure JPOXMLDOC01-appb-C000018
〔式(IV)中、FGは、水酸基、カルボキシル基またはアミノ基を表し、
 R、Y、Bおよびaは、前記式(I)と同じ意味を表し、
 Xは、前記式(II)と同じ意味を表す。〕
[4] The production method according to [1], wherein the halide represented by the formula (II) is a halide represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000018
[In formula (IV), FG 1 represents a hydroxyl group, a carboxyl group or an amino group,
R 1 , Y 1 , B 1 and a represent the same meaning as in the formula (I),
X 1 represents the same meaning as in the formula (II). ]
〔5〕前記Xが塩素原子である、〔4〕に記載の製造方法。 [5] The production method according to [4], wherein X 1 is a chlorine atom.
〔6〕前記FGが水酸基である、〔4〕または〔5〕に記載の製造方法。 [6] The production method according to [4] or [5], wherein the FG 1 is a hydroxyl group.
〔7〕前記組成物が、前記式(IV)で示されるハロゲン化体と、下記式(V)で示される化合物を含む混合物である、〔4〕~〔6〕のいずれかに記載の製造方法。
Figure JPOXMLDOC01-appb-C000019
〔式(V)中、R、Y、B、FGおよびaは、前記式(IV)と同じ意味を表す。〕
[7] The production according to any one of [4] to [6], wherein the composition is a mixture containing a halide represented by the formula (IV) and a compound represented by the following formula (V): Method.
Figure JPOXMLDOC01-appb-C000019
[In Formula (V), R 1 , Y 1 , B 1 , FG 1 and a represent the same meaning as in Formula (IV). ]
〔8〕前記式(IV)で示されるハロゲン化体と前記式(V)で示される化合物の合計中に占める前記式(IV)で示されるハロゲン化体の割合が、0.01質量%以上5質量%以下である、〔7〕に記載の製造方法。 [8] The proportion of the halogenated compound represented by the formula (IV) in the total of the halogenated compound represented by the formula (IV) and the compound represented by the formula (V) is 0.01% by mass or more. The production method according to [7], which is 5% by mass or less.
〔9〕前記式(II)で示されるハロゲン化体が、下記式(VI)で示されるハロゲン化体である、〔1〕に記載の製造方法。
Figure JPOXMLDOC01-appb-C000020
〔式(VI)中、FGは、水酸基、カルボキシル基またはアミノ基を表し、
 R、Y、B、L、A、aおよびbは、前記式(I)と同じ意味を表し、
 Xは、前記式(II)と同じ意味を表す。〕
[9] The production method according to [1], wherein the halide represented by the formula (II) is a halide represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000020
[In Formula (VI), FG 2 represents a hydroxyl group, a carboxyl group, or an amino group,
R 1 , Y 1 , B 1 , L 1 , A 1 , a and b represent the same meaning as in the formula (I),
X 1 represents the same meaning as in the formula (II). ]
〔10〕前記Xが塩素原子である、〔9〕に記載の製造方法。 [10] The production method according to [9], wherein X 1 is a chlorine atom.
〔11〕前記FGがカルボキシル基であり、
 前記bが1である、〔9〕または〔10〕に記載の製造方法。
[11] The FG 2 is a carboxyl group,
The production method according to [9] or [10], wherein b is 1.
〔12〕前記組成物が、前記式(VI)で示されるハロゲン化体と、下記式(VII)で示される化合物を含む混合物である、〔9〕~〔11〕のいずれかに記載の製造方法。
Figure JPOXMLDOC01-appb-C000021
〔式(VII)中、R、Y、B、L、A、FG、aおよびbは、前記式(VI)と同じ意味を表す。〕
[12] The production according to any one of [9] to [11], wherein the composition is a mixture containing a halide represented by the formula (VI) and a compound represented by the following formula (VII): Method.
Figure JPOXMLDOC01-appb-C000021
[In the formula (VII), R 1 , Y 1 , B 1 , L 1 , A 1 , FG 2 , a and b represent the same meaning as in the formula (VI). ]
〔13〕前記式(VI)で示されるハロゲン化体と前記式(VII)で示される化合物の合計中に占める前記式(VI)で示されるハロゲン化体の割合が、0.01質量%以上5質量%以下である、〔12〕に記載の製造方法。 [13] The proportion of the halogenated compound represented by the formula (VI) in the total of the halogenated compound represented by the formula (VI) and the compound represented by the formula (VII) is 0.01% by mass or more. The production method according to [12], which is 5% by mass or less.
〔14〕前記DおよびDが、それぞれ独立して、下記式(d-1)~(d-8)で表される基のいずれかである、〔1〕~〔13〕のいずれかに記載の製造方法。
Figure JPOXMLDOC01-appb-C000022
 
〔式(d-1)~(d-8)中、Rdは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、または炭素数2~12のN,N-ジアルキルスルファモイル基を表し、
 p1は、0~5の整数、p2は、0~4の整数、p3は、0~3の整数、p4は、0~2の整数を表し、
 Rfは、水素原子またはメチル基を表し、
 Rdが複数存在する場合、それらは、それぞれ同一であっても、相異なっていてもよい。〕
[14] Any one of [1] to [13], wherein D 1 and D 2 are each independently any one of groups represented by the following formulas (d-1) to (d-8): The manufacturing method as described in.
Figure JPOXMLDOC01-appb-C000022

[In the formulas (d-1) to (d-8), Rd represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, 6 alkylsulfonyl groups, carboxyl groups, fluoroalkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, thioalkyl groups having 1 to 6 carbon atoms, N-alkylamino groups having 1 to 6 carbon atoms, carbon An N, N-dialkylamino group having 2 to 12 carbon atoms, an N-alkylsulfamoyl group having 1 to 6 carbon atoms, or an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms,
p1 is an integer from 0 to 5, p2 is an integer from 0 to 4, p3 is an integer from 0 to 3, and p4 is an integer from 0 to 2,
Rf represents a hydrogen atom or a methyl group,
When a plurality of Rd are present, they may be the same or different from each other. ]
〔15〕前記Arが、下記式(Ar-5)~(Ar-9)で表される基のいずれかである、〔1〕~〔13〕のいずれかに記載の製造方法。
Figure JPOXMLDOC01-appb-C000023
〔式(Ar-5)~(Ar-9)中、E、Rc、およびp0は前記と同じ意味を表し、
 Rdは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、または炭素数2~12のN,N-ジアルキルスルファモイル基を表し、
 p1は、0~5の整数、p2は、0~4の整数、p3は、0~3の整数を表し、
 RcおよびRdが複数存在する場合、それらは、それぞれ同一であっても、相異なっていてもよい。〕
[15] The production method according to any one of [1] to [13], wherein Ar is any one of groups represented by the following formulas (Ar-5) to (Ar-9).
Figure JPOXMLDOC01-appb-C000023
[In the formulas (Ar-5) to (Ar-9), E 1 , Rc, and p0 represent the same meaning as described above,
Rd is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, a carboxyl group, or a carbon group having 1 to 6 carbon atoms. Fluoroalkyl group, alkoxy group having 1 to 6 carbon atoms, thioalkyl group having 1 to 6 carbon atoms, N-alkylamino group having 1 to 6 carbon atoms, N, N-dialkylamino group having 2 to 12 carbon atoms, carbon number An N-alkylsulfamoyl group having 1 to 6 carbon atoms or an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms;
p1 represents an integer of 0 to 5, p2 represents an integer of 0 to 4, p3 represents an integer of 0 to 3,
When a plurality of Rc and Rd are present, they may be the same or different from each other. ]
 本発明によれば、高純度な重合性化合物を、工業的に有利に製造する方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a highly pure polymerizable compound in an industrially advantageous manner.
 以下、本発明を詳細に説明する。なお、本発明において、「置換基を有していてもよい」は、「無置換の、または、置換基を有する」の意味である。また、一般式中に含まれるアルキル基や芳香族炭化水素環基等の有機基が置換基を有する場合、当該置換基を有する有機基の炭素数には、置換基の炭素数を含まないものとする。例えば、炭素数6~20の芳香族炭化水素環基が置換基を有する場合、炭素数6~20の芳香族炭化水素環基の炭素数には、このような置換基の炭素数を含まないものとする。 Hereinafter, the present invention will be described in detail. In the present invention, “may have a substituent” means “unsubstituted or has a substituent”. In addition, when an organic group such as an alkyl group or aromatic hydrocarbon ring group contained in the general formula has a substituent, the number of carbons of the organic group having the substituent does not include the number of carbons of the substituent And For example, when the aromatic hydrocarbon ring group having 6 to 20 carbon atoms has a substituent, the carbon number of the aromatic hydrocarbon ring group having 6 to 20 carbon atoms does not include the carbon number of such a substituent. Shall.
 ここで、本発明の重合性化合物の製造方法は、上述した重合性化合物(I)を製造するために用いられる。より具体的には、本発明の重合性化合物の製造方法は、有機溶媒中に溶解している式(II)で示されるハロゲン化体(「ハロゲン化体(II)」)を含む組成物を、少なくとも1種の塩基性化合物を含む水層の存在下で、脱ハロゲン化水素反応に供する工程を含む、重合性化合物(I)を製造する方法である。 Here, the method for producing a polymerizable compound of the present invention is used for producing the above-described polymerizable compound (I). More specifically, the method for producing a polymerizable compound of the present invention comprises a composition comprising a halogenated compound represented by formula (II) (“halogenated compound (II)”) dissolved in an organic solvent. A method for producing a polymerizable compound (I), comprising a step of subjecting to a dehydrohalogenation reaction in the presence of an aqueous layer containing at least one basic compound.
 そして、本発明の重合性化合物の製造方法によれば、ハロゲン化体(II)を脱ハロゲン化水素反応させることで、最終的に得られる生成物中に占めるハロゲン化体の割合を低下させて、重合性化合物(I)の収率を高めることができる。
 従って、本発明の製造方法によれば、純度の高い重合性化合物(I)を、工業的に有利に製造することができる。
And according to the manufacturing method of the polymeric compound of this invention, the ratio of the halogenated body which occupies in the product finally obtained by dehydrohalogenating the halogenated substance (II) is reduced. The yield of the polymerizable compound (I) can be increased.
Therefore, according to the production method of the present invention, the highly pure polymerizable compound (I) can be advantageously produced industrially.
(1)重合性化合物(I)
 ここで、本発明の製造方法の目的生成物である重合性化合物(I)は、光学フィルムの作製に用いられる化合物である。そして、重合性化合物(I)を用いれば、逆波長分散性等の諸特性に優れる光学フィルムを作製することができる。重合性化合物(I)は、以下の式(I)で示される化合物である。
Figure JPOXMLDOC01-appb-C000024
(1) Polymerizable compound (I)
Here, the polymerizable compound (I), which is a target product of the production method of the present invention, is a compound used for the production of an optical film. And if polymeric compound (I) is used, the optical film excellent in various characteristics, such as reverse wavelength dispersion, can be produced. The polymerizable compound (I) is a compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000024
 ここで、式(I)中、aおよびdは、それぞれ独立して、1~20の整数であり、2~12の整数が好ましく、4~8の整数がより好ましく、bおよびcは、それぞれ独立して、0または1であり、1が好ましい。 In the formula (I), a and d are each independently an integer of 1 to 20, preferably an integer of 2 to 12, more preferably an integer of 4 to 8, and b and c are each Independently, 0 or 1, with 1 being preferred.
 そして、Arは、下記式(Ar-1)~(Ar-4)で表される基のいずれかである。
Figure JPOXMLDOC01-appb-C000025
Ar is any one of groups represented by the following formulas (Ar-1) to (Ar-4).
Figure JPOXMLDOC01-appb-C000025
 ここで、式(Ar-1)~(Ar-4)中、p0は、0~2の整数であり、0または1であることが好ましい。 Here, in the formulas (Ar-1) to (Ar-4), p0 is an integer of 0 to 2, and preferably 0 or 1.
 Rcは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、または炭素数2~12のN,N-ジアルキルスルファモイル基を表す。
 なお、式(Ar-1)~(Ar-4)のそれぞれにおいて、Rcが複数存在する場合(即ち、p0が2の場合)、それら複数のRcは、互いに同一であっても、相異なっていてもよい。
Rc is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, a carboxyl group, or a carbon group having 1 to 6 carbon atoms. Fluoroalkyl group, alkoxy group having 1 to 6 carbon atoms, thioalkyl group having 1 to 6 carbon atoms, N-alkylamino group having 1 to 6 carbon atoms, N, N-dialkylamino group having 2 to 12 carbon atoms, carbon number An N-alkylsulfamoyl group having 1 to 6 carbon atoms or an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms is represented.
In each of the formulas (Ar-1) to (Ar-4), when there are a plurality of Rc (that is, when p0 is 2), the plurality of Rc may be the same or different from each other. May be.
 Rcのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。中でも、フッ素原子、塩素原子、臭素原子が好ましい。 Examples of the halogen atom for Rc include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom, a chlorine atom, and a bromine atom are preferable.
 Rcの炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等が挙げられ、炭素数1~4のアルキル基が好ましく、tert-ブチル基、メチル基が特に好ましい。また、上述したRcのアルキル基は、鎖状アルキル基であることが好ましい。 Examples of the alkyl group having 1 to 6 carbon atoms of Rc include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, and hexyl group. An alkyl group having 1 to 4 carbon atoms is preferable, and a tert-butyl group and a methyl group are particularly preferable. The alkyl group of Rc described above is preferably a chain alkyl group.
 Rcの炭素数1~6のアルキルスルフィニル基としては、メチルスルフィニル基、エチルスルフィニル基、プロピルスルフィニル基、イソプロピルスルフィニル基、ブチルスルフィニル基、イソブチルスルフィニル基、sec-ブチルスルフィニル基、tert-ブチルスルフィニル基、ペンチルスルフィニル基、ヘキシルスルフィニル基等が挙げられ、炭素数1~4のアルキルスルフィニル基が好ましく、炭素数1~2のアルキルスルフィニル基がより好ましく、メチルスルフィニル基が特に好ましい。 Examples of the alkylsulfinyl group having 1 to 6 carbon atoms of Rc include methylsulfinyl group, ethylsulfinyl group, propylsulfinyl group, isopropylsulfinyl group, butylsulfinyl group, isobutylsulfinyl group, sec-butylsulfinyl group, tert-butylsulfinyl group, Examples thereof include a pentylsulfinyl group and a hexylsulfinyl group. An alkylsulfinyl group having 1 to 4 carbon atoms is preferable, an alkylsulfinyl group having 1 to 2 carbon atoms is more preferable, and a methylsulfinyl group is particularly preferable.
 Rcの炭素数1~6のアルキルスルホニル基としては、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、イソプロピルスルホニル基、ブチルスルホニル基、イソブチルスルホニル基、sec-ブチルスルホニル基、tert-ブチルスルホニル基、ペンチルスルホニル基、ヘキシルスルホニル基等が挙げられ、炭素数1~4のアルキルスルホニル基が好ましく、炭素数1~2のアルキルスルホニル基がより好ましく、メチルスルホニル基が特に好ましい。 Examples of the alkylsulfonyl group having 1 to 6 carbon atoms of Rc include methylsulfonyl group, ethylsulfonyl group, propylsulfonyl group, isopropylsulfonyl group, butylsulfonyl group, isobutylsulfonyl group, sec-butylsulfonyl group, tert-butylsulfonyl group, Examples thereof include a pentylsulfonyl group and a hexylsulfonyl group, preferably an alkylsulfonyl group having 1 to 4 carbon atoms, more preferably an alkylsulfonyl group having 1 to 2 carbon atoms, and particularly preferably a methylsulfonyl group.
 Rcの炭素数1~6のフルオロアルキル基としては、フルオロメチル基、トリフルオロメチル基、フルオロエチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基等が挙げられ、炭素数1~4のフルオロアルキル基が好ましく、炭素数1~2のフルオロアルキル基がより好ましく、トリフルオロメチル基が特に好ましい。 Examples of the fluoroalkyl group having 1 to 6 carbon atoms of Rc include a fluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, and the like. A fluoroalkyl group having 4 carbon atoms is preferred, a fluoroalkyl group having 1 to 2 carbon atoms is more preferred, and a trifluoromethyl group is particularly preferred.
 Rcの炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられ、炭素数1~4のアルコキシ基が好ましく、炭素数1~2のアルコキシ基がより好ましく、メトキシ基が特に好ましい。 Examples of the alkoxy group having 1 to 6 carbon atoms of Rc include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, etc. An alkoxy group having 1 to 4 carbon atoms is preferable, an alkoxy group having 1 to 2 carbon atoms is more preferable, and a methoxy group is particularly preferable.
 Rcの炭素数1~6のチオアルキル基としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基等が挙げられ、炭素数1~4のチオアルキル基が好ましく、炭素数1~2のチオアルキル基がより好ましく、メチルチオ基が特に好ましい。 Examples of the thioalkyl group having 1 to 6 carbon atoms of Rc include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, pentylthio group, hexylthio group and the like. A thioalkyl group having 1 to 4 carbon atoms is preferable, a thioalkyl group having 1 to 2 carbon atoms is more preferable, and a methylthio group is particularly preferable.
 Rcの炭素数1~6のN-アルキルアミノ基としては、N-メチルアミノ基、N-エチルアミノ基、N-プロピルアミノ基、N-イソプロピルアミノ基、N-ブチルアミノ基、N-イソブチルアミノ基、N-sec-ブチルアミノ基、N-tert-ブチルアミノ基、N-ペンチルアミノ基、N-ヘキシルアミノ基等が挙げられ、炭素数1~4のN-アルキルアミノ基が好ましく、炭素数1~2のN-アルキルアミノ基がより好ましく、N-メチルアミノ基が特に好ましい。 Examples of the N-alkylamino group having 1 to 6 carbon atoms of Rc include N-methylamino group, N-ethylamino group, N-propylamino group, N-isopropylamino group, N-butylamino group, N-isobutylamino. Group, N-sec-butylamino group, N-tert-butylamino group, N-pentylamino group, N-hexylamino group, and the like. N-alkylamino group having 1 to 4 carbon atoms is preferable, One to two N-alkylamino groups are more preferred, and an N-methylamino group is particularly preferred.
 Rcの炭素数2~12のN,N-ジアルキルアミノ基としては、N,N-ジメチルアミノ基、N-メチル-N-エチルアミノ基、N,N-ジエチルアミノ基、N,N-ジプロピルアミノ基、N,N-ジイソプロピルアミノ基、N,N-ジブチルアミノ基、N,N-ジイソブチルアミノ基、N,N-ジペンチルアミノ基、N,N-ジヘキシルアミノ基等が挙げられ、炭素数2~8のN,N-ジアルキルアミノ基が好ましく、炭素数2~4のN,N-ジアルキルアミノ基がより好ましく、N,N-ジメチルアミノ基が特に好ましい。 Examples of the N, N-dialkylamino group having 2 to 12 carbon atoms of Rc include N, N-dimethylamino group, N-methyl-N-ethylamino group, N, N-diethylamino group, N, N-dipropylamino group Group, N, N-diisopropylamino group, N, N-dibutylamino group, N, N-diisobutylamino group, N, N-dipentylamino group, N, N-dihexylamino group, etc. An N, N-dialkylamino group having 8 carbon atoms is preferred, an N, N-dialkylamino group having 2 to 4 carbon atoms is more preferred, and an N, N-dimethylamino group is particularly preferred.
 Rcの炭素数1~6のN-アルキルスルファモイル基としては、N-メチルスルファモイル基、N-エチルスルファモイル基、N-プロピルスルファモイル基、N-イソプロピルスルファモイル基、N-ブチルスルファモイル基、N-イソブチルスルファモイル基、N-sec-ブチルスルファモイル基、N-tert-ブチルスルファモイル基、N-ペンチルスルファモイル基、N-ヘキシルスルファモイル基等が挙げられ、炭素数1~4のN-アルキルスルファモイル基が好ましく、炭素数1~2のN-アルキルスルファモイル基がより好ましく、N-メチルスルファモイル基が特に好ましい。 Examples of the N-alkylsulfamoyl group having 1 to 6 carbon atoms of Rc include N-methylsulfamoyl group, N-ethylsulfamoyl group, N-propylsulfamoyl group, N-isopropylsulfamoyl group, N-butylsulfamoyl group, N-isobutylsulfamoyl group, N-sec-butylsulfamoyl group, N-tert-butylsulfamoyl group, N-pentylsulfamoyl group, N-hexylsulfamoyl group A C 1-4 N-alkylsulfamoyl group is preferred, a C 1-2 N-alkylsulfamoyl group is more preferred, and an N-methylsulfamoyl group is particularly preferred.
 Rcの炭素数2~12のN,N-ジアルキルスルファモイル基としては、N,N-ジメチルスルファモイル基、N-メチル-N-エチルスルファモイル基、N,N-ジエチルスルファモイル基、N,N-ジプロピルスルファモイル基、N,N-ジイソプロピルスルファモイル基、N,N-ジブチルスルファモイル基、N,N-ジイソブチルスルファモイル基、N,N-ジペンチルスルファモイル基、N,N-ジヘキシルスルファモイル基等が挙げられ、炭素数2~8のN,N-ジアルキルスルファモイル基が好ましく、炭素数2~4のN,N-ジアルキルスルファモイル基がより好ましく、N,N-ジメチルスルファモイル基が特に好ましい。 Examples of the N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms of Rc include N, N-dimethylsulfamoyl group, N-methyl-N-ethylsulfamoyl group, N, N-diethylsulfamoyl group. Group, N, N-dipropylsulfamoyl group, N, N-diisopropylsulfamoyl group, N, N-dibutylsulfamoyl group, N, N-diisobutylsulfamoyl group, N, N-dipentylsulfamoyl Group, N, N-dihexylsulfamoyl group and the like, N, N-dialkylsulfamoyl group having 2 to 8 carbon atoms is preferable, and N, N-dialkylsulfamoyl group having 2 to 4 carbon atoms is preferable. More preferred is an N, N-dimethylsulfamoyl group.
 そして、上述した中でも、Rcは、ハロゲン原子、tert-ブチル基、メチル基、シアノ基、ニトロ基、カルボキシル基、メチルスルホニル基、トリフルオロメチル基、メトキシ基、メチルチオ基、N-メチルアミノ基、N,N-ジメチルアミノ基、N-メチルスルファモイル基、N,N-ジメチルスルファモイル基、またはメチルスルフィニル基であることが好ましい。 Among the above, Rc is a halogen atom, tert-butyl group, methyl group, cyano group, nitro group, carboxyl group, methylsulfonyl group, trifluoromethyl group, methoxy group, methylthio group, N-methylamino group, N, N-dimethylamino group, N-methylsulfamoyl group, N, N-dimethylsulfamoyl group, or methylsulfinyl group is preferable.
 式(Ar-1)~(Ar-4)中、EおよびEは、それぞれ独立して、-CR1112-、-S-、-NR11-、-CO-、または-O-を表し、R11およびR12は、それぞれ独立して、水素原子、または炭素数1~4のアルキル基を表す。R11およびR12における炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられ、炭素数1~2のアルキル基が好ましく、メチル基がより好ましい。 In formulas (Ar-1) to (Ar-4), E 1 and E 2 are each independently —CR 11 R 12 —, —S—, —NR 11 —, —CO—, or —O—. R 11 and R 12 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms in R 11 and R 12 include methyl group, ethyl group, n-propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group and the like. An alkyl group having 1 to 2 carbon atoms is preferable, and a methyl group is more preferable.
 そして、EおよびEは、それぞれ独立して、-S-、-C(=O)-、-NH-、または-N(CH)-であることが好ましい。 E 1 and E 2 are preferably each independently —S—, —C (═O) —, —NH—, or —N (CH 3 ) —.
 式(Ar-1)~(Ar-4)中、DおよびDは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい芳香族複素環基を表す。 In formulas (Ar-1) to (Ar-4), D 1 and D 2 each independently represents an aromatic hydrocarbon ring group which may have a substituent, or a substituent. Represents a good aromatic heterocyclic group.
 具体的には、DおよびDの芳香族炭化水素環基としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、フルオレニル基等が挙げられる。
 これらの中でも、芳香族炭化水素環基としては、フェニル基、ナフチル基が好ましい。
Specifically, examples of the aromatic hydrocarbon ring group for D 1 and D 2 include a phenyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, and a fluorenyl group.
Among these, as the aromatic hydrocarbon ring group, a phenyl group and a naphthyl group are preferable.
 また、DおよびDの芳香族複素環基としては、フタルイミド基、1-ベンゾフラニル基、2-ベンゾフラニル基、アクリジニル基、イソキノリニル基、イミダゾリル基、インドリニル基、フラザニル基、オキサゾリル基、オキサゾロピラジニル基、オキサゾロピリジニル基、オキサゾロピリダジニル基、オキサゾロピリミジニル基、キナゾリニル基、キノキサリニル基、キノリル基、シンノリニル基、チアジアゾリル基、チアゾリル基、チアゾロピラジニル基、チアゾロピリジル基、チアゾロピリダジニル基、チアゾロピリミジニル基、チエニル基、トリアジニル基、トリアゾリル基、ナフチリジニル基、ピラジニル基、ピラゾリル基、ピラノンニル基、ピラニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピロリル基、フェナントリジニル基、フタラジニル基、フラニル基、ベンゾ[c]チエニル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアジアゾリル基、ベンゾチアゾリル基、ベンゾチエニル基、ベンゾトリアジニル基、ベンゾトリアゾリル基、ベンゾピラゾリル基、ペンゾピラノンニル基、ジヒドロピラニル基、テトラヒドロピラニル基、ジヒドロフラニル基、テトラヒドロフラニル基等が挙げられる。
 これらの中でも、芳香族複素環基としては、フラニル基、チエニル基、オキサゾリル基、チアゾリル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、1-ベンゾフラニル基、2-ベンゾフラニル基、ベンゾチエニル基、チアゾロピリジル基が好ましい。
Examples of the aromatic heterocyclic group of D 1 and D 2 include a phthalimide group, a 1-benzofuranyl group, a 2-benzofuranyl group, an acridinyl group, an isoquinolinyl group, an imidazolyl group, an indolinyl group, a furazanyl group, an oxazolyl group, Razinyl group, oxazolopyridinyl group, oxazolopyridazinyl group, oxazolopyrimidinyl group, quinazolinyl group, quinoxalinyl group, quinolyl group, cinnolinyl group, thiadiazolyl group, thiazolyl group, thiazolopyrazinyl group, thia Zolopyridyl group, thiazolopyridazinyl group, thiazolopyrimidinyl group, thienyl group, triazinyl group, triazolyl group, naphthyridinyl group, pyrazinyl group, pyrazolyl group, pyranonyl group, pyranyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, Pyrrolyl group, Fe Ntridinyl group, phthalazinyl group, furanyl group, benzo [c] thienyl group, benzoisoxazolyl group, benzisothiazolyl group, benzimidazolyl group, benzoxazolyl group, benzothiadiazolyl group, benzothiazolyl group, benzothienyl group Benzotriazinyl group, benzotriazolyl group, benzopyrazolyl group, benzopyranonyl group, dihydropyranyl group, tetrahydropyranyl group, dihydrofuranyl group, tetrahydrofuranyl group and the like.
Among these, aromatic heterocyclic groups include furanyl group, thienyl group, oxazolyl group, thiazolyl group, benzothiazolyl group, benzoxazolyl group, 1-benzofuranyl group, 2-benzofuranyl group, benzothienyl group, thiazolopyridyl group Groups are preferred.
 DおよびDの芳香族炭化水素環基および芳香族複素環基は、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、または炭素数2~12のN,N-ジアルキルスルファモイル基で置換されていてもよい。
 なお、芳香族炭化水素環基および芳香族複素環基は、上述した置換基から選ばれる1または複数の置換基を有していてもよい。そして、複数の置換基を有する場合は、複数の置換基は互いに同一でも相異なっていてもよい。
The aromatic hydrocarbon ring group and aromatic heterocyclic group of D 1 and D 2 are a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, a carbon number 1-6 alkylsulfonyl groups, carboxyl groups, fluoroalkyl groups having 1-6 carbon atoms, alkoxy groups having 1-6 carbon atoms, thioalkyl groups having 1-6 carbon atoms, N-alkylamino groups having 1-6 carbon atoms Substituted with an N, N-dialkylamino group having 2 to 12 carbon atoms, an N-alkylsulfamoyl group having 1 to 6 carbon atoms, or an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms. Also good.
In addition, the aromatic hydrocarbon ring group and the aromatic heterocyclic group may have one or more substituents selected from the above-described substituents. And when it has a some substituent, a plurality of substituents may mutually be same or different.
 DおよびDの置換基のハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、および炭素数2~12のN,N-ジアルキルスルファモイル基、並びにそれらの好適例としては、Rcのハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、および炭素数2~12のN,N-ジアルキルスルファモイル基の具体例および好適例として列記したものと同じのものが挙げられる。 D 1 and D 2 substituent halogen atoms, alkyl groups having 1 to 6 carbon atoms, alkyl sulfinyl groups having 1 to 6 carbon atoms, alkylsulfonyl groups having 1 to 6 carbon atoms, fluoroalkyl groups having 1 to 6 carbon atoms An alkoxy group having 1 to 6 carbon atoms, a thioalkyl group having 1 to 6 carbon atoms, an N-alkylamino group having 1 to 6 carbon atoms, an N, N-dialkylamino group having 2 to 12 carbon atoms, and 1 to 6 carbon atoms N-alkylsulfamoyl groups, and N, N-dialkylsulfamoyl groups having 2 to 12 carbon atoms, and preferred examples thereof include a halogen atom of Rc, an alkyl group having 1 to 6 carbon atoms, An alkylsulfinyl group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a thioalkyl group having 1 to 6 carbon atoms, and 1 to N-alkylamino group, C2-C12 N, N-dialkylamino group, C1-C6 N-alkylsulfamoyl group, and C2-C12 N, N-dialkylsulfamoyl group Specific examples of groups and preferred examples thereof are the same as those listed.
 そして、DおよびDは、それぞれ独立して、以下の式(d-1)~(d-8)で表されるいずれかの基であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
D 1 and D 2 are preferably each independently any group represented by the following formulas (d-1) to (d-8).
Figure JPOXMLDOC01-appb-C000026
 式(d-1)~(d-8)中、Rdは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、または炭素数2~12のN,N-ジアルキルスルファモイル基を表す。また、p1は、0~5の整数、p2は、0~4の整数、p3は、0~3の整数、p4は、0~2の整数を表し、中でも、p1、p3およびp4は、0または1であることが好ましく、p2は、0~3の整数であることが好ましい。更に、Rfは、水素原子またはメチル基を表す。
 なお、式(d-1)~(d-8)のそれぞれにおいて、Rdが複数存在する場合(即ち、p1、p2、p3またはp4が2以上の場合)、それら複数のRdは、互いに同一であっても、相異なっていてもよい。
In formulas (d-1) to (d-8), Rd represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. Alkylsulfonyl group, carboxyl group, fluoroalkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, thioalkyl group having 1 to 6 carbon atoms, N-alkylamino group having 1 to 6 carbon atoms, carbon number It represents an N, N-dialkylamino group having 2 to 12 carbon atoms, an N-alkylsulfamoyl group having 1 to 6 carbon atoms, or an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms. P1 is an integer from 0 to 5, p2 is an integer from 0 to 4, p3 is an integer from 0 to 3, and p4 is an integer from 0 to 2. Among them, p1, p3, and p4 are 0 Alternatively, it is preferably 1, and p2 is preferably an integer of 0 to 3. Rf represents a hydrogen atom or a methyl group.
In each of the formulas (d-1) to (d-8), when there are a plurality of Rd (that is, when p1, p2, p3 or p4 is 2 or more), the plurality of Rd are the same as each other. It may be different or different.
 Rdのハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、および炭素数2~12のN,N-ジアルキルスルファモイル基、並びにそれらの好適例としては、Rcのハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、および炭素数2~12のN,N-ジアルキルスルファモイル基の具体例および好適例として列記したものと同じのものが挙げられる。 Rd halogen atom, alkyl group having 1 to 6 carbon atoms, alkylsulfinyl group having 1 to 6 carbon atoms, alkylsulfonyl group having 1 to 6 carbon atoms, fluoroalkyl group having 1 to 6 carbon atoms, 1 to 6 carbon atoms An alkoxy group, a thioalkyl group having 1 to 6 carbon atoms, an N-alkylamino group having 1 to 6 carbon atoms, an N, N-dialkylamino group having 2 to 12 carbon atoms, and an N-alkylsulfamoyl group having 1 to 6 carbon atoms Groups, and N, N-dialkylsulfamoyl groups having 2 to 12 carbon atoms, and preferred examples thereof include halogen atoms of Rc, alkyl groups having 1 to 6 carbon atoms, and alkylsulfinyl groups having 1 to 6 carbon atoms. An alkylsulfonyl group having 1 to 6 carbon atoms, a fluoroalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a thioalkyl group having 1 to 6 carbon atoms, an N-alkyl group having 1 to 6 carbon atoms Specific examples of N group, N, N-dialkylamino group having 2 to 12 carbon atoms, N-alkylsulfamoyl group having 1 to 6 carbon atoms, and N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms And the same thing as what was listed as a suitable example is mentioned.
 そして、Rdとしては、ハロゲン原子、メチル基、シアノ基、ニトロ基、カルボキシル基、トリフルオロメチル基、メトキシ基、メチルチオ基、N,N-ジメチルアミノ基、またはN-メチルアミノ基が好ましい。 Rd is preferably a halogen atom, methyl group, cyano group, nitro group, carboxyl group, trifluoromethyl group, methoxy group, methylthio group, N, N-dimethylamino group, or N-methylamino group.
 また、DおよびDは、それぞれ独立して、式(d-1)、(d-3)、または(d-7)で表される基であることが、重合性化合物(I)の光学的な特性やコストの点で特に好ましい。 In addition, D 1 and D 2 are each independently a group represented by the formula (d-1), (d-3), or (d-7). This is particularly preferable in terms of optical characteristics and cost.
 そして、上述した式(I)中、Arは、下記式(Ar-5)~(Ar-9)で表される基のいずれかであることがより好ましい。
Figure JPOXMLDOC01-appb-C000027
In the above formula (I), Ar 1 is more preferably any one of groups represented by the following formulas (Ar-5) to (Ar-9).
Figure JPOXMLDOC01-appb-C000027
 式(Ar-5)~(Ar-9)中、E、Rc、Rd、p0~p3は前記と同じ意味を表し、その好適例も前記と同じである。 In the formulas (Ar-5) to (Ar-9), E 1 , Rc, Rd and p0 to p3 have the same meaning as described above, and preferred examples thereof are also the same as described above.
 ここで、Arの具体例を以下の式(ar-1)~(ar-94)に示す。
Figure JPOXMLDOC01-appb-C000028
 
Here, specific examples of Ar 1 are shown in the following formulas (ar-1) to (ar-94).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 また、前述した式(I)中、ZおよびZは、それぞれ独立して、単結合、-O-CH-、-CH-O-、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-、-S-C(=O)-、-NR13-C(=O)-、-C(=O)-NR13-、-CF-O-、-O-CF-、-CH-CH-、-CF-CF-、-O-CH-CH-O-、-CH=CH-C(=O)-O-、-O-C(=O)-CH=CH-、-CH-CH-C(=O)-O-、-O-C(=O)-CH-CH-、-CH-CH-O-C(=O)-、-C(=O)-O-CH-CH-、-CH=CH-、-N=CH-、-CH=N-、-N=C(CH)-、-C(CH)=N-、-N=N-、または、-C≡C-である。そして、R13は、水素原子または炭素数1~6のアルキル基であり、R13の炭素数1~6のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基等が挙げられる。
 中でも、Zは、-CO-O-であることが好ましい。また、Zは、-O-CO-であることが好ましい。
In the above formula (I), Z 1 and Z 2 are each independently a single bond, —O—CH 2 —, —CH 2 —O—, —C (═O) —O—, — O-C (= O) - , - C (= O) -S -, - S-C (= O) -, - NR 13 -C (= O) -, - C (= O) -NR 13 - , -CF 2 -O -, - O -CF 2 -, - CH 2 -CH 2 -, - CF 2 -CF 2 -, - O-CH 2 -CH 2 -O -, - CH = CH-C ( ═O) —O—, —O—C (═O) —CH═CH—, —CH 2 —CH 2 —C (═O) —O—, —O—C (═O) —CH 2 —CH 2 —, —CH 2 —CH 2 —O—C (═O) —, —C (═O) —O—CH 2 —CH 2 —, —CH═CH—, —N═CH—, —CH═ N-, -N = C (CH 3 )-, -C (CH 3 ) = N-, -N = N- or -C≡C-. R 13 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms in R 13 include a methyl group, an ethyl group, a propyl group, and an isopropyl group. .
Among these, Z 1 is preferably —CO—O—. Z 2 is preferably —O—CO—.
 更に、AおよびAは、それぞれ独立して、置換基を有していてもよい環状脂肪族基、または、置換基を有していてもよい芳香族基である。中でも、AおよびAは、置換基を有していてもよい環状脂肪族基であることが好ましい。 Further, A 1 and A 2 are each independently a cyclic aliphatic group which may have a substituent or an aromatic group which may have a substituent. Among them, A 1 and A 2 are preferably substituted is also good cyclic aliphatic group.
 なお、置換基を有していてもよい環状脂肪族基は、無置換の2価の環状脂肪族基、または、置換基を有する2価の環状脂肪族基である。そして、2価の環状脂肪族基は、炭素数が通常は5~20である、環状構造を有する2価の脂肪族基である。
 AおよびAの2価の環状脂肪族基の具体例としては、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基、1,4-シクロヘプタン-1,4-ジイル基、シクロオクタン-1,5-ジイル基等の炭素数5~20のシクロアルカンジイル基;デカヒドロナフタレン-1,5-ジイル基、デカヒドロナフタレン-2,6-ジイル基等の炭素数5~20のビシクロアルカンジイル基等が挙げられる。
In addition, the cycloaliphatic group which may have a substituent is an unsubstituted divalent cycloaliphatic group or a divalent cycloaliphatic group having a substituent. The divalent cycloaliphatic group is a divalent aliphatic group having a cyclic structure and usually having 5 to 20 carbon atoms.
Specific examples of the divalent cycloaliphatic group represented by A 1 and A 2 include cyclopentane-1,3-diyl group, cyclohexane-1,4-diyl group, 1,4-cycloheptane-1,4-diyl. Groups, cycloalkanediyl groups having 5 to 20 carbon atoms such as cyclooctane-1,5-diyl group; carbon numbers such as decahydronaphthalene-1,5-diyl group and decahydronaphthalene-2,6-diyl group ˜20 bicycloalkanediyl groups and the like.
 また、置換基を有していてもよい芳香族基は、無置換の2価の芳香族基、または、置換基を有する2価の芳香族基である。そして、2価の芳香族基は、炭素数が通常は2~20である、芳香環構造を有する2価の芳香族基である。
 AおよびAの2価の芳香族基の具体例としては、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、4,4’-ビフェニレン基等の、炭素数6~20の2価の芳香族炭化水素環基;フラン-2,5-ジイル基、チオフェン-2,5-ジイル基、ピリジン-2,5-ジイル基、ピラジン-2,5-ジイル基等の、炭素数2~20の2価の芳香族複素環基;等が挙げられる。
The aromatic group which may have a substituent is an unsubstituted divalent aromatic group or a divalent aromatic group having a substituent. The divalent aromatic group is a divalent aromatic group having an aromatic ring structure and usually having 2 to 20 carbon atoms.
Specific examples of the divalent aromatic group for A 1 and A 2 include 1,4-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,6-naphthylene group, 4,4 ′ A bivalent aromatic hydrocarbon ring having 6 to 20 carbon atoms such as a biphenylene group; a furan-2,5-diyl group, a thiophene-2,5-diyl group, a pyridine-2,5-diyl group, a pyrazine And a divalent aromatic heterocyclic group having 2 to 20 carbon atoms such as a -2,5-diyl group.
 更に、AおよびAの2価の環状脂肪族基および2価の芳香族基の置換基としては、例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、イソプロポキシ基等の炭素数1~5のアルコキシ基;ニトロ基;シアノ基;等が挙げられる。前記環状脂肪族基および芳香族基は、上述した置換基から選ばれる少なくとも1つの置換基を有していてもよい。なお、置換基を複数有する場合は、各置換基は同一でも相異なっていてもよい。 Furthermore, examples of the substituent for the divalent cyclic aliphatic group and the divalent aromatic group of A 1 and A 2 include halogen atoms such as a fluorine atom, a chlorine atom and a bromine atom; a methyl group, an ethyl group and the like. Examples thereof include an alkyl group having 1 to 6 carbon atoms; an alkoxy group having 1 to 5 carbon atoms such as a methoxy group and an isopropoxy group; a nitro group; a cyano group; The cycloaliphatic group and the aromatic group may have at least one substituent selected from the above-described substituents. In addition, when it has two or more substituents, each substituent may be the same or different.
 また、bおよび/またはcが1の場合、LおよびLは、それぞれ独立して、単結合、-O-、-CO-、-CO-O-、-O-CO-、-NR14-CO-、-CO-NR14-、-O-CO-O-、-NR14-CO-O-、-O-CO-NR14-、または、-NR14-CO-NR15-である。ここで、R14およびR15は、それぞれ独立して、水素原子、または炭素数1~6のアルキル基である。中でも、LおよびLは、それぞれ独立して、-O-、-CO-O-、または、-O-CO-であることが好ましい。
 なお、前記R14およびR15の炭素数1~6のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基等が挙げられる。
When b and / or c is 1, L 1 and L 2 are each independently a single bond, —O—, —CO—, —CO—O—, —O—CO—, —NR 14. —CO—, —CO—NR 14 —, —O—CO—O—, —NR 14 —CO—O—, —O—CO—NR 14 —, or —NR 14 —CO—NR 15 —. . Here, R 14 and R 15 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Among these, L 1 and L 2 are preferably each independently —O—, —CO—O—, or —O—CO—.
Examples of the alkyl group having 1 to 6 carbon atoms of R 14 and R 15 include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
 また、bおよび/またはcが1の場合、BおよびBは、それぞれ独立して、置換基を有していてもよい環状脂肪族基、または、置換基を有していてもよい芳香族基である。中でも、BおよびBは置換基を有していてもよい芳香族基であることが好ましい。 When b and / or c is 1, B 1 and B 2 are each independently a cyclic aliphatic group which may have a substituent, or an aromatic which may have a substituent. It is a family group. Among these, B 1 and B 2 are preferably aromatic groups that may have a substituent.
 ここで、置換基を有していてもよい環状脂肪族基は、無置換の2価の環状脂肪族基、または、置換基を有する2価の環状脂肪族基である。そして、2価の環状脂肪族基は、炭素数が通常は5~20である、環状構造を有する2価の脂肪族基である。
 BおよびBの2価の環状脂肪族基の具体例としては、AおよびAの2価の環状脂肪族基として例示したものと同じものが挙げられる。
Here, the cycloaliphatic group which may have a substituent is an unsubstituted divalent cycloaliphatic group or a divalent cycloaliphatic group having a substituent. The divalent cycloaliphatic group is a divalent aliphatic group having a cyclic structure and usually having 5 to 20 carbon atoms.
Specific examples of the divalent cycloaliphatic group of B 1 and B 2 include the same as those exemplified as the divalent cycloaliphatic group of A 1 and A 2 .
 また、置換基を有していてもよい芳香族基は、無置換の2価の芳香族基、または、置換基を有する2価の芳香族基である。そして、2価の芳香族基は、炭素数が通常は2~20である、芳香環構造を有する2価の芳香族基である。
 BおよびBの2価の芳香族基の具体例としては、AおよびAの2価の芳香族基として例示したものと同じものが挙げられる。
The aromatic group which may have a substituent is an unsubstituted divalent aromatic group or a divalent aromatic group having a substituent. The divalent aromatic group is a divalent aromatic group having an aromatic ring structure and usually having 2 to 20 carbon atoms.
Specific examples of the divalent aromatic group for B 1 and B 2 include the same examples as those exemplified as the divalent aromatic group for A 1 and A 2 .
 更に、BおよびBの2価の環状脂肪族基および2価の芳香族基の置換基としては、AおよびAの2価の環状脂肪族基および2価の芳香族基の置換基として例示したものと同じものが挙げられる。 Further, as the substituent for the divalent cycloaliphatic group and divalent aromatic group of B 1 and B 2 , substitution of the divalent cycloaliphatic group and divalent aromatic group of A 1 and A 2 Examples thereof are the same as those exemplified as the group.
 また、YおよびYは、それぞれ独立して、単結合、-O-、-CO-、-CO-O-、-O-CO-、-NR14-CO-、-CO-NR14-、-O-CO-O-、-NR14-CO-O-、-O-CO-NR14-、または、-NR14-CO-NR15-である。ここで、R14およびR15は、それぞれ独立して、水素原子、または炭素数1~6のアルキル基である。中でも、YおよびYは、それぞれ独立して、-O-、-CO-O-、または、-O-CO-であることが好ましい。
 なお、R14およびR15の炭素数1~6のアルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基等が挙げられる。
Y 1 and Y 2 are each independently a single bond, —O—, —CO—, —CO—O—, —O—CO—, —NR 14 —CO—, —CO—NR 14 —. , —O—CO—O—, —NR 14 —CO—O—, —O—CO—NR 14 —, or —NR 14 —CO—NR 15 —. Here, R 14 and R 15 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Among these, Y 1 and Y 2 are preferably each independently —O—, —CO—O—, or —O—CO—.
Examples of the alkyl group having 1 to 6 carbon atoms of R 14 and R 15 include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
 そして、R、Rは、それぞれ独立して、水素原子またはメチル基である。なお、RはRと同一であることが好ましく、RおよびRは共に水素原子でことがより好ましい。 R 1 and R 2 are each independently a hydrogen atom or a methyl group. R 1 is preferably the same as R 2, and both R 1 and R 2 are more preferably hydrogen atoms.
 なお、逆波長分散性に優れる光学フィルム等を得る観点からは、重合性化合物(I)は、Arを中心として左右が概ね対称な構造を有することが好ましい。具体的には、重合性化合物(I)では、R、aおよびbが、それぞれ、R、dおよびcと同じであり、-Y-[B-L-A-Z-(*)と、(*)-Z-A-[L-B-Y-とがArに結合する側(*)を対称中心とした対称構造を有することが好ましい。
 なお、「(*)を対称中心とした対称構造を有する」とは、例えば、-CO-O-(*)と(*)-O-CO-や、-O-(*)と(*)-O-や、-O-CO-(*)と(*)-CO-O-などの構造を有することを意味する。
In addition, from the viewpoint of obtaining an optical film or the like excellent in reverse wavelength dispersion, the polymerizable compound (I) preferably has a substantially symmetrical structure with Ar as the center. Specifically, in the polymerizable compound (I), R 1 , a and b are the same as R 2 , d and c, respectively, and —Y 1 — [B 1 -L 1 ] b —A 1 — Z 1 -(*) and (*)-Z 2 -A 2- [L 2 -B 2 ] c -Y 2- have a symmetrical structure with the side (*) that is bonded to Ar as the center of symmetry. Is preferred.
Note that “having a symmetric structure with (*) as the center of symmetry” means, for example, —CO—O — (*) and (*) — O—CO— or —O — (*) and (*). It means having a structure such as —O—, —O—CO — (*) and (*) — CO—O—.
(2)ハロゲン化体(II)
 本発明の製造方法においては、上述した重合性化合物(I)を合成する何れかの段階において、ハロゲン化体(II)を含む組成物を脱ハロゲン化水素反応に供して、ハロゲン化体(II)からハロゲン化水素を脱離させる。
 なお、本発明において、「ハロゲン化体(II)を含む組成物」とは、ハロゲン化体(II)そのもの、又は、ハロゲン化体(II)とハロゲン化体(II)の脱ハロゲン化水素物を含む混合物を意味する。
(2) Halogenated compound (II)
In the production method of the present invention, at any stage of synthesizing the above-described polymerizable compound (I), the composition containing the halogenated compound (II) is subjected to a dehydrohalogenation reaction to give the halogenated compound (II). ) To desorb hydrogen halide.
In the present invention, the “composition containing the halogenated compound (II)” refers to the halogenated compound (II) itself or a dehydrohalide of the halogenated compound (II) and the halogenated compound (II). Means a mixture containing
 そして、脱ハロゲン化水素反応の対象となるハロゲン化体(II)は、下記式(II)で表される化合物である。
Figure JPOXMLDOC01-appb-C000039
And the halogenated substance (II) used as the object of dehydrohalogenation reaction is a compound represented by following formula (II).
Figure JPOXMLDOC01-appb-C000039
 式(II)中、Xは、フッ素原子、塩素原子、臭素原子等のハロゲン原子を表し、塩素原子が好ましい。
 また、Rおよびaは、前記式(I)と同じ意味を表す。
In the formula (II), X 1 represents a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, and a chlorine atom is preferred.
R 1 and a have the same meaning as in formula (I).
 ここで、Gは、有機基であり、好ましくは、少なくとも1つの芳香環を有する炭素数5~80の有機基である。なお、芳香環としては、芳香族炭化水素環、芳香族複素環が挙げられる。
 芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、フルオレン環等が挙げられる。
 これらの中でも、芳香族炭化水素環としては、ベンゼン環、ナフタレン環が好ましい。
 また、芳香族複素環としては、例えば、1H-イソインドール-1,3(2H)-ジオン環、1-ベンゾフラン環、2-ベンゾフラン環、アクリジン環、イソキノリン環、イミダゾール環、インドール環、オキサジアゾール環、オキサゾール環、オキサゾロピラジン環、オキサゾロピリジン環、オキサゾロピリダジル環、オキサゾロピリミジン環、キナゾリン環、キノキサリン環、キノリン環、シンノリン環、チアジアゾール環、チアゾール環、チアゾロピラジン環、チアゾロピリジン環、チアゾロピリダジン環、チアゾロピリミジン環、チオフェン環、トリアジン環、トリアゾール環、ナフチリジン環、ピラジン環、ピラゾール環、ピラノン環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピロール環、フェナントリジン環、フタラジン環、フラン環、ベンゾ[c]チオフェン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ベンゾオキサジアゾール環、ベンゾオキサゾール環、ベンゾチアジアゾール環、ベンゾチアゾール環、ベンゾチオフェン環、ベンゾトリアジン環、ベンゾトリアゾール環、ベンゾピラゾール環、ペンゾピラノン環、ジヒドロピラン環、テトラヒドロピラン環、ジヒドロフラン環、テトラヒドロフラン環等が挙げられる。
 これらの中でも、芳香族複素環としては、ベンゾチアゾール環、ベンゾオキサゾール環、1-ベンゾフラン環、2-ベンゾフラン環、ベンゾチオフェン環、1H-イソインドール-1,3(2H)-ジオン環、チオフェン環、フラン環、ベンゾ[c]チオフェン環、オキサゾール環、チアゾール環、オキサジアゾール環、ピラン環、ベンゾイソオキサゾール環、チアジアゾール環、ベンゾオキサジアゾール環、ベンゾチアジアゾール環が好ましい。
Here, G is an organic group, preferably an organic group having 5 to 80 carbon atoms and having at least one aromatic ring. Examples of the aromatic ring include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, and a fluorene ring.
Among these, as the aromatic hydrocarbon ring, a benzene ring and a naphthalene ring are preferable.
Examples of the aromatic heterocycle include 1H-isoindole-1,3 (2H) -dione ring, 1-benzofuran ring, 2-benzofuran ring, acridine ring, isoquinoline ring, imidazole ring, indole ring, oxadi Azole ring, oxazole ring, oxazolopyrazine ring, oxazolopyridine ring, oxazolopyridazyl ring, oxazolopyrimidine ring, quinazoline ring, quinoxaline ring, quinoline ring, cinnoline ring, thiadiazole ring, thiazole ring, thiazolopyrazine ring , Thiazolopyridine ring, thiazolopyridazine ring, thiazolopyrimidine ring, thiophene ring, triazine ring, triazole ring, naphthyridine ring, pyrazine ring, pyrazole ring, pyranone ring, pyran ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrrole Ring, phenanthridine ring, Razine ring, furan ring, benzo [c] thiophene ring, benzoisoxazole ring, benzoisothiazole ring, benzimidazole ring, benzooxadiazole ring, benzoxazole ring, benzothiadiazole ring, benzothiazole ring, benzothiophene ring, benzo Examples thereof include a triazine ring, a benzotriazole ring, a benzopyrazole ring, a benzopyranone ring, a dihydropyran ring, a tetrahydropyran ring, a dihydrofuran ring, and a tetrahydrofuran ring.
Among these, aromatic heterocycles include benzothiazole ring, benzoxazole ring, 1-benzofuran ring, 2-benzofuran ring, benzothiophene ring, 1H-isoindole-1,3 (2H) -dione ring, thiophene ring A furan ring, a benzo [c] thiophene ring, an oxazole ring, a thiazole ring, an oxadiazole ring, a pyran ring, a benzoisoxazole ring, a thiadiazole ring, a benzooxadiazole ring, and a benzothiadiazole ring.
 そして、ハロゲン化体(II)としては、重合性化合物(I)の原料化合物として使用可能であれば特に限定されないが、例えば、上述したGの構造が相異なる、後述する式(III)、(IV)および(VI)で示されるハロゲン化体(それぞれ、「ハロゲン化体(III)」、「ハロゲン化体(IV)」および「ハロゲン化体(VI)」と称する。)が挙げられる。なお、これらのハロゲン化体は、既知の合成反応により合成することができる。またハロゲン化体(III)は、例えば、重合性化合物(I)を既知の方法により調製する際に、副生成物として生成し得る。 The halogenated compound (II) is not particularly limited as long as it can be used as a raw material compound of the polymerizable compound (I). For example, the above-described formula (III), ( IV) and halogenated compounds represented by (VI) (referred to as “halogenated compound (III)”, “halogenated compound (IV)” and “halogenated compound (VI)”, respectively)). These halides can be synthesized by a known synthesis reaction. The halogenated compound (III) can be produced as a by-product when the polymerizable compound (I) is prepared by a known method, for example.
(2-1)ハロゲン化体(III)
 ハロゲン化体(III)は、下記式(III)で示される化合物である。
Figure JPOXMLDOC01-appb-C000040
(2-1) Halogenated compound (III)
The halide (III) is a compound represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000040
 式(III)中、Qは、下記式(III-1)または下記式(III-2)で表される基を示す。
Figure JPOXMLDOC01-appb-C000041
  
  [式(III-1)および式(III-2)中、Rは、前記式(I)と同じ意味を表す。また、式(III-2)中のXは、フッ素原子、塩素原子、臭素原子等のハロゲン原子を表し、塩素原子が好ましい。]
In the formula (III), Q represents a group represented by the following formula (III-1) or the following formula (III-2).
Figure JPOXMLDOC01-appb-C000041

[In formula (III-1) and formula (III-2), R 2 represents the same meaning as in formula (I). X 2 in formula (III-2) represents a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, and a chlorine atom is preferred. ]
 なお、Ar、Z、Z、A、A、B、B、Y、Y、L、L、Rおよびa~dは、前記式(I)と同じ意味を表し、Xは、前記式(II)と同じ意味を表す。 Ar, Z 1 , Z 2 , A 1 , A 2 , B 1 , B 2 , Y 1 , Y 2 , L 1 , L 2 , R 1 and a to d have the same meaning as in the formula (I). X 1 represents the same meaning as in the formula (II).
 ハロゲン化体(III)は、重合性化合物(I)と少なくとも一方の末端構造のみが異なる化合物である。そのため、ハロゲン化体(III)を脱ハロゲン化水素反応させて末端に炭素―炭素二重結合を生成させれば、ハロゲン体(III)の脱ハロゲン化水素物として、重合性化合物(I)を得ることができる。
 そして、ハロゲン化体(III)として、より具体的には、下記式(IIIa)、(IIIb)、および(IIIc)で示されるハロゲン化体(それぞれ、「ハロゲン化体(IIIa)」、「ハロゲン化体(IIIb)」および「ハロゲン化体(IIIc)」と称する)、並びに、これらの混合物が挙げられる。なお、該混合物中におけるハロゲン化体(IIIa)、ハロゲン化体(IIIb)、ハロゲン化体(IIIc)の存在割合は、特に限定されない。
Halogenated compound (III) is a compound that differs from polymerizable compound (I) only in at least one terminal structure. Therefore, if the halogenated compound (III) is dehydrohalogenated to form a carbon-carbon double bond at the terminal, the polymerizable compound (I) is converted into a dehydrohalogenated product of the halogenated compound (III). Obtainable.
As the halide (III), more specifically, halogenated compounds represented by the following formulas (IIIa), (IIIb), and (IIIc) (respectively, “halogenated compound (IIIa)”, “halogen” (Referred to as "Chemical Form (IIIb)" and "Halogenated Form (IIIc)"), and mixtures thereof. In addition, the abundance ratio of the halogenated product (IIIa), the halogenated product (IIIb), and the halogenated product (IIIc) in the mixture is not particularly limited.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 式(IIIa)~(IIIc)中、a、d、R、R、X、およびXは、前記と同じ意味を表す。また、Arは、上述した式(Ar-1)~(Ar-4)で表される基のいずれかである。 In the formulas (IIIa) to (IIIc), a, d, R 1 , R 2 , X 1 and X 2 have the same meaning as described above. Ar is any of the groups represented by the above formulas (Ar-1) to (Ar-4).
(2-2)ハロゲン化体(IV)
 ハロゲン化体(IV)は、下記式(IV)で示される化合物である。
Figure JPOXMLDOC01-appb-C000043
(2-2) Halogenated compound (IV)
The halide (IV) is a compound represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000043
 式(IV)中、FGは、水酸基、カルボキシル基またはアミノ基を表し、水酸基が好ましい。なお、R、Y、Bおよびaは、前記式(I)と同じ意味を表し、Xは、前記式(II)と同じ意味を表す。 In formula (IV), FG 1 represents a hydroxyl group, a carboxyl group or an amino group, and preferably a hydroxyl group. R 1 , Y 1 , B 1 and a represent the same meaning as in the formula (I), and X 1 represents the same meaning as in the formula (II).
 そして、ハロゲン化体(IV)を脱ハロゲン化水素反応させると、ハロゲン化体(IV)の脱ハロゲン化水素物として、下記式(V)で示される化合物(「化合物(V)」)を得ることができる。
Figure JPOXMLDOC01-appb-C000044
Then, when the halogenated compound (IV) is dehydrohalogenated, a compound represented by the following formula (V) (“compound (V)”) is obtained as a dehydrohalogenated product of the halogenated compound (IV). be able to.
Figure JPOXMLDOC01-appb-C000044
 式(V)中、R、Y、B、FGおよびaは、前記式(IV)と同じ意味を表す。 In formula (V), R 1 , Y 1 , B 1 , FG 1 and a represent the same meaning as in formula (IV).
 また、脱ハロゲン化水素反応に際し、ハロゲン化体(IV)を含む組成物として、ハロゲン化体(IV)と化合物(V)を含む混合物を使用することができる。このような混合物を脱ハロゲン化水素反応に供することで、混合物中のハロゲン化体(IV)を化合物(V)に変換して、純度の高い化合物(V)を得ることができる。なお、混合物中のハロゲン化体(IV)と化合物(V)の比率は特に限定されないが、ハロゲン化体(IV)と化合物(V)の合計中に占めるハロゲン化体(IV)の割合が、0.01質量%以上5質量%以下であることが好ましく、0.5質量%以上5質量%以下がより好ましく、2質量%以上5質量%以下が更に好ましい。 In the dehydrohalogenation reaction, a mixture containing the halide (IV) and the compound (V) can be used as the composition containing the halide (IV). By subjecting such a mixture to a dehydrohalogenation reaction, the halogenated compound (IV) in the mixture can be converted into the compound (V), whereby the compound (V) having a high purity can be obtained. The ratio of the halide (IV) and the compound (V) in the mixture is not particularly limited, but the ratio of the halide (IV) in the total of the halide (IV) and the compound (V) is It is preferable that it is 0.01 mass% or more and 5 mass% or less, 0.5 mass% or more and 5 mass% or less are more preferable, and 2 mass% or more and 5 mass% or less are still more preferable.
 得られた化合物(V)を用い、既知の合成反応を組み合わせることにより、上記重合性化合物(I)を合成することができる。即ち、重合性化合物(I)は、化合物(V)を使用し、様々な文献(例えば、MARCH’S ADVANCED ORGANIC CHEMISTRY(WILEY)、サンドラー・カロ「官能基別有機化合物合成法」稲本直樹共訳(廣川書店))に記載の方法を参照して合成できる。 The above-mentioned polymerizable compound (I) can be synthesized by using the obtained compound (V) and combining known synthetic reactions. That is, the polymerizable compound (I) uses the compound (V), and various documents (for example, MARCH'S ADVANCED ORGANIC CHEMISTRY (WILEY), Sandler Karo “Functional Group Organic Compound Synthesis Method” by Naoki Inamoto (Sasakawa Shoten)) can be synthesized with reference to the method described.
(2-3)ハロゲン化体(VI)
 ハロゲン化体(VI)は、下記式(VI)で示される化合物である。
Figure JPOXMLDOC01-appb-C000045
(2-3) Halogenated compound (VI)
The halide (VI) is a compound represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000045
 式(VI)中、FGは、水酸基、カルボキシル基またはアミノ基を表し、カルボキシル基が好ましい。なお、R、Y、B、L、A、aおよびbは、前記式(I)と同じ意味を表し、Xは、前記式(II)と同じ意味を表す。 In formula (VI), FG 2 represents a hydroxyl group, a carboxyl group or an amino group, and a carboxyl group is preferred. R 1 , Y 1 , B 1 , L 1 , A 1 , a and b represent the same meaning as in the formula (I), and X 1 represents the same meaning as in the formula (II).
 そして、ハロゲン化体(VI)を脱ハロゲン化水素反応させると、ハロゲン化体(VI)の脱ハロゲン化水素物として、下記式(VII)で示される化合物(「化合物(VII)」)を得ることができる。
Figure JPOXMLDOC01-appb-C000046
When the halogenated compound (VI) is dehydrohalogenated, a compound represented by the following formula (VII) (“compound (VII)”) is obtained as a dehydrohalogenated product of the halogenated compound (VI). be able to.
Figure JPOXMLDOC01-appb-C000046
 式(VII)中、R、Y、B、L、A、FG、aおよびbは、前記式(VI)と同じ意味を表す。 In formula (VII), R 1 , Y 1 , B 1 , L 1 , A 1 , FG 2 , a and b represent the same meaning as in formula (VI).
 また、脱ハロゲン化水素反応に際し、ハロゲン化体(VI)を含む組成物として、ハロゲン化体(VI)と化合物(VII)を含む混合物を使用することができる。このような混合物を脱ハロゲン化水素反応に供することで、混合物中のハロゲン化体(VI)を化合物(VII)に変換して、純度の高い化合物(VII)を得ることができる。なお、混合物中のハロゲン化体(VI)と化合物(VII)の比率は特に限定されないが、ハロゲン化体(VI)と化合物(VII)の合計中に占めるハロゲン化体(VI)の割合が、0.01質量%以上5質量%以下であることが好ましく、0.5質量%以上5質量%以下が更に好ましく、1.5質量%以上5質量%以下が更に好ましい。 In the dehydrohalogenation reaction, a mixture containing the halide (VI) and the compound (VII) can be used as the composition containing the halide (VI). By subjecting such a mixture to a dehydrohalogenation reaction, the halogenated compound (VI) in the mixture can be converted into the compound (VII) to obtain the compound (VII) with high purity. The ratio of the halogenated compound (VI) to the compound (VII) in the mixture is not particularly limited, but the ratio of the halogenated compound (VI) in the total of the halogenated compound (VI) and the compound (VII) is The content is preferably 0.01% by mass or more and 5% by mass or less, more preferably 0.5% by mass or more and 5% by mass or less, and further preferably 1.5% by mass or more and 5% by mass or less.
 得られた化合物(VII)を用い、既知の合成反応を組み合わせることにより、上記重合性化合物(I)を合成することができる。即ち、重合性化合物(I)は、化合物(VII)を使用し、様々な文献(例えば、MARCH’S ADVANCED ORGANIC CHEMISTRY(WILEY)、サンドラー・カロ「官能基別有機化合物合成法」稲本直樹共訳(廣川書店))に記載の方法を参照して合成できる。 Using the obtained compound (VII), the polymerizable compound (I) can be synthesized by combining known synthetic reactions. That is, the polymerizable compound (I) uses the compound (VII), and various documents (for example, MARCH'S ADVANCED ORGANIC CHEMISTRY (WILEY), Sandler Karo “Functional Group Organic Compound Synthesis Method” by Naoki Inamoto (Sasakawa Shoten)) can be synthesized with reference to the method described.
(3)脱ハロゲン化水素反応
 ここで、脱ハロゲン化水素反応は、有機溶媒中、少なくとも1種の塩基性化合物を含む水層の存在下で行われる。
(3) Dehydrohalogenation reaction Here, the dehydrohalogenation reaction is performed in an organic solvent in the presence of an aqueous layer containing at least one basic compound.
(3-1)有機溶媒
 用いる有機溶媒としては、ハロゲン化体(II)を溶解させることができると共に、反応に不活性な溶媒であれば特に制限されない。例えば、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶媒;シクロペンタノン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン等のケトン系溶媒;ジクロロメタン、1,2-ジクロロエタン、クロロホルム、四塩化炭素、クロロベンゼン、o-ジクロロベンゼン等のハロゲン化炭化水素系溶媒;ジエチルエーテル、ジイソプロピルエーテル、エチレングリコールジメチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン等のエーテル系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;シクロペンタン、シクロヘキサン等の脂環式炭化水素系溶媒;ニトロメタン、ニトロベンゼン、アセトニトリル等の含窒素炭化水素系溶媒;等が挙げられる。
 これらの溶媒は1種単独で、或いは2種以上を組み合わせて用いることができる。
 これらの中でも、ハロゲン体(II)の良好な溶解性および高収率で目的物を得られる等の観点から、エステル系溶媒と含窒素炭化水素系溶媒との混合溶媒、ケトン系溶媒と含窒素炭化水素系溶媒との混合溶媒が好ましく、エステル系溶媒と含窒素炭化水素系溶媒との混合溶媒がより好ましく、酢酸エチルとアセトニトリルとの混合溶媒が特に好ましい。
 ここで、エステル系溶媒と含窒素炭化水素系溶媒の混合溶媒を用いる場合の両者の混合割合は、エステル系溶媒と含窒素炭化水素系溶媒との容積比は通常1:1~4:1、好ましくは2:1~3:1である。
(3-1) Organic solvent The organic solvent to be used is not particularly limited as long as it can dissolve the halide (II) and is inert to the reaction. For example, ester solvents such as ethyl acetate, propyl acetate and butyl acetate; ketone solvents such as cyclopentanone, methyl ethyl ketone, diethyl ketone and methyl isobutyl ketone; dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride, chlorobenzene, Halogenated hydrocarbon solvents such as o-dichlorobenzene; ether solvents such as diethyl ether, diisopropyl ether, ethylene glycol dimethyl ether, cyclopentyl methyl ether and tetrahydrofuran; aliphatic carbonization such as n-pentane, n-hexane and n-heptane Hydrogen solvents; aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane; nitrogen-containing compounds such as nitromethane, nitrobenzene and acetonitrile Hydrocarbon solvents; and the like.
These solvents can be used alone or in combination of two or more.
Among these, a mixed solvent of an ester solvent and a nitrogen-containing hydrocarbon solvent, a ketone solvent and a nitrogen-containing solvent from the viewpoint of obtaining a desired product with good solubility and high yield of the halogen (II). A mixed solvent with a hydrocarbon solvent is preferable, a mixed solvent of an ester solvent and a nitrogen-containing hydrocarbon solvent is more preferable, and a mixed solvent of ethyl acetate and acetonitrile is particularly preferable.
Here, in the case of using a mixed solvent of an ester solvent and a nitrogen-containing hydrocarbon solvent, the mixing ratio of both is usually 1: 1 to 4: 1 by volume ratio of the ester solvent and the nitrogen-containing hydrocarbon solvent. The ratio is preferably 2: 1 to 3: 1.
(3-2)塩基性化合物を含む水層
 塩基性化合物としては、無機塩基性化合物および有機塩基性化合物を用いることができる。なお、脱ハロゲン化水素反応を効率よく進行させる観点からは、塩基性化合物としては、少なくとも無機塩基性化合物を使用することが好ましく、無機塩基性化合物および有機塩基性化合物を併用することがより好ましい。
 なお、水層に用いる水は、蒸留水等の、不純物を含まないものが好ましい。
(3-2) Aqueous layer containing basic compound As the basic compound, inorganic basic compounds and organic basic compounds can be used. From the viewpoint of efficiently proceeding with the dehydrohalogenation reaction, it is preferable to use at least an inorganic basic compound as the basic compound, and it is more preferable to use an inorganic basic compound and an organic basic compound in combination. .
The water used for the water layer is preferably water that does not contain impurities, such as distilled water.
 無機塩基性化合物としては、特に制限されない。例えば、金属炭酸塩、金属炭酸水素塩、及び金属水酸化物等が挙げられる。
 金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;炭酸マグネシウム;炭酸カルシウム、水酸化バリウム等のアルカリ土類金属炭酸塩;等が挙げられる。
 金属炭酸水素塩としては、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩;炭酸水素マグネシウム;炭酸水素カルシウム等のアルカリ土類金属炭酸水素塩;等が挙げられる。
 金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;水酸化マグネシウム;水酸化カルシウム等のアルカリ土類金属水酸化物;等が挙げられる。
 これらの無機塩基性化合物は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 これらの中でも、入手容易性、取扱容易性の観点から、金属炭酸塩が好ましく、アルカリ金属炭酸塩がより好ましく、炭酸ナトリウムがさらに好ましい。
The inorganic basic compound is not particularly limited. For example, metal carbonate, metal hydrogencarbonate, metal hydroxide, etc. are mentioned.
Examples of the metal carbonate include alkali metal carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate; magnesium carbonate; alkaline earth metal carbonates such as calcium carbonate and barium hydroxide;
Examples of the metal hydrogen carbonate include alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate; magnesium hydrogen carbonate; alkaline earth metal hydrogen carbonates such as calcium hydrogen carbonate;
Examples of the metal hydroxide include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; magnesium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide;
These inorganic basic compounds can be used singly or in combination of two or more.
Among these, metal carbonates are preferable, alkali metal carbonates are more preferable, and sodium carbonate is more preferable from the viewpoints of availability and ease of handling.
 無機塩基性化合物の使用量は、特に限定されないが、脱ハロゲン化水素化物の収率を高めると共に、反応後の中和工程を省略可能とすべく、ハロゲン化体(II)1当量に対し、1~3当量であることが好ましく、1.5~2.5当量であることがより好ましい。
 また、水層中の無機塩基性化合物の濃度は、特に限定されないが、脱ハロゲン化水素化物の収率を高めると共に、反応後の中和工程を省略可能とすべく、0.5~2.5mol/Lであることが好ましく、0.5~1.5mol/Lであることがより好ましい。
The amount of the inorganic basic compound used is not particularly limited, but to increase the yield of the dehydrohalide and to eliminate the neutralization step after the reaction, with respect to 1 equivalent of the halide (II), It is preferably 1 to 3 equivalents, more preferably 1.5 to 2.5 equivalents.
The concentration of the inorganic basic compound in the aqueous layer is not particularly limited, but is 0.5 to 2. in order to increase the yield of dehydrohalide and to omit the neutralization step after the reaction. 5 mol / L is preferable, and 0.5 to 1.5 mol / L is more preferable.
 有機塩基性化合物としては、ピリジン、ピコリン、コリジン、ルチジン、4-(ジメチルアミノ)ピリジン等の複素環式化合物;トリエチルアミン、N,N-ジイソプロピルエチルアミン、N,N-ジメチルアニリン等の3級アミン;等が挙げられる。
 これらの中でも、脱ハロゲン化水素化物の収率を高める観点から、3級アミンが好ましく、トリエチルアミンがより好ましい。
 有機塩基性化合物の使用量は特に限定されないが、ハロゲン化体(II)1当量に対し、1~3当量であることが好ましく、1.2~2当量であることがより好ましい。
Examples of organic basic compounds include heterocyclic compounds such as pyridine, picoline, collidine, lutidine, and 4- (dimethylamino) pyridine; tertiary amines such as triethylamine, N, N-diisopropylethylamine, and N, N-dimethylaniline; Etc.
Among these, a tertiary amine is preferable and triethylamine is more preferable from the viewpoint of increasing the yield of the dehydrohalide.
The amount of the organic basic compound used is not particularly limited, but is preferably 1 to 3 equivalents, more preferably 1.2 to 2 equivalents, per 1 equivalent of the halide (II).
(3-3)脱ハロゲン化水素反応の条件
 反応は、アルゴン、窒素等の不活性雰囲気下で行うのが好ましい。
 反応温度は、通常、-10℃~+80℃、好ましくは10℃~70℃、より好ましくは20℃~60℃である。
 反応時間は、反応規模等にもよるが、数分~24時間、好ましくは0.5~10時間である。
 反応の進行状況は公知の分析手段(例えば、薄層クロマトグラフィー、高速液体クロマトグラフィー、ガスクロマトグラフィー)により確認することができる。
(3-3) Conditions for dehydrohalogenation reaction The reaction is preferably carried out in an inert atmosphere such as argon or nitrogen.
The reaction temperature is usually −10 ° C. to + 80 ° C., preferably 10 ° C. to 70 ° C., more preferably 20 ° C. to 60 ° C.
Although depending on the reaction scale and the like, the reaction time is several minutes to 24 hours, preferably 0.5 to 10 hours.
The progress of the reaction can be confirmed by known analytical means (for example, thin layer chromatography, high performance liquid chromatography, gas chromatography).
 反応終了後においては、有機合成化学における通常の後処理操作を行い、所望により、反応生成物を、蒸留法、カラムクロマトグラフィー法、再結晶化法等の公知の分離・精製手段により精製して、脱ハロゲン化水素化物(例えば、目的とする重合性化合物(I))を単離することができる。
 具体的には、反応後の溶液から水層(水相)を除去した後、有機層(有機相)を水洗し、次いで、有機層にアルコール系溶媒等の貧溶媒を加えて結晶を析出させることにより、目的とする重合性化合物(I)などを効率よく単離することができる。
 なお、目的物の構造は、NMRスペクトル、IRスペクトル、マススペクトル等の分析手段を用いることにより同定し、確認することができる。
After completion of the reaction, normal post-treatment operations in organic synthetic chemistry are performed, and the reaction product is purified by a known separation / purification means such as a distillation method, a column chromatography method, or a recrystallization method, if desired. The dehydrohalogenated product (for example, the target polymerizable compound (I)) can be isolated.
Specifically, after removing the aqueous layer (aqueous phase) from the solution after the reaction, the organic layer (organic phase) is washed with water, and then a poor solvent such as an alcohol solvent is added to the organic layer to precipitate crystals. Thus, the target polymerizable compound (I) and the like can be isolated efficiently.
The structure of the target product can be identified and confirmed by using analytical means such as NMR spectrum, IR spectrum, and mass spectrum.
 以下、本発明を、実施例によりさらに詳細に説明する。但し、本発明は以下の実施例により何ら制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples.
(合成例1)化合物1の合成
Figure JPOXMLDOC01-appb-C000047
 
              化合物1
Synthesis Example 1 Synthesis of Compound 1
Figure JPOXMLDOC01-appb-C000047

Compound 1
ステップ1:中間体Aの合成
Figure JPOXMLDOC01-appb-C000048
Step 1: Synthesis of Intermediate A
Figure JPOXMLDOC01-appb-C000048
 温度計を備えた4つ口反応器に窒素気流中、3、5‐ジメチルフェノール20.0g(164mmol)をアセトニトリル500mlに溶解した。この溶液に、塩化マグネシウム23.4g(246mmol)、トリエチルアミン58.1g(574mmol)を加え、25℃で30分撹拌した後、パラホルムアルデヒド14.8g(492mmol)を加えて75℃で3時間撹拌した。反応終了後、反応液を30℃まで冷却した後、1M塩酸を600ml加え、ジエチルエーテル800mlで抽出した。ジエチルエーテル層を飽和炭酸水素ナトリウム水溶液300ml、飽和食塩水300mlで洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別した後、ロータリーエバポレーターにてジエチルエーテルを減圧留去して、白色固体を得た。この白色固体をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=90:10(容積比))により精製し、白色固体として中間体Aを17.7g得た(収率:71.9モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a 4-necked reactor equipped with a thermometer, 20.0 g (164 mmol) of 3,5-dimethylphenol was dissolved in 500 ml of acetonitrile in a nitrogen stream. To this solution, 23.4 g (246 mmol) of magnesium chloride and 58.1 g (574 mmol) of triethylamine were added and stirred at 25 ° C. for 30 minutes, and then 14.8 g (492 mmol) of paraformaldehyde was added and stirred at 75 ° C. for 3 hours. . After completion of the reaction, the reaction solution was cooled to 30 ° C., 600 ml of 1M hydrochloric acid was added, and the mixture was extracted with 800 ml of diethyl ether. The diethyl ether layer was washed with 300 ml of saturated aqueous sodium hydrogen carbonate solution and 300 ml of saturated brine, and then dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, diethyl ether was distilled off under reduced pressure using a rotary evaporator to obtain a white solid. This white solid was purified by silica gel column chromatography (hexane: ethyl acetate = 90: 10 (volume ratio)) to obtain 17.7 g of intermediate A as a white solid (yield: 71.9 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm):11.95(s、1H)、10.22(s、1H)、6.61(s、1H)、6.53(s、1H)、2.54(s、3H)、2.30(s、3H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 11.95 (s, 1H), 10.22 (s, 1H), 6.61 (s, 1H), 6.53 (s, 1H) 2.54 (s, 3H), 2.30 (s, 3H).
ステップ2:中間体Bの合成
Figure JPOXMLDOC01-appb-C000049
Step 2: Synthesis of Intermediate B
Figure JPOXMLDOC01-appb-C000049
 温度計を備えた4つ口反応器に窒素気流中、先のステップ1で合成した中間体A 12.0g(79.9mmol)をジメチルアセトアミド105mlに溶解した。この溶液に、炭酸カリウム11.0g(79.9mmol)を加えて80℃に昇温した後、ブロモ酢酸エチル13.3g(79.9mmol)を30分かけて加えた。この溶液を80℃で1時間撹拌した後、130℃に昇温して更に1時間撹拌した。この後、反応液を30℃まで冷却した後、1M塩酸300mlを加え、メチルイソブチルケトン120mlで抽出した。メチルイソブチルケトン層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別した後、ロータリーエバポレーターにてメチルイソブチルケトンを減圧留去して、淡黄色固体を得た。この淡黄色固体をエタノール500mlに溶解した。この溶液に、水酸化カリウム12.0g(214mmol)を加え、80℃で1時間撹拌した。反応終了後、ロータリーエバポレーターにてエタノールを減圧留去して、淡黄色固体を得た。この淡黄色固体を水300mlに溶解した後、この溶液をトルエン300ml、ヘプタン300mlで洗浄した。この溶液に2M硫酸水溶液を加えてpHを3にした後、析出した固体をろ取し、ろ取した固体を真空乾燥させて、白色固体として中間体Bを12.3g得た(収率:80.9モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a 4-necked reactor equipped with a thermometer, 12.0 g (79.9 mmol) of the intermediate A synthesized in Step 1 above was dissolved in 105 ml of dimethylacetamide in a nitrogen stream. To this solution, 11.0 g (79.9 mmol) of potassium carbonate was added and the temperature was raised to 80 ° C., and then 13.3 g (79.9 mmol) of ethyl bromoacetate was added over 30 minutes. The solution was stirred at 80 ° C. for 1 hour, then heated to 130 ° C. and further stirred for 1 hour. Thereafter, the reaction solution was cooled to 30 ° C., 300 ml of 1M hydrochloric acid was added, and the mixture was extracted with 120 ml of methyl isobutyl ketone. The methyl isobutyl ketone layer was dried over sodium sulfate, and the sodium sulfate was filtered off. Then, methyl isobutyl ketone was distilled off under reduced pressure using a rotary evaporator to obtain a pale yellow solid. This pale yellow solid was dissolved in 500 ml of ethanol. To this solution, 12.0 g (214 mmol) of potassium hydroxide was added and stirred at 80 ° C. for 1 hour. After completion of the reaction, ethanol was distilled off under reduced pressure using a rotary evaporator to obtain a pale yellow solid. This pale yellow solid was dissolved in 300 ml of water, and then this solution was washed with 300 ml of toluene and 300 ml of heptane. 2M sulfuric acid aqueous solution was added to this solution to adjust the pH to 3, and then the precipitated solid was collected by filtration, and the collected solid was vacuum-dried to obtain 12.3 g of Intermediate B as a white solid (yield: 80.9 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm):13.42(brs、1H)、7.69(d、1H、J=1.0Hz)、7.30(s、1H)、6.98(s、1H)、2.48(s、3H)、2.41(s、3H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 13.42 (brs, 1H), 7.69 (d, 1H, J = 1.0 Hz), 7.30 (s, 1H), 6. 98 (s, 1H), 2.48 (s, 3H), 2.41 (s, 3H).
ステップ3:中間体Cの合成
Figure JPOXMLDOC01-appb-C000050
Step 3: Synthesis of Intermediate C
Figure JPOXMLDOC01-appb-C000050
 温度計を備えた4つ口反応器に窒素気流中、先のステップ2で合成した中間体B 12.0g(63.1mmol)、2、5‐ジメトキシアニリン14.5g(94.6mmol)をクロロホルム120gに溶解した。この溶液に1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩13.3g(69.4mmol)とクロロホルム120gとの混合液を加えて25℃で3時間撹拌した。反応終了後、ロータリーエバポレーターにてクロロホルムを減圧留去して、淡黄色油状物質を得た。この、淡黄色油状物質に1M塩酸200mlと水200mlとメタノール100mlの混合溶液を加えて25℃で撹拌した。析出した白色固体をろ取し、ろ取した固体を真空乾燥させて、白色固体として中間体Cを16.7g得た(収率:81.2モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a 4-necked reactor equipped with a thermometer, 12.0 g (63.1 mmol) of the intermediate B synthesized in Step 2 above and 14.5 g (94.6 mmol) of 2,5-dimethoxyaniline in chloroform were added to chloroform. Dissolved in 120 g. To this solution, a mixed solution of 13.3 g (69.4 mmol) of 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride and 120 g of chloroform was added and stirred at 25 ° C. for 3 hours. After completion of the reaction, chloroform was distilled off under reduced pressure using a rotary evaporator to obtain a pale yellow oily substance. To this pale yellow oily substance, a mixed solution of 200 ml of 1M hydrochloric acid, 200 ml of water and 100 ml of methanol was added and stirred at 25 ° C. The precipitated white solid was collected by filtration, and the collected solid was vacuum-dried to obtain 16.7 g of Intermediate C as a white solid (yield: 81.2 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm):8.28(d、1H、J=3.0Hz)、7.56(d、1H、J=1.0Hz)、7.26(s、1H)、7.22(s、1H)、6.94(s、1H)、6.86(d、1H、J=9.0Hz)、6.64(dd、1H、J=3.0Hz、9.0Hz)、3.97(s、3H)、3.81(s、3H)、2.51(s、3H)、2.49(s、3H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 8.28 (d, 1 H, J = 3.0 Hz), 7.56 (d, 1 H, J = 1.0 Hz), 7.26 (s 1H), 7.22 (s, 1H), 6.94 (s, 1H), 6.86 (d, 1H, J = 9.0 Hz), 6.64 (dd, 1H, J = 3.0 Hz) 9.0 Hz), 3.97 (s, 3H), 3.81 (s, 3H), 2.51 (s, 3H), 2.49 (s, 3H).
ステップ4:中間体Dの合成
Figure JPOXMLDOC01-appb-C000051
Step 4: Synthesis of Intermediate D
Figure JPOXMLDOC01-appb-C000051
 温度計を備えた4つ口反応器に窒素気流中、先のステップ3で合成した中間体C 16.0g(49.2mmol)をトルエン200mlに溶解した。この溶液に2、4-ビス(4-メトキシフェニル)-1、3-ジチア-2、4-ジホスフェタン12.1g(23.0mmol)を加えて、4時間加熱還流した。反応終了後、反応液を30℃まで冷却した後、1M水酸化ナトリウム水溶液400mlを加え、トルエン500mlで抽出した。得られたトルエン層からロータリーエバポレーターにてトルエン500mlを減圧留去した後、ヘプタン500mlを加えた。析出した黄色固体をろ取し、ろ取した固体を真空乾燥させて、黄色固体として中間体Dを14.7g得た(収率:87.5モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a four-necked reactor equipped with a thermometer, 16.0 g (49.2 mmol) of the intermediate C synthesized in Step 3 above was dissolved in 200 ml of toluene in a nitrogen stream. To this solution, 12.1 g (23.0 mmol) of 2,4-bis (4-methoxyphenyl) -1,3-dithia-2,4-diphosphetane was added and heated to reflux for 4 hours. After completion of the reaction, the reaction solution was cooled to 30 ° C., 400 ml of 1M aqueous sodium hydroxide solution was added, and the mixture was extracted with 500 ml of toluene. 500 ml of toluene was distilled off under reduced pressure from the obtained toluene layer with a rotary evaporator, and then 500 ml of heptane was added. The precipitated yellow solid was collected by filtration, and the collected solid was vacuum-dried to obtain 14.7 g of intermediate D as a yellow solid (yield: 87.5 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm):10.45(s、1H)、9.13(d、1H、J=3.0Hz)、7.82(d、1H、J=1.0Hz)、7.18(s、1H)、6.93(s、1H)、6.91(d、1H、J=9.0Hz)、6.77(dd、1H、J=3.0Hz、9.0Hz)、3.97(s、3H)、3.83(s、3H)、2.51(s、3H)、2.46(s、3H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 10.45 (s, 1 H), 9.13 (d, 1 H, J = 3.0 Hz), 7.82 (d, 1 H, J = 1) 0.0 Hz), 7.18 (s, 1H), 6.93 (s, 1H), 6.91 (d, 1H, J = 9.0 Hz), 6.77 (dd, 1H, J = 3.0 Hz) 9.0 Hz), 3.97 (s, 3H), 3.83 (s, 3H), 2.51 (s, 3H), 2.46 (s, 3H).
ステップ5:中間体Eの合成
Figure JPOXMLDOC01-appb-C000052
Step 5: Synthesis of Intermediate E
Figure JPOXMLDOC01-appb-C000052
 温度計を備えた4つ口反応器に窒素気流中、先のステップ4で合成した中間体D 13.2g(38.6mmol)、水220g、水酸化カリウム11.9g(212mmol)を加えて氷冷下で撹拌した。得られた混合液にフェリシアン化カリウム29.2g(88.8mmol)、メタノール12gを加えた後、60℃に昇温して6時間撹拌した。反応終了後、反応液を30℃まで冷却し、析出した黄色固体をろ取し、ろ取した固体を真空乾燥させて、黄色固体として中間体Eを10.2g得た(収率:76.8モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a four-necked reactor equipped with a thermometer, 13.2 g (38.6 mmol) of the intermediate D synthesized in Step 4 above, 220 g of water, and 11.9 g (212 mmol) of potassium hydroxide were added to ice. Stir in the cold. To the obtained mixture, 29.2 g (88.8 mmol) of potassium ferricyanide and 12 g of methanol were added, and the mixture was heated to 60 ° C. and stirred for 6 hours. After completion of the reaction, the reaction solution was cooled to 30 ° C., the precipitated yellow solid was collected by filtration, and the collected solid was vacuum dried to obtain 10.2 g of Intermediate E as a yellow solid (yield: 76. 8 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm):7.65(d、1H、J=1.0Hz)、7.21(s、1H)、6.91(s、1H)、6.84(d、1H、J=8.5Hz)、6.76(d、1H、J=8.5Hz)、4.04(s、3H)、3.97(s、3H)、2.51(s、3H)、2.46(s、3H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 7.65 (d, 1H, J = 1.0 Hz), 7.21 (s, 1H), 6.91 (s, 1H), 6. 84 (d, 1H, J = 8.5 Hz), 6.76 (d, 1H, J = 8.5 Hz), 4.04 (s, 3H), 3.97 (s, 3H), 2.51 ( s, 3H), 2.46 (s, 3H).
ステップ6:中間体Fの合成
Figure JPOXMLDOC01-appb-C000053
Step 6: Synthesis of Intermediate F
Figure JPOXMLDOC01-appb-C000053
 温度計を備えた4つ口反応器に窒素気流中、先のステップ5で合成した中間体E 7.2g(21.2mmol)にピリジン塩酸塩72gを加えて180℃で4時間撹拌した。反応終了後、反応液を30℃まで冷却した後、水300gを加えた。析出した固体をろ取し、水30g、トルエン30g、ヘキサン30gで洗浄した。得られた固体を真空乾燥させて、黄色固体として中間体Fを6.38g得た(収率:96.6モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a 4-necked reactor equipped with a thermometer, 72 g of pyridine hydrochloride was added to 7.2 g (21.2 mmol) of the intermediate E synthesized in Step 5 in a nitrogen stream, and the mixture was stirred at 180 ° C. for 4 hours. After completion of the reaction, the reaction solution was cooled to 30 ° C., and then 300 g of water was added. The precipitated solid was collected by filtration and washed with 30 g of water, 30 g of toluene, and 30 g of hexane. The obtained solid was vacuum-dried to obtain 6.38 g of intermediate F as a yellow solid (yield: 96.6 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、DMSO-d6、TMS、δppm):9.91(s、1H)、9.59(brs、1H)、7.76(d、1H、J=1.0Hz)、7.36(s、1H)、6.99(s、1H)、6.79(d、1H、J=8.5Hz)、6.74(d、1H、J=8.5Hz)、2.53(s、3H)、2.43(s、3H)。 1 H-NMR (500 MHz, DMSO-d6, TMS, δ ppm): 9.91 (s, 1H), 9.59 (brs, 1H), 7.76 (d, 1H, J = 1.0 Hz), 7 .36 (s, 1H), 6.99 (s, 1H), 6.79 (d, 1H, J = 8.5 Hz), 6.74 (d, 1H, J = 8.5 Hz), 2.53 (S, 3H), 2.43 (s, 3H).
ステップ7:中間体Gの合成
Figure JPOXMLDOC01-appb-C000054
Step 7: Synthesis of Intermediate G
Figure JPOXMLDOC01-appb-C000054
 冷却器及び温度計を備えた3つ口反応器に、窒素気流中、ハイドロキノン104.77g(0.95mol)、6-クロロヘキサノール100g(0.73mol)、蒸留水500g、オルトキシレン100gを加えた。全容を攪拌しながら、さらに、水酸化ナトリウム35.15g(0.88mol)を、内容物の温度が40℃を超えないように20分かけて少量ずつ加えた。水酸化ナトリウムの添加終了後、内容物を加熱し、還流条件下(92℃)で10時間反応を行った。
 反応終了後、反応液の温度を80℃に下げ、蒸留水200gを加えた後、反応液を10℃に冷却することで、結晶が析出した。析出した結晶をろ過により固液分離し、得られた結晶を蒸留水150gで洗浄し、褐色結晶203.0gを得た。この褐色結晶の一部を用いて分析したところ、乾燥減量は、36.3質量%であった。また、高速液体クロマトグラフィーで分析した結果、褐色結晶に含まれるモノエーテル化物とジエーテル化物の割合(モル比)は、(モノエーテル化物/ジエーテル化物)で、92.0/8.0であった。ディーンスターク管付き冷却器及び温度計を備えた3つ口反応器に、窒素気流中、先に得た褐色結晶(固液分離し、蒸留水で洗浄した後のもの)157g、トルエン500g、2,6-ジ-t-ブチル- p-クレゾール1.05g(4.76mmol)を加え、全容を撹拌し、溶液を得た。得られた溶液を加熱し、還流条件下、ディーンスターク管から水を除去することで、系内を脱水した。その後、溶液を80℃に冷却し、メタンスルホン酸4.57g(47.6mmol)を加え、再度、還流条件(110℃)に加熱した。次いで、溶液に、アクリル酸47.98g(0.666mol)を2時間かけて滴下しながら、生成する水を除去し、脱水反応を行った。アクリル酸の滴下後、2時間撹拌を続けた。次いで、反応液を30℃に冷却し、蒸留水500gを加え、全容を攪拌後、静置した。有機層を分取し、得られた有機層に5%食塩水400gを加え、分液した。有機層を分取し、得られた有機層に活性炭10gを加え、全容を25℃で30分撹拌した後、ろ過することで活性炭を除去した。得られたろ液に、2,6-ジ-t-ブチル- p-クレゾール1.05g(4.76mmol)を加えた後、減圧下にてトルエン350gを留去し、溶液を濃縮した。得られた濃縮液に、n-ヘプタン300gを30分かけて滴下して結晶を析出させ、そのまま5℃に冷却した。ろ過により結晶を分取し、得られた結晶をトルエン66.7gとn-ヘプタン133.3gの混合液で洗浄した。次いで、結晶をトルエン144gに加え、40℃に加熱して結晶を溶解させた。得られた溶液に、n-ヘプタン216gを1時間かけて滴下して結晶を析出させ、そのまま5℃に冷却した。ろ過により結晶を分取し、得られた結晶をトルエン72gとn-ヘプタン144gの混合液で洗浄し、真空乾燥することで、白色固体として中間体G(4-(6-アクリロイルオキシ-ヘクス-1-イルオキシ)フェノール)を86.4g(6-クロロヘキサノール基準の収率:58モル%)で得た。さらに、得られた白色固体をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=:95:5(容積比、以下にて同じ))により精製することで純度を99.5質量%以上まで高めた。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a nitrogen stream, 104.77 g (0.95 mol) of hydroquinone, 100 g (0.73 mol) of 6-chlorohexanol, 500 g of distilled water, and 100 g of orthoxylene were added to a three-necked reactor equipped with a condenser and a thermometer. . While stirring the whole volume, 35.15 g (0.88 mol) of sodium hydroxide was further added in small portions over 20 minutes so that the temperature of the contents did not exceed 40 ° C. After completion of the addition of sodium hydroxide, the contents were heated and reacted for 10 hours under reflux conditions (92 ° C.).
After completion of the reaction, the temperature of the reaction solution was lowered to 80 ° C., 200 g of distilled water was added, and then the reaction solution was cooled to 10 ° C. to precipitate crystals. The precipitated crystals were separated into solid and liquid by filtration, and the obtained crystals were washed with 150 g of distilled water to obtain 203.0 g of brown crystals. When analyzed using a part of the brown crystals, the loss on drying was 36.3% by mass. As a result of analysis by high performance liquid chromatography, the ratio (molar ratio) of the monoetherified product to the dietherified product contained in the brown crystals was (monoetherified product / dietherified product), which was 92.0 / 8.0. . In a three-necked reactor equipped with a condenser with a Dean-Stark tube and a thermometer, 157 g of brown crystals obtained previously (after solid-liquid separation and washing with distilled water) in a nitrogen stream, 500 g of toluene, 2 , 6-Di-t-butyl-p-cresol 1.05 g (4.76 mmol) was added, and the whole volume was stirred to obtain a solution. The obtained solution was heated and water was removed from the Dean-Stark tube under reflux conditions to dehydrate the system. Thereafter, the solution was cooled to 80 ° C., 4.57 g (47.6 mmol) of methanesulfonic acid was added, and the mixture was again heated to reflux conditions (110 ° C.). Next, 47.98 g (0.666 mol) of acrylic acid was dropped into the solution over 2 hours, and water produced was removed to perform a dehydration reaction. Stirring was continued for 2 hours after the acrylic acid was dropped. Next, the reaction solution was cooled to 30 ° C., 500 g of distilled water was added, and the whole volume was stirred and allowed to stand. The organic layer was separated, and 400 g of 5% brine was added to the obtained organic layer for liquid separation. The organic layer was separated, 10 g of activated carbon was added to the obtained organic layer, the whole volume was stirred at 25 ° C. for 30 minutes, and then the activated carbon was removed by filtration. To the obtained filtrate was added 1.05 g (4.76 mmol) of 2,6-di-t-butyl-p-cresol, 350 g of toluene was distilled off under reduced pressure, and the solution was concentrated. To the resulting concentrated liquid, 300 g of n-heptane was added dropwise over 30 minutes to precipitate crystals, which were then cooled to 5 ° C. as they were. The crystals were separated by filtration, and the obtained crystals were washed with a mixed solution of 66.7 g of toluene and 133.3 g of n-heptane. Next, the crystals were added to 144 g of toluene and heated to 40 ° C. to dissolve the crystals. To the resulting solution, 216 g of n-heptane was added dropwise over 1 hour to precipitate crystals, which were then cooled to 5 ° C. as they were. The crystals were collected by filtration, and the obtained crystals were washed with a mixed solution of 72 g of toluene and 144 g of n-heptane, and dried in vacuo to give intermediate G (4- (6-acryloyloxy-hex-) as a white solid. 1-yloxy) phenol) was obtained in an amount of 86.4 g (yield based on 6-chlorohexanol: 58 mol%). Further, the obtained white solid was purified by silica gel column chromatography (toluene: ethyl acetate =: 95: 5 (volume ratio, the same applies hereinafter)) to increase the purity to 99.5% by mass or more.
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、DMSO-d6、TMS、δppm):8.87(s、1H)、6.72(d、2H、J=9.0Hz)、6 .65(d、2H、J=9.0Hz)、6.32(dd、1H、J=1.5Hz、17.5Hz)、6.17(dd、1H、J=10.0Hz、17.5Hz)、5.93(dd、1H、J=1.5Hz、10.0Hz)、4.11(t、2H、J=6.5Hz)、3.83(t、2H、J=6.5Hz)、1.56-1.72(m、4H)、1.31-1.47(m、4H)。 1 H-NMR (500 MHz, DMSO-d6, TMS, δ ppm): 8.87 (s, 1H), 6.72 (d, 2H, J = 9.0 Hz), 6. 65 (d, 2H, J = 9.0 Hz), 6.32 (dd, 1H, J = 1.5 Hz, 17.5 Hz), 6.17 (dd, 1H, J = 10.0 Hz, 17.5 Hz) 5.93 (dd, 1H, J = 1.5 Hz, 10.0 Hz), 4.11 (t, 2H, J = 6.5 Hz), 3.83 (t, 2H, J = 6.5 Hz), 1.56-1.72 (m, 4H), 1.31-1.47 (m, 4H).
ステップ8:中間体Hの合成
Figure JPOXMLDOC01-appb-C000055
 
Step 8: Synthesis of Intermediate H
Figure JPOXMLDOC01-appb-C000055
 温度計を備えた3つ口反応器に、窒素気流中、trans,-1,4-シクロヘキサンジカルボン酸17.98g(104.42mmol)とテトラヒドロフラン(THF)180mlを加えた。そこへ、メタンスルホニルクロリド6.58g(57.43mmol)を加え、反応器を水浴に浸して反応液内温を20℃とした。次いで、トリエチルアミン6.34g(62.65mmol)を、反応液内温を20~30℃に保持しながら、10分間かけて滴下した。滴下終了後、全容を25℃で2時間さらに撹拌した。
 得られた反応液に、4-(ジメチルアミノ)ピリジン638mg(5.22mmol)、及び、先のステップ7で合成した中間体G 13.80g(52.21mmol)を加え、再度反応器を水浴に浸して反応液内温を15℃とした。そこへ、トリエチルアミン6.34g(62.65mmol)を、反応液内温を20~30℃に保持しながら、10分間かけて滴下し、滴下終了後、全容を25℃でさらに2時間撹拌した。反応終了後、反応液に蒸留水1000mlと飽和食塩水100mlを加え、酢酸エチル400mlで2回抽出した。有機層を集め、無水硫酸ナトリウムで乾燥した後、硫酸ナトリウムをろ別した。ロータリーエバポレーターにてろ液から溶媒を減圧留去した後、得られた残留物をシリカゲルカラムクロマトグラフィー(トルエン:THF=9:1)により精製することで、中間体Hを白色固体として14.11g得た(収率:65.0モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
To a three-necked reactor equipped with a thermometer, 17.98 g (104.42 mmol) of trans, -1,4-cyclohexanedicarboxylic acid and 180 ml of tetrahydrofuran (THF) were added in a nitrogen stream. To this, 6.58 g (57.43 mmol) of methanesulfonyl chloride was added, and the reactor was immersed in a water bath to adjust the internal temperature of the reaction solution to 20 ° C. Next, 6.34 g (62.65 mmol) of triethylamine was added dropwise over 10 minutes while maintaining the internal temperature of the reaction solution at 20 to 30 ° C. After completion of the dropwise addition, the whole volume was further stirred at 25 ° C. for 2 hours.
To the obtained reaction solution, 638 mg (5.22 mmol) of 4- (dimethylamino) pyridine and 13.80 g (52.21 mmol) of the intermediate G synthesized in the previous Step 7 were added, and the reactor was placed in a water bath again. The temperature inside the reaction solution was adjusted to 15 ° C. by immersion. Thereto, 6.34 g (62.65 mmol) of triethylamine was added dropwise over 10 minutes while maintaining the internal temperature of the reaction solution at 20 to 30 ° C. After completion of the addition, the whole volume was further stirred at 25 ° C. for 2 hours. After completion of the reaction, 1000 ml of distilled water and 100 ml of saturated brine were added to the reaction solution, and extracted twice with 400 ml of ethyl acetate. The organic layer was collected and dried over anhydrous sodium sulfate, and then sodium sulfate was filtered off. After the solvent was distilled off from the filtrate under reduced pressure using a rotary evaporator, the obtained residue was purified by silica gel column chromatography (toluene: THF = 9: 1) to obtain 14.11 g of Intermediate H as a white solid. (Yield: 65.0 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
H-NMR(500MHz,DMSO-d,TMS,δppm):12.12(s,1H)、6.99(d,2H,J=9.0Hz)、6.92(d,2H,J=9.0Hz)、6.32(dd,1H,J=1.5Hz,17.5Hz)、6.17(dd,1H,J=10.0Hz,17.5Hz)、5.93(dd,1H,J=1.5Hz,10.0Hz)、4.11(t,2H,J=6.5Hz)、3.94(t,2H,J=6.5Hz)、2.48-2.56(m,1H)、2.18-2.26(m,1H)、2.04-2.10(m,2H)、1.93-2.00(m,2H)、1.59-1.75(m,4H)、1.35-1.52(m,8H) 1 H-NMR (500 MHz, DMSO-d 6 , TMS, δ ppm): 12.12 (s, 1H), 6.99 (d, 2H, J = 9.0 Hz), 6.92 (d, 2H, J = 9.0 Hz), 6.32 (dd, 1 H, J = 1.5 Hz, 17.5 Hz), 6.17 (dd, 1 H, J = 10.0 Hz, 17.5 Hz), 5.93 (dd, 1H, J = 1.5 Hz, 10.0 Hz), 4.11 (t, 2H, J = 6.5 Hz), 3.94 (t, 2H, J = 6.5 Hz), 2.48-2.56 (M, 1H), 2.18-2.26 (m, 1H), 2.04-2.10 (m, 2H), 1.93-2.00 (m, 2H), 1.59-1 .75 (m, 4H), 1.35 to 1.52 (m, 8H)
ステップ9:中間体Iの合成
Figure JPOXMLDOC01-appb-C000056
Step 9: Synthesis of Intermediate I
Figure JPOXMLDOC01-appb-C000056
 冷却器、及び温度計を備えた3つ口反応器に、窒素気流中、ハイドロキノン104.77g(0.9515mol)、6-クロロヘキサノール 100g(0.7320mol)、蒸留水500ml、o-キシレン100mlを加えた。全容を撹拌しながら、さらに、水酸化ナトリウム 35.15g(0.8784mol)を、反応液内温が40℃を超えないように20分かけて少量ずつ加えた。水酸化ナトリウムの添加終了後、内容物を加熱し、還流条件下(96℃)で12時間反応を行った。
 反応終了後、反応液内温を80℃に下げ、蒸留水200mlを加えた後、反応液を10℃に冷却することで、結晶が析出した。析出した結晶をろ過により固液分離し、得られた結晶を蒸留水500mlで洗浄し、真空乾燥することで、褐色結晶123.3gを得た。
 この褐色結晶を高速液体クロマトグラフィーで分析した結果、褐色結晶に含まれる化合物の含有量比(モル比)は(ハイドロキノン/中間体I/副生成物I=1.3/90.1/8.1)であった。
In a nitrogen stream, 104.77 g (0.9515 mol) hydroquinone, 100 g (0.7320 mol) 6-chlorohexanol, 500 ml distilled water, and 100 ml o-xylene were placed in a three-necked reactor equipped with a condenser and a thermometer. added. While stirring the whole volume, 35.15 g (0.8784 mol) of sodium hydroxide was further added in small portions over 20 minutes so that the internal temperature of the reaction solution did not exceed 40 ° C. After completion of the addition of sodium hydroxide, the contents were heated and reacted for 12 hours under reflux conditions (96 ° C.).
After completion of the reaction, the internal temperature of the reaction solution was lowered to 80 ° C., 200 ml of distilled water was added, and then the reaction solution was cooled to 10 ° C. to precipitate crystals. The precipitated crystals were separated into solid and liquid by filtration, and the obtained crystals were washed with 500 ml of distilled water and vacuum-dried to obtain 123.3 g of brown crystals.
As a result of analyzing the brown crystals by high performance liquid chromatography, the content ratio (molar ratio) of the compounds contained in the brown crystals was (hydroquinone / intermediate I / byproduct I = 1.3 / 90.1 / 8. 1).
ステップ10:中間体Jの合成
Figure JPOXMLDOC01-appb-C000057
Step 10: Synthesis of Intermediate J
Figure JPOXMLDOC01-appb-C000057
 ディーンスターク管付き冷却器、及び温度計を備えた3つ口反応器に、窒素気流中、先のステップ9で合成した褐色結晶15.3g、トルエン70ml、2,6-ジ-t-ブチル-p-クレゾール202mg(0.921mmol)を加え、全容を撹拌した。全容を80℃に加熱し、3-クロロプロピオン酸10.0g(92.15mol)、メタンスルホン酸885mg(9.21mmol)を加え、還流条件(110℃)で、生成する水を除去しながら脱水反応を2時間行った。反応終了後、反応液内温を30℃に下げ、蒸留水70mlを加え、全容を撹拌後、静置した。有機層を分取し、得られた有機層に蒸留水35mlを加え、分液した。有機層を分取し、得られた有機層に活性炭1.4gを加え、全容を25℃で30分撹拌した後、ろ過することで活性炭を除去した。
 得られたろ液に、2,6-ジ-t-ブチル-p-クレゾール202mg(0.921mmol)を加えた後、ロータリーエバポレーターにてろ液から溶媒を減圧留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(トルエン:テトラヒドロフラン=:95:5)により精製することで、中間体Jを白色固体として11.0g得た(ステップ9~10のトータル収率:40.0モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a three-necked reactor equipped with a condenser with a Dean-Stark tube and a thermometer, 15.3 g of brown crystals synthesized in the previous step 9 in a nitrogen stream, 70 ml of toluene, 2,6-di-t-butyl- 202 mg (0.921 mmol) of p-cresol was added and the whole volume was stirred. The whole volume was heated to 80 ° C., 10.0 g (92.15 mol) of 3-chloropropionic acid and 885 mg (9.21 mmol) of methanesulfonic acid were added, and dehydration was performed while removing generated water under reflux conditions (110 ° C.). The reaction was carried out for 2 hours. After completion of the reaction, the reaction solution internal temperature was lowered to 30 ° C., 70 ml of distilled water was added, and the whole volume was stirred and allowed to stand. The organic layer was separated, and 35 ml of distilled water was added to the obtained organic layer for liquid separation. The organic layer was separated, and 1.4 g of activated carbon was added to the obtained organic layer. The whole volume was stirred at 25 ° C. for 30 minutes, and then filtered to remove the activated carbon.
After adding 202 mg (0.921 mmol) of 2,6-di-t-butyl-p-cresol to the obtained filtrate, the solvent was distilled off from the filtrate under reduced pressure using a rotary evaporator. The obtained residue was purified by silica gel column chromatography (toluene: tetrahydrofuran =: 95: 5) to obtain 11.0 g of intermediate J as a white solid (total yield of steps 9 to 10: 40. 0 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm):6.78(d、2H、J=9.0Hz)、6.76(d、2H、J=9.0Hz)、4.91(s、1H)、4.14(t、2H、J=6.5Hz)、3.89(t、2H、J=6.5Hz)、3.76(t、2H、J=6.5Hz)、2.79(t、2H、J=6.5Hz)、1.65-1.79(m、4H)、1.41-1.50(m、4H) 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 6.78 (d, 2H, J = 9.0 Hz), 6.76 (d, 2H, J = 9.0 Hz), 4.91 (s 1H), 4.14 (t, 2H, J = 6.5 Hz), 3.89 (t, 2H, J = 6.5 Hz), 3.76 (t, 2H, J = 6.5 Hz), 2 .79 (t, 2H, J = 6.5 Hz), 1.65-1.79 (m, 4H), 1.41-1.50 (m, 4H)
ステップ11:中間体Kの合成
Figure JPOXMLDOC01-appb-C000058
Step 11: Synthesis of Intermediate K
Figure JPOXMLDOC01-appb-C000058
 温度計を備えた3つ口反応器に窒素気流中、trans-1,4-シクロヘキサンジカルボン酸12.50g(72.60mmol)とTHF80mlを加えた。そこへ、メタンスルホニルクロリド4.35g(37.97mmol)を加え、反応器を氷水浴に浸して反応液内温を5℃とした。次いで、トリエチルアミン4.03g(39.83mmol)を、反応液内温を5~10℃に保持しながら、5分間かけて滴下した。滴下終了後、全容を5~10℃で2時間さらに撹拌した。
 得られた反応液に、4-ジメチルアミノピリジン440mg(3.60mmol)、及び、先のステップ10で合成した中間体J 10.9g(36.24mmol)を加え、再度反応器を氷水浴に浸して反応液内温を5℃とした。そこへ、トリエチルアミン4.03g(39.83mmol)を、反応液内温を5~10℃に保持しながら、5分間かけて滴下し、滴下終了後、氷水浴を除去し、全容を25℃でさらに2時間撹拌した。反応終了後、反応液に蒸留水700mlと飽和食塩水70mlを加え、酢酸エチル250mlで2回抽出した。有機層を集め、無水硫酸ナトリウムで乾燥した後、硫酸ナトリウムをろ別した。ロータリーエバポレーターにてろ液から溶媒を減圧留去した後、得られた残留物をシリカゲルカラムクロマトグラフィー(クロロホルム:テトラヒドロフラン=97:3)により精製することで、中間体Kを白色固体として9.30g得た(収率:56.4モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a nitrogen stream, 12.50 g (72.60 mmol) of trans-1,4-cyclohexanedicarboxylic acid and 80 ml of THF were added to a three-necked reactor equipped with a thermometer. Thereto, 4.35 g (37.97 mmol) of methanesulfonyl chloride was added, and the reactor was immersed in an ice-water bath to adjust the internal temperature of the reaction solution to 5 ° C. Subsequently, 4.03 g (39.83 mmol) of triethylamine was added dropwise over 5 minutes while maintaining the internal temperature of the reaction solution at 5 to 10 ° C. After completion of the dropwise addition, the whole volume was further stirred at 5 to 10 ° C. for 2 hours.
To the obtained reaction solution, 440 mg (3.60 mmol) of 4-dimethylaminopyridine and 10.9 g (36.24 mmol) of the intermediate J synthesized in the previous Step 10 were added, and the reactor was immersed again in an ice-water bath. The internal temperature of the reaction solution was 5 ° C. Thereto, 4.03 g (39.83 mmol) of triethylamine was added dropwise over 5 minutes while maintaining the internal temperature of the reaction solution at 5 to 10 ° C. After completion of the dropwise addition, the ice-water bath was removed and the whole volume was adjusted to 25 ° C. Stir for another 2 hours. After completion of the reaction, 700 ml of distilled water and 70 ml of saturated brine were added to the reaction solution, and extracted twice with 250 ml of ethyl acetate. The organic layer was collected and dried over anhydrous sodium sulfate, and then sodium sulfate was filtered off. After the solvent was distilled off from the filtrate under reduced pressure using a rotary evaporator, the obtained residue was purified by silica gel column chromatography (chloroform: tetrahydrofuran = 97: 3) to obtain 9.30 g of Intermediate K as a white solid. (Yield: 56.4 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、DMSO-d、TMS、δppm):12.12(s、1H)、6.99(d、2H、J=9.0Hz)、6.92(d、2H、J=9.0Hz)、4.07(t、2H、J=6.5Hz)、3.94(t、2H、J=6.5Hz)、3.79(t、2H、J=6.5Hz)、2.81(t、2H、J=6.5Hz)、2.47-2.56(m、1H)、2.18-2.27(m、1H)、2.01-2.11(m、2H)、1.93-2.01(m、2H)、1.65-1.74(m、2H)、1.57-1.65(m、2H)、1.34-1.52(m、8H) 1 H-NMR (500 MHz, DMSO-d 6 , TMS, δ ppm): 12.12 (s, 1H), 6.99 (d, 2H, J = 9.0 Hz), 6.92 (d, 2H, J = 9.0 Hz), 4.07 (t, 2H, J = 6.5 Hz), 3.94 (t, 2H, J = 6.5 Hz), 3.79 (t, 2H, J = 6.5 Hz) 2.81 (t, 2H, J = 6.5 Hz), 2.47-2.56 (m, 1H), 2.18-2.27 (m, 1H), 2.01-2.11 ( m, 2H), 1.93-2.01 (m, 2H), 1.65-1.74 (m, 2H), 1.57-1.65 (m, 2H), 1.34-1. 52 (m, 8H)
ステップ12:中間体Lの合成
Figure JPOXMLDOC01-appb-C000059
Step 12: Synthesis of intermediate L
Figure JPOXMLDOC01-appb-C000059
 温度計を備えた3つ口反応器に、窒素気流中、先のステップ6で合成した中間体F 4.0g(12.8mmol)をTHF160mlに加えた後、0℃に冷却した。この溶液に、先のステップ8で合成した中間体H 6.44g(15.4mmol)、4-ジメチルアミノピリジン156mg(1.28mmol)とN、N´-ジイソプロピルカルボジイミド1.94g(15.4mmol)を加えて室温で1時間撹拌した。反応終了後、反応液に水200mlを加え、酢酸エチル400mlで抽出した。得られた酢酸エチル層を無水硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別した。ロータリーエバポレーターで濃縮した後、得られた残渣をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=90:10)により精製することで、肌色固体として中間体Lを1.29g得た(収率:14.1モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a three-necked reactor equipped with a thermometer, 4.0 g (12.8 mmol) of the intermediate F synthesized in Step 6 above was added to 160 ml of THF in a nitrogen stream, and then cooled to 0 ° C. To this solution, 6.44 g (15.4 mmol) of intermediate H synthesized in Step 8 above, 156 mg (1.28 mmol) of 4-dimethylaminopyridine and 1.94 g (15.4 mmol) of N, N′-diisopropylcarbodiimide And stirred at room temperature for 1 hour. After completion of the reaction, 200 ml of water was added to the reaction solution and extracted with 400 ml of ethyl acetate. The obtained ethyl acetate layer was dried over anhydrous sodium sulfate, and sodium sulfate was filtered off. After concentration by a rotary evaporator, the obtained residue was purified by silica gel column chromatography (toluene: ethyl acetate = 90: 10) to obtain 1.29 g of intermediate L as a skin-colored solid (yield: 14. 1 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz,CDCl,TMS,δppm):7.53(d、1H、J=1.0Hz)、7.21(s、1H)、7.10(d、1H、J=9.0Hz)、6.98-7.01(m、4H)、6.94(s、1H)、6.88(d、2H、J=9.0Hz)、6.41(dd、1H、J=1.5Hz、17.5Hz)、6.13(dd、1H、J=10.5Hz、17.5Hz)、5.82(dd、1H、J=1.5Hz、10.5Hz)、4.18(t、2H、J=7.0Hz)、3.95(t、2H、J=6.5Hz)、2.53(s、3H)、2.47(s、3H)、2.32-2.43(m、4H)、1.67-1.82(m、10H)、1.45-1.56(m、4H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 7.53 (d, 1H, J = 1.0 Hz), 7.21 (s, 1H), 7.10 (d, 1H, J = 9) 0.0Hz), 6.98-7.01 (m, 4H), 6.94 (s, 1H), 6.88 (d, 2H, J = 9.0 Hz), 6.41 (dd, 1H, J = 1.5 Hz, 17.5 Hz), 6.13 (dd, 1 H, J = 10.5 Hz, 17.5 Hz), 5.82 (dd, 1 H, J = 1.5 Hz, 10.5 Hz), 4. 18 (t, 2H, J = 7.0 Hz), 3.95 (t, 2H, J = 6.5 Hz), 2.53 (s, 3H), 2.47 (s, 3H), 2.32- 2.43 (m, 4H), 1.67-1.82 (m, 10H), 1.45-1.56 (m, 4H).
ステップ13:化合物1の合成
 温度計を備えた4つ口反応器に窒素気流中、先のステップ12で合成した中間体L 1.13g(1.58mmol)をクロロホルム30mlに加えた。この溶液に先のステップ11で合成した中間体K 864mg(1.90mmol)、4-ジメチルアミノピリジン19.8mg(0.16mmol)を加えて、0℃に冷却した。その後、この溶液にN、N´-ジイソプロピルカルボジイミド239mg(1.90mmol)を加えて室温で1.5時間撹拌した。
 反応終了後、反応液をシリカゲルでプレコートした濾材を用いて濾過した後、減圧濃縮し、得られた残渣にメタノール50mlを加えた。析出した白色固体をろ取し、ろ取した固体を真空乾燥させて、白色固体として化合物1を1.23g得た(収率:67.6モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
Step 13: Synthesis of Compound 1 In a four-necked reactor equipped with a thermometer, 1.13 g (1.58 mmol) of the intermediate L synthesized in Step 12 above was added to 30 ml of chloroform in a nitrogen stream. To this solution, 864 mg (1.90 mmol) of intermediate K synthesized in the previous Step 11 and 19.8 mg (0.16 mmol) of 4-dimethylaminopyridine were added, and the mixture was cooled to 0 ° C. Thereafter, 239 mg (1.90 mmol) of N, N′-diisopropylcarbodiimide was added to this solution, and the mixture was stirred at room temperature for 1.5 hours.
After completion of the reaction, the reaction solution was filtered using a filter medium pre-coated with silica gel, concentrated under reduced pressure, and 50 ml of methanol was added to the resulting residue. The precipitated white solid was collected by filtration, and the collected solid was vacuum-dried to obtain 1.23 g of Compound 1 as a white solid (yield: 67.6 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm):7.53(d、1H、J=1.0Hz)、7.23(s、2H)、7.21(s、1H)、7.001(d、2H、J=9.0Hz)、6.995(d、2H、J=9.0Hz)、6.94(s、1H)、6.89(d、4H、J=9.0Hz)、6.40(dd、1H、J=1.5Hz、17.5Hz)、6.13(dd、1H、J=10.5Hz、17.5Hz)、5.82(dd、1H、J=1.5Hz、10.5Hz)、4.18(t、2H、J=6.5Hz)、4.15(t、2H、J=7.0Hz)、3.95(t、4H、J=6.5Hz)、3.76(t、2H、J=6.5Hz)、2.84(tt、1H、J=3.5Hz、11.5Hz)、2.79(t、2H、J=6.5Hz)、2.59-2.73(m、3H)、2.54(s、3H)、2.44-2.48(m、5H)、2.32-2.38(m、6H)、1.66-1.87(m、16H)、1.41-1.54(m、8H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 7.53 (d, 1H, J = 1.0 Hz), 7.23 (s, 2H), 7.21 (s, 1H), 7. 001 (d, 2H, J = 9.0 Hz), 6.995 (d, 2H, J = 9.0 Hz), 6.94 (s, 1H), 6.89 (d, 4H, J = 9.0 Hz) ), 6.40 (dd, 1H, J = 1.5 Hz, 17.5 Hz), 6.13 (dd, 1H, J = 10.5 Hz, 17.5 Hz), 5.82 (dd, 1H, J = 1.5Hz, 10.5Hz), 4.18 (t, 2H, J = 6.5Hz), 4.15 (t, 2H, J = 7.0Hz), 3.95 (t, 4H, J = 6) .5Hz), 3.76 (t, 2H, J = 6.5Hz), 2.84 (tt, 1H, J = 3.5Hz, 11.5Hz), 2.79 (t 2H, J = 6.5 Hz), 2.59-2.73 (m, 3H), 2.54 (s, 3H), 2.44-2.48 (m, 5H), 2.32-2. 38 (m, 6H), 1.66-1.87 (m, 16H), 1.41-1.54 (m, 8H).
(合成例2)化合物2の合成
Figure JPOXMLDOC01-appb-C000060
Synthesis Example 2 Synthesis of Compound 2
Figure JPOXMLDOC01-appb-C000060
 温度計を備えた4つ口反応器に窒素気流中、合成例1のステップ6で合成した中間体F 798mg(2.56mmol)をクロロホルム30mlに加えた。この溶液に合成例1のステップ11で合成した中間体K 2.57g(5.64mmol)、4-ジメチルアミノピリジン31.3mg(0.26mmol)を加えて、0℃に冷却した。その後、この溶液にN、N´-ジイソプロピルカルボジイミド776mg(6.15mmol)を加えて室温で2時間撹拌した。
 反応終了後、反応液をシリカゲルでプレコートした濾材を用いて濾過した後、減圧濃縮し、得られた残渣にメタノール50mlを加えた。析出した白色固体をろ取し、ろ取した固体を真空乾燥させて、白色固体として化合物2を2.16g得た(収率:71.1モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a four-necked reactor equipped with a thermometer, 798 mg (2.56 mmol) of the intermediate F synthesized in Step 6 of Synthesis Example 1 was added to 30 ml of chloroform in a nitrogen stream. To this solution, 2.57 g (5.64 mmol) of intermediate K synthesized in Step 11 of Synthesis Example 1 and 31.3 mg (0.26 mmol) of 4-dimethylaminopyridine were added and cooled to 0 ° C. Thereafter, 776 mg (6.15 mmol) of N, N′-diisopropylcarbodiimide was added to this solution and stirred at room temperature for 2 hours.
After completion of the reaction, the reaction solution was filtered using a filter medium pre-coated with silica gel, concentrated under reduced pressure, and 50 ml of methanol was added to the resulting residue. The precipitated white solid was collected by filtration, and the collected solid was vacuum-dried to obtain 2.16 g of Compound 2 as a white solid (yield: 71.1 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm): 7.53(d、1H、J=1.0Hz)、7.23(s、2H)、7.21(s、1H)、7.000(d、2H、J=9.0Hz)、6.995(d、2H、J=9.0Hz)、6.94(s、1H)、6.89(d、4H、J=9.0Hz)、4.15(t、4H、J=7.0Hz)、3.95(t、4H、J=6.5Hz)、2.84(tt、1H、J=3.5Hz、11.5Hz)、2.79(t、4H、J=6.5Hz)、2.59-2.73(m、3H)、2.54(s、3H)、2.42-2.47(m、5H)、2.32-2.38(m、6H)、1.66-1.87(m、16H)、1.41-1.54(m、8H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 7.53 (d, 1H, J = 1.0 Hz), 7.23 (s, 2H), 7.21 (s, 1H), 7. 00 (d, 2H, J = 9.0 Hz), 6.995 (d, 2H, J = 9.0 Hz), 6.94 (s, 1H), 6.89 (d, 4H, J = 9.0 Hz) ), 4.15 (t, 4H, J = 7.0 Hz), 3.95 (t, 4H, J = 6.5 Hz), 2.84 (tt, 1H, J = 3.5 Hz, 11.5 Hz) 2.79 (t, 4H, J = 6.5 Hz), 2.59-2.73 (m, 3H), 2.54 (s, 3H), 2.42-2.47 (m, 5H) 2.32-2.38 (m, 6H), 1.66-1.87 (m, 16H), 1.41-1.54 (m, 8H).
(合成例3)化合物3の合成
Figure JPOXMLDOC01-appb-C000061
(Synthesis Example 3) Synthesis of Compound 3
Figure JPOXMLDOC01-appb-C000061
ステップ1:中間体Mの合成
Figure JPOXMLDOC01-appb-C000062
Step 1: Synthesis of Intermediate M
Figure JPOXMLDOC01-appb-C000062
 冷却器、及び温度計を備えた3つ口反応器に、窒素気流中、ハイドロキノン104.77g(0.9515mol)、6-クロロヘキサノール100g(0.7320mol)、蒸留水500ml、o-キシレン100mlを加えた。全容を撹拌しながら、さらに、水酸化ナトリウム35.15g(0.8784mol)を、反応液内温が40℃を超えないように20分かけて少量ずつ加えた。水酸化ナトリウムの添加終了後、内容物を加熱し、還流条件下(96℃)で12時間反応を行った。
 反応終了後、反応液内温を80℃に下げ、蒸留水200mlを加えた後、反応液を10℃に冷却することで、結晶が析出した。析出した結晶をろ過により固液分離し、得られた結晶を蒸留水500mlで洗浄し、真空乾燥することで、褐色結晶123.3gを得た。
 この褐色結晶をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=:90:10)により精製することで、中間体Mを白色固体として20g得た(収率:13モル%)。
A three-necked reactor equipped with a condenser and a thermometer was charged with 104.77 g (0.9515 mol) of hydroquinone, 100 g (0.7320 mol) of 6-chlorohexanol, 500 ml of distilled water and 100 ml of o-xylene in a nitrogen stream. added. While stirring the whole volume, 35.15 g (0.8784 mol) of sodium hydroxide was further added little by little over 20 minutes so that the internal temperature of the reaction solution did not exceed 40 ° C. After completion of the addition of sodium hydroxide, the contents were heated and reacted for 12 hours under reflux conditions (96 ° C.).
After completion of the reaction, the internal temperature of the reaction solution was lowered to 80 ° C., 200 ml of distilled water was added, and then the reaction solution was cooled to 10 ° C. to precipitate crystals. The precipitated crystals were separated into solid and liquid by filtration, and the obtained crystals were washed with 500 ml of distilled water and vacuum-dried to obtain 123.3 g of brown crystals.
The brown crystals were purified by silica gel column chromatography (chloroform: methanol =: 90: 10) to obtain 20 g of intermediate M as a white solid (yield: 13 mol%).
ステップ2:中間体GGの合成
Figure JPOXMLDOC01-appb-C000063
Step 2: Synthesis of intermediate GG
Figure JPOXMLDOC01-appb-C000063
 冷却器、及び温度計を備えた3つ口反応器に、窒素気流中、先のステップ1で合成した中間体M:20g(95.12mmol)、N,N-ジイソプロピルエチルアミン12.3g(95.12mmol)をテトラヒドロフラン500mlに溶解させた。この溶液を氷浴にて冷却して、10℃以下になるように制御しながらアクリロイルクロライド5.16g(57.01mmol)をゆっくりと滴下した。滴下終了後、氷浴下にて、2時間反応を行った。反応終了後、反応液を0.1N-塩酸水溶液1リットルに投入し、酢酸エチル300mlで2回抽出を行った。得られた酢酸エチル層を飽和食塩水300mlで洗浄した。その後、酢酸エチル層を無水硫酸ナトリウムで乾燥させて、硫酸ナトリウムをろ過により除去した。ロータリーエバポレーターにより酢酸エチルを留去して、淡黄色固体を得た。この淡黄色固体をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=:95:5)により精製することで、中間体GGを含む白色固体(粗中間体GG)を5.6g得た(収率:37モル%)。
 得られた固体をHPLCにて分析したところ、中間体GGのハロゲン化体である下記中間体GG’が、中間体GGと中間体GG’の合計中、2.1質量%の割合で含まれていた。
In a three-necked reactor equipped with a condenser and a thermometer, in a nitrogen stream, intermediate M synthesized in Step 1 above: 20 g (95.12 mmol), N, N-diisopropylethylamine 12.3 g (95.95). 12 mmol) was dissolved in 500 ml of tetrahydrofuran. The solution was cooled in an ice bath and 5.16 g (57.01 mmol) of acryloyl chloride was slowly added dropwise while controlling the temperature to be 10 ° C. or lower. After completion of the dropping, the reaction was performed for 2 hours in an ice bath. After completion of the reaction, the reaction solution was poured into 1 liter of 0.1N hydrochloric acid aqueous solution and extracted twice with 300 ml of ethyl acetate. The obtained ethyl acetate layer was washed with 300 ml of saturated brine. Thereafter, the ethyl acetate layer was dried over anhydrous sodium sulfate, and sodium sulfate was removed by filtration. Ethyl acetate was distilled off by a rotary evaporator to obtain a pale yellow solid. The pale yellow solid was purified by silica gel column chromatography (toluene: ethyl acetate =: 95: 5) to obtain 5.6 g of a white solid (crude intermediate GG) containing intermediate GG (yield: 37). Mol%).
When the obtained solid was analyzed by HPLC, the following intermediate GG ′, which is a halogenated product of intermediate GG, was included in a ratio of 2.1% by mass in the total of intermediate GG and intermediate GG ′. It was.
Figure JPOXMLDOC01-appb-C000064
 
Figure JPOXMLDOC01-appb-C000064
 
ステップ3:混合物Nの合成
Figure JPOXMLDOC01-appb-C000065
Step 3: Synthesis of mixture N
Figure JPOXMLDOC01-appb-C000065
 温度計を備えた3口反応器に、窒素気流中、trans-1,4-シクロヘキサンジカルボン酸ジクロライド10.0g(47.83mmol)とシクロペンチルメチルエーテル(CPME)84mlとTHF31mlを加えた。そこへ、先のステップ2で合成した粗中間体GG12.04gを加え、反応器を氷浴に浸して反応液内温を0℃とした。次いで、トリエチルアミン4.83g(47.83mmol)を、反応液内温を10℃以下に保持しながら、5分間かけてゆっくり滴下した。滴下終了後、全容を10℃以下に保持しながら1時間さらに攪拌した。
 得られた反応液に、蒸留水30mlを加えた。この反応液を50℃に昇温した後、2時間洗浄(加水分解)した後、水層を抜き出した。さらに、得られた有機層に、蒸留水30mlを加えた後、全容を50℃にて2時間洗浄(加水分解)を行い、水層を抜き出した。得られた有機層を40℃に冷却した後、さらに、濃度1mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH:5.5)50mlで5回洗浄を行った後、緩衝溶液を抜き出した。得られた有機層にさらに、蒸留水30mlで洗浄を行った後、水層を抜き出した。
 得られた有機層に、n-ヘキサン220mlを加えた後、0℃まで冷却して結晶を析出させた。その後、析出した結晶をろ過によりろ取した。ろ過物をn-ヘキサンで洗浄後、真空乾燥させて、白色固体として混合物Nを16.78g得た。
得られた結晶をHPLCにて分析を行い、検量線にてモノエステルとジエステルの定量を行ったところ、目的物であるモノエステルが、11.49g(27.45mmol)、ジエステルが、5.29g(7.96mmol)含まれていることが分かった。また、得られた結晶を13C-NMR(DMF-d7)にて分析を行い、シクロヘキサンジカルボン酸の含量を算出したところ、検出限界以下であった。それぞれの組成比からmol含量を計算すると、モノエステルの含量:77.52mol%、ジエステルの含量:22.48mol%であった。
In a nitrogen stream, 10.0 g (47.83 mmol) of trans-1,4-cyclohexanedicarboxylic acid dichloride, 84 ml of cyclopentyl methyl ether (CPME) and 31 ml of THF were added to a three-necked reactor equipped with a thermometer. Thereto was added 12.04 g of the crude intermediate GG synthesized in the previous step 2, and the reactor was immersed in an ice bath to adjust the internal temperature of the reaction solution to 0 ° C. Next, 4.83 g (47.83 mmol) of triethylamine was slowly added dropwise over 5 minutes while maintaining the internal temperature of the reaction solution at 10 ° C. or lower. After completion of the dropwise addition, the whole volume was further stirred for 1 hour while maintaining the temperature at 10 ° C or lower.
30 ml of distilled water was added to the obtained reaction solution. The reaction solution was heated to 50 ° C., washed (hydrolyzed) for 2 hours, and the aqueous layer was extracted. Further, 30 ml of distilled water was added to the obtained organic layer, and the whole volume was washed (hydrolyzed) at 50 ° C. for 2 hours, and the aqueous layer was extracted. The obtained organic layer was cooled to 40 ° C., and further washed with 50 ml of a buffer solution (pH: 5.5) composed of acetic acid and sodium acetate at a concentration of 1 mol / liter, and then the buffer solution was extracted. . The obtained organic layer was further washed with 30 ml of distilled water, and then the aqueous layer was extracted.
To the obtained organic layer, 220 ml of n-hexane was added and then cooled to 0 ° C. to precipitate crystals. Thereafter, the precipitated crystals were collected by filtration. The filtrate was washed with n-hexane and then vacuum-dried to obtain 16.78 g of a mixture N as a white solid.
The obtained crystals were analyzed by HPLC, and the monoester and diester were quantified with a calibration curve. As a result, the target monoester was 11.49 g (27.45 mmol), and the diester was 5.29 g. (7.96 mmol) was found to be contained. The obtained crystals were analyzed by 13C-NMR (DMF-d7), and the content of cyclohexanedicarboxylic acid was calculated and found to be below the detection limit. When the mol content was calculated from the respective composition ratios, the monoester content was 77.52 mol% and the diester content was 22.48 mol%.
ステップ4:化合物3の合成
 温度計を備えた4つ口反応器に窒素気流中、合成例1のステップ6で合成した中間体F 524mg(1.68mmol)をクロロホルム30mlに加えた。この溶液に先のステップ3で合成した混合物N 2.26g、4-ジメチルアミノピリジン20.5mg(0.17mmol)を加えて、0℃に冷却した。その後、この溶液にN、N´-ジイソプロピルカルボジイミド509mg(4.04mmol)を加えて室温で1.5時間撹拌した。
 反応終了後、反応液をシリカゲルでプレコートした濾材を用いて濾過した。得られた溶液にメタノール80mlを加えた後、0℃まで冷却して結晶を析出させた。その後、析出した結晶をろ過によりろ取した。ろ過物をメタノールで洗浄後、真空乾燥させて、固体(粗化合物3)を1.56g得た(収率:83.4モル%)。
 得られた固体をHPLCにて分析したところ、化合物3のハロゲン化体である化合物1が、化合物3と化合物1の合計中、1.5質量%の割合で含まれていた。
Step 4: Synthesis of Compound 3 In a four-necked reactor equipped with a thermometer, 524 mg (1.68 mmol) of Intermediate F synthesized in Step 6 of Synthesis Example 1 was added to 30 ml of chloroform in a nitrogen stream. To this solution, 2.26 g of the mixture N synthesized in the previous Step 3 and 20.5 mg (0.17 mmol) of 4-dimethylaminopyridine were added and cooled to 0 ° C. Thereafter, 509 mg (4.04 mmol) of N, N′-diisopropylcarbodiimide was added to this solution and stirred at room temperature for 1.5 hours.
After completion of the reaction, the reaction solution was filtered using a filter medium precoated with silica gel. After adding 80 ml of methanol to the obtained solution, it was cooled to 0 ° C. to precipitate crystals. Thereafter, the precipitated crystals were collected by filtration. The filtrated product was washed with methanol and then vacuum-dried to obtain 1.56 g of solid (crude compound 3) (yield: 83.4 mol%).
When the obtained solid was analyzed by HPLC, Compound 1, which is a halogenated compound of Compound 3, was contained at a ratio of 1.5 mass% in the total of Compound 3 and Compound 1.
(合成例4)化合物4の合成
Figure JPOXMLDOC01-appb-C000066
(Synthesis Example 4) Synthesis of Compound 4
Figure JPOXMLDOC01-appb-C000066
ステップ1:中間体Oの合成
Figure JPOXMLDOC01-appb-C000067
Step 1: Synthesis of intermediate O
Figure JPOXMLDOC01-appb-C000067
 温度計を備えた4つ口反応器に窒素気流中、2-テノイルクロリド15.0g(102mmol)、2、5‐ジメトキシアニリン15.7g(102mmol)をクロロホルム150gに溶解した。この溶液にトリエチルアミン20.7g(205mmol)を加えて60℃で2時間撹拌した。反応終了後、水150gを加えた後、クロロホルム300mlで抽出した。得られたクロロホルム層からロータリーエバポレーターにてクロロホルム300mlを減圧留去した後、ヘプタン300mlを加えた。析出した淡黄色固体をろ取し、ろ取した固体を真空乾燥させて、淡黄色固体として中間体Oを23.4g得た(収率:86.7モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a four-necked reactor equipped with a thermometer, 15.0 g (102 mmol) of 2-thenoyl chloride and 15.7 g (102 mmol) of 2,5-dimethoxyaniline were dissolved in 150 g of chloroform in a nitrogen stream. To this solution, 20.7 g (205 mmol) of triethylamine was added and stirred at 60 ° C. for 2 hours. After completion of the reaction, 150 g of water was added, followed by extraction with 300 ml of chloroform. From the resulting chloroform layer, 300 ml of chloroform was distilled off under reduced pressure using a rotary evaporator, and then 300 ml of heptane was added. The precipitated pale yellow solid was collected by filtration, and the collected solid was vacuum-dried to obtain 23.4 g of Intermediate O as a pale yellow solid (yield: 86.7 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm):8.45(s、1H)、8.20(d、1H、J=3.0Hz)、7.61(dd、1H、J=1.0Hz、3.5Hz)、7.54(dd、1H、J=1.0Hz、5.0Hz)、7.13(dd、1H、J=3.5Hz、5.0Hz)、6.83(d、1H、J=9.0Hz)、6.61(dd、1H、J=3.0Hz、9.0Hz)、3.89(s、3H)、3.81(s、3H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 8.45 (s, 1H), 8.20 (d, 1H, J = 3.0 Hz), 7.61 (dd, 1H, J = 1) .0 Hz, 3.5 Hz), 7.54 (dd, 1 H, J = 1.0 Hz, 5.0 Hz), 7.13 (dd, 1 H, J = 3.5 Hz, 5.0 Hz), 6.83 ( d, 1H, J = 9.0 Hz), 6.61 (dd, 1H, J = 3.0 Hz, 9.0 Hz), 3.89 (s, 3H), 3.81 (s, 3H).
ステップ2:中間体Pの合成
Figure JPOXMLDOC01-appb-C000068
Step 2: Synthesis of intermediate P
Figure JPOXMLDOC01-appb-C000068
 温度計を備えた4つ口反応器に窒素気流中、先のステップ1で合成した中間体O 21.0g(79.8mmol)をトルエン300mlに溶解した。この溶液に2、4-ビス(4-メトキシフェニル)-1、3-ジチア-2、4-ジホスフェタン19.4g(47.7mmol)を加えて、4時間加熱還流した。反応終了後、反応液を30℃まで冷却した後、1M水酸化ナトリウム水溶液1000mlを加え、トルエン1000mlで抽出した。得られたトルエン層からロータリーエバポレーターにてトルエンを減圧留去した後、油状物質を得た。得られた油状物質をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=90:10)により精製し、橙色油状物質として中間体Pを21.2g得た(収率:95.2モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a four-necked reactor equipped with a thermometer, 21.0 g (79.8 mmol) of the intermediate O synthesized in Step 1 was dissolved in 300 ml of toluene in a nitrogen stream. To this solution, 19.4 g (47.7 mmol) of 2,4-bis (4-methoxyphenyl) -1,3-dithia-2,4-diphosphetane was added and heated to reflux for 4 hours. After completion of the reaction, the reaction solution was cooled to 30 ° C., 1000 ml of 1M aqueous sodium hydroxide solution was added, and the mixture was extracted with 1000 ml of toluene. Toluene was distilled off under reduced pressure from the obtained toluene layer with a rotary evaporator to obtain an oily substance. The obtained oily substance was purified by silica gel column chromatography (toluene: ethyl acetate = 90: 10) to obtain 21.2 g of intermediate P as an orange oily substance (yield: 95.2 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm):9.71(s、1H)、8.88(s、1H)、7.52(dd、1H、J=1.0Hz、5.0Hz)、7.47(dd、1H、J=1.0Hz、4.0Hz)、7.09(dd、1H、J=4.0Hz、5.0Hz)、6.86(d、1H、J=9.0Hz)、6.70(dd、1H、J=3.0Hz、9.0Hz)、3.89(s、3H)、3.78(s、3H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 9.71 (s, 1H), 8.88 (s, 1H), 7.52 (dd, 1H, J = 1.0 Hz, 5.0 Hz ), 7.47 (dd, 1H, J = 1.0 Hz, 4.0 Hz), 7.09 (dd, 1H, J = 4.0 Hz, 5.0 Hz), 6.86 (d, 1H, J = 9.0 Hz), 6.70 (dd, 1H, J = 3.0 Hz, 9.0 Hz), 3.89 (s, 3H), 3.78 (s, 3H).
ステップ3:中間体Qの合成
Figure JPOXMLDOC01-appb-C000069
Step 3: Synthesis of Intermediate Q
Figure JPOXMLDOC01-appb-C000069
 温度計を備えた4つ口反応器に窒素気流中、先のステップ2で合成した中間体P 21.0g(75.3mmol)、水350g、水酸化カリウム24.6g(438mmol)を加えて氷冷下で撹拌した。得られた混合液にフェリシアン化カリウム65.7g(200mmol)、メタノール20gを加えた後、25℃に昇温して15時間撹拌した。反応終了後、析出した黄色固体をろ取し、ろ取した固体を真空乾燥させて、黄色固体として中間体Qを10.2g得た(収率:46.1モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a nitrogen stream, 21.0 g (75.3 mmol) of the intermediate P synthesized in Step 2 above, 350 g of water, and 24.6 g (438 mmol) of potassium hydroxide were added to a four-necked reactor equipped with a thermometer and iced. Stir in the cold. After adding 65.7 g (200 mmol) of potassium ferricyanide and 20 g of methanol to the obtained mixture, the mixture was heated to 25 ° C. and stirred for 15 hours. After completion of the reaction, the precipitated yellow solid was collected by filtration, and the collected solid was vacuum-dried to obtain 10.2 g of Intermediate Q as a yellow solid (yield: 46.1 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(400MHz、CDCl、TMS、δppm):7.67(dd、1H、J=1.2Hz、3.6Hz)、7.46(dd、1H、J=1.2Hz、5.2Hz)、7.11(dd、1H、J=3.6Hz、5.2Hz)、6.82(d、1H、J=8.8Hz)、7.30(d、1H、J=8.8Hz)、4.02(s、3H)、3.95(s、3H)。 1 H-NMR (400 MHz, CDCl 3 , TMS, δ ppm): 7.67 (dd, 1 H, J = 1.2 Hz, 3.6 Hz), 7.46 (dd, 1 H, J = 1.2 Hz, 5. 2 Hz), 7.11 (dd, 1 H, J = 3.6 Hz, 5.2 Hz), 6.82 (d, 1 H, J = 8.8 Hz), 7.30 (d, 1 H, J = 8.8 Hz) ) 4.02 (s, 3H), 3.95 (s, 3H).
ステップ4:中間体Rの合成
Figure JPOXMLDOC01-appb-C000070
Step 4: Synthesis of Intermediate R
Figure JPOXMLDOC01-appb-C000070
 温度計を備えた4つ口反応器に窒素気流中、先のステップ3で合成した中間体Q 6.30g(23.2mmol)をトルエン150mlに溶解した後、0℃に冷却した。この溶液に、1M 三臭化ホウ素ジクロロメタン溶液139ml(139mmol)を加えて1時間撹拌した。反応終了後、反応液を水500mlに加えて、析出した固体をろ取した。得られた固体を真空乾燥させて、黄色固体として中間体Rを5.37g得た(収率:93.2モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a 4-necked reactor equipped with a thermometer, 6.30 g (23.2 mmol) of the intermediate Q synthesized in Step 3 above was dissolved in 150 ml of toluene in a nitrogen stream, and then cooled to 0 ° C. To this solution, 139 ml (139 mmol) of 1M boron tribromide dichloromethane solution was added and stirred for 1 hour. After completion of the reaction, the reaction solution was added to 500 ml of water, and the precipitated solid was collected by filtration. The obtained solid was vacuum-dried to obtain 5.37 g of intermediate R as a yellow solid (yield: 93.2 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、DMSO-d6、TMS、δppm):9.82(s、1H)、9.48(s、1H)、7.83(dd、1H、J=1.0Hz、5.0Hz)、7.78(dd、1H、J=1.0Hz、3.5Hz)、7.23(dd、1H、J=3.5Hz、5.0Hz)、6.74(d、1H、J=8.5Hz)、6.68(d、1H、J=8.5Hz)。 1 H-NMR (500 MHz, DMSO-d6, TMS, δ ppm): 9.82 (s, 1H), 9.48 (s, 1H), 7.83 (dd, 1H, J = 1.0 Hz, 5. 0 Hz), 7.78 (dd, 1 H, J = 1.0 Hz, 3.5 Hz), 7.23 (dd, 1 H, J = 3.5 Hz, 5.0 Hz), 6.74 (d, 1 H, J = 8.5 Hz), 6.68 (d, 1H, J = 8.5 Hz).
ステップ5:中間体Sの合成
Figure JPOXMLDOC01-appb-C000071
Step 5: Synthesis of intermediate S
Figure JPOXMLDOC01-appb-C000071
 温度計を備えた3つ口反応器に、窒素気流中、先のステップ4で合成した中間体R 2.50g(10.1mmol)をTHF100mlに加えた後、0℃に冷却した。この溶液に、合成例1のステップ8で合成した中間体H 5.05g(12.1mmol)、4-ジメチルアミノピリジン123mg(1.01mmol)とN、N´-ジイソプロピルカルボジイミド1.52g(12.1mmol)を加えて室温で1時間撹拌した。反応終了後、反応液に水100mlを加え、酢酸エチル300mlで抽出した。得られた酢酸エチル層を無水硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別した。ロータリーエバポレーターで濃縮した後、得られた残渣にメタノール80mlを加えた。析出した肌色固体をろ取し、ろ取した固体を真空乾燥させて、中間体Sを主成分とする肌色固体を1.49g得た(収率:22.8モル%)。得られた固体は特にこれ以上精製を実施することなく次ステップで用いた。 To a three-necked reactor equipped with a thermometer, 2.50 g (10.1 mmol) of the intermediate R synthesized in Step 4 above was added to 100 ml of THF in a nitrogen stream, and then cooled to 0 ° C. To this solution, 5.05 g (12.1 mmol) of intermediate H synthesized in Step 8 of Synthesis Example 1, 123 mg (1.01 mmol) of 4-dimethylaminopyridine and 1.52 g (12.12) of N, N′-diisopropylcarbodiimide. 1 mmol) was added and stirred at room temperature for 1 hour. After completion of the reaction, 100 ml of water was added to the reaction solution and extracted with 300 ml of ethyl acetate. The obtained ethyl acetate layer was dried over anhydrous sodium sulfate, and sodium sulfate was filtered off. After concentration with a rotary evaporator, 80 ml of methanol was added to the resulting residue. The precipitated flesh-colored solid was collected by filtration, and the collected solid was vacuum-dried to obtain 1.49 g of a flesh-colored solid containing Intermediate S as a main component (yield: 22.8 mol%). The obtained solid was used in the next step without further purification.
ステップ6:化合物4の合成
 温度計を備えた4つ口反応器に窒素気流中、先のステップ5で合成した中間体S 1.30g(2.00mmol)をクロロホルム30mlに加えた。この溶液に合成例1のステップ11で合成した中間体K 1.09g(2.40mmol)、4-ジメチルアミノピリジン24.5mg(0.20mmol)を加えて、0℃に冷却した。その後、この溶液にN、N´-ジイソプロピルカルボジイミド303mg(2.40mmol)を加えて室温で1.5時間撹拌した。
 反応終了後、反応液をシリカゲルでプレコートした濾材を用いて濾過した後、減圧濃縮し、得られた残渣にメタノール50mlを加えた。析出した白色固体をろ取し、ろ取した固体を真空乾燥させて、白色固体として化合物4を2.01g得た(収率:89.4モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
Step 6: Synthesis of Compound 4 In a four-necked reactor equipped with a thermometer, 1.30 g (2.00 mmol) of the intermediate S synthesized in Step 5 above was added to 30 ml of chloroform in a nitrogen stream. To this solution, 1.09 g (2.40 mmol) of intermediate K synthesized in Step 11 of Synthesis Example 1 and 24.5 mg (0.20 mmol) of 4-dimethylaminopyridine were added and cooled to 0 ° C. Thereafter, 303 mg (2.40 mmol) of N, N′-diisopropylcarbodiimide was added to the solution, and the mixture was stirred at room temperature for 1.5 hours.
After completion of the reaction, the reaction solution was filtered using a filter medium pre-coated with silica gel, concentrated under reduced pressure, and 50 ml of methanol was added to the resulting residue. The precipitated white solid was collected by filtration, and the collected solid was vacuum-dried to obtain 2.01 g of compound 4 as a white solid (yield: 89.4 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm):7.63(dd、1H、J=1.0Hz、3.5Hz)、7.50(dd、1H、J=1.0Hz、5.0Hz)、7.17(s、2H)、7.11(dd、1H、J=3.5Hz、5.0Hz)、6.994(d、2H、J=9.0Hz)、6.988(d、2H、J=9.0Hz)、6.88(d、4H、J=9.0Hz)、6.40(dd、1H、J=1.5Hz、17.5Hz)、6.12(dd、1H、J=10.0Hz、17.5Hz)、5.82(dd、1H、J=1.5Hz、10.0Hz)、4.17(t、2H、J=6.5Hz)、4.13(t、2H、J=7.0Hz)、3.93(t、4H、J=6.5Hz)、3.76(t、2H、J=6.5Hz)、2.79(tt、1H、J=3.5Hz、11.5Hz)、2.58-2.71(m、5H)、2.41-2.46(m、2H)、2.29-2.34(m、6H)、1.62-1.89(m、16H)、1.40-1.52(m、8H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 7.63 (dd, 1 H, J = 1.0 Hz, 3.5 Hz), 7.50 (dd, 1 H, J = 1.0 Hz, 5. 0 Hz), 7.17 (s, 2H), 7.11 (dd, 1H, J = 3.5 Hz, 5.0 Hz), 6.994 (d, 2H, J = 9.0 Hz), 6.988 ( d, 2H, J = 9.0 Hz), 6.88 (d, 4H, J = 9.0 Hz), 6.40 (dd, 1H, J = 1.5 Hz, 17.5 Hz), 6.12 (dd 1H, J = 10.0 Hz, 17.5 Hz), 5.82 (dd, 1 H, J = 1.5 Hz, 10.0 Hz), 4.17 (t, 2H, J = 6.5 Hz), 4. 13 (t, 2H, J = 7.0 Hz), 3.93 (t, 4H, J = 6.5 Hz), 3.76 (t, 2H, J = 6.5 Hz) 2.79 (tt, 1H, J = 3.5 Hz, 11.5 Hz), 2.58-2.71 (m, 5H), 2.41-2.46 (m, 2H), 2.29- 2.34 (m, 6H), 1.62-1.89 (m, 16H), 1.40-1.52 (m, 8H).
(合成例5)化合物5の合成
Figure JPOXMLDOC01-appb-C000072
Synthesis Example 5 Synthesis of Compound 5
Figure JPOXMLDOC01-appb-C000072
 温度計を備えた4つ口反応器に窒素気流中、合成例4のステップ4で合成した中間体R 526mg(2.11mmol)をクロロホルム20mlに加えた。この溶液に合成例1のステップ11で合成した中間体K 2.11g(4.64mmol)、4-ジメチルアミノピリジン25.8mg(0.21mmol)を加えて、0℃に冷却した。その後、この溶液にN、N´-ジイソプロピルカルボジイミド639mg(5.06mmol)を加えて室温で1.5時間撹拌した。
 反応終了後、反応液をシリカゲルでプレコートした濾材を用いて濾過した後、減圧濃縮し、得られた残渣にメタノール50mlを加えた。析出した白色固体をろ取し、ろ取した固体を真空乾燥させて、白色固体として化合物5を1.77g得た(収率:74.7モル%)。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
In a 4-necked reactor equipped with a thermometer, 526 mg (2.11 mmol) of the intermediate R synthesized in Step 4 of Synthesis Example 4 was added to 20 ml of chloroform in a nitrogen stream. To this solution were added 2.11 g (4.64 mmol) of intermediate K synthesized in Step 11 of Synthesis Example 1 and 25.8 mg (0.21 mmol) of 4-dimethylaminopyridine, and the mixture was cooled to 0 ° C. Thereafter, 639 mg (5.06 mmol) of N, N′-diisopropylcarbodiimide was added to this solution, and the mixture was stirred at room temperature for 1.5 hours.
After completion of the reaction, the reaction solution was filtered using a filter medium pre-coated with silica gel, concentrated under reduced pressure, and 50 ml of methanol was added to the resulting residue. The precipitated white solid was collected by filtration, and the collected solid was vacuum-dried to obtain 1.77 g of compound 5 as a white solid (yield: 74.7 mol%).
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm): 7.64(dd、1H、J=1.0Hz、3.5Hz)、7.52(dd、1H、J=1.0Hz、5.0Hz)、7.18(s、2H)、7.13(dd、1H、J=3.5Hz、5.0Hz)、6.993(d、2H、J=9.0Hz)、6.987(d、2H、J=9.0Hz)、6.88(d、4H、J=9.0Hz)、4.14(t、4H、J=7.0Hz)、3.94(t、4H、J=6.5Hz)、3.76(t、4H、J=6.5Hz)、2.79(tt、1H、J=3.5Hz、11.5Hz)、2.58-2.71(m、7H)、2.42-2.45(m、2H)、2.29-2.35(m、6H)、1.63-1.89(m、16H)、1.41-1.54(m、8H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 7.64 (dd, 1 H, J = 1.0 Hz, 3.5 Hz), 7.52 (dd, 1 H, J = 1.0 Hz, 5. 0 Hz), 7.18 (s, 2H), 7.13 (dd, 1H, J = 3.5 Hz, 5.0 Hz), 6.993 (d, 2H, J = 9.0 Hz), 6.987 ( d, 2H, J = 9.0 Hz), 6.88 (d, 4H, J = 9.0 Hz), 4.14 (t, 4H, J = 7.0 Hz), 3.94 (t, 4H, J = 6.5 Hz), 3.76 (t, 4H, J = 6.5 Hz), 2.79 (tt, 1H, J = 3.5 Hz, 11.5 Hz), 2.58-2.71 (m, 7H), 2.42-2.45 (m, 2H), 2.29-2.35 (m, 6H), 1.63-1.89 (m, 16H), 1.41- .54 (m, 8H).
(合成例6)化合物6の合成
Figure JPOXMLDOC01-appb-C000073
Synthesis Example 6 Synthesis of Compound 6
Figure JPOXMLDOC01-appb-C000073
 温度計を備えた4つ口反応器に窒素気流中、合成例4のステップ4で合成した中間体R 524mg(1.68mmol)をクロロホルム30mlに加えた。この溶液に合成例3のステップ3で合成した混合物N 2.81g、4-ジメチルアミノピリジン25.5mg(0.21mmol)を加えて、0℃に冷却した。その後、この溶液にN、N´-ジイソプロピルカルボジイミド633mg(5.02mmol)を加えて室温で1時間撹拌した。
 反応終了後、反応液をシリカゲルでプレコートした濾材を用いて濾過した。得られた溶液にメタノール70mlを加えた後、0℃まで冷却して結晶を析出させた。その後、析出した結晶をろ過によりろ取した。ろ過物をメタノールで洗浄後、真空乾燥させて、固体(粗化合物6)を1.77g得た(収率:80.6モル%)。
 得られた固体をHPLCにて分析したところ、化合物6のハロゲン化体である化合物4が、化合物6と化合物4の合計中、1.4質量%の割合で含まれていた。
In a nitrogen stream, 524 mg (1.68 mmol) of the intermediate R synthesized in Step 4 of Synthesis Example 4 was added to 30 ml of chloroform in a four-necked reactor equipped with a thermometer. To this solution, 2.81 g of the mixture N synthesized in Step 3 of Synthesis Example 3 and 25.5 mg (0.21 mmol) of 4-dimethylaminopyridine were added and cooled to 0 ° C. Thereafter, 633 mg (5.02 mmol) of N, N′-diisopropylcarbodiimide was added to this solution and stirred at room temperature for 1 hour.
After completion of the reaction, the reaction solution was filtered using a filter medium precoated with silica gel. 70 ml of methanol was added to the resulting solution, and then cooled to 0 ° C. to precipitate crystals. Thereafter, the precipitated crystals were collected by filtration. The filtrate was washed with methanol and then vacuum-dried to obtain 1.77 g of a solid (crude compound 6) (yield: 80.6 mol%).
When the obtained solid was analyzed by HPLC, Compound 4 which is a halide of Compound 6 was contained at a ratio of 1.4% by mass in the total of Compound 6 and Compound 4.
(合成例7)化合物7の合成
Figure JPOXMLDOC01-appb-C000074
(Synthesis Example 7) Synthesis of Compound 7
Figure JPOXMLDOC01-appb-C000074
 冷却器、及び温度計を備えた3つ口反応器に、窒素気流中、トランスシクロヘキサンジカルボン酸ジクロライド:4.15g(19.87mmol)をシクロペンチルメチルエーテル30g、テトラヒドロフラン11.5gに溶解させた。この溶液を氷浴にて冷却した後、先の合成例3のステップ2で得た粗中間体GG:5.0gを加えて溶解させた。氷浴下にてこの溶液に、トリエチルアミン2.01g(19.87mmol)を10℃以下となるように制御して、ゆっくり滴下した。滴下終了後、全容を25℃に戻して1時間さらに攪拌した。得られた反応液に、蒸留水80mlを加え、50℃にて4時間洗浄を行った後、水層を抜き出した。有機層をさらに、濃度1.0mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH:5.5)150mlで5回洗浄した後、緩衝溶液を抜き出した。有機層をさらに、蒸留水100mlで洗浄を行い、分液した。得られた有機層に、n-ヘキサン400mlを加えて結晶を析出させ、析出した結晶をろ取した。得られた結晶をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=:70:30)により精製することで、化合物7を含む白色固体(粗化合物7)を3.56g得た(収率:45モル%)。
 得られた固体をHPLCにて分析したところ、化合物7のハロゲン化体である下記化合物7’が、化合物7と化合物7’の合計中、1.8質量%の割合で含まれていた。
In a nitrogen stream, 4.15 g (19.87 mmol) of transcyclohexanedicarboxylic acid dichloride was dissolved in 30 g of cyclopentylmethyl ether and 11.5 g of tetrahydrofuran in a three-necked reactor equipped with a cooler and a thermometer. After this solution was cooled in an ice bath, 5.0 g of the crude intermediate GG obtained in Step 2 of Synthesis Example 3 was added and dissolved. Under an ice bath, 2.01 g (19.87 mmol) of triethylamine was controlled to be 10 ° C. or lower and slowly dropped into this solution. After completion of the dropwise addition, the whole volume was returned to 25 ° C. and further stirred for 1 hour. Distilled water (80 ml) was added to the resulting reaction solution, and the mixture was washed at 50 ° C. for 4 hours, and then the aqueous layer was extracted. The organic layer was further washed five times with 150 ml of a buffer solution (pH: 5.5) composed of acetic acid and sodium acetate having a concentration of 1.0 mol / liter, and then the buffer solution was extracted. The organic layer was further washed with 100 ml of distilled water and separated. To the obtained organic layer, 400 ml of n-hexane was added to precipitate crystals, and the precipitated crystals were collected by filtration. The obtained crystals were purified by silica gel column chromatography (toluene: ethyl acetate =: 70: 30) to obtain 3.56 g of a white solid (crude compound 7) containing compound 7 (yield: 45 mol%). ).
When the obtained solid was analyzed by HPLC, the following compound 7 ′, which is a halide of compound 7, was contained at a ratio of 1.8 mass% in the total of compound 7 and compound 7 ′.
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
(合成例8)混合物7の合成
 冷却器、及び温度計を備えた3つ口反応器に、窒素気流中、トランスシクロヘキサンジカルボン酸ジクロライド4.15g(19.87mmol)をシクロペンチルメチルエーテル30g、テトラヒドロフラン11.5gに溶解させた。この溶液を氷浴にて冷却した後、先の合成例3のステップ2で得た粗中間体GG:5.0gを加えて溶解させた。氷浴下にてこの溶液に、トリエチルアミン2.01g(19.87mmol)を10℃以下となるように制御して、ゆっくり滴下した。滴下終了後、全容を25℃に戻して1時間さらに攪拌した。得られた反応液に、蒸留水15mlを加え、50℃にて4時間洗浄を行った後、水層を抜き出した。有機層をさらに、濃度1.0mol/リットルの酢酸と酢酸ナトリウムからなる緩衝溶液(pH:5.5)25gで5回洗浄した後、緩衝溶液を抜き出した。有機層をさらに、蒸留水15mlで洗浄を行い、分液した。得られた有機層に、60%ヘキサン60gを加えて結晶を析出させた。得られた溶液を0℃まで冷却して1時間撹拌した。その後、析出した結晶をろ取して固体(混合物7)を7.25g得た。得られた固体をHPLCにて定量分析したところ、化合物7および化合物7のハロゲン化体である化合物7’が合計で5.5g、並びにジエステルが1.74g含まれていた。さらに、得られた固体をHPLCにて組成分析したところ、化合物7のハロゲン化体である化合物7’が、化合物7と化合物7’の合計中、1.5質量%の割合で含まれていた。
Synthesis Example 8 Synthesis of Mixture 7 In a three-necked reactor equipped with a cooler and a thermometer, in a nitrogen stream, 4.15 g (19.87 mmol) of transcyclohexanedicarboxylic acid dichloride 30 g of cyclopentyl methyl ether and tetrahydrofuran 11 Dissolved in 5 g. After this solution was cooled in an ice bath, 5.0 g of the crude intermediate GG obtained in Step 2 of Synthesis Example 3 was added and dissolved. Under an ice bath, 2.01 g (19.87 mmol) of triethylamine was controlled to be 10 ° C. or lower and slowly dropped into this solution. After completion of the dropwise addition, the whole volume was returned to 25 ° C. and further stirred for 1 hour. Distilled water (15 ml) was added to the resulting reaction solution, washed at 50 ° C. for 4 hours, and then the aqueous layer was extracted. The organic layer was further washed five times with 25 g of a buffer solution (pH: 5.5) composed of acetic acid and sodium acetate having a concentration of 1.0 mol / liter, and then the buffer solution was extracted. The organic layer was further washed with 15 ml of distilled water and separated. To the resulting organic layer, 60 g of 60% hexane was added to precipitate crystals. The resulting solution was cooled to 0 ° C. and stirred for 1 hour. Thereafter, the precipitated crystals were collected by filtration to obtain 7.25 g of a solid (mixture 7). When the obtained solid was quantitatively analyzed by HPLC, it contained 5.5 g in total of Compound 7 and Compound 7 ′, which is a halogenated form of Compound 7, and 1.74 g of diester. Furthermore, when the composition of the obtained solid was analyzed by HPLC, Compound 7 ′, which is a halide of Compound 7, was contained at a ratio of 1.5 mass% in the total of Compound 7 and Compound 7 ′. .
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
(実施例1)化合物1の脱塩化水素反応
 温度計を備えた4つ口反応器に、窒素気流中、合成例1で合成した化合物1:1.0g(0.871mmol)、トリエチルアミン132mg(1.31mmol)を酢酸エチル30ml、アセトニトリル15mlの混合溶媒に溶解させた。この溶液に、1mol/Lの濃度の炭酸ナトリウム水溶液1.5mlを加えて、50℃にて4時間撹拌した。反応終了後、炭酸ナトリウム水溶液を抜き出し、得られた有機層をさらに水30mlで洗浄した。有機層にメタノール70mlを加えて固体を析出させた。得られた固体を真空乾燥機で乾燥させ、913mgの白色固体を得た。
 得られた固体をHPLCにて分析したところ、ハロゲン化体である化合物1のピークが完全に消失していたことから、化合物1は化合物3に変換されたことが分かった。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
Example 1 Dehydrochlorination Reaction of Compound 1 In a four-necked reactor equipped with a thermometer, in a nitrogen stream, the compound synthesized in Synthesis Example 1 1: 1.0 g (0.871 mmol), triethylamine 132 mg (1 .31 mmol) was dissolved in a mixed solvent of 30 ml of ethyl acetate and 15 ml of acetonitrile. To this solution, 1.5 ml of a 1 mol / L sodium carbonate aqueous solution was added and stirred at 50 ° C. for 4 hours. After completion of the reaction, an aqueous sodium carbonate solution was extracted, and the resulting organic layer was further washed with 30 ml of water. 70 ml of methanol was added to the organic layer to precipitate a solid. The obtained solid was dried with a vacuum dryer to obtain 913 mg of a white solid.
When the obtained solid was analyzed by HPLC, the peak of Compound 1 which was a halide was completely disappeared, and it was found that Compound 1 was converted to Compound 3.
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm):7.53(d、1H、J=1.0Hz)、7.23(s、2H)、7.21(s、1H)、6.999(d、2H、J=9.0Hz)、6.995(d、2H、J=9.0Hz)、6.94(s、1H)、6.89(d、4H、J=9.0Hz)、6.40(dd、2H、J=1.5Hz、17.5Hz)、6.12(dd、2H、J=10.5Hz、17.5Hz)、5.82(dd、2H、J=1.5Hz、10.5Hz)、4.18(t、4H、J=7.0Hz)、3.95(t、4H、J=6.5Hz)、2.84(tt、1H、J=3.5Hz、12.0Hz)、2.59-2.75(m、3H)、2.54(s、3H)、2.47(s、3H)、2.42-2.46(m、2H)、2.31-2.41(m、6H)、1.69-1.87(m、16H)、1.41-1.57(m、8H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 7.53 (d, 1H, J = 1.0 Hz), 7.23 (s, 2H), 7.21 (s, 1H), 6. 999 (d, 2H, J = 9.0 Hz), 6.995 (d, 2H, J = 9.0 Hz), 6.94 (s, 1H), 6.89 (d, 4H, J = 9.0 Hz) ), 6.40 (dd, 2H, J = 1.5 Hz, 17.5 Hz), 6.12 (dd, 2H, J = 10.5 Hz, 17.5 Hz), 5.82 (dd, 2H, J = 1.5Hz, 10.5Hz), 4.18 (t, 4H, J = 7.0Hz), 3.95 (t, 4H, J = 6.5Hz), 2.84 (tt, 1H, J = 3) .5Hz, 12.0Hz), 2.59-2.75 (m, 3H), 2.54 (s, 3H), 2.47 (s, 3H), 2.42-2 46 (m, 2H), 2.31-2.41 (m, 6H), 1.69-1.87 (m, 16H), 1.41-1.57 (m, 8H).
(実施例2)化合物2の脱塩化水素反応
 実施例1において、化合物1:1.0g(0.871mmol)を、合成例2で合成した化合物2:1.0g(0.843mmol)に変更した以外は、実施例1と同様の操作を行った。その結果、887mgの白色固体を得た。
 得られた固体をHPLCにて分析したところ、ハロゲン化体である化合物2のピークが完全に消失し、化合物2は、化合物3に変換された。
 目的物の構造はH-NMRで同定した。
Example 2 Dehydrochlorination Reaction of Compound 2 In Example 1, Compound 1: 1.0 g (0.871 mmol) was changed to Compound 2: 1.0 g (0.843 mmol) synthesized in Synthesis Example 2. Except for this, the same operation as in Example 1 was performed. As a result, 887 mg of a white solid was obtained.
When the obtained solid was analyzed by HPLC, the peak of Compound 2 which was a halogenated compound disappeared completely, and Compound 2 was converted to Compound 3.
The structure of the target product was identified by 1 H-NMR.
(実施例3)粗化合物3の脱塩化水素反応
 実施例1において、化合物1:1.0g(0.871mmol)を、合成例3で合成した粗化合物3:1.0gに変更した以外は、実施例1と同様の操作を行った。その結果、952mgの白色固体を得た。
 得られた固体をHPLCにて分析したところ、ハロゲン化体である化合物1のピークが完全に消失し、化合物1は、化合物3に変換された。
 目的物の構造はH-NMRで同定した。
Example 3 Dehydrochlorination Reaction of Crude Compound 3 In Example 1, except that Compound 1: 1.0 g (0.871 mmol) was changed to Crude Compound 3: 1.0 g synthesized in Synthesis Example 3, The same operation as in Example 1 was performed. As a result, 952 mg of a white solid was obtained.
When the obtained solid was analyzed by HPLC, the peak of Compound 1 as a halogenated product disappeared completely, and Compound 1 was converted to Compound 3.
The structure of the target product was identified by 1 H-NMR.
(実施例4)化合物4の脱塩化水素反応
 実施例1において、化合物1:1.0g(0.871mmol)を、合成例4で合成した化合物4:1.0g(0.920mmol)に変更した以外は、実施例1と同様の操作を行った。その結果、902mgの白色固体を得た。
 得られた固体をHPLCにて分析したところ、ハロゲン化体である化合物4のピークが完全に消失し、化合物4は、化合物6に変換された。
 目的物の構造はH-NMRで同定した。H-NMRスペクトルデータを以下に示す。
(Example 4) Dehydrochlorination reaction of Compound 4 In Example 1, Compound 1: 1.0 g (0.871 mmol) was changed to Compound 4: 1.0 g (0.920 mmol) synthesized in Synthesis Example 4. Except for this, the same operation as in Example 1 was performed. As a result, 902 mg of white solid was obtained.
When the obtained solid was analyzed by HPLC, the peak of Compound 4 as a halogenated compound disappeared completely, and Compound 4 was converted to Compound 6.
The structure of the target product was identified by 1 H-NMR. 1 H-NMR spectrum data is shown below.
 H-NMR(500MHz、CDCl、TMS、δppm):7.63(dd、1H、J=1.0Hz、3.5Hz)、7.51(dd、1H、J=1.0Hz、5.0Hz)、7.18(s、2H)、7.12(dd、1H、J=3.5Hz、5.0Hz)、6.993(d、2H、J=9.0Hz)、6.987(d、2H、J=9.0Hz)、6.88(d、4H、J=9.0Hz)、6.40(dd、2H、J=1.5Hz、17.5Hz)、6.12(dd、2H、J=10.0Hz、17.5Hz)、5.82(dd、2H、J=1.5Hz、10.0Hz)、4.17(t、4H、J=6.5Hz)、3.94(t、4H、J=6.5Hz)、2.79(tt、1H、J=3.5Hz、11.5Hz)、2.58-2.71(m、3H)、2.42-2.45(m、2H)、2.31-2.36(m、6H)、1.66-1.89(m、16H)、1.42-1.54(m、8H)。 1 H-NMR (500 MHz, CDCl 3 , TMS, δ ppm): 7.63 (dd, 1 H, J = 1.0 Hz, 3.5 Hz), 7.51 (dd, 1 H, J = 1.0 Hz, 5. 0 Hz), 7.18 (s, 2H), 7.12 (dd, 1H, J = 3.5 Hz, 5.0 Hz), 6.993 (d, 2H, J = 9.0 Hz), 6.987 ( d, 2H, J = 9.0 Hz), 6.88 (d, 4H, J = 9.0 Hz), 6.40 (dd, 2H, J = 1.5 Hz, 17.5 Hz), 6.12 (dd 2.H, J = 10.0 Hz, 17.5 Hz), 5.82 (dd, 2H, J = 1.5 Hz, 10.0 Hz), 4.17 (t, 4H, J = 6.5 Hz), 3. 94 (t, 4H, J = 6.5 Hz), 2.79 (tt, 1H, J = 3.5 Hz, 11.5 Hz), 2.58-2. 1 (m, 3H), 2.42-2.45 (m, 2H), 2.31-2.36 (m, 6H), 1.66-1.89 (m, 16H), 1.42- 1.54 (m, 8H).
(実施例5)化合物5の脱塩化水素反応
 実施例1において、化合物1:1.0g(0.871mmol)を、合成例5で合成した化合物5:1.0g(0.890mmol)に変更した以外は、実施例1と同様の操作を行った。その結果、914mgの白色固体を得た。
 得られた固体をHPLCにて分析したところ、ハロゲン化体である化合物5のピークが完全に消失し、化合物5は、化合物6に変換された。
 目的物の構造はH-NMRで同定した。
Example 5 Dehydrochlorination Reaction of Compound 5 In Example 1, Compound 1: 1.0 g (0.871 mmol) was changed to Compound 5 synthesized in Synthesis Example 5: 1.0 g (0.890 mmol). Except for this, the same operation as in Example 1 was performed. As a result, 914 mg of white solid was obtained.
When the obtained solid was analyzed by HPLC, the peak of Compound 5 which was a halogenated product disappeared completely, and Compound 5 was converted to Compound 6.
The structure of the target product was identified by 1 H-NMR.
(実施例6)粗化合物6の脱塩化水素反応
 実施例1において、化合物1:1.0g(0.871mmol)を、合成例6で合成した粗化合物6:1.0gに変更した以外は、実施例1と同様の操作を行った。その結果、965mgの白色固体を得た。
 得られた固体をHPLCにて分析したところ、ハロゲン化体である化合物4のピークが完全に消失し、化合物4は、化合物6に変換された。
 目的物の構造はH-NMRで同定した。
Example 6 Dehydrochlorination Reaction of Crude Compound 6 In Example 1, except that Compound 1: 1.0 g (0.871 mmol) was changed to Crude Compound 6 synthesized in Synthesis Example 6: 1.0 g, The same operation as in Example 1 was performed. As a result, 965 mg of a white solid was obtained.
When the obtained solid was analyzed by HPLC, the peak of Compound 4 as a halogenated compound disappeared completely, and Compound 4 was converted to Compound 6.
The structure of the target product was identified by 1 H-NMR.
(実施例7)中間体Jの脱塩化水素反応
 温度計を備えた4つ口反応器に、窒素気流中、先の合成例1のステップ10で合成した中間体J:1.0g(3.32mmol)、トリエチルアミン505mg(4.99mmol)を酢酸エチル40ml、アセトニトリル20mlの混合溶媒に溶解させた。この溶液に、1mol/Lの濃度の炭酸ナトリウム水溶液9.0mlを加えて、50℃にて4時間撹拌した。反応終了後、炭酸ナトリウム水溶液を抜き出し、得られた有機層をさらに0.5N-塩酸水溶液20mlで洗浄した。次いで、蒸留水50mlで2回洗浄した。得られた酢酸エチル層にn-ヘキサン200mlを投入して固体を析出させた。ろ過により固体をろ取して、真空乾燥機で乾燥させ、0.77gの白色固体を得た。得られた固体をHPLCにて分析したところ、ハロゲン化体である中間体Jのピークが完全に消失していたことから、中間体Jは中間体GGに変換されたことが分かった。この中間体GGは、所定の重合性化合物(I)の合成に使用可能である。
(Example 7) Dehydrochlorination reaction of intermediate J Intermediate J synthesized in Step 10 of Synthesis Example 1 in a nitrogen stream in a four-necked reactor equipped with a thermometer: 1.0 g (3. 32 mmol) and 505 mg (4.99 mmol) of triethylamine were dissolved in a mixed solvent of 40 ml of ethyl acetate and 20 ml of acetonitrile. To this solution, 9.0 ml of a 1 mol / L sodium carbonate aqueous solution was added and stirred at 50 ° C. for 4 hours. After completion of the reaction, the aqueous sodium carbonate solution was extracted, and the obtained organic layer was further washed with 20 ml of 0.5N hydrochloric acid aqueous solution. Subsequently, it was washed twice with 50 ml of distilled water. To the obtained ethyl acetate layer, 200 ml of n-hexane was added to precipitate a solid. The solid was collected by filtration and dried with a vacuum dryer to obtain 0.77 g of a white solid. When the obtained solid was analyzed by HPLC, the peak of intermediate J, which is a halogenated product, disappeared completely, indicating that intermediate J was converted to intermediate GG. This intermediate GG can be used for the synthesis of a predetermined polymerizable compound (I).
(実施例8)中間体Kの脱塩化水素反応
 温度計を備えた4つ口反応器に、窒素気流中、先の合成例1のステップ11で合成した中間体K:1.0g(2.20mmol)、トリエチルアミン334mg(3.30mmol)を酢酸エチル40ml、アセトニトリル20mlの混合溶媒に溶解させた。この溶液に、1mol/Lの濃度の炭酸ナトリウム水溶液8.0mlを加えて、50℃にて4時間撹拌した。反応終了後、炭酸ナトリウム水溶液を抜き出し、得られた有機層をさらに0.5N-塩酸水溶液20mlで洗浄した。次いで、蒸留水50mlで2回洗浄した。得られた酢酸エチル層にn-ヘキサン200mlを投入して固体を析出させた。ろ過により固体をろ取して、真空乾燥機で乾燥させ、0.82gの白色固体を得た。得られた固体をHPLCにて分析したところ、ハロゲン化体である中間体Kのピークが完全に消失していたことから、中間体Kは以下の化合物K’に変換されたことが分かった。この化合物K’は、所定の重合性化合物(I)の合成に使用可能である。
Example 8 Dehydrochlorination Reaction of Intermediate K Intermediate K synthesized in Step 11 of Synthesis Example 1 in a nitrogen stream in a four-necked reactor equipped with a thermometer: 1.0 g (2. 20 mmol) and 334 mg (3.30 mmol) of triethylamine were dissolved in a mixed solvent of 40 ml of ethyl acetate and 20 ml of acetonitrile. To this solution, 8.0 ml of a 1 mol / L sodium carbonate aqueous solution was added and stirred at 50 ° C. for 4 hours. After completion of the reaction, the aqueous sodium carbonate solution was extracted, and the obtained organic layer was further washed with 20 ml of 0.5N hydrochloric acid aqueous solution. Subsequently, it was washed twice with 50 ml of distilled water. To the obtained ethyl acetate layer, 200 ml of n-hexane was added to precipitate a solid. The solid was collected by filtration and dried with a vacuum dryer to obtain 0.82 g of a white solid. When the obtained solid was analyzed by HPLC, the peak of intermediate K, which was a halogenated product, disappeared completely, indicating that intermediate K was converted to the following compound K ′. This compound K ′ can be used for the synthesis of a predetermined polymerizable compound (I).
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
(実施例9)粗中間体GGの脱塩化水素反応
 温度計を備えた4つ口反応器に、窒素気流中、先の合成例3のステップ2で合成した粗中間体GG:1.0g、トリエチルアミン505mg(4.99mmol)を酢酸エチル40ml、アセトニトリル20mlの混合溶媒に溶解させた。この溶液に、1mol/Lの濃度の炭酸ナトリウム水溶液9.0mlを加えて、50℃にて4時間撹拌した。反応終了後、炭酸ナトリウム水溶液を抜き出し、得られた有機層をさらに0.5N-塩酸水溶液20mlで洗浄した。次いで、蒸留水50mlで2回洗浄した。得られた酢酸エチル層にn-ヘキサン200mlを投入して固体を析出させた。ろ過により固体をろ取して、真空乾燥機で乾燥させ、0.92gの白色固体を得た。得られた固体をHPLCにて分析したところ、ハロゲン化体である中間体GG’のピークが完全に消失していたことから、中間体GG’は中間体GGに変換されたことが分かった。この中間体GGは、所定の重合性化合物(I)の合成に使用可能である。
(Example 9) Dehydrochlorination reaction of crude intermediate GG In a four-necked reactor equipped with a thermometer, in a nitrogen stream, crude intermediate GG synthesized in Step 2 of Synthesis Example 3 above: 1.0 g, 505 mg (4.99 mmol) of triethylamine was dissolved in a mixed solvent of 40 ml of ethyl acetate and 20 ml of acetonitrile. To this solution, 9.0 ml of a 1 mol / L sodium carbonate aqueous solution was added and stirred at 50 ° C. for 4 hours. After completion of the reaction, the aqueous sodium carbonate solution was extracted, and the obtained organic layer was further washed with 20 ml of 0.5N hydrochloric acid aqueous solution. Subsequently, it was washed twice with 50 ml of distilled water. To the obtained ethyl acetate layer, 200 ml of n-hexane was added to precipitate a solid. The solid was collected by filtration and dried with a vacuum dryer to obtain 0.92 g of a white solid. When the obtained solid was analyzed by HPLC, it was found that the intermediate GG ′ was converted to the intermediate GG because the peak of the intermediate GG ′, which was a halide, had completely disappeared. This intermediate GG can be used for the synthesis of a predetermined polymerizable compound (I).
(実施例10)粗化合物7の脱塩化水素反応
 温度計を備えた4つ口反応器に、窒素気流中、先の合成例7で合成した粗化合物7:1.0g(2.20mmol)、トリエチルアミン334mg(3.30mmol)を酢酸エチル40ml、アセトニトリル20mlの混合溶媒に溶解させた。この溶液に、1mol/Lの濃度の炭酸ナトリウム水溶液8.0mlを加えて、50℃にて4時間撹拌した。反応終了後、炭酸ナトリウム水溶液を抜き出し、得られた有機層をさらに0.5N-塩酸水溶液20mlで洗浄した。次いで、蒸留水50mlで2回洗浄した。得られた酢酸エチル層にn-ヘキサン200mlを投入して固体を析出させた。ろ過により固体をろ取して、真空乾燥機で乾燥させ、0.89gの白色固体を得た。得られた固体をHPLCにて分析したところ、ハロゲン化体である化合物7’のピークが完全に消失していたことから、化合物7’は化合物7に変換されたことが分かった。この化合物7は、所定の重合性化合物(I)の合成に使用可能である。
(Example 10) Dehydrochlorination reaction of crude compound 7 In a four-necked reactor equipped with a thermometer, crude compound 7 synthesized in the previous synthesis example 7 in a nitrogen stream: 1.0 g (2.20 mmol), 334 mg (3.30 mmol) of triethylamine was dissolved in a mixed solvent of 40 ml of ethyl acetate and 20 ml of acetonitrile. To this solution, 8.0 ml of a 1 mol / L sodium carbonate aqueous solution was added and stirred at 50 ° C. for 4 hours. After completion of the reaction, the aqueous sodium carbonate solution was extracted, and the obtained organic layer was further washed with 20 ml of 0.5N hydrochloric acid aqueous solution. Subsequently, it was washed twice with 50 ml of distilled water. To the obtained ethyl acetate layer, 200 ml of n-hexane was added to precipitate a solid. The solid was collected by filtration and dried with a vacuum dryer to obtain 0.89 g of a white solid. When the obtained solid was analyzed by HPLC, the peak of compound 7 ′, which was a halogenated product, was completely disappeared. Thus, it was found that compound 7 ′ was converted to compound 7. This compound 7 can be used for the synthesis of a predetermined polymerizable compound (I).
(実施例11)混合物7の脱塩化水素反応
 温度計を備えた4つ口反応器に、窒素気流中、先の合成例7で合成した混合物7:7.25g、トリエチルアミン2.0g(19.71mmol)を酢酸エチル200ml、アセトニトリル100mlの混合溶媒に溶解させた。この溶液に、1mol/Lの濃度の炭酸ナトリウム水溶液50mlを加えて、50℃にて4時間撹拌した。反応終了後、炭酸ナトリウム水溶液を抜き出し、得られた有機層をさらに0.5N-塩酸水溶液110mlで洗浄した。次いで、蒸留水100mlで2回洗浄した。得られた酢酸エチル層をロータリーエバポレーターにて、100mlまで濃縮した。この酢酸エチル層にn-ヘキサン500mlを投入して固体を析出させた。ろ過により固体をろ取して、真空乾燥機で乾燥させ、6.58gの白色固体を得た。得られた固体をHPLCにて分析したところ、ハロゲン化体である化合物7’のピークが完全に消失していたことから、化合物7’は化合物7に変換されたことが分かった。この化合物7は、所定の重合性化合物(I)の合成に使用可能である。
Example 11 Dehydrochlorination Reaction of Mixture 7 In a four-necked reactor equipped with a thermometer, 7.25 g of the mixture 7 synthesized in Synthesis Example 7 above in a nitrogen stream, and 2.0 g of triethylamine (19. 71 mmol) was dissolved in a mixed solvent of 200 ml of ethyl acetate and 100 ml of acetonitrile. To this solution, 50 ml of a 1 mol / L sodium carbonate aqueous solution was added and stirred at 50 ° C. for 4 hours. After completion of the reaction, an aqueous sodium carbonate solution was extracted, and the obtained organic layer was further washed with 110 ml of 0.5N hydrochloric acid aqueous solution. Subsequently, it was washed twice with 100 ml of distilled water. The obtained ethyl acetate layer was concentrated to 100 ml with a rotary evaporator. To this ethyl acetate layer, 500 ml of n-hexane was added to precipitate a solid. The solid was collected by filtration and dried with a vacuum dryer to obtain 6.58 g of a white solid. When the obtained solid was analyzed by HPLC, the peak of compound 7 ′, which was a halogenated product, was completely disappeared. Thus, it was found that compound 7 ′ was converted to compound 7. This compound 7 can be used for the synthesis of a predetermined polymerizable compound (I).
 本発明によれば、高純度な重合性化合物を、工業的に有利に製造する方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a highly pure polymerizable compound in an industrially advantageous manner.

Claims (15)

  1.  下記式(I)で示される重合性化合物の製造方法であって、
     下記式(II)で示されるハロゲン化体を含む組成物を、有機溶媒中、塩基性化合物を含む水層の存在下で、脱ハロゲン化水素反応に供する工程を含む、製造方法。
    Figure JPOXMLDOC01-appb-C000001
    〔式(I)中、Arは、下記式(Ar-1)~(Ar-4)で表される基のいずれかであり、
    Figure JPOXMLDOC01-appb-C000002
     EおよびEは、それぞれ独立して、-CR1112-、-S-、-NR11-、-CO-、または-O-を表し、R11及びR12は、それぞれ独立して水素原子、または炭素数1~4のアルキル基を表し、
     Rcは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、または炭素数2~12のN,N-ジアルキルスルファモイル基を表し、
     p0は0~2の整数であり、
     DおよびDは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい芳香族複素環基を表し、
     ZおよびZは、それぞれ独立して、単結合、-O-CH-、-CH-O-、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-、-S-C(=O)-、-NR13-C(=O)-、-C(=O)-NR13-、-CF-O-、-O-CF-、-CH-CH-、-CF-CF-、-O-CH-CH-O-、-CH=CH-C(=O)-O-、-O-C(=O)-CH=CH-、-CH-CH-C(=O)-O-、-O-C(=O)-CH-CH-、-CH-CH-O-C(=O)-、-C(=O)-O-CH-CH-、-CH=CH-、-N=CH-、-CH=N-、-N=C(CH)-、-C(CH)=N-、-N=N-、または、-C≡C-を表し、R13は、水素原子または炭素数1~6のアルキル基を表し、
     A、A、BおよびBは、それぞれ独立して、置換基を有していてもよい環状脂肪族基、または置換基を有していてもよい芳香族基を表し、
     Y、Y、LおよびLは、それぞれ独立して、単結合、-O-、-CO-、-CO-O-、-O-CO-、-NR14-CO-、-CO-NR14-、-O-CO-O-、-NR14-CO-O-、-O-CO-NR14-、または-NR14-CO-NR15-を表し、R14およびR15はそれぞれ独立して、水素原子、または炭素数1~6のアルキル基を表し、
     RおよびRは、それぞれ独立して、水素原子、メチル基、または塩素原子を表し、
     aおよびdは、それぞれ独立して、1~20の整数を表し、
     bおよびcは、それぞれ独立して、0または1であり、
     Rcが複数存在する場合、それらは、それぞれ同一であっても、相異なっていてもよい。〕
    Figure JPOXMLDOC01-appb-C000003
     
    〔式(II)中、Xはハロゲン原子を表し、
     Gは、有機基を表し、
     Rおよびaは、前記式(I)と同じ意味を表す。〕
    A method for producing a polymerizable compound represented by the following formula (I),
    A production method comprising a step of subjecting a composition containing a halogenated compound represented by the following formula (II) to a dehydrohalogenation reaction in an organic solvent in the presence of an aqueous layer containing a basic compound.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (I), Ar is any one of groups represented by the following formulas (Ar-1) to (Ar-4);
    Figure JPOXMLDOC01-appb-C000002
    E 1 and E 2 each independently represent —CR 11 R 12 —, —S—, —NR 11 —, —CO—, or —O—, and each of R 11 and R 12 independently represents Represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms,
    Rc is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, a carboxyl group, or a carbon group having 1 to 6 carbon atoms. Fluoroalkyl group, alkoxy group having 1 to 6 carbon atoms, thioalkyl group having 1 to 6 carbon atoms, N-alkylamino group having 1 to 6 carbon atoms, N, N-dialkylamino group having 2 to 12 carbon atoms, carbon number An N-alkylsulfamoyl group having 1 to 6 carbon atoms or an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms;
    p0 is an integer from 0 to 2,
    D 1 and D 2 each independently represents an aromatic hydrocarbon ring group that may have a substituent, or an aromatic heterocyclic group that may have a substituent,
    Z 1 and Z 2 are each independently a single bond, —O—CH 2 —, —CH 2 —O—, —C (═O) —O—, —O—C (═O) —, — C (═O) —S—, —S—C (═O) —, —NR 13 —C (═O) —, —C (═O) —NR 13 —, —CF 2 —O—, —O —CF 2 —, —CH 2 —CH 2 —, —CF 2 —CF 2 —, —O—CH 2 —CH 2 —O—, —CH═CH—C (═O) —O—, —O— C (= O) -CH = CH -, - CH 2 -CH 2 -C (= O) -O -, - O-C (= O) -CH 2 -CH 2 -, - CH 2 -CH 2 - O—C (═O) —, —C (═O) —O—CH 2 —CH 2 —, —CH═CH—, —N═CH—, —CH═N—, —N═C (CH 3 )-, -C (CH 3 ) = N-, -N = N-, or -C≡C- R 13 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
    A 1 , A 2 , B 1 and B 2 each independently represent a cyclic aliphatic group which may have a substituent, or an aromatic group which may have a substituent,
    Y 1 , Y 2 , L 1 and L 2 are each independently a single bond, —O—, —CO—, —CO—O—, —O—CO—, —NR 14 —CO—, —CO —NR 14 —, —O—CO—O—, —NR 14 —CO—O—, —O—CO—NR 14 —, or —NR 14 —CO—NR 15 —, wherein R 14 and R 15 are Each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms;
    R 1 and R 2 each independently represents a hydrogen atom, a methyl group, or a chlorine atom,
    a and d each independently represents an integer of 1 to 20,
    b and c are each independently 0 or 1,
    When a plurality of Rc are present, they may be the same or different. ]
    Figure JPOXMLDOC01-appb-C000003

    [In Formula (II), X 1 represents a halogen atom;
    G represents an organic group,
    R 1 and a represent the same meaning as the formula (I). ]
  2.  前記式(II)で示されるハロゲン化体が、下記式(III)で示されるハロゲン化体である、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    〔式(III)中、Qは、下記式(III-1)または下記式(III-2)で表され、
    Figure JPOXMLDOC01-appb-C000005
      [式(III-1)および式(III-2)中、Rは、前記式(I)と同じ意味を表し、式(III-2)中のXは、ハロゲン原子を表す。]
     Xは、前記式(II)と同じ意味を表し、
     Ar、Z、Z、A、A、B、B、Y、Y、L、L、R、およびa~dは、前記式(I)と同じ意味を表す。〕
    The production method according to claim 1, wherein the halide represented by the formula (II) is a halide represented by the following formula (III).
    Figure JPOXMLDOC01-appb-C000004
    [In the formula (III), Q is represented by the following formula (III-1) or the following formula (III-2);
    Figure JPOXMLDOC01-appb-C000005
    [In Formula (III-1) and Formula (III-2), R 2 represents the same meaning as in Formula (I), and X 2 in Formula (III-2) represents a halogen atom. ]
    X 1 represents the same meaning as in the formula (II),
    Ar, Z 1 , Z 2 , A 1 , A 2 , B 1 , B 2 , Y 1 , Y 2 , L 1 , L 2 , R 1 , and a to d have the same meaning as in the formula (I). To express. ]
  3.  前記XおよびXが塩素原子である、請求項2に記載の製造方法。 Wherein X 1 and X 2 is a chlorine atom, a manufacturing method of claim 2.
  4.  前記式(II)で示されるハロゲン化体が、下記式(IV)で示されるハロゲン化体である、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    〔式(IV)中、FGは、水酸基、カルボキシル基またはアミノ基を表し、
     R、Y、Bおよびaは、前記式(I)と同じ意味を表し、
     Xは、前記式(II)と同じ意味を表す。〕
    The production method according to claim 1, wherein the halide represented by the formula (II) is a halide represented by the following formula (IV).
    Figure JPOXMLDOC01-appb-C000006
    [In formula (IV), FG 1 represents a hydroxyl group, a carboxyl group or an amino group,
    R 1 , Y 1 , B 1 and a represent the same meaning as in the formula (I),
    X 1 represents the same meaning as in the formula (II). ]
  5.  前記Xが塩素原子である、請求項4に記載の製造方法。 The production method according to claim 4, wherein X 1 is a chlorine atom.
  6.  前記FGが水酸基である、請求項4または5に記載の製造方法。 The production method according to claim 4 or 5, wherein the FG 1 is a hydroxyl group.
  7.  前記組成物が、前記式(IV)で示されるハロゲン化体と、下記式(V)で示される化合物を含む混合物である、請求項4~6のいずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    〔式(V)中、R、Y、B、FGおよびaは、前記式(IV)と同じ意味を表す。〕
    The production method according to any one of claims 4 to 6, wherein the composition is a mixture comprising a halide represented by the formula (IV) and a compound represented by the following formula (V).
    Figure JPOXMLDOC01-appb-C000007
    [In Formula (V), R 1 , Y 1 , B 1 , FG 1 and a represent the same meaning as in Formula (IV). ]
  8.  前記式(IV)で示されるハロゲン化体と前記式(V)で示される化合物の合計中に占める前記式(IV)で示されるハロゲン化体の割合が、0.01質量%以上5質量%以下である、請求項7に記載の製造方法。 The proportion of the halide represented by the formula (IV) in the total of the compound represented by the formula (IV) and the compound represented by the formula (V) is 0.01% by mass or more and 5% by mass. The manufacturing method of Claim 7 which is the following.
  9.  前記式(II)で示されるハロゲン化体が、下記式(VI)で示されるハロゲン化体である、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    〔式(VI)中、FGは、水酸基、カルボキシル基またはアミノ基を表し、
     R、Y、B、L、A、aおよびbは、前記式(I)と同じ意味を表し、
     Xは、前記式(II)と同じ意味を表す。〕
    The production method according to claim 1, wherein the halide represented by the formula (II) is a halide represented by the following formula (VI).
    Figure JPOXMLDOC01-appb-C000008
    [In Formula (VI), FG 2 represents a hydroxyl group, a carboxyl group, or an amino group,
    R 1 , Y 1 , B 1 , L 1 , A 1 , a and b represent the same meaning as in the formula (I),
    X 1 represents the same meaning as in the formula (II). ]
  10.  前記Xが塩素原子である、請求項9に記載の製造方法。 The production method according to claim 9, wherein X 1 is a chlorine atom.
  11.  前記FGがカルボキシル基であり、
     前記bが1である、請求項9または10に記載の製造方法。
    The FG 2 is a carboxyl group;
    The manufacturing method according to claim 9 or 10, wherein b is 1.
  12.  前記組成物が、前記式(VI)で示されるハロゲン化体と、下記式(VII)で示される化合物を含む混合物である、請求項9~11のいずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000009
    〔式(VII)中、R、Y、B、L、A、FG、aおよびbは、前記式(VI)と同じ意味を表す。〕
    The production method according to any one of claims 9 to 11, wherein the composition is a mixture containing a halide represented by the formula (VI) and a compound represented by the following formula (VII).
    Figure JPOXMLDOC01-appb-C000009
    [In the formula (VII), R 1 , Y 1 , B 1 , L 1 , A 1 , FG 2 , a and b represent the same meaning as in the formula (VI). ]
  13.  前記式(VI)で示されるハロゲン化体と前記式(VII)で示される化合物の合計中に占める前記式(VI)で示されるハロゲン化体の割合が、0.01質量%以上5質量%以下である、請求項12に記載の製造方法。 The proportion of the halogenated compound represented by the formula (VI) in the total of the halogenated compound represented by the formula (VI) and the compound represented by the formula (VII) is 0.01% by mass or more and 5% by mass. The manufacturing method of Claim 12 which is the following.
  14.  前記DおよびDが、それぞれ独立して、下記式(d-1)~(d-8)で表される基のいずれかである、請求項1~13のいずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000010
    〔式(d-1)~(d-8)中、Rdは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、または炭素数2~12のN,N-ジアルキルスルファモイル基を表し、
     p1は、0~5の整数、p2は、0~4の整数、p3は、0~3の整数、p4は、0~2の整数を表し、
     Rfは、水素原子またはメチル基を表し、
     Rdが複数存在する場合、それらは、それぞれ同一であっても、相異なっていてもよい。〕
    The production method according to any one of claims 1 to 13, wherein D 1 and D 2 are each independently any one of groups represented by the following formulas (d-1) to (d-8): .
    Figure JPOXMLDOC01-appb-C000010
    [In the formulas (d-1) to (d-8), Rd represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, 6 alkylsulfonyl groups, carboxyl groups, fluoroalkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, thioalkyl groups having 1 to 6 carbon atoms, N-alkylamino groups having 1 to 6 carbon atoms, carbon An N, N-dialkylamino group having 2 to 12 carbon atoms, an N-alkylsulfamoyl group having 1 to 6 carbon atoms, or an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms,
    p1 is an integer from 0 to 5, p2 is an integer from 0 to 4, p3 is an integer from 0 to 3, and p4 is an integer from 0 to 2,
    Rf represents a hydrogen atom or a methyl group,
    When a plurality of Rd are present, they may be the same or different from each other. ]
  15.  前記Arが、下記式(Ar-5)~(Ar-9)で表される基のいずれかである、請求項1~13のいずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000011
    〔式(Ar-5)~(Ar-9)中、E、Rc、およびp0は前記と同じ意味を表し、
     Rdは、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のチオアルキル基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、または炭素数2~12のN,N-ジアルキルスルファモイル基を表し、
     p1は、0~5の整数、p2は、0~4の整数、p3は、0~3の整数を表し、
     RcおよびRdが複数存在する場合、それらは、それぞれ同一であっても、相異なっていてもよい。〕
    The production method according to any one of claims 1 to 13, wherein Ar is any one of groups represented by the following formulas (Ar-5) to (Ar-9).
    Figure JPOXMLDOC01-appb-C000011
    [In the formulas (Ar-5) to (Ar-9), E 1 , Rc, and p0 represent the same meaning as described above,
    Rd is a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, an alkylsulfinyl group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms, a carboxyl group, or a carbon group having 1 to 6 carbon atoms. Fluoroalkyl group, alkoxy group having 1 to 6 carbon atoms, thioalkyl group having 1 to 6 carbon atoms, N-alkylamino group having 1 to 6 carbon atoms, N, N-dialkylamino group having 2 to 12 carbon atoms, carbon number An N-alkylsulfamoyl group having 1 to 6 carbon atoms or an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms;
    p1 represents an integer of 0 to 5, p2 represents an integer of 0 to 4, p3 represents an integer of 0 to 3,
    When a plurality of Rc and Rd are present, they may be the same or different from each other. ]
PCT/JP2017/043853 2016-12-20 2017-12-06 Method for producing polymerizable compound WO2018116836A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780071020.XA CN109983011A (en) 2016-12-20 2017-12-06 The manufacturing method of polymerizable compound
JP2018557659A JPWO2018116836A1 (en) 2016-12-20 2017-12-06 Method for producing polymerizable compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-246778 2016-12-20
JP2016246778 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018116836A1 true WO2018116836A1 (en) 2018-06-28

Family

ID=62626293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043853 WO2018116836A1 (en) 2016-12-20 2017-12-06 Method for producing polymerizable compound

Country Status (3)

Country Link
JP (1) JPWO2018116836A1 (en)
CN (1) CN109983011A (en)
WO (1) WO2018116836A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171197A1 (en) * 2019-02-22 2020-08-27 富士フイルム株式会社 Resin composition, cured product, diffractive optical element, and multilayered diffractive optical element

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067736A (en) * 1996-05-29 1998-03-10 Mitsui Petrochem Ind Ltd Thiol compound, sulfur-containing o-(meth)acrylate compound and its use
JPH11302229A (en) * 1997-08-13 1999-11-02 Merck Patent Gmbh Chiral compound
EP1247797A2 (en) * 2001-04-06 2002-10-09 MERCK PATENT GmbH Cycloalkanone Derivates
WO2004103949A1 (en) * 2003-05-23 2004-12-02 Mitsui Chemicals, Inc. (meth)acrylic ester compound and use thereof
US20090189120A1 (en) * 2008-01-29 2009-07-30 Fujifilm Corporation Compound, liquid crystal composition, and anisotropic material
JP2009227667A (en) * 2008-02-27 2009-10-08 Sumitomo Chemical Co Ltd Compound, and optical film containing the compound
JP2010083799A (en) * 2008-09-30 2010-04-15 Fujifilm Corp Method for producing 1,2,4-oxadiazole derivative and method for producing (meth)acrylate derivative
JP2010241919A (en) * 2009-04-03 2010-10-28 Sumitomo Chemical Co Ltd Composition, film and process for producing the film
JP2011006361A (en) * 2009-06-26 2011-01-13 Sumitomo Chemical Co Ltd Compound, optical film and method for producing optical film
JP2011162678A (en) * 2010-02-10 2011-08-25 Sumitomo Chemical Co Ltd Composition and optical film
JP2011207765A (en) * 2009-03-16 2011-10-20 Sumitomo Chemical Co Ltd Compound, optical film and method for producing optical film
JP2011246381A (en) * 2010-05-26 2011-12-08 Sumitomo Chemical Co Ltd Compound, optical film, and method for producing optical film
JP2011256304A (en) * 2010-06-10 2011-12-22 Sumitomo Chemical Co Ltd Optical film
JP2012008525A (en) * 2010-02-18 2012-01-12 Sumitomo Chemical Co Ltd 3d display system
JP2012021068A (en) * 2010-07-13 2012-02-02 Sumitomo Chemical Co Ltd Composition and optical film
JP2012077055A (en) * 2010-10-06 2012-04-19 Sumitomo Chemical Co Ltd Compound, optical film, and method for producing optical film
JP2013033248A (en) * 2011-07-07 2013-02-14 Sumitomo Chemical Co Ltd Photo-reactive liquid crystal aligning agent, liquid crystal alignment element and manufacturing method thereof
JP2013071956A (en) * 2011-09-27 2013-04-22 Sumitomo Chemical Co Ltd Composition and optical film
WO2013079158A1 (en) * 2011-11-30 2013-06-06 Merck Patent Gmbh Electrophoretic fluids
WO2013079146A1 (en) * 2011-11-30 2013-06-06 Merck Patent Gmbh Particles for electrophoretic displays
WO2013139427A1 (en) * 2012-03-23 2013-09-26 Merck Patent Gmbh Particles for electrowetting displays
WO2013189580A1 (en) * 2012-06-22 2013-12-27 Merck Patent Gmbh Electrophoretic fluid
WO2014019650A1 (en) * 2012-08-01 2014-02-06 Merck Patent Gmbh Electrophoretic fluids
WO2014019651A1 (en) * 2012-08-01 2014-02-06 Merck Patent Gmbh Electrophoretic fluids
JP2014123134A (en) * 2007-12-28 2014-07-03 Sumitomo Chemical Co Ltd Compound, optical film and production method of optical film
WO2015080219A1 (en) * 2013-11-29 2015-06-04 Dic株式会社 Polymerizable compound, composition, polymer, optical anisotropic body, liquid crystal display element, and organic el element
WO2016096085A1 (en) * 2014-12-19 2016-06-23 Merck Patent Gmbh Particles for electrophoretic displays
WO2016104317A1 (en) * 2014-12-25 2016-06-30 Dic株式会社 Polymerizable compound and optically anisotropic object
JP2016121339A (en) * 2014-12-04 2016-07-07 住友化学株式会社 Composition, and optical film, as well as production method of composition, and optical film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9912060D0 (en) * 1998-05-26 1999-07-21 Merck Patent Gmbh Polymerizable mesogenic compounds
JP5480359B1 (en) * 2012-12-25 2014-04-23 古河電気工業株式会社 Transparent resin composition for sealing organic electroluminescent elements, resin sheet for sealing organic electroluminescent elements, and image display device
CN106068257B (en) * 2014-03-19 2018-09-14 日本瑞翁株式会社 The manufacturing method of polymerizable compound

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067736A (en) * 1996-05-29 1998-03-10 Mitsui Petrochem Ind Ltd Thiol compound, sulfur-containing o-(meth)acrylate compound and its use
JPH11302229A (en) * 1997-08-13 1999-11-02 Merck Patent Gmbh Chiral compound
EP1247797A2 (en) * 2001-04-06 2002-10-09 MERCK PATENT GmbH Cycloalkanone Derivates
WO2004103949A1 (en) * 2003-05-23 2004-12-02 Mitsui Chemicals, Inc. (meth)acrylic ester compound and use thereof
JP2014123134A (en) * 2007-12-28 2014-07-03 Sumitomo Chemical Co Ltd Compound, optical film and production method of optical film
US20090189120A1 (en) * 2008-01-29 2009-07-30 Fujifilm Corporation Compound, liquid crystal composition, and anisotropic material
JP2009227667A (en) * 2008-02-27 2009-10-08 Sumitomo Chemical Co Ltd Compound, and optical film containing the compound
JP2010083799A (en) * 2008-09-30 2010-04-15 Fujifilm Corp Method for producing 1,2,4-oxadiazole derivative and method for producing (meth)acrylate derivative
JP2011207765A (en) * 2009-03-16 2011-10-20 Sumitomo Chemical Co Ltd Compound, optical film and method for producing optical film
JP2010241919A (en) * 2009-04-03 2010-10-28 Sumitomo Chemical Co Ltd Composition, film and process for producing the film
JP2011006361A (en) * 2009-06-26 2011-01-13 Sumitomo Chemical Co Ltd Compound, optical film and method for producing optical film
JP2011162678A (en) * 2010-02-10 2011-08-25 Sumitomo Chemical Co Ltd Composition and optical film
JP2012008525A (en) * 2010-02-18 2012-01-12 Sumitomo Chemical Co Ltd 3d display system
JP2011246381A (en) * 2010-05-26 2011-12-08 Sumitomo Chemical Co Ltd Compound, optical film, and method for producing optical film
JP2011256304A (en) * 2010-06-10 2011-12-22 Sumitomo Chemical Co Ltd Optical film
JP2012021068A (en) * 2010-07-13 2012-02-02 Sumitomo Chemical Co Ltd Composition and optical film
JP2012077055A (en) * 2010-10-06 2012-04-19 Sumitomo Chemical Co Ltd Compound, optical film, and method for producing optical film
JP2013033248A (en) * 2011-07-07 2013-02-14 Sumitomo Chemical Co Ltd Photo-reactive liquid crystal aligning agent, liquid crystal alignment element and manufacturing method thereof
JP2013071956A (en) * 2011-09-27 2013-04-22 Sumitomo Chemical Co Ltd Composition and optical film
WO2013079158A1 (en) * 2011-11-30 2013-06-06 Merck Patent Gmbh Electrophoretic fluids
WO2013079146A1 (en) * 2011-11-30 2013-06-06 Merck Patent Gmbh Particles for electrophoretic displays
WO2013139427A1 (en) * 2012-03-23 2013-09-26 Merck Patent Gmbh Particles for electrowetting displays
WO2013189580A1 (en) * 2012-06-22 2013-12-27 Merck Patent Gmbh Electrophoretic fluid
WO2014019650A1 (en) * 2012-08-01 2014-02-06 Merck Patent Gmbh Electrophoretic fluids
WO2014019651A1 (en) * 2012-08-01 2014-02-06 Merck Patent Gmbh Electrophoretic fluids
WO2015080219A1 (en) * 2013-11-29 2015-06-04 Dic株式会社 Polymerizable compound, composition, polymer, optical anisotropic body, liquid crystal display element, and organic el element
JP2016121339A (en) * 2014-12-04 2016-07-07 住友化学株式会社 Composition, and optical film, as well as production method of composition, and optical film
WO2016096085A1 (en) * 2014-12-19 2016-06-23 Merck Patent Gmbh Particles for electrophoretic displays
WO2016104317A1 (en) * 2014-12-25 2016-06-30 Dic株式会社 Polymerizable compound and optically anisotropic object

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171197A1 (en) * 2019-02-22 2020-08-27 富士フイルム株式会社 Resin composition, cured product, diffractive optical element, and multilayered diffractive optical element
JPWO2020171197A1 (en) * 2019-02-22 2021-11-25 富士フイルム株式会社 Resin composition, cured product, diffractive optical element, multi-layer diffractive optical element
JP7214828B2 (en) 2019-02-22 2023-01-30 富士フイルム株式会社 resin composition, cured product, diffractive optical element, multi-layer diffractive optical element

Also Published As

Publication number Publication date
CN109983011A (en) 2019-07-05
JPWO2018116836A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
EP3246306B1 (en) Compound, polymerizable compound, mixture, polymerizable liquid crystal composition, polymer, optical film, optically anisotropic product, polarizing plate, flat panel display device, organic electroluminescence display device, and anti-reflection film
KR102085198B1 (en) Intermediate for manufacture of polymerizable compound and process for manufacture thereof
JP6020772B1 (en) Mixture and method for producing polymerizable compound
JP6540688B2 (en) Method for producing polymerizable compound
JP2009256327A (en) Method for producing cycloalkanedicarboxylic acid monoester
JP7439877B2 (en) Manufacturing method of polymerizable compound
JP6090514B1 (en) Method for producing polymerizable compound
WO2018116836A1 (en) Method for producing polymerizable compound
EP3737678A1 (en) Process for the preparation of disubstituted diaryloxybenzoheterodiazole compounds
CN111655672B (en) Method for producing 1, 1-disubstituted hydrazine compound and method for producing polymerizable compound
JP5209426B2 (en) Method for producing 1,2,4-oxadiazole derivative
JP5114901B2 (en) Method for producing nitrogen-containing polycyclic heterocyclic compound
JP2016190828A (en) Method for producing polymerizable compound
JP6191793B1 (en) Halides and mixtures
CN109970668B (en) Method for preparing 3-thio-1, 2, 4-triazole compound
JP4021663B2 (en) Method for producing triphenylene compound
JP6791054B2 (en) Solutions and mixtures
KR102592383B1 (en) Diamine compound and method for producing intermediate thereof
WO2019230848A1 (en) Method for producing polymerizable compound
JP2010083799A (en) Method for producing 1,2,4-oxadiazole derivative and method for producing (meth)acrylate derivative
EP3533791B1 (en) Method for producing 3-methyl-2-thiophenecarboxylic acid
CN114805122A (en) Esterification reaction method
WO2013146861A1 (en) Method for manufacturing alicyclic monoolefin carboxylic acid (meth)acryloyloxyalkyl ester
JP2004256521A (en) Method for producing aromatic nitrile derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884115

Country of ref document: EP

Kind code of ref document: A1