WO2018116657A1 - Palm trunk processing method and palm trunk processing apparatus - Google Patents
Palm trunk processing method and palm trunk processing apparatus Download PDFInfo
- Publication number
- WO2018116657A1 WO2018116657A1 PCT/JP2017/039730 JP2017039730W WO2018116657A1 WO 2018116657 A1 WO2018116657 A1 WO 2018116657A1 JP 2017039730 W JP2017039730 W JP 2017039730W WO 2018116657 A1 WO2018116657 A1 WO 2018116657A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- palm trunk
- water
- palm
- trunk
- concentration
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 10
- 238000012545 processing Methods 0.000 title claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 217
- 230000036571 hydration Effects 0.000 claims abstract description 39
- 238000006703 hydration reaction Methods 0.000 claims abstract description 39
- 230000002792 vascular Effects 0.000 claims abstract description 35
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 74
- 229910052700 potassium Inorganic materials 0.000 claims description 74
- 239000011591 potassium Substances 0.000 claims description 74
- 210000004872 soft tissue Anatomy 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 44
- 239000002245 particle Substances 0.000 claims description 44
- 230000008569 process Effects 0.000 claims description 19
- 238000010298 pulverizing process Methods 0.000 claims description 11
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 230000000887 hydrating effect Effects 0.000 abstract description 2
- 230000006835 compression Effects 0.000 abstract 1
- 238000007906 compression Methods 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 58
- 239000012634 fragment Substances 0.000 description 53
- 239000007788 liquid Substances 0.000 description 52
- 239000002994 raw material Substances 0.000 description 44
- 239000007787 solid Substances 0.000 description 26
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 23
- 239000004449 solid propellant Substances 0.000 description 18
- 239000000446 fuel Substances 0.000 description 16
- 238000007873 sieving Methods 0.000 description 15
- 239000003513 alkali Substances 0.000 description 13
- 238000009826 distribution Methods 0.000 description 11
- 238000003825 pressing Methods 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 238000001514 detection method Methods 0.000 description 10
- 239000008188 pellet Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000002699 waste material Substances 0.000 description 8
- 239000002956 ash Substances 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 241000512897 Elaeis Species 0.000 description 3
- 235000001950 Elaeis guineensis Nutrition 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000009491 slugging Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C21/00—Disintegrating plant with or without drying of the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L5/00—Solid fuels
- C10L5/40—Solid fuels essentially based on materials of non-mineral origin
- C10L5/44—Solid fuels essentially based on materials of non-mineral origin on vegetable substances
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/78—Recycling of wood or furniture waste
Definitions
- the present invention relates to a palm trunk processing method and a palm trunk processing apparatus for generating liquid fuel, solid fuel, fertilizer, and the like from an oil palm trunk (hereinafter referred to as palm trunk).
- palm trunk an oil palm trunk
- Patent Document 1 discloses a technique for removing alkali components such as potassium by squeezing the palm trunk until the water content is 35% or less after crushing the palm trunk.
- Patent Document 2 discloses a technique for more effectively removing alkali components such as potassium by squeezing a palm trunk once, then adding water and squeezing again.
- Japanese Unexamined Patent Publication No. 2015-73953 Japanese Unexamined Patent Publication No. 2012-153790 Japanese Laid-Open Patent Publication No. 2004-352962 Japanese Unexamined Patent Publication No. 2016-1225030
- Palm trunk is a biomass raw material, and the composition of alkali components such as potassium in the raw material varies greatly depending on the logging location, etc., so design with a high alkali composition value with a margin in the composition of the raw material palm trunk I had to do it.
- a high squeezing pressure is required, leading to an increase in the power of the squeezing machine.
- Patent Document 2 is proposed as a similar herbic alkali removal method. However, this method needs to destroy the cell wall to facilitate the elution of potassium by hydration, so it is necessary to squeeze before hydration, which means squeezing twice, A lot of power was needed.
- Patent Documents 3 and 4 a method of eluting potassium by leaching the palm trunk into water before squeezing is also presented, but even when the potassium concentration in the palm trunk is not so high, After the water is absorbed up to the maximum moisture content of the palm trunk, the potassium concentration in the eluate is made equal to or less than the potassium concentration in the palm trunk so that the potassium is eluted. Inevitably, a large amount of waste liquid was generated. For this reason, not only an elution tank and a heating device for elution of potassium are required, but also a water supply facility and a waste liquid treatment device are necessary, which makes the entire facility large.
- An object of the present invention is to provide a processing apparatus and a processing method for a palm trunk that can be performed and that does not require a large amount of water supply or waste liquid and that is simple and suppresses an increase in power.
- the present inventors have found that most of the potassium in the palm trunk is present in the moisture in the palm trunk, and the moisture content of the raw palm trunk is approximately 60 to 75 [%]. It was found that the water content can be increased up to 85 [%] by adding water. And, as a pretreatment, the present inventors add water to the range where the palm trunk is saturated to reduce the potassium concentration in the liquid in the palm trunk, and then perform the squeezing so that the potassium concentration in the juice residue It came to come up with the process of reducing.
- the processing method includes a pulverizing step in which the palm trunk is defibrated and pulverized into a soft tissue and a vascular bundle using a pulverizer, A hydration step of adding water to the palm trunk pulverized in the pulverization step within a range equal to or lower than the upper limit of the amount of water that can be absorbed, and a pressing step of squeezing the powdered palm trunk hydrated in the hydration step. It is characterized by that.
- the palm trunk log is defibrillated into a vascular bundle and a soft tissue having a small particle diameter by a pulverizer, and then water is added within a range in which the palm trunk can absorb water.
- the potassium concentration in the squeezed residue can be kept low by squeezing after making the potassium concentration in the liquid low. Since the water added to the palm trunk is the addition of water within the range that the palm trunk can absorb water, not only the amount of water can be minimized, but also no waste liquid is generated. Furthermore, since this hydration can be made into a soft tissue having a fine particle size, the water absorption and the water absorption speed are improved, and the hydration process can be accomplished in a short time.
- the present method of squeezing after hydration is the moisture content of the palm trunk where the squeezing power in squeezing is squeezed even when squeezing to the same squeezed residue moisture content as in the process of squeezing without hydration Therefore, the increase in the water content of the palm trunk supplied to the squeeze machine due to hydration does not increase the power of the squeeze machine.
- the weight-based integrated sieving has a particle size of 0.3 [mm]. It is 5.4 [%] or less.
- the pulverized palm trunk is sprinkled or sprayed to add water in the hydration step.
- water can be added to the palm trunk during conveyance by a belt conveyor or the like, so that the efficiency of the hydration process can be reliably achieved.
- the method for treating a palm trunk according to the fourth aspect of the present invention detects the presence or amount of moisture that has not been absorbed by the palm trunk in the hydration step, and determines the amount of hydration to the palm trunk based on the detection result. Control.
- the amount of water added to the palm trunk in the hydration step is 1.7 times or less with respect to the mass of the palm trunk.
- the processing method of the palm trunk which concerns on the 6th aspect of this invention is the content rate of the potassium which the squeeze residue obtained by the said pressing process contains the amount of hydration to the palm trunk in the said hydration process, or this squeeze residue Control based on the alkali concentration.
- a palm trunk processing apparatus is a palm trunk processing apparatus for performing the palm trunk processing method, wherein the palm trunk is fibrillated into soft tissue and vascular bundles.
- a pulverizer for pulverization, a hydrator for adding water to the palm trunk pulverized by the pulverizer, and a squeezer for pressing the palm trunk hydrated by the hydrator are provided.
- moisture in a range in which the palm trunk can absorb water after pulverizing the palm trunk log into a vascular bundle and a soft tissue having a small particle size by a pulverizer.
- the water added to the palm trunk is the addition of water within the range that the palm trunk can absorb water, so that the amount of water added can be minimized and no extra waste liquid is generated.
- this hydration can be made into a soft tissue having a fine particle size, the water absorption and the water absorption speed are improved, and the hydration process can be accomplished in a short time.
- the present method of squeezing after hydration is the moisture content of the palm trunk where the squeezing power in squeezing is squeezed even when squeezing to the same squeezed residue moisture content as in the process of squeezing without hydration Therefore, the increase in the water content of the palm trunk supplied to the squeeze machine due to hydration does not increase the power of the squeeze machine.
- water is added within a range where water can be absorbed as the palm trunk, so that not only the amount of water can be suppressed but also excess waste liquid is not generated. Furthermore, since the potassium concentration in the liquid in the palm trunk can be reduced by absorbing water into the palm trunk and then squeezed, the potassium concentration in the juice residue can be kept low. Compared with the case where potassium is reduced to a predetermined concentration, an increase in the power of the juicer can be prevented.
- the alkali concentration of potassium or the like in the palm trunk which is a biomass raw material
- the alkali concentration of potassium or the like in the palm trunk raw material is as high as 1.5 [% -dry]
- the method for treating a palm trunk according to the second aspect when the palm trunk is pulverized, it is easy to absorb moisture and does not break the fine soft tissue, and is defibrated into the soft tissue and the vascular bundle.
- the water absorption and water absorption speed of the pulverized palm trunk can be improved, and the efficiency of the hydration process can be reliably achieved.
- water can be added to the palm trunk during conveyance by a belt conveyor or the like, so that the efficiency of the hydration process can be reliably achieved.
- the method for treating a palm trunk according to the fourth aspect it is possible to prevent the palm trunk from being excessively hydrated and to ensure the efficiency of the hydration process.
- the amount of water added to the palm trunk is less than the upper limit of the amount of water that can be absorbed by the palm trunk, thereby excessively adding water to the palm trunk.
- the palm trunk can be watered without excess or deficiency.
- the pre-treatment can reduce the potassium concentration more than necessary, and the predetermined squeezed residue potassium concentration can be obtained.
- the treatment apparatus for a palm trunk according to the seventh aspect since water is added within a range in which potassium can absorb water, no extra waste liquid is generated, and further, water in the palm trunk is absorbed by water absorption into the palm trunk.
- the potassium concentration in a squeezed residue can be restrained low. Moreover, compared with the case where it squeezes without adding water to a palm trunk and reduces potassium to a predetermined
- FIG. 2 is an explanatory diagram showing an overview of a processing apparatus 10.
- FIG. 3 is an explanatory diagram illustrating a configuration example of a processing device 10.
- FIG. It is a figure which shows an example of the squeeze machine. It is a schematic diagram explaining the relationship of each parameter. It is a table
- the processing apparatus 10 which implements the palm trunk processing method according to the present embodiment will be described.
- the processing apparatus 10 includes a pulverizer 1, a water mixer 3, a detector 5, a controller 4, a juicer 2, an analyzer 6, a liquid fuel generator 7, And a solid fuel generation unit 8.
- the pulverizer 1 pulverizes the palm trunk into a powder form of 0.1 to 6.0 [mm] on the basis of the particle size by sieving classification after drying.
- the water machine 3 hydrates the palm trunk (hereinafter referred to as palm trunk crushed pieces) pulverized into a powder form by watering or spraying to cause the palm trunk crushed pieces to absorb moisture.
- adding water to the palm trunk crushed piece is referred to as “hydrolysis”, and the palm trunk crushed piece absorbing water is referred to as “water absorption”.
- the detection part 5 detects the water
- the control unit 4 controls the amount of water that the water machine 3 adds to the palm trunk fragment.
- the squeezer 2 squeezes the water-sunk palm trunk fragment and separates it into a squeezed juice and a squeezed residue.
- the analyzer 6 detects the content rate of potassium contained in the squeezed residue or the alkali concentration of the squeezed residue.
- generation part 7 produces
- generation part 8 produces
- nutrients, such as potassium, are contained in juice, you may produce
- generation part 7 has the squeezed liquid tank 7a, the fermenter 7b, the distiller 7c, and the product tank 7d.
- the squeezed liquid tank 7a stores the squeezed liquid, and adds and mixes nitric acid. By adding and mixing nitric acid to the juice, the pH is adjusted and the efficiency of fermentation is increased.
- the temperature of the squeezed liquid in the squeezed liquid tank 7a is managed to be, for example, 50 [° C.] or more, and thereby, germs contained in the squeezed liquid are killed and the fermentation efficiency is further increased.
- the fermenter 7b adds a predetermined microorganism to the squeezed liquid whose pH has been adjusted, and ferments the squeezed liquid.
- the juice is fermented to produce ethanol.
- the distiller 7c purifies ethanol by distilling the fermented liquor containing ethanol produced in the fermenter.
- the product tank 7d stores ethanol purified by the distiller 7c.
- the solid fuel generator 8 includes a dryer 8a, a crusher 8b, a molding machine 8c, and a cooler 8d.
- the dryer 8a blows dry air, for example, and dries the juice residue.
- the moisture contained in the squeezed residue is reduced to, for example, 10 [%] or less on the mass basis by the dryer 8a.
- the crusher 8b crushes the dried juice residue into a predetermined size.
- the molding machine 8c molds the crushed juice residue into a predetermined shape to obtain fuel pellets.
- the fuel pellets are transferred to the cooler 8d and cooled until the temperature reaches a predetermined temperature or lower.
- the pulverizer 1 pulverizes the palm trunk into powder using a hammer mill or the like.
- the crushed palm trunk crushed pieces are conveyed from the pulverizer 1 to the belt conveyor 9 by a shovel car or the like.
- a water heater 3 such as a spray nozzle is disposed above the belt conveyor 9, for example. While the palm trunk crushed pieces are being conveyed by the belt conveyor 9, the water sprinkled or sprayed from the water machine 3 is absorbed by the palm trunk crushed pieces.
- the belt conveyor 9 is disposed to be inclined upward with respect to the transport direction.
- a detection unit 5 is disposed below the belt conveyor 9.
- the detection unit 5 detects the outflow amount of outflow moisture that has flowed out without being absorbed by the palm trunk fragment (hereinafter simply referred to as outflow amount).
- the detection unit 5 is electrically connected to the control unit 4 and outputs the outflow amount detection result to the control unit 4.
- FIG. 3 is a configuration diagram illustrating an example of the juicer 2.
- the squeezer 2 is an inscribed roll type squeezer.
- the squeezer 2 includes a ring roll 21, an inscribed roll 22, an input port 23, a discharge port 24, a cylinder 25, and a pressing roll 26.
- the ring roll 21 is supported so as to be vertically movable and rotatable.
- the inscribed roll 22 is supported so as not to move up and down and to rotate.
- the ring roll 21 and the inscribed roll 22 are rotated in the same direction by a driving means (not shown).
- the cylinder 25 presses the pressing roll 26 upward. This pressing force can be adjusted.
- the pressing roll 26 transmits the pressing force received from the cylinder 25 to the ring roll 21.
- the palm trunk crushed pieces are introduced from the introduction port 23 and are squeezed between the ring roll 21 and the inscribed roll 22 to be separated into a squeezed juice and a squeezed residue.
- the separated squeezed liquid is discharged from a discharge port (not shown) to the outside and is put into the liquid fuel generating unit 7.
- the separated squeezed residue is discharged from the discharge port 24 and is input to the solid fuel generator 8.
- the analyzer 6 is an atomic absorption spectrometer, for example, and can analyze the mass of potassium contained in the juice residue per unit mass. If the squeezed residue contains a lot of potassium, the fuel pellets generated by the solid fuel generator 8 will also contain a lot of potassium, and the ash derived from potassium when the fuel pellets are burned in a boiler or the like. Many occur. If this ash adheres to the inside of the boiler, it may lead to so-called slugging. For this reason, it is necessary to make the mass of potassium contained in the squeezed residue below a predetermined amount.
- the analyzer 6 may analyze the concentration of alkali metals other than potassium. Most of the alkali component contained in the palm trunk is potassium, but the prediction accuracy of ash adhesion as a solid fuel can be improved by considering the analytical value of alkali metals other than potassium.
- An atomic absorption spectrometer can be used as the analyzer 6.
- Analyzer 6 is electrically connected to the control unit 4, the mass of potassium contained in the squeezed residue per unit mass (hereinafter, simply referred to as the residue K concentration D r) and outputs to the control unit 4.
- the control unit 4 outputs the alkali concentration of the juice residue to the control unit 4.
- the control unit 4 includes a processing unit such as a CPU (not shown) and a storage unit such as a RAM (not shown).
- the palm trunk crushed piece raw material, the crushed piece raw material after water absorption, and the crushed piece squeezed residue are indicated using subscripts f, f ′, and r.
- the subscript i is used for representative representation.
- F i [kg] is the total mass of the palm trunk crushed raw material, the crushed raw material after water absorption, and the crushed squeezed juice residue, the solid mass of the components contained therein is S i [kg], the liquid content Let L i [kg] be the mass of.
- the mass of potassium contained in the Palm trunk fragments w i [kg] (hereinafter, simply referred to as a raw material K mass w i) to.
- the moisture content ⁇ i (hereinafter referred to as the moisture content ⁇ i ) in the palm trunk crushed piece raw material, the crushed piece raw material after water absorption, and the crushed piece squeezed residue is expressed by the following formula (1).
- ⁇ i L i / (S i + L i ) (1)
- K concentration D i in the raw material which is the mass of potassium per solid content S i [kg] in the palm trunk crushed piece raw material, the crushed piece raw material after water absorption, and the crushed piece squeezed residue (hereinafter simply referred to as K concentration D i) Is expressed by the following formula (2).
- D i w i / S i (2)
- K concentration C i in the raw material which is the mass of potassium in the liquid content L i [kg] in the palm trunk crushed piece raw material, the crushed piece raw material after water absorption, and the crushed piece squeezed residue (hereinafter simply referred to as K concentration in liquid) C i ) is expressed by the following mathematical formula (3).
- C i w i / L i (3)
- FIG. 5 shows the relationship between the K concentration in the liquid in the palm trunk fragment and the K concentration on the eluate side when the palm trunk fragment is immersed in water while changing the water amount ratio. Since the slope of the K concentration on the elution side of the horizontal axis and the K concentration in the liquid content in the palm trunk fragment on the vertical axis is 1, K in the palm trunk is dissolved in the liquid in the palm trunk. You can see that The palm trunk crushed pieces absorbed by the juicer 2 are squeezed to reduce the mass of water contained in the palm trunk crushed pieces from L f [kg] to L r [kg]. At this time, the concentration of potassium present in the water of the squeezed residue and the concentration of potassium eluted in the squeezed liquid are equal to the potassium concentration C in the palm trunk liquid.
- liquid concentration C r in squeezed residue and liquid concentration C f or C f 'in strip material is represented by the following formula (4a) or (4b).
- C f ′ C r (when water is added) (4a)
- C f C r (when not added) (4b)
- the mass w r [kg] of potassium in the liquid content L r [kg] contained in the squeezed residue (hereinafter simply referred to as the squeezed residue K mass w r ) is expressed by the formulas (3) and (4a) or From (4b), it is represented by the following formula (5a) or (5b).
- w r C f ′ ⁇ L r (at the time of water addition)
- w r C f ⁇ L r (when not hydrolyzed)
- the residue K concentration D r is the mass of potassium per squeezed residual solid fraction S r [g] is expressed by the following equation (2) below.
- D r w r / S r (2a)
- the potassium contained in the squeezed residue is considered to be present in the water in the squeezed residue, but when the fuel pellets are produced, the water is evaporated by the dryer 8a and the potassium is the solid content of the squeezed residue. To remain. Therefore, this residue K concentration D r is indirectly represents the amount of potassium contained in the fuel pellets.
- a water absorption amount L a / F f ( ⁇ f '- ⁇ f) / (1- ⁇ f') ... (9)
- FIGS. 7A and 7B the case where it squeezes by adding water to a palm trunk fragment will be described with reference to FIGS. 7A and 7B.
- the graph shown in FIG. 8 shows the ratio D r / D f of the K concentration D r in the residue to the K concentration D f in the raw material on the vertical axis and the horizontal axis after water absorption, with the moisture content ⁇ f of the raw material fragment as a parameter.
- the water content is ⁇ f ′ .
- D r / D f is a function of the raw material moisture content ⁇ f ′ and the squeeze residue moisture content ⁇ r
- the value of D r / D f decreases as the value of the moisture content ⁇ f ′ after water absorption increases. That is, it is possible enough to increase the amount of water to be absorbed by the palm trunk fragments, to increase the amount of reduction in the residue K concentration D r for raw material K concentration D f. For example, as shown in FIG.
- FIG. 9 shows the concept showing the features at the time of turndown of the hydration process.
- FIG. 11 shows a palm trunk crushed piece crushed by the pulverizer 1 after being dried at 106 [° C.] for 2 hours, and classified by sieving, and mainly composed of soft tissue (hereinafter simply referred to as soft tissue).
- soft tissue The weight ratio in each classification range when visually separated into those mainly composed of vascular bundles (hereinafter simply referred to as vascular bundles).
- vascular bundles The weight ratio in each classification range when visually separated into those mainly composed of vascular bundles (hereinafter simply referred to as vascular bundles).
- FIG. 12 shows the particle size distribution of the entire palm trunk fragment according to FIG.
- FIG. 12 displayed the ratio of the weight reference
- FIG. 13 shows the particle size distribution for soft tissue and vascular bundles by means of cumulative sieving. Comparing the soft tissue and vascular bundle graphs in FIG. 13, the particle size distribution profiles are greatly different. This point will be discussed below. If it is ground by the same mechanism, it should have the same particle size distribution. Nevertheless, the fact that the two particle groups have different particle size distributions is produced by different crushing mechanisms.
- FIG. 13 shows that in the crushing of the palm trunk, the soft tissue, which is the group with the smaller particle size, originally has a particle size distribution, and has been defibrated by being peeled from the vascular bundle by crushing. Is shown.
- FIG. 14 is a diagram showing the particle size distribution of the entire palm trunk fragment and the particle size distribution based on the entire fragment of tissue.
- the total sieve under the vascular bundle with a particle size of 1.0 [mm] or less is 41.2 [%]
- the total sieve under the soft tissue is 35.6 [%].
- the remaining vascular bundles account for 5.6%.
- Table 1 shows the ratio of the soft tissue and vascular bundle contained in the palm trunk fragment and the water absorption rate.
- the water absorption rate represents the mass of water that can be absorbed per unit mass of the soft tissue or vascular bundle.
- the water absorption is determined by dividing the difference between the maximum water absorption weight and the dry weight of the soft tissue or vascular bundle by the dry weight.
- Table 2 shows the ratio of the water absorption of the palm trunk crushed pieces of each particle size range classified by sieving to the water absorption of the entire palm trunk.
- the amount of water absorbed by palm trunk fragments having a particle size of 1.0 [mm] or less accounts for 70.3 [%] of the total amount of water absorption.
- 81.8% of the whole soft tissue has a particle size of 1.0 [mm] or less, while a vascular bundle having a particle size of 1.0 [mm] or less is the total vascular bundle. Since it only accounts for 9.9 [%], it can be seen that the water absorption in the palm trunk fragment having a particle size of 1.0 [mm] or less is mainly due to soft tissue.
- the average water absorption of soft tissue is 7.0 times, and the ratio contained in the palm trunk fragment is 0.435 (43.5 [%]).
- 7.0 ⁇ 0.435 ⁇ 3.0 when these two numbers are multiplied, 7.0 ⁇ 0.435 ⁇ 3.0.
- This water absorption 8.3 is larger than the average water absorption 7.0 of the whole soft tissue, and shows that the water absorption is maintained without being crushed by the pulverization.
- the total size of the palm trunk crushed pieces is crushed so that the total sieve size is 35.6 [%] or more, the palm trunk is crushed.
- the soft tissue was disentangled, and as a result, the water absorbency of the soft tissue occupying 43.5 [%] of the palm trunk crushed pieces can be used. Therefore, the cumulative sieve under the particle diameter of 0.3 [mm] of the palm trunk fragment as shown in FIG. 13 is 5.4 [%] or less, and the particle diameter of the palm trunk fragment is 1.0 [mm]. If the total sieving is 35.6 [%] or more, the soft tissue absorbs the soft tissue in the palm trunk fragment and the soft tissue and vascular bundle are defibrated. Thus, water can be absorbed efficiently by utilizing the water absorption of soft tissue.
- FIG. 15 is a graph in which the particle size at which the integrated sieve is 50% is read from the graph and written based on the particle size distribution of the vascular bundle and the soft tissue in FIG. Specifically, the particle size at which the total sieving of the soft tissue is 50 [%] is 0.58 [mm], whereas the particle size at which the sieving of the vascular bundle is 50 [%] is 1 47 mm. Since 0.58 ⁇ 1.47 ⁇ 0.39, when comparing the particle diameters where the total sieving is 50 [%], the soft tissue is 39 [%] (0.39 times) the vascular bundle. Is the diameter.
- FIG. 10 shows the time-dependent change of the moisture content of the palm trunk after the immersion of the palm trunk fragment in 20 times the amount of water at a temperature of 25 [° C.]. The water content reaches equilibrium in 5 seconds after the start of immersion.
- the soft tissue when the palm trunk is pulverized to a soft tissue and vascularized state and then hydrated, the soft tissue quickly absorbs moisture from the soft tissue that is dominant in terms of water absorption. It can be penetrated to the inside. In this case, when water is added to the palm trunk fragment, water absorption can be completed in a very short time.
- the pulverizer 1 pulverizes the palm trunk into a powdery palm trunk fragment containing soft tissue and vascular bundles using a hammer mill or the like as described above. Palm trunk fragments obtained by pulverization are transported to the water machine 3.
- the amount of water Q per unit time of the palm trunk crushed pieces (hereinafter simply referred to as the amount of water Q per unit time) that is hydrated into the palm trunk crushed pieces by the water machine 3 is controlled by the control unit 4.
- FIG. 16 is an explanatory diagram of a method for controlling the amount of water Q per unit time by the control unit 4.
- initial conditions that are preconditions for controlling the amount of water are set. Specifically, as the conditions of the palm trunk fragments to be hydrated, the processing amount P [kg / h] per unit time of the palm trunk fragments, the raw material moisture content ⁇ f, and the K concentration D f in the raw materials And set.
- a squeezed residue moisture content ⁇ r and a target residue K concentration D rset (hereinafter simply referred to as a target K concentration D rset ) are set.
- These initial setting values are stored in a storage unit included in the control unit 4.
- the control unit 4 sets the amount of water Q 0 [kg / h] per unit unit time by the water machine 3 based on the initial conditions set in phase 1.
- Q 0 is calculated by the following formula (10).
- Q 0 P ( ⁇ f0 ′ ⁇ f ) / (1 ⁇ f0 ′ ) (10)
- ⁇ ′ f0 is the water content after hydrolysis under the initial conditions, and is calculated by Equation (11) below.
- ⁇ f0 ′ 1 / ⁇ D rset (1 ⁇ r ) / (D f ⁇ r ) +1) (11)
- the control unit 4 resets the water amount Q per unit time by the water machine 3 in the phase 3. Specifically, the amount of water Q per unit time is increased according to the following formula (12).
- Q i is the amount of water added per unit time immediately before
- Q i + 1 is the amount of water added per unit time after resetting
- ⁇ Q is the amount of water adjusted per unit time.
- Q i + 1 Q i + ⁇ Q (12)
- phase 4 the control unit 4 sprays or sprays water from the water machine 3 at a water amount per unit time of Q i + 1 .
- the control part 4 reads the outflow amount output from the detection part 5 in phase 5A.
- the control unit 4 determines whether or not the outflow amount is larger than 0 in the phase 6A, and when the outflow amount is larger than 0, the value of ⁇ Q is decreased to a negative value. And it returns to phase 3 and resets the amount of water added per unit time. In this way, when the outflow amount is larger than 0, the water amount Q per unit time gradually decreases, so that it is possible to prevent the cost of water resources.
- the control unit 4 may decrease the value of ⁇ Q when the outflow amount is larger than a predetermined amount.
- the detection part 5 may detect the presence or absence of the water
- DELTA
- the control unit 4 performs processing of phase 5B in parallel with phase 5A. Specifically, read the value of the analyzer 6 has output the measured residue K concentration D r. Then, the control unit 4 compares the value of the K concentration D r in the residue with the value of the target K concentration D rset in the phase 6B. When the value of the K concentration D r in the residue is larger than the target K concentration D rset , the water amount Q per unit time is reset so that the value of ⁇ Q becomes positive. When the value of the K concentration D r in the residue is smaller than the value of the target K concentration D rset , the water amount Q is reset per unit time so that the value of ⁇ Q becomes negative.
- the value of ⁇ Q is set to zero. Then, returning to phase 3, the water amount Q per unit time is reset. In this way, since the amount of water Q per unit time is adjusted so that the value of the K concentration D r in the residue approaches the value of the target K concentration D rset , the amount of water Q per unit time from the water machine 3 is exceeded. It can be set to a value with no shortage.
- the processing result of phase 6A has priority over the processing result of phase 6B.
- the control unit 4 makes the value of ⁇ Q negative. Reset water amount Q per unit time. This is because when the outflow amount is> 0 in Phase 6A, the palm trunk fragment does not absorb all of the water that has been added, so even if the amount of addition is further increased, the residue K concentration Dr is reduced. It is because it cannot be made to do.
- the amount of water added per unit time by the water machine 3 is feedback-controlled so that the value of the K concentration D r in the residue becomes the target K concentration D rset , so It can be carried out. Accordingly, it is possible to prevent water resources from being consumed due to excessive water addition while preventing the amount of water from being insufficient and preventing the K concentration D r in the residue from exceeding the target K concentration D rset . In this way, the hydration process can be made more efficient, and limited resources can be effectively utilized when, for example, palm trunks are processed in areas where water resources are not abundant.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Disintegrating Or Milling (AREA)
- Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)
Abstract
A palm trunk processing method comprises: a grinding step for defibrating and grinding palm trunks into soft structure and vascular bundles using a grinder; a hydration step for hydrating the palm trunks, which have been ground in the grinding step, with water in an amount equal to or less than the upper limit for the amount of moisture that the palm trunks can absorb; and a compression step for compressing the pulverized palm trunks, which have been hydrated in the hydration step.
Description
本発明は、オイルパーム幹(以下、パームトランクという)から液体燃料、固体燃料、肥料などを生成するための、パームトランクの処理方法およびパームトランクの処理装置に関する。
本願は、2016年12月22日に、日本に出願された特願2016-249473号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a palm trunk processing method and a palm trunk processing apparatus for generating liquid fuel, solid fuel, fertilizer, and the like from an oil palm trunk (hereinafter referred to as palm trunk).
This application claims priority based on Japanese Patent Application No. 2016-249473 filed in Japan on December 22, 2016, the contents of which are incorporated herein by reference.
本願は、2016年12月22日に、日本に出願された特願2016-249473号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a palm trunk processing method and a palm trunk processing apparatus for generating liquid fuel, solid fuel, fertilizer, and the like from an oil palm trunk (hereinafter referred to as palm trunk).
This application claims priority based on Japanese Patent Application No. 2016-249473 filed in Japan on December 22, 2016, the contents of which are incorporated herein by reference.
インドネシアやマレーシアではオイルパームの栽培が盛んであるが、オイルパームは油脂生産性を維持するために20年~25年ごとに伐採して再植される。伐採されたパームトランクは、水分が多く含まれるため木材としての価値に乏しく、大部分はプランテーション内で焼畑用として焼却処理されていた。ところが近年、環境保護の観点から野焼きが禁止されつつあるため、パームトランクを焼却処理せず、例えばパームトランクから液体燃料や固体燃料を得る技術が注目されている。
一方、パームトランクから得られた固体燃料にはカリウムなどのアルカリ金属(以下、単に「カリウムなど」という)が含有されており、この固体燃料をボイラーなどで燃焼させると、カリウムなどを由来とする灰が発生してボイラー内に付着し、いわゆるスラッギングなどが発生する場合があった。
そこで、例えば下記特許文献1では、パームトランクを破砕後に、水分量が35%以下となるまでパームトランクを圧搾してカリウムなどのアルカリ分を除去する技術が開示されている。
また、例えば下記特許文献2では、パームトランクを一度搾汁した後に加水し、再度搾汁することによって、カリウムなどのアルカリ分除去をより効果的に行う技術が開示されている。 In Indonesia and Malaysia, oil palm is actively cultivated, but oil palm is cut and replanted every 20-25 years to maintain oil productivity. The harvested palm trunks contain a lot of moisture and thus have little value as timber. Most of them were incinerated for burning in plantations. However, in recent years, field burning has been prohibited from the viewpoint of environmental protection, and therefore, a technique for obtaining liquid fuel or solid fuel from a palm trunk, for example, without incineration of the palm trunk has attracted attention.
On the other hand, solid fuel obtained from palm trunk contains alkali metal such as potassium (hereinafter simply referred to as “potassium”). When this solid fuel is burned in a boiler or the like, it is derived from potassium or the like. Ashes were generated and adhered to the boiler, so-called slugging or the like sometimes occurred.
Therefore, for example,Patent Document 1 below discloses a technique for removing alkali components such as potassium by squeezing the palm trunk until the water content is 35% or less after crushing the palm trunk.
Further, for example,Patent Document 2 below discloses a technique for more effectively removing alkali components such as potassium by squeezing a palm trunk once, then adding water and squeezing again.
一方、パームトランクから得られた固体燃料にはカリウムなどのアルカリ金属(以下、単に「カリウムなど」という)が含有されており、この固体燃料をボイラーなどで燃焼させると、カリウムなどを由来とする灰が発生してボイラー内に付着し、いわゆるスラッギングなどが発生する場合があった。
そこで、例えば下記特許文献1では、パームトランクを破砕後に、水分量が35%以下となるまでパームトランクを圧搾してカリウムなどのアルカリ分を除去する技術が開示されている。
また、例えば下記特許文献2では、パームトランクを一度搾汁した後に加水し、再度搾汁することによって、カリウムなどのアルカリ分除去をより効果的に行う技術が開示されている。 In Indonesia and Malaysia, oil palm is actively cultivated, but oil palm is cut and replanted every 20-25 years to maintain oil productivity. The harvested palm trunks contain a lot of moisture and thus have little value as timber. Most of them were incinerated for burning in plantations. However, in recent years, field burning has been prohibited from the viewpoint of environmental protection, and therefore, a technique for obtaining liquid fuel or solid fuel from a palm trunk, for example, without incineration of the palm trunk has attracted attention.
On the other hand, solid fuel obtained from palm trunk contains alkali metal such as potassium (hereinafter simply referred to as “potassium”). When this solid fuel is burned in a boiler or the like, it is derived from potassium or the like. Ashes were generated and adhered to the boiler, so-called slugging or the like sometimes occurred.
Therefore, for example,
Further, for example,
パームトランクはバイオマス原料であり、伐採箇所などの違いにより原料中におけるカリウムなどのアルカリ成分の組成は大きく変動するので、原料であるパームトランク中の組成に余裕をみて高いアルカリ組成値を前提に設計せざるを得なかった。しかしながら特許文献1の方法で、搾汁残渣に含まれる高濃度のカリウムを所望の含有量まで低下させるためには高い圧搾の圧力が必要になり、搾汁機の動力の増加につながっていた。
同様の草本系アルカリの除去方法として特許文献2が提示されている。しかし、この方法はカリウムを加水により溶出しやすくするために、細胞壁を破壊させる必要があることから、加水の前に搾汁を行う必要があり、2回搾汁を行うことになり、これも多大な動力が必要であった。
また、特許文献3及び4のように、搾汁前にパームトランクを水に溶出させてカリウムを溶出させる方法も提示されているが、パームトランク中のカリウム濃度があまり高くない場合においても、一旦、パームトランクの最大含水率まで吸水させた後に、溶出液中のカリウム濃度をパームトランク内における液中カリウム濃度以下になるようにしてカリウムを溶出させるので、大量の水分添加を必要とするだけでなく、必然的に大量の廃液が発生するという問題があった。このため、カリウム溶出のための溶出槽や加温装置が必要となるだけでなく、給水設備や廃液処理装置も必要となり設備全体が大掛かりなものとなっていた。 Palm trunk is a biomass raw material, and the composition of alkali components such as potassium in the raw material varies greatly depending on the logging location, etc., so design with a high alkali composition value with a margin in the composition of the raw material palm trunk I had to do it. However, in order to reduce the high concentration potassium contained in the squeezed residue to the desired content by the method ofPatent Document 1, a high squeezing pressure is required, leading to an increase in the power of the squeezing machine.
Patent Document 2 is proposed as a similar herbic alkali removal method. However, this method needs to destroy the cell wall to facilitate the elution of potassium by hydration, so it is necessary to squeeze before hydration, which means squeezing twice, A lot of power was needed.
In addition, as disclosed in Patent Documents 3 and 4, a method of eluting potassium by leaching the palm trunk into water before squeezing is also presented, but even when the potassium concentration in the palm trunk is not so high, After the water is absorbed up to the maximum moisture content of the palm trunk, the potassium concentration in the eluate is made equal to or less than the potassium concentration in the palm trunk so that the potassium is eluted. Inevitably, a large amount of waste liquid was generated. For this reason, not only an elution tank and a heating device for elution of potassium are required, but also a water supply facility and a waste liquid treatment device are necessary, which makes the entire facility large.
同様の草本系アルカリの除去方法として特許文献2が提示されている。しかし、この方法はカリウムを加水により溶出しやすくするために、細胞壁を破壊させる必要があることから、加水の前に搾汁を行う必要があり、2回搾汁を行うことになり、これも多大な動力が必要であった。
また、特許文献3及び4のように、搾汁前にパームトランクを水に溶出させてカリウムを溶出させる方法も提示されているが、パームトランク中のカリウム濃度があまり高くない場合においても、一旦、パームトランクの最大含水率まで吸水させた後に、溶出液中のカリウム濃度をパームトランク内における液中カリウム濃度以下になるようにしてカリウムを溶出させるので、大量の水分添加を必要とするだけでなく、必然的に大量の廃液が発生するという問題があった。このため、カリウム溶出のための溶出槽や加温装置が必要となるだけでなく、給水設備や廃液処理装置も必要となり設備全体が大掛かりなものとなっていた。 Palm trunk is a biomass raw material, and the composition of alkali components such as potassium in the raw material varies greatly depending on the logging location, etc., so design with a high alkali composition value with a margin in the composition of the raw material palm trunk I had to do it. However, in order to reduce the high concentration potassium contained in the squeezed residue to the desired content by the method of
In addition, as disclosed in
本発明はこのような事情を考慮してなされたものであり、パームトランク中のカリウム濃度が変動して高濃度になる場合においても、固体燃料として許容される木質ペレット並みのカリウム濃度以下にすることができ、しかも大量の給水や廃液を必要とせず、簡易でかつ動力の増加を抑えたパームトランクの処理装置と処理方法を提供することを目的とする。
The present invention has been made in consideration of such circumstances, and even when the potassium concentration in the palm trunk fluctuates and becomes high, the potassium concentration is not more than that of wood pellets allowed as a solid fuel. An object of the present invention is to provide a processing apparatus and a processing method for a palm trunk that can be performed and that does not require a large amount of water supply or waste liquid and that is simple and suppresses an increase in power.
上記課題を解決するにあたり本発明者らは鋭意研究の結果、パームトランク中のカリウムの殆どがパームトランク中の水分中に存在しており、原料パームトランクの含水率は概ね60~75[%]の範囲内にあって、加水により含水率を最大で85[%]まで高めることができることを突き止めた。そして、本発明者らは事前処理として、パームトランクが飽和する範囲内まで水分を添加しパームトランク内の液中カリウム濃度を低下させてから、圧搾を行うことで、搾汁残渣中のカリウム濃度を低減させるプロセスを着想するに至った。
As a result of diligent research, the present inventors have found that most of the potassium in the palm trunk is present in the moisture in the palm trunk, and the moisture content of the raw palm trunk is approximately 60 to 75 [%]. It was found that the water content can be increased up to 85 [%] by adding water. And, as a pretreatment, the present inventors add water to the range where the palm trunk is saturated to reduce the potassium concentration in the liquid in the palm trunk, and then perform the squeezing so that the potassium concentration in the juice residue It came to come up with the process of reducing.
上記課題を解決するために、本発明のパームトランクの第1の態様に係る処理方法は、パームトランクを、粉砕機を用いて柔組織と維管束とに解繊して粉砕する粉砕工程と、前記粉砕工程で粉砕されたパームトランクにその吸水可能な水分量の上限値以下の範囲で加水する加水工程と、前記加水工程で加水された粉状のパームトランクを圧搾する圧搾工程と、を有することを特徴とする。
In order to solve the above-mentioned problem, the processing method according to the first aspect of the palm trunk of the present invention includes a pulverizing step in which the palm trunk is defibrated and pulverized into a soft tissue and a vascular bundle using a pulverizer, A hydration step of adding water to the palm trunk pulverized in the pulverization step within a range equal to or lower than the upper limit of the amount of water that can be absorbed, and a pressing step of squeezing the powdered palm trunk hydrated in the hydration step. It is characterized by that.
上記第1の態様によれば、粉砕機によりパームトランク原木を維管束と粒径の細かい柔組織とに解繊してから、パームトランクが吸水できる範囲内での水分を添加させて、パームトランク内の液中カリウム濃度を低い状態にした後に、圧搾することで搾汁残渣中のカリウム濃度を低く抑えることができる。
パームトランクへの加水はパームトランクが吸水できる範囲内での水分の添加であるので、加水量を最小限に抑えられるだけでなく余分な廃液も発生しない。さらに、この加水は粒径の細かな柔組織に加水できるので吸水性と吸水速度が向上し、短時間での加水工程を奏功させることができる。
また、加水後に搾汁を行う本方法は、加水せずに搾汁するプロセスと同じ搾汁残渣含水率まで搾汁を行う場合においても、搾汁における圧搾動力が圧搾されるパームトランクの含水率が低くなった段階での圧搾領域で最も大きくなることから、搾汁機に供給されるパームトランク含水率の加水による増加は搾汁機の動力の上昇をもたらさない。 According to the first aspect, the palm trunk log is defibrillated into a vascular bundle and a soft tissue having a small particle diameter by a pulverizer, and then water is added within a range in which the palm trunk can absorb water. The potassium concentration in the squeezed residue can be kept low by squeezing after making the potassium concentration in the liquid low.
Since the water added to the palm trunk is the addition of water within the range that the palm trunk can absorb water, not only the amount of water can be minimized, but also no waste liquid is generated. Furthermore, since this hydration can be made into a soft tissue having a fine particle size, the water absorption and the water absorption speed are improved, and the hydration process can be accomplished in a short time.
In addition, the present method of squeezing after hydration is the moisture content of the palm trunk where the squeezing power in squeezing is squeezed even when squeezing to the same squeezed residue moisture content as in the process of squeezing without hydration Therefore, the increase in the water content of the palm trunk supplied to the squeeze machine due to hydration does not increase the power of the squeeze machine.
パームトランクへの加水はパームトランクが吸水できる範囲内での水分の添加であるので、加水量を最小限に抑えられるだけでなく余分な廃液も発生しない。さらに、この加水は粒径の細かな柔組織に加水できるので吸水性と吸水速度が向上し、短時間での加水工程を奏功させることができる。
また、加水後に搾汁を行う本方法は、加水せずに搾汁するプロセスと同じ搾汁残渣含水率まで搾汁を行う場合においても、搾汁における圧搾動力が圧搾されるパームトランクの含水率が低くなった段階での圧搾領域で最も大きくなることから、搾汁機に供給されるパームトランク含水率の加水による増加は搾汁機の動力の上昇をもたらさない。 According to the first aspect, the palm trunk log is defibrillated into a vascular bundle and a soft tissue having a small particle diameter by a pulverizer, and then water is added within a range in which the palm trunk can absorb water. The potassium concentration in the squeezed residue can be kept low by squeezing after making the potassium concentration in the liquid low.
Since the water added to the palm trunk is the addition of water within the range that the palm trunk can absorb water, not only the amount of water can be minimized, but also no waste liquid is generated. Furthermore, since this hydration can be made into a soft tissue having a fine particle size, the water absorption and the water absorption speed are improved, and the hydration process can be accomplished in a short time.
In addition, the present method of squeezing after hydration is the moisture content of the palm trunk where the squeezing power in squeezing is squeezed even when squeezing to the same squeezed residue moisture content as in the process of squeezing without hydration Therefore, the increase in the water content of the palm trunk supplied to the squeeze machine due to hydration does not increase the power of the squeeze machine.
本発明の第2の態様に係るパームトランクの処理方法は、前記粉砕工程で粉砕されたパームトランクを乾燥後に篩にかけた際の重量基準の積算篩下が、粒径0.3[mm]において5.4[%]以下である。
In the method for treating a palm trunk according to the second aspect of the present invention, when the palm trunk pulverized in the pulverization step is sieved after drying, the weight-based integrated sieving has a particle size of 0.3 [mm]. It is 5.4 [%] or less.
この場合、パームトランクを粉砕する際に、水分を吸収しやすく細かい柔組織を壊されていない状態とすることができるため、粉砕されたパームトランクの吸水性を低下させることがなく、加水工程を確実に奏功させることができる。
In this case, when pulverizing the palm trunk, it is easy to absorb moisture, and the fine soft tissue can be in a state that has not been broken. It can be surely successful.
本発明の第3の態様に係るパームトランクの処理方法は、前記加水工程において、粉砕されたパームトランクに散水または噴霧して加水する。
In the method for treating a palm trunk according to the third aspect of the present invention, the pulverized palm trunk is sprinkled or sprayed to add water in the hydration step.
この場合、例えばベルトコンベアなどによる搬送中に、パームトランクに加水することができるため、加水工程の効率化を確実に奏功させることができる。
In this case, for example, water can be added to the palm trunk during conveyance by a belt conveyor or the like, so that the efficiency of the hydration process can be reliably achieved.
本発明の第4の態様に係るパームトランクの処理方法は、加水工程でパームトランクに吸収されなかった水分の有無または水分量を検出し、該検出結果に基づいて、パームトランクへの加水量を制御する。
The method for treating a palm trunk according to the fourth aspect of the present invention detects the presence or amount of moisture that has not been absorbed by the palm trunk in the hydration step, and determines the amount of hydration to the palm trunk based on the detection result. Control.
この場合、パームトランクに過剰に加水することを防止し、加水工程の効率化を確実に奏功させることができる。
In this case, it is possible to prevent the palm trunk from being excessively hydrated and to ensure the efficiency of the hydration process.
本発明の第5の態様に係るパームトランクの処理方法は、前記加水工程におけるパームトランクへの加水量は、パームトランクの質量に対して1.7倍以下である。
In the palm trunk treatment method according to the fifth aspect of the present invention, the amount of water added to the palm trunk in the hydration step is 1.7 times or less with respect to the mass of the palm trunk.
この場合、パームトランクへの加水量を、パームトランクが吸水可能な水分量の上限値以下とすることにより、パームトランクに過剰に加水することを防止し、加水工程の効率化を確実に奏功させることができる。
In this case, by setting the amount of water added to the palm trunk below the upper limit of the amount of water that can be absorbed by the palm trunk, it is prevented from excessively adding water to the palm trunk, and the efficiency of the hydration process is reliably achieved. be able to.
本発明の第6の態様に係るパームトランクの処理方法は、前記加水工程におけるパームトランクへの加水量を、前記圧搾工程で得られた搾汁残渣が含有するカリウムの含有率または該搾汁残渣のアルカリ濃度に基づいて制御する。
The processing method of the palm trunk which concerns on the 6th aspect of this invention is the content rate of the potassium which the squeeze residue obtained by the said pressing process contains the amount of hydration to the palm trunk in the said hydration process, or this squeeze residue Control based on the alkali concentration.
この場合、搾汁残渣に含有されるカリウムの含有率などに基づいて加水量を制御するため、パームトランクに過不足なく加水して、加水工程の効率化を確実に奏功させることができる。
In this case, since the amount of hydration is controlled based on the content of potassium contained in the squeezed residue, water is added to the palm trunk without excess and deficiency, and the efficiency of the hydration process can be reliably achieved.
また、本発明の第7の態様に係るパームトランクの処理装置は、上記パームトランクの処理方法を実施するパームトランクの処理装置であって、パームトランクを柔組織と維管束とに解繊して粉砕する粉砕機と、前記粉砕機によって粉砕されたパームトランクに加水する加水機と、前記加水機により加水されたパームトランクを圧搾する搾汁機と、を備えることを特徴とする。
A palm trunk processing apparatus according to a seventh aspect of the present invention is a palm trunk processing apparatus for performing the palm trunk processing method, wherein the palm trunk is fibrillated into soft tissue and vascular bundles. A pulverizer for pulverization, a hydrator for adding water to the palm trunk pulverized by the pulverizer, and a squeezer for pressing the palm trunk hydrated by the hydrator are provided.
上記第7の態様に係るパームトランクの処理装置によれば、粉砕機によりパームトランク原木を維管束と粒径の細かい柔組織とに解繊してから、パームトランクが吸水できる範囲内での水分を添加させて、パームトランク内の液中カリウム濃度を低い状態にした後に、圧搾することで搾汁残渣中のカリウム濃度を低く抑えることができる。
パームトランクへの加水はパームトランクが吸水できる範囲内での水分の添加であるので、加水量を最小限に抑えられるだけでなく余分の廃液も発生しない。さらに、この加水は粒径の細かな柔組織に加水できるので吸水性と吸水速度が向上し、短時間での加水工程を奏功させることができる。
また、加水後に搾汁を行う本方法は、加水せずに搾汁するプロセスと同じ搾汁残渣含水率まで搾汁を行う場合においても、搾汁における圧搾動力が圧搾されるパームトランクの含水率が低くなった段階での圧搾領域で最も大きくなることから、搾汁機に供給されるパームトランク含水率の加水による増加は搾汁機の動力の上昇をもたらさない。 According to the palm trunk processing apparatus of the seventh aspect, moisture in a range in which the palm trunk can absorb water after pulverizing the palm trunk log into a vascular bundle and a soft tissue having a small particle size by a pulverizer. Is added to make the potassium concentration in the palm trunk low, and then the potassium concentration in the squeezed residue can be kept low by pressing.
The water added to the palm trunk is the addition of water within the range that the palm trunk can absorb water, so that the amount of water added can be minimized and no extra waste liquid is generated. Furthermore, since this hydration can be made into a soft tissue having a fine particle size, the water absorption and the water absorption speed are improved, and the hydration process can be accomplished in a short time.
In addition, the present method of squeezing after hydration is the moisture content of the palm trunk where the squeezing power in squeezing is squeezed even when squeezing to the same squeezed residue moisture content as in the process of squeezing without hydration Therefore, the increase in the water content of the palm trunk supplied to the squeeze machine due to hydration does not increase the power of the squeeze machine.
パームトランクへの加水はパームトランクが吸水できる範囲内での水分の添加であるので、加水量を最小限に抑えられるだけでなく余分の廃液も発生しない。さらに、この加水は粒径の細かな柔組織に加水できるので吸水性と吸水速度が向上し、短時間での加水工程を奏功させることができる。
また、加水後に搾汁を行う本方法は、加水せずに搾汁するプロセスと同じ搾汁残渣含水率まで搾汁を行う場合においても、搾汁における圧搾動力が圧搾されるパームトランクの含水率が低くなった段階での圧搾領域で最も大きくなることから、搾汁機に供給されるパームトランク含水率の加水による増加は搾汁機の動力の上昇をもたらさない。 According to the palm trunk processing apparatus of the seventh aspect, moisture in a range in which the palm trunk can absorb water after pulverizing the palm trunk log into a vascular bundle and a soft tissue having a small particle size by a pulverizer. Is added to make the potassium concentration in the palm trunk low, and then the potassium concentration in the squeezed residue can be kept low by pressing.
The water added to the palm trunk is the addition of water within the range that the palm trunk can absorb water, so that the amount of water added can be minimized and no extra waste liquid is generated. Furthermore, since this hydration can be made into a soft tissue having a fine particle size, the water absorption and the water absorption speed are improved, and the hydration process can be accomplished in a short time.
In addition, the present method of squeezing after hydration is the moisture content of the palm trunk where the squeezing power in squeezing is squeezed even when squeezing to the same squeezed residue moisture content as in the process of squeezing without hydration Therefore, the increase in the water content of the palm trunk supplied to the squeeze machine due to hydration does not increase the power of the squeeze machine.
上記第1の態様に係るパームトランクの処理方法によれば、パームトランクとして吸水できる範囲内で加水させるので、加水量を抑えられるだけでなく、余分な廃液も発生しない。さらに、パームトランクへの吸水によってパームトランク内の液中カリウム濃度を低い状態にした後に圧搾し、搾汁残渣中のカリウム濃度を低く抑えることができるので、パームトランクに加水せずに圧搾して所定濃度までカリウムを低減する場合と比較して、搾汁機の動力の増加を防ぐことができる。
バイオマス原料であるパームトランク中のカリウムなどのアルカリ濃度は大きく変動するので、たとえばパームトランク原料中のカリウムなどのアルカリ濃度が1.5[%-dry]と高濃度になった場合においても、パームトランクに加水してから圧搾することにより搾汁機の動力の増加を防ぎつつ、搾汁残渣のカリウム濃度を低く抑えることができる簡易なパームトランクの処理方法を提供することができる。
上記第2の態様に係るパームトランクの処理方法によれば、パームトランクを粉砕する際に、水分を吸収しやすく細かい柔組織を壊さず、かつ柔組織と維管束とに解繊した状態とすることができるため、粉砕されたパームトランクの吸水性と吸水速度を向上させることが可能となり、加水工程の効率化を確実に奏功させることができる。
上記第3の態様に係るパームトランクの処理方法によれば、例えばベルトコンベアなどによる搬送中に、パームトランクに加水することができるため、加水工程の効率化を確実に奏功させることができる。
上記第4の態様に係るパームトランクの処理方法によれば、パームトランクに過剰に加水することを防止し、加水工程の効率化を確実に奏功させることができる。
上記第5の態様に係るパームトランクの処理方法によれば、パームトランクへの加水量を、パームトランクが吸水可能な水分量の上限値以下とすることにより、パームトランクに過剰に加水することを防止し、加水工程の効率化を確実に奏功させることができる。
上記第6の態様に係るパームトランクの処理方法によれば、搾汁残渣に含有されるカリウムなどの含有率などに基づいて加水量を制御するため、パームトランクに過不足なく加水することができる、これにより、例えばパームトランク中のカリウムなどのアルカリ濃度が低下した場合に、前処理で必要以上にカリウム濃度を低減させることなく、所定の搾汁残渣カリウム濃度にすることができる。
上記第7の態様に係るパームトランクの処理装置によれば、カリウムが吸水できる範囲内で加水させるので余分な廃液を発生させることがなく、さらに、パームトランクへの吸水によってパームトランク内の液中カリウム濃度を低い状態にした後に圧搾するから、搾汁残渣中のカリウム濃度を低く抑えることができる。また、パームトランクに加水せずに圧搾して所定濃度までカリウムを低減する場合と比較して、搾汁機の摩耗や動力の増加を防ぐことができる。 According to the method for treating a palm trunk according to the first aspect, water is added within a range where water can be absorbed as the palm trunk, so that not only the amount of water can be suppressed but also excess waste liquid is not generated. Furthermore, since the potassium concentration in the liquid in the palm trunk can be reduced by absorbing water into the palm trunk and then squeezed, the potassium concentration in the juice residue can be kept low. Compared with the case where potassium is reduced to a predetermined concentration, an increase in the power of the juicer can be prevented.
Since the alkali concentration of potassium or the like in the palm trunk, which is a biomass raw material, varies greatly, for example, even when the alkali concentration of potassium or the like in the palm trunk raw material is as high as 1.5 [% -dry] By squeezing after adding water to the trunk, it is possible to provide a simple palm trunk treatment method that can keep the potassium concentration of the squeezed residue low while preventing increase in power of the squeezer.
According to the method for treating a palm trunk according to the second aspect, when the palm trunk is pulverized, it is easy to absorb moisture and does not break the fine soft tissue, and is defibrated into the soft tissue and the vascular bundle. Therefore, the water absorption and water absorption speed of the pulverized palm trunk can be improved, and the efficiency of the hydration process can be reliably achieved.
According to the palm trunk processing method according to the third aspect, for example, water can be added to the palm trunk during conveyance by a belt conveyor or the like, so that the efficiency of the hydration process can be reliably achieved.
According to the method for treating a palm trunk according to the fourth aspect, it is possible to prevent the palm trunk from being excessively hydrated and to ensure the efficiency of the hydration process.
According to the method for treating a palm trunk according to the fifth aspect, the amount of water added to the palm trunk is less than the upper limit of the amount of water that can be absorbed by the palm trunk, thereby excessively adding water to the palm trunk. It can prevent and make it possible to make the hydration process more efficient.
According to the method for treating a palm trunk according to the sixth aspect, since the amount of water is controlled based on the content of potassium or the like contained in the squeezed residue, the palm trunk can be watered without excess or deficiency. Thus, for example, when the alkali concentration such as potassium in the palm trunk is lowered, the pre-treatment can reduce the potassium concentration more than necessary, and the predetermined squeezed residue potassium concentration can be obtained.
According to the treatment apparatus for a palm trunk according to the seventh aspect, since water is added within a range in which potassium can absorb water, no extra waste liquid is generated, and further, water in the palm trunk is absorbed by water absorption into the palm trunk. Since it squeezes after making a potassium concentration into a low state, the potassium concentration in a squeezed residue can be restrained low. Moreover, compared with the case where it squeezes without adding water to a palm trunk and reduces potassium to a predetermined | prescribed density | concentration, the abrasion of a squeeze machine and the increase in power can be prevented.
バイオマス原料であるパームトランク中のカリウムなどのアルカリ濃度は大きく変動するので、たとえばパームトランク原料中のカリウムなどのアルカリ濃度が1.5[%-dry]と高濃度になった場合においても、パームトランクに加水してから圧搾することにより搾汁機の動力の増加を防ぎつつ、搾汁残渣のカリウム濃度を低く抑えることができる簡易なパームトランクの処理方法を提供することができる。
上記第2の態様に係るパームトランクの処理方法によれば、パームトランクを粉砕する際に、水分を吸収しやすく細かい柔組織を壊さず、かつ柔組織と維管束とに解繊した状態とすることができるため、粉砕されたパームトランクの吸水性と吸水速度を向上させることが可能となり、加水工程の効率化を確実に奏功させることができる。
上記第3の態様に係るパームトランクの処理方法によれば、例えばベルトコンベアなどによる搬送中に、パームトランクに加水することができるため、加水工程の効率化を確実に奏功させることができる。
上記第4の態様に係るパームトランクの処理方法によれば、パームトランクに過剰に加水することを防止し、加水工程の効率化を確実に奏功させることができる。
上記第5の態様に係るパームトランクの処理方法によれば、パームトランクへの加水量を、パームトランクが吸水可能な水分量の上限値以下とすることにより、パームトランクに過剰に加水することを防止し、加水工程の効率化を確実に奏功させることができる。
上記第6の態様に係るパームトランクの処理方法によれば、搾汁残渣に含有されるカリウムなどの含有率などに基づいて加水量を制御するため、パームトランクに過不足なく加水することができる、これにより、例えばパームトランク中のカリウムなどのアルカリ濃度が低下した場合に、前処理で必要以上にカリウム濃度を低減させることなく、所定の搾汁残渣カリウム濃度にすることができる。
上記第7の態様に係るパームトランクの処理装置によれば、カリウムが吸水できる範囲内で加水させるので余分な廃液を発生させることがなく、さらに、パームトランクへの吸水によってパームトランク内の液中カリウム濃度を低い状態にした後に圧搾するから、搾汁残渣中のカリウム濃度を低く抑えることができる。また、パームトランクに加水せずに圧搾して所定濃度までカリウムを低減する場合と比較して、搾汁機の摩耗や動力の増加を防ぐことができる。 According to the method for treating a palm trunk according to the first aspect, water is added within a range where water can be absorbed as the palm trunk, so that not only the amount of water can be suppressed but also excess waste liquid is not generated. Furthermore, since the potassium concentration in the liquid in the palm trunk can be reduced by absorbing water into the palm trunk and then squeezed, the potassium concentration in the juice residue can be kept low. Compared with the case where potassium is reduced to a predetermined concentration, an increase in the power of the juicer can be prevented.
Since the alkali concentration of potassium or the like in the palm trunk, which is a biomass raw material, varies greatly, for example, even when the alkali concentration of potassium or the like in the palm trunk raw material is as high as 1.5 [% -dry] By squeezing after adding water to the trunk, it is possible to provide a simple palm trunk treatment method that can keep the potassium concentration of the squeezed residue low while preventing increase in power of the squeezer.
According to the method for treating a palm trunk according to the second aspect, when the palm trunk is pulverized, it is easy to absorb moisture and does not break the fine soft tissue, and is defibrated into the soft tissue and the vascular bundle. Therefore, the water absorption and water absorption speed of the pulverized palm trunk can be improved, and the efficiency of the hydration process can be reliably achieved.
According to the palm trunk processing method according to the third aspect, for example, water can be added to the palm trunk during conveyance by a belt conveyor or the like, so that the efficiency of the hydration process can be reliably achieved.
According to the method for treating a palm trunk according to the fourth aspect, it is possible to prevent the palm trunk from being excessively hydrated and to ensure the efficiency of the hydration process.
According to the method for treating a palm trunk according to the fifth aspect, the amount of water added to the palm trunk is less than the upper limit of the amount of water that can be absorbed by the palm trunk, thereby excessively adding water to the palm trunk. It can prevent and make it possible to make the hydration process more efficient.
According to the method for treating a palm trunk according to the sixth aspect, since the amount of water is controlled based on the content of potassium or the like contained in the squeezed residue, the palm trunk can be watered without excess or deficiency. Thus, for example, when the alkali concentration such as potassium in the palm trunk is lowered, the pre-treatment can reduce the potassium concentration more than necessary, and the predetermined squeezed residue potassium concentration can be obtained.
According to the treatment apparatus for a palm trunk according to the seventh aspect, since water is added within a range in which potassium can absorb water, no extra waste liquid is generated, and further, water in the palm trunk is absorbed by water absorption into the palm trunk. Since it squeezes after making a potassium concentration into a low state, the potassium concentration in a squeezed residue can be restrained low. Moreover, compared with the case where it squeezes without adding water to a palm trunk and reduces potassium to a predetermined | prescribed density | concentration, the abrasion of a squeeze machine and the increase in power can be prevented.
まず、本実施形態に係るパームトランクの処理方法を実施する、パームトランクの処理装置10について説明する。
図1に示すように、処理装置10は、粉砕機1と、加水機3と、検出部5と、制御部4と、搾汁機2と、分析器6と、液体燃料生成部7と、固体燃料生成部8と、を有する。 First, the palmtrunk processing apparatus 10 which implements the palm trunk processing method according to the present embodiment will be described.
As shown in FIG. 1, theprocessing apparatus 10 includes a pulverizer 1, a water mixer 3, a detector 5, a controller 4, a juicer 2, an analyzer 6, a liquid fuel generator 7, And a solid fuel generation unit 8.
図1に示すように、処理装置10は、粉砕機1と、加水機3と、検出部5と、制御部4と、搾汁機2と、分析器6と、液体燃料生成部7と、固体燃料生成部8と、を有する。 First, the palm
As shown in FIG. 1, the
粉砕機1は、パームトランクを乾燥後における篩い分け分級による粒径基準で0.1~6.0[mm]の粉末状に粉砕する。加水機3は、粉末状に粉砕されたパームトランク(以下、パームトランク破砕片と記す)に対して散水または噴霧により加水して、パームトランク破砕片に水分を吸収させる。なお、以降の説明ではパームトランク破砕片に水を添加することを「加水」といい、加水された水分をパームトランク破砕片が吸収することを「吸水」と記す。
検出部5は、パームトランク破砕片に加水された水分のうち、吸水されなかった水分を検出する。制御部4は、加水機3がパームトランク破砕片に加水する水分量を制御する。
搾汁機2は、吸水したパームトランク破砕片を圧搾して、搾汁液と搾汁残渣とに分離する。分析器6は、搾汁残渣が含有するカリウムの含有率または搾汁残渣のアルカリ濃度を検出する。液体燃料生成部7は、搾汁液からエタノールなどの液体燃料を生成する。固体燃料生成部8は、搾汁残渣から燃料ペレットなどの固体燃料を生成する。なお、搾汁液にはカリウムなどの養分が含まれるため、搾汁液から肥料などを生成してもよい。 Thepulverizer 1 pulverizes the palm trunk into a powder form of 0.1 to 6.0 [mm] on the basis of the particle size by sieving classification after drying. The water machine 3 hydrates the palm trunk (hereinafter referred to as palm trunk crushed pieces) pulverized into a powder form by watering or spraying to cause the palm trunk crushed pieces to absorb moisture. In the following description, adding water to the palm trunk crushed piece is referred to as “hydrolysis”, and the palm trunk crushed piece absorbing water is referred to as “water absorption”.
Thedetection part 5 detects the water | moisture content which was not absorbed in the water | moisture content watered by the palm trunk fragment. The control unit 4 controls the amount of water that the water machine 3 adds to the palm trunk fragment.
Thesqueezer 2 squeezes the water-sunk palm trunk fragment and separates it into a squeezed juice and a squeezed residue. The analyzer 6 detects the content rate of potassium contained in the squeezed residue or the alkali concentration of the squeezed residue. The liquid fuel production | generation part 7 produces | generates liquid fuels, such as ethanol, from squeezed liquid. The solid fuel production | generation part 8 produces | generates solid fuels, such as a fuel pellet, from squeezed residue. In addition, since nutrients, such as potassium, are contained in juice, you may produce | generate a fertilizer etc. from juice.
検出部5は、パームトランク破砕片に加水された水分のうち、吸水されなかった水分を検出する。制御部4は、加水機3がパームトランク破砕片に加水する水分量を制御する。
搾汁機2は、吸水したパームトランク破砕片を圧搾して、搾汁液と搾汁残渣とに分離する。分析器6は、搾汁残渣が含有するカリウムの含有率または搾汁残渣のアルカリ濃度を検出する。液体燃料生成部7は、搾汁液からエタノールなどの液体燃料を生成する。固体燃料生成部8は、搾汁残渣から燃料ペレットなどの固体燃料を生成する。なお、搾汁液にはカリウムなどの養分が含まれるため、搾汁液から肥料などを生成してもよい。 The
The
The
次に、液体燃料生成部7について説明する。液体燃料生成部7は、搾汁液タンク7aと、発酵槽7bと、蒸留器7cと、製品タンク7dと、を有する。
搾汁液タンク7aは、搾汁液を貯蔵して、硝酸を添加・混合する。搾汁液は硝酸を添加・混合されることにより、pHが調整されて発酵の効率が高まる。搾汁液タンク7a内の搾汁液の温度は、例えば50[℃]以上に管理され、これにより搾汁液に含まれる雑菌が死滅してさらに発酵効率が高まる。 Next, theliquid fuel generator 7 will be described. The liquid fuel production | generation part 7 has the squeezed liquid tank 7a, the fermenter 7b, the distiller 7c, and the product tank 7d.
The squeezedliquid tank 7a stores the squeezed liquid, and adds and mixes nitric acid. By adding and mixing nitric acid to the juice, the pH is adjusted and the efficiency of fermentation is increased. The temperature of the squeezed liquid in the squeezed liquid tank 7a is managed to be, for example, 50 [° C.] or more, and thereby, germs contained in the squeezed liquid are killed and the fermentation efficiency is further increased.
搾汁液タンク7aは、搾汁液を貯蔵して、硝酸を添加・混合する。搾汁液は硝酸を添加・混合されることにより、pHが調整されて発酵の効率が高まる。搾汁液タンク7a内の搾汁液の温度は、例えば50[℃]以上に管理され、これにより搾汁液に含まれる雑菌が死滅してさらに発酵効率が高まる。 Next, the
The squeezed
発酵槽7bは、pH調整された搾汁液に所定の微生物を添加し、搾汁液を発酵させる。搾汁液が発酵することにより、エタノールが生成される。蒸留器7cは、発酵槽で生成されたエタノールを含む発酵液を蒸留して、エタノールを精製する。製品タンク7dは、蒸留器7cで精製されたエタノールを貯蔵する。
The fermenter 7b adds a predetermined microorganism to the squeezed liquid whose pH has been adjusted, and ferments the squeezed liquid. The juice is fermented to produce ethanol. The distiller 7c purifies ethanol by distilling the fermented liquor containing ethanol produced in the fermenter. The product tank 7d stores ethanol purified by the distiller 7c.
次に、固体燃料生成部8について説明する。固体燃料生成部8は、乾燥機8aと、破砕機8bと、成型機8cと、冷却器8dと、を有する。
乾燥機8aは、例えば乾燥空気を吹き付けて、搾汁残渣を乾燥させる。乾燥機8aにより、搾汁残渣に含まれる水分は、例えば質量基準で10[%]以下まで低減される。破砕機8bは、乾燥した搾汁残渣を所定の大きさに破砕する。成型機8cは、破砕された搾汁残渣を所定の形状に成形して燃料ペレットを得る。燃料ペレットは冷却器8dに移され、所定温度以下になるまで冷却される。 Next, thesolid fuel generator 8 will be described. The solid fuel generator 8 includes a dryer 8a, a crusher 8b, a molding machine 8c, and a cooler 8d.
Thedryer 8a blows dry air, for example, and dries the juice residue. The moisture contained in the squeezed residue is reduced to, for example, 10 [%] or less on the mass basis by the dryer 8a. The crusher 8b crushes the dried juice residue into a predetermined size. The molding machine 8c molds the crushed juice residue into a predetermined shape to obtain fuel pellets. The fuel pellets are transferred to the cooler 8d and cooled until the temperature reaches a predetermined temperature or lower.
乾燥機8aは、例えば乾燥空気を吹き付けて、搾汁残渣を乾燥させる。乾燥機8aにより、搾汁残渣に含まれる水分は、例えば質量基準で10[%]以下まで低減される。破砕機8bは、乾燥した搾汁残渣を所定の大きさに破砕する。成型機8cは、破砕された搾汁残渣を所定の形状に成形して燃料ペレットを得る。燃料ペレットは冷却器8dに移され、所定温度以下になるまで冷却される。 Next, the
The
次に、図2を用いて処理装置10の具体的な構成例を説明する。粉砕機1は、ハンマーミルなどを用いてパームトランクを粉末状に粉砕する。粉砕されたパームトランク破砕片はショベルカーなどにより、粉砕機1からベルトコンベア9に運ばれる。ベルトコンベア9の上方には、例えば噴霧ノズルなどの加水機3が配設されている。ベルトコンベア9によってパームトランク破砕片が運ばれている間に、加水機3から散水または噴霧された水分がパームトランク破砕片に吸水される。ベルトコンベア9は、運搬方向に対して上方に傾斜して配設されている。このため、加水機3からパームトランク破砕片に加水された水分のうち、パームトランク破砕片に吸収されなかった水分は下方に流れ出る。ベルトコンベア9の下方には検出部5が配設されている。検出部5は、パームトランク破砕片に吸水されずに流れ出た流出水分の流出量(以降、単に流出量と記す)を検出する。検出部5は制御部4に電気的に接続されており、流出量の検出結果を制御部4に出力する。
Next, a specific configuration example of the processing apparatus 10 will be described with reference to FIG. The pulverizer 1 pulverizes the palm trunk into powder using a hammer mill or the like. The crushed palm trunk crushed pieces are conveyed from the pulverizer 1 to the belt conveyor 9 by a shovel car or the like. Above the belt conveyor 9, for example, a water heater 3 such as a spray nozzle is disposed. While the palm trunk crushed pieces are being conveyed by the belt conveyor 9, the water sprinkled or sprayed from the water machine 3 is absorbed by the palm trunk crushed pieces. The belt conveyor 9 is disposed to be inclined upward with respect to the transport direction. For this reason, the water | moisture content which was not absorbed by the palm trunk crushed piece flows out below among the water | moisture content hydrated from the water machine 3 to the palm trunk crushed piece. A detection unit 5 is disposed below the belt conveyor 9. The detection unit 5 detects the outflow amount of outflow moisture that has flowed out without being absorbed by the palm trunk fragment (hereinafter simply referred to as outflow amount). The detection unit 5 is electrically connected to the control unit 4 and outputs the outflow amount detection result to the control unit 4.
加水機3により加水されたパームトランク破砕片は、ベルトコンベア9の進行方向の末端に配設された搾汁機2に投入される。搾汁機2は、加水されたパームトランク破砕片を圧搾して固体分と液体分とに分離する。ここで、分離された液体分が搾汁液であり、分離された固体分が搾汁残渣である。
図3は、搾汁機2の一例を示す構成図である。搾汁機2は内接ロール型の搾汁機である。搾汁機2は、リングロール21と、内接ロール22と、投入口23と、排出口24と、シリンダ25と、押圧ロール26と、を有する。 The palm trunk crushed pieces that have been hydrated by thewater machine 3 are put into the squeezer 2 disposed at the end of the belt conveyor 9 in the traveling direction. The squeezer 2 squeezes the crushed palm trunk fragment to separate it into a solid component and a liquid component. Here, the separated liquid is the juice and the separated solid is the juice residue.
FIG. 3 is a configuration diagram illustrating an example of thejuicer 2. The squeezer 2 is an inscribed roll type squeezer. The squeezer 2 includes a ring roll 21, an inscribed roll 22, an input port 23, a discharge port 24, a cylinder 25, and a pressing roll 26.
図3は、搾汁機2の一例を示す構成図である。搾汁機2は内接ロール型の搾汁機である。搾汁機2は、リングロール21と、内接ロール22と、投入口23と、排出口24と、シリンダ25と、押圧ロール26と、を有する。 The palm trunk crushed pieces that have been hydrated by the
FIG. 3 is a configuration diagram illustrating an example of the
リングロール21は、上下動可能かつ回転可能に支持されている。内接ロール22は、上下動不能かつ回転可能に支持されている。リングロール21と内接ロール22とは、図示せぬ駆動手段によって同一方向に回転させられる。シリンダ25は、押圧ロール26を上方に押圧する。この押圧力は調整可能である。押圧ロール26は、シリンダ25から受けた押圧力をリングロール21に伝える。以上の構成により、シリンダ25の押圧力を調整することで、パームトランク破砕片がリングロール21と内接ロール22との間に挟まれる際の圧力を調整することができる。
パームトランク破砕片は、投入口23から投入され、リングロール21と内接ロール22との間で圧搾され、搾汁液と搾汁残渣とに分離される。分離された搾汁液は不図示の吐出口から外部へ吐出され、液体燃料生成部7に投入される。分離された搾汁残渣は排出口24から排出され、固体燃料生成部8に投入される。 Thering roll 21 is supported so as to be vertically movable and rotatable. The inscribed roll 22 is supported so as not to move up and down and to rotate. The ring roll 21 and the inscribed roll 22 are rotated in the same direction by a driving means (not shown). The cylinder 25 presses the pressing roll 26 upward. This pressing force can be adjusted. The pressing roll 26 transmits the pressing force received from the cylinder 25 to the ring roll 21. With the above configuration, the pressure when the palm trunk fragment is sandwiched between the ring roll 21 and the inscribed roll 22 can be adjusted by adjusting the pressing force of the cylinder 25.
The palm trunk crushed pieces are introduced from theintroduction port 23 and are squeezed between the ring roll 21 and the inscribed roll 22 to be separated into a squeezed juice and a squeezed residue. The separated squeezed liquid is discharged from a discharge port (not shown) to the outside and is put into the liquid fuel generating unit 7. The separated squeezed residue is discharged from the discharge port 24 and is input to the solid fuel generator 8.
パームトランク破砕片は、投入口23から投入され、リングロール21と内接ロール22との間で圧搾され、搾汁液と搾汁残渣とに分離される。分離された搾汁液は不図示の吐出口から外部へ吐出され、液体燃料生成部7に投入される。分離された搾汁残渣は排出口24から排出され、固体燃料生成部8に投入される。 The
The palm trunk crushed pieces are introduced from the
図2に示すように、分離された搾汁残渣の一部は、分析器6に投入される。分析器6は、例えば原子吸光分析計であり、単位質量あたりの搾汁残渣に含有されるカリウムの質量を分析することができる。搾汁残渣にカリウムが多く含まれると、固体燃料生成部8により生成された燃料ペレットにもカリウムが多く含まれることになり、燃料ペレットをボイラーなどで燃焼させる際にカリウムを由来とする灰が多く発生する。この灰がボイラーの内部に付着すると、いわゆるスラッギングなどにつながる場合がある。このため、搾汁残渣に含まれるカリウムの質量を所定量以下にする必要がある。
As shown in FIG. 2, a part of the separated juice residue is put into the analyzer 6. The analyzer 6 is an atomic absorption spectrometer, for example, and can analyze the mass of potassium contained in the juice residue per unit mass. If the squeezed residue contains a lot of potassium, the fuel pellets generated by the solid fuel generator 8 will also contain a lot of potassium, and the ash derived from potassium when the fuel pellets are burned in a boiler or the like. Many occur. If this ash adheres to the inside of the boiler, it may lead to so-called slugging. For this reason, it is necessary to make the mass of potassium contained in the squeezed residue below a predetermined amount.
なお、分析器6はカリウム以外のアルカリ金属の濃度を分析しても良い。パームトランクに含まれるアルカリ成分のうち、大部分はカリウムであるが、カリウム以外のアルカリ金属の分析値を考慮することで固体燃料としての灰付着性の予測精度を向上させることができる。分析器6として原子吸光分析計を用いることができる。
分析器6は制御部4と電気的に接続されており、単位質量あたりの搾汁残渣に含まれるカリウムの質量(以降、単に残渣中K濃度Drと記す)を制御部4に出力する。なお、分析器が搾汁残渣のアルカリ濃度を分析する場合には、制御部4は搾汁残渣のアルカリ濃度を制御部4に出力する。
制御部4は、不図示のCPUなどの処理部と、不図示のRAMなどの記憶部と、を有する。 Theanalyzer 6 may analyze the concentration of alkali metals other than potassium. Most of the alkali component contained in the palm trunk is potassium, but the prediction accuracy of ash adhesion as a solid fuel can be improved by considering the analytical value of alkali metals other than potassium. An atomic absorption spectrometer can be used as the analyzer 6.
Analyzer 6 is electrically connected to the control unit 4, the mass of potassium contained in the squeezed residue per unit mass (hereinafter, simply referred to as the residue K concentration D r) and outputs to the control unit 4. When the analyzer analyzes the alkali concentration of the juice residue, the control unit 4 outputs the alkali concentration of the juice residue to the control unit 4.
Thecontrol unit 4 includes a processing unit such as a CPU (not shown) and a storage unit such as a RAM (not shown).
分析器6は制御部4と電気的に接続されており、単位質量あたりの搾汁残渣に含まれるカリウムの質量(以降、単に残渣中K濃度Drと記す)を制御部4に出力する。なお、分析器が搾汁残渣のアルカリ濃度を分析する場合には、制御部4は搾汁残渣のアルカリ濃度を制御部4に出力する。
制御部4は、不図示のCPUなどの処理部と、不図示のRAMなどの記憶部と、を有する。 The
The
次に、パームトランク破砕片が吸水する水分の量と、残渣中K濃度Drと、の関係について説明する。
Then, the amount of moisture Palm trunk crushed pieces to the water absorption, the residue K concentration D r, the relationship will be described.
図4A及び図4Bに示すように、パームトランク破砕片原料、吸水後破砕片原料、及び破砕片搾汁残渣は、添え字f、f’及びrを用いて示し、f、f’及びrを代表させて示す際は添え字iを用いる。パームトランク破砕片原料、吸水後破砕片原料、及び破砕片搾汁残渣の各総質量をFi[kg]、その中に含まれる成分のうち固体分の質量をSi[kg]、液体分の質量をLi[kg]とする。パームトランク破砕片に含まれるカリウムの質量についても同様にwi[kg](以降、単に原料K質量wiと記す)とする。
このとき、パームトランク破砕片原料、吸水後破砕片原料、及び破砕片搾汁残渣中の含水率φi(以降、含水率φiと記す)は、以下の数式(1)により表される。
φi=Li/(Si+Li) …(1)
また、パームトランク破砕片原料、吸水後破砕片原料、及び破砕片搾汁残渣における固体分Si[kg]あたりのカリウムの質量である原料中のK濃度Di(以降、単にK濃度Diと記す)は、以下の数式(2)により表される。
Di=wi/Si …(2) As shown in FIG. 4A and FIG. 4B, the palm trunk crushed piece raw material, the crushed piece raw material after water absorption, and the crushed piece squeezed residue are indicated using subscripts f, f ′, and r. The subscript i is used for representative representation. F i [kg] is the total mass of the palm trunk crushed raw material, the crushed raw material after water absorption, and the crushed squeezed juice residue, the solid mass of the components contained therein is S i [kg], the liquid content Let L i [kg] be the mass of. Similarly, the mass of potassium contained in the Palm trunk fragments w i [kg] (hereinafter, simply referred to as a raw material K mass w i) to.
At this time, the moisture content φ i (hereinafter referred to as the moisture content φ i ) in the palm trunk crushed piece raw material, the crushed piece raw material after water absorption, and the crushed piece squeezed residue is expressed by the following formula (1).
φ i = L i / (S i + L i ) (1)
Further, the K concentration D i in the raw material which is the mass of potassium per solid content S i [kg] in the palm trunk crushed piece raw material, the crushed piece raw material after water absorption, and the crushed piece squeezed residue (hereinafter simply referred to as K concentration D i) Is expressed by the following formula (2).
D i = w i / S i (2)
このとき、パームトランク破砕片原料、吸水後破砕片原料、及び破砕片搾汁残渣中の含水率φi(以降、含水率φiと記す)は、以下の数式(1)により表される。
φi=Li/(Si+Li) …(1)
また、パームトランク破砕片原料、吸水後破砕片原料、及び破砕片搾汁残渣における固体分Si[kg]あたりのカリウムの質量である原料中のK濃度Di(以降、単にK濃度Diと記す)は、以下の数式(2)により表される。
Di=wi/Si …(2) As shown in FIG. 4A and FIG. 4B, the palm trunk crushed piece raw material, the crushed piece raw material after water absorption, and the crushed piece squeezed residue are indicated using subscripts f, f ′, and r. The subscript i is used for representative representation. F i [kg] is the total mass of the palm trunk crushed raw material, the crushed raw material after water absorption, and the crushed squeezed juice residue, the solid mass of the components contained therein is S i [kg], the liquid content Let L i [kg] be the mass of. Similarly, the mass of potassium contained in the Palm trunk fragments w i [kg] (hereinafter, simply referred to as a raw material K mass w i) to.
At this time, the moisture content φ i (hereinafter referred to as the moisture content φ i ) in the palm trunk crushed piece raw material, the crushed piece raw material after water absorption, and the crushed piece squeezed residue is expressed by the following formula (1).
φ i = L i / (S i + L i ) (1)
Further, the K concentration D i in the raw material which is the mass of potassium per solid content S i [kg] in the palm trunk crushed piece raw material, the crushed piece raw material after water absorption, and the crushed piece squeezed residue (hereinafter simply referred to as K concentration D i) Is expressed by the following formula (2).
D i = w i / S i (2)
また、パームトランク破砕片原料、吸水後破砕片原料、及び破砕片搾汁残渣おける液体分Li[kg]中のカリウムの質量である原料中のK濃度Ci(以降、単に液中K濃度Ciと記す)は、以下の数式(3)により表される。
Ci=wi/Li …(3) Further, K concentration C i in the raw material which is the mass of potassium in the liquid content L i [kg] in the palm trunk crushed piece raw material, the crushed piece raw material after water absorption, and the crushed piece squeezed residue (hereinafter simply referred to as K concentration in liquid) C i ) is expressed by the following mathematical formula (3).
C i = w i / L i (3)
Ci=wi/Li …(3) Further, K concentration C i in the raw material which is the mass of potassium in the liquid content L i [kg] in the palm trunk crushed piece raw material, the crushed piece raw material after water absorption, and the crushed piece squeezed residue (hereinafter simply referred to as K concentration in liquid) C i ) is expressed by the following mathematical formula (3).
C i = w i / L i (3)
図5は、パームトランク破砕片を水量比を変化させて水中に浸漬させた場合におけるパームトランク破砕片内の液分中のK濃度と溶出液側のK濃度の関係を示すものである。横軸の溶出側のK濃度と縦軸のパームトランク破砕片内の液分中のK濃度の傾きが1であることから、パームトランク内におけるKはパームトランク内の液中に溶解して存在していることがわかる。
搾汁機2が吸水したパームトランク破砕片を圧搾して、パームトランク破砕片に含まれる水分の質量をLf[kg]からLr[kg]に減少させる。このとき、搾汁残渣の水分中に存在しているカリウムの濃度と、搾汁液に溶出しているカリウムの濃度とは、パームトランク液中カリウム濃度Cで等しいので、破砕片原料又は吸水後破砕片原料における液中濃度CfまたはCf’と搾汁残渣中における液中濃度Crは次式(4a)又は(4b)で示される。
Cf’=Cr (加水時)…(4a)
Cf =Cr (非加水時)…(4b)
したがって、搾汁残渣に含まれる液体分Lr[kg]中のカリウムの質量wr[kg](以降、単に搾汁残渣K質量wrと記す)は、式(3)と(4a)又は(4b)から、以下の数式(5a)又は(5b)により表される。
wr=Cf’× Lr(加水時)…(5a)
wr=Cf × Lr(非加水時)…(5b) FIG. 5 shows the relationship between the K concentration in the liquid in the palm trunk fragment and the K concentration on the eluate side when the palm trunk fragment is immersed in water while changing the water amount ratio. Since the slope of the K concentration on the elution side of the horizontal axis and the K concentration in the liquid content in the palm trunk fragment on the vertical axis is 1, K in the palm trunk is dissolved in the liquid in the palm trunk. You can see that
The palm trunk crushed pieces absorbed by thejuicer 2 are squeezed to reduce the mass of water contained in the palm trunk crushed pieces from L f [kg] to L r [kg]. At this time, the concentration of potassium present in the water of the squeezed residue and the concentration of potassium eluted in the squeezed liquid are equal to the potassium concentration C in the palm trunk liquid. liquid concentration C r in squeezed residue and liquid concentration C f or C f 'in strip material is represented by the following formula (4a) or (4b).
C f ′ = C r (when water is added) (4a)
C f = C r (when not added) (4b)
Therefore, the mass w r [kg] of potassium in the liquid content L r [kg] contained in the squeezed residue (hereinafter simply referred to as the squeezed residue K mass w r ) is expressed by the formulas (3) and (4a) or From (4b), it is represented by the following formula (5a) or (5b).
w r = C f ′ × L r (at the time of water addition) (5a)
w r = C f × L r (when not hydrolyzed) (5b)
搾汁機2が吸水したパームトランク破砕片を圧搾して、パームトランク破砕片に含まれる水分の質量をLf[kg]からLr[kg]に減少させる。このとき、搾汁残渣の水分中に存在しているカリウムの濃度と、搾汁液に溶出しているカリウムの濃度とは、パームトランク液中カリウム濃度Cで等しいので、破砕片原料又は吸水後破砕片原料における液中濃度CfまたはCf’と搾汁残渣中における液中濃度Crは次式(4a)又は(4b)で示される。
Cf’=Cr (加水時)…(4a)
Cf =Cr (非加水時)…(4b)
したがって、搾汁残渣に含まれる液体分Lr[kg]中のカリウムの質量wr[kg](以降、単に搾汁残渣K質量wrと記す)は、式(3)と(4a)又は(4b)から、以下の数式(5a)又は(5b)により表される。
wr=Cf’× Lr(加水時)…(5a)
wr=Cf × Lr(非加水時)…(5b) FIG. 5 shows the relationship between the K concentration in the liquid in the palm trunk fragment and the K concentration on the eluate side when the palm trunk fragment is immersed in water while changing the water amount ratio. Since the slope of the K concentration on the elution side of the horizontal axis and the K concentration in the liquid content in the palm trunk fragment on the vertical axis is 1, K in the palm trunk is dissolved in the liquid in the palm trunk. You can see that
The palm trunk crushed pieces absorbed by the
C f ′ = C r (when water is added) (4a)
C f = C r (when not added) (4b)
Therefore, the mass w r [kg] of potassium in the liquid content L r [kg] contained in the squeezed residue (hereinafter simply referred to as the squeezed residue K mass w r ) is expressed by the formulas (3) and (4a) or From (4b), it is represented by the following formula (5a) or (5b).
w r = C f ′ × L r (at the time of water addition) (5a)
w r = C f × L r (when not hydrolyzed) (5b)
また、搾汁残渣固体分Sr[g]あたりのカリウムの質量である残渣中K濃度Drは(2)式より次式で表現される。
Dr=wr/Sr …(2a)
搾汁残渣に含まれるカリウムは、搾汁残渣中の水分に存在していると考えられるが、燃料ペレットを生成する際に、水分は乾燥機8aにより蒸発してカリウムが搾汁残渣の固体分に残留する。従って、この残渣中K濃度Drは燃料ペレットに含有されるカリウムの量を間接的に表している。 Further, the residue K concentration D r is the mass of potassium per squeezed residual solid fraction S r [g] is expressed by the following equation (2) below.
D r = w r / S r (2a)
The potassium contained in the squeezed residue is considered to be present in the water in the squeezed residue, but when the fuel pellets are produced, the water is evaporated by thedryer 8a and the potassium is the solid content of the squeezed residue. To remain. Therefore, this residue K concentration D r is indirectly represents the amount of potassium contained in the fuel pellets.
Dr=wr/Sr …(2a)
搾汁残渣に含まれるカリウムは、搾汁残渣中の水分に存在していると考えられるが、燃料ペレットを生成する際に、水分は乾燥機8aにより蒸発してカリウムが搾汁残渣の固体分に残留する。従って、この残渣中K濃度Drは燃料ペレットに含有されるカリウムの量を間接的に表している。 Further, the residue K concentration D r is the mass of potassium per squeezed residual solid fraction S r [g] is expressed by the following equation (2) below.
D r = w r / S r (2a)
The potassium contained in the squeezed residue is considered to be present in the water in the squeezed residue, but when the fuel pellets are produced, the water is evaporated by the
パームトランク破砕片を圧搾すると、パームトランク破砕片の固体分の一部も搾汁液に混ざって流出する。原料の固体分Sfのうち、搾汁残渣に残って回収される割合をη(以降、単に固体分回収率ηと記す)とすると、搾汁残渣に含まれる固体分の質量Sr[kg](以降、単に搾汁残渣固体分Srと記す)は、以下の数式(6)により表される。
Sr=η×Sf …(6) When the palm trunk crushed piece is squeezed, a part of the solid content of the palm trunk crushed piece is mixed with the juice and flows out. If the ratio of the solid content Sf of the raw material remaining in the juice residue and recovered is η (hereinafter, simply referred to as solid content recovery rate η), the mass S r [kg of the solid content contained in the juice residue (hereinafter, simply referred to as squeezed residual solid fraction S r) is expressed by the following equation (6).
S r = η × S f (6)
Sr=η×Sf …(6) When the palm trunk crushed piece is squeezed, a part of the solid content of the palm trunk crushed piece is mixed with the juice and flows out. If the ratio of the solid content Sf of the raw material remaining in the juice residue and recovered is η (hereinafter, simply referred to as solid content recovery rate η), the mass S r [kg of the solid content contained in the juice residue (hereinafter, simply referred to as squeezed residual solid fraction S r) is expressed by the following equation (6).
S r = η × S f (6)
また、吸水後破砕片原料中K濃度Df’及び原料中K濃度Dfに対する残渣中K濃度Drの比Dr/Df’及びDr/Dfは、数式(1)、(2)に基づき、以下の数式(7a)または(7b)により表される。
Dr/Df’={(1-φf’)φr}/{φf’(1-φr)} 加水時 …(7a)
Dr/Df={(1-φf )φr}/{φf (1-φr)} 非加水時…(7b)
上記の数式(7a)及び(7a)は、搾汁残渣含水率φrが同じであっても、吸水後含水率φf’を大きくすることができれば、原料中K濃度Dfに対する残渣中K濃度Drの比Dr/Dfを小さくできることを示している。すなわち、搾汁圧力を上げることで搾汁残渣含水率を下げなくても、加水により適切な吸水後含水率まで大きくすることができれば、原料と残渣におけるK除去の効果を得ることができることを示している。 Moreover, and D r / D f 'ratio Dr / D f in the residue K concentration D r against and raw material K concentration D f' fragments in the raw material after water absorption K concentration D f is equation (1), (2) Is expressed by the following mathematical formula (7a) or (7b).
D r / D f ′ = {(1-φ f ′ ) φ r } / {φ f ′ (1-φ r )} At the time of addition (7a)
D r / D f = {(1-φ f ) φ r } / {φ f (1-φ r )} When not hydrolyzed (7b)
The above formula (7a) and (7a) can be the same is squeezed residue渣含water ratio phi r, if it is possible to increase the after water moisture content phi f ', the residue K for the raw material K concentration D f It shows that the ratio D r / D f of the concentration D r can be reduced. That is, even if the squeeze residue water content is not lowered by increasing the squeeze pressure, if the water content can be increased to a proper water content after water absorption, the effect of removing K in the raw material and residue can be obtained. ing.
Dr/Df’={(1-φf’)φr}/{φf’(1-φr)} 加水時 …(7a)
Dr/Df={(1-φf )φr}/{φf (1-φr)} 非加水時…(7b)
上記の数式(7a)及び(7a)は、搾汁残渣含水率φrが同じであっても、吸水後含水率φf’を大きくすることができれば、原料中K濃度Dfに対する残渣中K濃度Drの比Dr/Dfを小さくできることを示している。すなわち、搾汁圧力を上げることで搾汁残渣含水率を下げなくても、加水により適切な吸水後含水率まで大きくすることができれば、原料と残渣におけるK除去の効果を得ることができることを示している。 Moreover, and D r / D f 'ratio Dr / D f in the residue K concentration D r against and raw material K concentration D f' fragments in the raw material after water absorption K concentration D f is equation (1), (2) Is expressed by the following mathematical formula (7a) or (7b).
D r / D f ′ = {(1-φ f ′ ) φ r } / {φ f ′ (1-φ r )} At the time of addition (7a)
D r / D f = {(1-φ f ) φ r } / {φ f (1-φ r )} When not hydrolyzed (7b)
The above formula (7a) and (7a) can be the same is squeezed residue渣含water ratio phi r, if it is possible to increase the after water moisture content phi f ', the residue K for the raw material K concentration D f It shows that the ratio D r / D f of the concentration D r can be reduced. That is, even if the squeeze residue water content is not lowered by increasing the squeeze pressure, if the water content can be increased to a proper water content after water absorption, the effect of removing K in the raw material and residue can be obtained. ing.
次に、加水機3が加水することによってパームトランク破砕片が吸水する質量を、La[kg](以降、単に吸水量Laと記す)とすると、吸水後のパームトランク破砕片に含まれる水分の質量Lf’(以降、単に吸水後水分量Lf’と記す)は、以下の数式(8)により表される。
Lf’=Lf+La …(8) Next, themass hydrolysis unit 3 Palm trunk fragments to water by hydrolysis, L a [kg] (hereinafter, simply referred to as the water absorption L a) when that is included in the Palm trunk fragments after water absorption The moisture mass L f ′ (hereinafter, simply referred to as the moisture amount L f ′ after water absorption) is represented by the following mathematical formula (8).
L f ′ = L f + L a (8)
Lf’=Lf+La …(8) Next, the
L f ′ = L f + L a (8)
ここで、数式(1)から、以下の数式(9)に示すように、原材料の単位質量あたりの吸水量La/Ff(以降、単に単位吸水量La/Ffと記す)が求められる。
La/Ff=(φf’-φf)/(1-φf’) …(9) Here, from the formula (1), as shown in the following formula (9), a water absorption amount L a / F f (hereinafter simply referred to as a unit water absorption amount L a / F f ) per unit mass of the raw material is obtained. It is done.
L a / F f = (φ f '-φ f) / (1-φ f') ... (9)
La/Ff=(φf’-φf)/(1-φf’) …(9) Here, from the formula (1), as shown in the following formula (9), a water absorption amount L a / F f (hereinafter simply referred to as a unit water absorption amount L a / F f ) per unit mass of the raw material is obtained. It is done.
L a / F f = (φ f '-φ f) / (1-φ f') ... (9)
以上の関係式(1)から(9)の関係を図4Bに示した。
The relationship of the above relational expressions (1) to (9) is shown in FIG. 4B.
以上の関係を、具体例に当てはめて説明する。
図6A及び図6Bに示すように、総質量Ff=448[kg]のパームトランク破砕片に、固体分Sf=148[kg]および液体分Lf=300[kg]が含まれており、液体分Lfには原料K質量wf=1[kg]のカリウムが存在しているとする。このとき、原料含水率φfは数式(1)よりφf=0.67[-]である。また、液中カリウム濃度Cfは、数式(3)よりCf=0.00333[kg-K/kg-Liquid]であり、対固形分原料中K濃度Dfは数式(2)よりDf=0.00677[kg-K/kg-solid]である。
このパームトランク破砕片を搾汁機2が圧搾する際、固体分回収率η=0.75[-]であったとすると、搾汁残渣固体分Srは数式(6)より搾汁残渣固体分Sr=111[kg]となる。そして、搾汁残渣水分率がφr=0.35[-]で搾汁される場合の搾汁残渣に含まれる水分の質量はLr=60[kg]なので、パームトランク破砕片に含まれていたwf=1[kg]のカリウムのうち、搾汁残渣に残留する搾汁残渣K質量wrは数式(5b)より、wr=0.2[kg]となる。このとき、残渣中K濃度DrはDr=0.0018[kg-K/kg-solid]となる。 The above relationship will be described by applying a specific example.
As shown in FIGS. 6A and 6B, the palm trunk fragment having a total mass F f = 448 [kg] includes a solid content S f = 148 [kg] and a liquid content L f = 300 [kg]. In the liquid component L f , it is assumed that potassium of the raw material K mass w f = 1 [kg] is present. At this time, the raw material moisture content φ f is φ f = 0.67 [−] according to Equation (1). Further, potassium in the liquid concentration C f is the equation (3) from C f = 0.00333 [kg-K / kg-Liquid], versus solids in the raw material K concentration D f is D f from Equation (2) = 0.00677 [kg-K / kg-solid].
When the squeezingmachine 2 squeezes this palm trunk crushed piece, assuming that the solid content recovery rate η = 0.75 [−], the squeezed residue solid content S r is expressed by the squeezed residue solid content from Equation (6). S r = 111 [kg]. And since the mass of the water | moisture content contained in the squeeze residue when squeezing the squeeze residue moisture content at φ r = 0.35 [−] is L r = 60 [kg], it is included in the palm trunk fragment. which was w f = 1 of potassium [kg], squeezed residue K mass w r that remains squeezed residue becomes from equation (5b), w r = 0.2 [kg]. At this time, the K concentration D r in the residue is D r = 0.0018 [kg-K / kg-solid].
図6A及び図6Bに示すように、総質量Ff=448[kg]のパームトランク破砕片に、固体分Sf=148[kg]および液体分Lf=300[kg]が含まれており、液体分Lfには原料K質量wf=1[kg]のカリウムが存在しているとする。このとき、原料含水率φfは数式(1)よりφf=0.67[-]である。また、液中カリウム濃度Cfは、数式(3)よりCf=0.00333[kg-K/kg-Liquid]であり、対固形分原料中K濃度Dfは数式(2)よりDf=0.00677[kg-K/kg-solid]である。
このパームトランク破砕片を搾汁機2が圧搾する際、固体分回収率η=0.75[-]であったとすると、搾汁残渣固体分Srは数式(6)より搾汁残渣固体分Sr=111[kg]となる。そして、搾汁残渣水分率がφr=0.35[-]で搾汁される場合の搾汁残渣に含まれる水分の質量はLr=60[kg]なので、パームトランク破砕片に含まれていたwf=1[kg]のカリウムのうち、搾汁残渣に残留する搾汁残渣K質量wrは数式(5b)より、wr=0.2[kg]となる。このとき、残渣中K濃度DrはDr=0.0018[kg-K/kg-solid]となる。 The above relationship will be described by applying a specific example.
As shown in FIGS. 6A and 6B, the palm trunk fragment having a total mass F f = 448 [kg] includes a solid content S f = 148 [kg] and a liquid content L f = 300 [kg]. In the liquid component L f , it is assumed that potassium of the raw material K mass w f = 1 [kg] is present. At this time, the raw material moisture content φ f is φ f = 0.67 [−] according to Equation (1). Further, potassium in the liquid concentration C f is the equation (3) from C f = 0.00333 [kg-K / kg-Liquid], versus solids in the raw material K concentration D f is D f from Equation (2) = 0.00677 [kg-K / kg-solid].
When the squeezing
一方、パームトランク破砕片に加水して圧搾した場合について、図7A、図7Bを用いて説明する。
図7A及び図7Bに示すように、総質量Ff=448[kg]、固体分Sf=148[kg]、液体分Lf=300[kg]で加水する場合と同じであるが、液体分Lfには原料K分が加水しない場合の2倍量すなわち原料K質量wf=2[kg]のカリウムが存在しているとする。
このとき、原料含水率φfは数式(1)よりφf=0.67[-]である。また、液中カリウム濃度は数式(3)よりCf=0.00667[kg-K/kg-Liquid]であり、対固形分原料中K濃度Dfは数式(2)よりDf=0.0135[kg-K/kg-solid]である。 On the other hand, the case where it squeezes by adding water to a palm trunk fragment will be described with reference to FIGS. 7A and 7B.
As shown in FIG. 7A and FIG. 7B, it is the same as the case of adding water with the total mass F f = 448 [kg], the solid content S f = 148 [kg], and the liquid content L f = 300 [kg]. It is assumed that the amount L of the raw material K is not doubled, that is, potassium of the raw material K mass w f = 2 [kg] is present in the portion L f .
At this time, the raw material moisture content φ f is φ f = 0.67 [−] according to Equation (1). Further, the potassium concentration in the liquid is C f = 0.00667 [kg-K / kg-Liquid] from Equation (3), and the K concentration D f in the solid content raw material is D f = 0. 0135 [kg-K / kg-solid].
図7A及び図7Bに示すように、総質量Ff=448[kg]、固体分Sf=148[kg]、液体分Lf=300[kg]で加水する場合と同じであるが、液体分Lfには原料K分が加水しない場合の2倍量すなわち原料K質量wf=2[kg]のカリウムが存在しているとする。
このとき、原料含水率φfは数式(1)よりφf=0.67[-]である。また、液中カリウム濃度は数式(3)よりCf=0.00667[kg-K/kg-Liquid]であり、対固形分原料中K濃度Dfは数式(2)よりDf=0.0135[kg-K/kg-solid]である。 On the other hand, the case where it squeezes by adding water to a palm trunk fragment will be described with reference to FIGS. 7A and 7B.
As shown in FIG. 7A and FIG. 7B, it is the same as the case of adding water with the total mass F f = 448 [kg], the solid content S f = 148 [kg], and the liquid content L f = 300 [kg]. It is assumed that the amount L of the raw material K is not doubled, that is, potassium of the raw material K mass w f = 2 [kg] is present in the portion L f .
At this time, the raw material moisture content φ f is φ f = 0.67 [−] according to Equation (1). Further, the potassium concentration in the liquid is C f = 0.00667 [kg-K / kg-Liquid] from Equation (3), and the K concentration D f in the solid content raw material is D f = 0. 0135 [kg-K / kg-solid].
このパームトランク破砕片に加水機3が加水することにより、La=291[kg]の水分がパームトランク破砕片に吸水されたとする。このとき、吸水後水分量Lfは数式(8)よりLf’=591[kg]となる。また、液中カリウム濃度は、加水前に比べて1.97倍に薄まる。また、吸水後含有率φf’は数式(1)よりφf’=0.8[-]となる。
It is assumed that water of La = 291 [kg] is absorbed by the palm trunk crushed pieces by the water machine 3 hydrating the palm trunk crushed pieces. At this time, the water content L f after water absorption is L f ′ = 591 [kg] according to Equation (8). In addition, the potassium concentration in the liquid is 1.97 times thinner than before addition. Further, the post-water-absorption content φ f ′ is φ f ′ = 0.8 [−] from the mathematical formula (1).
この吸水したパームトランク破砕片を搾汁機2が圧搾する際、固体分回収率η=0.75[-]であったとすると、搾汁残渣固体分Srは数式(6)よりSr=111[kg]となる。そして、搾汁残渣水分率がφr=0.35[-]で搾汁される場合に、搾汁残渣に含まれる水分の質量はLr=60[kg]なので、パームトランク破砕片に含まれていたwf=2[kg]のカリウムのうち、搾汁残渣に残留する搾汁残渣K質量wrは、数式(5a)より、wr=0.20[kg]となる。
そして、残渣中K濃度Drは数式(2)より、Dr=0.0018[kg-K/kg-solid]となる。 When thejuicer 2 squeezes the water-absorbed palm trunk fragment, if the solid content recovery rate η = 0.75 [−], the squeezed residue solid content S r is expressed as S r = 111 [kg]. And when the squeezed residue moisture content is squeezed at φ r = 0.35 [−], the mass of moisture contained in the squeezed residue is L r = 60 [kg], so it is included in the palm trunk fragment. of potassium w f = 2 [kg] that were, squeezed residue K mass w r that remains squeezed residue, from equations (5a), the w r = 0.20 [kg].
The residue K concentration D r becomes from Equation (2), D r = 0.0018 [kg-K / kg-solid].
そして、残渣中K濃度Drは数式(2)より、Dr=0.0018[kg-K/kg-solid]となる。 When the
The residue K concentration D r becomes from Equation (2), D r = 0.0018 [kg-K / kg-solid].
図6A、図6B及び図7A、図7Bに示した結果を比較すると、加水する場合は原料となる破砕片中の対固形分カリウム濃度Drが2倍高くても、加水して搾汁した場合の残渣中K濃度Drは、加水せずに搾汁した場合と同じ0.0018[kg-K/kg-solid]まで低減される。残渣中K濃度Drは、搾汁残渣から固体燃料を生成した際に、固体燃料に含まれるカリウムの質量を表している。従って、パームトランク破砕片に加水してから圧搾することで残渣中K濃度Drを所定の数値以下とすることにより、固体燃料に含まれるカリウムの量を木質ペレットと同定にまで低減することができ、この固体燃料を燃焼させた際に生じるスラッギングなどの現象を防止することができる。
When comparing the results shown in FIG. 6A, FIG. 6B, FIG. 7A, and FIG. 7B, when water is added, even if the potassium concentration Dr. residue K concentration D r of is reduced to the same 0.0018 as when squeezed without hydro [kg-K / kg-solid ]. Residue K concentration D r, when generating the solid fuel from the squeezed residue and represents the mass of potassium contained in the solid fuel. Therefore, by the residue K concentration D r and predetermined numerical value or below by the squeezing from the hydro Palm trunk fragments, it is possible to reduce the amount of potassium contained in the solid fuel to the identified wood pellets Thus, it is possible to prevent phenomena such as slugging that occur when this solid fuel is burned.
次に、原料中K濃度Dfと残渣中K濃度Drの関係について、図8を用いて説明する。
図8に示すグラフは、原料破砕片の含水率φfをパラメータとして、縦軸に残渣中K濃度Drの原料中K濃度Dfに対する比Dr/Dfをとり、横軸に吸水後含水率φf’をとったものである。数式(7a)、(7b)に示されるように、Dr/Dfは原料含水率φf’および搾汁残渣含水率φrの関数であり、図8に示すグラフは、原料含水率φfは、パームトランク破砕片のパームトランクの生育条件や伐採位置、保管方法などによって0.6~0.75の範囲で変動するので、この範囲での加水を前提に搾汁残渣含水率φr=0.35[%]に搾汁した場合を示している。
図8に示すように、吸水後含水率φf’の値が大きくなるほど、Dr/Dfの値が小さくなる。すなわち、パームトランク破砕片に吸水させる水分量を多くするほど、原料中K濃度Dfに対する残渣中K濃度Drの低減量を大きくすることができる。
例えば、図8に示すように原料破砕片含水率φfが0.6[-]の場合であれば、吸水後含水率φf’を0.8[-]まで加水すれば、Dr/Df=0.38となり元のカリウム濃度の38%迄濃度を低減することができる。逆に、原料破砕片含水率φfが0.6[-]の場合に、残渣中のカリウム濃度を元の原料が破砕片濃度から50%に低減するだけであれば、吸水後含水率φf’が0.75[-]になる分だけの加水を行えばよいことを示している。図9に加水プロセスのターンダウン時の特長を示す概念を示す。 Next, the relationship between the raw material in K concentration D f and the residue K concentration D r, will be explained with reference to FIG.
The graph shown in FIG. 8 shows the ratio D r / D f of the K concentration D r in the residue to the K concentration D f in the raw material on the vertical axis and the horizontal axis after water absorption, with the moisture content φ f of the raw material fragment as a parameter. The water content is φ f ′ . As shown in the mathematical expressions (7a) and (7b), D r / D f is a function of the raw material moisture content φ f ′ and the squeeze residue moisture content φ r , and the graph shown in FIG. Since f fluctuates in the range of 0.6 to 0.75 depending on the palm trunk growth condition, cutting position, storage method, etc., the squeezed residue moisture content φ r on the premise of water addition in this range = 0.35 [%] shows the case of squeezing.
As shown in FIG. 8, the value of D r / D f decreases as the value of the moisture content φ f ′ after water absorption increases. That is, it is possible enough to increase the amount of water to be absorbed by the palm trunk fragments, to increase the amount of reduction in the residue K concentration D r for raw material K concentration D f.
For example, as shown in FIG. 8, if the raw material fragment water content φ f is 0.6 [−], the water content φ f ′ after water absorption is added to 0.8 [−], and Dr / Since D f = 0.38, the concentration can be reduced to 38% of the original potassium concentration. On the contrary, when the raw material crushed water content φ f is 0.6 [−], if the original raw material is only reduced to 50% from the crushed piece concentration, the water content after water absorption φ It shows that it is only necessary to add water for f ′ of 0.75 [−]. FIG. 9 shows the concept showing the features at the time of turndown of the hydration process.
図8に示すグラフは、原料破砕片の含水率φfをパラメータとして、縦軸に残渣中K濃度Drの原料中K濃度Dfに対する比Dr/Dfをとり、横軸に吸水後含水率φf’をとったものである。数式(7a)、(7b)に示されるように、Dr/Dfは原料含水率φf’および搾汁残渣含水率φrの関数であり、図8に示すグラフは、原料含水率φfは、パームトランク破砕片のパームトランクの生育条件や伐採位置、保管方法などによって0.6~0.75の範囲で変動するので、この範囲での加水を前提に搾汁残渣含水率φr=0.35[%]に搾汁した場合を示している。
図8に示すように、吸水後含水率φf’の値が大きくなるほど、Dr/Dfの値が小さくなる。すなわち、パームトランク破砕片に吸水させる水分量を多くするほど、原料中K濃度Dfに対する残渣中K濃度Drの低減量を大きくすることができる。
例えば、図8に示すように原料破砕片含水率φfが0.6[-]の場合であれば、吸水後含水率φf’を0.8[-]まで加水すれば、Dr/Df=0.38となり元のカリウム濃度の38%迄濃度を低減することができる。逆に、原料破砕片含水率φfが0.6[-]の場合に、残渣中のカリウム濃度を元の原料が破砕片濃度から50%に低減するだけであれば、吸水後含水率φf’が0.75[-]になる分だけの加水を行えばよいことを示している。図9に加水プロセスのターンダウン時の特長を示す概念を示す。 Next, the relationship between the raw material in K concentration D f and the residue K concentration D r, will be explained with reference to FIG.
The graph shown in FIG. 8 shows the ratio D r / D f of the K concentration D r in the residue to the K concentration D f in the raw material on the vertical axis and the horizontal axis after water absorption, with the moisture content φ f of the raw material fragment as a parameter. The water content is φ f ′ . As shown in the mathematical expressions (7a) and (7b), D r / D f is a function of the raw material moisture content φ f ′ and the squeeze residue moisture content φ r , and the graph shown in FIG. Since f fluctuates in the range of 0.6 to 0.75 depending on the palm trunk growth condition, cutting position, storage method, etc., the squeezed residue moisture content φ r on the premise of water addition in this range = 0.35 [%] shows the case of squeezing.
As shown in FIG. 8, the value of D r / D f decreases as the value of the moisture content φ f ′ after water absorption increases. That is, it is possible enough to increase the amount of water to be absorbed by the palm trunk fragments, to increase the amount of reduction in the residue K concentration D r for raw material K concentration D f.
For example, as shown in FIG. 8, if the raw material fragment water content φ f is 0.6 [−], the water content φ f ′ after water absorption is added to 0.8 [−], and Dr / Since D f = 0.38, the concentration can be reduced to 38% of the original potassium concentration. On the contrary, when the raw material crushed water content φ f is 0.6 [−], if the original raw material is only reduced to 50% from the crushed piece concentration, the water content after water absorption φ It shows that it is only necessary to add water for f ′ of 0.75 [−]. FIG. 9 shows the concept showing the features at the time of turndown of the hydration process.
次に、パームトランク破砕片の単位質量あたりの加水量の上限値について説明する。パームトランクの原料含水率及び吸水後含水率の性質的制約から、原料に最も加水しなければいけなくなるのは、原料含水率φf=0.6[-]の場合に吸水後含水率がφf’=0.85[-]となる場合である。この場合の、パームトランク破砕片の単位吸水量La/Ffは、数式(9)に示した関係に基づいて計算すれば、La/Ff=約1.7となる。
Next, the upper limit of the amount of water added per unit mass of the palm trunk fragment will be described. Due to the property restrictions of the raw material moisture content of the palm trunk and the moisture content after water absorption, the water content that has to be most added to the material is that the water content after water absorption is φ when the raw material water content φ f = 0.6 [-]. This is a case where f ′ = 0.85 [−]. In this case, if the unit water absorption amount La / F f of the palm trunk fragment is calculated based on the relationship shown in Equation (9), La / F f = about 1.7.
これは、気候や、パームトランク破砕片に含まれる柔組織と維管束との割合などの条件が変動することを考慮しても、パームトランク破砕片が吸水しうる水分量は、パームトランク破砕片の質量の1.7倍以下であることを意味する。換言すると、パームトランク破砕片の質量の1.7倍以上の水分を加水機3が加水すると、パームトランク破砕片が吸水しきれないことを意味する。従って、加水機3が加水する量はLa/Ff=1.7以下とすることが好ましく、これによってパームトランク破砕片に過剰に加水して水資源を徒費することを防ぐことができる。
This is because the amount of water that can be absorbed by the palm trunk fragment is not limited even if the conditions such as the climate and the ratio of soft tissue and vascular bundle contained in the palm trunk fragment vary. It means that the mass is 1.7 times or less. In other words, when the water machine 3 hydrates water of 1.7 times or more of the mass of the palm trunk fragment, it means that the palm trunk fragment cannot be completely absorbed. Therefore, it is preferable that the amount of water added by the water machine 3 is La / F f = 1.7 or less, thereby preventing excessive water from being added to the palm trunk crushed pieces and waste of water resources.
次に、パームトランク破砕片の性質について説明する。
Next, the properties of palm trunk fragments will be described.
図11は、粉砕機1により粉砕されたパームトランク破砕片を、106[℃]で2時間乾燥した後、篩分けにより分級したものを、柔組織を主とするもの(以下、単に柔組織と記す)と維管束を主とするもの(以下、単に維管束と記す)とに目視にて分離した際の、各々の分級範囲における重量割合を示したものである。
図11より柔組織は粒径が0.1~1.7[mm]の間に多く分布し、維管束は粒径が0.425~3.35[mm]の範囲に広く分布することが判る。
図12は図11をもとに、パームトランク破砕片全体についての粒度分布を示したものである。なお、図12の縦軸は、対象物を篩にかけて分級した際に、横軸に示す粒径以下の対象物の全体に占める重量基準の割合(以下、単に積算篩下という)をパーセント表示したものである。同様に、図13は柔組織および維管束についての粒度分布を、積算篩下により示したものである。
図13における柔組織および維管束のグラフを比較すると、その粒度分布のプロフィールは大きく異なっている。この点について、以下に考察する。もし、同じメカニズムによって粉砕されているのであれば、同じ粒径分布になるはずである。それにも関わらず、この二つの粒子のグループが異なる粒径分布をもっているということは、各々異なる破砕メカニズムによって生成したものである。すなわち、粒径が大きな方のグループが破砕により直接的に生じたものであるのに対して、粒径が小さな方のグループは、元々小さな粒子が弱く結合していたものが破砕時のエネルギーによって元の粒径状態に解きほぐされて生じる、いわゆる解繊と呼ばれるものである。したがって、図13は、パームトランクの破砕において、粒径が小さな方のグループである柔組織は元々ある粒度分布を持っており、破砕により維管束から剥がれて解繊された状態になっていることを示すものである。 FIG. 11 shows a palm trunk crushed piece crushed by thepulverizer 1 after being dried at 106 [° C.] for 2 hours, and classified by sieving, and mainly composed of soft tissue (hereinafter simply referred to as soft tissue). The weight ratio in each classification range when visually separated into those mainly composed of vascular bundles (hereinafter simply referred to as vascular bundles).
From FIG. 11, it can be seen that the soft tissue has a large particle size distribution between 0.1 and 1.7 [mm], and the vascular bundle is widely distributed in the particle size range of 0.425 to 3.35 [mm]. I understand.
FIG. 12 shows the particle size distribution of the entire palm trunk fragment according to FIG. In addition, the vertical axis | shaft of FIG. 12 displayed the ratio of the weight reference | standard to the whole target object below the particle size shown to a horizontal axis (henceforth only sieving below) when the target object was classified by sieving. Is. Similarly, FIG. 13 shows the particle size distribution for soft tissue and vascular bundles by means of cumulative sieving.
Comparing the soft tissue and vascular bundle graphs in FIG. 13, the particle size distribution profiles are greatly different. This point will be discussed below. If it is ground by the same mechanism, it should have the same particle size distribution. Nevertheless, the fact that the two particle groups have different particle size distributions is produced by different crushing mechanisms. In other words, the group with the larger particle size is directly generated by crushing, whereas the group with the smaller particle size is the one in which the small particles were originally weakly bound by the energy at the time of crushing. This is what is called defibration, which is generated by unraveling to the original particle size state. Therefore, FIG. 13 shows that in the crushing of the palm trunk, the soft tissue, which is the group with the smaller particle size, originally has a particle size distribution, and has been defibrated by being peeled from the vascular bundle by crushing. Is shown.
図11より柔組織は粒径が0.1~1.7[mm]の間に多く分布し、維管束は粒径が0.425~3.35[mm]の範囲に広く分布することが判る。
図12は図11をもとに、パームトランク破砕片全体についての粒度分布を示したものである。なお、図12の縦軸は、対象物を篩にかけて分級した際に、横軸に示す粒径以下の対象物の全体に占める重量基準の割合(以下、単に積算篩下という)をパーセント表示したものである。同様に、図13は柔組織および維管束についての粒度分布を、積算篩下により示したものである。
図13における柔組織および維管束のグラフを比較すると、その粒度分布のプロフィールは大きく異なっている。この点について、以下に考察する。もし、同じメカニズムによって粉砕されているのであれば、同じ粒径分布になるはずである。それにも関わらず、この二つの粒子のグループが異なる粒径分布をもっているということは、各々異なる破砕メカニズムによって生成したものである。すなわち、粒径が大きな方のグループが破砕により直接的に生じたものであるのに対して、粒径が小さな方のグループは、元々小さな粒子が弱く結合していたものが破砕時のエネルギーによって元の粒径状態に解きほぐされて生じる、いわゆる解繊と呼ばれるものである。したがって、図13は、パームトランクの破砕において、粒径が小さな方のグループである柔組織は元々ある粒度分布を持っており、破砕により維管束から剥がれて解繊された状態になっていることを示すものである。 FIG. 11 shows a palm trunk crushed piece crushed by the
From FIG. 11, it can be seen that the soft tissue has a large particle size distribution between 0.1 and 1.7 [mm], and the vascular bundle is widely distributed in the particle size range of 0.425 to 3.35 [mm]. I understand.
FIG. 12 shows the particle size distribution of the entire palm trunk fragment according to FIG. In addition, the vertical axis | shaft of FIG. 12 displayed the ratio of the weight reference | standard to the whole target object below the particle size shown to a horizontal axis (henceforth only sieving below) when the target object was classified by sieving. Is. Similarly, FIG. 13 shows the particle size distribution for soft tissue and vascular bundles by means of cumulative sieving.
Comparing the soft tissue and vascular bundle graphs in FIG. 13, the particle size distribution profiles are greatly different. This point will be discussed below. If it is ground by the same mechanism, it should have the same particle size distribution. Nevertheless, the fact that the two particle groups have different particle size distributions is produced by different crushing mechanisms. In other words, the group with the larger particle size is directly generated by crushing, whereas the group with the smaller particle size is the one in which the small particles were originally weakly bound by the energy at the time of crushing. This is what is called defibration, which is generated by unraveling to the original particle size state. Therefore, FIG. 13 shows that in the crushing of the palm trunk, the soft tissue, which is the group with the smaller particle size, originally has a particle size distribution, and has been defibrated by being peeled from the vascular bundle by crushing. Is shown.
図14は、パームトランク破砕片全体の粒径分布と、組織分の破砕片全体を基準とした粒径分布をあわせて示した図である。例えば、粒径1.0[mm]以下の維管束を含めた全体の積算篩下は41.2[%]なのに対して、柔組織分の積算篩下は35.6[%]であるので、残りの維管束が5.6[%]を占めることを示している。
FIG. 14 is a diagram showing the particle size distribution of the entire palm trunk fragment and the particle size distribution based on the entire fragment of tissue. For example, the total sieve under the vascular bundle with a particle size of 1.0 [mm] or less is 41.2 [%], whereas the total sieve under the soft tissue is 35.6 [%]. The remaining vascular bundles account for 5.6%.
粉砕機により解繊された破砕片中に、どの程度、柔組織が維管束から剥がれた状態にあるかということを考える。パームトランク中における柔組織の割合は5割程度なので、たとえば、図11に示すような破砕では、破砕片中の柔組織の割合は43.5[%]であるから、パームトランクは解繊された状態にあると考えられる。
Consider how much the soft tissue is peeled from the vascular bundle in the crushed pieces defibrated by the pulverizer. Since the ratio of the soft tissue in the palm trunk is about 50%, for example, in the crushing as shown in FIG. 11, the ratio of the soft tissue in the crushed piece is 43.5 [%]. It is thought that it is in the state.
表1は、柔組織および維管束の、パームトランク破砕片に含まれている割合と、吸水率と、を示す。ここで、吸水率とは柔組織または維管束の単位質量あたりの吸水可能な水分の質量を表す。吸水率は、柔組織または維管束について、最大吸水時の重量と乾燥時重量との差分を、乾燥時重量によって除算することにより求められる。
Table 1 shows the ratio of the soft tissue and vascular bundle contained in the palm trunk fragment and the water absorption rate. Here, the water absorption rate represents the mass of water that can be absorbed per unit mass of the soft tissue or vascular bundle. The water absorption is determined by dividing the difference between the maximum water absorption weight and the dry weight of the soft tissue or vascular bundle by the dry weight.
表2は篩分けにより分級された各粒径範囲のパームトランク破砕片の吸水量が、パームトランク全体の吸水量に占める割合を示したものである。例えば、粒径が1.0[mm]以下のパームトランク破砕片による吸水量が、全体の吸水量のうちの70.3[%]を占めている。また、図13の粒度分布から、柔組織全体のうち81.8%が粒径1.0[mm]以下である一方、粒径が1.0[mm]以下の維管束は維管束全体の9.9[%]を占めるにすぎないことから、粒径が1.0[mm]以下のパームトランク破砕片における吸水量が主として柔組織によるものであることがわかる。
また、表1に示すように、柔組織の平均吸水率は7.0倍であり、パームトランク破砕片に含まれている割合は0.435(43.5[%])である。この2つの数値を掛けると、7.0×0.435≒3.0となる。同様にして、維管束の吸水率とパームトランク破砕片に含まれている割合の数値を掛けると、1.6×0.565≒0.90となる。したがって、パームトランク破砕片の全体量を1としたときの吸水量は3.0+0.90=3.90となる。3.0÷(3.0+0.90)≒0.77であるから、パームトランク破砕片全体における吸水量のうち、約77[%]を柔組織の吸水量が占める。このことからも、パームトランク破砕片の吸水量については柔組織が支配的であることが判る。 Table 2 shows the ratio of the water absorption of the palm trunk crushed pieces of each particle size range classified by sieving to the water absorption of the entire palm trunk. For example, the amount of water absorbed by palm trunk fragments having a particle size of 1.0 [mm] or less accounts for 70.3 [%] of the total amount of water absorption. Further, from the particle size distribution of FIG. 13, 81.8% of the whole soft tissue has a particle size of 1.0 [mm] or less, while a vascular bundle having a particle size of 1.0 [mm] or less is the total vascular bundle. Since it only accounts for 9.9 [%], it can be seen that the water absorption in the palm trunk fragment having a particle size of 1.0 [mm] or less is mainly due to soft tissue.
Moreover, as shown in Table 1, the average water absorption of soft tissue is 7.0 times, and the ratio contained in the palm trunk fragment is 0.435 (43.5 [%]). When these two numbers are multiplied, 7.0 × 0.435≈3.0. Similarly, when the water absorption rate of the vascular bundle is multiplied by the numerical value of the ratio included in the palm trunk fragment, 1.6 × 0.565≈0.90 is obtained. Therefore, the water absorption amount when the total amount of the palm trunk fragment is 1 is 3.0 + 0.90 = 3.90. Since 3.0 ÷ (3.0 + 0.90) ≈0.77, about 77% of the amount of water absorbed in the entire palm trunk fragment is occupied by the amount of water absorbed by the soft tissue. This also indicates that the soft tissue is dominant in the water absorption of the palm trunk fragment.
また、表1に示すように、柔組織の平均吸水率は7.0倍であり、パームトランク破砕片に含まれている割合は0.435(43.5[%])である。この2つの数値を掛けると、7.0×0.435≒3.0となる。同様にして、維管束の吸水率とパームトランク破砕片に含まれている割合の数値を掛けると、1.6×0.565≒0.90となる。したがって、パームトランク破砕片の全体量を1としたときの吸水量は3.0+0.90=3.90となる。3.0÷(3.0+0.90)≒0.77であるから、パームトランク破砕片全体における吸水量のうち、約77[%]を柔組織の吸水量が占める。このことからも、パームトランク破砕片の吸水量については柔組織が支配的であることが判る。 Table 2 shows the ratio of the water absorption of the palm trunk crushed pieces of each particle size range classified by sieving to the water absorption of the entire palm trunk. For example, the amount of water absorbed by palm trunk fragments having a particle size of 1.0 [mm] or less accounts for 70.3 [%] of the total amount of water absorption. Further, from the particle size distribution of FIG. 13, 81.8% of the whole soft tissue has a particle size of 1.0 [mm] or less, while a vascular bundle having a particle size of 1.0 [mm] or less is the total vascular bundle. Since it only accounts for 9.9 [%], it can be seen that the water absorption in the palm trunk fragment having a particle size of 1.0 [mm] or less is mainly due to soft tissue.
Moreover, as shown in Table 1, the average water absorption of soft tissue is 7.0 times, and the ratio contained in the palm trunk fragment is 0.435 (43.5 [%]). When these two numbers are multiplied, 7.0 × 0.435≈3.0. Similarly, when the water absorption rate of the vascular bundle is multiplied by the numerical value of the ratio included in the palm trunk fragment, 1.6 × 0.565≈0.90 is obtained. Therefore, the water absorption amount when the total amount of the palm trunk fragment is 1 is 3.0 + 0.90 = 3.90. Since 3.0 ÷ (3.0 + 0.90) ≈0.77, about 77% of the amount of water absorbed in the entire palm trunk fragment is occupied by the amount of water absorbed by the soft tissue. This also indicates that the soft tissue is dominant in the water absorption of the palm trunk fragment.
表2から、粒径が0.1~0.3[mm]の区間における、全体に対する吸水量の割合は11.4[%]であるので、上述したように柔組織と維管束の全体量を1とした時の吸水量が3.9であるという計算結果を用いれば、この区間における吸水量は、3.9×0.114=0.446と計算される。一方、図11より、粒径が0.1~0.3[mm]の区間には柔組織のみが存在し、その全体に対する割合は5.4[%]であるので、粒径が0.1~0.3[mm]の区間における柔組織の吸水率は、0.446/0.054=8.3となる。この吸水率8.3は、柔組織全体の平均吸水率7.0より大きく、粉砕によっても柔組織の細胞壁が粉砕されずに吸水性が維持されていることを示している。
次に、図13及び図14より、パームトランク破砕片全体の粒径1.0[mm]における積算篩下が35.6[%]以上となるように粉砕されていれば、パームトランクの粉砕により柔組織が解繊された状態になった結果、パームトランク破砕片のうち43.5[%]を占める柔組織の吸水性を利用できることを示している。
したがって、図13に示すようなパームトランク破砕片の粒径0.3[mm]における積算篩下が5.4[%]以下となり、かつ、パームトランク破砕片の粒径1.0[mm]における積算篩下が35.6[%]以上となるような粉砕であればパームトランク破砕片中の柔組織の吸水性の特長を失うことはなく、柔組織と維管束が解繊された状態となり、柔組織の吸水性を利用して効率良く吸水することができる。 From Table 2, the ratio of water absorption to the whole in the section where the particle size is 0.1 to 0.3 [mm] is 11.4 [%], so that the total amount of soft tissue and vascular bundle as described above. If the calculation result that the amount of water absorption is 3.9 when 1 is set to 1, the amount of water absorption in this section is calculated as 3.9 × 0.114 = 0.446. On the other hand, as shown in FIG. 11, only the soft tissue exists in the section where the particle diameter is 0.1 to 0.3 [mm], and the ratio to the whole is 5.4 [%]. The water absorption rate of the soft tissue in the section of 1 to 0.3 [mm] is 0.446 / 0.054 = 8.3. This water absorption 8.3 is larger than the average water absorption 7.0 of the whole soft tissue, and shows that the water absorption is maintained without being crushed by the pulverization.
Next, from FIG. 13 and FIG. 14, if the total size of the palm trunk crushed pieces is crushed so that the total sieve size is 35.6 [%] or more, the palm trunk is crushed. As a result, the soft tissue was disentangled, and as a result, the water absorbency of the soft tissue occupying 43.5 [%] of the palm trunk crushed pieces can be used.
Therefore, the cumulative sieve under the particle diameter of 0.3 [mm] of the palm trunk fragment as shown in FIG. 13 is 5.4 [%] or less, and the particle diameter of the palm trunk fragment is 1.0 [mm]. If the total sieving is 35.6 [%] or more, the soft tissue absorbs the soft tissue in the palm trunk fragment and the soft tissue and vascular bundle are defibrated. Thus, water can be absorbed efficiently by utilizing the water absorption of soft tissue.
次に、図13及び図14より、パームトランク破砕片全体の粒径1.0[mm]における積算篩下が35.6[%]以上となるように粉砕されていれば、パームトランクの粉砕により柔組織が解繊された状態になった結果、パームトランク破砕片のうち43.5[%]を占める柔組織の吸水性を利用できることを示している。
したがって、図13に示すようなパームトランク破砕片の粒径0.3[mm]における積算篩下が5.4[%]以下となり、かつ、パームトランク破砕片の粒径1.0[mm]における積算篩下が35.6[%]以上となるような粉砕であればパームトランク破砕片中の柔組織の吸水性の特長を失うことはなく、柔組織と維管束が解繊された状態となり、柔組織の吸水性を利用して効率良く吸水することができる。 From Table 2, the ratio of water absorption to the whole in the section where the particle size is 0.1 to 0.3 [mm] is 11.4 [%], so that the total amount of soft tissue and vascular bundle as described above. If the calculation result that the amount of water absorption is 3.9 when 1 is set to 1, the amount of water absorption in this section is calculated as 3.9 × 0.114 = 0.446. On the other hand, as shown in FIG. 11, only the soft tissue exists in the section where the particle diameter is 0.1 to 0.3 [mm], and the ratio to the whole is 5.4 [%]. The water absorption rate of the soft tissue in the section of 1 to 0.3 [mm] is 0.446 / 0.054 = 8.3. This water absorption 8.3 is larger than the average water absorption 7.0 of the whole soft tissue, and shows that the water absorption is maintained without being crushed by the pulverization.
Next, from FIG. 13 and FIG. 14, if the total size of the palm trunk crushed pieces is crushed so that the total sieve size is 35.6 [%] or more, the palm trunk is crushed. As a result, the soft tissue was disentangled, and as a result, the water absorbency of the soft tissue occupying 43.5 [%] of the palm trunk crushed pieces can be used.
Therefore, the cumulative sieve under the particle diameter of 0.3 [mm] of the palm trunk fragment as shown in FIG. 13 is 5.4 [%] or less, and the particle diameter of the palm trunk fragment is 1.0 [mm]. If the total sieving is 35.6 [%] or more, the soft tissue absorbs the soft tissue in the palm trunk fragment and the soft tissue and vascular bundle are defibrated. Thus, water can be absorbed efficiently by utilizing the water absorption of soft tissue.
図15は、図13の維管束と柔組織の粒度分布をもとに、積算篩下が50[%]となる粒径をグラフから読み取って書き込んだものである。具体的には、柔組織の積算篩下が50[%]となる粒径が0.58[mm]であるのに対し、維管束の積算篩下が50[%]となる粒径は1.47[mm]である。0.58÷1.47≒0.39であるから、積算篩下が50[%]となる粒径同士を比較すると、柔組織は維管束の39[%](0.39倍)の粒径である。固体内における物質移動が拡散によるものであり、その移動に要する時間が粒径の2乗に比例することを考慮すると、0.39×0.39≒0.15により、柔組織における吸水時間は維管束における吸水時間の約15[%]となる。すなわち、柔組織は維管束と比較してわずか15[%]の時間で吸水が完了することを意味している。
図10は、パームトランク破砕片を20倍量の温度25[℃]の水中に浸漬させて、浸漬後のパームトランク含水率の経時変化を示したものである。浸漬開始後5秒で含水率は平衡に到達する。この試験は浸漬時のデータであるが、パームトランク内におけるカリウムの物質移動は加水時と同じである。
以上より、パームトランクを柔組織と維管束とに解繊された状態にまで粉砕しておいてから加水すると、吸水量の面から支配的である柔組織に対して、水分を速やかに柔組織の内部まで浸透させることができる。この場合では、パームトランク破砕片に加水したときに、ごく短時間のうちに吸水を完了させることができる。 FIG. 15 is a graph in which the particle size at which the integrated sieve is 50% is read from the graph and written based on the particle size distribution of the vascular bundle and the soft tissue in FIG. Specifically, the particle size at which the total sieving of the soft tissue is 50 [%] is 0.58 [mm], whereas the particle size at which the sieving of the vascular bundle is 50 [%] is 1 47 mm. Since 0.58 ÷ 1.47 ≒ 0.39, when comparing the particle diameters where the total sieving is 50 [%], the soft tissue is 39 [%] (0.39 times) the vascular bundle. Is the diameter. Considering that the mass transfer in the solid is due to diffusion and the time required for the transfer is proportional to the square of the particle size, 0.39 × 0.39≈0.15, so the water absorption time in the soft tissue is This is about 15% of the water absorption time in the vascular bundle. That is, the soft tissue means that the water absorption is completed in a time of only 15 [%] as compared with the vascular bundle.
FIG. 10 shows the time-dependent change of the moisture content of the palm trunk after the immersion of the palm trunk fragment in 20 times the amount of water at a temperature of 25 [° C.]. The water content reaches equilibrium in 5 seconds after the start of immersion. Although this test is data at the time of immersion, the mass transfer of potassium in the palm trunk is the same as at the time of water addition.
From the above, when the palm trunk is pulverized to a soft tissue and vascularized state and then hydrated, the soft tissue quickly absorbs moisture from the soft tissue that is dominant in terms of water absorption. It can be penetrated to the inside. In this case, when water is added to the palm trunk fragment, water absorption can be completed in a very short time.
図10は、パームトランク破砕片を20倍量の温度25[℃]の水中に浸漬させて、浸漬後のパームトランク含水率の経時変化を示したものである。浸漬開始後5秒で含水率は平衡に到達する。この試験は浸漬時のデータであるが、パームトランク内におけるカリウムの物質移動は加水時と同じである。
以上より、パームトランクを柔組織と維管束とに解繊された状態にまで粉砕しておいてから加水すると、吸水量の面から支配的である柔組織に対して、水分を速やかに柔組織の内部まで浸透させることができる。この場合では、パームトランク破砕片に加水したときに、ごく短時間のうちに吸水を完了させることができる。 FIG. 15 is a graph in which the particle size at which the integrated sieve is 50% is read from the graph and written based on the particle size distribution of the vascular bundle and the soft tissue in FIG. Specifically, the particle size at which the total sieving of the soft tissue is 50 [%] is 0.58 [mm], whereas the particle size at which the sieving of the vascular bundle is 50 [%] is 1 47 mm. Since 0.58 ÷ 1.47 ≒ 0.39, when comparing the particle diameters where the total sieving is 50 [%], the soft tissue is 39 [%] (0.39 times) the vascular bundle. Is the diameter. Considering that the mass transfer in the solid is due to diffusion and the time required for the transfer is proportional to the square of the particle size, 0.39 × 0.39≈0.15, so the water absorption time in the soft tissue is This is about 15% of the water absorption time in the vascular bundle. That is, the soft tissue means that the water absorption is completed in a time of only 15 [%] as compared with the vascular bundle.
FIG. 10 shows the time-dependent change of the moisture content of the palm trunk after the immersion of the palm trunk fragment in 20 times the amount of water at a temperature of 25 [° C.]. The water content reaches equilibrium in 5 seconds after the start of immersion. Although this test is data at the time of immersion, the mass transfer of potassium in the palm trunk is the same as at the time of water addition.
From the above, when the palm trunk is pulverized to a soft tissue and vascularized state and then hydrated, the soft tissue quickly absorbs moisture from the soft tissue that is dominant in terms of water absorption. It can be penetrated to the inside. In this case, when water is added to the palm trunk fragment, water absorption can be completed in a very short time.
次に、パームトランクの処理装置10の作用について説明する。
Next, the operation of the palm trunk processing apparatus 10 will be described.
粉砕機1は、前述のようにハンマーミルなどによって、パームトランクを柔組織と維管束とを含む粉状のパームトランク破砕片に粉砕する。粉砕して得られたパームトランク破砕片は、加水機3に運搬される。加水機3によりパームトランク破砕片に加水される、パームトランク破砕片の単位時間あたりの加水量Q(以降、単に単位時間あたり加水量Qと記す)は、制御部4によって制御される。
The pulverizer 1 pulverizes the palm trunk into a powdery palm trunk fragment containing soft tissue and vascular bundles using a hammer mill or the like as described above. Palm trunk fragments obtained by pulverization are transported to the water machine 3. The amount of water Q per unit time of the palm trunk crushed pieces (hereinafter simply referred to as the amount of water Q per unit time) that is hydrated into the palm trunk crushed pieces by the water machine 3 is controlled by the control unit 4.
図16は、制御部4による単位時間あたり加水量Qの制御方法の説明図である。図16に示すように、まずフェーズ1では、加水量の制御の前提となる初期条件を設定する。具体的には、加水する対象となるパームトランク破砕片の条件として、パームトランク破砕片の単位時間当たりの処理量P[kg/h]と、原料含水率φfと、原料中K濃度Dfと、を設定する。また、搾汁残渣の条件として、搾汁残渣含水率φrと、目標とする残渣中K濃度Drset(以降、単に目標K濃度Drsetと記す)と、を設定する。これらの初期設定値は、制御部4が備える記憶部に記憶される。
FIG. 16 is an explanatory diagram of a method for controlling the amount of water Q per unit time by the control unit 4. As shown in FIG. 16, first, in phase 1, initial conditions that are preconditions for controlling the amount of water are set. Specifically, as the conditions of the palm trunk fragments to be hydrated, the processing amount P [kg / h] per unit time of the palm trunk fragments, the raw material moisture content φ f, and the K concentration D f in the raw materials And set. Moreover, as a condition of the squeezed residue, a squeezed residue moisture content φ r and a target residue K concentration D rset (hereinafter simply referred to as a target K concentration D rset ) are set. These initial setting values are stored in a storage unit included in the control unit 4.
次に、制御部4はフェーズ2において、フェーズ1で設定された初期条件に基づいて加水機3による初期単位時間あたり加水量Q0[kg/h]を設定する。Q0は、以下の数式(10)により算出される。
Q0=P(φf0’-φf)/(1-φf0’) …(10)
なお、数式(10)においてφ’f0は初期条件下での加水後含水率であり、以下の数式(11)により算出される。
φ f0’=1/{Drset(1-φr)/(Dfφr)+1) …(11) Next, inphase 2, the control unit 4 sets the amount of water Q 0 [kg / h] per unit unit time by the water machine 3 based on the initial conditions set in phase 1. Q 0 is calculated by the following formula (10).
Q 0 = P (φ f0 ′ −φ f ) / (1−φ f0 ′ ) (10)
In Equation (10), φ ′ f0 is the water content after hydrolysis under the initial conditions, and is calculated by Equation (11) below.
φ f0 ′ = 1 / {D rset (1−φ r ) / (D f φ r ) +1) (11)
Q0=P(φf0’-φf)/(1-φf0’) …(10)
なお、数式(10)においてφ’f0は初期条件下での加水後含水率であり、以下の数式(11)により算出される。
φ f0’=1/{Drset(1-φr)/(Dfφr)+1) …(11) Next, in
Q 0 = P (φ f0 ′ −φ f ) / (1−φ f0 ′ ) (10)
In Equation (10), φ ′ f0 is the water content after hydrolysis under the initial conditions, and is calculated by Equation (11) below.
φ f0 ′ = 1 / {D rset (1−φ r ) / (D f φ r ) +1) (11)
次に、制御部4はフェーズ3において、加水機3による単位時間あたり加水量Qの再設定を行う。具体的には、以下の数式(12)に従って単位時間あたり加水量Qを増加させる。数式(12)において、Qiは直前の単位時間あたり加水量であり、Qi+1は再設定後の単位時間あたり加水量であり、ΔQは単位時間あたり加水量の調整量である。
Qi+1=Qi+ΔQ …(12)
なお、初期状態ではQi=Q0かつΔQ=0と設定されており、この場合Qi+1はQ0のまま変化しない。 Next, thecontrol unit 4 resets the water amount Q per unit time by the water machine 3 in the phase 3. Specifically, the amount of water Q per unit time is increased according to the following formula (12). In Formula (12), Q i is the amount of water added per unit time immediately before, Q i + 1 is the amount of water added per unit time after resetting, and ΔQ is the amount of water adjusted per unit time.
Q i + 1 = Q i + ΔQ (12)
In the initial state, Q i = Q 0 and ΔQ = 0 are set. In this case, Q i + 1 remains Q 0 and does not change.
Qi+1=Qi+ΔQ …(12)
なお、初期状態ではQi=Q0かつΔQ=0と設定されており、この場合Qi+1はQ0のまま変化しない。 Next, the
Q i + 1 = Q i + ΔQ (12)
In the initial state, Q i = Q 0 and ΔQ = 0 are set. In this case, Q i + 1 remains Q 0 and does not change.
次に、制御部4はフェーズ4において、Qi+1の単位時間あたり加水量で加水機3から散水または噴霧させる。
そして、制御部4はフェーズ5Aにおいて、検出部5から出力された流出量を読み取る。そして、制御部4はフェーズ6Aにおいて、流出量が0より大きいか否かを判断し、流出量が0よりも大きい場合には、ΔQの値を減少させて負の値とする。そしてフェーズ3に戻り、単位時間あたり加水量の再設定を行う。このようにすると、流出量が0より大きい場合には単位時間あたり加水量Qが徐々に減少するため、水資源の徒費を防止することができる。
なお、制御部4は、流出量が所定の量より大きい場合にΔQの値を減少させてもよい。あるいは、検出部5はパームトランク破砕片に吸収されなかった水分の有無を検出し、制御部4は、検出部5により水分が検出された場合にΔQの値を減少させてもよい。 Next, inphase 4, the control unit 4 sprays or sprays water from the water machine 3 at a water amount per unit time of Q i + 1 .
And thecontrol part 4 reads the outflow amount output from the detection part 5 in phase 5A. Then, the control unit 4 determines whether or not the outflow amount is larger than 0 in the phase 6A, and when the outflow amount is larger than 0, the value of ΔQ is decreased to a negative value. And it returns to phase 3 and resets the amount of water added per unit time. In this way, when the outflow amount is larger than 0, the water amount Q per unit time gradually decreases, so that it is possible to prevent the cost of water resources.
Note that thecontrol unit 4 may decrease the value of ΔQ when the outflow amount is larger than a predetermined amount. Or the detection part 5 may detect the presence or absence of the water | moisture content which was not absorbed by the palm trunk fragment, and the control part 4 may reduce the value of (DELTA) Q, when a water | moisture content is detected by the detection part 5. FIG.
そして、制御部4はフェーズ5Aにおいて、検出部5から出力された流出量を読み取る。そして、制御部4はフェーズ6Aにおいて、流出量が0より大きいか否かを判断し、流出量が0よりも大きい場合には、ΔQの値を減少させて負の値とする。そしてフェーズ3に戻り、単位時間あたり加水量の再設定を行う。このようにすると、流出量が0より大きい場合には単位時間あたり加水量Qが徐々に減少するため、水資源の徒費を防止することができる。
なお、制御部4は、流出量が所定の量より大きい場合にΔQの値を減少させてもよい。あるいは、検出部5はパームトランク破砕片に吸収されなかった水分の有無を検出し、制御部4は、検出部5により水分が検出された場合にΔQの値を減少させてもよい。 Next, in
And the
Note that the
一方、制御部4はフェーズ5Aと並行してフェーズ5Bの処理を行う。具体的には、分析器6が測定して出力した残渣中K濃度Drの値を読み取る。そして、制御部4はフェーズ6Bにおいて残渣中K濃度Drの値と目標K濃度Drsetの値とを比較する。残渣中K濃度Drの値が目標K濃度Drsetよりも大きい場合には、ΔQの値が正となるように単位時間あたり加水量Qを再設定する。残渣中K濃度Drの値が目標K濃度Drsetの値よりも小さい場合には、ΔQの値が負となるように単位時間あたり加水量Qを再設定する。残渣中K濃度Drの値と目標K濃度Drsetの値とが等しい場合には、ΔQの値を0に設定する。そしてフェーズ3に戻り、単位時間あたり加水量Qの再設定を行う。このようにすると、残渣中K濃度Drの値が目標K濃度Drsetの値に近づくように単位時間あたり加水量Qが調節されるため、加水機3からの単位時間あたり加水量Qを過不足のない値に設定することができる。
On the other hand, the control unit 4 performs processing of phase 5B in parallel with phase 5A. Specifically, read the value of the analyzer 6 has output the measured residue K concentration D r. Then, the control unit 4 compares the value of the K concentration D r in the residue with the value of the target K concentration D rset in the phase 6B. When the value of the K concentration D r in the residue is larger than the target K concentration D rset , the water amount Q per unit time is reset so that the value of ΔQ becomes positive. When the value of the K concentration D r in the residue is smaller than the value of the target K concentration D rset , the water amount Q is reset per unit time so that the value of ΔQ becomes negative. If the residue K concentration D r is equal to the target K concentration D rset , the value of ΔQ is set to zero. Then, returning to phase 3, the water amount Q per unit time is reset. In this way, since the amount of water Q per unit time is adjusted so that the value of the K concentration D r in the residue approaches the value of the target K concentration D rset , the amount of water Q per unit time from the water machine 3 is exceeded. It can be set to a value with no shortage.
なお、フェーズ3において単位時間あたり加水量を再設定する際、フェーズ6Aの処理結果がフェーズ6Bの処理結果よりも優先される。例えば、フェーズ6Aにおいて流出量>0であった場合には、フェーズ6Bにおいて残渣中K濃度Dr>目標K濃度Drsetであったとしても、制御部4はΔQの値が負となるように単位時間あたり加水量Qを再設定する。これは、フェーズ6Aで流出量>0であった場合には、パームトランク破砕片が加水された水分を全て吸収しきれていないため、さらに加水量を増加させても残渣K濃度Drを低下させることができないためである。
In addition, when resetting the amount of water added per unit time in phase 3, the processing result of phase 6A has priority over the processing result of phase 6B. For example, when the outflow amount> 0 in the phase 6A, even if the K concentration D r in the residue> the target K concentration D rset in the phase 6B, the control unit 4 makes the value of ΔQ negative. Reset water amount Q per unit time. This is because when the outflow amount is> 0 in Phase 6A, the palm trunk fragment does not absorb all of the water that has been added, so even if the amount of addition is further increased, the residue K concentration Dr is reduced. It is because it cannot be made to do.
本実施形態のパームトランク処理方法によれば、残渣中K濃度Drの値が目標K濃度Drsetとなるように加水機3による単位時間あたり加水量がフィードバック制御され、過不足のない加水を行うことができる。これにより、加水量が不足して残渣中K濃度Drが目標K濃度Drsetを上回るのを防ぎつつ、過剰な加水によって水資源を徒費することを防ぐことができる。このようにして、加水工程を効率化することができるとともに、例えば水資源が豊富でない地域においてパームトランクを処理する場合に、限られた資源を有効活用させることが可能になる。
According to the palm trunk treatment method of the present embodiment, the amount of water added per unit time by the water machine 3 is feedback-controlled so that the value of the K concentration D r in the residue becomes the target K concentration D rset , so It can be carried out. Accordingly, it is possible to prevent water resources from being consumed due to excessive water addition while preventing the amount of water from being insufficient and preventing the K concentration D r in the residue from exceeding the target K concentration D rset . In this way, the hydration process can be made more efficient, and limited resources can be effectively utilized when, for example, palm trunks are processed in areas where water resources are not abundant.
以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した各実施形態において示した処理装置10の構成および作用等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
また、本発明の趣旨を逸脱しない範囲で、上記した各実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、上記した実施形態やその変形例を適宜組み合わせてもよい。 As mentioned above, although preferred embodiment of this invention was described referring drawings, this invention is not limited to the said embodiment. The configuration, operation, and the like of theprocessing device 10 shown in each of the above-described embodiments are merely examples, and various changes can be made based on design requirements and the like without departing from the gist of the present invention.
In addition, the constituent elements in the above-described embodiments can be appropriately replaced with well-known constituent elements without departing from the spirit of the present invention, and the above-described embodiments and modifications thereof may be appropriately combined.
また、本発明の趣旨を逸脱しない範囲で、上記した各実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、上記した実施形態やその変形例を適宜組み合わせてもよい。 As mentioned above, although preferred embodiment of this invention was described referring drawings, this invention is not limited to the said embodiment. The configuration, operation, and the like of the
In addition, the constituent elements in the above-described embodiments can be appropriately replaced with well-known constituent elements without departing from the spirit of the present invention, and the above-described embodiments and modifications thereof may be appropriately combined.
1…粉砕機 2…搾汁機 3…加水機 4…制御部 5…検出部 6…分析器 7…液体燃料生成部 7a…搾汁液タンク 7b…発酵槽 7c…蒸留器 7d…製品タンク 8…固体燃料生成部 8a…乾燥機 8b…破砕機 8c…成型機 8d…冷却器 9…ベルトコンベア 10…処理装置 21…リングロール 22…内接ロール 23…投入口 24…排出口 25…シリンダ 26…押圧ロール
DESCRIPTION OF SYMBOLS 1 ... Crusher 2 ... Juice machine 3 ... Water machine 4 ... Control part 5 ... Detection part 6 ... Analyzer 7 ... Liquid fuel production | generation part 7a ... Juice liquid tank 7b ... Fermenter 7c ... Distiller 7d ... Product tank 8 ... Solid fuel generator 8a ... Dryer 8b ... Crusher 8c ... Molding machine 8d ... Cooler 9 ... Belt conveyor 10 ... Processing device 21 ... Ring roll 22 ... Inscribed roll 23 ... Inlet 24 ... Discharge 25 ... Cylinder 26 ... Press roll
Claims (6)
- パームトランクを、粉砕機を用いて柔組織と維管束とに解繊して粉砕する粉砕工程と、
前記粉砕工程で粉砕されたパームトランクにその吸水可能な水分量の上限値以下の範囲で加水する加水工程と、
前記加水工程で加水された粉状のパームトランクを圧搾する圧搾工程と、を有することを特徴とするパームトランクの処理方法。 A pulverization process in which the palm trunk is fibrillated into a soft tissue and a vascular bundle using a pulverizer;
A hydration step of adding water to the palm trunk pulverized in the pulverization step in a range equal to or lower than the upper limit of the amount of water that can be absorbed;
And a squeezing step of squeezing the powdered palm trunk hydrated in the hydration step. - 前記粉砕工程で粉砕されたパームトランクを乾燥後に篩にかけた際の重量基準の積算篩下が、粒径0.3mmにおいて5.4%以下であることを特徴とする請求項1に記載のパームトランクの処理方法。 2. The palm according to claim 1, wherein a weight-based cumulative sieve when the palm trunk pulverized in the pulverization step is sieved after drying is 5.4% or less at a particle size of 0.3 mm. How to handle the trunk.
- 前記加水工程において、粉砕されたパームトランクに散水または噴霧して加水することを特徴とする請求項1または2に記載のパームトランクの処理方法。 The method for treating a palm trunk according to claim 1 or 2, wherein in the hydration step, the pulverized palm trunk is sprinkled with water or sprayed.
- 前記加水工程におけるパームトランクへの加水量は、パームトランクの質量に対して1.7倍以下であることを特徴とする請求項1から3のいずれか1項に記載のパームトランクの処理方法。 The method for treating a palm trunk according to any one of claims 1 to 3, wherein an amount of water added to the palm trunk in the hydration step is 1.7 times or less with respect to a mass of the palm trunk.
- 前記加水工程におけるパームトランクへの加水量を、前記圧搾工程で得られた搾汁残渣が含有するカリウム濃度に基づいて制御することを特徴とする請求項1から4のいずれか1項に記載のパームトランクの処理方法。 The amount of water added to the palm trunk in the hydration step is controlled based on the potassium concentration contained in the squeezed residue obtained in the squeezing step. How to handle palm trunks.
- 請求項1から5のいずれか1項に記載のパームトランクの処理方法を実施するパームトランクの処理装置であって、
パームトランクを柔組織と維管束とに解繊して粉砕する粉砕機と、
前記粉砕機によって粉砕されたパームトランクに加水する加水機と、
前記加水機により加水されたパームトランクを圧搾する搾汁機と、を備えることを特徴とするパームトランクの処理装置。 A palm trunk processing apparatus that implements the palm trunk processing method according to claim 1,
A crusher that defibrates and crushes the palm trunk into soft tissue and vascular bundles,
A water machine for adding water to the palm trunk crushed by the crusher;
A processing device for a palm trunk, comprising: a squeezer that squeezes the palm trunk that has been watered by the water machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI2019003078A MY182113A (en) | 2016-12-22 | 2017-11-02 | Palm trunk processing method and palm trunk processing apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-249473 | 2016-12-22 | ||
JP2016249473A JP6180614B1 (en) | 2016-12-22 | 2016-12-22 | Palm trunk processing method and palm trunk processing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018116657A1 true WO2018116657A1 (en) | 2018-06-28 |
Family
ID=59604987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/039730 WO2018116657A1 (en) | 2016-12-22 | 2017-11-02 | Palm trunk processing method and palm trunk processing apparatus |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6180614B1 (en) |
MY (1) | MY182113A (en) |
WO (1) | WO2018116657A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109482330A (en) * | 2018-11-02 | 2019-03-19 | 北矿智云科技(北京)有限公司 | A kind of total level weighing apparatus control method and device of SABC ore grinding |
GB2626036A (en) * | 2023-01-09 | 2024-07-10 | Scaleup Innovations Holdings Ltd | Soilless growing media |
WO2024224748A1 (en) * | 2023-04-27 | 2024-10-31 | パナソニックIpマネジメント株式会社 | Method for treating crushed woody biomass |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111135933A (en) * | 2019-12-25 | 2020-05-12 | 日昌升建筑新材料设计研究院有限公司 | Machine-made sand and stone secondary crushing and secondary screening circulating production process |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004352962A (en) * | 2003-05-30 | 2004-12-16 | Mitsubishi Heavy Ind Ltd | Method for utilizing biomass and biomass utilization system |
JP2010024076A (en) * | 2008-07-17 | 2010-02-04 | Kyowa Kogyo Kk | Fertilizer, method for producing fertilizer, and method for treating vegetable waste |
JP2012153790A (en) * | 2011-01-26 | 2012-08-16 | Jfe Engineering Corp | Apparatus and method for pretreating grass biomass |
JP2015073953A (en) * | 2013-10-09 | 2015-04-20 | 新日鉄住金エンジニアリング株式会社 | Method of processing palm trunk |
WO2016056353A1 (en) * | 2014-10-10 | 2016-04-14 | 株式会社Ihi環境エンジニアリング | Cellulose-based-biomass squeezing method, and gas fuel preparation method |
JP2016125030A (en) * | 2015-01-08 | 2016-07-11 | 株式会社日立製作所 | Plant biofuel improving method, system and producing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2504227A1 (en) * | 2002-10-30 | 2004-05-13 | John Wesley Stamp | Process for the treatment of palm waste |
JP4849650B1 (en) * | 2011-04-12 | 2012-01-11 | Jfe商事株式会社 | Method for treating tropical plant waste or woody waste and recycling method |
JP2016047513A (en) * | 2014-08-27 | 2016-04-07 | 正中 渡邉 | Producing method of oil palm stem plant cell wall powder by purifying oil palm stem cell wall particle and vascular bundle structure |
-
2016
- 2016-12-22 JP JP2016249473A patent/JP6180614B1/en active Active
-
2017
- 2017-11-02 WO PCT/JP2017/039730 patent/WO2018116657A1/en active Application Filing
- 2017-11-02 MY MYPI2019003078A patent/MY182113A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004352962A (en) * | 2003-05-30 | 2004-12-16 | Mitsubishi Heavy Ind Ltd | Method for utilizing biomass and biomass utilization system |
JP2010024076A (en) * | 2008-07-17 | 2010-02-04 | Kyowa Kogyo Kk | Fertilizer, method for producing fertilizer, and method for treating vegetable waste |
JP2012153790A (en) * | 2011-01-26 | 2012-08-16 | Jfe Engineering Corp | Apparatus and method for pretreating grass biomass |
JP2015073953A (en) * | 2013-10-09 | 2015-04-20 | 新日鉄住金エンジニアリング株式会社 | Method of processing palm trunk |
WO2016056353A1 (en) * | 2014-10-10 | 2016-04-14 | 株式会社Ihi環境エンジニアリング | Cellulose-based-biomass squeezing method, and gas fuel preparation method |
JP2016125030A (en) * | 2015-01-08 | 2016-07-11 | 株式会社日立製作所 | Plant biofuel improving method, system and producing method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109482330A (en) * | 2018-11-02 | 2019-03-19 | 北矿智云科技(北京)有限公司 | A kind of total level weighing apparatus control method and device of SABC ore grinding |
GB2626036A (en) * | 2023-01-09 | 2024-07-10 | Scaleup Innovations Holdings Ltd | Soilless growing media |
WO2024224748A1 (en) * | 2023-04-27 | 2024-10-31 | パナソニックIpマネジメント株式会社 | Method for treating crushed woody biomass |
Also Published As
Publication number | Publication date |
---|---|
JP6180614B1 (en) | 2017-08-16 |
JP2018103074A (en) | 2018-07-05 |
MY182113A (en) | 2021-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018116657A1 (en) | Palm trunk processing method and palm trunk processing apparatus | |
Tumuluru | Effect of process variables on the density and durability of the pellets made from high moisture corn stover | |
CA2746998C (en) | A method for the production of pellets or briquettes | |
EP2819785B1 (en) | Method and device for large-scale processing of biomass for energy production | |
Lomovsky et al. | Mechanical pretreatment | |
CN103861863B (en) | A kind of domestic waste Comprehensive utilization method | |
CN104130034A (en) | Method for producing fiber board and organic fertilizer by utilizing garden waste | |
CN205454729U (en) | High -efficient straw reducing mechanism | |
CN107365601B (en) | A kind of Biomass Gasification & Power Generation method using agriculture and forestry organic waste material | |
CN102343354A (en) | High-energy quantum water splitting treatment method for solid wastes | |
Jin et al. | Fractionation of fibrous fraction from steam-exploded rice straw | |
JP2012052060A (en) | Manufacturing method and plant for solid fuel | |
CN104531256A (en) | Environment-friendly biomass pellet fuel production method | |
Li et al. | Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation | |
JPS59500173A (en) | How to make fuel from waste | |
JP5531289B2 (en) | Method for producing bamboo pellet fuel | |
JP5901809B2 (en) | Solid fuel production method and production plant | |
KR20170089748A (en) | Biomass molded fuel with high calorific value, apparatus and manufacturing method for thermoelectric power plant and steelworks using vegetable Oil generation by-product | |
CN111164190A (en) | Method and apparatus for producing cellulose-based fuel pellets | |
CN112430159A (en) | System for preparing granulated fertilizer by anaerobic digestion of biogas residues by kitchen waste dry method and operation process | |
JP2012188556A (en) | Method for producing bamboo pellet fuel | |
CN104437733A (en) | Bark crusher | |
CN105327929B (en) | Life refuse processing method and its realization device | |
JP2017039932A (en) | Manufacturing method of molded article for mixed fuel | |
CN213803558U (en) | System for preparing granulated fertilizer by anaerobic digestion of biogas residues by kitchen waste dry method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17884289 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17884289 Country of ref document: EP Kind code of ref document: A1 |