WO2018116520A1 - Digital smart real showcase warning system, method, and program - Google Patents

Digital smart real showcase warning system, method, and program Download PDF

Info

Publication number
WO2018116520A1
WO2018116520A1 PCT/JP2017/029354 JP2017029354W WO2018116520A1 WO 2018116520 A1 WO2018116520 A1 WO 2018116520A1 JP 2017029354 W JP2017029354 W JP 2017029354W WO 2018116520 A1 WO2018116520 A1 WO 2018116520A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
showcase
outside air
alarm
air temperature
Prior art date
Application number
PCT/JP2017/029354
Other languages
French (fr)
Japanese (ja)
Inventor
和夫 三輪
Original Assignee
株式会社 テクノミライ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2016/088223 external-priority patent/WO2018116429A1/en
Priority claimed from PCT/JP2017/026149 external-priority patent/WO2019016902A1/en
Application filed by 株式会社 テクノミライ filed Critical 株式会社 テクノミライ
Priority to US16/471,321 priority Critical patent/US20200018537A1/en
Priority to JP2017559128A priority patent/JP6344785B1/en
Priority to CN201780078938.7A priority patent/CN110088544A/en
Publication of WO2018116520A1 publication Critical patent/WO2018116520A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/008Alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/006Self-contained movable devices, e.g. domestic refrigerators with cold storage accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/29High ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0666Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the freezer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/04Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Definitions

  • the present invention relates to a digital smart real showcase alarm system, method, and program capable of preventing the occurrence of product loss due to failure of a showcase, a refrigeration freezer, a refrigeration machine facility, etc., gas leakage and frosting.
  • showcases are used to display beverages and foods while refrigerated or frozen.
  • Refrigerated showcases installed in stores such as supermarkets are equipped with a refrigeration system, and cool air is blown out from the outlet into the showcase storage where products are displayed to cool the interior to a predetermined temperature. The air is sucked from the mouth, cooled again, and discharged as cold air into the cabinet.
  • the cooling temperature in the cabinet varies depending on the type of goods stored, and the chamber temperature is set for each showcase.
  • the setting of the target temperature in the cabinet is performed by a freezer / refrigerated showcase controller installed for each showcase. If the target temperature is set, the internal temperature is detected, and the solenoid valve of the refrigeration apparatus is controlled to open and close so that the internal temperature approaches the target temperature.
  • Patent Document 1 an in-house temperature sensor that inputs the temperature in the showcase storage over time, a failure determination unit that determines that the showcase is in failure based on the input temperature, There is described a failure determination system including a display unit for notifying that a warning alert is issued when the failure determination unit determines that it is obvious (paragraphs 0023 to 0051, FIGS. 1 to 6).
  • Patent Document 2 includes a cooling tank that contains a cooling liquid and immerses an object to be cooled in the cooling liquid for cooling and freezing, and a temperature detector that detects the temperature of the cooling liquid in the cooling tank.
  • the temperature detector detects the coolant temperature tn at every predetermined detection cycle.
  • the estimated time T required for the coolant to reach the alarm temperature tA from the time is calculated, and if the deviation tA-tn between the alarm temperature tA and the detected temperature tn falls below a predetermined temperature due to a failure or the like, the prediction time T is
  • the cooling / refrigeration apparatus displayed in the predicted time display section is described (paragraphs 0001 to 0012, FIGS. 1 and 2).
  • Patent Document 3 describes a failure cause estimation device for a case cooling system in which failure determination is not performed during defrosting operation (paragraph 0055).
  • Patent Document 4 describes a refrigerator in which failure determination is not performed during a defrosting operation (paragraph 0042).
  • Patent Document 5 discloses a temperature sensor that detects the temperature in the cold storage compartment, a temperature history storage unit that sequentially stores the internal temperature detected by the temperature sensor as internal temperature history information, and the temperature history. Failure / part replacement prediction unit that activates an alarm buzzer / notification lamp when the internal temperature curve, which is the internal temperature history clear report of the cold storage stored in the storage unit, deviates from the initial value by a certain level (Paragraph 0050, paragraph 0053, paragraph 0063, FIG. 1, FIG. 2, FIG. 4, FIG. 16).
  • An object of the present invention is to provide a digital smart real showcase alarm system, method and program capable of preventing the occurrence of product loss such as showcases.
  • the digital smart real showcase alarm system is inputted with temperature input means for inputting the temperature inside the showcase, refrigerator or freezer (hereinafter referred to as “showcase etc.”) over time.
  • a failure determination unit that determines that the showcase or the like has failed, and a product in the warehouse such as the showcase is refrigerated or frozen when the failure determination unit determines that the failure has occurred.
  • a calculation unit that calculates an expected date and time to rise to an alarm temperature that is a predetermined temperature that is unsuitably high, and a notification unit that notifies alarm information including the estimated date and time calculated by the calculation unit. .
  • the digital smart real showcase alarm system includes an outside air temperature input means for inputting outside air temperature information, and an outside air temperature prediction for predicting a predicted future outside air temperature from the outside air temperature information inputted by the outside air temperature input means. And control means for controlling the temperature of the showcase based on the predicted outside air temperature predicted by the outside air temperature predicting means.
  • the showcase is controlled on the basis of the outside air temperature that is preempted rather than following the outside air temperature, so that the showcase can be quickly and appropriately controlled to display the showcase with the minimum necessary energy. Can be controlled.
  • the failure determination means can determine the failure more accurately by determining the showcase or the like as a failure and viewing the temperature change pattern.
  • the failure determination means excludes the defrosting period from the determination condition at the time of failure by not determining that the temperature rise is a failure when the temperature of the defrosting such as the showcase is changed. An alarm can be displayed.
  • a storage unit that stores calendar information in which the temperature change is accumulated is provided, and the failure determination unit determines that a failure occurs when a difference between the calendar information read from the storage unit and the temperature is greater than a predetermined value.
  • the notification means can promptly notify the person concerned in a remote place of the urgency level by transmitting the alarm information to a terminal device that can be held by a person who maintains the showcase or the like.
  • a storage unit that stores past outside air temperature is provided, and the outside temperature prediction unit predicts a predicted outside temperature based on data stored in the storage unit, thereby using the past data.
  • the future can be predicted from the current outside air temperature with reference to how the temperature changes with respect to the current time.
  • control means controls the operation of the showcase with a temperature-dependent control coefficient that is a control coefficient corresponding to the displacement of the showcase temperature from the target temperature, so that fine energy-saving control according to the displacement is performed. Can do.
  • outside air temperature predicting means predicts the predicted outside air temperature in the future only for the time corresponding to the length of the refrigerant pipe connecting the showcase and the refrigerator, thereby leading the time corresponding to the length of the refrigerant pipe.
  • the showcase can be controlled based on the predicted (future) outside air temperature, and the showcase can be quickly and appropriately controlled to control the showcase with a minimum amount of energy.
  • room temperature input means for inputting room temperature information
  • room humidity input means for inputting room humidity information
  • room temperature input from the room temperature input means room humidity input from the room humidity input means
  • the indoor enthalpy predicting means for predicting the predicted indoor enthalpy which is the total heat quantity of the humid air of the future indoor air
  • the control means determines the temperature of the showcase based on the indoor enthalpy predicted by the indoor enthalpy predicting means.
  • the indoor enthalpy is predicted and the showcase is controlled based on the predicted outside air temperature and indoor enthalpy, so the estimated thermal load estimation result is reflected in the showcase control. High showcase energy-saving control can be realized.
  • control means controls the showcase based on a predicted bias outside air temperature obtained by adding a bias temperature for correcting a high temperature around the condenser to the predicted outside air temperature as the predicted outside air temperature.
  • a predicted bias outside air temperature obtained by adding a bias temperature for correcting a high temperature around the condenser to the predicted outside air temperature as the predicted outside air temperature.
  • the digital smart real showcase alarm method includes a temperature input step of inputting a temperature in a storehouse such as a showcase over time, and the showcase or the like fails based on the input temperature.
  • the failure determination step and the failure determination step determine that there is a failure
  • the product in the warehouse such as the showcase rises to an alarm temperature that is a predetermined temperature that is high enough to be unsuitable for refrigeration or freezing.
  • a calculation step for calculating an expected date and time, and a notification step for notifying alarm information including the estimated date and time calculated by the calculation step are provided.
  • the computer determines whether the showcase or the like is out of order based on the temperature input means for inputting the temperature in the storage of the showcase or the like over time and the input temperature.
  • the failure determination means and the failure determination means determine that there is a failure
  • the expected date and time when the product in the warehouse such as the showcase rises to an alarm temperature that is a high predetermined temperature that is not suitable for refrigeration or freezing is calculated.
  • an alarm is displayed to indicate the degree of failure in an easy-to-understand manner by displaying the expected date and time when the internal temperature rises to the alarm temperature.
  • product loss can be prevented.
  • FIG. 1 is a configuration diagram of a digital smart real showcase alarm system according to an embodiment of the present invention. It is a block diagram which shows the structural example of the control apparatus of the digital smart real showcase alarm system which concerns on embodiment of this invention. It is a block diagram of the showcase of the digital smart real showcase alarm system which concerns on embodiment of this invention. It is a flowchart which shows the digital smart real showcase alarm process of the digital smart real showcase alarm system which concerns on embodiment of this invention. It is a flowchart which shows the energy-saving control operation
  • FIG. 1 is a block diagram showing a configuration of a digital smart real showcase alarm system according to an embodiment of the present invention. This embodiment is an example applied to an air conditioning alarm system, and air conditioning control is not essential to the present invention.
  • a digital smart real showcase alarm system 100 includes an outside air temperature input unit 11 (outside air temperature input unit), an outside air temperature table 12 (storage unit), and an outside air temperature prediction unit 13 (outside air temperature prediction unit).
  • Indoor temperature input unit 14 Indoor temperature input unit 14, indoor humidity input unit 15, indoor enthalpy table 16 (storage means), indoor enthalpy prediction unit 17 (enthalpy prediction unit), showcase control unit 18 (control unit), and air conditioning control unit 19 (control) Means).
  • An outside air thermometer 20, an indoor thermometer 30, an indoor hygrometer 40, a showcase 50, and an air conditioner 60 are described to illustrate the digital smart real showcase alarm system 100.
  • the indoor thermometer 30 is a temperature sensor that detects the temperature of indoor air.
  • the indoor hygrometer 40 is a humidity sensor that detects the humidity of room air.
  • outside air temperature prediction unit 13 The outside air temperature input unit 11 inputs the current outside air temperature from the outside air thermometer 20.
  • the outside air temperature table 12 stores past outside air temperatures for prediction of outside air temperatures.
  • “outside temperature” as used in this specification is the temperature outside the building, which is basically equal to the temperature announced by the Japan Meteorological Agency, but it is assumed that there will be local fluctuations or variations.
  • the outside air temperature prediction unit 13 predicts the outside air temperature and passes the predicted outside air temperature to the showcase control unit 18 and the air conditioning control unit 19.
  • Outside air temperature prediction includes a past data use prediction method that uses past data to predict the outside air temperature, and an external data use prediction method that uses the data of an external engine to predict the future from the outside air temperature. .
  • the outside air temperature prediction unit 13 predicts how the temperature will change in the future (for example, how many minutes later) (whether it rises or falls).
  • the outside air temperature table 12 stores the outside air temperature data for every 30 minutes in the past, for example, one year to see how the temperature has changed with respect to the past current time.
  • the outside air temperature prediction unit 13 predicts the future from the current outside air temperature based on past data read from the outside air temperature table 12 with reference to how the temperature has changed with respect to the past current time. To do. The details will be described below.
  • the outside air temperature prediction unit 13 stores the outside air temperature every 30 minutes in the past year in the outside air temperature table 12, and reads the stored outside air temperature as the outside air temperature predicted value to predict the outside air temperature.
  • the outside air temperature prediction unit 13 predicts the outside air temperature by, for example, the following methods (1) to (4) and stores it in the outside air temperature table 12. .
  • a reference curve representing a change in temperature for each time zone (for example, a curve representing a change from the lowest temperature to the highest temperature for each region) is created. Specifically, for each region, the outside air temperature for each time zone from 0 o'clock to 24 o'clock on each day of the year and the temperature change for each time zone are stored as a reference curve. Even if the outdoor temperature of the day differs from year to year, the temperature change for each time zone on that day can be obtained by statistically accumulating it as past data. It can be represented by a curve.
  • the outside air temperature table 12 stores (accumulates) the actual temperature value and the reference curve in the corresponding area.
  • the predicted value of the outside air temperature for each time zone is calculated from the acquired outside air temperature and the temperature change for each time zone on the corresponding day shown in the reference curve. That is, the acquired outside air temperature is predicted to change at the slope of the temperature change indicated by the reference curve in the next time zone (for example, 1 hour, but 5 minutes, 15 minutes, 30 minutes, etc. are calculated by linear interpolation). For example, it is assumed that an outside air temperature table 12 as shown in Table 1 below is obtained.
  • the outside air temperature prediction unit 13 uses the current outside air temperature and past data stored in the outside air temperature table 12 (here, past actual values and reference curves for each time zone) (for example, one hour later). ) Predict the outside air temperature. Further, in the above case, the outside air temperature after 30 minutes is obtained by adding (subtracting) 1/2 of the temperature change indicated by the reference curve to the current outside air temperature, thereby obtaining the predicted value of the outside air temperature after 30 minutes. Can be sought. The predicted value of the outside air temperature can be obtained by the same method even after 15 minutes or for two hours or more.
  • the outside air temperature prediction unit 13 creates a reference curve representing a change in the temperature of the day based on the past actual temperature values, and predicts the temperature based on the reference curve.
  • the outside air temperature prediction unit 13 does not use the average value or median value of the past actual values of the air temperature as the current air temperature, but based on the change in the temperature stored in the outside air temperature table 12, Since the temperature corresponding to the tendency of change is predicted, the prediction accuracy can be improved.
  • the outside air temperature prediction unit 13 can adopt the following ⁇ external data use prediction method >>.
  • the outside air temperature prediction unit 13 predicts the outside air temperature using, for example, a temperature forecast for the date announced by the Japan Meteorological Agency.
  • the outside air temperature prediction unit 13 predicts a future outside air temperature with respect to the current outside air temperature with reference to a change in the temperature forecast announced by the Japan Meteorological Agency (time differentiation, that is, a tendency of temperature change).
  • the outside air temperature prediction unit 13 can receive data (meteorological data) including a forecast value announced by the Japan Meteorological Agency or Meteorological Company by accessing a computer of the Meteorological Agency or Meteorological Company.
  • the indoor enthalpy table 16 stores past indoor enthalpies for predicting indoor enthalpy (see Table 1).
  • the indoor enthalpy prediction unit 17 refers to the indoor enthalpy table 16 and predicts indoor enthalpy. Specifically, the indoor enthalpy prediction unit 17 is based on the input temperature and humidity of the indoor air and the table value of the indoor enthalpy table 16, and is the enthalpy (also referred to as specific enthalpy) that is the total amount of humid air in the indoor air. Predict.
  • the enthalpy in this embodiment indicates the enthalpy of 1 kg of substance (air), and the unit of enthalpy is (kJ / kgD.A.).
  • the showcase control unit 18 controls the temperature at which the display items in the showcase are frozen or refrigerated. Specifically, it is a refrigerator or a refrigerator, for example, and it is desirable to perform energy saving control.
  • the control rate is calculated in advance and programmed based on the average sales floor temperature and specific enthalpy value (total heat of air) such as every month, business hours and non-business hours or day and night. Energy-saving control of the operation of refrigeration or refrigeration is performed for the control rate.
  • the showcase control unit 18 predicts a future predicted outside air temperature for a time corresponding to the length of the refrigerant pipe 130 (see FIG. 2) from the input outside air temperature information, and the showcase is based on the predicted outside air temperature.
  • the temperature of 50 is controlled (detailed later).
  • the operating rate of the showcase control unit 18 that controls the temperature at which the display items in the showcase are frozen or refrigerated (hereinafter, this operating rate is referred to as “showcase operating rate”) is detected.
  • the case operating rate exceeds a predetermined value, the energy saving control of the air conditioner 60 is suppressed or stopped, the temperature of the sales floor where the showcase is installed is lowered, and the showcase operating rate is lowered to a predetermined value or less. It realizes energy saving as a whole.
  • the case where the sales floor rises to an unintended temperature is, for example, a system that cannot detect that the specific enthalpy value (total heat of air) is high without measuring the humidity of the sales floor. It is assumed that the control cannot be detected as being overloaded, or that the air conditioning control cannot follow the sudden increase in visitors.
  • the air conditioning control unit 19 calculates a control rate for energy-saving control of the air conditioner 60, and performs energy-saving control of the air conditioner 60 without excess or deficiency by the control rate.
  • the control may be one that stops (turns off) the air conditioner 60 in a predetermined pattern, or one that performs inverter control.
  • the outside air temperature prediction unit 13, the indoor enthalpy prediction unit 17, the showcase control unit 18, and the air conditioning control unit 19 are configured by an arithmetic control unit such as a personal computer.
  • the arithmetic control unit is composed of a CPU (Central Processing Unit) or the like, and controls the entire apparatus and executes an air conditioning energy saving control program to function as a digital smart real showcase alarm system.
  • CPU Central Processing Unit
  • the outdoor temperature table 12 and the indoor enthalpy table 16 are stored in a storage unit (storage means) such as a nonvolatile memory or an external storage device.
  • FIG. 2 is a block diagram illustrating a configuration example of the showcase control unit 18 of the digital smart real showcase alarm system 100.
  • the showcase control unit 18 is installed for each showcase 110, for example, and performs control of cooling to a target temperature according to the products displayed on the display shelf. Note that the showcase control unit 18 may control the plurality of showcases 110 in an integrated manner.
  • the showcase control unit 18 includes a control unit 81 (failure determination unit, calculation unit), a storage unit 82 (storage unit), an input unit 83, a display unit 84, and a communication unit 85.
  • An interface (I / F) unit 86 and a notification unit 87 such as a lamp / buzzer connected via the I / F unit 86.
  • Temperature information from a temperature sensor 131 (described later) for detecting the temperature of the showcase 10 is input to the I / F unit 86.
  • a control signal for controlling the compressor (compressor) 121 is output via the I / F unit 86.
  • the control unit 81 is configured by a CPU (Central Processing Unit) or the like, controls the entire showcase 110, reads out a control program stored in the storage unit 82 in advance, and executes a digital smart real showcase alarm program. Function as a digital smart real showcase alarm system.
  • the controller 81 detects the temperature of the showcase 50 and controls the temperature by controlling opening and closing of the electromagnetic valve 113 of the refrigerator 120 so that the detected temperature approaches the target temperature.
  • the controller 81 inputs the temperature of the showcase 50 over time, and determines that the refrigeration function for the showcase 50 is broken based on the input temperature. When the temperature of the showcase 50 deviates from the normal temperature change pattern, the control unit 81 determines that the refrigeration function for the showcase 50 is out of order. Moreover, the control part 81 does not determine with a failure, when the temperature rise of the showcase 50 is a change in the defrosting temperature of the showcase 50 or the like. The control unit 81 calculates the expected date and time when the temperature rises to an alarm temperature (a predetermined temperature that is so high that the product in the showcase 50 is not suitable for refrigeration / freezing).
  • an alarm temperature a predetermined temperature that is so high that the product in the showcase 50 is not suitable for refrigeration / freezing.
  • the control unit 81 determines that a failure has occurred when the difference between the calendar information read from the storage unit 82 (information in which changes in the temperature of the showcase 50 are accumulated) and the temperature of the showcase 50 is greater than a predetermined value. For example, it is compared with calendar information having a relatively high correlation in experience, such as the temperature at the same time on the same day of the same month last year or the temperature at the same time on the same day of the previous month.
  • the control unit 81 causes the notification means 87 to display an alarm (display the expected date and time).
  • the control unit 41 transmits alarm information to the portable device 70 (terminal device) through the communication unit 85.
  • the storage unit 82 stores in advance, for example, parameters used for the control unit 81 to give an alarm in addition to the control program.
  • the storage unit 82 stores calendar information in which temperature changes in the showcase 50 are accumulated. For example, the temperature is accumulated every month, every day, every day of the week, and every hour of every day. Further, the storage unit 82 stores information related to the control of the showcase 50, information on the temperature of the display shelf transmitted from the temperature sensor 131, and identification information of the portable device 70.
  • the input unit 83 is an operation unit for inputting the set temperature of the showcase 50, and is, for example, a touch panel, a plurality of keys, buttons, or the like.
  • the input unit 83 receives an input operation for instructing a set temperature, an operation mode, or the like of the showcase 50, for example.
  • the display unit 84 displays the current status and setting status of the digital smart real showcase alarm system 100.
  • the communication unit 85 transmits / receives data to / from the mobile device 70 via the base station.
  • the interface (I / F) unit 86 adjusts the level and method of signals input to and output from the showcase control unit 18.
  • the notification means 87 notifies the alarm information of the showcase 50 by light emission by a light emitting element (LED lamp or the like), a sound / voice alarm.
  • the notification means 87 notifies alarm information including the calculated expected date and time. Note that the display of the notification unit 87 may be a display by the display unit 84.
  • a temperature sensor 131 is installed at the air outlet 111, and the sensor temperature detected by the temperature sensor 131 is used as the temperature of the showcase 50.
  • the attachment location and the number of attachments of the temperature sensor 131 are not limited to this example. Further, if the temperature sensors 131 are installed at various locations in the showcase 50 (for example, for each display shelf) and the temperature in the showcase 50 is directly detected by these temperature sensors 131, more accurate control can be performed.
  • FIG. 3 is a configuration diagram of a showcase of the digital smart real showcase alarm system 100.
  • the digital smart real showcase alarm system 100 includes a showcase 50, a refrigerator 120, a refrigerant pipe 130, and a showcase control unit 18.
  • the showcase control unit 18 controls the entire digital smart real showcase alarm system 100 and controls the refrigerator 120 and the like of the showcase 50.
  • the installation location of the showcase control unit 18 is not limited to this example.
  • the showcase control unit 18 may be installed in the machine room 110b at the bottom of the showcase body 50a, or may be installed on the back surface of the showcase body 50a or at a location separated from the showcase body 50a.
  • the showcase 50 is installed in a store such as a supermarket or a convenience store, and displays products to be cooled, such as beverages and foods.
  • the showcase 50 is provided with a showcase body 50a having a product storage space.
  • a blowout port 111 for blowing cool air downward is formed in the upper part of the showcase body 50a, and the cold air descending along the air curtain is formed in the lower part.
  • a suction port 112 for sucking in is formed.
  • an electromagnetic valve 113 provided in the refrigerant pipe 130, an expansion valve 114 for changing the high-pressure liquid refrigerant into a low-pressure liquid, and a fan motor 115 for circulating cold air are provided. .
  • a cooler (evaporator) 116 is provided on the back side of the showcase body 50a to evaporate the low-pressure liquid refrigerant that has become a low-pressure liquid by the expansion valve 114 while removing heat.
  • the product storage space of the showcase body 50a includes a shelf plate 117 that is a display shelf, a bottom plate 118, and an air curtain 119 that covers the product storage space.
  • the inside of the showcase 50 is cooled to a temperature according to the products displayed on the shelf plate 117 and the bottom plate 118 (hereinafter referred to as a display shelf).
  • the air outlet 111 is provided with a temperature sensor 131 for detecting the temperature of the display shelf of the showcase 50 (hereinafter referred to as the temperature of the showcase 50).
  • the air outlet 111 is a place where a temperature close to the temperature set as a target is detected, and the sensor temperature detected by the temperature sensor 131 is set as the temperature of the showcase 50.
  • the attachment location and the number of attachments of the temperature sensor 131 are not limited to this example.
  • the refrigerator 120 is connected to the showcase body 50a via the refrigerant pipe 130.
  • the refrigerator 120 includes a compressor 121, a condenser 122, and a condenser cooling fan 123.
  • the compressor 121 compresses the low-pressure gas returned from the refrigerant pipe 130 into a high-temperature and high-pressure (for example, 70 ° C. to 80 ° C.) gas.
  • the compressor 121 increases the pressure of the refrigerant so that the refrigerant can be easily changed into a liquid state by the condenser 122 and also creates a flow of the refrigerant.
  • the condenser 122 takes the heat of the high-temperature and high-pressure gas refrigerant and turns it into a high-pressure liquid refrigerant (for example, 30 ° C. to 40 ° C.).
  • the condenser cooling fan 123 blows outside air to the condenser 122 to cool the condenser 122.
  • the refrigerator 120 can cool the plurality of showcases 50 by connecting the refrigerant pipes 130 to the plurality of showcases 50.
  • the digital smart real showcase alarm system 100 constitutes a refrigeration cycle in which a compressor 121, an electromagnetic valve 113, an expansion valve 114, a cooler 116, and a condenser 122 are connected in a ring shape and can be chilled or frozen.
  • a rotary, scroll, or reciprocating compressor can be used as the compressor 121.
  • FIG. 4 is a flowchart showing the digital smart real showcase alarm processing of the digital smart real showcase alarm system 100. This flow is performed when the control unit 81 (see FIG. 2) of the showcase control unit 18 of the digital smart real showcase alarm system 100 executes the digital smart real showcase alarm program.
  • step S1 the showcase control unit 18 takes in the temperature of the showcase 50 detected by the temperature sensor 131 (see FIG. 3).
  • control is performed to maintain the temperature of the showcase 50 within a certain range suitable for preservation of fresh fish and meat (target temperature between the lower limit temperature and the upper limit temperature).
  • step S2 the control unit 81 opens the electromagnetic valve 113 of the refrigerator 120 (see FIG. 3). Cold air is blown into the showcase 50, and the goods (here, fresh fish and meat) are refrigerated. It is determined whether or not the current temperature of the showcase 50 detected in step S3 is lower than the lower limit temperature. While the temperature of the showcase 50 is higher than the lower limit temperature (step S3: No), the process returns to step S3.
  • the compressor 121 operates to continue supplying cool air into the showcase 50.
  • step S3: Yes8 the electromagnetic valve 113 of the refrigerator 120 is closed in step S4.
  • step S5 it is determined whether the current temperature of the showcase 50 is higher than the upper limit temperature. While the current temperature of the showcase 50 is lower than the upper limit temperature (step S5: No), the process returns to step S5.
  • step S5 If the current temperature of the showcase 50 is higher than the upper limit temperature (step S5: Yes), the control unit 81 opens the electromagnetic valve 113 of the refrigerator 120 in step S6. Step S7 and subsequent steps are the showcase warning process. If the showcase 50 has not failed, the following steps S8 to S10 are skipped, and the refrigeration operation is continued by returning to step S3 again. Thereby, the temperature in the showcase 50 is controlled within a certain range suitable for preservation of fresh fish and meat.
  • the cooling temperature in the showcase 50 varies depending on the type of goods stored, and the temperature is set for each showcase 50.
  • the target temperature in the showcase 50 is set by the input unit 83.
  • the controller 81 performs target temperature control for keeping the cooling temperature in the showcase 50 at a temperature between the lower limit temperature and the upper limit temperature. Note that, as the set target temperature decreases, the amount of heat release increases and the actual temperature of the showcase 50 becomes higher than the calculated display temperature. For this reason, the target temperature is set in consideration of the relationship between the target temperature and the heat radiation amount.
  • step S7 the control unit 81 determines whether or not the temperature of the showcase 50 deviates from a normal temperature change pattern.
  • step S7: No the process returns to the above step S3, and when deviated from the normal temperature change pattern (step S7: Yes), the process proceeds to step S8. move on.
  • the refrigeration function of the refrigerator 120 is broken.
  • the temperature of the showcase 50 deviates from the normal temperature change pattern, and the temperature of the showcase 50 rises.
  • the refrigeration function failure include failure of the compressor 121, refrigerant leakage from the refrigerant piping 30, and failure of the fan motor 15 and the condenser cooling fan 23.
  • the abnormal rise in the temperature of the showcase 50 is that the temperature of the showcase 50 rises even though the electromagnetic valve 113 of the refrigerator 120 is opened (step S6). Even if the electromagnetic valve 113 of the refrigerator 120 is open, it can be determined that the temperature of the showcase 50 rises because the refrigeration function of the refrigerator 120 is out of order.
  • the “normal temperature change pattern” of the temperature of the showcase 50 means that the temperature rises when the solenoid valve 113 of the refrigerator 120 changes from closed to open while the temperature of the showcase 50 is rising. That is, the pattern changes from falling to falling.
  • the control unit 81 compares the normal temperature change pattern with the actual temperature change pattern, and determines the failure of the refrigeration function of the refrigerator 120. For example, the control unit 81 determines that a failure has occurred when the difference between the calendar information read from the storage unit 82 (information storing accumulated temperature changes of the showcase 50) and the temperature of the showcase 50 is greater than a predetermined value.
  • the normal temperature change pattern includes the temperature change pattern during the defrosting operation.
  • the showcase 50 may perform a defrosting operation in which the temperature temporarily rises at regular intervals for defrosting. Temperature rise during defrosting operation is excluded from the warning display.
  • the control unit 81 does not determine that a failure has occurred when the temperature rise of the showcase 110 is a change in defrosting temperature of the showcase 50 or the like.
  • the control unit 81 calculates the expected date and time when the alarm temperature rises.
  • the alarm temperature is a predetermined temperature that is so high that the product in the showcase 50 is not suitable for refrigeration and freezing.
  • fresh fish and meat are stored at a set temperature of 0 ° C., but from the viewpoint of product components, the quality deteriorates if the temperature rises for a longer time than 4 ° C. at a time other than defrosting. For this reason, the alarm temperature of fresh fish and meat is 5 ° C.
  • a linear prediction method is used to calculate the expected date and time when the alarm temperature rises.
  • “predict continuous data” described in Non-Patent Document 1 can be used.
  • step S ⁇ b> 9 the control unit 81 notifies the alarm information by the notification unit 87.
  • the informing means 87 informs the alarm temperature of the showcase 50 as alarm information by light emission by a light emitting element (LED lamp or the like), sound by a speaker or voice.
  • the alarm information includes a display of the expected date and time when the temperature rises to the alarm temperature and a sound of the expected date and time. By displaying the expected date and time when the alarm temperature rises, the degree of urgency is easily communicated. Thereby, it is possible to display an alarm indicating that the temperature rises to the alarm temperature before the temperature rises to the alarm temperature. Also, the alarm display can be turned off during the defrost period. Depending on the degree of urgency, the alarm information may be highlighted (as the expected date and time are closer, bold characters, enlarged characters, blinking display, etc.).
  • step S10 the control unit 81 notifies the portable device 70 of the alarm temperature and ends the process of this flow.
  • the expected date and time when the temperature rises to the alarm temperature can be notified by email to the portable device 70 of the person concerned. Appropriate measures can be taken according to the situation. In addition, it is possible to know a failure of the refrigerator equipment.
  • the control unit 81 reads the calendar information in which the temperature change in the showcase 50 is accumulated from the storage unit 82, and based on the read calendar information.
  • the temperature change pattern may be determined. By using calendar information that is past accumulated information, failure determination can be performed with higher accuracy.
  • the refrigerator 120 shown in FIG. 3 cools a plurality of showcases 50, for example.
  • the refrigeration function of the refrigerator 120 may break down.
  • the failure of the refrigeration function of the refrigerator 120 is as follows (1) to (4). (1) Failure of the main body of the refrigerator 120, (2) Leakage of refrigerant gas from the refrigerant pipe 30 or the like, (3) Failure of the showcase main body 10a (for example, cold air leakage due to breakage of the main body), (4) Frosting of the showcase 50 There is uncooled by.
  • the control unit 81 of the showcase control unit 18 determines that the refrigeration function of the refrigerator 120 has failed based on the temperature of the showcase 50 input over time. ing.
  • the showcase 50 is refrigerated and frozen by setting a set temperature for each product type in order to maintain the freshness of the product. If the refrigeration function fails, the temperature of the showcase 50 may increase, resulting in an accident in which the product is past the set temperature and the product is disposed of as a waste product. Conventionally, as for the temperature rise of the showcase 50, when the set alarm temperature is reached and a predetermined time has elapsed, an alarm is communicated to the security company and the person in charge, and the security company or repair company hastened the repair. It was. However, the current situation is that products such as repairs are not in time, and products are often discarded.
  • a specific temperature change and notification mode will be described using a case of a fresh fish / meat case (showcase 50) as an example.
  • the case setting temperature of the fresh fish / meat case (showcase 50) is 0 ° C.
  • the quality of fresh fish and meat deteriorates if the temperature rises over 4 hours at a time other than defrosting from the viewpoint of product components. For this reason, for example, the first stage caution temperature: 3 ° C., the second stage caution temperature: 4 ° C., and the alarm temperature: 5 ° C. are set.
  • the control unit 81 of the showcase control unit 18 calculates the expected date and time when the alarm temperature rises.
  • the expected date / time is calculated / predicted based on the date / time at the two stages of the caution temperature, ie, the first stage caution temperature and the second stage caution temperature. May be predicted.
  • the quality of fresh fish and meat deteriorates if the temperature rises above the set temperature of 4 ° C at times other than defrosting due to demands on the product components. For this reason, it is important to send it to the parties concerned earlier. For example, when a warning is notified to a related person after reaching a conventional warning temperature, even if the related person rushes to a local store, the product is lost in time.
  • the control unit 81 of the showcase control unit 18 is expected to rise to an alarm temperature (a predetermined temperature that is high enough that the product in the showcase 50 is not suitable for refrigeration / freezing). Is calculated.
  • the control unit 81 causes the notifying unit 87 to display an alarm for the expected date and time, and transmits the alarm information to the portable device 70.
  • the urgency level is easily communicated by displaying the expected date and time when the alarm temperature rises. That is, before the temperature rises to the alarm temperature, it is possible to display an alarm indicating how much time is left until the alarm temperature is reached.
  • a person concerned can take an appropriate response in accordance with the degree of urgency by grasping the warning display (expected date display). For example, when the expected date and time when the temperature rises to the alarm temperature is short as in the above application example, it is possible to take a quick response according to the expected date and time. On the other hand, when the expected date and time when the alarm temperature rises is relatively long, the degree of urgency is low, so a relatively slow response can be taken. In general, the cost of emergency response is higher, so the cost can be reduced in this respect as well.
  • an alarm is displayed to indicate that the temperature has risen before the temperature rises to the alarm temperature, thereby reducing product loss due to product disposal. be able to. This is particularly effective when the product is ice cream, frozen food, raw fish or raw meat.
  • notification of the expected date and time when the alarm temperature rises to the portable device 70 of the concerned person such as the maintenance of the showcase by e-mail, so that the urgency level can be quickly given to the person in the remote place.
  • the person concerned can take an appropriate response according to the expected date and time.
  • the present embodiment since it is determined only by temperature measurement that the temperature of the showcase 50 deviates from the normal temperature change pattern, the present embodiment is used as a new device different from the existing temperature control device.
  • the control device or control method can be applied. That is, the control device or the control method of the present embodiment can be applied to a device attached to a ready-made showcase. In this case, a mode of providing a program may be used.
  • Patent Document 2 describes a cooling tank that contains a cooling liquid and that cools and freezes the object to be cooled by immersing an object to be cooled in the cooling liquid.
  • a temperature detector that detects the temperature of the coolant, and in order to prevent the coolant temperature from rising above the alarm temperature due to a failure or the like and degrading the quality of the object to be cooled, the temperature detector The temperature tn is detected every predetermined detection cycle, the predicted time T required for the coolant to reach the alarm temperature tA from the detection time is calculated, and the deviation tA ⁇ tn between the alarm temperature tA and the detection temperature tn due to a failure or the like Describes a cooling / refrigeration apparatus that displays the predicted time T on the warning predicted time display section when the temperature falls below a predetermined temperature (paragraphs 0001 to 0012, FIGS. 1 and 2).
  • Patent Document 5 a temperature sensor that detects a temperature in a cold storage box and a temperature inside the box that is detected by the temperature sensor are used as the temperature history information in the box. Notification is made when the temperature history storage unit that is sequentially stored and the internal temperature curve that is a report of the internal temperature history of the cold storage stored in the temperature history storage unit are separated from the initial value by a certain level.
  • a delivery system management system including a failure / part replacement prediction unit for operating a buzzer / notification lamp is described (paragraph 0050, paragraph 0053, paragraph 0063, FIG. 1, FIG. 2, FIG. 4, FIG. 16).
  • This “initial value” is considered to be a predetermined fixed value that is initially set, and the threshold value for failure determination is a predetermined fixed value.
  • temperature history storage unit 15b is described.
  • the internal temperature history information stored here means an internal temperature curve to be analyzed.
  • the comparison target is “initial value” (paragraphs 0053 and 0063), and this “initial value” is considered to be the predetermined fixed value.
  • the control unit 81 has a difference between the calendar information read from the storage unit 82 (information in which the change in the temperature of the showcase 50 is accumulated) and the temperature of the showcase 50 is larger than a predetermined value. It is determined that a failure occurs. That is, failure determination is made by comparing the current temperature with the past actual temperature value, and the failure determination threshold value is a past actual fluctuation value. Therefore, when the temperature tends to rise slightly, such as during a time when the number of visitors increases, the threshold value for failure determination also increases, an error alarm can be prevented, and accurate failure determination becomes possible.
  • FIG. 5 is a flowchart showing the energy saving control operation of the digital smart real showcase alarm system 100.
  • the outside temperature input unit 11 inputs outside temperature information from the outside temperature thermometer 20 installed outdoors.
  • the outside temperature input unit 11 stores outside temperature information in the outside temperature table 12.
  • the outside air temperature prediction unit 13 predicts a future outside air temperature from changes in the current outside air temperature and the past outside air temperature, and passes the predicted outside air temperature to the showcase control unit 18 and the air conditioning control unit 19.
  • the outside air temperature prediction unit 13 stores, for example, the outside air temperature for the past year in the outside air temperature table 12, and reads the stored outside air temperature as the outside air temperature predicted value. To predict the outside air temperature. The prediction is made for the current outside temperature. The outside air temperature predicting unit 13 predicts how the temperature will change in the future (after how many minutes) based on the current outside air temperature (whether it rises or falls). Note that the outside air temperature prediction unit 13 may predict the outside air temperature using the above-described ⁇ external data use prediction method >>.
  • step S ⁇ b> 14 the room temperature input unit 14 (see FIG. 1) inputs room temperature information from the measurement value of the room thermometer 30.
  • step S15 the indoor humidity input unit 15 (see FIG. 1) inputs the indoor humidity information from the measurement value of the indoor hygrometer 40.
  • step S ⁇ b> 16 the indoor enthalpy prediction unit 17 calculates enthalpy (total amount of humid air of indoor air) from the input indoor temperature and indoor humidity, and stores it in the indoor enthalpy table 16.
  • step S17 the indoor enthalpy prediction unit 17 predicts the future indoor enthalpy from the current indoor enthalpy and the change in the past indoor enthalpy stored in the indoor enthalpy table 16.
  • step S18 the showcase control unit 18 controls the showcase 50 based on the predicted outside air temperature and the predicted indoor enthalpy. Since the showcase control unit 18 controls the showcase 50 based on the predicted outside air temperature and the predicted indoor enthalpy that are predicted values in the future, quick and appropriate showcase control can be performed. In the present embodiment, the showcase control unit 18 uses the predicted outside air temperature as well as the predicted control for the length of the refrigerant pipe 130, so that the showcase control can be performed more quickly and appropriately. Can be realized.
  • step S18 the air conditioning control unit 19 controls the air conditioner 60 based on the predicted outside air temperature and the predicted indoor enthalpy and ends the processing of this flow. Since the air conditioning control unit 19 controls the air conditioner 60 based on the predicted outside air temperature and the predicted indoor enthalpy that are predicted values in the future, it is possible to perform quick and appropriate air conditioning control.
  • the digital smart real showcase alarm system 100 predicts the indoor enthalpy together with the outside air temperature, and controls the showcase 50 based on the predicted outside air temperature and the indoor enthalpy.
  • the showcase 50 is controlled based on the pre-opened outside air temperature rather than following the outside air temperature. Therefore, the showcase 50 is controlled promptly and appropriately so that the showcase 50 can be displayed with the minimum necessary energy.
  • the case 50 can be controlled.
  • the indoor enthalpy is predicted together with the outside air temperature, and the showcase 50 is controlled based on the predicted outside air temperature and the indoor enthalpy, so that the estimated thermal load estimation result is reflected in the showcase control. High-efficiency energy-saving control can be realized.
  • Table 1 is a table showing an example of the outside air temperature, the enthalpy, each coefficient, and the control amount stored in the outside air temperature table 12 and the indoor enthalpy table 16 (storage means).
  • Table 1 stores outdoor air temperature (° C), + bias (° C), outdoor air temperature coefficient, enthalpy coefficient (kJ / kgD.A.), Enthalpy coefficient, operating coefficient, control coefficient, and control minutes (minutes) by time. To do. For example, it is each coefficient by the outside air temperature according to time and indoor air wet heat quantity enthalpy kJ / kgD.A.
  • Table 1 is referred to in the prediction by the outside air temperature prediction unit 13 and the indoor enthalpy prediction unit 17.
  • the outside air temperature (° C.) in Table 1 the predicted outside temperature is used in the present embodiment (hereinafter, the predicted outside temperature is used for the outside temperature).
  • the + bias (° C.) in Table 1 is the outside air temperature + condenser bias temperature (for example, 3.0 in Table 1). This + bias is a bias when considering the high temperature around the condenser.
  • the outside air temperature coefficient in Table 1 is outside air temperature / reference outside air temperature (for example, 32.0 in Table 1).
  • the enthalpy (kJ / kgD.A.) In Table 1 is calculated from the room temperature and room humidity (see step S16 in FIG. 5).
  • the enthalpy coefficient in Table 1 is enthalpy / reference enthalpy (eg, 55.42 in Table 1).
  • the operating coefficient in Table 1 is the outside air temperature coefficient ⁇ enthalpy coefficient ⁇ reference operating coefficient (for example, 0.63 in Table 1).
  • the control coefficient in Table 1 is (1 ⁇ operation coefficient) ⁇ safety coefficient (for example, 0.60 in Table 1).
  • the control amount (minute) in Table 1 is control coefficient ⁇ reference control amount (for example, 30 in Table 1). This control amount is a number indicating whether the operation of the refrigerator 120 is stopped, that is, the electromagnetic valve 113 is closed for how many minutes in the unit of 30 minutes. For example, “9” means to save energy by stopping operation for 9 minutes within 30 minutes. Save energy during closing and save energy during opening.
  • the air-conditioning control unit 19 shown in FIG. 1 performs energy-saving control of the air conditioner 60 by the control rate (control amount). For example, if the control rate is 0.40, the air conditioner 60 is stopped by 40% in a predetermined pattern, or the air conditioner 60 is inverter-controlled with 60% of the rated power consumption.
  • the present embodiment performs energy saving control on the air conditioner 60 in the sales floor where the showcase 50 is installed, and further controls the air conditioner 60 so that the showcase control is not over-operated.
  • the burden of freezing or refrigeration of the case 50 is reduced, and in the end, it greatly contributes to the overall energy saving of the store including the showcase 50.
  • the showcase control unit 18 is installed for each showcase 50, for example, and performs control of cooling to a target temperature according to the products displayed on the display shelf. Note that the showcase control unit 18 may control the plurality of showcases 50 in an integrated manner.
  • the showcase control unit 18 is configured by a CPU (Central Processing Unit) or the like, and executes a showcase control program to function as a digital smart real showcase alarm system.
  • the showcase control unit 18 detects the temperature of the showcase 50 and controls the opening and closing of the electromagnetic valve 113 of the refrigerator 120 so that the detected temperature approaches the target temperature, thereby changing the temperature of the showcase 50 to a product (for example, freezing Control is performed to maintain the temperature within a certain range (target temperature between the lower limit temperature and the upper limit temperature) suitable for storage of food.
  • a product for example, freezing Control is performed to maintain the temperature within a certain range (target temperature between the lower limit temperature and the upper limit temperature) suitable for storage of food.
  • the cooling temperature in the showcase 50 varies depending on the type of goods stored, and the temperature is set for each showcase 50. For example, 7 ° C for fruits and vegetables, 5 ° C for daily products (a general term for foods that require refrigeration and a short shelf life), 0 ° C for fresh fish or meat, -18 ° C for frozen foods, ice For cream, it is -26 ° C.
  • the showcase control unit 18 controls the operation of the showcase 50 by a temperature-dependent control coefficient that is a control coefficient corresponding to the displacement of the temperature of the showcase 50 from the target temperature.
  • a temperature-dependent control coefficient that is a control coefficient corresponding to the displacement of the temperature of the showcase 50 from the target temperature.
  • the target temperature is 7 ° C.
  • the allowable temperature range is ⁇ 4 ° C.
  • the control coefficient is 0.35
  • the displacement temperature coefficient is expressed as (showcase temperature (° C.) ⁇ Target temperature (7 )) / Allowable temperature range (4 ° C.)
  • control unit 81 of the showcase control unit 18 may calculate the expected date and time when the temperature rises to the alarm temperature, and use the control for notifying the expected date and time.
  • the showcase control unit 18 controls the showcase 50 based on a predicted (outside) predicted outside air temperature for a time corresponding to the length of the refrigerant pipe 130. Specifically, it is as follows.
  • the refrigerant pipe 130 connecting the showcase 50 and the condenser 122 shown in FIG. 2 ranges from several meters to several tens of meters. For this reason, the control result by the showcase control unit 18 does not reach the showcase 50 immediately, and a deviation from the predicted outside air temperature corresponding to the length of the refrigerant pipe 30 occurs.
  • the length of the refrigerant pipe 130 is known for each showcase 50.
  • the showcase control unit 18 performs predictive control that eliminates a delay from the predicted outside air temperature corresponding to the length of the refrigerant pipe 130. Specifically, the showcase control unit 18 controls the showcase 50 based on the predicted (outside) predicted outside air temperature for a time corresponding to the length of the refrigerant pipe 130. That is, the showcase control unit 18 determines a prediction time interval (how many minutes are predicted). As a result, the control timing varies depending on the length of the refrigerant pipe 130.
  • a plurality of showcases 50 may be controlled by one condenser 122. In this case, the showcase control unit 18 controls the showcase 50 based on the predicted outside air temperature for the time corresponding to the length of the average refrigerant pipe 130 of the plurality of showcases 50.
  • the showcase control unit 18 executes bias outside air temperature control for adding the predicted bias outside air temperature to the predicted outside air temperature.
  • the periphery of the compressor 121 shown in FIG. 2 is hot and is usually higher than the outside air temperature as announced by the Japan Meteorological Agency.
  • the showcase control unit 18 controls the showcase 50 around the compressor 121 based on the predicted outside air temperature obtained by adding the predicted bias outside air temperature to the predicted outside air temperature.
  • the showcase control unit 18 predicts the outside air temperature ahead (future) for a time (for example, 5 minutes, 30 minutes, etc.) according to the length of the refrigerant pipe 130, and predicts the predicted outside air temperature.
  • the operation of the refrigerator 120 is stopped by a control amount (unit: minute) corresponding to the predicted outside air temperature to which the predicted bias temperature is added.
  • the showcase control unit 18 repeats “predictive control for the length of the refrigerant pipe 130”, temperature addition by “bias outside air temperature control”, and operation stop of the refrigerator 120.
  • control unit 81 of the showcase control unit 18 calculates the expected date and time to rise to the alarm temperature and uses the control for notifying the expected date and time. May be.
  • the digital smart real showcase alarm system 100 includes the outside air temperature table 12 for storing the past outside air temperature for the prediction of the outside air temperature, and the outside air temperature table 12 from the inputted outside air temperature information.
  • an outside air temperature prediction unit 13 that predicts a predicted future outside air temperature
  • a showcase control unit 18 that controls the temperature of the showcase based on the predicted outside air temperature.
  • the showcase is controlled based on the outside air temperature that is preempted rather than following the outside air temperature, so that the showcase is controlled promptly and appropriately to minimize the necessary amount.
  • the showcase can be controlled by energy.
  • the showcase control unit 18 predicts a future predicted outside air temperature for a time corresponding to the length of the refrigerant pipe 130 from the input outside air temperature information, and controls the temperature of the showcase 50 based on the predicted outside air temperature. To do.
  • the showcase can be controlled based on the predicted (future) outside air temperature ahead by the time corresponding to the length of the refrigerant pipe.
  • the showcase can be controlled with limited energy.
  • the digital smart real showcase alarm system 100 calculates the enthalpy that is the total amount of humid air of the indoor air based on the input temperature and humidity of the indoor air, and calculates the enthalpy and indoor enthalpy of the calculated indoor air.
  • An indoor enthalpy prediction unit 17 that predicts a future indoor enthalpy based on the past indoor enthalpy stored in the table 16, and a showcase control unit 18 that controls the temperature of the showcase based on the predicted indoor enthalpy.
  • the indoor enthalpy is predicted and the showcase is controlled based on the predicted outside air temperature and the indoor enthalpy. Therefore, by reflecting the predicted thermal load estimation result in the showcase control, a highly effective energy saving Control can be realized.
  • the predicted outside air temperature may be taken into account for the prediction of the indoor enthalpy.
  • the room temperature is affected by the outside air temperature through the building. That is, when the outside air temperature changes, the indoor temperature changes under the influence of the change in the outside air temperature after a lapse of a predetermined time. Therefore, the prediction can be made more accurately by adding the predicted outside air temperature to the factor that predicts the indoor enthalpy.
  • both the outside temperature prediction by the outside temperature prediction unit 13 and the showcase control based on the predicted outside temperature according to the length of the refrigerant pipe 130 by the showcase control unit 18 are used. Either of them may be used. Similarly, bias outside air temperature control by the showcase control unit 18 may be used alone or in combination with both or one of the above.
  • This embodiment is an example applied to an air conditioning alarm system, and air conditioning control is not essential to the present invention.
  • each control means that is, the air conditioning control unit 19 (control means) and the showcase control unit 18 (control means) have been described separately, but this is executed by one control unit. Things may be used.
  • each table may be stored in any medium as a storage unit.
  • the showcase may be a case having a refrigerator-freezer function.
  • the showcase also includes a refrigerator and a freezer.
  • the showcase is for convenience of explanation, and may be a storage warehouse for frozen and refrigerated goods that does not necessarily show the product to a person, and the same effect can be obtained.
  • the names of the digital smart real showcase alarm system and the digital smart real showcase alarm method are used.
  • the name of the apparatus is a showcase control apparatus and method. May be a showcase control management method or the like.
  • the digital smart real showcase control process described above can also be realized by a program for causing the digital smart real showcase control process to function.
  • This program is stored in a computer-readable recording medium.
  • the recording medium on which this program is recorded may be the ROM itself of this digital smart real showcase alarm system, or a program reading device such as a CD-ROM drive is provided as an external storage device, and the program is recorded there. It may be a CD ROM that can be read by inserting a medium.
  • the recording medium may be a magnetic tape, a cassette tape, a flexible disk, a hard disk, an MO / MD / DVD, or a semiconductor memory.
  • the digital smart real showcase alarm system, method and program according to the present invention have a great effect when applied to a showcase in a store such as a supermarket or a convenience store.
  • Outside temperature input section (outside temperature input means) 12 Outside air temperature table (storage means) 13 Outside temperature prediction unit (outside temperature prediction means) 14 Indoor temperature input section (Indoor temperature input means) 15 Indoor humidity input section (indoor humidity input means) 16 Indoor enthalpy table (memory means) 17 Indoor enthalpy prediction unit (indoor enthalpy prediction means) 18 Showcase control unit (control means) 19 Air-conditioning control unit (control means) 20 Outdoor temperature meter 30 Indoor thermometer 40 Indoor hygrometer 50 Showcase 50a Showcase body 60 Air conditioner 70 Portable device (terminal device) 80 control device 81 control unit (temperature input means, failure determination means, calculation means) 82 storage unit (storage means) 83 Input unit 84 Display unit 85 Communication unit 86 Interface (I / F) unit (temperature input means) 87 Notification means 100 Digital smart real showcase alarm system 110b Machine room 111 Air outlet 112 Air inlet 113 Solenoid valve 114 Expansion valve 115 Fan motor 116 Cooler 117 Shelf (disp

Abstract

A digital smart real showcase warning system (100) is provided with a showcase (110), a refrigerator (20), a showcase control unit (18), and a portable device (70). The temperature of the showcase (110) is input over time into a control unit (81) in the showcase control unit (18), it is determined on the basis of the input temperatures that the refrigeration function to the showcase (110) is failing, the control unit (81) calculates an expected date and time at which the temperature will rise to a warning temperature (a predetermined temperature that is unsuitably high for refrigeration/freezing of products within the showcase (110)), the control unit (81) uses a notification means (87) to display a warning regarding the expected date and time, and product loss can be prevented by transmitting the warning information to the portable device (70).

Description

デジタルスマートリアル・ショーケース警報システム、方法及びプログラムDigital smart real showcase alarm system, method and program
 本発明は、ショーケース、冷蔵冷凍庫及び冷凍機械設備等の故障、ガス漏れ及び霜付き等による商品ロスの発生を防止することができるデジタルスマートリアル・ショーケース警報システム、方法及びプログラムに関する。 The present invention relates to a digital smart real showcase alarm system, method, and program capable of preventing the occurrence of product loss due to failure of a showcase, a refrigeration freezer, a refrigeration machine facility, etc., gas leakage and frosting.
 スーパーマーケットやコンビニエンスストア等の店舗において、飲料や食料等を冷蔵又は冷凍しながら陳列するためにショーケースが用いられている。スーパーマーケットなどの店舗に設置される冷凍冷蔵ショーケースは、冷凍装置を備え、商品を陳列したショーケース庫内に吹出口から冷気を吹出して庫内を所定の温度に冷却し、吹出した冷気は吸込口から吸込んで再度冷却して冷気として庫内に吐出している。
 庫内の冷却温度は、収納している商品の種類によって異なり、ショーケースごとに庫内温度が設定される。この庫内の目標温度の設定は、ショーケースごとに設置されている冷凍冷蔵ショーケース用制御器で行う。
 目標温度が設定されたならば、庫内温度を検出して庫内温度がこの目標温度に近づくように冷凍装置の電磁弁を開閉制御して温度制御する。
In stores such as supermarkets and convenience stores, showcases are used to display beverages and foods while refrigerated or frozen. Refrigerated showcases installed in stores such as supermarkets are equipped with a refrigeration system, and cool air is blown out from the outlet into the showcase storage where products are displayed to cool the interior to a predetermined temperature. The air is sucked from the mouth, cooled again, and discharged as cold air into the cabinet.
The cooling temperature in the cabinet varies depending on the type of goods stored, and the chamber temperature is set for each showcase. The setting of the target temperature in the cabinet is performed by a freezer / refrigerated showcase controller installed for each showcase.
If the target temperature is set, the internal temperature is detected, and the solenoid valve of the refrigeration apparatus is controlled to open and close so that the internal temperature approaches the target temperature.
 特許文献1には、ショーケースの庫内の温度を経時的に入力する庫内温度センサと、入力された温度に基づいて、前記ショーケースが故障していることを判定する故障判定部と、前記故障判定部が故瞭と判定した場合、警報晴報を報知する表示部とを備える故障判定システムが記載されている(段落0023~段落0051、図1~図6)。 In Patent Document 1, an in-house temperature sensor that inputs the temperature in the showcase storage over time, a failure determination unit that determines that the showcase is in failure based on the input temperature, There is described a failure determination system including a display unit for notifying that a warning alert is issued when the failure determination unit determines that it is obvious (paragraphs 0023 to 0051, FIGS. 1 to 6).
 特許文献2には、冷却液を収容していて該冷却液中に被冷却物を浸漬して冷却・冷凍する冷却槽と、該冷却槽の冷却液の温度を検出する温度検出器とを備え、故障などにより冷却液の温度が警報温度以上に上昇して被冷却物の品質が低下するのを防ぐために、前記温度検出器によって冷却液の温度tnを所定の検出周期毎に検出し、検出時点から冷却液が警報温度tAに達するまでに要する予測時間Tを演算し、故障などにより、警報温度tAと検出温度tnとの偏差tA-tnが所定温度以下になると、当該予測時間Tを警報予測時間表示部に表示する冷却・冷凍装置が記載されている(段落0001~段落0012、図1、図2)。 Patent Document 2 includes a cooling tank that contains a cooling liquid and immerses an object to be cooled in the cooling liquid for cooling and freezing, and a temperature detector that detects the temperature of the cooling liquid in the cooling tank. In order to prevent the coolant temperature from rising above the alarm temperature due to a failure or the like and degrading the quality of the object to be cooled, the temperature detector detects the coolant temperature tn at every predetermined detection cycle. The estimated time T required for the coolant to reach the alarm temperature tA from the time is calculated, and if the deviation tA-tn between the alarm temperature tA and the detected temperature tn falls below a predetermined temperature due to a failure or the like, the prediction time T is The cooling / refrigeration apparatus displayed in the predicted time display section is described (paragraphs 0001 to 0012, FIGS. 1 and 2).
 特許文献3には、故障判定を霜取り運転中には行わないケース冷却系の故障原因推定装置が記載さている(段落0055)。 Patent Document 3 describes a failure cause estimation device for a case cooling system in which failure determination is not performed during defrosting operation (paragraph 0055).
 特許文献4には、故障判定を霜取り運転中には行わない冷蔵庫が記載さている(段落0042)。 Patent Document 4 describes a refrigerator in which failure determination is not performed during a defrosting operation (paragraph 0042).
 特許文献5には、保冷庫の庫内の温度を検出する温度センサと、前記温度センサにより検出される庫内温度が庫内温度履歴情報として逐次格納される温度履歴記憶部と、前記温度履歴記憶部に格納されている前記保冷庫の庫内温度履歴晴報である庫内温度カーブが初期値に対して一定レベルだけ離れた場合に報知ブザー・報知ランプを作動させる故障・部品交換予測部とを備える配送装置の管理システムが記載されている(段落0050,段落0053、段落0063、図1、図2,図4、図16)。 Patent Document 5 discloses a temperature sensor that detects the temperature in the cold storage compartment, a temperature history storage unit that sequentially stores the internal temperature detected by the temperature sensor as internal temperature history information, and the temperature history. Failure / part replacement prediction unit that activates an alarm buzzer / notification lamp when the internal temperature curve, which is the internal temperature history clear report of the cold storage stored in the storage unit, deviates from the initial value by a certain level (Paragraph 0050, paragraph 0053, paragraph 0063, FIG. 1, FIG. 2, FIG. 4, FIG. 16).
特開平11-337242号公報JP 11-337242 A 特開平6-137747号公報JP-A-6-137747 特開2001-91125号公報JP 2001-91125 A 特開2015-48998号公報JP 2015-48998 特開2004-251508号公報JP 2004-251508 A
 しかしながら、このような従来のショーケースにあっては、ショーケースの冷蔵冷凍機能が故障した場合、故障が発生したことを通知する機能だけであったため、対応が間に合わない場合がある。例えば、故障後の通知等であるので、修理業者が急行しても修理等が間に合わず、商品が廃棄処分となる場合が多いのが現状である。また、仮に、特許文献2記載の警報予測時間を表示したとしても、検出周期に跨る温度変化量を有意に測定するためには、最低限の検出周期を確保しなければならず、例えば30分とすると、その間は表示される予測時間が変化せず、時間の経過とともに最大30分の表示誤差を含むことになる。 However, in such a conventional showcase, when the refrigeration function of the showcase fails, it is only a function of notifying that a failure has occurred. For example, since it is a notification after failure, etc., even if a repair company rushes, repairs etc. are not in time, and in many cases, merchandise is often disposed of. Moreover, even if the alarm prediction time described in Patent Document 2 is displayed, in order to significantly measure the temperature change amount over the detection period, a minimum detection period must be ensured, for example, 30 minutes. Then, during that time, the displayed prediction time does not change, and the display error includes a maximum of 30 minutes as time passes.
 本発明の目的は、ショーケース等の商品ロスの発生を防止することができるデジタルスマートリアル・ショーケース警報システム、方法及びプログラムを提供することにある。 An object of the present invention is to provide a digital smart real showcase alarm system, method and program capable of preventing the occurrence of product loss such as showcases.
 本発明に係るデジタルスマートリアル・ショーケース警報システムは、ショーケース、冷蔵庫又は冷凍庫(以下、「ショーケース等」と言う。)の庫内の温度を経時的に入力する温度入力手段と、入力された前記温度に基づいて、前記ショーケース等が故障していることを判定する故障判定手段と、前記故障判定手段が故障と判定した場合、前記ショーケース等の庫内の商品が冷蔵又は冷凍に適さない程に高い所定の温度である警報温度まで上昇する見込日時を演算する演算手段と、前記演算手段が演算した前記見込日時を含む警報情報を報知する報知手段とを備えることを特徴とする。 The digital smart real showcase alarm system according to the present invention is inputted with temperature input means for inputting the temperature inside the showcase, refrigerator or freezer (hereinafter referred to as “showcase etc.”) over time. Based on the temperature, a failure determination unit that determines that the showcase or the like has failed, and a product in the warehouse such as the showcase is refrigerated or frozen when the failure determination unit determines that the failure has occurred. A calculation unit that calculates an expected date and time to rise to an alarm temperature that is a predetermined temperature that is unsuitably high, and a notification unit that notifies alarm information including the estimated date and time calculated by the calculation unit. .
 この構成によれば、警報温度に上昇する前に、警報温度まで上昇する見込日時を警報表示することができる。関係者は、緊急度に合わせた適切な対応をとることができ、商品ロスの発生を防止する。 According to this configuration, it is possible to display an alarm indicating the expected date and time when the temperature rises to the alarm temperature before the alarm temperature is raised. Stakeholders can take appropriate measures according to the degree of urgency, and prevent product loss.
 本発明に係るデジタルスマートリアル・ショーケース警報システムは、外気温度情報を入力する外気温度入力手段と、該外気温度入力手段によって入力される外気温度情報から未来の予測外気温度を予測する外気温度予測手段と、該外気温度予測手段によって予測される予測外気温度に基づいてショーケースの温度を制御する制御手段とを備えることを特徴とする。 The digital smart real showcase alarm system according to the present invention includes an outside air temperature input means for inputting outside air temperature information, and an outside air temperature prediction for predicting a predicted future outside air temperature from the outside air temperature information inputted by the outside air temperature input means. And control means for controlling the temperature of the showcase based on the predicted outside air temperature predicted by the outside air temperature predicting means.
 この構成によれば、外気温度を後追いするのではなく先取りした外気温度に基づいてショーケースを制御するので、迅速、かつ、適切に、ショーケースを制御して、必要最小限のエネルギでショーケースを制御することができる。 According to this configuration, the showcase is controlled on the basis of the outside air temperature that is preempted rather than following the outside air temperature, so that the showcase can be quickly and appropriately controlled to display the showcase with the minimum necessary energy. Can be controlled.
 前記故障判定手段は、前記温度が正常な温度変化パターンから外れた場合、前記ショーケース等が故障と判定することで、温度変化パターンを見ることでより精確な故障判定を行うことができる。 When the temperature deviates from a normal temperature change pattern, the failure determination means can determine the failure more accurately by determining the showcase or the like as a failure and viewing the temperature change pattern.
 また、前記故障判定手段は、前記温度の上昇が前記ショーケース等の霜取りの温度の変化の場合には故障と判定しないことで、霜取りの期間を故障時の判定条件から除外し、より精確に警報表示することができる。 Further, the failure determination means excludes the defrosting period from the determination condition at the time of failure by not determining that the temperature rise is a failure when the temperature of the defrosting such as the showcase is changed. An alarm can be displayed.
 また、前記温度の変化を蓄積したカレンダー情報を記憶する記憶手段を備え、前記故障判定手段は、前記記憶手段から読み出した前記カレンダー情報と前記温度との差分が所定値より大きい場合に故障と判定することで、故障判定のしきい値を過去の温度の実績の変動値として、来客が増える時間帯など、温度が若干上昇する傾向にある場合には、故障判定のしきい値も高くなり、誤り警報を防止することができ、精確な故障判定が可能になる。 In addition, a storage unit that stores calendar information in which the temperature change is accumulated is provided, and the failure determination unit determines that a failure occurs when a difference between the calendar information read from the storage unit and the temperature is greater than a predetermined value. As a result, if the temperature tends to rise slightly, such as during a time period when the number of visitors increases, with the threshold value for failure determination as the fluctuation value of the past temperature record, the threshold for failure determination will also increase. An error alarm can be prevented and accurate failure determination can be performed.
 前記報知手段は、前記ショーケース等を保守する人が保持しうる端末装置に前記警報情報を送信することで、遠隔地にいる関係者に迅速に緊急度を知らせることができる。 The notification means can promptly notify the person concerned in a remote place of the urgency level by transmitting the alarm information to a terminal device that can be held by a person who maintains the showcase or the like.
 また、過去の外気温度を記憶する記憶手段を備え、前記外気温度予測手段は、該記憶手段に記憶されているデータに基づいて予測外気温度を予測することで、過去のデータを用いて過去の現在時刻に対してどのように温度が変化しているかを参考に、現在の外気温度から未来を予測することができる。 In addition, a storage unit that stores past outside air temperature is provided, and the outside temperature prediction unit predicts a predicted outside temperature based on data stored in the storage unit, thereby using the past data. The future can be predicted from the current outside air temperature with reference to how the temperature changes with respect to the current time.
 また、前記制御手段は、前記ショーケースの温度の目標温度からの変位に応じた制御係数である温度依存制御係数によって前記ショーケースの稼働を制御することで、該変位に応じたきめ細かな省エネ制御をすることができる。 In addition, the control means controls the operation of the showcase with a temperature-dependent control coefficient that is a control coefficient corresponding to the displacement of the showcase temperature from the target temperature, so that fine energy-saving control according to the displacement is performed. Can do.
 また、前記外気温度予測手段は、前記ショーケースと冷凍機とを結ぶ冷媒配管の長さに応じた時間だけ未来の予測外気温度を予測することで、冷媒配管の長さに応じた時間だけ先の(未来の)予測外気温度に基づいてショーケースを制御することができ、迅速、かつ、適切に、ショーケースを制御して、必要最小限のエネルギでショーケースを制御することができる。 Further, the outside air temperature predicting means predicts the predicted outside air temperature in the future only for the time corresponding to the length of the refrigerant pipe connecting the showcase and the refrigerator, thereby leading the time corresponding to the length of the refrigerant pipe. The showcase can be controlled based on the predicted (future) outside air temperature, and the showcase can be quickly and appropriately controlled to control the showcase with a minimum amount of energy.
 また、室内温度情報を入力する室内温度入力手段と、室内湿度情報を入力する室内湿度入力手段と、該室内温度入力手段から入力される室温温度、及び該室内湿度入力手段から入力される室内湿度から未来の室内空気の湿り空気全熱量である予測室内エンタルピーを予測する室内エンタルピー予測手段とを備え、前記制御手段は、該室内エンタルピー予測手段によって予測される室内エンタルピーに基づいてショーケースの温度を制御することで、室内エンタルピーを予測して、予測された外気温度及び室内エンタルピーに基づいてショーケースを制御するので、予測した熱負荷の推定結果を、ショーケース制御に反映させることで、効果の高いショーケース省エネ制御を実現することができる。 Also, room temperature input means for inputting room temperature information, room humidity input means for inputting room humidity information, room temperature input from the room temperature input means, and room humidity input from the room humidity input means The indoor enthalpy predicting means for predicting the predicted indoor enthalpy which is the total heat quantity of the humid air of the future indoor air, and the control means determines the temperature of the showcase based on the indoor enthalpy predicted by the indoor enthalpy predicting means. By controlling, the indoor enthalpy is predicted and the showcase is controlled based on the predicted outside air temperature and indoor enthalpy, so the estimated thermal load estimation result is reflected in the showcase control. High showcase energy-saving control can be realized.
 また、前記制御手段は、前記予測外気温度として、前記予測外気温度に、前記凝縮器の周辺の高温を補正するバイアス温度を加えた予測バイアス外気温度に基づいてショーケースを制御することで、予測外気温度として、外気温度よりも高い状態にある凝縮器周辺の予測バイアス外気温度を用いることで、凝縮器周辺における高温の外気温度をも考慮した、より適切なショーケース制御を行うことができる。 Further, the control means controls the showcase based on a predicted bias outside air temperature obtained by adding a bias temperature for correcting a high temperature around the condenser to the predicted outside air temperature as the predicted outside air temperature. By using the predicted bias outside air temperature around the condenser that is higher than the outside air temperature as the outside air temperature, more appropriate showcase control can be performed in consideration of the high temperature outside air around the condenser.
 本発明に係るデジタルスマートリアル・ショーケース警報方法は、ショーケース等の庫内の温度を経時的に入力する温度入力ステップと、入力された前記温度に基づいて、前記ショーケース等が故障していることを判定する故障判定ステップと、前記故障判定ステップが故障と判定した場合、前記ショーケース等の庫内の商品が冷蔵又は冷凍に適さない程に高い所定の温度である警報温度まで上昇する見込日時を演算する演算ステップと、前記演算ステップが演算した前記見込日時を含む警報情報を報知する報知ステップとを備えることを特徴とする。 The digital smart real showcase alarm method according to the present invention includes a temperature input step of inputting a temperature in a storehouse such as a showcase over time, and the showcase or the like fails based on the input temperature. When the failure determination step and the failure determination step determine that there is a failure, the product in the warehouse such as the showcase rises to an alarm temperature that is a predetermined temperature that is high enough to be unsuitable for refrigeration or freezing. A calculation step for calculating an expected date and time, and a notification step for notifying alarm information including the estimated date and time calculated by the calculation step are provided.
 また、本発明は、コンピュータを、ショーケース等の庫内の温度を経時的に入力する温度入力手段と、入力された前記温度に基づいて、前記ショーケース等が故障していることを判定する故障判定手段と、前記故障判定手段が故障と判定した場合、前記ショーケース等の庫内の商品が冷蔵又は冷凍に適さない程に高い所定の温度である警報温度まで上昇する見込日時を演算する演算手段と、前記演算手段が演算した前記見込日時を含む警報情報を報知する報知手段とを備えるデジタルスマートリアル・ショーケース警報システムとして機能させるためのプログラムである。 According to the present invention, the computer determines whether the showcase or the like is out of order based on the temperature input means for inputting the temperature in the storage of the showcase or the like over time and the input temperature. When the failure determination means and the failure determination means determine that there is a failure, the expected date and time when the product in the warehouse such as the showcase rises to an alarm temperature that is a high predetermined temperature that is not suitable for refrigeration or freezing is calculated. A program for causing a digital smart real showcase alarm system to function as a digital smart real showcase alarm system including a calculation unit and a notification unit that notifies alarm information including the expected date and time calculated by the calculation unit.
 本発明によれば、ショーケース等が故障して庫内温度が異常上昇した際に、庫内温度が警報温度まで上昇する見込日時を警報表示することによって、故障の程度を分かりやすく警報表示して、その緊急度に適切に応じた対処をすることができるので、商品ロスを防止することができる。 According to the present invention, when a showcase or the like breaks down and the internal temperature rises abnormally, an alarm is displayed to indicate the degree of failure in an easy-to-understand manner by displaying the expected date and time when the internal temperature rises to the alarm temperature. In addition, since it is possible to take appropriate measures according to the degree of urgency, product loss can be prevented.
本発明の実施の形態に係るデジタルスマートリアル・ショーケース警報システムの構成図である。1 is a configuration diagram of a digital smart real showcase alarm system according to an embodiment of the present invention. 本発明の実施の形態に係るデジタルスマートリアル・ショーケース警報システムの制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the control apparatus of the digital smart real showcase alarm system which concerns on embodiment of this invention. 本発明の実施の形態に係るデジタルスマートリアル・ショーケース警報システムのショーケースの構成図である。It is a block diagram of the showcase of the digital smart real showcase alarm system which concerns on embodiment of this invention. 本発明の実施の形態に係るデジタルスマートリアル・ショーケース警報システムのデジタルスマートリアル・ショーケース警報処理を示すフローチャートである。It is a flowchart which shows the digital smart real showcase alarm process of the digital smart real showcase alarm system which concerns on embodiment of this invention. 本発明の実施の形態に係るデジタルスマートリアル・ショーケース警報システムの省エネ制御動作を示すフローチャートである。It is a flowchart which shows the energy-saving control operation | movement of the digital smart real showcase alarm system which concerns on embodiment of this invention.
 以下、添付図面を参照しながら本発明を実施するための形態について詳細に説明する。
(実施の形態)
 図1は、本発明の実施の形態に係るデジタルスマートリアル・ショーケース警報システムの構成を示すブロック図である。本実施形態は、空調警報システムに適用した例であり、本発明に空調制御は必須ではない。
[全体構成]
 図1に示すように、デジタルスマートリアル・ショーケース警報システム100は、外気温度入力部11(外気温度入力手段)、外気温度テーブル12(記憶手段)、外気温度予測部13(外気温度予測手段)、室内温度入力部14、室内湿度入力部15、室内エンタルピーテーブル16(記憶手段)、室内エンタルピー予測部17(エンタルピー予測手段)、ショーケース制御部18(制御手段)、及び空調制御部19(制御手段)を備える。
 外気温度計20、室内温度計30、室内湿度計40、ショーケース50、及び空調機60は、デジタルスマートリアル・ショーケース警報システム100を説明するために記載されている。
 室内温度計30は、室内空気の温度を検出する温度センサである。室内湿度計40は、室内空気の湿度を検出する湿度センサである。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
(Embodiment)
FIG. 1 is a block diagram showing a configuration of a digital smart real showcase alarm system according to an embodiment of the present invention. This embodiment is an example applied to an air conditioning alarm system, and air conditioning control is not essential to the present invention.
[overall structure]
As shown in FIG. 1, a digital smart real showcase alarm system 100 includes an outside air temperature input unit 11 (outside air temperature input unit), an outside air temperature table 12 (storage unit), and an outside air temperature prediction unit 13 (outside air temperature prediction unit). , Indoor temperature input unit 14, indoor humidity input unit 15, indoor enthalpy table 16 (storage means), indoor enthalpy prediction unit 17 (enthalpy prediction unit), showcase control unit 18 (control unit), and air conditioning control unit 19 (control) Means).
An outside air thermometer 20, an indoor thermometer 30, an indoor hygrometer 40, a showcase 50, and an air conditioner 60 are described to illustrate the digital smart real showcase alarm system 100.
The indoor thermometer 30 is a temperature sensor that detects the temperature of indoor air. The indoor hygrometer 40 is a humidity sensor that detects the humidity of room air.
<外気温度予測部13>
 外気温度入力部11は、現在の外気温度を外気温度計20から入力する。
 外気温度テーブル12は、外気温度の予測のために過去の外気温度を記憶する。
 ここで、本明細書にいう「外気温度」とは、建物の外の気温のことであり、原則として気象庁が発表する気温に等しいが、局所的には変動ないしバラツキがあることが想定される。
 外気温度予測部13は、外気温度を予測し、予測した外気温度をショーケース制御部18及び空調制御部19に渡す。
 外気温度予測には、過去のデータを用いて外気温度を予測する《過去データ使用予測方法》と、外部機関のデータを用いて外気温度から未来を予測する《外部データ使用予測方法》とがある。
<Outside air temperature prediction unit 13>
The outside air temperature input unit 11 inputs the current outside air temperature from the outside air thermometer 20.
The outside air temperature table 12 stores past outside air temperatures for prediction of outside air temperatures.
Here, “outside temperature” as used in this specification is the temperature outside the building, which is basically equal to the temperature announced by the Japan Meteorological Agency, but it is assumed that there will be local fluctuations or variations. .
The outside air temperature prediction unit 13 predicts the outside air temperature and passes the predicted outside air temperature to the showcase control unit 18 and the air conditioning control unit 19.
Outside air temperature prediction includes a past data use prediction method that uses past data to predict the outside air temperature, and an external data use prediction method that uses the data of an external engine to predict the future from the outside air temperature. .
《過去データ使用予測方法》
 外気温度予測部13は、現在の外気温度をもとに、今後は(例えば何分後に)どのように温度が変化するか(上昇するか下降するか、とその程度)を予測する。外気温度テーブル12には、過去の現在時刻に対してどのように温度が変化しているか、温度変化を見るための過去の例えば1年間の30分ごとの外気温度データが記憶されている。外気温度予測部13は、外気温度テーブル12から読み出した過去のデータをもとに、過去の現在時刻に対してどのように温度が変化しているかを参考に、現在の外気温度から未来を予測する。以下、具体的に述べる。
<< Past data usage forecast method >>
The outside air temperature prediction unit 13 predicts how the temperature will change in the future (for example, how many minutes later) (whether it rises or falls). The outside air temperature table 12 stores the outside air temperature data for every 30 minutes in the past, for example, one year to see how the temperature has changed with respect to the past current time. The outside air temperature prediction unit 13 predicts the future from the current outside air temperature based on past data read from the outside air temperature table 12 with reference to how the temperature has changed with respect to the past current time. To do. The details will be described below.
 外気温度予測部13は、例えば過去1年間の30分ごとの外気温度を外気温度テーブル12に記憶しておき、記憶した外気温度を外気温度予測値として読み出すことで外気温度を予測する。
 一般に、時間帯ごとの気温を集計して用いるだけでは、日時毎の変動が大きく、この変動量の大きい気象データから将来の予測値を求める場合に精度が不足する。そこで、時間帯ごとの気温の実績値をそのまま用いるのではなく、外気温度予測部13は、例えば、下記の方法(1)-(4)で外気温度を予測し、外気温度テーブル12に記憶する。
For example, the outside air temperature prediction unit 13 stores the outside air temperature every 30 minutes in the past year in the outside air temperature table 12, and reads the stored outside air temperature as the outside air temperature predicted value to predict the outside air temperature.
In general, if the temperature for each time zone is simply aggregated and used, fluctuations for each date and time are large, and accuracy is insufficient when a future predicted value is obtained from weather data having a large fluctuation amount. Therefore, instead of using the actual temperature value for each time zone as it is, the outside air temperature prediction unit 13 predicts the outside air temperature by, for example, the following methods (1) to (4) and stores it in the outside air temperature table 12. .
 (1)該当地域における気温の実績値(例えば30分単位)を取得する。
 (2)該当地域における気象データを取得する。
 (3)時間帯ごとの気温の変化を表す基準カーブ(例えば地域毎に、最低気温から最高気温までの間の変化を表すカーブ)を作成する。具体的には、地域毎に、一年間における各日の0時~24時の時間帯ごとの外気温度と、当該時間帯ごとの温度変化を基準カーブとして記憶する。年ごとに、該当日の外気温度は異なるものであっても、過去データとして統計的に蓄積しておくことで、該当日の時間帯ごとの温度変化を、該当時間帯の温度変化を示す基準カーブで表すことができる。なお、外気温度テーブル12には、該当地域における気温の実績値と基準カーブが記憶(蓄積)されている。
(1) Acquire the actual temperature value (for example, 30 minutes) in the area.
(2) Acquire weather data in the relevant area.
(3) A reference curve representing a change in temperature for each time zone (for example, a curve representing a change from the lowest temperature to the highest temperature for each region) is created. Specifically, for each region, the outside air temperature for each time zone from 0 o'clock to 24 o'clock on each day of the year and the temperature change for each time zone are stored as a reference curve. Even if the outdoor temperature of the day differs from year to year, the temperature change for each time zone on that day can be obtained by statistically accumulating it as past data. It can be represented by a curve. The outside air temperature table 12 stores (accumulates) the actual temperature value and the reference curve in the corresponding area.
 (4)取得した外気温度と、基準カーブに示す該当日の時間帯ごとの温度変化から時間帯ごとの外気温度の予測値を算出する。すなわち、取得した外気温度は、次の時間帯(例えば1時間、ただし5分,15分,30分などは直線補完により算出)では、基準カーブが示す温度変化の傾斜で変化すると予測する。例えば、後記表1に示すような外気温度テーブル12が得られているとする。この表1の時刻10時の外気温度「31.0℃」と時刻11時の外気温度「31.5℃」との変化分(詳細には、基準カーブ(曲線)が示す温度変化の傾斜)は、季節ごとの各日の時間帯ごとでほぼ一定であると仮定し、例えば1時間後であれば、この温度変化分「0.5」を、取得した外気温度に加算し、一時間先の予測値とする。15分先であれば、「0.5/4」を加算し、15分先の予測値とする。 (4) The predicted value of the outside air temperature for each time zone is calculated from the acquired outside air temperature and the temperature change for each time zone on the corresponding day shown in the reference curve. That is, the acquired outside air temperature is predicted to change at the slope of the temperature change indicated by the reference curve in the next time zone (for example, 1 hour, but 5 minutes, 15 minutes, 30 minutes, etc. are calculated by linear interpolation). For example, it is assumed that an outside air temperature table 12 as shown in Table 1 below is obtained. Changes in the outside air temperature “31.0 ° C.” at time 10:00 and the outside air temperature “31.5 ° C.” at time 11:00 in Table 1 (specifically, the slope of the temperature change indicated by the reference curve (curve)) Is assumed to be substantially constant for each time zone of each season, for example, after one hour, this temperature change “0.5” is added to the acquired outside temperature, and one hour ahead The predicted value of. If it is 15 minutes ahead, “0.5 / 4” is added to obtain the predicted value 15 minutes ahead.
 外気温度予測部13は、現在の外気温度と外気温度テーブル12に記憶されている過去のデータ(ここでは時間帯毎の過去の実績値と基準カーブ)を用いて未来の(例えば1時間後の)外気温度を予測する。また、上記の場合において、30分後の外気温度は、現在の外気温度に、基準カーブが示す温度変化の1/2を加算(減算)することで、30分後の外気温度の予測値を求めることができる。15分後、又は2時間以上の場合についても同様の方法で外気温度の予測値を求めることができる。 The outside air temperature prediction unit 13 uses the current outside air temperature and past data stored in the outside air temperature table 12 (here, past actual values and reference curves for each time zone) (for example, one hour later). ) Predict the outside air temperature. Further, in the above case, the outside air temperature after 30 minutes is obtained by adding (subtracting) 1/2 of the temperature change indicated by the reference curve to the current outside air temperature, thereby obtaining the predicted value of the outside air temperature after 30 minutes. Can be sought. The predicted value of the outside air temperature can be obtained by the same method even after 15 minutes or for two hours or more.
 このように、外気温度予測部13は、過去の気温の実績値に基づいて1日の気温の変化を表す基準カーブを作成し、その基準カーブに基づいて気温を予測する。外気温度予測部13は、過去の気温の実績値の平均値や中央値を現在の気温とするのではなく、外気温度テーブル12に記憶されている温度の変化に基づいて、1日の気温の変化の傾向に応じた気温を予測するので、予測精度を向上させることができる。 As described above, the outside air temperature prediction unit 13 creates a reference curve representing a change in the temperature of the day based on the past actual temperature values, and predicts the temperature based on the reference curve. The outside air temperature prediction unit 13 does not use the average value or median value of the past actual values of the air temperature as the current air temperature, but based on the change in the temperature stored in the outside air temperature table 12, Since the temperature corresponding to the tendency of change is predicted, the prediction accuracy can be improved.
《外部データ使用予測方法》
 上記《過去データ使用予測方法》で述べたように、予測に過去のデータを使うのは一例であってそれに限定されない。例えば、外気温度予測部13は、下記の《外部データ使用予測方法》を採ることもできる。
 外気温度予測部13は、例えば気象庁が発表する、当該日にちの温度予報を使用して外気温度を予測する。外気温度予測部13は、現在の外気温度に対して、気象庁が発表した温度予報の変化(時間微分、すなわち、温度変化の傾向)を参考に、今後の外気温度を予測する。例えば、外気温度予測部13は、気象庁や気象会社のコンピュータにアクセスして気象庁や気象会社が発表した予報値を含むデータ(気象データ)を受信することができる。
<External data usage prediction method>
As described in the above “Past data use prediction method”, the use of past data for prediction is an example, and the present invention is not limited thereto. For example, the outside air temperature prediction unit 13 can adopt the following << external data use prediction method >>.
The outside air temperature prediction unit 13 predicts the outside air temperature using, for example, a temperature forecast for the date announced by the Japan Meteorological Agency. The outside air temperature prediction unit 13 predicts a future outside air temperature with respect to the current outside air temperature with reference to a change in the temperature forecast announced by the Japan Meteorological Agency (time differentiation, that is, a tendency of temperature change). For example, the outside air temperature prediction unit 13 can receive data (meteorological data) including a forecast value announced by the Japan Meteorological Agency or Meteorological Company by accessing a computer of the Meteorological Agency or Meteorological Company.
<室内エンタルピー予測部17>
 室内エンタルピーテーブル16は、室内エンタルピーを予測するための、過去の室内エンタルピーを記憶する(表1参照)。
 室内エンタルピー予測部17は、室内エンタルピーテーブル16を参照して、室内エンタルピーを予測する。具体的には、室内エンタルピー予測部17は、入力された室内空気の温度と湿度と、室内エンタルピーテーブル16のテーブル値に基づいて、室内空気の湿り空気全熱量であるエンタルピー(比エンタルピーともいう)を予測する。本実施形態におけるエンタルピーは、1kgの物質(空気)が持っているエンタルピーを示し、エンタルピーの単位は(kJ/kgD.A.)である。
<Indoor enthalpy prediction unit 17>
The indoor enthalpy table 16 stores past indoor enthalpies for predicting indoor enthalpy (see Table 1).
The indoor enthalpy prediction unit 17 refers to the indoor enthalpy table 16 and predicts indoor enthalpy. Specifically, the indoor enthalpy prediction unit 17 is based on the input temperature and humidity of the indoor air and the table value of the indoor enthalpy table 16, and is the enthalpy (also referred to as specific enthalpy) that is the total amount of humid air in the indoor air. Predict. The enthalpy in this embodiment indicates the enthalpy of 1 kg of substance (air), and the unit of enthalpy is (kJ / kgD.A.).
<ショーケース制御部18>
 ショーケース制御部18は、ショーケース内の陳列品を冷凍又は冷蔵する温度を制御する。具体的には例えば冷凍機又は冷蔵機などであり、省エネ制御することが望ましい。例えば、各月ごと、営業時間帯と非営業時間帯又は昼と夜ごとなどの平均の売場温度及び比エンタルピー値(空気全熱量)に基づいて予め制御率を算出してプログラム化しておき、その制御率の分だけ冷凍又は冷蔵の稼働を省エネ制御する。
<Showcase control unit 18>
The showcase control unit 18 controls the temperature at which the display items in the showcase are frozen or refrigerated. Specifically, it is a refrigerator or a refrigerator, for example, and it is desirable to perform energy saving control. For example, the control rate is calculated in advance and programmed based on the average sales floor temperature and specific enthalpy value (total heat of air) such as every month, business hours and non-business hours or day and night. Energy-saving control of the operation of refrigeration or refrigeration is performed for the control rate.
 また、ショーケース制御部18は、入力された外気温度情報から、冷媒配管130(図2参照)の長さに応じた時間だけ未来の予測外気温度を予測し、予測外気温度に基づいてショーケース50の温度を制御する(詳細後記)。 Further, the showcase control unit 18 predicts a future predicted outside air temperature for a time corresponding to the length of the refrigerant pipe 130 (see FIG. 2) from the input outside air temperature information, and the showcase is based on the predicted outside air temperature. The temperature of 50 is controlled (detailed later).
<空調制御部19>
 本実施形態は、ショーケース内の陳列品を冷凍又は冷蔵する温度を制御するショーケース制御部18の稼働率(以下、この稼働率を「ショーケース稼働率」と言う。)を検出し、ショーケース稼働率が所定値を超える場合に、空調機60の省エネ制御を抑制又は停止して、ショーケースが設置される売場の温度を下げて、ショーケース稼働率を所定値以下に下げることによって店舗全体としての省エネを実現するものである。なお、売場が意図しない温度に上昇してしまう場合とは、例えば、売場の湿度を測定せずに比エンタルピー値(空気全熱量)が高いことを検出できないシステムであるため、温度だけではショーケース制御が過負荷であることを検出できない場合や、来客の急増に空調制御が追随できない場合などが想定される。
<Air conditioning control unit 19>
In this embodiment, the operating rate of the showcase control unit 18 that controls the temperature at which the display items in the showcase are frozen or refrigerated (hereinafter, this operating rate is referred to as “showcase operating rate”) is detected. When the case operating rate exceeds a predetermined value, the energy saving control of the air conditioner 60 is suppressed or stopped, the temperature of the sales floor where the showcase is installed is lowered, and the showcase operating rate is lowered to a predetermined value or less. It realizes energy saving as a whole. Note that the case where the sales floor rises to an unintended temperature is, for example, a system that cannot detect that the specific enthalpy value (total heat of air) is high without measuring the humidity of the sales floor. It is assumed that the control cannot be detected as being overloaded, or that the air conditioning control cannot follow the sudden increase in visitors.
 空調制御部19は、空調機60を省エネ制御する制御率を算出して、その制御率によって空調機60を過不足なく省エネ制御するものである。制御は、空調機60を所定のパターンで停止(オフ)するものでも良いし、インバータ制御するものでも良い。 The air conditioning control unit 19 calculates a control rate for energy-saving control of the air conditioner 60, and performs energy-saving control of the air conditioner 60 without excess or deficiency by the control rate. The control may be one that stops (turns off) the air conditioner 60 in a predetermined pattern, or one that performs inverter control.
 上記外気温度予測部13、室内エンタルピー予測部17、ショーケース制御部18、及び空調制御部19は、パーソナルコンピュータ等の演算制御ユニットにより構成される。演算制御ユニットは、CPU(Central Processing Unit)等により構成され、装置全体を制御すると共に、空調省エネ制御プログラムを実行して、デジタルスマートリアル・ショーケース警報システムとして機能させる。 The outside air temperature prediction unit 13, the indoor enthalpy prediction unit 17, the showcase control unit 18, and the air conditioning control unit 19 are configured by an arithmetic control unit such as a personal computer. The arithmetic control unit is composed of a CPU (Central Processing Unit) or the like, and controls the entire apparatus and executes an air conditioning energy saving control program to function as a digital smart real showcase alarm system.
 また、上記外気温度テーブル12、及び室内エンタルピーテーブル16は、不揮発性メモリや外部記憶装置等の記憶部(記憶手段)に格納される。 The outdoor temperature table 12 and the indoor enthalpy table 16 are stored in a storage unit (storage means) such as a nonvolatile memory or an external storage device.
[ショーケース制御部構成]
 図2は、デジタルスマートリアル・ショーケース警報システム100のショーケース制御部18の構成例を示すブロック図である。
 ショーケース制御部18は、例えばショーケース110ごとに設置され、陳列棚に陳列される商品に合わせた目標温度に冷却する制御を行う。なお、ショーケース制御部18は、複数のショーケース110を統括して制御するものでもよい。
 図2に示すように、ショーケース制御部18は、制御部81(故障判定手段、演算手段)と、記憶部82(記憶手段)と、入力部83と、表示部84と、通信部85と、インタフェース(I/F)部86と、I/F部86を介して接続されるランプ・ブザーなどの報知手段87とを備える。I/F部86には、ショーケース10の温度を検出する温度センサ131(後記)からの温度情報が入力される。また、I/F部86を介して圧縮機(コンプレッサ)121を制御する制御信号が出力される。
[Showcase controller configuration]
FIG. 2 is a block diagram illustrating a configuration example of the showcase control unit 18 of the digital smart real showcase alarm system 100.
The showcase control unit 18 is installed for each showcase 110, for example, and performs control of cooling to a target temperature according to the products displayed on the display shelf. Note that the showcase control unit 18 may control the plurality of showcases 110 in an integrated manner.
As shown in FIG. 2, the showcase control unit 18 includes a control unit 81 (failure determination unit, calculation unit), a storage unit 82 (storage unit), an input unit 83, a display unit 84, and a communication unit 85. , An interface (I / F) unit 86, and a notification unit 87 such as a lamp / buzzer connected via the I / F unit 86. Temperature information from a temperature sensor 131 (described later) for detecting the temperature of the showcase 10 is input to the I / F unit 86. A control signal for controlling the compressor (compressor) 121 is output via the I / F unit 86.
 制御部81は、CPU(Central Processing Unit)等により構成され、ショーケース110全体を制御すると共に、記憶部82に予め格納された制御プログラム等を読み出し、デジタルスマートリアル・ショーケース警報プログラムを実行して、デジタルスマートリアル・ショーケース警報システムとして機能させる。
 制御部81は、ショーケース50の温度を検出して検出した温度が目標温度に近づくように冷凍機120の電磁弁113を開閉制御して温度制御する。
The control unit 81 is configured by a CPU (Central Processing Unit) or the like, controls the entire showcase 110, reads out a control program stored in the storage unit 82 in advance, and executes a digital smart real showcase alarm program. Function as a digital smart real showcase alarm system.
The controller 81 detects the temperature of the showcase 50 and controls the temperature by controlling opening and closing of the electromagnetic valve 113 of the refrigerator 120 so that the detected temperature approaches the target temperature.
 制御部81は、ショーケース50の温度を経時的に入力して、入力された温度に基づいて、ショーケース50への冷凍機能が故障していることを判定する。
 制御部81は、ショーケース50の温度が正常な温度変化パターンから外れた場合、ショーケース50への冷凍機能が故障と判定する。また、制御部81は、ショーケース50の温度の上昇がショーケース50等の霜取りの温度の変化の場合には故障と判定しない。
 制御部81は、警報温度(ショーケース50内の商品が冷蔵・冷凍に適さない程に高い所定の温度)に上昇する見込日時を演算する。
 制御部81は、記憶部82から読み出したカレンダー情報(ショーケース50の温度の変化を蓄積した情報)とショーケース50の温度との差分が所定値より大きい場合に故障と判定する。例えば、昨年の同月同日の同時刻の温度、又は、先月の同日の同時刻の温度など、経験上比較的相関性が高いカレンダー情報と比較する。
 制御部81は、報知手段87により警報表示(見込日時を表示)させる。また、制御部41は、通信部85を通して警報情報を携帯装置70(端末装置)に送信する。
The controller 81 inputs the temperature of the showcase 50 over time, and determines that the refrigeration function for the showcase 50 is broken based on the input temperature.
When the temperature of the showcase 50 deviates from the normal temperature change pattern, the control unit 81 determines that the refrigeration function for the showcase 50 is out of order. Moreover, the control part 81 does not determine with a failure, when the temperature rise of the showcase 50 is a change in the defrosting temperature of the showcase 50 or the like.
The control unit 81 calculates the expected date and time when the temperature rises to an alarm temperature (a predetermined temperature that is so high that the product in the showcase 50 is not suitable for refrigeration / freezing).
The control unit 81 determines that a failure has occurred when the difference between the calendar information read from the storage unit 82 (information in which changes in the temperature of the showcase 50 are accumulated) and the temperature of the showcase 50 is greater than a predetermined value. For example, it is compared with calendar information having a relatively high correlation in experience, such as the temperature at the same time on the same day of the same month last year or the temperature at the same time on the same day of the previous month.
The control unit 81 causes the notification means 87 to display an alarm (display the expected date and time). In addition, the control unit 41 transmits alarm information to the portable device 70 (terminal device) through the communication unit 85.
 記憶部82は、上記制御プログラムの他、例えば制御部81が警報するために使用されるパラメータ等を予め格納する。また、記憶部82は、ショーケース50内の温度変化を蓄積したカレンダー情報を記憶する。例えば、毎年の月日ごと、毎月の日にちごと、毎週の曜日ごと、及び毎日の時間ごとの温度を蓄積する。また、記憶部82は、ショーケース50の制御に関する情報や温度センサ131から送信された陳列棚の温度の情報、携帯装置70の識別情報を記憶する。 The storage unit 82 stores in advance, for example, parameters used for the control unit 81 to give an alarm in addition to the control program. The storage unit 82 stores calendar information in which temperature changes in the showcase 50 are accumulated. For example, the temperature is accumulated every month, every day, every day of the week, and every hour of every day. Further, the storage unit 82 stores information related to the control of the showcase 50, information on the temperature of the display shelf transmitted from the temperature sensor 131, and identification information of the portable device 70.
 入力部83は、ショーケース50の設定温度など入力するための操作部であり、例えばタッチパネル、複数のキーやボタン等である。入力部83は、例えばショーケース50の設定温度や運転モード等を指示する入力操作を受け付ける。
 表示部84は、デジタルスマートリアル・ショーケース警報システム100の現在の状況や設定状況等を表示する。
The input unit 83 is an operation unit for inputting the set temperature of the showcase 50, and is, for example, a touch panel, a plurality of keys, buttons, or the like. The input unit 83 receives an input operation for instructing a set temperature, an operation mode, or the like of the showcase 50, for example.
The display unit 84 displays the current status and setting status of the digital smart real showcase alarm system 100.
 通信部85は、基地局を介して携帯装置70とデータを送受信する。
 インタフェース(I/F)部86は、ショーケース制御部18に入出力される信号のレベルや方式を整える。
 報知手段87は、ショーケース50の警報情報を発光素子(LEDランプなど)による発光、音・音声による警報で報知する。報知手段87は、演算した見込日時を含む警報情報を報知する。なお、報知手段87の表示は、表示部84による表示でもよい。
The communication unit 85 transmits / receives data to / from the mobile device 70 via the base station.
The interface (I / F) unit 86 adjusts the level and method of signals input to and output from the showcase control unit 18.
The notification means 87 notifies the alarm information of the showcase 50 by light emission by a light emitting element (LED lamp or the like), a sound / voice alarm. The notification means 87 notifies alarm information including the calculated expected date and time. Note that the display of the notification unit 87 may be a display by the display unit 84.
 本実施形態では、吹出口111に温度センサ131を設置し、この温度センサ131で検出されたセンサ温度をショーケース50の温度としている。なお、温度センサ131の取り付け場所及び取り付け個数は、この例に限定されない。また、ショーケース50内の各所(例えば、陳列棚ごと)に温度センサ131を設置して、これらの温度センサ131でショーケース50内温度を直接検出すれば、より精確な制御が可能になる。 In this embodiment, a temperature sensor 131 is installed at the air outlet 111, and the sensor temperature detected by the temperature sensor 131 is used as the temperature of the showcase 50. In addition, the attachment location and the number of attachments of the temperature sensor 131 are not limited to this example. Further, if the temperature sensors 131 are installed at various locations in the showcase 50 (for example, for each display shelf) and the temperature in the showcase 50 is directly detected by these temperature sensors 131, more accurate control can be performed.
 図3は、デジタルスマートリアル・ショーケース警報システム100のショーケースの構成図である。本実施形態は、店舗内に設置された冷蔵冷凍のショーケースの警報システムに適用した例である。
 図3に示すように、デジタルスマートリアル・ショーケース警報システム100は、ショーケース50と、冷凍機120と、冷媒配管130と、ショーケース制御部18とを備えて構成される。ショーケース制御部18は、デジタルスマートリアル・ショーケース警報システム100全体の制御を行うとともに、ショーケース50の冷凍機120等の制御を行う。ショーケース制御部18の設置場所は、この例に限定されない。例えば、ショーケース制御部18は、ショーケース本体50aの底部の機械室110bに設置されてもよいし、ショーケース本体50aの背面、又はショーケース本体50aと離隔した場所に設置されてもよい。
FIG. 3 is a configuration diagram of a showcase of the digital smart real showcase alarm system 100. This embodiment is an example applied to an alarm system for a refrigerated showcase installed in a store.
As shown in FIG. 3, the digital smart real showcase alarm system 100 includes a showcase 50, a refrigerator 120, a refrigerant pipe 130, and a showcase control unit 18. The showcase control unit 18 controls the entire digital smart real showcase alarm system 100 and controls the refrigerator 120 and the like of the showcase 50. The installation location of the showcase control unit 18 is not limited to this example. For example, the showcase control unit 18 may be installed in the machine room 110b at the bottom of the showcase body 50a, or may be installed on the back surface of the showcase body 50a or at a location separated from the showcase body 50a.
[ショーケース及び冷凍機]
 ショーケース50は、スーパーマーケットやコンビニエンスストア等の店舗内に設置され、飲料や食品等、冷却するべき商品を陳列する。
 ショーケース50は、商品収納スペースを有するショーケース本体50aを備え、ショーケース本体50a上部には下方に向かって冷気を吹出す吹出口111が形成され、下部にはエアカーテンに沿って下降した冷気を吸込む吸込口112が形成される。ショーケース本体50aの底部には、機械室110bとして、冷媒配管130に設けられた電磁弁113と、高圧液冷媒を低圧の液体に変える膨張弁114と、冷気を循環させるファンモータ115とを備える。ショーケース本体50aの背面側には、膨張弁114で低圧の液体となった低圧液冷媒を熱を奪いながら蒸発させる冷却器(エバポレータ)116を備える。
 ショーケース本体50aの商品収納スペースには、陳列棚である棚板117と、底板118と、商品収納スペースを覆うエアカーテン119とを備える。
 ショーケース50内は、棚板117及び底板118(以下、陳列棚という)に陳列される商品に合わせた温度に冷却される。
[Showcase and refrigerator]
The showcase 50 is installed in a store such as a supermarket or a convenience store, and displays products to be cooled, such as beverages and foods.
The showcase 50 is provided with a showcase body 50a having a product storage space. A blowout port 111 for blowing cool air downward is formed in the upper part of the showcase body 50a, and the cold air descending along the air curtain is formed in the lower part. A suction port 112 for sucking in is formed. At the bottom of the showcase body 50a, as a machine room 110b, an electromagnetic valve 113 provided in the refrigerant pipe 130, an expansion valve 114 for changing the high-pressure liquid refrigerant into a low-pressure liquid, and a fan motor 115 for circulating cold air are provided. . A cooler (evaporator) 116 is provided on the back side of the showcase body 50a to evaporate the low-pressure liquid refrigerant that has become a low-pressure liquid by the expansion valve 114 while removing heat.
The product storage space of the showcase body 50a includes a shelf plate 117 that is a display shelf, a bottom plate 118, and an air curtain 119 that covers the product storage space.
The inside of the showcase 50 is cooled to a temperature according to the products displayed on the shelf plate 117 and the bottom plate 118 (hereinafter referred to as a display shelf).
 吹出口111には、ショーケース50の陳列棚の温度(以下、ショーケース50の温度という)を検出する温度センサ131が設けられている。吹出口111は、目標として設定した温度に近い温度が検出される場所であり、この温度センサ131で検出されたセンサ温度を、ショーケース50の温度としている。なお、温度センサ131の取り付け場所や取り付け個数は、この例に限定されない。 The air outlet 111 is provided with a temperature sensor 131 for detecting the temperature of the display shelf of the showcase 50 (hereinafter referred to as the temperature of the showcase 50). The air outlet 111 is a place where a temperature close to the temperature set as a target is detected, and the sensor temperature detected by the temperature sensor 131 is set as the temperature of the showcase 50. In addition, the attachment location and the number of attachments of the temperature sensor 131 are not limited to this example.
 冷凍機120は、冷媒配管130を介してショーケース本体50aと接続される。冷凍機120は、圧縮機121と、凝縮器122と、凝縮器冷却用ファン123とを備える。圧縮機121は、冷媒配管130から戻された低圧の気体を圧縮して高温高圧(例えば70℃~80℃)の気体に圧縮する。圧縮機121は、冷媒の圧力を上げることで、凝縮器122で冷媒が液体状に変化しやすくなるようにするとともに、冷媒の流れを作る。凝縮器122は、高温高圧の気体冷媒の熱を取り、高圧の液状冷媒(例えば30℃~40℃)とする。凝縮器冷却用ファン123は、凝縮器122に外気を送風して凝縮器122を冷却する。
 冷凍機120は、複数台のショーケース50に冷媒配管130を接続して、複数台のショーケース50を冷却することができる。
The refrigerator 120 is connected to the showcase body 50a via the refrigerant pipe 130. The refrigerator 120 includes a compressor 121, a condenser 122, and a condenser cooling fan 123. The compressor 121 compresses the low-pressure gas returned from the refrigerant pipe 130 into a high-temperature and high-pressure (for example, 70 ° C. to 80 ° C.) gas. The compressor 121 increases the pressure of the refrigerant so that the refrigerant can be easily changed into a liquid state by the condenser 122 and also creates a flow of the refrigerant. The condenser 122 takes the heat of the high-temperature and high-pressure gas refrigerant and turns it into a high-pressure liquid refrigerant (for example, 30 ° C. to 40 ° C.). The condenser cooling fan 123 blows outside air to the condenser 122 to cool the condenser 122.
The refrigerator 120 can cool the plurality of showcases 50 by connecting the refrigerant pipes 130 to the plurality of showcases 50.
 デジタルスマートリアル・ショーケース警報システム100は、圧縮機121、電磁弁113、膨張弁114、冷却器116及び凝縮器122を環状に接続して冷蔵又は冷凍が可能な冷凍サイクルを構成している。圧縮機121として、例えば、ロータリ式、スクロール式、レシプロ式の圧縮機を用いることができる。 The digital smart real showcase alarm system 100 constitutes a refrigeration cycle in which a compressor 121, an electromagnetic valve 113, an expansion valve 114, a cooler 116, and a condenser 122 are connected in a ring shape and can be chilled or frozen. For example, a rotary, scroll, or reciprocating compressor can be used as the compressor 121.
 以下、上述のように構成されたデジタルスマートリアル・ショーケース警報システム100の動作を説明する。
[ショーケース警報制御動作]
 図4は、デジタルスマートリアル・ショーケース警報システム100のデジタルスマートリアル・ショーケース警報処理を示すフローチャートである。本フローは、デジタルスマートリアル・ショーケース警報システム100のショーケース制御部18の制御部81(図2参照)がデジタルスマートリアル・ショーケース警報プログラムを実行することにより行われる。
 まず、ステップS1でショーケース制御部18は、温度センサ131(図3参照)により検出されたショーケース50の温度を取り込む。
 ステップS2~ステップS6は、ショーケース50の温度を鮮魚・精肉の保存に適する一定範囲内の温度(下限温度と上限温度間の目標温度)に保つ制御を行う。
Hereinafter, the operation of the digital smart real showcase alarm system 100 configured as described above will be described.
[Showcase alarm control operation]
FIG. 4 is a flowchart showing the digital smart real showcase alarm processing of the digital smart real showcase alarm system 100. This flow is performed when the control unit 81 (see FIG. 2) of the showcase control unit 18 of the digital smart real showcase alarm system 100 executes the digital smart real showcase alarm program.
First, in step S1, the showcase control unit 18 takes in the temperature of the showcase 50 detected by the temperature sensor 131 (see FIG. 3).
In steps S2 to S6, control is performed to maintain the temperature of the showcase 50 within a certain range suitable for preservation of fresh fish and meat (target temperature between the lower limit temperature and the upper limit temperature).
 ステップS2では、制御部81は、冷凍機120(図3参照)の電磁弁113を開く。ショーケース50内に冷気を吹出し、商品(ここでは、鮮魚・精肉)を冷蔵する。
 ステップS3で検出された現在のショーケース50の温度が下限温度より低いか否かを判定する。ショーケース50の温度が下限温度よりも高い間は(ステップS3:No)、上記ステップS3に戻る。圧縮機121は、作動して冷気をショーケース50内に供給し続ける。
 ショーケース50の温度が下限温度より低い場合(ステップS3:Yes8)、ステップS4で冷凍機120の電磁弁113を閉じる。
 ステップS5では、現在のショーケース50の温度が上限温度よりも高いか否かを判定する。現在のショーケース50の温度が上限温度よりも低い間は(ステップS5:No)、上記ステップS5に戻る。
In step S2, the control unit 81 opens the electromagnetic valve 113 of the refrigerator 120 (see FIG. 3). Cold air is blown into the showcase 50, and the goods (here, fresh fish and meat) are refrigerated.
It is determined whether or not the current temperature of the showcase 50 detected in step S3 is lower than the lower limit temperature. While the temperature of the showcase 50 is higher than the lower limit temperature (step S3: No), the process returns to step S3. The compressor 121 operates to continue supplying cool air into the showcase 50.
When the temperature of the showcase 50 is lower than the lower limit temperature (step S3: Yes8), the electromagnetic valve 113 of the refrigerator 120 is closed in step S4.
In step S5, it is determined whether the current temperature of the showcase 50 is higher than the upper limit temperature. While the current temperature of the showcase 50 is lower than the upper limit temperature (step S5: No), the process returns to step S5.
 現在のショーケース50の温度が上限温度よりも高い場合(ステップS5:Yes)、ステップS6で制御部81は、冷凍機120の電磁弁113を開く。ステップS7以降は、本ショーケース警報処理である。なお、ショーケース50が故障していない場合は、下記ステップS8~ステップS10はスキップされることになり、再び、上記ステップS3に戻ることで冷凍運転が継続される。これにより、ショーケース50内の温度は、鮮魚・精肉の保存に適する一定範囲内に制御される。 If the current temperature of the showcase 50 is higher than the upper limit temperature (step S5: Yes), the control unit 81 opens the electromagnetic valve 113 of the refrigerator 120 in step S6. Step S7 and subsequent steps are the showcase warning process. If the showcase 50 has not failed, the following steps S8 to S10 are skipped, and the refrigeration operation is continued by returning to step S3 again. Thereby, the temperature in the showcase 50 is controlled within a certain range suitable for preservation of fresh fish and meat.
 ここで、ショーケース50内の冷却温度は、収納している商品の種類によって異なり、ショーケース50ごとに温度が設定される。ショーケース50内の目標温度の設定は、入力部83で設定する。制御部81は、ショーケース50内の冷却温度を下限温度と上限温度間の温度に保つ目標温度制御を行う。なお、設定した目標温度が低くなるほど、放熱量が増えて実際のショーケース50の温度は、算定される表示温度よりも高めになる。このため、目標温度と放熱量との関係を考慮して、目標温度を設定している。 Here, the cooling temperature in the showcase 50 varies depending on the type of goods stored, and the temperature is set for each showcase 50. The target temperature in the showcase 50 is set by the input unit 83. The controller 81 performs target temperature control for keeping the cooling temperature in the showcase 50 at a temperature between the lower limit temperature and the upper limit temperature. Note that, as the set target temperature decreases, the amount of heat release increases and the actual temperature of the showcase 50 becomes higher than the calculated display temperature. For this reason, the target temperature is set in consideration of the relationship between the target temperature and the heat radiation amount.
 ステップS7では、制御部81は、ショーケース50の温度が正常な温度変化パターンから外れたか否かを判定する。ショーケース50の温度が正常な温度変化パターンから外れていない場合は(ステップS7:No)、上記ステップS3に戻り、正常な温度変化パターンから外れた場合は(ステップS7:Yes)、ステップS8に進む。 In step S7, the control unit 81 determines whether or not the temperature of the showcase 50 deviates from a normal temperature change pattern. When the temperature of the showcase 50 is not deviated from the normal temperature change pattern (step S7: No), the process returns to the above step S3, and when deviated from the normal temperature change pattern (step S7: Yes), the process proceeds to step S8. move on.
 ショーケース50の温度が正常な温度変化パターンから外れる場合は、冷凍機120の冷凍機能が故障している場合である。冷凍機120の冷凍機能が故障すると、ショーケース50の温度が正常な温度変化パターンから外れ、ショーケース50の温度は上昇する。上記冷凍機能故障には、圧縮機121の故障、冷媒配管30からの冷媒漏れ、ファンモータ15や凝縮器冷却用ファン23の故障が挙げられる。 When the temperature of the showcase 50 deviates from the normal temperature change pattern, the refrigeration function of the refrigerator 120 is broken. When the refrigeration function of the refrigerator 120 fails, the temperature of the showcase 50 deviates from the normal temperature change pattern, and the temperature of the showcase 50 rises. Examples of the refrigeration function failure include failure of the compressor 121, refrigerant leakage from the refrigerant piping 30, and failure of the fan motor 15 and the condenser cooling fan 23.
 すなわち、ショーケース50の温度の異常上昇は、冷凍機120の電磁弁113を開(ステップS6)にしているのにもかかわらずショーケース50の温度が上昇することである。冷凍機120の電磁弁113が開であるにもかかわらずショーケース50の温度が上昇してしまうのは、冷凍機120の冷凍機能が故障と判断できる。換言すれば、ショーケース50の温度の「正常な温度変化パターン」とは、ショーケース50の温度が上昇中に、冷凍機120の電磁弁113が閉から開に変わった際に、温度が上昇から下降に変化するパターンということになる。制御部81は、正常な温度変化パターンと実際の温度変化パターンとを比較して、冷凍機120の冷凍機能の故障を判定している。例えば、制御部81は、記憶部82から読み出したカレンダー情報(ショーケース50の温度の変化を蓄積した情報)とショーケース50の温度との差分が所定値より大きい場合に故障と判定する。 That is, the abnormal rise in the temperature of the showcase 50 is that the temperature of the showcase 50 rises even though the electromagnetic valve 113 of the refrigerator 120 is opened (step S6). Even if the electromagnetic valve 113 of the refrigerator 120 is open, it can be determined that the temperature of the showcase 50 rises because the refrigeration function of the refrigerator 120 is out of order. In other words, the “normal temperature change pattern” of the temperature of the showcase 50 means that the temperature rises when the solenoid valve 113 of the refrigerator 120 changes from closed to open while the temperature of the showcase 50 is rising. That is, the pattern changes from falling to falling. The control unit 81 compares the normal temperature change pattern with the actual temperature change pattern, and determines the failure of the refrigeration function of the refrigerator 120. For example, the control unit 81 determines that a failure has occurred when the difference between the calendar information read from the storage unit 82 (information storing accumulated temperature changes of the showcase 50) and the temperature of the showcase 50 is greater than a predetermined value.
 なお、正常な温度変化パターンには、霜取り運転中の温度変化パターンも含まれる。ショーケース50は、霜取りのために一定間隔で一時的に温度上昇する霜取り運転を行う場合がある。霜取り運転中の温度上昇については警報表示から除外する。制御部81は、ショーケース110の温度の上昇がショーケース50等の霜取りの温度の変化の場合には故障と判定しない。 The normal temperature change pattern includes the temperature change pattern during the defrosting operation. The showcase 50 may perform a defrosting operation in which the temperature temporarily rises at regular intervals for defrosting. Temperature rise during defrosting operation is excluded from the warning display. The control unit 81 does not determine that a failure has occurred when the temperature rise of the showcase 110 is a change in defrosting temperature of the showcase 50 or the like.
 ステップS8では、制御部81は、警報温度に上昇する見込日時を演算する。ここで、警報温度とは、ショーケース50内の商品が冷蔵・冷凍に適さない程に高い所定の温度である。例えば、鮮魚・精肉は、設定温度0℃で保存されるが、商品成分の観点から、霜取以外の時間において、温度が4℃よりも長時間にわたって上昇すれば品質が劣化する。このため、鮮魚・精肉の警報温度は、5℃である。警報温度に上昇する見込日時の演算は、例えば線形予測法を用いる。また、非特許文献1に記載の「連続データを予測する」を用いることができる。 In step S8, the control unit 81 calculates the expected date and time when the alarm temperature rises. Here, the alarm temperature is a predetermined temperature that is so high that the product in the showcase 50 is not suitable for refrigeration and freezing. For example, fresh fish and meat are stored at a set temperature of 0 ° C., but from the viewpoint of product components, the quality deteriorates if the temperature rises for a longer time than 4 ° C. at a time other than defrosting. For this reason, the alarm temperature of fresh fish and meat is 5 ° C. For example, a linear prediction method is used to calculate the expected date and time when the alarm temperature rises. Further, “predict continuous data” described in Non-Patent Document 1 can be used.
 ステップS9では、制御部81は、警報情報を報知手段87により報知する。報知手段87は、ショーケース50の警報温度を警報情報として発光素子(LEDランプなど)による発光、スピーカによる音や音声で報知する。
 警報情報には、警報温度に上昇する見込日時の表示や見込日時の音声を含む。警報温度に上昇する見込日時を表示することによって、緊急度が分かりやすく伝わる。これにより、警報温度に上昇する前に警報温度に上昇することを警報表示することができる。また、霜取りの期間は、警報表示をオフにすることができる。なお、緊急度に応じて、警報情報を強調表示(見込日時が近いほど、太文字・拡大文字・点滅表示など)してもよい。
In step S <b> 9, the control unit 81 notifies the alarm information by the notification unit 87. The informing means 87 informs the alarm temperature of the showcase 50 as alarm information by light emission by a light emitting element (LED lamp or the like), sound by a speaker or voice.
The alarm information includes a display of the expected date and time when the temperature rises to the alarm temperature and a sound of the expected date and time. By displaying the expected date and time when the alarm temperature rises, the degree of urgency is easily communicated. Thereby, it is possible to display an alarm indicating that the temperature rises to the alarm temperature before the temperature rises to the alarm temperature. Also, the alarm display can be turned off during the defrost period. Depending on the degree of urgency, the alarm information may be highlighted (as the expected date and time are closer, bold characters, enlarged characters, blinking display, etc.).
 ステップS10では、制御部81は、警報温度を携帯装置70に通知して本フローの処理を終える。警報温度へ上昇する前に、関係者の携帯装置70へメールで警報温度に上昇する見込日時を通知することで、温度上昇による商品劣化までの緊急度を知らせることができ、関係者は見込日時に合わせた適切な対応をとることができる。また、冷凍機設備の故障等を知ることができる。 In step S10, the control unit 81 notifies the portable device 70 of the alarm temperature and ends the process of this flow. Before the temperature rises to the alarm temperature, the expected date and time when the temperature rises to the alarm temperature can be notified by email to the portable device 70 of the person concerned. Appropriate measures can be taken according to the situation. In addition, it is possible to know a failure of the refrigerator equipment.
 なお、上記ステップS7の正常な温度変化パターン判定(故障判定)において、制御部81が、ショーケース50内の温度変化を蓄積したカレンダー情報を記憶部82から読み出して、読み出したカレンダー情報を基に温度変化パターンを判定してもよい。過去の蓄積情報であるカレンダー情報を用いることで、より精度良く故障判定を行うことができる。 In the normal temperature change pattern determination (failure determination) in step S7, the control unit 81 reads the calendar information in which the temperature change in the showcase 50 is accumulated from the storage unit 82, and based on the read calendar information. The temperature change pattern may be determined. By using calendar information that is past accumulated information, failure determination can be performed with higher accuracy.
[適用例1]
 図3に示す冷凍機120は、例えば複数台のショーケース50を冷却している。しかしながら、冷凍機120の冷凍機能が故障することが有り得る。冷凍機120の冷凍機能の故障は、下記(1)~(4)の通りである。(1)冷凍機120本体の故障、(2)冷媒配管30等からの冷媒ガス漏れ、(3)ショーケース本体10aの故障(例えば本体破損による冷気漏れ)、(4)ショーケース50の霜付による不冷却がある。上記冷凍機能の故障が発生すると、ショーケース50の温度が上昇する。本実施形態では、ショーケース制御部18(図2参照)の制御部81が、経時的に入力したショーケース50の温度に基づいて、冷凍機120の冷凍機能が故障していることを判定している。
[Application Example 1]
The refrigerator 120 shown in FIG. 3 cools a plurality of showcases 50, for example. However, the refrigeration function of the refrigerator 120 may break down. The failure of the refrigeration function of the refrigerator 120 is as follows (1) to (4). (1) Failure of the main body of the refrigerator 120, (2) Leakage of refrigerant gas from the refrigerant pipe 30 or the like, (3) Failure of the showcase main body 10a (for example, cold air leakage due to breakage of the main body), (4) Frosting of the showcase 50 There is uncooled by. When the malfunction of the refrigeration function occurs, the temperature of the showcase 50 increases. In the present embodiment, the control unit 81 of the showcase control unit 18 (see FIG. 2) determines that the refrigeration function of the refrigerator 120 has failed based on the temperature of the showcase 50 input over time. ing.
 ショーケース50は、商品鮮度を保つために商品の種別に設定温度を定めて冷蔵冷凍している。上記冷凍機能の故障が発生すると、ショーケース50の温度上昇により、商品の設定温度を過ぎて、商品が劣化廃棄処分となる事故となる場合がある。従来は、ショーケース50の温度上昇については、設定した警報温度に達し所定の時間を経過すると、警備会社、担当関係者へ警報が通信されて、警備会社又は修理業者が急行して修理されていた。しかし、修理等の対処が間に合わず商品は廃棄処分となる場合が多いのが現状である。 The showcase 50 is refrigerated and frozen by setting a set temperature for each product type in order to maintain the freshness of the product. If the refrigeration function fails, the temperature of the showcase 50 may increase, resulting in an accident in which the product is past the set temperature and the product is disposed of as a waste product. Conventionally, as for the temperature rise of the showcase 50, when the set alarm temperature is reached and a predetermined time has elapsed, an alarm is communicated to the security company and the person in charge, and the security company or repair company hastened the repair. It was. However, the current situation is that products such as repairs are not in time, and products are often discarded.
 鮮魚・精肉ケース(ショーケース50)の場合を例にして、具体的な温度変化と報知の態様を説明する。
 鮮魚・精肉ケース(ショーケース50)のケース設定温度は、0℃である。上述したように、鮮魚・精肉は、商品成分の観点から、霜取以外の時間において、温度が4℃より長時間にわたって上昇すれば品質が劣化する。このため、例えば、第1段階注意温度:3℃、第2段階注意温度:4℃、警報温度:5℃と設定する。
A specific temperature change and notification mode will be described using a case of a fresh fish / meat case (showcase 50) as an example.
The case setting temperature of the fresh fish / meat case (showcase 50) is 0 ° C. As described above, the quality of fresh fish and meat deteriorates if the temperature rises over 4 hours at a time other than defrosting from the viewpoint of product components. For this reason, for example, the first stage caution temperature: 3 ° C., the second stage caution temperature: 4 ° C., and the alarm temperature: 5 ° C. are set.
 ケース設定温度は鮮魚・精肉ケース:0℃であり、
(1)ケース温度が3℃になれば、第1段階注意温度であることを検知し、
(2)第1段階注意温度3℃に上昇した日時:3月13日12時0分を検知し、
(3)その後ケース温度は、3月16日20時0分に第2段階注意温度4℃に上昇したことを検知し、
(4)第1段階注意温度から第2段階注意温度までに経過した時間は3日8時間0分間(80時間)であり、
(5)温度上昇係数は、1℃/80時間=0.0125℃/時間であり、
(6)警報温度5℃に上昇する見込日時=第2段階注意温度日時:3日16日20時0分+(警報温度5℃-第2段階注意温度4℃)/0.0125=3月16日20時0分+3日8時間0分間=3月20日4時0分である。
Case setting temperature is fresh fish and meat case: 0 ℃,
(1) When the case temperature reaches 3 ° C, it is detected that it is the first stage caution temperature,
(2) Date and time when the first stage caution temperature rose to 3 ° C: Detected 12:00 on March 13th,
(3) After that, it was detected that the case temperature rose to the second stage caution temperature of 4 ° C at 20:00 on March 16,
(4) The time elapsed from the first stage caution temperature to the second stage caution temperature is 3 days 8 hours 0 minutes (80 hours),
(5) The temperature rise coefficient is 1 ° C./80 hours = 0.0125 ° C./hour,
(6) Expected date and time when alarm temperature will rise to 5 ° C = 2nd stage caution temperature date and time: 20:00 on 3rd 16th + (alarm temperature 5 ° C-2nd stage caution temperature 4 ° C) /0.0125 = March It is 20 o'clock on the 16th + 8 hours and 0 minutes on the 3rd = 4: 0 on March 20th.
 このように、ショーケース制御部18の制御部81は、警報温度に上昇する見込日時を演算する。本実施の態様では、第1段階注意温度と第2段階注意温度の2つの段階の注意温度における日時に基づいて見込日時を演算・予測したが、3つ以上の段階の注意温度における日時に基づいて予測してもよい。 Thus, the control unit 81 of the showcase control unit 18 calculates the expected date and time when the alarm temperature rises. In this embodiment, the expected date / time is calculated / predicted based on the date / time at the two stages of the caution temperature, ie, the first stage caution temperature and the second stage caution temperature. May be predicted.
 上述したように、鮮魚・精肉は商品成分上の要請により、霜取以外の時間では設定温度の4℃より温度が上昇すれば品質が劣化する。このために、より早く関係者へ送信することが大切である。例えば、従来の警報温度に達してから警報を関係者等へ通報した場合、関係者が現地店舗に急行しても、間に合わず商品ロスとなる。 As mentioned above, the quality of fresh fish and meat deteriorates if the temperature rises above the set temperature of 4 ° C at times other than defrosting due to demands on the product components. For this reason, it is important to send it to the parties concerned earlier. For example, when a warning is notified to a related person after reaching a conventional warning temperature, even if the related person rushes to a local store, the product is lost in time.
 デジタルスマートリアル・ショーケース警報システム100は、ショーケース制御部18の制御部81が、警報温度(ショーケース50内の商品が冷蔵・冷凍に適さない程に高い所定の温度)に上昇する見込日時を演算する。制御部81は、報知手段87により見込日時を警報表示させるとともに、警報情報を携帯装置70に送信する。 In the digital smart real showcase alarm system 100, the control unit 81 of the showcase control unit 18 is expected to rise to an alarm temperature (a predetermined temperature that is high enough that the product in the showcase 50 is not suitable for refrigeration / freezing). Is calculated. The control unit 81 causes the notifying unit 87 to display an alarm for the expected date and time, and transmits the alarm information to the portable device 70.
 従来では、警報温度に達した後の通知等であったため、修理業者が急行しても修理等が間に合わず商品の廃棄処分となる場合が多いのが現状であった。
 本実施形態によれば、警報温度に上昇する見込日時を表示することによって、緊急度が分かりやすく伝わる。すなわち、警報温度に上昇する前に、あとどれ位の時間的猶予で警報温度まで上昇しまうかを警報表示することができる。関係者は、この警報表示(見込日時表示)を把握することによって緊急度に合わせた適切な対応をとることができる。例えば、上記適応例のように、警報温度に上昇する見込日時が短い場合、その見込日時に合わせた迅速な対応をとることができる。一方、警報温度に上昇する見込日時が比較的長い場合、緊急度は低いのでそれに合わせた比較的ゆっくりした対応をとることができる。一般に、緊急対応は費用がより高くなるので、この点からもコストを削減することができる。
Conventionally, since the notification is made after the alarm temperature is reached, even if the repair company rushes, the repair is not in time, and the product is often disposed of in the current situation.
According to the present embodiment, the urgency level is easily communicated by displaying the expected date and time when the alarm temperature rises. That is, before the temperature rises to the alarm temperature, it is possible to display an alarm indicating how much time is left until the alarm temperature is reached. A person concerned can take an appropriate response in accordance with the degree of urgency by grasping the warning display (expected date display). For example, when the expected date and time when the temperature rises to the alarm temperature is short as in the above application example, it is possible to take a quick response according to the expected date and time. On the other hand, when the expected date and time when the alarm temperature rises is relatively long, the degree of urgency is low, so a relatively slow response can be taken. In general, the cost of emergency response is higher, so the cost can be reduced in this respect as well.
 いずれにしても、警報温度にまで上昇したことを検知して表示するのではなく、警報温度に上昇する前に警報温度に上昇することを警報表示するので、商品廃棄等による商品ロスを少なくすることができる。商品がアイスクリーム、冷凍食品、生魚及び生肉等の場合は特に効果がある。
 また、警報温度へ上昇する前に、ショーケースの保守などの関係者の携帯装置70へメールで警報温度に上昇する見込日時を通知することで、遠隔地にいる関係者に迅速に緊急度を知らせることができ、関係者は見込日時に合わせた適切な対応をとることができる。
In any case, instead of detecting and displaying that the temperature has risen to the alarm temperature, an alarm is displayed to indicate that the temperature has risen before the temperature rises to the alarm temperature, thereby reducing product loss due to product disposal. be able to. This is particularly effective when the product is ice cream, frozen food, raw fish or raw meat.
In addition, before the temperature rises to the alarm temperature, notification of the expected date and time when the alarm temperature rises to the portable device 70 of the concerned person such as the maintenance of the showcase by e-mail, so that the urgency level can be quickly given to the person in the remote place. The person concerned can take an appropriate response according to the expected date and time.
 また、本実施形態では、ショーケース50の温度が正常な温度変化パターンから外れたことを温度測定のみで判定しているので、既存の温度制御装置とは別の新たな装置に、本実施形態の制御装置又は制御方法を適用することができる。すなわち、本実施形態の制御装置又は制御方法を、既製のショーケースに付属させる装置に適用することができる。この場合、プログラムを提供する態様でもよい。 Further, in this embodiment, since it is determined only by temperature measurement that the temperature of the showcase 50 deviates from the normal temperature change pattern, the present embodiment is used as a new device different from the existing temperature control device. The control device or control method can be applied. That is, the control device or the control method of the present embodiment can be applied to a device attached to a ready-made showcase. In this case, a mode of providing a program may be used.
[本実施形態と特許文献との対比]
 本デジタルスマートリアル・ショーケース警報システム100は、特許文献に対して下記のような技術的特徴を有する。
(1)本実施形態と特許文献2との対比
 特許文献2には、冷却液を収容していて該冷却液中に被冷却物を浸漬して冷却・冷凍する冷却槽と、該冷却槽の冷却液の温度を検出する温度検出器とを備え、故障などにより冷却液の温度が警報温度以上に上昇して被冷却物の品質が低下するのを防ぐために、前記温度検出器によって冷却液の温度tnを所定の検出周期毎に検出し、検出時点から冷却液が警報温度tAに達するまでに要する予測時間Tを演算し、故障などにより、警報温度tAと検出温度tnとの偏差tA-tnが所定温度以下になると、当該予測時間Tを警報予測時間表示部に表示する冷却・冷凍装置が記載されている(段落0001~段落0012、図1、図2)。
[Contrast between this embodiment and patent document]
The digital smart real showcase alarm system 100 has the following technical features with respect to patent documents.
(1) Comparison between the present embodiment and Patent Document 2 Patent Document 2 describes a cooling tank that contains a cooling liquid and that cools and freezes the object to be cooled by immersing an object to be cooled in the cooling liquid. A temperature detector that detects the temperature of the coolant, and in order to prevent the coolant temperature from rising above the alarm temperature due to a failure or the like and degrading the quality of the object to be cooled, the temperature detector The temperature tn is detected every predetermined detection cycle, the predicted time T required for the coolant to reach the alarm temperature tA from the detection time is calculated, and the deviation tA−tn between the alarm temperature tA and the detection temperature tn due to a failure or the like Describes a cooling / refrigeration apparatus that displays the predicted time T on the warning predicted time display section when the temperature falls below a predetermined temperature (paragraphs 0001 to 0012, FIGS. 1 and 2).
 しかし、特許文献2の検出周期ΔTに跨る温度変化量を有意に測定するためには、最低限の検出周期ΔTを確保しなければならない。この検出周期ΔTを、例えば30分とすると、その間は表示される予測時間が変化せず、時間の経過とともに最大30分の表示誤差を含むことになる。最大30分の表示誤差があるとすると、表示情報の信頼性が低下するばかりか、対応が間に合わない場合がある。
 これに対して、本実施形態は、ショーケース50の温度に基づいて故障判定し、故障判定後に警報温度まで上昇する「見込日時」を報知するので、原理的に上記表示誤差が全くない。
However, in order to significantly measure the amount of temperature change over the detection period ΔT of Patent Document 2, it is necessary to ensure a minimum detection period ΔT. If this detection cycle ΔT is, for example, 30 minutes, the displayed prediction time does not change during that period, and a display error of 30 minutes at the maximum is included as time passes. If there is a display error of 30 minutes at the maximum, not only the reliability of the display information is lowered, but the response may not be in time.
On the other hand, according to the present embodiment, the failure is determined based on the temperature of the showcase 50, and the “expected date” that rises to the alarm temperature after the failure is determined is notified.
(2)本実施形態と特許文献5との対比
 特許文献5には、保冷庫の庫内の温度を検出する温度センサと、前記温度センサにより検出される庫内温度が庫内温度履歴情報として逐次格納される温度履歴記憶部と、前記温度履歴記憶部に格納されている前記保冷庫の庫内温度履歴晴報である庫内温度カーブが初期値に対して一定レベルだけ離れた場合に報知ブザー・報知ランプを作動させる故障・部品交換予測部とを備える配送装置の管理システムが記載されている(段落0050,段落0053、段落0063、図1、図2,図4、図16)。この「初期値」は最初に設定される所定の固定値と考えられ、故障判定のしきい値は、所定の固定値である。
 特許文献5の段落0050、0053には、「温度履歴記憶部15b」が記載されているが、ここに記憶される庫内温度履歴情報とは分析の対象である庫内温度カーブを意味しており、比較の対象は「初期値」(段落0053、0063)であって、この「初期値」は、上記所定の固定値と考えられる。
(2) Comparison between this embodiment and Patent Document 5 In Patent Document 5, a temperature sensor that detects a temperature in a cold storage box and a temperature inside the box that is detected by the temperature sensor are used as the temperature history information in the box. Notification is made when the temperature history storage unit that is sequentially stored and the internal temperature curve that is a report of the internal temperature history of the cold storage stored in the temperature history storage unit are separated from the initial value by a certain level. A delivery system management system including a failure / part replacement prediction unit for operating a buzzer / notification lamp is described (paragraph 0050, paragraph 0053, paragraph 0063, FIG. 1, FIG. 2, FIG. 4, FIG. 16). This “initial value” is considered to be a predetermined fixed value that is initially set, and the threshold value for failure determination is a predetermined fixed value.
In paragraphs 0050 and 0053 of Patent Document 5, “temperature history storage unit 15b” is described. The internal temperature history information stored here means an internal temperature curve to be analyzed. The comparison target is “initial value” (paragraphs 0053 and 0063), and this “initial value” is considered to be the predetermined fixed value.
 これに対して、本実施形態では、制御部81は、記憶部82から読み出したカレンダー情報(ショーケース50の温度の変化を蓄積した情報)とショーケース50の温度との差分が所定値より大きい場合に故障と判定するものである。すなわち、現在の温度を過去の温度の実績値と比較して故障判定するものであり、故障判定のしきい値は、過去の実績の変動値である。したがって、来客が増える時間帯など、温度が若干上昇する傾向にある場合には、故障判定のしきい値も高くなり、誤り警報を防止することができ、精確な故障判定が可能になる。 On the other hand, in this embodiment, the control unit 81 has a difference between the calendar information read from the storage unit 82 (information in which the change in the temperature of the showcase 50 is accumulated) and the temperature of the showcase 50 is larger than a predetermined value. It is determined that a failure occurs. That is, failure determination is made by comparing the current temperature with the past actual temperature value, and the failure determination threshold value is a past actual fluctuation value. Therefore, when the temperature tends to rise slightly, such as during a time when the number of visitors increases, the threshold value for failure determination also increases, an error alarm can be prevented, and accurate failure determination becomes possible.
[外気温度予測に基づく省エネ制御動作]
 次に、デジタルスマートリアル・ショーケース警報システム100の省エネ制御動作を説明する。
 図5は、デジタルスマートリアル・ショーケース警報システム100の省エネ制御動作を示すフローチャートである。
 まず、ステップS11で外気温度入力部11は、戸外に設置されている外気温度計20から外気温度情報を入力する。
 ステップS12で外気温度入力部11は、外気温度情報を外気温度テーブル12に記憶する。
 ステップS13で外気温度予測部13は、現在の外気温度と過去の外気温度の変化から未来の外気温度を予測し、予測した外気温度をショーケース制御部18及び空調制御部19に渡す。
 外気温度予測部13は、上述した《過去データ使用予測方法》を採る場合、例えば過去1年間の外気温度を外気温度テーブル12に記憶しておき、記憶した外気温度を外気温度予測値として読み出すことで外気温度を予測する。予測は現在の外気温度に対して行われる。外気温度予測部13は、現在の外気温度をベースに、今後は(何分後に)どのように温度が変化するか(上昇するか下降するか、とその程度)を予測する。なお、外気温度予測部13は、上述した《外部データ使用予測方法》を用いて外気温度を予測してもよい。
[Energy-saving control operation based on outside air temperature prediction]
Next, the energy saving control operation of the digital smart real showcase alarm system 100 will be described.
FIG. 5 is a flowchart showing the energy saving control operation of the digital smart real showcase alarm system 100.
First, in step S11, the outside temperature input unit 11 inputs outside temperature information from the outside temperature thermometer 20 installed outdoors.
In step S <b> 12, the outside temperature input unit 11 stores outside temperature information in the outside temperature table 12.
In step S <b> 13, the outside air temperature prediction unit 13 predicts a future outside air temperature from changes in the current outside air temperature and the past outside air temperature, and passes the predicted outside air temperature to the showcase control unit 18 and the air conditioning control unit 19.
When the above-described << past data use prediction method >> is employed, the outside air temperature prediction unit 13 stores, for example, the outside air temperature for the past year in the outside air temperature table 12, and reads the stored outside air temperature as the outside air temperature predicted value. To predict the outside air temperature. The prediction is made for the current outside temperature. The outside air temperature predicting unit 13 predicts how the temperature will change in the future (after how many minutes) based on the current outside air temperature (whether it rises or falls). Note that the outside air temperature prediction unit 13 may predict the outside air temperature using the above-described << external data use prediction method >>.
 ステップS14で室内温度入力部14(図1参照)は、室内温度計30の計測値から室内温度情報を入力する。
ステップS15で室内湿度入力部15(図1参照)は、室内湿度計40の計測値から室内湿度情報を入力する。
ステップS16で室内エンタルピー予測部17は、入力された室内温度及び室内湿度からエンタルピー(室内空気の湿り空気全熱量)を算出し、室内エンタルピーテーブル16に記憶する。
In step S <b> 14, the room temperature input unit 14 (see FIG. 1) inputs room temperature information from the measurement value of the room thermometer 30.
In step S15, the indoor humidity input unit 15 (see FIG. 1) inputs the indoor humidity information from the measurement value of the indoor hygrometer 40.
In step S <b> 16, the indoor enthalpy prediction unit 17 calculates enthalpy (total amount of humid air of indoor air) from the input indoor temperature and indoor humidity, and stores it in the indoor enthalpy table 16.
 ステップS17で室内エンタルピー予測部17は、現在の室内エンタルピーと室内エンタルピーテーブル16に記憶されている過去の室内エンタルピーの変化から未来の室内エンタルピーを予測する。 In step S17, the indoor enthalpy prediction unit 17 predicts the future indoor enthalpy from the current indoor enthalpy and the change in the past indoor enthalpy stored in the indoor enthalpy table 16.
 ステップS18でショーケース制御部18は、予測外気温度及び予測室内エンタルピーに基づいてショーケース50を制御する。ショーケース制御部18は、未来の予測値である予測外気温度及び予測室内エンタルピーに基づいてショーケース50を制御するので、迅速、かつ、適切なショーケース制御ができる。なお、本実施形態では、ショーケース制御部18は、予測外気温度を用いること加えて、冷媒配管130の長さ分の予測制御も併用しているので、より迅速、かつ、適切なショーケース制御を実現できる。 In step S18, the showcase control unit 18 controls the showcase 50 based on the predicted outside air temperature and the predicted indoor enthalpy. Since the showcase control unit 18 controls the showcase 50 based on the predicted outside air temperature and the predicted indoor enthalpy that are predicted values in the future, quick and appropriate showcase control can be performed. In the present embodiment, the showcase control unit 18 uses the predicted outside air temperature as well as the predicted control for the length of the refrigerant pipe 130, so that the showcase control can be performed more quickly and appropriately. Can be realized.
 ステップS18で空調制御部19は、予測外気温度及び予測室内エンタルピーに基づいて空調機60を制御して本フローの処理を終了する。空調制御部19は、未来の予測値である予測外気温度及び予測室内エンタルピーに基づいて空調機60を制御するので、迅速、かつ、適切な空調制御ができる。 In step S18, the air conditioning control unit 19 controls the air conditioner 60 based on the predicted outside air temperature and the predicted indoor enthalpy and ends the processing of this flow. Since the air conditioning control unit 19 controls the air conditioner 60 based on the predicted outside air temperature and the predicted indoor enthalpy that are predicted values in the future, it is possible to perform quick and appropriate air conditioning control.
 このように、デジタルスマートリアル・ショーケース警報システム100は、外気温度と共に、室内エンタルピーも予測して、予測された外気温度及び室内エンタルピーに基づいてショーケース50を制御する。 As described above, the digital smart real showcase alarm system 100 predicts the indoor enthalpy together with the outside air temperature, and controls the showcase 50 based on the predicted outside air temperature and the indoor enthalpy.
 本実施形態は、外気温度を後追いするのではなく先取りした外気温度に基づいてショーケース50を制御するので、迅速、かつ、適切に、ショーケース50を制御して、必要最小限のエネルギでショーケース50を制御することができる。
さらに、外気温度と共に、室内エンタルピーも予測して、予測された外気温度及び室内エンタルピーに基づいてショーケース50を制御するので、予測した熱負荷の推定結果を、ショーケース制御に反映させることで、効果の高い省エネ制御を実現することができる。
In the present embodiment, the showcase 50 is controlled based on the pre-opened outside air temperature rather than following the outside air temperature. Therefore, the showcase 50 is controlled promptly and appropriately so that the showcase 50 can be displayed with the minimum necessary energy. The case 50 can be controlled.
Furthermore, the indoor enthalpy is predicted together with the outside air temperature, and the showcase 50 is controlled based on the predicted outside air temperature and the indoor enthalpy, so that the estimated thermal load estimation result is reflected in the showcase control. High-efficiency energy-saving control can be realized.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[適用例2]
 次に、外気温度予測に基づく省エネ制御動作の適用例について説明する。
 表1は、外気温度テーブル12及び室内エンタルピーテーブル16(記憶手段)に記憶される外気温度、エンタルピー、各係数及び制御分の一例を示す表である。表1は、時間別の外気温度(℃)、+バイアス(℃)、外気温度係数、エンタルピー(kJ/kgD.A.)、エンタルピー係数、稼働係数、制御係数、及び制御分(分)を記憶する。例えば、時間別の外気温度、室内空気湿り熱量エンタルピーkJ/kgD.A.による、各係数である。
 表1は、外気温度予測部13及び室内エンタルピー予測部17によって、予測の際に参照される。
 表1の外気温度(℃)は、本実施形態では予測外気温度を用いる(以下、外気温度については予測外気温度を用いる)。
 表1の+バイアス(℃)は、外気温度+凝縮器バイアス温度(例えば、表1では3.0)である。この+バイアスは、凝縮器周辺の温度が高いことを考慮する場合のバイアスである。
 表1の外気温度係数は、外気温度/基準外気温度(例えば、表1では32.0)である。
 表1のエンタルピー(kJ/kgD.A.)は、室内温度と室内湿度から算出する(図5のステップS16参照)。
 表1のエンタルピー係数は、エンタルピー/基準エンタルピー(例えば、表1では55.42)である。
[Application Example 2]
Next, an application example of the energy saving control operation based on the outside air temperature prediction will be described.
Table 1 is a table showing an example of the outside air temperature, the enthalpy, each coefficient, and the control amount stored in the outside air temperature table 12 and the indoor enthalpy table 16 (storage means). Table 1 stores outdoor air temperature (° C), + bias (° C), outdoor air temperature coefficient, enthalpy coefficient (kJ / kgD.A.), Enthalpy coefficient, operating coefficient, control coefficient, and control minutes (minutes) by time. To do. For example, it is each coefficient by the outside air temperature according to time and indoor air wet heat quantity enthalpy kJ / kgD.A.
Table 1 is referred to in the prediction by the outside air temperature prediction unit 13 and the indoor enthalpy prediction unit 17.
As the outside air temperature (° C.) in Table 1, the predicted outside temperature is used in the present embodiment (hereinafter, the predicted outside temperature is used for the outside temperature).
The + bias (° C.) in Table 1 is the outside air temperature + condenser bias temperature (for example, 3.0 in Table 1). This + bias is a bias when considering the high temperature around the condenser.
The outside air temperature coefficient in Table 1 is outside air temperature / reference outside air temperature (for example, 32.0 in Table 1).
The enthalpy (kJ / kgD.A.) In Table 1 is calculated from the room temperature and room humidity (see step S16 in FIG. 5).
The enthalpy coefficient in Table 1 is enthalpy / reference enthalpy (eg, 55.42 in Table 1).
  表1の稼働係数は、外気温度係数×エンタルピー係数×基準稼働係数(例えば、表1では0.63)である。
 表1の制御係数は、(1-稼働係数)×安全係数(例えば、表1では0.60)である。
 表1の制御分(分)は、制御係数×基準制御分(例えば、表1では30)である。この制御分は、時間の30分を単位に、その内の何分の間、冷凍機120の稼働を停止するか、すなわち、電磁弁113を閉じるか、という数字である。例えば、「9」は30分の内、9分間だけ稼働を停止して、省エネすること意味する。閉店中は大きく省エネし、開店中は小さく省エネする。
The operating coefficient in Table 1 is the outside air temperature coefficient × enthalpy coefficient × reference operating coefficient (for example, 0.63 in Table 1).
The control coefficient in Table 1 is (1−operation coefficient) × safety coefficient (for example, 0.60 in Table 1).
The control amount (minute) in Table 1 is control coefficient × reference control amount (for example, 30 in Table 1). This control amount is a number indicating whether the operation of the refrigerator 120 is stopped, that is, the electromagnetic valve 113 is closed for how many minutes in the unit of 30 minutes. For example, “9” means to save energy by stopping operation for 9 minutes within 30 minutes. Save energy during closing and save energy during opening.
 図1に示す空調制御部19は、空調機60を制御率の分(制御分)だけ省エネ制御する。例えば制御率が0.40であれば、空調機60を所定のパターンで40%稼働を停止する、又は、空調機60を定格電力使用量の60%の電力でインバータ制御する。 The air-conditioning control unit 19 shown in FIG. 1 performs energy-saving control of the air conditioner 60 by the control rate (control amount). For example, if the control rate is 0.40, the air conditioner 60 is stopped by 40% in a predetermined pattern, or the air conditioner 60 is inverter-controlled with 60% of the rated power consumption.
 このように、本実施形態は、ショーケース50が設置される売場の空調機60を省エネ制御した上で、更にショーケースの制御が過稼働とならないように空調機60を制御することによって、ショーケース50の冷凍又は冷蔵負担を軽くし、結局は、ショーケース50も含めた店舗の総合的な省エネに大きく貢献する。 As described above, the present embodiment performs energy saving control on the air conditioner 60 in the sales floor where the showcase 50 is installed, and further controls the air conditioner 60 so that the showcase control is not over-operated. The burden of freezing or refrigeration of the case 50 is reduced, and in the end, it greatly contributes to the overall energy saving of the store including the showcase 50.
[ショーケース制御部18のショーケース制御動作]
《基本制御》
 ショーケース制御部18は、例えばショーケース50ごとに設置され、陳列棚に陳列される商品に合わせた目標温度に冷却する制御を行う。なお、ショーケース制御部18は、複数のショーケース50を統括して制御するものでもよい。
 ショーケース制御部18は、CPU(Central Processing Unit)等により構成され、ショーケース制御プログラムを実行して、デジタルスマートリアル・ショーケース警報システムとして機能させる。
 ショーケース制御部18は、ショーケース50の温度を検出して検出した温度が目標温度に近づくように冷凍機120の電磁弁113を開閉制御して、ショーケース50の温度を商品(例えば、冷凍食品)の保存に適する一定範囲内の温度(下限温度と上限温度間の目標温度)に保つ制御を行う。なお、ショーケース50内の冷却温度は、収納している商品の種類によって異なり、ショーケース50ごとに温度が設定される。例えば、青果であれば7℃、日配品(冷蔵が必要で賞味期限の短い食品の総称)であれば5℃、鮮魚又は精肉であれば0℃、冷凍食品であれば-18℃、アイスクリームであれば-26℃などである。
[Showcase Control Operation of Showcase Control Unit 18]
<Basic control>
The showcase control unit 18 is installed for each showcase 50, for example, and performs control of cooling to a target temperature according to the products displayed on the display shelf. Note that the showcase control unit 18 may control the plurality of showcases 50 in an integrated manner.
The showcase control unit 18 is configured by a CPU (Central Processing Unit) or the like, and executes a showcase control program to function as a digital smart real showcase alarm system.
The showcase control unit 18 detects the temperature of the showcase 50 and controls the opening and closing of the electromagnetic valve 113 of the refrigerator 120 so that the detected temperature approaches the target temperature, thereby changing the temperature of the showcase 50 to a product (for example, freezing Control is performed to maintain the temperature within a certain range (target temperature between the lower limit temperature and the upper limit temperature) suitable for storage of food. Note that the cooling temperature in the showcase 50 varies depending on the type of goods stored, and the temperature is set for each showcase 50. For example, 7 ° C for fruits and vegetables, 5 ° C for daily products (a general term for foods that require refrigeration and a short shelf life), 0 ° C for fresh fish or meat, -18 ° C for frozen foods, ice For cream, it is -26 ° C.
 さらに、ショーケース制御部18は、ショーケース50の温度の目標温度からの変位に応じた制御係数である温度依存制御係数によってショーケース50の稼働を制御する。具体的には、例えば商品が青果、目標温度が7℃、許容温度範囲が±4℃、制御係数が0.35の場合、変位温度係数を(ショーケースの温度(℃)-目標温度(7℃))/許容温度範囲(4℃)として、温度依存制御係数=制御係数(0.35)-(制御係数(0.35)×変位温度係数)によってショーケース50を省エネ制御する。例えば、
 ショーケース50の温度が3℃であれば、変位温度係数は-1=(3-7)/4、温度依存制御係数は0.70=0.35+(0.35×1)、
 ショーケース50の温度が4℃であれば、変位温度係数は-0.75=(4-7)/4、温度依存制御係数は0.61=0.35+(0.35×0.75)、
 ショーケース50の温度が5℃であれば、変位温度係数は-0.5=(5-7)/4、温度依存制御係数は0.53=0.35+(0.35×0.5)、
 ショーケース50の温度が6℃であれば、変位温度係数は-0.25=(6-7)/4、温度依存制御係数は0.44=0.35+(0.35×0.25)、
 ショーケース50の温度が7℃であれば、変位温度係数は0=(7-7)/4、温度依存制御係数は0.35=0.35-(0.35×0)、
 ショーケース50の温度が8℃であれば、変位温度係数は0.25=(8-7)/4、温度依存制御係数は0.26=0.35-(0.35×0.25)、
 ショーケース50の温度が9℃であれば、変位温度係数は0.5=(9-7)/4、温度依存制御係数は0.18=0.35-(0.35×0.5)、
 ショーケース50の温度が10℃であれば、変位温度係数は0.75=(10-7)/4、温度依存制御係数は0.09=0.35-(0.35×0.75)、
 ショーケース50の温度が11℃であれば、変位温度係数は1=(11-7)/4、温度依存制御係数は0=0.35-(0.35×1)
となる。
Further, the showcase control unit 18 controls the operation of the showcase 50 by a temperature-dependent control coefficient that is a control coefficient corresponding to the displacement of the temperature of the showcase 50 from the target temperature. Specifically, for example, when the product is fruit and vegetables, the target temperature is 7 ° C., the allowable temperature range is ± 4 ° C., and the control coefficient is 0.35, the displacement temperature coefficient is expressed as (showcase temperature (° C.) − Target temperature (7 )) / Allowable temperature range (4 ° C.), energy-saving control of the showcase 50 is performed by temperature dependent control coefficient = control coefficient (0.35) − (control coefficient (0.35) × displacement temperature coefficient). For example,
If the temperature of the showcase 50 is 3 ° C., the displacement temperature coefficient is −1 = (3-7) / 4, the temperature dependent control coefficient is 0.70 = 0.35 + (0.35 × 1),
If the temperature of the showcase 50 is 4 ° C., the displacement temperature coefficient is −0.75 = (4-7) / 4, and the temperature dependent control coefficient is 0.61 = 0.35 + (0.35 × 0.75). ,
If the temperature of the showcase 50 is 5 ° C., the displacement temperature coefficient is −0.5 = (5-7) / 4, and the temperature dependent control coefficient is 0.53 = 0.35 + (0.35 × 0.5). ,
If the temperature of the showcase 50 is 6 ° C., the displacement temperature coefficient is −0.25 = (6−7) / 4, and the temperature dependent control coefficient is 0.44 = 0.35 + (0.35 × 0.25). ,
If the temperature of the showcase 50 is 7 ° C., the displacement temperature coefficient is 0 = (7−7) / 4, the temperature dependent control coefficient is 0.35 = 0.35− (0.35 × 0),
If the temperature of the showcase 50 is 8 ° C., the displacement temperature coefficient is 0.25 = (8−7) / 4, and the temperature dependent control coefficient is 0.26 = 0.35− (0.35 × 0.25). ,
If the temperature of the showcase 50 is 9 ° C., the displacement temperature coefficient is 0.5 = (9−7) / 4, and the temperature dependent control coefficient is 0.18 = 0.35− (0.35 × 0.5). ,
If the temperature of the showcase 50 is 10 ° C., the displacement temperature coefficient is 0.75 = (10−7) / 4, and the temperature dependent control coefficient is 0.09 = 0.35− (0.35 × 0.75). ,
If the temperature of the showcase 50 is 11 ° C., the displacement temperature coefficient is 1 = (11−7) / 4, and the temperature dependent control coefficient is 0 = 0.35− (0.35 × 1).
It becomes.
 なお、上記基本制御に加えて、ショーケース制御部18の制御部81は、警報温度に上昇する見込日時を演算し、この見込日時を報知する制御を併用してもよい。 In addition to the above basic control, the control unit 81 of the showcase control unit 18 may calculate the expected date and time when the temperature rises to the alarm temperature, and use the control for notifying the expected date and time.
《冷媒配管130の長さ分の予測制御》
 次に、冷媒配管130の長さ分の予測制御動作について説明する。
 ショーケース制御部18は、冷媒配管130の長さに応じた時間だけ先の(未来の)予測外気温度に基づいてショーケース50を制御する。具体的には、下記の通りである。
 図2に示すショーケース50と凝縮器122とを結ぶ冷媒配管130は、数m~数10mに及ぶ。このため、ショーケース制御部18による制御結果は、即時にはショーケース50には至らず、冷媒配管30の長さ分の、予測外気温度からのズレが発生する。ここで、冷媒配管130の長さは、ショーケース50毎に既知である。
<< Predictive control for the length of the refrigerant pipe 130 >>
Next, the predictive control operation for the length of the refrigerant pipe 130 will be described.
The showcase control unit 18 controls the showcase 50 based on a predicted (outside) predicted outside air temperature for a time corresponding to the length of the refrigerant pipe 130. Specifically, it is as follows.
The refrigerant pipe 130 connecting the showcase 50 and the condenser 122 shown in FIG. 2 ranges from several meters to several tens of meters. For this reason, the control result by the showcase control unit 18 does not reach the showcase 50 immediately, and a deviation from the predicted outside air temperature corresponding to the length of the refrigerant pipe 30 occurs. Here, the length of the refrigerant pipe 130 is known for each showcase 50.
 ショーケース制御部18は、冷媒配管130の長さ分の予測外気温度からの遅れをなくす予測制御を行う。具体的には、ショーケース制御部18は、冷媒配管130の長さに応じた時間だけ先の(未来の)予測外気温度に基づいてショーケース50を制御する。つまり、ショーケース制御部18は、予測の時間間隔(何分後を予測するか)を決定する。結果として、冷媒配管130の長さによって制御のタイミングが異なることになる。
 ここで、1つの凝縮器122によって複数のショーケース50を制御する場合もある。この場合には、ショーケース制御部18は、その複数のショーケース50の平均の冷媒配管130の長さに応じた時間だけ先の予測外気温度に基づいてショーケース50を制御する。
The showcase control unit 18 performs predictive control that eliminates a delay from the predicted outside air temperature corresponding to the length of the refrigerant pipe 130. Specifically, the showcase control unit 18 controls the showcase 50 based on the predicted (outside) predicted outside air temperature for a time corresponding to the length of the refrigerant pipe 130. That is, the showcase control unit 18 determines a prediction time interval (how many minutes are predicted). As a result, the control timing varies depending on the length of the refrigerant pipe 130.
Here, a plurality of showcases 50 may be controlled by one condenser 122. In this case, the showcase control unit 18 controls the showcase 50 based on the predicted outside air temperature for the time corresponding to the length of the average refrigerant pipe 130 of the plurality of showcases 50.
《予測外気温度に予測バイアス外気温度を加えるバイアス外気温度制御》
 ショーケース制御部18は、予測外気温度に予測バイアス外気温度を加えるバイアス外気温度制御を実行する。図2に示す圧縮機121周辺は高温になっており、気象庁が発表するような外気温度よりも高いのが通常である。ショーケース制御部18は、圧縮機121周辺については、予測外気温度に予測バイアス外気温度を加えた予測外気温度に基づいてショーケース50を制御する。
《Bias outside temperature control to add the predicted bias outside temperature to the predicted outside temperature》
The showcase control unit 18 executes bias outside air temperature control for adding the predicted bias outside air temperature to the predicted outside air temperature. The periphery of the compressor 121 shown in FIG. 2 is hot and is usually higher than the outside air temperature as announced by the Japan Meteorological Agency. The showcase control unit 18 controls the showcase 50 around the compressor 121 based on the predicted outside air temperature obtained by adding the predicted bias outside air temperature to the predicted outside air temperature.
 このように、ショーケース制御部18は、冷媒配管130の長さに応じた時間(例えば、5分,30分など)だけ先(未来)の外気温度を予測するとともに、予測外気温度に予測バイアス温度を加え、その予測バイアス温度が加えられた予測外気温度に応じた制御分(単位:分)だけ冷凍機120の稼働を停止する。ショーケース制御部18は、「冷媒配管130の長さ分の予測制御」、「バイアス外気温度制御」による温度加算、冷凍機120の稼働停止を繰り返す。 In this way, the showcase control unit 18 predicts the outside air temperature ahead (future) for a time (for example, 5 minutes, 30 minutes, etc.) according to the length of the refrigerant pipe 130, and predicts the predicted outside air temperature. The operation of the refrigerator 120 is stopped by a control amount (unit: minute) corresponding to the predicted outside air temperature to which the predicted bias temperature is added. The showcase control unit 18 repeats “predictive control for the length of the refrigerant pipe 130”, temperature addition by “bias outside air temperature control”, and operation stop of the refrigerator 120.
 また、上記冷媒配管長さ分予測制御及びバイアス外気温度制御に加えて、ショーケース制御部18の制御部81は、警報温度に上昇する見込日時を演算し、この見込日時を報知する制御を併用してもよい。 In addition to the refrigerant pipe length prediction control and the bias outside air temperature control, the control unit 81 of the showcase control unit 18 calculates the expected date and time to rise to the alarm temperature and uses the control for notifying the expected date and time. May be.
 以上説明したように、デジタルスマートリアル・ショーケース警報システム100は、外気温度の予測のために過去の外気温度を記憶する外気温度テーブル12と、入力された外気温度情報から外気温度テーブル12をもとに、未来の予測外気温度を予測する外気温度予測部13と、予測外気温度に基づいてショーケースの温度を制御するショーケース制御部18と、を備える。 As described above, the digital smart real showcase alarm system 100 includes the outside air temperature table 12 for storing the past outside air temperature for the prediction of the outside air temperature, and the outside air temperature table 12 from the inputted outside air temperature information. In addition, an outside air temperature prediction unit 13 that predicts a predicted future outside air temperature, and a showcase control unit 18 that controls the temperature of the showcase based on the predicted outside air temperature.
 従来例では、外気温度を検出してフィードバックするので、後追い制御になり、迅速、かつ、適切な制御ができなかった。これに対して、本実施形態では、外気温度を後追いするのではなく先取りした外気温度に基づいてショーケースを制御するので、迅速、かつ、適切に、ショーケースを制御して、必要最小限のエネルギでショーケースを制御することができる。 In the conventional example, since the outside air temperature is detected and fed back, the follow-up control is performed, and quick and appropriate control cannot be performed. On the other hand, in the present embodiment, the showcase is controlled based on the outside air temperature that is preempted rather than following the outside air temperature, so that the showcase is controlled promptly and appropriately to minimize the necessary amount. The showcase can be controlled by energy.
 また、ショーケース制御部18は、入力された外気温度情報から、冷媒配管130の長さに応じた時間だけ未来の予測外気温度を予測し、予測外気温度に基づいてショーケース50の温度を制御する。 In addition, the showcase control unit 18 predicts a future predicted outside air temperature for a time corresponding to the length of the refrigerant pipe 130 from the input outside air temperature information, and controls the temperature of the showcase 50 based on the predicted outside air temperature. To do.
 これにより、冷媒配管の長さに応じた時間だけ先の(未来の)予測外気温度に基づいてショーケースを制御することができ、迅速、かつ、適切に、ショーケースを制御して、必要最小限のエネルギでショーケースを制御することができる。 As a result, the showcase can be controlled based on the predicted (future) outside air temperature ahead by the time corresponding to the length of the refrigerant pipe. The showcase can be controlled with limited energy.
 また、デジタルスマートリアル・ショーケース警報システム100は、入力された室内空気の温度と湿度に基づいて、室内空気の湿り空気全熱量であるエンタルピーを算出するとともに、算出した室内空気のエンタルピーと室内エンタルピーテーブル16に記憶した過去の室内エンタルピーとに基づいて、未来の室内エンタルピーを予測する室内エンタルピー予測部17と、予測した室内エンタルピーに基づいてショーケースの温度を制御するショーケース制御部18と、を備える。 In addition, the digital smart real showcase alarm system 100 calculates the enthalpy that is the total amount of humid air of the indoor air based on the input temperature and humidity of the indoor air, and calculates the enthalpy and indoor enthalpy of the calculated indoor air. An indoor enthalpy prediction unit 17 that predicts a future indoor enthalpy based on the past indoor enthalpy stored in the table 16, and a showcase control unit 18 that controls the temperature of the showcase based on the predicted indoor enthalpy. Prepare.
 これにより、室内エンタルピーを予測して、予測された外気温度及び室内エンタルピーに基づいてショーケースを制御するので、予測した熱負荷の推定結果を、ショーケース制御に反映させることで、効果の高い省エネ制御を実現することができる。 As a result, the indoor enthalpy is predicted and the showcase is controlled based on the predicted outside air temperature and the indoor enthalpy. Therefore, by reflecting the predicted thermal load estimation result in the showcase control, a highly effective energy saving Control can be realized.
 この室内エンタルピーの予測には、予測外気温度を考慮してもよい。室内温度は、建物を介して外気温度の影響を受ける。すなわち、外気温度が変化すると、所定時間の経過後には室内温度がその外気温度の変化の影響を受けて変化する。そこで、室内エンタルピーを予測する因子に予測外気温度を加えることによって、より精確に予測することができる。 The predicted outside air temperature may be taken into account for the prediction of the indoor enthalpy. The room temperature is affected by the outside air temperature through the building. That is, when the outside air temperature changes, the indoor temperature changes under the influence of the change in the outside air temperature after a lapse of a predetermined time. Therefore, the prediction can be made more accurately by adding the predicted outside air temperature to the factor that predicts the indoor enthalpy.
 以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、他の変形例、応用例を含む。 The above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this, and other modifications are possible without departing from the scope of the present invention described in the claims. Modification examples and application examples are included.
 なお、本実施形態では、外気温度予測部13による外気温度予測と、ショーケース制御部18による冷媒配管130の長さに応じた予測外気温度に基づくショーケース制御とを両方用いているが、いずれか一方を用いても良い。同様に、ショーケース制御部18によるバイアス外気温度制御も単独で用いても良いし、上記両方又は一方と組み合わせても良い。 In this embodiment, both the outside temperature prediction by the outside temperature prediction unit 13 and the showcase control based on the predicted outside temperature according to the length of the refrigerant pipe 130 by the showcase control unit 18 are used. Either of them may be used. Similarly, bias outside air temperature control by the showcase control unit 18 may be used alone or in combination with both or one of the above.
 また、上記した実施形態例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態例の構成の一部を他の実施形態例の構成に置き換えることが可能であり、また、ある実施形態例の構成に他の実施形態例の構成を加えることも可能である。また、各実施形態例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Further, the above-described exemplary embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. . Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each exemplary embodiment.
 本実施形態は、空調警報システムに適用した例であり、本発明に空調制御は必須ではない。また、本実施形態では、説明の便宜上、各制御手段、すなわち空調制御部19(制御手段)と、ショーケース制御部18(制御手段)とを分けて説明したが、一つの制御部により実行されるものでも良い。同様に各テーブルは、記憶部としてどのような媒体に記憶されても良い。 This embodiment is an example applied to an air conditioning alarm system, and air conditioning control is not essential to the present invention. Further, in the present embodiment, for convenience of explanation, each control means, that is, the air conditioning control unit 19 (control means) and the showcase control unit 18 (control means) have been described separately, but this is executed by one control unit. Things may be used. Similarly, each table may be stored in any medium as a storage unit.
 また、ショーケースには、冷凍冷蔵庫機能を有するケースであってもよい。ショーケースには、冷蔵庫及び冷凍庫も含まれる。すなわち、ショーケースは説明の便宜上のものであり、必ずしも商品を人に見せる必要がないような冷凍冷蔵商品の保管倉庫であってもよく、同様の効果を得ることができる。 Also, the showcase may be a case having a refrigerator-freezer function. The showcase also includes a refrigerator and a freezer. In other words, the showcase is for convenience of explanation, and may be a storage warehouse for frozen and refrigerated goods that does not necessarily show the product to a person, and the same effect can be obtained.
 また、上記実施の形態では、デジタルスマートリアル・ショーケース警報システム及びデジタルスマートリアル・ショーケース警報方法という名称を用いたが、これは説明の便宜上であり、装置の名称はショーケース制御装置、方法の名称はショーケース制御管理方法等であってもよい。 In the above embodiment, the names of the digital smart real showcase alarm system and the digital smart real showcase alarm method are used. However, this is for convenience of explanation, and the name of the apparatus is a showcase control apparatus and method. May be a showcase control management method or the like.
 以上説明した本デジタルスマートリアル・ショーケース制御処理は、この本デジタルスマートリアル・ショーケース制御処理を機能させるためのプログラムでも実現される。このプログラムはコンピュータで読み取り可能な記録媒体に格納されている。このプログラムを記録した記録媒体は、本デジタルスマートリアル・ショーケース警報システムのROMそのものであってもよいし、また、外部記憶装置としてCD-ROMドライブ等のプログラム読取装置が設けられ、そこに記録媒体を挿入することで読み取り可能なCDROM等であってもよい。 The digital smart real showcase control process described above can also be realized by a program for causing the digital smart real showcase control process to function. This program is stored in a computer-readable recording medium. The recording medium on which this program is recorded may be the ROM itself of this digital smart real showcase alarm system, or a program reading device such as a CD-ROM drive is provided as an external storage device, and the program is recorded there. It may be a CD ROM that can be read by inserting a medium.
 また、上記記録媒体は、磁気テープ、カセットテープ、フレキシブルディスク、ハードディスク、MO/MD/DVD等、又は半導体メモリであってもよい。 Further, the recording medium may be a magnetic tape, a cassette tape, a flexible disk, a hard disk, an MO / MD / DVD, or a semiconductor memory.
 本発明に係るデジタルスマートリアル・ショーケース警報システム、方法及びプログラムは、スーパーマーケットやコンビニエンスストア等の店舗におけるショーケース等に適用して利用効果は大きい。 The digital smart real showcase alarm system, method and program according to the present invention have a great effect when applied to a showcase in a store such as a supermarket or a convenience store.
 11 外気温度入力部(外気温度入力手段)
 12 外気温度テーブル(記憶手段)
 13 外気温度予測部(外気温度予測手段)
 14 室内温度入力部(室内温度入力手段)
 15 室内湿度入力部(室内湿度入力手段)
 16 室内エンタルピーテーブル(記憶手段)
 17 室内エンタルピー予測部(室内エンタルピー予測手段)
 18 ショーケース制御部(制御手段)
 19 空調制御部(制御手段)
 20 外気温度計
 30 室内温度計
 40 室内湿度計
 50 ショーケース
 50a ショーケース本体
 60 空調機
 70 携帯装置(端末装置)
 80 制御装置
 81 制御部(温度入力手段,故障判定手段,演算手段)
 82 記憶部(記憶手段)
 83 入力部
 84 表示部
 85 通信部
 86 インタフェース(I/F)部(温度入力手段)
 87 報知手段
 100 デジタルスマートリアル・ショーケース警報システム
 110b 機械室
 111 吹出口
 112 吸込口
 113 電磁弁
 114 膨張弁
 115 ファンモータ
 116 冷却器
 117 棚板(陳列棚)
 118 底板(陳列棚)
 120 冷凍機
 121 圧縮機
 122 凝縮器
 123 凝縮器冷却用ファン
 130 冷媒配管
 131 温度センサ
 
11 Outside temperature input section (outside temperature input means)
12 Outside air temperature table (storage means)
13 Outside temperature prediction unit (outside temperature prediction means)
14 Indoor temperature input section (Indoor temperature input means)
15 Indoor humidity input section (indoor humidity input means)
16 Indoor enthalpy table (memory means)
17 Indoor enthalpy prediction unit (indoor enthalpy prediction means)
18 Showcase control unit (control means)
19 Air-conditioning control unit (control means)
20 Outdoor temperature meter 30 Indoor thermometer 40 Indoor hygrometer 50 Showcase 50a Showcase body 60 Air conditioner 70 Portable device (terminal device)
80 control device 81 control unit (temperature input means, failure determination means, calculation means)
82 storage unit (storage means)
83 Input unit 84 Display unit 85 Communication unit 86 Interface (I / F) unit (temperature input means)
87 Notification means 100 Digital smart real showcase alarm system 110b Machine room 111 Air outlet 112 Air inlet 113 Solenoid valve 114 Expansion valve 115 Fan motor 116 Cooler 117 Shelf (display shelf)
118 Bottom plate (display shelf)
120 Refrigerator 121 Compressor 122 Condenser 123 Condenser Cooling Fan 130 Refrigerant Piping 131 Temperature Sensor

Claims (8)

  1.  ショーケース、冷蔵庫又は冷凍庫(以下、「ショーケース等」と言う。)の庫内の温度を経時的に入力する温度入力手段と、
     入力された前記温度に基づいて、前記ショーケース等が故障していることを判定する故障判定手段と、
     前記故障判定手段が故障と判定した場合、前記ショーケース等の庫内の商品が冷蔵又は冷凍に適さない程に高い所定の温度である警報温度まで上昇する見込日時を演算する演算手段と、
     前記演算手段が演算した前記見込日時を含む警報情報を報知する報知手段と
    を備えることを特徴とするデジタルスマートリアル・ショーケース警報システム。
    A temperature input means for inputting the temperature in the storage of the showcase, refrigerator or freezer (hereinafter referred to as “showcase etc.”) over time;
    Failure determination means for determining that the showcase or the like is broken based on the input temperature;
    When the failure determination means determines that there is a failure, calculation means for calculating the expected date and time when the product in the store such as the showcase rises to an alarm temperature that is a predetermined temperature that is high enough not to be refrigerated or frozen;
    A digital smart real showcase alarm system comprising: alarm means for notifying alarm information including the expected date and time calculated by the calculator.
  2.  さらに、外気温度情報を入力する外気温度入力手段と、
     該外気温度入力手段によって入力される外気温度情報から未来の予測外気温度を予測する外気温度予測手段と、
     該外気温度予測手段によって予測される予測外気温度に基づいてショーケースの温度を制御する制御手段と
    を備えることを特徴とする請求項1に記載のデジタルスマートリアル・ショーケース警報システム。
    Furthermore, outside temperature input means for inputting outside temperature information,
    An outside air temperature predicting means for predicting a future predicted outside air temperature from outside air temperature information input by the outside air temperature input means;
    2. The digital smart real showcase alarm system according to claim 1, further comprising control means for controlling the temperature of the showcase based on the predicted outside air temperature predicted by the outside air temperature predicting means.
  3.  前記故障判定手段は、前記温度が正常な温度変化パターンから外れた場合、前記ショーケース等が故障と判定することを特徴とする請求項1記載のデジタルスマートリアル・ショーケース警報システム。 2. The digital smart real showcase alarm system according to claim 1, wherein the failure determination means determines that the showcase or the like is a failure when the temperature deviates from a normal temperature change pattern.
  4.  前記故障判定手段は、前記温度の上昇が前記ショーケース等の霜取りの温度の変化の場合には故障と判定しないことを特徴とする請求項1記載のデジタルスマートリアル・ショーケース警報システム。 2. The digital smart real showcase alarm system according to claim 1, wherein the failure determination means does not determine that the temperature rise is a failure when the temperature rise is a defrosting temperature change of the showcase or the like.
  5.  前記温度の変化を蓄積したカレンダー情報を記憶する記憶手段を備え、
     前記故障判定手段は、前記記憶手段から読み出した前記カレンダー情報と前記温度との差分が所定値より大きい場合に故障と判定することを特徴とする請求項1記載のデジタルスマートリアル・ショーケース警報システム。
    Comprising storage means for storing calendar information accumulating the temperature change;
    2. The digital smart real showcase alarm system according to claim 1, wherein the failure determination unit determines that a failure occurs when a difference between the calendar information read from the storage unit and the temperature is larger than a predetermined value. .
  6.  前記報知手段は、前記ショーケース等を保守する人が保持しうる端末装置に前記警報情報を送信することを特徴とする請求項1記載のデジタルスマートリアル・ショーケース警報システム。 2. The digital smart real showcase alarm system according to claim 1, wherein the notification means transmits the alarm information to a terminal device that can be held by a person who maintains the showcase or the like.
  7.  ショーケース等の庫内の温度を経時的に入力する温度入力ステップと、
     入力された前記温度に基づいて、前記ショーケース等が故障していることを判定する故障判定ステップと、
     前記故障判定ステップが故障と判定した場合、前記ショーケース等の庫内の商品が冷蔵又は冷凍に適さない程に高い所定の温度である警報温度まで上昇する見込日時を演算する演算ステップと、
     前記演算ステップが演算した前記見込日時を含む警報情報を報知する報知ステップと
    を備えることを特徴とするデジタルスマートリアル・ショーケース警報方法。
    A temperature input step for inputting the temperature in the cabinet such as a showcase over time;
    A failure determination step of determining that the showcase or the like is failed based on the input temperature;
    When the failure determination step determines that there is a failure, a calculation step for calculating an expected date and time when the product in the store such as the showcase rises to an alarm temperature that is a predetermined temperature that is high enough not to be refrigerated or frozen, and
    A digital smart real showcase alarm method comprising: a notification step of notifying alarm information including the expected date and time calculated by the calculation step.
  8.  コンピュータを、
     ショーケース等の庫内の温度を経時的に入力する温度入力手段と、入力された前記温度に基づいて、前記ショーケース等が故障していることを判定する故障判定手段と、前記故障判定手段が故障と判定した場合、前記ショーケース等の庫内の商品が冷蔵又は冷凍に適さない程に高い所定の温度である警報温度まで上昇する見込日時を演算する演算手段と、前記演算手段が演算した前記見込日時を含む警報情報を報知する報知手段とを備えるデジタルスマートリアル・ショーケース警報システム
    として機能させるためのプログラム。
     
    Computer
    Temperature input means for inputting the temperature in the storage of a showcase or the like over time, failure determination means for determining that the showcase or the like has failed based on the input temperature, and the failure determination means If the product is determined to be malfunctioning, the computing means computes the expected date and time when the product in the store such as the showcase rises to an alarm temperature that is a predetermined temperature that is high enough not to be refrigerated or frozen, and the computing means computes The program for functioning as a digital smart real showcase alarm system provided with the alerting | reporting means which alert | reports the alarm information containing the said estimated date.
PCT/JP2017/029354 2016-12-21 2017-08-15 Digital smart real showcase warning system, method, and program WO2018116520A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/471,321 US20200018537A1 (en) 2016-12-21 2017-08-15 Digital smart real showcase warning system, method, and program
JP2017559128A JP6344785B1 (en) 2016-12-21 2017-08-15 Showcase alarm system, method and program
CN201780078938.7A CN110088544A (en) 2016-12-21 2017-08-15 The real-time showcase warning system of digital intelligent, methods and procedures

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2016/088223 2016-12-21
PCT/JP2016/088223 WO2018116429A1 (en) 2016-12-21 2016-12-21 Digital smart showcase warning system, method, and program
PCT/JP2017/026149 WO2019016902A1 (en) 2017-07-19 2017-07-19 Digital smart real showcase control system, method, and program
JPPCT/JP2017/026149 2017-07-19

Publications (1)

Publication Number Publication Date
WO2018116520A1 true WO2018116520A1 (en) 2018-06-28

Family

ID=62627631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029354 WO2018116520A1 (en) 2016-12-21 2017-08-15 Digital smart real showcase warning system, method, and program

Country Status (4)

Country Link
US (1) US20200018537A1 (en)
JP (1) JP6344785B1 (en)
CN (1) CN110088544A (en)
WO (1) WO2018116520A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3121212B1 (en) * 2021-03-25 2023-04-21 Sagemcom Energy & Telecom Sas Method for predicting the risk of freezing of a liquid
CN113959170A (en) * 2021-10-08 2022-01-21 Tcl家用电器(合肥)有限公司 Refrigerator control method and device, storage medium and refrigerator
CN113959148B (en) * 2021-11-29 2022-12-13 四川虹美智能科技有限公司 Method and system for detecting cold air leakage of intelligent refrigeration equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137747A (en) * 1992-10-21 1994-05-20 Sanden Corp Cooling and freezing device
JPH11337242A (en) * 1998-05-27 1999-12-10 Sanyo Electric Co Ltd Failure judging system
JP2001091125A (en) * 1999-09-27 2001-04-06 Sanyo Electric Co Ltd Failure cause estimating device of case cooling system
JP2003014280A (en) * 2001-06-27 2003-01-15 Mitsubishi Electric Corp System using energy device
JP2004251508A (en) * 2003-02-19 2004-09-09 Daikin Ind Ltd Management system and management program for delivery instrument
JP2014145535A (en) * 2013-01-29 2014-08-14 Mitsubishi Electric Corp Refrigeration cycle device
JP2015048998A (en) * 2013-09-02 2015-03-16 株式会社東芝 Refrigerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022529A4 (en) * 1997-09-18 2002-09-25 Matsushita Refrigeration Self-diagnosing apparatus for refrigerator
CN201209986Y (en) * 2008-05-07 2009-03-18 青岛澳柯玛股份有限公司 Novel remote network refrigerator
US10043198B2 (en) * 2012-12-20 2018-08-07 Panasonic Intellectual Property Corporation Of America Information providing method and program
US9400966B2 (en) * 2013-03-12 2016-07-26 Saak Dertadian Monitoring temperature-sensitive cargo with automated generation of regulatory qualification

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137747A (en) * 1992-10-21 1994-05-20 Sanden Corp Cooling and freezing device
JPH11337242A (en) * 1998-05-27 1999-12-10 Sanyo Electric Co Ltd Failure judging system
JP2001091125A (en) * 1999-09-27 2001-04-06 Sanyo Electric Co Ltd Failure cause estimating device of case cooling system
JP2003014280A (en) * 2001-06-27 2003-01-15 Mitsubishi Electric Corp System using energy device
JP2004251508A (en) * 2003-02-19 2004-09-09 Daikin Ind Ltd Management system and management program for delivery instrument
JP2014145535A (en) * 2013-01-29 2014-08-14 Mitsubishi Electric Corp Refrigeration cycle device
JP2015048998A (en) * 2013-09-02 2015-03-16 株式会社東芝 Refrigerator

Also Published As

Publication number Publication date
JP6344785B1 (en) 2018-06-20
CN110088544A (en) 2019-08-02
JPWO2018116520A1 (en) 2018-12-27
US20200018537A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6284173B1 (en) Showcase control system, method and program
Evans et al. Temperature and energy performance of refrigerated retail display and commercial catering cabinets under test conditions
JP6344785B1 (en) Showcase alarm system, method and program
US10809707B2 (en) Detection of efficiency degradation in HVAC and R systems
JP6948237B2 (en) Refrigeration equipment
JP4572447B2 (en) Failure diagnosis method, failure diagnosis device, and recording medium
JPH10267509A (en) Controller for apparatus operation state
JP2004113681A (en) Maintenance time determination method, fault diagnostic device and program
JP5912848B2 (en) Showcase control device
JP3604905B2 (en) Failure judgment system
JP6583779B2 (en) Refrigeration system
JP2023089435A (en) Information processing device, program, abnormality detection method, abnormality detection system, and cooling storage shed
WO2023151839A1 (en) A method for generating early temperature warning in a vapour compression system
JP6410284B1 (en) Showcase control system, method and program
WO2018116429A1 (en) Digital smart showcase warning system, method, and program
JP2006300356A (en) Store management system
JP2001221564A (en) Showcase managing device and showcase system
JP6587131B2 (en) Refrigeration system
JP2020143861A (en) Freezer and abnormality predication system
JP6091152B2 (en) Refrigeration / refrigeration system
JP6650620B2 (en) Refrigeration system
JP2000020866A (en) Device for managing operating state of equipment
JP2023045361A (en) Information processor, program, abnormality detection method, abnormality detection system and cooling storage
Miller et al. Technical issues with refrigerators
TW202305293A (en) Cold-keeping time prediction system capable of predicting in advance a cold keeping time in the event of a power failure before a power failure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017559128

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884286

Country of ref document: EP

Kind code of ref document: A1