WO2018116344A1 - Optical transmitter and waveform distortion correction method - Google Patents

Optical transmitter and waveform distortion correction method Download PDF

Info

Publication number
WO2018116344A1
WO2018116344A1 PCT/JP2016/087772 JP2016087772W WO2018116344A1 WO 2018116344 A1 WO2018116344 A1 WO 2018116344A1 JP 2016087772 W JP2016087772 W JP 2016087772W WO 2018116344 A1 WO2018116344 A1 WO 2018116344A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
intensity
distortion
frequency
signals
Prior art date
Application number
PCT/JP2016/087772
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 池下
泰久 島倉
大浦 崇靖
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/087772 priority Critical patent/WO2018116344A1/en
Publication of WO2018116344A1 publication Critical patent/WO2018116344A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • H04B10/588Compensation for non-linear transmitter output in external modulation systems

Definitions

  • the present invention relates to an optical transmitter and a waveform distortion correction method, and more particularly to an optical transmitter and a waveform distortion correction method for correcting waveform distortion of an optical modulation signal.
  • a technique for transmitting a plurality of bits in one symbol time has been proposed, and in particular, in multilevel modulation, a plurality of bits can be transmitted in one symbol.
  • optical transmission systems using QPSK (Quadrature Phase Shift Keying) and m-QAM (Quadrature Amplitude Modulation) have been put into practical use.
  • m in m-QAM indicates the number of signal points, and is 16 or 64 or the like.
  • polarization multiplexing it is possible to transmit signals using two polarizations orthogonal to each other.
  • the optical transmitter includes a digital signal processing unit and an I / Q (In-phase / Quadrature) modulator.
  • the digital signal processing unit generates a drive signal from the transmission data
  • the I / Q modulator generates an optical modulation signal from the carrier light using the drive signal generated in the digital signal processing unit.
  • This optical modulation signal is transmitted through an optical fiber transmission line, demodulated in an optical receiver, and transmission data is reproduced.
  • the inter-symbol distance becomes shorter as the multi-level number increases, and thus the demand for waveform distortion of the optical modulation signal becomes severe.
  • the causes of waveform distortion include insufficient analog bandwidth of the driver and I / Q modulator included in the optical transmitter, harmonic distortion in the driver, and the like.
  • waveform distortion due to intensity change does not affect the deterioration of reception characteristics, but in the case of an optical transmission system using m-QAM, it depends on the intensity of the optical modulation signal. Since the symbol is also discriminated, a symbol error occurs due to an intensity change due to waveform distortion, and the reception characteristics in the optical receiver deteriorate.
  • Patent Document 1 discloses a technique using a training signal (hereinafter, referred to as a TN signal) composed of a specific bit string having a constant intensity. Is described.
  • the optical transmitter has a PD (Photo Detector) as a light receiver and an ADC (Analog to Digital Converter), and is a digital signal.
  • the processing unit generates a TN signal composed of a specific bit string having a constant strength and inserts it into the transmission data.
  • the generated TN signal is received by the PD, and an intensity signal is generated.
  • the intensity signal is converted into a digital signal by the ADC and input to the digital signal processing unit.
  • the intensity signal input to the digital signal processing unit has waveform distortion caused by, for example, the analog band shortage of the driver and the I / Q modulator mentioned above and the harmonic distortion of the driver. Therefore, the distortion amount is detected by comparing the TN signal inserted into the transmission signal with the intensity signal, and the waveform distortion is corrected by digital signal processing so as to minimize the distortion amount.
  • the waveform distortion of the optical modulation signal generated in the optical transmitter can be detected using, for example, a digital coherent receiver.
  • a digital coherent receiver when a new dedicated digital coherent receiver is provided to detect waveform distortion, the cost of the entire optical transmission system increases due to the increase in the cost of the optical transmitter.
  • the detected waveform distortion includes not only the waveform distortion generated in the optical transmitter but also the waveform distortion generated in the transmission path. Therefore, as a method for detecting and correcting the waveform distortion generated in the optical transmitter, signal processing inside the optical transmitter can be considered as described in Patent Document 1.
  • the bit string constituting the TN signal and the bit string constituting the intensity signal are compared bit by bit in the detection of waveform distortion.
  • the intensity signal generated by the PD cannot be correctly generated bit by bit, and it is difficult to detect waveform distortion. There are challenges.
  • an object of the present invention is to make it possible to detect waveform distortion even when the band of the optical receiver and the sampling rate of the ADC are equal to or less than the baud rate of the transmission signal.
  • An optical transmitter includes a digital signal processing unit that generates a transmission data signal including a training signal, which is a clock signal configured by an alternating pattern of binary bit strings, and the transmission data signal.
  • a first controller that converts the signal into an analog signal; a driver that amplifies the analog signal to generate a drive signal; a light source that emits carrier light; and the carrier light that is modulated based on the drive signal, thereby modulating light.
  • An optical transmitter includes a digital signal processing unit that generates a transmission data signal including a clock signal composed of an alternating pattern of binary bit strings, and converts the transmission data signal into an analog signal
  • a first controller that amplifies the analog signal and adjusts a waveform of the analog signal to generate a drive signal, a light source that emits carrier light, and the carrier light based on the drive signal From the modulator that generates the optical modulation signal, the light receiver that generates the intensity signal indicating the intensity of the optical modulation signal, and the intensity signal that indicates the intensity of the portion corresponding to the clock signal.
  • a distortion identifying unit that identifies a higher harmonic component than a predetermined frequency; and the analog signal wave so as to suppress the higher harmonic component to the driver. It is to adjust, characterized in that and a distortion correcting unit for correcting the waveform distortion of the optical modulation signal.
  • the waveform distortion correction method generates a transmission data signal including a training signal that is a clock signal composed of an alternating pattern of binary bit strings, and converts the transmission data signal into an analog signal.
  • the intensity signal is converted into a digital signal, and the waveform distortion of the optical modulation signal is detected by comparing the training signal and the digital signal, and the waveform distortion is corrected.
  • the waveform distortion correction method generates a transmission data signal including a clock signal composed of an alternating pattern of binary bit strings, converts the transmission data signal into an analog signal, A signal is amplified to generate a drive signal, a carrier light is modulated based on the drive signal, an optical modulation signal is generated, an intensity signal indicating the intensity of the optical modulation signal is generated, and the clock From the intensity signal indicating the intensity of the portion corresponding to the signal, specify a harmonic component higher than a predetermined frequency, and by adjusting the waveform of the analog signal to suppress the harmonic component, It is characterized by correcting waveform distortion of the optical modulation signal.
  • a bit sequence constituting a TN signal to be inserted into transmission data is set as an alternating pattern of a specific period, and a clock signal having a specific frequency is generated, whereby the optical receiver band and the ADC sampling rate are transmitted. Even when the baud rate is lower than the signal, waveform distortion can be detected.
  • FIG. 2 is a block diagram schematically showing a configuration of an optical transmitter according to Embodiments 1 and 2.
  • FIG. (A) And (b) is the schematic for demonstrating the frequency characteristic of the gain in Embodiment 1, and its correction
  • 3 is a schematic diagram showing a frame configuration of transmission data in Embodiment 1.
  • FIG. (A)-(f) is the schematic which shows the time waveform of the distortion detection signal in Embodiment 1, and the time waveform of the optical output of an I / Q modulator. In Embodiment 1, it is the schematic which shows the time waveform of the optical output of an I / Q modulator when the zone
  • FIG. 6 is a schematic diagram illustrating a configuration of a transmission data frame in Embodiment 2.
  • FIG. (A)-(c) is the schematic which shows the time waveform of the TN signal in Embodiment 2, and the time waveform of the optical output of an I / Q modulator. 6 is a block diagram schematically showing a configuration of an optical transmitter according to a third embodiment.
  • FIG. 10 is a schematic diagram illustrating a configuration of a transmission data frame in Embodiment 3.
  • FIG. (A)-(c) is the schematic which shows the time waveform of the clock signal in Embodiment 3.
  • FIG. (A) And (b) is the schematic which shows the hardware structural example in Embodiment 1-3.
  • Embodiment 1 FIG.
  • FIG. 1 is a block diagram schematically showing a configuration of an optical transmitter 100 according to the first embodiment.
  • the gain varies with frequency in the frequency characteristics of the gain due to a shortage of analog bands of the driver and the I / Q modulator.
  • the optical transmitter 100 is in operation in the optical transmission system.
  • the optical transmitter 100 includes a digital signal processing unit 110, a DAC (Digital to Analog Converter) 120A to 120D as a first controller, drivers 121A to 121D, a light source 122, and an I / Q modulator as a modulator.
  • a digital signal processing unit 110 a DAC (Digital to Analog Converter) 120A to 120D as a first controller, drivers 121A to 121D, a light source 122, and an I / Q modulator as a modulator.
  • 123X, 123Y, PBC (Polarization Beam Combiner: polarization combiner) 124, couplers 125X, 125Y as optical branching units, PDs 126X, 126Y as light receivers, and ADCs 127X, 127Y as second controllers Prepare.
  • the digital signal processing unit 110 generates a transmission data signal from the data signal DS by digital signal processing.
  • the optical transmitter 100 transmits data by a polarization multiplexing method. Therefore, the digital signal processing unit 110 transmits the transmission data signal EX (XI1, XQ1) corresponding to the data transmitted using the X polarization and the transmission data signal corresponding to the data transmitted using the Y polarization.
  • EY (YI1, YQ1) is generated.
  • the I phase and Q phase of the I / Q modulator 123X are referred to as channel XI and channel XQ, respectively
  • the I phase and Q phase of the I / Q modulator 123Y are referred to as channel YI and channel YQ, respectively.
  • the DACs 120A to 120D convert the transmission data signals XI1, XQ1, YI1, and YQ1 generated by the digital signal processing unit 110 into analog signals.
  • the drivers 121A to 121D amplify the transmission data signals XI1, XQ1, YI1, and YQ1 converted into analog signals by the DACs 120A to 120D, and generate drive signals XI2, XQ2, YI2, and YQ2.
  • the light source 122 generates continuous light (carrier light) having a predetermined frequency.
  • the I / Q modulator 123X modulates the continuous light generated by the light source 122 with the drive signals XI2 and XQ2, and generates an optical modulation signal X1.
  • the I / Q modulator 123Y modulates the continuous light generated by the light source 122 with the drive signals YI2 and YQ2, and generates an optical modulation signal Y1.
  • the PBC 124 combines the optical modulation signal X1 generated by the I / Q modulator 123X and the optical modulation signal Y1 generated by the I / Q modulator 123Y to generate a polarization multiplexed optical signal.
  • the coupler 125X branches the optical modulation signal X1 and inputs it to the PD 126X.
  • the coupler 125Y branches the optical modulation signal Y1 and inputs it to the PD 126Y.
  • the PD 126X generates an intensity signal X2 representing the intensity of the light modulation signal X1 by direct detection.
  • the PD 126Y generates an intensity signal Y2 representing the intensity of the light modulation signal Y1 by direct detection.
  • the PDs 126X and 126Y both include a photodiode that converts an optical signal into an electrical signal.
  • the ADC 127X converts the intensity signal X2 generated by the PD 126X into a digital signal.
  • the ADC 127Y converts the intensity signal Y2 generated by the PD 126Y into a digital signal.
  • the digital signal processing unit 110 detects the waveform distortion of the optical modulation signal by comparing the training signal and the digital signal, and corrects the waveform distortion.
  • the digital signal processing unit 110 includes a mapper 111, a TN signal insertion unit 112, a TN signal generation unit 113, a distortion identification unit 114, and a frequency domain correction unit 115.
  • the mapper 111 generates a processed data signal from the data signal DS input to the optical transmitter 100. Specifically, the mapper 111 performs processing data signals OX (OXI, OXQ) corresponding to data transmitted using X polarization and processing data signals corresponding to data transmitted using Y polarization. OY (OYI, OYQ) is generated.
  • the processed data signals OX and OY can be expressed by the following equations (1) and (2).
  • OX OXI + jOXQ (1)
  • OY OYI + jOYQ (2)
  • the TN signal generation unit 113 generates a TN signal used to detect waveform distortion of the optical modulation signals X1 and Y1.
  • the TN signal is a clock signal composed of an alternating pattern of binary bit strings.
  • the TN signal insertion unit 112 inserts the TN signal generated by the TN signal generation unit 113 into the processing data signals OXI, OXQ, OYI, and OYQ generated by the mapper 111, thereby inserting the insertion data signals IXI, IXQ, and IYI. , IYQ is generated.
  • the TN signal generated by the TN signal generation unit 113 is processed by the TN signal insertion unit 112 as processed data signals OXI, OXQ, OYI, and OYQ. It is stored in a plurality of transmission data frames constituting the same.
  • the optical modulation signals X1 and Y1 generated by the I / Q modulators 123X and 123Y include components corresponding to the TN signal. Therefore, the intensity signals X2 and Y2 generated by the PDs 126X and 126Y also include a component corresponding to the TN signal.
  • the intensity signals X2 and Y2 including components corresponding to the TN signal are converted into digital signals by the ADCs 127X and 127Y and input to the digital signal processing unit 110.
  • the distortion specifying unit 114 compares the intensity signals X2 and Y2 converted into digital signals by the ADCs 127X and 127Y and the TN signal generated by the TN signal generation unit 113 for each frequency, thereby calculating the intensity signal X2 for the frequency. , Y2 gain is detected.
  • the distortion specifying unit 114 specifies a gain frequency characteristic as shown in FIG. 2A, for example, by obtaining a gain with respect to a frequency from a plurality of transmission data frames.
  • the frequency domain correction unit 115 is a distortion correction unit that corrects the gain for each frequency in the insertion data signals IXI, IXQ, IYI, and IYQ based on the frequency characteristics of the gain specified by the distortion specification unit 114.
  • the frequency domain correction unit 115 corrects the frequency characteristic of the gain shown in FIG. 2A according to the frequency characteristic of the gain specified by the distortion specifying unit 114, that is, as shown in FIG. Set the appropriate characteristics. Thereby, the fluctuation
  • an FIR filter Finite Impulse Response
  • the distortion specifying unit 114 sets the multiplier of the FIR filter so that the frequency characteristic of the gain specified by the distortion specifying unit 114 has a constant gain regardless of the frequency.
  • the use of the FIR filter in the frequency domain correction unit 115 will be described as an example. However, any method may be used as long as the frequency characteristic of the gain can be corrected.
  • FIG. 3 is a diagram showing a frame structure of transmission data in the first embodiment.
  • the TN signals a to d are used to detect waveform distortion generated in the channels XI, XQ, YI, and YQ, respectively.
  • the TN signal a is used to detect waveform distortion occurring in channel XI. Therefore, the TN signal a includes a distortion detection signal TXI used to detect waveform distortion generated in the channel XI, and is inserted into the processing data signal OXI of the channel XI. Details of the bit string constituting the distortion detection signal TXI will be described later. Then, “0 (zero)” is stored in the other channels XQ, YI, and YQ. Here, “0” indicates that the drive signals XQ2, YI2, and YQ2 input to the I / Q modulators 123X and 123Y are “0”, and the I / Q modulators 123X and 123Y are driven. This indicates that optical signals corresponding to the signals XQ2, YI2, and YQ2 are not output.
  • the TN signal b is used to correct waveform distortion generated in the channel XQ
  • the distortion detection signal TXQ is inserted into the processed data signal OXQ of the channel XQ
  • “0” is stored in the other channels.
  • the signal TYI and the distortion detection signal TYQ are inserted, and “0” is stored in the other channels.
  • TN signals a to d are inserted at regular intervals between areas for storing the data signals a to f. .
  • the TN signals a to d are inserted into the processing data signals OXI, OXQ, OYI, and OYQ at regular intervals. It may be inserted at a position. For example, all of the TN signals a to d may be inserted immediately after the synchronization signal, or all of the TN signals a to d may be inserted continuously at the end of the transmission data frame.
  • the TN signal insertion unit 112 can insert a TN signal having a different frequency each time a synchronization signal is detected.
  • the digital signal processing unit 110 since TN signals are inserted at regular intervals, for example, the digital signal processing unit 110 notifies the PD 126X, 126Y of the timing at which the synchronization signal is inserted, thereby causing the PD 126X, 126Y. Can generate intensity signals X2 and Y2 indicating the intensity of only the light modulation signal of the portion corresponding to the training signal.
  • the bit string of the distortion detection signal included in the TN signal will be described.
  • the distortion detection signal TXI included in the TN signal a will be described.
  • FIGS. 4A to 4F are schematic diagrams showing the time waveform of the distortion detection signal TXI and the time waveform of the optical output of the I / Q modulator 123X.
  • the distortion detection signal TXI is composed of a positive value “1” and a negative value “ ⁇ 1”, and each of them is an alternating pattern in which several bits are alternately repeated to generate clock signals having different frequencies.
  • the TN signal generation unit 113 can change the frequency of the clock signal by changing the number of consecutive bits having the same value in the alternating pattern.
  • FIG. 4A is a diagram illustrating a time waveform of the distortion detection signal TXI included in the TN signal a generated by the digital signal processing unit 110 and converted into an analog signal by the DAC 120A.
  • the vertical axis represents drive voltage and the horizontal axis represents time.
  • Symbols a1 to a8 in FIG. 4A indicate a bit string of the distortion detection signal TXI, which is generated by the TN signal generation unit 113, and inserted into the processed data signal OXI by the TN signal insertion unit 112.
  • the bit string of the distortion detection signal TXI in FIG. 4A is an alternating pattern clock signal that alternately repeats a positive value “1” and a negative value “ ⁇ 1” bit by bit.
  • FIG. 4B is a diagram illustrating a time waveform of the optical output of the I / Q modulator 123X when the distortion detection signal TXI is input as the drive signal XI2.
  • the vertical axis indicates the light intensity in the X polarization
  • the horizontal axis indicates the time.
  • the light intensity of the optical modulation signal X1 is maximized at the timing at which the bits a1 to a8 shown in FIG. 4A, that is, the bits constituting the distortion detection signal TXI are inserted.
  • the light intensity of the light modulation signal X1 becomes the minimum value Pq.
  • the minimum value Pq indicates the operation at the extinction point of the optical modulator.
  • FIG. 4C shows a time waveform of the distortion detection signal TXI included in the TN signal e.
  • shaft has shown the drive voltage and the horizontal axis has shown time.
  • the bit string of the distortion detection signal in FIG. 4C is an alternating pattern clock signal in which the positive value “1” and the negative value “ ⁇ 1” are alternately repeated by 2 bits.
  • FIG. 4D is a diagram showing a time waveform of the optical output of the I / Q modulator 123X when the distortion detection signal TXI is input as the drive signal XI2, similarly to FIG. 4B.
  • the vertical axis represents the light intensity in the X polarization
  • the horizontal axis represents time.
  • the light intensity of the light modulation signal X1 takes the maximum value Pb, and the light intensity of the light modulation signal X1 becomes the minimum value Pq at the timing when the drive voltage becomes zero.
  • FIG. 4E is a diagram showing a time waveform of the distortion detection signal TXI included in the TN signal f.
  • the vertical axis represents drive voltage and the horizontal axis represents time.
  • the bit string of the distortion detection signal in FIG. 4E is an alternating pattern clock signal in which a positive value “1” and a negative value “ ⁇ 1” are alternately repeated every 3 bits.
  • FIG. 4F shows a time waveform of the optical output of the I / Q modulator 123X when the distortion detection signal TXI is input as the drive signal XI2, similarly to FIGS. 4B and 4D. It is.
  • the vertical axis indicates the light intensity in the X polarization, and the horizontal axis indicates the time.
  • the light intensity of the light modulation signal X1 takes the maximum value Pc, and the light intensity of the light modulation signal X1 becomes the minimum value Pq at the timing when the drive voltage becomes zero.
  • the frequency interval between the code a1 and the code a2 is equal to the baud rate of the transmission data signal.
  • the baud rate of the transmission data signal is 32 Gbaud
  • the frequency interval between the code a1 and the code a2 is 32 GHz. Therefore, the distortion detection signal TXI shown in FIG. 4A is a 16 GHz clock signal.
  • the distortion detection signal TXI shown in FIG. 4C is an 8 GHz clock signal, and FIG.
  • the distortion detection signal TXI shown in FIG. 5 becomes a 5.3 GHz clock signal.
  • the distortion detection signal TXI is received by the PD 126X as described above, and the intensity signal X2 is generated. As shown in the prior art, if the band of the PD 126X is as large as the baud rate of the transmission data signal, it is possible to generate the intensity signal X2 that changes for each bit.
  • the intensity signal X2 for each bit cannot be generated. Therefore, the intensity signal X2 having a constant value as the time average of the light intensity of the light modulation signal X1 is Generated by PD126X.
  • the time waveform of the optical output of the I / Q modulator 123X when the distortion detection signal TXI shown in FIG. 4A is input as the drive signals XI2 and XQ2 is shown in FIG. Be like that.
  • the intensity signal X2 of the distortion detection signal TXI is obtained by performing the process of averaging the intensity level of the intensity signal X2 to a constant value regardless of the band of the PD 126X and the frequency of the clock signal. It takes a constant value with respect to the frequency of the signal TXI. This value is converted into a digital signal and input to the distortion specifying unit 114.
  • the distortion identification unit 114 receives the frequency and intensity of the distortion detection signal TXI from the TN signal generation unit 113. Then, the distortion specifying unit 114 calculates the gain by taking the difference between the intensity of the distortion detection signal TXI and the intensity of the intensity signal X2. The distortion specifying unit 114 can obtain the relationship between the frequency and the gain from the calculated gain and the frequency of the distortion detection signal TXI, and calculates the frequency characteristic of the gain by performing this operation for each transmission data frame. be able to.
  • the frequency domain correction unit 115 performs correction in the frequency domain so that the gain of the intensity signal X2 is constant regardless of the frequency, based on the obtained frequency characteristics of the gain. For example, when the gain characteristic of the frequency shown in FIG. 2A is obtained, correction for increasing the gain in the high frequency band as shown in FIG. 2B is performed so as to correct the gain characteristic. Thereby, a constant gain can be obtained regardless of the frequency.
  • the time for transmitting the distortion detection signal TXI is ensured to be a time that can be detected even in the case of the PD 126X and 126Y having a small band.
  • the PD 126X having a band of 1 GHz If it is 126Y, the distortion detection signal TXI may be transmitted using a time of 1 ns.
  • the sampling rates of the ADCs 127X and 127Y may be equivalent to the bands of the PDs 126X and 126Y.
  • the gain of the frequency of the baud rate of the transmission data signal is specified. I can't.
  • the gain of the frequency of the original baud rate can be specified by increasing the baud rate of the transmission data signal. That is, when specifying the gain of the frequency of 32 GHz, the baud rate of the transmission data signal may be set to 64 Gbaud or more, which is twice or more.
  • the PDs 126X and 126Y are provided in the subsequent stage of the I / Q modulators 123X and 123Y, but the first embodiment is not limited to such an example.
  • a PD may be provided in the subsequent stage of the PBC 124 as in the prior art. Even in this case, even if the PD band and the ADC sampling rate are smaller than the baud rate of the transmission data signal, the waveform distortion can be detected and corrected with the same accuracy as in the first embodiment.
  • the distortion detection signal included in the TN signal is inserted into only one channel.
  • the intensity signal can be generated for each of the X polarization and the Y polarization with the configuration shown in FIG. 1, two distortion detection signals having different polarizations are included for one TN signal. It may be.
  • the TN signal a may include the distortion detection signals TXI and TYI.
  • the PD 126X and 126Y generate the intensity signals X2 and Y2, respectively, and the ADCs 127X and 127Y convert the signals into digital signals and input them to the distortion specifying unit 114.
  • the time for inserting the TN signal into the processed data signal can be halved.
  • the distortion detection signal has an alternating pattern in which a positive value “1” and a negative value “ ⁇ 1” are alternately repeated every several bits.
  • the optical transmitter 200 includes a digital signal processing unit 210, DACs 120A to 120D, drivers 121A to 121D, a light source 122, an I / Q modulator 123X. 123Y, PBC 124, couplers 125X and 125Y, PDs 126X and 126Y, and ADCs 127X and 127Y.
  • the optical transmitter 200 according to the second embodiment is configured in the same manner as the optical transmitter 100 according to the first embodiment except for the digital signal processing unit 210.
  • the bit sequence of the TN signal is a clock signal having an alternating pattern in which a positive value “1” and a negative value “ ⁇ 1” are alternately repeated every several bits.
  • the digital signal processing unit 210 includes a mapper 211, a TN signal insertion unit 212, a TN signal generation unit 113, a distortion identification unit 114, and a frequency domain correction unit 115.
  • the digital signal processing unit 210 in the second embodiment is configured in the same manner as the digital signal processing unit 110 in the first embodiment except for the mapper 211 and the TN signal insertion unit 212.
  • the mapper 211 generates a processed data signal OXI, OXQ, OYI, OYQ by processing a predetermined data signal using polarization. Before the operation of the optical transmitter 200 is started, no data signal is input to the optical transmitter 200, so the mapper 211 uses a predetermined data signal.
  • the predetermined data signal may be stored in a memory (not shown) in the digital signal processing unit 210, or may be generated by the mapper 211, for example.
  • the TN signal insertion unit 212 inserts the TN signal generated by the TN signal generation unit 113 into the processing data signals OXI, OXQ, OYI, and OYQ generated by the mapper 211, thereby inserting the insertion data signals IXI, IXQ, and IYI. , IYQ is generated.
  • the configuration of the transmission data frame is different from that of the first embodiment.
  • FIG. 6 is a schematic diagram showing a configuration of a transmission data frame in the second embodiment.
  • the transmission data frame includes a synchronization signal and a TN signal.
  • the TN signal a to the TN signal d have n (n is an integer of 1 or more) distortion detection signals having different bit string configurations.
  • the integer n may be determined in advance according to the frequency for correcting the waveform distortion.
  • the area for storing the data signal in the transmission data frame in the first embodiment shown in FIG. can be used as a storage area.
  • the TN signal a is used to detect waveform distortion generated in the channel XI, and includes n distortion detection signals TXI.
  • TN signals a to d are stored in areas for storing data signals. Has been inserted.
  • 7A to 7C are schematic diagrams showing the time waveform of the TN signal a and the time waveform of the optical output of the I / Q modulator 123X.
  • FIG. 7A shows a time waveform of the TN signal a.
  • FIG. 7A shows the drive voltage on the vertical axis and time on the horizontal axis.
  • the distortion detection signal TXI1 is an alternating pattern in which a positive value “1” and a negative value “ ⁇ 1” are alternately repeated bit by bit
  • the distortion detection signal TXI2 is a positive value “1” and a negative value “ ⁇ 1”.
  • the distortion detection signal TXIn is a bit string composed of an alternating pattern in which a positive value “1” and a negative value “ ⁇ 1” are alternately repeated n bits.
  • the distortion detection signals TXI1 to TXIn can be clock signals having different frequencies, and these are inserted into the transmission data frame.
  • FIG. 7B is a diagram illustrating a time waveform of the TN signal a included in the optical modulation signal X1 by the I / Q modulator 123X.
  • the vertical axis indicates the light intensity in the X polarization
  • the horizontal axis indicates the time.
  • the gain in the high frequency band is lower than the gain in the low frequency band. Therefore, as shown in FIG. 7B, when the number of consecutive bits with the same sign is small, that is, when the frequency of the clock signal is high, the gain decreases, so as shown in FIG. Strength decreases. Conversely, when the number of consecutive bits with the same sign is large, that is, when the frequency of the clock signal is low, the light intensity increases because the decrease in gain is small.
  • the TN signal a generated as described above is included in the intensity signal X2 generated by the PD 126X.
  • the intensity signal X2 that is constant as the time average of the light intensity of the light modulation signal X1 is generated.
  • the frequency of the distortion detection signal is smaller than the band of the PD 126X, the intensity signal X2 that is correctly generated for each bit is generated.
  • the ADC 127X performs the process of averaging the intensity level of the intensity signal X2 to obtain a constant value, so that the intensity signal X2 of the distortion detection signal regardless of the band of the PD 126X. Is a constant value with respect to frequency.
  • the ADC 127X converts the value obtained thereby into a digital signal and inputs the digital signal to the digital signal processing unit 210.
  • the distortion is specified by the distortion specifying unit 114.
  • the distortion specifying unit 114 obtains the intensity and frequency information of the n distortion detection signals TXI1 to TXIn included in the TN signal a from the TN signal generation unit 113, and compares the information with the intensity signal X2 input from the ADC 127X. The frequency characteristic of gain is calculated. Then, based on the calculated frequency characteristic of the gain, the frequency domain correction unit 115 performs a setting for correcting the gain characteristic so that the gain is constant regardless of the frequency. As a result of performing such distortion correction, the time waveform of the light of the TN signal a after distortion correction is as shown in FIG.
  • the TN signal a has been described as an example, but the frequency characteristics of the gain can be calculated and corrected by performing the same operation for the TN signal b to the TN signal d.
  • the PDs 126X and 126Y are provided in the subsequent stage of the I / Q modulators 123X and 123Y of the respective polarization components.
  • the PBC 124 is the same as in the prior art.
  • a PD may be provided in the subsequent stage. Even in this case, it is possible to calculate and correct the gain frequency characteristic with the same accuracy.
  • the area of the transmission data signal in the transmission data frame can also be used as the area of the TN signal.
  • the frequency characteristics of the gains of the optical modulation signals X1 and Y1 can be calculated with higher accuracy, and the gain can be made constant regardless of the frequency.
  • FIG. 8 is a block diagram schematically showing the configuration of the optical transmitter 300 according to the third embodiment.
  • the optical transmitter 300 includes a digital signal processor 310, DACs 120A to 120D, drivers 321A to 321D, a light source 122, I / Q modulators 123X and 123Y, a PBC 124, couplers 125X and 125Y, and PDs 126X and 126Y. And a distortion specifying unit 314 and a distortion correcting unit 328.
  • the optical transmitter 300 according to the third embodiment has the same configuration as the optical transmitter 100 according to the first embodiment, except for the digital signal processing unit 310, the drivers 321A to 321D, the distortion specifying unit 314, and the distortion correcting unit 328. Has been.
  • clock signal intensity signals X2 and Y2 included in the optical modulation signals X1 and Y1 generated by the I / Q modulators 123X and 123Y using a clock signal having a plurality of frequencies are used.
  • the frequency characteristic of the gain of the optical modulation signal was calculated and corrected so that the gain was constant regardless of the frequency using an FIR filter or the like.
  • the configuration and operation of the optical transmitter 300 for the purpose of correcting the harmonic distortion generated by the drivers 321A to 321D included in the optical transmitter 300 will be described.
  • the case where the optical transmitter 300 is started up will be described as in the second embodiment.
  • the digital signal processing unit 310 generates transmission data signals XI1 #, XQ1 #, YI1 #, and YQ1 # from the data signal DS by digital signal processing.
  • the digital signal processing unit 310 includes a mapper 311, a TN signal insertion unit 112, and a TN signal generation unit 313.
  • the digital signal processing unit 310 according to the third embodiment does not include the distortion specifying unit 114 and the frequency domain correction unit 115 included in the digital signal processing unit 110 according to the first embodiment. Further, the processing of the mapper 311 and the TN signal generation unit 313 is different from the processing of the TN signal generation unit 113 in the first embodiment.
  • the mapper 311 generates a processed data signal OXI, OXQ, OYI, OYQ by processing a predetermined data signal using polarization. Since the data signal is not input to the optical transmitter 300 before the operation of the optical transmitter 300 is started, the mapper 311 uses a predetermined data signal as in the second embodiment.
  • the TN signal generation unit 313 generates a clock signal having a specific frequency by configuring a bit string having a specific pattern.
  • the TN signal insertion unit 112 inserts the clock signal generated by the TN signal generation unit 113 into the processed data signals OXI, OXQ, OYI, and OYQ, thereby transmitting the transmission data signals XI1 #, XQ1 #, YI1 #, and YQ1 #. Generate.
  • the transmission data signals XI1 #, XQ1 #, YI1 #, and YQ1 # into which the clock signal is inserted by the TN signal insertion unit 112 are converted into analog signals by the DACs 120A to 120D.
  • the analog signals output from the DACs 120A to 120D are sine waves.
  • Transmission data signals XI1 #, XQ1 #, YI1 #, YQ1 # converted into analog signals by DACs 120A to 120D are input to drivers 321A to 321D.
  • the drivers 321A to 321D amplify the transmission data signals XI1 #, XQ1 #, YI1 #, and YQ1 #, adjust the waveform by changing the operating point of the FET inside the driver, etc., and drive signals XI2, XQ2, YI2 and YQ2 are generated. As a result, the drivers 321A to 321D can reduce waveform distortion when converted into an optical signal.
  • the I / Q modulators 123X and 123Y receive the carrier light generated by the light source 122 and generate optical modulation signals X1 and Y1 based on the drive signals XI2, XQ2, YI2, and YQ2.
  • the PBC 124 combines the polarizations of the optical modulation signals X1 and Y1 and sends them to the transmission line.
  • the optical modulation signals X1 and Y1 generated by the I / Q modulators 123X and 123Y are branched by the couplers 125X and 125Y arranged at the subsequent stage of the I / Q modulators 123X and 123Y, respectively, and PDs 126X and 126Y are obtained. Is input.
  • the PDs 126X and 126Y generate intensity signals X2 and Y2 based on the input light modulation signals X1 and Y1.
  • the distortion specifying unit 314 specifies the harmonic component included in the intensity signals X2 and Y2 by referring to the clock signal generated by the TN signal generating unit 113.
  • the distortion correction unit 328 adjusts the parameters of the drivers 321A to 321D so that the harmonic component specified by the distortion specifying unit 314 is minimized, thereby driving signals XI2, XQ2, Harmonic components included in YI2 and YQ2 are suppressed.
  • the parameters of the drivers 321A to 321D here include, for example, a bias voltage applied to a terminal for adjusting a gain of an output amplitude with respect to an input amplitude, a cross point of an output waveform, and the like. The details of the operations of the distortion specifying unit 314 and the distortion correcting unit 328 will be described later.
  • FIG. 9 is a schematic diagram showing a configuration of a transmission data frame in the third embodiment.
  • the TN signal generation unit 113 similarly to the second embodiment, assuming that the optical transmitter 300 is started up, the TN signal generation unit 113 also generates an area where the transmission data signal is originally stored.
  • the clock signals TXICLK, TXQCLK, TYICLK, and TYQCLK having a specific frequency are stored.
  • the clock signals TXICLK, TXQCLK, TYICLK, and TYQCLK are used to specify the harmonic distortion of the drivers 121A, 121B, 121C, and 121D, and are inserted into the processed data signals OXI, OXQ, OYI, and OYQ.
  • the clock signal TXICLK is inserted into the processing data signal OXI, “0 (zero)” is stored in the other channels.
  • the configuration of the bit string of the clock signal generated by the TN signal generation unit 313 will be described.
  • the clock signal TXICLK inserted into the processing data signal OXI will be described.
  • the clock signal TXICLK is composed of a positive value “1” and a negative value “ ⁇ 1”, and each is alternately repeated several bits. For example, when the baud rate of the transmission data signal is 32 Gbaud, a 3.2 GHz clock signal can be generated by alternately repeating a positive value “1” by 5 bits and a negative value “ ⁇ 1” by 5 bits. it can. However, the frequency of the generated clock signal needs to be smaller than the band of the PD 126X provided at the subsequent stage of the I / Q modulator 123X.
  • the clock signals TXQCLK, TYICLK, and TYQCLK are also clock signals having the same bit string configuration as the clock signal TXICLK.
  • the clock signals TXICLK, TXQCLK, TYICLK, and TYQCLK may be clock signals having different frequencies or may be clock signals having the same frequency as long as the frequency is lower than the band of the light receiver. .
  • the distortion specifying unit 314 specifies a harmonic component included in the intensity signal X2 generated by the PD 126X based on the clock signal TXICLK generated by the TN signal generating unit 313.
  • a specifying method for example, synchronous detection can be cited.
  • the frequency of the harmonic component is an odd multiple of the frequency of the original signal. Therefore, when the harmonic component included in the intensity signal X2 is identified by synchronous detection using the clock signal TXICLK generated by the TN signal generation unit 313 as a reference signal, the distortion identification unit 314 first determines the frequency of the clock signal TXICLK. Is converted to an odd multiple of the desired frequency, ie, the frequency of the clock signal, and then synchronous detection is performed.
  • the distortion specifying unit 314 can specify the harmonic component by operating in this way. Since the harmonic component has a plurality of frequency components, the distortion specifying unit 314 can specify the components of the respective frequencies by performing processing for converting the frequency of the clock signal with respect to the respective frequencies.
  • the distortion correction unit 328 changes the setting of the parameter (adjustment value) of the driver 321A so that the distortion amount is minimized.
  • the parameters include the bias voltage applied to the adjustment terminal that determines the performance such as the gain of the output amplitude with respect to the input amplitude of the driver 321A and the cross point of the output waveform, as described above.
  • FIGS. 10A to 10C are schematic diagrams showing time waveforms of clock signals in the third embodiment.
  • FIG. 10A is a schematic diagram showing a time waveform of the clock signal TXICLK input to the driver 321A.
  • FIG. 10A shows the driving voltage on the vertical axis and time on the horizontal axis.
  • FIG. 10B is a schematic diagram illustrating a time waveform of the clock signal TXICLK output from the driver 321A when distortion correction is not performed.
  • FIG. 10B shows the driving voltage on the vertical axis and time on the horizontal axis. Since the harmonic distortion generated in the driver 321A is not corrected, the driver 321A cannot linearly amplify the clock signal shown in FIG.
  • FIG. 10C is a schematic diagram illustrating a time waveform of the clock signal TXICLK output from the driver 321A when distortion correction is performed by the distortion correction unit 328 based on the distortion amount specified by the distortion specifying unit 314. It is.
  • FIG. 10C shows the driving voltage on the vertical axis and time on the horizontal axis. Since the waveform shown in FIG. 10C is corrected so as to reduce the harmonic distortion generated by the driver 321A, it is amplified linearly when the time waveform shown in FIG. 10A is input. Output time waveform.
  • the method of specifying the harmonic component using the synchronous detection in the distortion specifying unit 314 has been described, but any method may be used as long as the harmonic component can be specified. .
  • identifying the harmonic component for example, there is a method of comparing the intensity signal X2 and the clock signal TXICLK in the frequency domain.
  • the harmonic component contained in the intensity signal X2 can be specified by performing Fourier transform on the intensity signal X2 and the clock signal TXICLK by FFT and performing a subtraction process.
  • the high-pass filter When the high-pass filter is used, only the harmonic component of the clock signal TXICLK included in the intensity signal X can be specified. Therefore, if only the frequency of the clock signal TXICLK generated by the TN signal generation unit 313 is transmitted to the distortion specifying unit 314, it is not necessary to input the clock signal TXICLK to the distortion specifying unit 314.
  • the distortion identifying unit 314 identifies the harmonic component by comparing the intensity signals X2 and Y2 generated by the PDs 126X and 126Y with the clock signal generated by the TN signal generating unit 113, and the identification result Based on this, the harmonic distortion generated by the drivers 321b, 321C, and 321D can be corrected.
  • the optical transmitter 300 when the optical transmitter 300 is started up, a clock signal with a specific frequency is used, and the intensity signals X2 and Y2 generated by the PDs 126X and 126Y are compared with the original clock signal to thereby generate harmonic components. It was set as the structure which detects. Based on this detection result, the harmonic distortion can be corrected by adjusting the bias voltage value of the adjustment terminal of the driver so as to reduce the harmonic component.
  • FIGS. 11A and 11B are schematic diagrams illustrating hardware configuration examples.
  • a part or all of the digital signal processing units 110 and 210, the distortion specifying unit 314, and the distortion correcting unit 328 described above may be a single circuit or a composite circuit as shown in FIG. , A programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuits) or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuits
  • FPGA Field Programmable Gate Array
  • a part or all of the digital signal processing units 110 and 210, the distortion specifying unit 314, and the distortion correcting unit 328 are stored in the memory 11 and the memory 11, for example, as illustrated in FIG. It can also be configured with a processor 12 such as a CPU (Central Processing Unit) that executes the program being executed.
  • a processor 12 such as a CPU (Central Processing Unit) that executes the program being executed.
  • Such a program may be provided through a network, or may be provided by being recorded on a recording medium.
  • 100, 200, 300 optical transmitter 110, 210, 310 digital signal processing unit, 111, 211, 311 mapper, 112, 212 TN signal insertion unit, 113, 313 TN signal generation unit, 114, 314 distortion identification unit, 115 Frequency domain correction unit, 120A, 120B, 120C, 120D DAC, 121A, 121B, 121C, 121D, 321A, 321B, 321C, 321D driver, 122 light source, 123X, 123Y I / Q modulator, 124 PBC, 125X, 125Y coupler 126X, 126Y PD, 127X, 127Y ADC, 328 distortion correction unit.

Abstract

An optical transmitter comprising: a digital signal processing unit (110) for generating transmission data signals including training signals that are clock signals configured by use of alternating patterns using binary bit sequences; DACs (120A-120D) for converting the transmission data signals to analog signals; drivers (121A-121D) for amplifying the analog signals to generate driving signals; a light source (122) for emitting a carrier light; I/Q modulators (123X, 123Y) for modulating the carrier light on the basis of the driving signals, thereby generating optical modulated signals; PDs (126X, 126Y) for generating intensity signals indicating the intensities of the optical modulated signals; and ADCs (127X, 127Y) for converting the intensity signals to digital signals. The digital signal processing unit (110) compares the training signals with the digital signals, thereby detecting the waveform distortions of the optical modulated signals and then correcting the waveform distortions.

Description

光送信器及び波形歪み補正方法Optical transmitter and waveform distortion correction method
 本発明は、光送信器及び波形歪み補正方法に関し、特に、光変調信号の波形歪みを補正する光送信器及び波形歪み補正方法に関する。 The present invention relates to an optical transmitter and a waveform distortion correction method, and more particularly to an optical transmitter and a waveform distortion correction method for correcting waveform distortion of an optical modulation signal.
 近年のデータ通信需要の増大に伴い、高速及び大容量の光伝送の実現が求められている。そこで、1シンボル時間で複数のビットを伝送する技術が提案されており、中でも多値変調では、1シンボルで複数ビットの伝送が可能である。例えば、QPSK(Quadrature Phase Shift Keying)、m-QAM(Quadrature Amplitude Modulation)を用いた光伝送システムが実用化されている。m-QAMにおけるmは、信号点の数を示し、16及び64等である。また、偏波多重では、互いに直交する2つの偏波を用いて信号伝送することが可能である。 With the recent increase in demand for data communication, it is required to realize high-speed and large-capacity optical transmission. Therefore, a technique for transmitting a plurality of bits in one symbol time has been proposed, and in particular, in multilevel modulation, a plurality of bits can be transmitted in one symbol. For example, optical transmission systems using QPSK (Quadrature Phase Shift Keying) and m-QAM (Quadrature Amplitude Modulation) have been put into practical use. m in m-QAM indicates the number of signal points, and is 16 or 64 or the like. In polarization multiplexing, it is possible to transmit signals using two polarizations orthogonal to each other.
 多値変調は、近年では、デジタル信号処理により実現される。例えば、光送信器は、デジタル信号処理部と、I/Q(In-phase/Quadrature)変調器とを有する。デジタル信号処理部は、送信データから駆動信号を生成し、I/Q変調器は、デジタル信号処理部において生成された駆動信号を用いて、キャリア光から光変調信号を生成する。この光変調信号は、光ファイバの伝送路を介して送信され、光受信器において復調され、送信データが再生される。 Multi-level modulation is realized in recent years by digital signal processing. For example, the optical transmitter includes a digital signal processing unit and an I / Q (In-phase / Quadrature) modulator. The digital signal processing unit generates a drive signal from the transmission data, and the I / Q modulator generates an optical modulation signal from the carrier light using the drive signal generated in the digital signal processing unit. This optical modulation signal is transmitted through an optical fiber transmission line, demodulated in an optical receiver, and transmission data is reproduced.
 1シンボル当たりのビット数が多い多値変調では、多値数の増加に伴いシンボル間距離が近くなることから、光変調信号の波形歪みに対する要求は厳しくなる。例えば、波形歪みの要因として、光送信器が有するドライバ及びI/Q変調器のアナログ帯域の不足、ドライバにおける高調波歪み等が挙げられる。QPSKを用いた光伝送システムにおけるシンボルを判別する場合には、強度変化による波形歪みは受信特性の劣化に影響しないが、m―QAMを用いた光伝送システムの場合は、光変調信号の強度によってもシンボルを判別することから、波形歪みによる強度変化でシンボル誤りが発生し、光受信器における受信特性が劣化する。 In multi-level modulation with a large number of bits per symbol, the inter-symbol distance becomes shorter as the multi-level number increases, and thus the demand for waveform distortion of the optical modulation signal becomes severe. For example, the causes of waveform distortion include insufficient analog bandwidth of the driver and I / Q modulator included in the optical transmitter, harmonic distortion in the driver, and the like. When discriminating symbols in an optical transmission system using QPSK, waveform distortion due to intensity change does not affect the deterioration of reception characteristics, but in the case of an optical transmission system using m-QAM, it depends on the intensity of the optical modulation signal. Since the symbol is also discriminated, a symbol error occurs due to an intensity change due to waveform distortion, and the reception characteristics in the optical receiver deteriorate.
 従って、光変調信号の信号品質を向上させるには、光送信器で発生する光変調信号の波形歪みを検出し、その歪みを補正することが必要である。波形歪みの検出及び補正に関連する技術は、近年、盛んに提案されており、例えば、特許文献1には、一定強度の特定ビット列で構成されたトレーニング信号(以下、TN信号という)を用いる手法が記載されている。 Therefore, in order to improve the signal quality of the optical modulation signal, it is necessary to detect the waveform distortion of the optical modulation signal generated by the optical transmitter and correct the distortion. In recent years, techniques related to detection and correction of waveform distortion have been actively proposed. For example, Patent Document 1 discloses a technique using a training signal (hereinafter, referred to as a TN signal) composed of a specific bit string having a constant intensity. Is described.
 具体的には、特許文献1に記載の技術(以下、従来技術)においては、光送信器が、受光器としてのPD(Photo Detector)とADC(Analog to Digital Converter)とを有し、デジタル信号処理部が、一定強度の特定ビット列で構成されたTN信号を生成し、送信データに挿入している。生成されたTN信号は、PDにより受光され、強度信号が生成される。強度信号は、ADCでデジタル信号に変換され、デジタル信号処理部に入力される。デジタル信号処理部に入力された強度信号は、上述に挙げた例えばドライバ及びI/Q変調器のアナログ帯域不足、並びに、ドライバの高調波歪みに起因する波形歪みを有する。そこで、送信信号に挿入されたTN信号と、強度信号とを比較することで歪み量を検出し、その歪み量を最小とするようにデジタル信号処理により、波形歪みが補正されている。 Specifically, in the technique described in Patent Document 1 (hereinafter, conventional technique), the optical transmitter has a PD (Photo Detector) as a light receiver and an ADC (Analog to Digital Converter), and is a digital signal. The processing unit generates a TN signal composed of a specific bit string having a constant strength and inserts it into the transmission data. The generated TN signal is received by the PD, and an intensity signal is generated. The intensity signal is converted into a digital signal by the ADC and input to the digital signal processing unit. The intensity signal input to the digital signal processing unit has waveform distortion caused by, for example, the analog band shortage of the driver and the I / Q modulator mentioned above and the harmonic distortion of the driver. Therefore, the distortion amount is detected by comparing the TN signal inserted into the transmission signal with the intensity signal, and the waveform distortion is corrected by digital signal processing so as to minimize the distortion amount.
特開2016-72942号公報JP 2016-72942 A
 光送信器において発生する光変調信号の波形歪みは、例えば、デジタルコヒーレント受信器を用いて検出することが可能である。しかしながら、波形歪みを検出するために、新たに専用のデジタルコヒーレント受信器を設ける場合、光送信器のコストの増加により、光伝送システム全体のコストも増加する。 The waveform distortion of the optical modulation signal generated in the optical transmitter can be detected using, for example, a digital coherent receiver. However, when a new dedicated digital coherent receiver is provided to detect waveform distortion, the cost of the entire optical transmission system increases due to the increase in the cost of the optical transmitter.
 そこで、光伝送システムにおいて対向装置内部に備えられたデジタルコヒーレント受信器を用いることで、コストを増加させずに光変調信号の波形歪みを検出することは可能である。ところが、この構成では、検出される波形歪みには、光送信器で発生した波形歪みだけでなく、伝送路において発生した波形歪みも含まれる。そのため、光送信器で発生した波形歪みを検出し、補正する方法としては、特許文献1に記載されているように、光送信器内部における信号処理が考えられる。 Therefore, by using a digital coherent receiver provided in the opposite apparatus in the optical transmission system, it is possible to detect waveform distortion of the optical modulation signal without increasing the cost. However, in this configuration, the detected waveform distortion includes not only the waveform distortion generated in the optical transmitter but also the waveform distortion generated in the transmission path. Therefore, as a method for detecting and correcting the waveform distortion generated in the optical transmitter, signal processing inside the optical transmitter can be considered as described in Patent Document 1.
 しかしながら、特許文献1に記載された技術では、波形歪みの検出において、TN信号を構成するビット列と、強度信号を構成するビット列とを1ビットずつ比較している。この場合は、PDの帯域及びADCのサンプリングレートが送信信号のボーレート以下である場合には、PDにより生成された強度信号を1ビットずつ正しく生成することができないため、波形歪みの検出が難しいという課題がある。 However, in the technique described in Patent Document 1, the bit string constituting the TN signal and the bit string constituting the intensity signal are compared bit by bit in the detection of waveform distortion. In this case, if the PD band and the ADC sampling rate are equal to or less than the baud rate of the transmission signal, the intensity signal generated by the PD cannot be correctly generated bit by bit, and it is difficult to detect waveform distortion. There are challenges.
 そこで、本発明は、受光器の帯域及びADCのサンプリングレートが送信信号のボーレート以下である場合でも、波形歪みを検出できるようにすることを目的とする。 Therefore, an object of the present invention is to make it possible to detect waveform distortion even when the band of the optical receiver and the sampling rate of the ADC are equal to or less than the baud rate of the transmission signal.
 本発明の第1の態様に係る光送信器は、2値のビット列による交番パターンで構成されたクロック信号であるトレーニング信号を含む送信データ信号を生成するデジタル信号処理部と、前記送信データ信号をアナログ信号に変換する第1のコントローラと、前記アナログ信号を増幅して駆動信号を生成するドライバと、キャリア光を発する光源と、前記駆動信号に基づいて前記キャリア光を変調することで、光変調信号を生成する変調器と、前記光変調信号の強度を示す強度信号を生成する受光器と、前記強度信号をデジタル信号に変換する第2のコントローラと、を備え、前記デジタル信号処理部は、前記トレーニング信号と前記デジタル信号とを比較することで、前記光変調信号の波形歪みを検出して、当該波形歪みを補正することを特徴とする。 An optical transmitter according to a first aspect of the present invention includes a digital signal processing unit that generates a transmission data signal including a training signal, which is a clock signal configured by an alternating pattern of binary bit strings, and the transmission data signal. A first controller that converts the signal into an analog signal; a driver that amplifies the analog signal to generate a drive signal; a light source that emits carrier light; and the carrier light that is modulated based on the drive signal, thereby modulating light. A modulator that generates a signal, a light receiver that generates an intensity signal indicating the intensity of the light modulation signal, and a second controller that converts the intensity signal into a digital signal, and the digital signal processing unit includes: Comparing the training signal and the digital signal to detect waveform distortion of the optical modulation signal and correcting the waveform distortion; And butterflies.
 本発明の第2の態様に係る光送信器は、2値のビット列の交番パターンで構成されたクロック信号を含む送信データ信号を生成するデジタル信号処理部と、前記送信データ信号をアナログ信号に変換する第1のコントローラと、前記アナログ信号を増幅するとともに、前記アナログ信号の波形を調整することで、駆動信号を生成するドライバと、キャリア光を発する光源と、前記駆動信号に基づいて前記キャリア光を変調することで、光変調信号を生成する変調器と、前記光変調信号の強度を示す強度信号を生成する受光器と、前記クロック信号に対応する部分の強度を示す前記強度信号から、予め定められた周波数よりも高い高調波成分を特定する歪み特定部と、前記ドライバに、前記高調波成分を抑制するように前記アナログ信号の波形を調整させることで、前記光変調信号の波形歪みを補正する歪み補正部と、を備えることを特徴とする。 An optical transmitter according to a second aspect of the present invention includes a digital signal processing unit that generates a transmission data signal including a clock signal composed of an alternating pattern of binary bit strings, and converts the transmission data signal into an analog signal A first controller that amplifies the analog signal and adjusts a waveform of the analog signal to generate a drive signal, a light source that emits carrier light, and the carrier light based on the drive signal From the modulator that generates the optical modulation signal, the light receiver that generates the intensity signal indicating the intensity of the optical modulation signal, and the intensity signal that indicates the intensity of the portion corresponding to the clock signal. A distortion identifying unit that identifies a higher harmonic component than a predetermined frequency; and the analog signal wave so as to suppress the higher harmonic component to the driver. It is to adjust, characterized in that and a distortion correcting unit for correcting the waveform distortion of the optical modulation signal.
 本発明の第1の態様に係る波形歪み補正方法は、2値のビット列による交番パターンで構成されたクロック信号であるトレーニング信号を含む送信データ信号を生成し、前記送信データ信号をアナログ信号に変換し、前記アナログ信号を増幅して駆動信号を生成し、前記駆動信号に基づいてキャリア光を変調することで、光変調信号を生成し、前記光変調信号の強度を示す強度信号を生成し、前記強度信号をデジタル信号に変換し、前記トレーニング信号と前記デジタル信号とを比較することで、前記光変調信号の波形歪みを検出して、当該波形歪みを補正することを特徴とする。 The waveform distortion correction method according to the first aspect of the present invention generates a transmission data signal including a training signal that is a clock signal composed of an alternating pattern of binary bit strings, and converts the transmission data signal into an analog signal. Amplifying the analog signal to generate a drive signal, modulating carrier light based on the drive signal, generating an optical modulation signal, generating an intensity signal indicating the intensity of the optical modulation signal, The intensity signal is converted into a digital signal, and the waveform distortion of the optical modulation signal is detected by comparing the training signal and the digital signal, and the waveform distortion is corrected.
 本発明の第2の態様に係る波形歪み補正方法は、2値のビット列の交番パターンで構成されたクロック信号を含む送信データ信号を生成し、前記送信データ信号をアナログ信号に変換し、前記アナログ信号を増幅することで、駆動信号を生成し、前記駆動信号に基づいてキャリア光を変調することで、光変調信号を生成し、前記光変調信号の強度を示す強度信号を生成し、前記クロック信号に対応する部分の強度を示す前記強度信号から、予め定められた周波数よりも高い高調波成分を特定し、前記高調波成分を抑制するように前記アナログ信号の波形を調整することで、前記光変調信号の波形歪みを補正することを特徴とする。 The waveform distortion correction method according to the second aspect of the present invention generates a transmission data signal including a clock signal composed of an alternating pattern of binary bit strings, converts the transmission data signal into an analog signal, A signal is amplified to generate a drive signal, a carrier light is modulated based on the drive signal, an optical modulation signal is generated, an intensity signal indicating the intensity of the optical modulation signal is generated, and the clock From the intensity signal indicating the intensity of the portion corresponding to the signal, specify a harmonic component higher than a predetermined frequency, and by adjusting the waveform of the analog signal to suppress the harmonic component, It is characterized by correcting waveform distortion of the optical modulation signal.
 本発明の一態様によれば、送信データに挿入するTN信号を構成するビット列を特定周期の交番パターンとし、特定周波数のクロック信号を生成することで、受光器の帯域及びADCのサンプリングレートが送信信号のボーレート以下である場合でも、波形歪みを検出することができる。 According to one aspect of the present invention, a bit sequence constituting a TN signal to be inserted into transmission data is set as an alternating pattern of a specific period, and a clock signal having a specific frequency is generated, whereby the optical receiver band and the ADC sampling rate are transmitted. Even when the baud rate is lower than the signal, waveform distortion can be detected.
実施の形態1及び2に係る光送信器の構成を概略的に示すブロック図である。2 is a block diagram schematically showing a configuration of an optical transmitter according to Embodiments 1 and 2. FIG. (a)及び(b)は、実施の形態1における利得の周波数特性及びその補正を説明するための概略図である。(A) And (b) is the schematic for demonstrating the frequency characteristic of the gain in Embodiment 1, and its correction | amendment. 実施の形態1における送信データのフレーム構成を示す概略図である。3 is a schematic diagram showing a frame configuration of transmission data in Embodiment 1. FIG. (a)~(f)は、実施の形態1における歪み検出信号の時間波形及びI/Q変調器の光出力の時間波形を示す概略図である。(A)-(f) is the schematic which shows the time waveform of the distortion detection signal in Embodiment 1, and the time waveform of the optical output of an I / Q modulator. 実施の形態1において、PDの帯域が送信データ信号のボーレートより小さい場合におけるI/Q変調器の光出力の時間波形を示す概略図である。In Embodiment 1, it is the schematic which shows the time waveform of the optical output of an I / Q modulator when the zone | band of PD is smaller than the baud rate of a transmission data signal. 実施の形態2における送信データフレームの構成を示す概略図である。6 is a schematic diagram illustrating a configuration of a transmission data frame in Embodiment 2. FIG. (a)~(c)は、実施の形態2におけるTN信号の時間波形とI/Q変調器の光出力の時間波形を示す概略図である。(A)-(c) is the schematic which shows the time waveform of the TN signal in Embodiment 2, and the time waveform of the optical output of an I / Q modulator. 実施の形態3に係る光送信器の構成を概略的に示すブロック図である。6 is a block diagram schematically showing a configuration of an optical transmitter according to a third embodiment. FIG. 実施の形態3における送信データフレームの構成を示す概略図である。10 is a schematic diagram illustrating a configuration of a transmission data frame in Embodiment 3. FIG. (a)~(c)は、実施の形態3におけるクロック信号の時間波形を示す概略図である。(A)-(c) is the schematic which shows the time waveform of the clock signal in Embodiment 3. FIG. (a)及び(b)は、実施の形態1~3におけるハードウェア構成例を示す概略図である。(A) And (b) is the schematic which shows the hardware structural example in Embodiment 1-3.
実施の形態1. Embodiment 1 FIG.
 図1は、実施の形態1に係る光送信器100の構成を概略的に示すブロック図である。
 なお、実施の形態1では、ドライバ及びI/Q変調器のアナログ帯域不足により、利得の周波数特性において、周波数によって利得が変化する場合を想定する。また、光伝送システムにおいて、光送信器100の運用中を想定する。
FIG. 1 is a block diagram schematically showing a configuration of an optical transmitter 100 according to the first embodiment.
In the first embodiment, it is assumed that the gain varies with frequency in the frequency characteristics of the gain due to a shortage of analog bands of the driver and the I / Q modulator. Further, it is assumed that the optical transmitter 100 is in operation in the optical transmission system.
 光送信器100は、デジタル信号処理部110と、第1のコントローラとしてのDAC(Digital to Analog Comverter)120A~120Dと、ドライバ121A~121Dと、光源122と、変調器としてのI/Q変調器123X、123Yと、PBC(Polarization Beam Combiner:偏波合成器)124と、光分岐部としてのカプラ125X、125Yと、受光器としてのPD126X、126Yと、第2のコントローラとしてのADC127X、127Yとを備える。 The optical transmitter 100 includes a digital signal processing unit 110, a DAC (Digital to Analog Converter) 120A to 120D as a first controller, drivers 121A to 121D, a light source 122, and an I / Q modulator as a modulator. 123X, 123Y, PBC (Polarization Beam Combiner: polarization combiner) 124, couplers 125X, 125Y as optical branching units, PDs 126X, 126Y as light receivers, and ADCs 127X, 127Y as second controllers Prepare.
 デジタル信号処理部110は、デジタル信号処理によりデータ信号DSから送信データ信号を生成する。実施の形態1において、光送信器100は偏波多重方式でデータを送信する。従って、デジタル信号処理部110は、X偏波を利用して伝送されるデータに対応する送信データ信号EX(XI1、XQ1)及びY偏波を利用して伝送されるデータに対応する送信データ信号EY(YI1、YQ1)を生成する。以降の説明では、I/Q変調器123XのI相、Q相をそれぞれチャネルXI、チャネルXQ、I/Q変調器123YのI相、Q相をそれぞれチャネルYI、チャネルYQという。 The digital signal processing unit 110 generates a transmission data signal from the data signal DS by digital signal processing. In the first embodiment, the optical transmitter 100 transmits data by a polarization multiplexing method. Therefore, the digital signal processing unit 110 transmits the transmission data signal EX (XI1, XQ1) corresponding to the data transmitted using the X polarization and the transmission data signal corresponding to the data transmitted using the Y polarization. EY (YI1, YQ1) is generated. In the following description, the I phase and Q phase of the I / Q modulator 123X are referred to as channel XI and channel XQ, respectively, the I phase and Q phase of the I / Q modulator 123Y are referred to as channel YI and channel YQ, respectively.
 DAC120A~120Dは、デジタル信号処理部110により生成される送信データ信号XI1、XQ1、YI1、YQ1をアナログ信号に変換する。
 ドライバ121A~121Dは、DAC120A~120Dでアナログ信号に変換された送信データ信号XI1、XQ1、YI1、YQ1を増幅して、駆動信号XI2、XQ2、YI2、YQ2を生成する。
 光源122は、予め定められた周波数の連続光(キャリア光)を生成する。
The DACs 120A to 120D convert the transmission data signals XI1, XQ1, YI1, and YQ1 generated by the digital signal processing unit 110 into analog signals.
The drivers 121A to 121D amplify the transmission data signals XI1, XQ1, YI1, and YQ1 converted into analog signals by the DACs 120A to 120D, and generate drive signals XI2, XQ2, YI2, and YQ2.
The light source 122 generates continuous light (carrier light) having a predetermined frequency.
 I/Q変調器123Xは、駆動信号XI2、XQ2で、光源122により生成された連続光を変調して、光変調信号X1を生成する。
 I/Q変調器123Yは、駆動信号YI2、YQ2で、光源122により生成された連続光を変調して、光変調信号Y1を生成する。
 PBC124は、I/Q変調器123Xにより生成される光変調信号X1と、I/Q変調器123Yにより生成される光変調信号Y1とを合波して偏波多重光信号を生成する。
The I / Q modulator 123X modulates the continuous light generated by the light source 122 with the drive signals XI2 and XQ2, and generates an optical modulation signal X1.
The I / Q modulator 123Y modulates the continuous light generated by the light source 122 with the drive signals YI2 and YQ2, and generates an optical modulation signal Y1.
The PBC 124 combines the optical modulation signal X1 generated by the I / Q modulator 123X and the optical modulation signal Y1 generated by the I / Q modulator 123Y to generate a polarization multiplexed optical signal.
 カプラ125Xは、光変調信号X1を分岐させて、PD126Xに入力する。
 カプラ125Yは、光変調信号Y1を分岐させて、PD126Yに入力する。
 PD126Xは、直接検波により、光変調信号X1の強度を表す強度信号X2を生成する。
 PD126Yは、直接検波により、光変調信号Y1の強度を表す強度信号Y2を生成する。
 なお、PD126X、126Yは共に、光信号を電気信号に変換するフォトダイオードを含む。
 ADC127Xは、PD126Xにより生成される強度信号X2をデジタル信号に変換する。
 ADC127Yは、PD126Yにより生成される強度信号Y2をデジタル信号に変換する。
The coupler 125X branches the optical modulation signal X1 and inputs it to the PD 126X.
The coupler 125Y branches the optical modulation signal Y1 and inputs it to the PD 126Y.
The PD 126X generates an intensity signal X2 representing the intensity of the light modulation signal X1 by direct detection.
The PD 126Y generates an intensity signal Y2 representing the intensity of the light modulation signal Y1 by direct detection.
Note that the PDs 126X and 126Y both include a photodiode that converts an optical signal into an electrical signal.
The ADC 127X converts the intensity signal X2 generated by the PD 126X into a digital signal.
The ADC 127Y converts the intensity signal Y2 generated by the PD 126Y into a digital signal.
 そして、デジタル信号処理部110は、トレーニング信号とデジタル信号とを比較することにより、光変調信号の波形歪みを検出して、その波形歪みを補正する。
 デジタル信号処理部110は、マッパ111と、TN信号挿入部112と、TN信号生成部113と、歪み特定部114と、周波数領域補正部115とを備える。
Then, the digital signal processing unit 110 detects the waveform distortion of the optical modulation signal by comparing the training signal and the digital signal, and corrects the waveform distortion.
The digital signal processing unit 110 includes a mapper 111, a TN signal insertion unit 112, a TN signal generation unit 113, a distortion identification unit 114, and a frequency domain correction unit 115.
 マッパ111は、光送信器100に入力されたデータ信号DSから処理データ信号を生成する。具体的には、マッパ111は、X偏波を利用して伝送されるデータに対応する処理データ信号OX(OXI、OXQ)及びY偏波を利用して伝送されるデータに対応する処理データ信号OY(OYI、OYQ)を生成する。なお、処理データ信号OX及びOYは、下記の(1)式及び(2)式で表すことができる。
 OX=OXI+jOXQ                   (1)
 OY=OYI+jOYQ                   (2)
The mapper 111 generates a processed data signal from the data signal DS input to the optical transmitter 100. Specifically, the mapper 111 performs processing data signals OX (OXI, OXQ) corresponding to data transmitted using X polarization and processing data signals corresponding to data transmitted using Y polarization. OY (OYI, OYQ) is generated. The processed data signals OX and OY can be expressed by the following equations (1) and (2).
OX = OXI + jOXQ (1)
OY = OYI + jOYQ (2)
 TN信号生成部113は、光変調信号X1、Y1の波形歪みの検出に使用されるTN信号を生成する。TN信号は、2値のビット列による交番パターンで構成されたクロック信号である。
 TN信号挿入部112は、マッパ111により生成される処理データ信号OXI、OXQ、OYI、OYQに、TN信号生成部113により生成されるTN信号を挿入することで、挿入データ信号IXI、IXQ、IYI、IYQを生成する。
 TN信号生成部113により生成されるTN信号の詳細は後で示すが、TN信号生成部113により生成されたTN信号は、TN信号挿入部112において、処理データ信号OXI、OXQ、OYI、OYQを構成する複数の送信データフレームに格納される。
The TN signal generation unit 113 generates a TN signal used to detect waveform distortion of the optical modulation signals X1 and Y1. The TN signal is a clock signal composed of an alternating pattern of binary bit strings.
The TN signal insertion unit 112 inserts the TN signal generated by the TN signal generation unit 113 into the processing data signals OXI, OXQ, OYI, and OYQ generated by the mapper 111, thereby inserting the insertion data signals IXI, IXQ, and IYI. , IYQ is generated.
Although details of the TN signal generated by the TN signal generation unit 113 will be described later, the TN signal generated by the TN signal generation unit 113 is processed by the TN signal insertion unit 112 as processed data signals OXI, OXQ, OYI, and OYQ. It is stored in a plurality of transmission data frames constituting the same.
 TN信号が挿入された送信データ信号に基づいて、I/Q変調器123X、123Yにより生成される光変調信号X1、Y1は、TN信号に対応する成分を含む。よって、PD126X、126Yにより生成される強度信号X2、Y2もTN信号に対応する成分を含む。TN信号に対応する成分を含む強度信号X2、Y2は、ADC127X、127Yによりデジタル信号に変換されて、デジタル信号処理部110に入力される。 Based on the transmission data signal into which the TN signal is inserted, the optical modulation signals X1 and Y1 generated by the I / Q modulators 123X and 123Y include components corresponding to the TN signal. Therefore, the intensity signals X2 and Y2 generated by the PDs 126X and 126Y also include a component corresponding to the TN signal. The intensity signals X2 and Y2 including components corresponding to the TN signal are converted into digital signals by the ADCs 127X and 127Y and input to the digital signal processing unit 110.
 歪み特定部114は、ADC127X、127Yによりデジタル信号に変換された強度信号X2、Y2と、TN信号生成部113により生成されるTN信号とを、周波数毎に比較することで、周波数に対する強度信号X2、Y2の利得を検出する。歪み特定部114では、複数の送信データフレームから周波数に対する利得を得ることで、例えば、図2(a)に示すような利得の周波数特性を特定する。 The distortion specifying unit 114 compares the intensity signals X2 and Y2 converted into digital signals by the ADCs 127X and 127Y and the TN signal generated by the TN signal generation unit 113 for each frequency, thereby calculating the intensity signal X2 for the frequency. , Y2 gain is detected. The distortion specifying unit 114 specifies a gain frequency characteristic as shown in FIG. 2A, for example, by obtaining a gain with respect to a frequency from a plurality of transmission data frames.
 周波数領域補正部115は、歪み特定部114により特定された利得の周波数特性に基づいて、挿入データ信号IXI、IXQ、IYI、IYQにおいて、周波数毎に利得を補正する歪み補正部である。例えば、周波数領域補正部115は、歪み特定部114により特定された利得の周波数特性に応じて、図2(a)に示す利得の周波数特性を補正する特性、すなわち図2(b)に示すような特性を設定する。これにより、利得の周波数特性による変動が補正される。 The frequency domain correction unit 115 is a distortion correction unit that corrects the gain for each frequency in the insertion data signals IXI, IXQ, IYI, and IYQ based on the frequency characteristics of the gain specified by the distortion specification unit 114. For example, the frequency domain correction unit 115 corrects the frequency characteristic of the gain shown in FIG. 2A according to the frequency characteristic of the gain specified by the distortion specifying unit 114, that is, as shown in FIG. Set the appropriate characteristics. Thereby, the fluctuation | variation by the frequency characteristic of a gain is correct | amended.
 周波数領域補正部115において、利得の周波数特性を補正する方法として、例えばFIR(Finite Inpulse Response)フィルタが考えられる。FIRフィルタを用いる場合には、歪み特定部114により特定された利得の周波数特性について、周波数に依らず一定の利得となるように、FIRフィルタの乗算器の設定を歪み特定部114から行う。今回は、例として、周波数領域補正部115でFIRフィルタを使用することを説明するが、利得の周波数特性を補正することができる方法であれば、どのような方法でもよい。 As a method of correcting the frequency characteristics of the gain in the frequency domain correction unit 115, for example, an FIR (Finite Impulse Response) filter can be considered. When the FIR filter is used, the distortion specifying unit 114 sets the multiplier of the FIR filter so that the frequency characteristic of the gain specified by the distortion specifying unit 114 has a constant gain regardless of the frequency. In this example, the use of the FIR filter in the frequency domain correction unit 115 will be described as an example. However, any method may be used as long as the frequency characteristic of the gain can be corrected.
 図3は、実施の形態1における送信データのフレーム構成を示す図である。
 TN信号a~dは、それぞれチャネルXI、XQ、YI、YQで生じる波形歪みを検出するために使用される。
FIG. 3 is a diagram showing a frame structure of transmission data in the first embodiment.
The TN signals a to d are used to detect waveform distortion generated in the channels XI, XQ, YI, and YQ, respectively.
 TN信号aは、チャネルXIで発生する波形歪みを検出するために使用される。そのため、TN信号aは、チャネルXIで発生する波形歪みを検出するために使用する歪み検出信号TXIを含み、チャネルXIの処理データ信号OXIに挿入される。歪み検出信号TXIを構成するビット列については、後に詳細を示す。そして、その他のチャネルXQ、YI、YQには、「0(ゼロ)」が格納される。ここで、「0」とは、I/Q変調器123X、123Yに入力される駆動信号XQ2、YI2、YQ2が「0」であることを示し、I/Q変調器123X、123Yからは、駆動信号XQ2、YI2、YQ2に対応する光信号が出力されないことを示す。 TN signal a is used to detect waveform distortion occurring in channel XI. Therefore, the TN signal a includes a distortion detection signal TXI used to detect waveform distortion generated in the channel XI, and is inserted into the processing data signal OXI of the channel XI. Details of the bit string constituting the distortion detection signal TXI will be described later. Then, “0 (zero)” is stored in the other channels XQ, YI, and YQ. Here, “0” indicates that the drive signals XQ2, YI2, and YQ2 input to the I / Q modulators 123X and 123Y are “0”, and the I / Q modulators 123X and 123Y are driven. This indicates that optical signals corresponding to the signals XQ2, YI2, and YQ2 are not output.
 同様に、TN信号bは、チャネルXQで発生する波形歪みを補正するために使用され、チャネルXQの処理データ信号OXQに歪み検出信号TXQが挿入され、その他のチャネルには「0」が格納される。TN信号c及びTN信号dについても同様であり、それぞれチャネルYI及びチャネルYQで発生する波形歪みを補正するために使用され、チャネルYIの処理データ信号OYI及びチャネルYQの処理データ信号OYQに歪み検出信号TYI及び歪み検出信号TYQがそれぞれ挿入され、その他のチャネルには「0」が格納される。 Similarly, the TN signal b is used to correct waveform distortion generated in the channel XQ, the distortion detection signal TXQ is inserted into the processed data signal OXQ of the channel XQ, and “0” is stored in the other channels. The The same applies to the TN signal c and the TN signal d, which are used to correct waveform distortion generated in the channel YI and the channel YQ, respectively, and distortion detection is performed on the processed data signal OYI and the processed data signal OYQ of the channel YI. The signal TYI and the distortion detection signal TYQ are inserted, and “0” is stored in the other channels.
 図3では、処理データ信号OXI、OXQ、OYI、OYQを構成する複数の送信データフレームにおいて、データ信号a~fを格納する領域の間に、TN信号a~dが一定間隔で挿入されている。
 なお、図3では一例として、TN信号a~dが一定間隔で処理データ信号OXI、OXQ、OYI、OYQに挿入されているが、TN信号a~dそれぞれは、どのようなタイミングでどのような位置に挿入されてもよい。例えば、同期信号の直後にTN信号a~dの全てが連続して挿入されてもよいし、送信データフレームの最後にTN信号a~dの全てが連続して挿入されてもよい。
In FIG. 3, in a plurality of transmission data frames constituting the processed data signals OXI, OXQ, OYI, OYQ, TN signals a to d are inserted at regular intervals between areas for storing the data signals a to f. .
In FIG. 3, as an example, the TN signals a to d are inserted into the processing data signals OXI, OXQ, OYI, and OYQ at regular intervals. It may be inserted at a position. For example, all of the TN signals a to d may be inserted immediately after the synchronization signal, or all of the TN signals a to d may be inserted continuously at the end of the transmission data frame.
 また、TN信号挿入部112は、同期信号が検出される毎に、異なる周波数のTN信号を挿入することができる。
 なお、実施の形態1では、一定間隔でTN信号が挿入されているため、例えば、デジタル信号処理部110から、同期信号が挿入されているタイミングをPD126X、126Yに通知することで、PD126X、126Yは、トレーニング信号に対応する部分の光変調信号のみの強度を示す強度信号X2、Y2を生成することができる。
In addition, the TN signal insertion unit 112 can insert a TN signal having a different frequency each time a synchronization signal is detected.
In the first embodiment, since TN signals are inserted at regular intervals, for example, the digital signal processing unit 110 notifies the PD 126X, 126Y of the timing at which the synchronization signal is inserted, thereby causing the PD 126X, 126Y. Can generate intensity signals X2 and Y2 indicating the intensity of only the light modulation signal of the portion corresponding to the training signal.
 次に、TN信号が含む歪み検出信号のビット列について説明する。ここでは、例として、TN信号aが含む歪み検出信号TXIを説明する。 Next, the bit string of the distortion detection signal included in the TN signal will be described. Here, as an example, the distortion detection signal TXI included in the TN signal a will be described.
 図4(a)~(f)は、歪み検出信号TXIの時間波形及びI/Q変調器123Xの光出力の時間波形を示す概略図である。
 なお、図4(a)、図4(c)及び図4(e)に示す「駆動電圧=0」は、I/Q変調器123Xが消光点で動作することを示す。また、歪み検出信号TXIは、正の値「1」及び負の値「-1」で構成され、それぞれが数ビットずつ交互に繰り返される交番パターンとすることで、周波数の異なるクロック信号を作り出す。言い換えると、TN信号生成部113は、交番パターンにおいて、同じ値が連続するビット数を変化させることで、クロック信号の周波数を変化させることができる。
4A to 4F are schematic diagrams showing the time waveform of the distortion detection signal TXI and the time waveform of the optical output of the I / Q modulator 123X.
Note that “drive voltage = 0” illustrated in FIGS. 4A, 4C, and 4E indicates that the I / Q modulator 123X operates at the extinction point. Further, the distortion detection signal TXI is composed of a positive value “1” and a negative value “−1”, and each of them is an alternating pattern in which several bits are alternately repeated to generate clock signals having different frequencies. In other words, the TN signal generation unit 113 can change the frequency of the clock signal by changing the number of consecutive bits having the same value in the alternating pattern.
 図4(a)は、デジタル信号処理部110により生成され、DAC120Aによりアナログ信号に変換されたTN信号aに含まれる歪み検出信号TXIの時間波形を示す図である。図4(a)では、縦軸が駆動電圧、横軸が時間を示している。
 図4(a)の符号a1~a8は、歪み検出信号TXIのビット列を示し、TN信号生成部113により生成され、TN信号挿入部112により処理データ信号OXIに挿入される。また、図4(a)における歪み検出信号TXIのビット列は、正の値「1」及び負の値「-1」を1ビットずつ交互に繰り返す交番パターンのクロック信号となる。
FIG. 4A is a diagram illustrating a time waveform of the distortion detection signal TXI included in the TN signal a generated by the digital signal processing unit 110 and converted into an analog signal by the DAC 120A. In FIG. 4A, the vertical axis represents drive voltage and the horizontal axis represents time.
Symbols a1 to a8 in FIG. 4A indicate a bit string of the distortion detection signal TXI, which is generated by the TN signal generation unit 113, and inserted into the processed data signal OXI by the TN signal insertion unit 112. The bit string of the distortion detection signal TXI in FIG. 4A is an alternating pattern clock signal that alternately repeats a positive value “1” and a negative value “−1” bit by bit.
 図4(b)は、歪み検出信号TXIを駆動信号XI2として入力した場合のI/Q変調器123Xの光出力の時間波形を示す図である。図4(b)では、縦軸がX偏波における光強度、横軸が時間を示している。
 図4(b)に示されているように、図4(a)に示す符号a1~a8、すなわち歪み検出信号TXIを構成するビットが挿入されるタイミングで、光変調信号X1の光強度は極大値Paを取り、駆動電圧が0となるタイミングで、光変調信号X1の光強度は極小値Pqとなる。なお、極小値Pqは光変調器の消光点での動作を示す。
FIG. 4B is a diagram illustrating a time waveform of the optical output of the I / Q modulator 123X when the distortion detection signal TXI is input as the drive signal XI2. In FIG. 4B, the vertical axis indicates the light intensity in the X polarization, and the horizontal axis indicates the time.
As shown in FIG. 4B, the light intensity of the optical modulation signal X1 is maximized at the timing at which the bits a1 to a8 shown in FIG. 4A, that is, the bits constituting the distortion detection signal TXI are inserted. At the timing when the value Pa is taken and the drive voltage becomes 0, the light intensity of the light modulation signal X1 becomes the minimum value Pq. The minimum value Pq indicates the operation at the extinction point of the optical modulator.
 図4(c)は、TN信号eに含まれる歪み検出信号TXIの時間波形を示す図である。図4(c)では、縦軸が駆動電圧、横軸が時間を示している。また、図4(c)における歪み検出信号のビット列は、正の値「1」及び負の値「-1」が2ビットずつ交互に繰り返す交番パターンのクロック信号となる。 FIG. 4C shows a time waveform of the distortion detection signal TXI included in the TN signal e. In FIG.4 (c), the vertical axis | shaft has shown the drive voltage and the horizontal axis has shown time. In addition, the bit string of the distortion detection signal in FIG. 4C is an alternating pattern clock signal in which the positive value “1” and the negative value “−1” are alternately repeated by 2 bits.
 図4(d)は、図4(b)と同様に、歪み検出信号TXIを駆動信号XI2として入力した場合のI/Q変調器123Xの光出力の時間波形を示す図である。図4(d)では、縦軸がX偏波における光強度、横軸が時間を示している。光変調信号X1の光強度は極大値Pbを取り、駆動電圧が0となるタイミングで、光変調信号X1の光強度は極小値Pqとなる。 FIG. 4D is a diagram showing a time waveform of the optical output of the I / Q modulator 123X when the distortion detection signal TXI is input as the drive signal XI2, similarly to FIG. 4B. In FIG. 4D, the vertical axis represents the light intensity in the X polarization, and the horizontal axis represents time. The light intensity of the light modulation signal X1 takes the maximum value Pb, and the light intensity of the light modulation signal X1 becomes the minimum value Pq at the timing when the drive voltage becomes zero.
 図4(e)は、TN信号fに含まれる歪み検出信号TXIの時間波形を示す図である。図4(e)では、縦軸が駆動電圧、横軸が時間を示している。また、図4(e)における歪み検出信号のビット列は、正の値「1」及び負の値「-1」が3ビットずつ交互に繰り返す交番パターンのクロック信号となる。 FIG. 4E is a diagram showing a time waveform of the distortion detection signal TXI included in the TN signal f. In FIG. 4 (e), the vertical axis represents drive voltage and the horizontal axis represents time. In addition, the bit string of the distortion detection signal in FIG. 4E is an alternating pattern clock signal in which a positive value “1” and a negative value “−1” are alternately repeated every 3 bits.
 図4(f)は、図4(b)及び図4(d)と同様に、歪み検出信号TXIを駆動信号XI2として入力した場合のI/Q変調器123Xの光出力の時間波形を示す図である。図4(f)では、縦軸がX偏波における光強度、横軸が時間を示している。光変調信号X1の光強度は極大値Pcを取り、駆動電圧が0となるタイミングで、光変調信号X1の光強度は極小値Pqとなる。 FIG. 4F shows a time waveform of the optical output of the I / Q modulator 123X when the distortion detection signal TXI is input as the drive signal XI2, similarly to FIGS. 4B and 4D. It is. In FIG. 4F, the vertical axis indicates the light intensity in the X polarization, and the horizontal axis indicates the time. The light intensity of the light modulation signal X1 takes the maximum value Pc, and the light intensity of the light modulation signal X1 becomes the minimum value Pq at the timing when the drive voltage becomes zero.
 ここで、図4(a)に示すビット列のうち、符号a1と符号a2との周波数間隔が送信データ信号のボーレートと等しくなる。例えば、送信データ信号のボーレートが32Gbaudである場合、符号a1と符号a2との周波数間隔は32GHzとなる。そのため、図4(a)に示す歪み検出信号TXIは、16GHzのクロック信号であり、同様に、図4(c)に示す歪み検出信号TXIは、8GHzのクロック信号であり、図4(e)に示す歪み検出信号TXIは、5.3GHzのクロック信号となる。 Here, in the bit string shown in FIG. 4A, the frequency interval between the code a1 and the code a2 is equal to the baud rate of the transmission data signal. For example, when the baud rate of the transmission data signal is 32 Gbaud, the frequency interval between the code a1 and the code a2 is 32 GHz. Therefore, the distortion detection signal TXI shown in FIG. 4A is a 16 GHz clock signal. Similarly, the distortion detection signal TXI shown in FIG. 4C is an 8 GHz clock signal, and FIG. The distortion detection signal TXI shown in FIG. 5 becomes a 5.3 GHz clock signal.
 ここで、クロック信号の光強度を考える。処理データ信号OXIに挿入された歪み検出信号TXIが、ドライバ121AとI/Q変調器123Xとを通過した場合の利得の周波数特性が図2(a)に示すような特性になるとする。この場合、クロック信号の周波数が高い場合には利得が低くなることから、光変調信号X1の光強度は小さくなり、クロック信号の周波数が低い場合には利得が高くなることから、光変調信号X1の光強度が大きくなる。 Here, consider the light intensity of the clock signal. Assume that the frequency characteristic of the gain when the distortion detection signal TXI inserted into the processed data signal OXI passes through the driver 121A and the I / Q modulator 123X is as shown in FIG. In this case, since the gain is low when the frequency of the clock signal is high, the light intensity of the optical modulation signal X1 is small, and when the frequency of the clock signal is low, the gain is high, and thus the optical modulation signal X1 The light intensity increases.
 歪み検出信号TXIは、上述のとおりPD126Xにより受光され、強度信号X2が生成される。従来技術に示すように、PD126Xの帯域が送信データ信号のボーレートと同等に大きければ1ビット毎に変化する強度信号X2を生成することが可能である。 The distortion detection signal TXI is received by the PD 126X as described above, and the intensity signal X2 is generated. As shown in the prior art, if the band of the PD 126X is as large as the baud rate of the transmission data signal, it is possible to generate the intensity signal X2 that changes for each bit.
 しかし、PD126Xの帯域が送信データ信号のボーレートより小さい場合は、1ビット毎の強度信号X2を生成することができないため、光変調信号X1の光強度の時間平均で一定値となる強度信号X2がPD126Xにより生成される。このような場合、例えば、図4(a)に示されている歪み検出信号TXIを駆動信号XI2、XQ2として入力した場合のI/Q変調器123Xの光出力の時間波形は、図5に示されているようになる。 However, when the band of the PD 126X is smaller than the baud rate of the transmission data signal, the intensity signal X2 for each bit cannot be generated. Therefore, the intensity signal X2 having a constant value as the time average of the light intensity of the light modulation signal X1 is Generated by PD126X. In such a case, for example, the time waveform of the optical output of the I / Q modulator 123X when the distortion detection signal TXI shown in FIG. 4A is input as the drive signals XI2 and XQ2 is shown in FIG. Be like that.
 そこで、ADC127Xでは、PD126Xの帯域やクロック信号の周波数に関係なく、強度信号X2の強度レベルを平均化して一定値にする処理を実施することで、歪み検出信号TXIの強度信号X2は、歪み検出信号TXIの周波数に対し一定値をとる。この値をデジタル信号に変換して、歪み特定部114に入力する。 Therefore, in the ADC 127X, the intensity signal X2 of the distortion detection signal TXI is obtained by performing the process of averaging the intensity level of the intensity signal X2 to a constant value regardless of the band of the PD 126X and the frequency of the clock signal. It takes a constant value with respect to the frequency of the signal TXI. This value is converted into a digital signal and input to the distortion specifying unit 114.
 歪み特定部114には、歪み検出信号TXIの周波数と強度がTN信号生成部113から入力される。そして、歪み特定部114は、歪み検出信号TXIの強度と強度信号X2の強度との差分を取り、利得を算出する。歪み特定部114は、算出された利得と歪み検出信号TXIの周波数から、周波数と利得の関係を得ることができ、この動作を送信データフレーム毎に実施することで、利得の周波数特性を算出することができる。 The distortion identification unit 114 receives the frequency and intensity of the distortion detection signal TXI from the TN signal generation unit 113. Then, the distortion specifying unit 114 calculates the gain by taking the difference between the intensity of the distortion detection signal TXI and the intensity of the intensity signal X2. The distortion specifying unit 114 can obtain the relationship between the frequency and the gain from the calculated gain and the frequency of the distortion detection signal TXI, and calculates the frequency characteristic of the gain by performing this operation for each transmission data frame. be able to.
 周波数領域補正部115は、得られた利得の周波数特性に基づいて、強度信号X2の利得が、周波数に依らず一定となるように、周波数領域で補正を行う。例えば、図2(a)に示す周波数の利得特性が得られた場合には、それを補正するように、図2(b)に示すような高周波数帯域の利得を持ち上げる補正を行う。これにより、周波数に依らず、一定の利得を得ることができる。 The frequency domain correction unit 115 performs correction in the frequency domain so that the gain of the intensity signal X2 is constant regardless of the frequency, based on the obtained frequency characteristics of the gain. For example, when the gain characteristic of the frequency shown in FIG. 2A is obtained, correction for increasing the gain in the high frequency band as shown in FIG. 2B is performed so as to correct the gain characteristic. Thereby, a constant gain can be obtained regardless of the frequency.
 また、実施の形態1において、歪み検出信号TXIを送信する時間は、帯域の小さいPD126X、126Yであっても検出することができる時間を確保していることとし、例えば、帯域が1GHzのPD126X、126Yであれば、1nsの時間を使って歪み検出信号TXIを送信すればよい。また、ADC127X、127Yのサンプリングレートは、PD126X、126Yの帯域と同等であればよい。 In the first embodiment, the time for transmitting the distortion detection signal TXI is ensured to be a time that can be detected even in the case of the PD 126X and 126Y having a small band. For example, the PD 126X having a band of 1 GHz, If it is 126Y, the distortion detection signal TXI may be transmitted using a time of 1 ns. In addition, the sampling rates of the ADCs 127X and 127Y may be equivalent to the bands of the PDs 126X and 126Y.
 なお、実施の形態1において、歪み検出信号を構成するクロック信号の周波数は、送信データ信号のボーレートの1/2の周波数が最大となるため、送信データ信号のボーレートの周波数の利得を特定することはできない。しかし、送信データ信号のボーレートを上げることで、元のボーレートの周波数の利得を特定することができる。すなわち、32GHzの周波数の利得を特定する場合には、送信データ信号のボーレートをその2倍以上となる64Gbaud以上とすればよい。 In the first embodiment, since the frequency of the clock signal constituting the distortion detection signal has a maximum frequency that is half the baud rate of the transmission data signal, the gain of the frequency of the baud rate of the transmission data signal is specified. I can't. However, the gain of the frequency of the original baud rate can be specified by increasing the baud rate of the transmission data signal. That is, when specifying the gain of the frequency of 32 GHz, the baud rate of the transmission data signal may be set to 64 Gbaud or more, which is twice or more.
 TN信号bに含まれる歪み検出信号TXQ、TN信号cに含まれる歪み検出信号TYI、TN信号dに含まれる歪み検出信号TYQについても、TN信号aに含まれる歪み検出信号TXIと同様に考えることができる。 Consider the distortion detection signal TXQ included in the TN signal b, the distortion detection signal TYI included in the TN signal c, and the distortion detection signal TYQ included in the TN signal d in the same way as the distortion detection signal TXI included in the TN signal a. Can do.
 実施の形態1では、I/Q変調器123X、123Yの後段にPD126X、126Yが備えられているが、実施の形態1は、このような例に限定されるものではない。例えば、従来技術と同様にPBC124の後段にPDが備えられていてもよい。この場合においても、PDの帯域及びADCのサンプリングレートは、送信データ信号のボーレートより小さくても、実施の形態1と同じ精度で波形歪みを検出及び補正することが可能である。 In the first embodiment, the PDs 126X and 126Y are provided in the subsequent stage of the I / Q modulators 123X and 123Y, but the first embodiment is not limited to such an example. For example, a PD may be provided in the subsequent stage of the PBC 124 as in the prior art. Even in this case, even if the PD band and the ADC sampling rate are smaller than the baud rate of the transmission data signal, the waveform distortion can be detected and corrected with the same accuracy as in the first embodiment.
 また、実施の形態1では、TN信号に含まれる歪み検出信号は、1つのチャネルのみに挿入するとした。しかし、図1に示す構成であれば、X偏波及びY偏波それぞれについて強度信号を生成することができるため、1つのTN信号に対し、偏波が互いに異なる2つの歪み検出信号が含まれていてもよい。例えば、図2に示す送信データフレームにおいて、TN信号aが歪み検出信号TXI及びTYIを含む構成であってもよい。この場合、PD126X、126Yでそれぞれが強度信号X2、Y2を生成し、ADC127X、127Yでデジタル信号に変換して歪み特定部114に入力する動作となる。その結果、TN信号を処理データ信号に挿入する時間を半分にすることができる。 In Embodiment 1, the distortion detection signal included in the TN signal is inserted into only one channel. However, since the intensity signal can be generated for each of the X polarization and the Y polarization with the configuration shown in FIG. 1, two distortion detection signals having different polarizations are included for one TN signal. It may be. For example, in the transmission data frame shown in FIG. 2, the TN signal a may include the distortion detection signals TXI and TYI. In this case, the PD 126X and 126Y generate the intensity signals X2 and Y2, respectively, and the ADCs 127X and 127Y convert the signals into digital signals and input them to the distortion specifying unit 114. As a result, the time for inserting the TN signal into the processed data signal can be halved.
 実施の形態1では、歪み検出信号を正の値「1」及び負の値「-1」を数ビットずつ交互に繰り返す交番パターンとした。これにより、PD126X、126Yの帯域及びADC127X、127Yのサンプリングレートが小さい場合でも、周波数の高低に依らず利得を一定にすることができる。 In the first embodiment, the distortion detection signal has an alternating pattern in which a positive value “1” and a negative value “−1” are alternately repeated every several bits. Thereby, even when the bands of the PDs 126X and 126Y and the sampling rates of the ADCs 127X and 127Y are small, the gain can be made constant regardless of the frequency level.
実施の形態2.
 図1に示されているように、実施の形態2に係る光送信器200は、デジタル信号処理部210と、DAC120A~120Dと、ドライバ121A~121Dと、光源122と、I/Q変調器123X、123Yと、PBC124と、カプラ125X、125Yと、PD126X、126Yと、ADC127X、127Yとを備える。
 実施の形態2に係る光送信器200は、デジタル信号処理部210を除いて、実施の形態1に係る光送信器100と同様に構成されている。
Embodiment 2. FIG.
As shown in FIG. 1, the optical transmitter 200 according to the second embodiment includes a digital signal processing unit 210, DACs 120A to 120D, drivers 121A to 121D, a light source 122, an I / Q modulator 123X. 123Y, PBC 124, couplers 125X and 125Y, PDs 126X and 126Y, and ADCs 127X and 127Y.
The optical transmitter 200 according to the second embodiment is configured in the same manner as the optical transmitter 100 according to the first embodiment except for the digital signal processing unit 210.
 実施の形態1では、光送信器100の運用中において、TN信号のビット列を正の値「1」及び負の値「-1」を数ビットずつ交互に繰り返す交番パターンとしたクロック信号とすることで、送信データ信号のボーレートよりも帯域の小さいPD126X、126Y又はサンプリングレートの低いADC127X、127Yを使用して、複数のTN信号により利得の周波数特性を算出し、歪み検出及び補正することを可能にした。
 実施の形態2では、より詳細に利得の周波数特性を算出して補正する手法として、光送信器200を運用する前の立ち上げ時を想定した場合における波形歪みの検出及び補正を行う手法を説明する。
In the first embodiment, during the operation of the optical transmitter 100, the bit sequence of the TN signal is a clock signal having an alternating pattern in which a positive value “1” and a negative value “−1” are alternately repeated every several bits. Thus, it is possible to calculate the frequency characteristics of the gain using a plurality of TN signals, and detect and correct distortion by using the PDs 126X and 126Y having a band smaller than the baud rate of the transmission data signal or the ADCs 127X and 127Y having a low sampling rate. did.
In the second embodiment, as a technique for calculating and correcting the frequency characteristic of the gain in more detail, a technique for detecting and correcting waveform distortion when assuming a startup time before operating the optical transmitter 200 will be described. To do.
 デジタル信号処理部210は、マッパ211と、TN信号挿入部212と、TN信号生成部113と、歪み特定部114と、周波数領域補正部115とを備える。実施の形態2におけるデジタル信号処理部210は、マッパ211及びTN信号挿入部212を除いて、実施の形態1におけるデジタル信号処理部110と同様に構成されている。 The digital signal processing unit 210 includes a mapper 211, a TN signal insertion unit 212, a TN signal generation unit 113, a distortion identification unit 114, and a frequency domain correction unit 115. The digital signal processing unit 210 in the second embodiment is configured in the same manner as the digital signal processing unit 110 in the first embodiment except for the mapper 211 and the TN signal insertion unit 212.
 マッパ211は、予め定められたデータ信号を、偏波を利用して処理することで、処理データ信号OXI、OXQ、OYI、OYQを生成する。光送信器200の運用を開始する前は、光送信器200にデータ信号が入力されないため、マッパ211は、予め定められたデータ信号を用いる。この予め定められたデータ信号は、例えば、デジタル信号処理部210内の図示しないメモリに記憶されていてもよく、また、マッパ211が生成してもよい。 The mapper 211 generates a processed data signal OXI, OXQ, OYI, OYQ by processing a predetermined data signal using polarization. Before the operation of the optical transmitter 200 is started, no data signal is input to the optical transmitter 200, so the mapper 211 uses a predetermined data signal. The predetermined data signal may be stored in a memory (not shown) in the digital signal processing unit 210, or may be generated by the mapper 211, for example.
 TN信号挿入部212は、マッパ211により生成される処理データ信号OXI、OXQ、OYI、OYQに、TN信号生成部113により生成されるTN信号を挿入することで、挿入データ信号IXI、IXQ、IYI、IYQを生成する。実施の形態2では、送信データフレームの構成が、実施の形態1と異なっている。 The TN signal insertion unit 212 inserts the TN signal generated by the TN signal generation unit 113 into the processing data signals OXI, OXQ, OYI, and OYQ generated by the mapper 211, thereby inserting the insertion data signals IXI, IXQ, and IYI. , IYQ is generated. In the second embodiment, the configuration of the transmission data frame is different from that of the first embodiment.
 図6は、実施の形態2における送信データフレームの構成を示す概略図である。
 図6に示すように、送信データフレームは、同期信号とTN信号とで構成される。また、TN信号a~TN信号dは、互いにビット列の構成が異なるn個(nは1以上の整数)の歪み検出信号を有する。なお、整数nは、波形歪みを補正する周波数に応じて、予め定められていればよい。
FIG. 6 is a schematic diagram showing a configuration of a transmission data frame in the second embodiment.
As shown in FIG. 6, the transmission data frame includes a synchronization signal and a TN signal. Further, the TN signal a to the TN signal d have n (n is an integer of 1 or more) distortion detection signals having different bit string configurations. The integer n may be determined in advance according to the frequency for correcting the waveform distortion.
 なお、実施の形態2では、光送信器を運用する前の立ち上げ時を想定しているため、図3に示す実施の形態1における送信データフレームにおけるデータ信号を格納する領域も、TN信号を格納する領域として使用することができる。 In the second embodiment, since the start-up time before operating the optical transmitter is assumed, the area for storing the data signal in the transmission data frame in the first embodiment shown in FIG. It can be used as a storage area.
 TN信号aは、チャネルXIで発生する波形歪みを検出するために使用され、歪み検出信号TXIをn個含む。TN信号b、TN信号c及びTN信号dについても同様であり、それぞれチャネルXQ、チャネルYI及びチャネルYQで発生する波形歪みを検出するために使用され、それぞれ歪み検出信号TXQ、歪み検出信号TYI及び歪み検出信号TYQをn個含む。 The TN signal a is used to detect waveform distortion generated in the channel XI, and includes n distortion detection signals TXI. The same applies to the TN signal b, the TN signal c, and the TN signal d, which are used to detect waveform distortion generated in the channel XQ, the channel YI, and the channel YQ, respectively, and the distortion detection signal TXQ, the distortion detection signal TYI, and N distortion detection signals TYQ are included.
 図6に示されているように、実施の形態2では、処理データ信号OXI、OXQ、OYI、OYQを構成する複数の送信データフレームにおいて、データ信号を格納する領域に、TN信号a~dが挿入されている。 As shown in FIG. 6, in the second embodiment, in a plurality of transmission data frames constituting the processed data signals OXI, OXQ, OYI, and OYQ, TN signals a to d are stored in areas for storing data signals. Has been inserted.
 次に、TN信号aが含む歪み検出信号TXIのビット列について説明する。
 図7(a)~(c)は、TN信号aの時間波形とI/Q変調器123Xの光出力の時間波形を示す概略図である。
Next, a bit string of the distortion detection signal TXI included in the TN signal a will be described.
7A to 7C are schematic diagrams showing the time waveform of the TN signal a and the time waveform of the optical output of the I / Q modulator 123X.
 図7(a)は、TN信号aの時間波形を示す図である。図7(a)は、縦軸に駆動電圧、横軸に時間を示している。
 歪み検出信号TXI1は、正の値「1」及び負の値「-1」を1ビットずつ交互に繰り返す交番パターン、歪み検出信号TXI2は、正の値「1」及び負の値「-1」を2ビットずつ交互に繰り返す交番パターン、並びに、歪み検出信号TXInは、正の値「1」及び負の値「-1」をnビットずつ交互に繰り返す交番パターンで構成されるビット列である。上述のようなビット列で構成することで、歪み検出信号TXI1~TXInは、互いに異なる周波数のクロック信号とすることができ、これらが送信データフレームに挿入される。
FIG. 7A shows a time waveform of the TN signal a. FIG. 7A shows the drive voltage on the vertical axis and time on the horizontal axis.
The distortion detection signal TXI1 is an alternating pattern in which a positive value “1” and a negative value “−1” are alternately repeated bit by bit, and the distortion detection signal TXI2 is a positive value “1” and a negative value “−1”. And the distortion detection signal TXIn is a bit string composed of an alternating pattern in which a positive value “1” and a negative value “−1” are alternately repeated n bits. By configuring the bit string as described above, the distortion detection signals TXI1 to TXIn can be clock signals having different frequencies, and these are inserted into the transmission data frame.
 図7(b)は、I/Q変調器123Xにより光変調信号X1に含まれるTN信号aの時間波形を示す図である。図7(b)は、縦軸にX偏波における光強度、横軸に時間を示している。
 図2(a)に示すような周波数の利得特性となる場合には、高周波帯域の利得は、低周波帯域の利得と比較して低下する。従って、図7(b)に示すように、同符号のビットが連続する数が少ない、すなわちクロック信号の周波数が高い場合には、利得が低下するため、図7(b)に示すように光強度が小さくなる。逆に、同符号のビットが連続する数が多い、すなわちクロック信号の周波数が低い場合には、利得の低下が小さいため、光強度は大きくなる。
FIG. 7B is a diagram illustrating a time waveform of the TN signal a included in the optical modulation signal X1 by the I / Q modulator 123X. In FIG. 7B, the vertical axis indicates the light intensity in the X polarization, and the horizontal axis indicates the time.
In the case of the frequency gain characteristic as shown in FIG. 2A, the gain in the high frequency band is lower than the gain in the low frequency band. Therefore, as shown in FIG. 7B, when the number of consecutive bits with the same sign is small, that is, when the frequency of the clock signal is high, the gain decreases, so as shown in FIG. Strength decreases. Conversely, when the number of consecutive bits with the same sign is large, that is, when the frequency of the clock signal is low, the light intensity increases because the decrease in gain is small.
 上述のように生成されたTN信号aは、PD126Xにより生成された強度信号X2に含まれる。ここで、実施の形態1と同様に、歪み検出信号の周波数がPD126Xの帯域よりも大きい場合には、光変調信号X1の光強度の時間平均で一定となる強度信号X2が生成される。また、歪み検出信号の周波数がPD126Xの帯域よりも小さい場合には、1ビット毎に正しく生成された強度信号X2が生成される。 The TN signal a generated as described above is included in the intensity signal X2 generated by the PD 126X. Here, as in the first embodiment, when the frequency of the distortion detection signal is larger than the band of the PD 126X, the intensity signal X2 that is constant as the time average of the light intensity of the light modulation signal X1 is generated. When the frequency of the distortion detection signal is smaller than the band of the PD 126X, the intensity signal X2 that is correctly generated for each bit is generated.
 そこで、実施の形態1の場合と同様に、ADC127Xは、強度信号X2の強度レベルを平均化して一定値にする処理を実施することで、PD126Xの帯域に関係なく、歪み検出信号の強度信号X2は、周波数に対し一定値となる。ADC127Xは、これにより得られた値をデジタル信号に変換して、デジタル信号処理部210に入力する。デジタル信号処理部210では、歪み特定部114により特定が行われる。 Therefore, as in the case of the first embodiment, the ADC 127X performs the process of averaging the intensity level of the intensity signal X2 to obtain a constant value, so that the intensity signal X2 of the distortion detection signal regardless of the band of the PD 126X. Is a constant value with respect to frequency. The ADC 127X converts the value obtained thereby into a digital signal and inputs the digital signal to the digital signal processing unit 210. In the digital signal processing unit 210, the distortion is specified by the distortion specifying unit 114.
 歪み特定部114は、TN信号生成部113から、TN信号aに含まれるn個の歪み検出信号TXI1~TXInの強度と周波数の情報を入手し、ADC127Xから入力された強度信号X2と比較して、利得の周波数特性を算出する。そして、算出された利得の周波数特性に基づいて、周波数に依らず利得が一定となるように、利得特性を補正する設定を周波数領域補正部115が行う。このような歪み補正を実施した結果、歪み補正後のTN信号aの光の時間波形は、図7(c)のようになる。 The distortion specifying unit 114 obtains the intensity and frequency information of the n distortion detection signals TXI1 to TXIn included in the TN signal a from the TN signal generation unit 113, and compares the information with the intensity signal X2 input from the ADC 127X. The frequency characteristic of gain is calculated. Then, based on the calculated frequency characteristic of the gain, the frequency domain correction unit 115 performs a setting for correcting the gain characteristic so that the gain is constant regardless of the frequency. As a result of performing such distortion correction, the time waveform of the light of the TN signal a after distortion correction is as shown in FIG.
 今回は、TN信号aを例として説明したが、TN信号b~TN信号dにおいても同様の操作を実施することで、利得の周波数特性の算出及び補正が可能である。 This time, the TN signal a has been described as an example, but the frequency characteristics of the gain can be calculated and corrected by performing the same operation for the TN signal b to the TN signal d.
 今回は、実施の形態1と同様に、各偏波成分のI/Q変調器123X、123Yの後段にPD126X、126Yが備えられているが、実施の形態1と同様に、従来技術と同じくPBC124の後段にPDが備えられていてもよい。この場合においても、同精度で利得の周波数特性を算出し、補正することが可能である。 This time, as in the first embodiment, the PDs 126X and 126Y are provided in the subsequent stage of the I / Q modulators 123X and 123Y of the respective polarization components. However, as in the first embodiment, the PBC 124 is the same as in the prior art. A PD may be provided in the subsequent stage. Even in this case, it is possible to calculate and correct the gain frequency characteristic with the same accuracy.
 実施の形態2では、光送信器200の立ち上げ時に歪み補正を行うことで、送信データフレーム内の送信データ信号の領域もTN信号の領域として使用することができる。これにより、光変調信号X1、Y1の利得の周波数特性をさらに精度よく算出することが可能となり、周波数に依らず利得を一定にすることができる。 In the second embodiment, by performing distortion correction when the optical transmitter 200 is started up, the area of the transmission data signal in the transmission data frame can also be used as the area of the TN signal. As a result, the frequency characteristics of the gains of the optical modulation signals X1 and Y1 can be calculated with higher accuracy, and the gain can be made constant regardless of the frequency.
実施の形態3.
 図8は、実施の形態3に係る光送信器300の構成を概略的に示すブロック図である。
 光送信器300は、デジタル信号処理部310と、DAC120A~120Dと、ドライバ321A~321Dと、光源122と、I/Q変調器123X、123Yと、PBC124と、カプラ125X、125Yと、PD126X、126Yと、歪み特定部314と、歪み補正部328とを備える。
 実施の形態3に係る光送信器300は、デジタル信号処理部310、ドライバ321A~321D、歪み特定部314及び歪み補正部328を除いて、実施の形態1に係る光送信器100と同様に構成されている。
Embodiment 3 FIG.
FIG. 8 is a block diagram schematically showing the configuration of the optical transmitter 300 according to the third embodiment.
The optical transmitter 300 includes a digital signal processor 310, DACs 120A to 120D, drivers 321A to 321D, a light source 122, I / Q modulators 123X and 123Y, a PBC 124, couplers 125X and 125Y, and PDs 126X and 126Y. And a distortion specifying unit 314 and a distortion correcting unit 328.
The optical transmitter 300 according to the third embodiment has the same configuration as the optical transmitter 100 according to the first embodiment, except for the digital signal processing unit 310, the drivers 321A to 321D, the distortion specifying unit 314, and the distortion correcting unit 328. Has been.
 実施の形態1及び2では、複数周波数のクロック信号を使用して、I/Q変調器123X、123Yにより生成された光変調信号X1、Y1に含まれているクロック信号の強度信号X2、Y2から光変調信号の利得の周波数特性を算出し、FIRフィルタ等を使用して周波数に依らず利得が一定となるように補正した。
 実施の形態3では、光送信器300が備えるドライバ321A~321Dで、発生する高調波歪みを補正することを目的とした光送信器300の構成と動作について説明する。なお、実施の形態3では、実施の形態2と同様に、光送信器300の立ち上げ時の場合を想定して説明する。
In the first and second embodiments, clock signal intensity signals X2 and Y2 included in the optical modulation signals X1 and Y1 generated by the I / Q modulators 123X and 123Y using a clock signal having a plurality of frequencies are used. The frequency characteristic of the gain of the optical modulation signal was calculated and corrected so that the gain was constant regardless of the frequency using an FIR filter or the like.
In the third embodiment, the configuration and operation of the optical transmitter 300 for the purpose of correcting the harmonic distortion generated by the drivers 321A to 321D included in the optical transmitter 300 will be described. In the third embodiment, the case where the optical transmitter 300 is started up will be described as in the second embodiment.
 デジタル信号処理部310では、デジタル信号処理によりデータ信号DSから送信データ信号XI1#、XQ1#、YI1#、YQ1#を生成する。
 デジタル信号処理部310は、マッパ311と、TN信号挿入部112と、TN信号生成部313とを備える。実施の形態3におけるデジタル信号処理部310は、実施の形態1におけるデジタル信号処理部110が備えている歪み特定部114及び周波数領域補正部115を備えていない。また、マッパ311及びTN信号生成部313の処理が、実施の形態1におけるTN信号生成部113の処理と異なっている。
The digital signal processing unit 310 generates transmission data signals XI1 #, XQ1 #, YI1 #, and YQ1 # from the data signal DS by digital signal processing.
The digital signal processing unit 310 includes a mapper 311, a TN signal insertion unit 112, and a TN signal generation unit 313. The digital signal processing unit 310 according to the third embodiment does not include the distortion specifying unit 114 and the frequency domain correction unit 115 included in the digital signal processing unit 110 according to the first embodiment. Further, the processing of the mapper 311 and the TN signal generation unit 313 is different from the processing of the TN signal generation unit 113 in the first embodiment.
 マッパ311は、予め定められたデータ信号を、偏波を利用して処理することで、処理データ信号OXI、OXQ、OYI、OYQを生成する。光送信器300の運用を開始する前は、光送信器300にデータ信号が入力されないため、実施の形態2と同様に、マッパ311は、予め定められたデータ信号を用いる。 The mapper 311 generates a processed data signal OXI, OXQ, OYI, OYQ by processing a predetermined data signal using polarization. Since the data signal is not input to the optical transmitter 300 before the operation of the optical transmitter 300 is started, the mapper 311 uses a predetermined data signal as in the second embodiment.
 TN信号生成部313は、後述するように、特定パターンのビット列を構成することで、特定周波数のクロック信号を生成する。
 TN信号挿入部112は、TN信号生成部113により生成されたクロック信号を処理データ信号OXI、OXQ、OYI、OYQに挿入することで、送信データ信号XI1#、XQ1#、YI1#、YQ1#を生成する。
As will be described later, the TN signal generation unit 313 generates a clock signal having a specific frequency by configuring a bit string having a specific pattern.
The TN signal insertion unit 112 inserts the clock signal generated by the TN signal generation unit 113 into the processed data signals OXI, OXQ, OYI, and OYQ, thereby transmitting the transmission data signals XI1 #, XQ1 #, YI1 #, and YQ1 #. Generate.
 TN信号挿入部112によりクロック信号が挿入された送信データ信号XI1#、XQ1#、YI1#、YQ1#は、DAC120A~120Dによりアナログ信号に変換される。なお、DAC120A~120Dから出力されるアナログ信号は、正弦波であるとする。
 DAC120A~120Dによりアナログ信号に変換された送信データ信号XI1#、XQ1#、YI1#、YQ1#は、ドライバ321A~321Dに入力される。ドライバ321A~321Dは、送信データ信号XI1#、XQ1#、YI1#、YQ1#を増幅するとともに、ドライバ内部のFETの動作点を変更する等によって、波形の調整を行い、駆動信号XI2、XQ2、YI2、YQ2を生成する。これにより、ドライバ321A~321Dは、光信号に変換した際の波形歪みを低減させることができる。
The transmission data signals XI1 #, XQ1 #, YI1 #, and YQ1 # into which the clock signal is inserted by the TN signal insertion unit 112 are converted into analog signals by the DACs 120A to 120D. Note that the analog signals output from the DACs 120A to 120D are sine waves.
Transmission data signals XI1 #, XQ1 #, YI1 #, YQ1 # converted into analog signals by DACs 120A to 120D are input to drivers 321A to 321D. The drivers 321A to 321D amplify the transmission data signals XI1 #, XQ1 #, YI1 #, and YQ1 #, adjust the waveform by changing the operating point of the FET inside the driver, etc., and drive signals XI2, XQ2, YI2 and YQ2 are generated. As a result, the drivers 321A to 321D can reduce waveform distortion when converted into an optical signal.
 そして、I/Q変調器123X、123Yは、光源122で生成されたキャリア光を受けて、駆動信号XI2、XQ2、YI2、YQ2に基づいて、光変調信号X1、Y1を生成する。
 PBC124は、光変調信号X1、Y1を偏波合成し、伝送路へ送出する。
The I / Q modulators 123X and 123Y receive the carrier light generated by the light source 122 and generate optical modulation signals X1 and Y1 based on the drive signals XI2, XQ2, YI2, and YQ2.
The PBC 124 combines the polarizations of the optical modulation signals X1 and Y1 and sends them to the transmission line.
 ここで、I/Q変調器123X、123Yにより生成された光変調信号X1、Y1は、I/Q変調器123X、123Yの後段にそれぞれ配置されたカプラ125X、125Yにより分岐されて、PD126X、126Yに入力される。
 PD126X、126Yは、入力された光変調信号X1、Y1に基づいて、強度信号X2、Y2を生成する。
Here, the optical modulation signals X1 and Y1 generated by the I / Q modulators 123X and 123Y are branched by the couplers 125X and 125Y arranged at the subsequent stage of the I / Q modulators 123X and 123Y, respectively, and PDs 126X and 126Y are obtained. Is input.
The PDs 126X and 126Y generate intensity signals X2 and Y2 based on the input light modulation signals X1 and Y1.
 歪み特定部314は、TN信号生成部113により生成されたクロック信号を参照することで、強度信号X2、Y2に含まれる高調波成分を特定する。
 歪み補正部328は、歪み特定部314により特定された高調波成分が最小となるように、ドライバ321A~321Dのパラメータを調整することで、ドライバ321A~321Dから出力される駆動信号XI2、XQ2、YI2、YQ2に含まれる高調波成分を抑制する。ここでのドライバ321A~321Dのパラメータは、例えば、入力振幅に対する出力振幅の利得及び出力波形のクロスポイント等を調整する端子に与えるバイアス電圧が挙げられる。なお、歪み特定部314及び歪み補正部328の動作の詳細については、後述する。
The distortion specifying unit 314 specifies the harmonic component included in the intensity signals X2 and Y2 by referring to the clock signal generated by the TN signal generating unit 113.
The distortion correction unit 328 adjusts the parameters of the drivers 321A to 321D so that the harmonic component specified by the distortion specifying unit 314 is minimized, thereby driving signals XI2, XQ2, Harmonic components included in YI2 and YQ2 are suppressed. The parameters of the drivers 321A to 321D here include, for example, a bias voltage applied to a terminal for adjusting a gain of an output amplitude with respect to an input amplitude, a cross point of an output waveform, and the like. The details of the operations of the distortion specifying unit 314 and the distortion correcting unit 328 will be described later.
 図9は、実施の形態3における送信データフレームの構成を示す概略図である。
 上述のように、実施の形態3では、実施の形態2と同様に、光送信器300の立ち上げ時を想定し、本来送信データ信号を格納する領域にも、TN信号生成部113により生成された特定周波数のクロック信号TXICLK、TXQCLK、TYICLK、TYQCLKが格納される。なお、クロック信号TXICLK、TXQCLK、TYICLK、TYQCLKは、ドライバ121A、121B、121C、121Dの高調波歪みを特定するために使用され、処理データ信号OXI、OXQ、OYI、OYQに挿入される。また、例えば、処理データ信号OXIにクロック信号TXICLKが挿入されているときは、その他のチャネルには「0(ゼロ)」が格納される。
FIG. 9 is a schematic diagram showing a configuration of a transmission data frame in the third embodiment.
As described above, in the third embodiment, similarly to the second embodiment, assuming that the optical transmitter 300 is started up, the TN signal generation unit 113 also generates an area where the transmission data signal is originally stored. The clock signals TXICLK, TXQCLK, TYICLK, and TYQCLK having a specific frequency are stored. The clock signals TXICLK, TXQCLK, TYICLK, and TYQCLK are used to specify the harmonic distortion of the drivers 121A, 121B, 121C, and 121D, and are inserted into the processed data signals OXI, OXQ, OYI, and OYQ. For example, when the clock signal TXICLK is inserted into the processing data signal OXI, “0 (zero)” is stored in the other channels.
 図9に示されているように、実施の形態3では、処理データ信号OXI、OXQ、OYI、OYQを構成する複数の送信データフレームにおいて、データ信号を格納する領域に、クロック信号TXICLK、TXQCLK、TYICLK、TYQCLKが挿入されている。 As shown in FIG. 9, in the third embodiment, in a plurality of transmission data frames constituting the processed data signals OXI, OXQ, OYI, OYQ, clock signals TXICLK, TXQCLK, TYICLK and TYQCLK are inserted.
 次に、TN信号生成部313により生成されるクロック信号のビット列の構成を説明する。ここでは、例として、処理データ信号OXIに挿入されるクロック信号TXICLKについて説明する。 Next, the configuration of the bit string of the clock signal generated by the TN signal generation unit 313 will be described. Here, as an example, the clock signal TXICLK inserted into the processing data signal OXI will be described.
 クロック信号TXICLKは、正の値「1」及び負の値「-1」で構成され、それぞれが数ビットずつ交互に繰り返される。例えば、送信データ信号のボーレートが32Gbaudの場合は、正の値「1」を5ビット、負の値「-1」を5ビット交互に繰り返すことで、3.2GHzのクロック信号を生成することができる。ただし、生成するクロック信号の周波数は、I/Q変調器123Xの後段に備えられるPD126Xの帯域よりも小さくする必要がある。 The clock signal TXICLK is composed of a positive value “1” and a negative value “−1”, and each is alternately repeated several bits. For example, when the baud rate of the transmission data signal is 32 Gbaud, a 3.2 GHz clock signal can be generated by alternately repeating a positive value “1” by 5 bits and a negative value “−1” by 5 bits. it can. However, the frequency of the generated clock signal needs to be smaller than the band of the PD 126X provided at the subsequent stage of the I / Q modulator 123X.
 ここでは、クロック信号TXICLKについて説明したが、クロック信号TXQCLK、TYICLK、TYQCLKについても、クロック信号TXICLKと同様のビット列の構成としたクロック信号とする。なお、これらのクロック信号TXICLK、TXQCLK、TYICLK、TYQCLKは、その周波数が受光器の帯域より小さければ、互いに異なる周波数のクロック信号であってもよいし、全て同じ周波数のクロック信号であってもよい。 Although the clock signal TXICLK has been described here, the clock signals TXQCLK, TYICLK, and TYQCLK are also clock signals having the same bit string configuration as the clock signal TXICLK. The clock signals TXICLK, TXQCLK, TYICLK, and TYQCLK may be clock signals having different frequencies or may be clock signals having the same frequency as long as the frequency is lower than the band of the light receiver. .
 次に、歪み特定部314及び歪み補正部328の動作の詳細について説明する。
 ここでは、例として、PD126Xにより生成された強度信号X2に含まれているクロック信号TXICLKと、TN信号生成部113により生成されたクロック信号TXICLKとの比較について説明する。
Next, details of operations of the distortion specifying unit 314 and the distortion correcting unit 328 will be described.
Here, as an example, a comparison between the clock signal TXICLK included in the intensity signal X2 generated by the PD 126X and the clock signal TXICLK generated by the TN signal generation unit 113 will be described.
 歪み特定部314は、TN信号生成部313により生成されたクロック信号TXICLKに基づいて、PD126Xにより生成された強度信号X2に含まれる高調波成分を特定する。特定する方法としては、例えば、同期検波が挙げられる。一般に、高調波成分の周波数は、元信号の周波数の奇数倍であることが知られている。従って、TN信号生成部313により生成されたクロック信号TXICLKを参照信号として同期検波により強度信号X2に含まれる高調波成分を特定する場合には、歪み特定部314は、まず、クロック信号TXICLKの周波数を所望の周波数、すなわちクロック信号の周波数を奇数倍に変換してから同期検波を実施する。歪み特定部314は、このように動作することで、高調波成分を特定することができる。なお、高調波成分は、複数の周波数成分を持つため、歪み特定部314は、それぞれの周波数に対してクロック信号の周波数を変換する処理を実施することで、それぞれの周波数の成分を特定できる。 The distortion specifying unit 314 specifies a harmonic component included in the intensity signal X2 generated by the PD 126X based on the clock signal TXICLK generated by the TN signal generating unit 313. As a specifying method, for example, synchronous detection can be cited. In general, it is known that the frequency of the harmonic component is an odd multiple of the frequency of the original signal. Therefore, when the harmonic component included in the intensity signal X2 is identified by synchronous detection using the clock signal TXICLK generated by the TN signal generation unit 313 as a reference signal, the distortion identification unit 314 first determines the frequency of the clock signal TXICLK. Is converted to an odd multiple of the desired frequency, ie, the frequency of the clock signal, and then synchronous detection is performed. The distortion specifying unit 314 can specify the harmonic component by operating in this way. Since the harmonic component has a plurality of frequency components, the distortion specifying unit 314 can specify the components of the respective frequencies by performing processing for converting the frequency of the clock signal with respect to the respective frequencies.
 歪み特定部314により特定された歪み量に基づいて、歪み補正部328では、歪み量が最小化されるようにドライバ321Aのパラメータ(調整値)の設定を変更する。ここでのパラメータは、上述にも示したように、ドライバ321Aの入力振幅に対する出力振幅の利得、出力波形のクロスポイント等の性能を決める調整端子に与えるバイアス電圧が例として挙げられる。 Based on the distortion amount specified by the distortion specifying unit 314, the distortion correction unit 328 changes the setting of the parameter (adjustment value) of the driver 321A so that the distortion amount is minimized. Examples of the parameters here include the bias voltage applied to the adjustment terminal that determines the performance such as the gain of the output amplitude with respect to the input amplitude of the driver 321A and the cross point of the output waveform, as described above.
 図10(a)~(c)は、実施の形態3におけるクロック信号の時間波形を示す概略図である。
 図10(a)は、ドライバ321Aに入力するクロック信号TXICLKの時間波形を示す概略図である。図10(a)は、縦軸に駆動電圧、横軸に時間を示している。
 図10(b)は、歪み補正を実施していない場合の、ドライバ321Aから出力されたクロック信号TXICLKの時間波形を示す概略図である。図10(b)は、縦軸に駆動電圧、横軸に時間を示している。ドライバ321Aで発生する高調波歪みを補正していないため、ドライバ321Aは、入力信号となる図10(a)に示すクロック信号を線形に増幅できず、出力波形は、ドライバ321Aの出力の最大値が一定値で飽和した波形となる。
 図10(c)は、歪み特定部314により特定された歪み量に基づいて、歪み補正部328により歪み補正が実施された場合のドライバ321Aから出力されたクロック信号TXICLKの時間波形を示す概略図である。図10(c)は、縦軸に駆動電圧、横軸に時間を示している。図10(c)に示されている波形は、ドライバ321Aで発生する高調波歪みを低減するように補正されているため、図10(a)に示す時間波形を入力した場合に、線形に増幅して出力された時間波形となる。
FIGS. 10A to 10C are schematic diagrams showing time waveforms of clock signals in the third embodiment.
FIG. 10A is a schematic diagram showing a time waveform of the clock signal TXICLK input to the driver 321A. FIG. 10A shows the driving voltage on the vertical axis and time on the horizontal axis.
FIG. 10B is a schematic diagram illustrating a time waveform of the clock signal TXICLK output from the driver 321A when distortion correction is not performed. FIG. 10B shows the driving voltage on the vertical axis and time on the horizontal axis. Since the harmonic distortion generated in the driver 321A is not corrected, the driver 321A cannot linearly amplify the clock signal shown in FIG. 10A as the input signal, and the output waveform is the maximum value of the output of the driver 321A. Becomes a waveform saturated at a constant value.
FIG. 10C is a schematic diagram illustrating a time waveform of the clock signal TXICLK output from the driver 321A when distortion correction is performed by the distortion correction unit 328 based on the distortion amount specified by the distortion specifying unit 314. It is. FIG. 10C shows the driving voltage on the vertical axis and time on the horizontal axis. Since the waveform shown in FIG. 10C is corrected so as to reduce the harmonic distortion generated by the driver 321A, it is amplified linearly when the time waveform shown in FIG. 10A is input. Output time waveform.
 以上では、歪み特定部314において、同期検波を使用して高調波成分を特定する手法を説明したが、高調波成分を特定することができるのであれば、どのような方法が使用されてもよい。
 他にも高調波成分を特定する方法としては、例えば、強度信号X2とクロック信号TXICLKとを周波数領域で比較する方法がある。この方法では、強度信号X2とクロック信号TXICLKとをFFTによりフーリエ変換を行い、減算処理することで、強度信号X2に含まれる高調波成分を特定することができる。
 また、他の方法として、強度信号X2に対し元のクロック信号TXICLKの周波数より大きい周波数の信号のみを通すハイパスフィルタを使用する方法がある。ハイパスフィルタを使用する場合、強度信号Xに含まれるクロック信号TXICLKの高調波成分のみを特定することができる。従って、TN信号生成部313により生成されるクロック信号TXICLKの周波数のみを歪み特定部314へ伝えれば、クロック信号TXICLKを歪み特定部314に入力する必要はない。
In the above, the method of specifying the harmonic component using the synchronous detection in the distortion specifying unit 314 has been described, but any method may be used as long as the harmonic component can be specified. .
As another method for identifying the harmonic component, for example, there is a method of comparing the intensity signal X2 and the clock signal TXICLK in the frequency domain. In this method, the harmonic component contained in the intensity signal X2 can be specified by performing Fourier transform on the intensity signal X2 and the clock signal TXICLK by FFT and performing a subtraction process.
As another method, there is a method using a high-pass filter that passes only a signal having a frequency larger than the frequency of the original clock signal TXICLK with respect to the intensity signal X2. When the high-pass filter is used, only the harmonic component of the clock signal TXICLK included in the intensity signal X can be specified. Therefore, if only the frequency of the clock signal TXICLK generated by the TN signal generation unit 313 is transmitted to the distortion specifying unit 314, it is not necessary to input the clock signal TXICLK to the distortion specifying unit 314.
 ここでは、歪み特定部314及び歪み補正部328の動作例として、クロック信号TXICLKを使用する場合について説明したが、クロック信号TXQCLK、TYICLK、TYQCLKについても、クロック信号TXICLKと同様である。すなわち、歪み特定部314は、PD126X、126Yにより生成された強度信号X2、Y2と、TN信号生成部113により生成されたクロック信号とを比較することで高調波成分を特定し、その特定結果に基づいてそれぞれドライバ321b、321C、321Dにより発生する高調波歪みを補正することができる。 Here, the case where the clock signal TXICLK is used as the operation example of the distortion specifying unit 314 and the distortion correction unit 328 has been described. However, the clock signals TXQCLK, TYICLK, and TYQCLK are the same as the clock signal TXICLK. That is, the distortion identifying unit 314 identifies the harmonic component by comparing the intensity signals X2 and Y2 generated by the PDs 126X and 126Y with the clock signal generated by the TN signal generating unit 113, and the identification result Based on this, the harmonic distortion generated by the drivers 321b, 321C, and 321D can be corrected.
 実施の形態3は、光送信器300の立ち上げ時に、特定周波数のクロック信号を使用し、PD126X、126Yにより生成される強度信号X2、Y2と元のクロック信号とを比較することで高調波成分の検出する構成とした。この検出結果に基づき、高調波成分を低減するようにドライバの持つ調整端子のバイアス電圧の値を調整することで、高調波歪みの補正することが可能となった。 In the third embodiment, when the optical transmitter 300 is started up, a clock signal with a specific frequency is used, and the intensity signals X2 and Y2 generated by the PDs 126X and 126Y are compared with the original clock signal to thereby generate harmonic components. It was set as the structure which detects. Based on this detection result, the harmonic distortion can be corrected by adjusting the bias voltage value of the adjustment terminal of the driver so as to reduce the harmonic component.
 図11(a)及び(b)は、ハードウェア構成例を示す概略図である。
 以上に記載されたデジタル信号処理部110、210、歪み特定部314及び歪み補正部328の一部又は全部は、例えば、図11(a)に示されているように、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuits)又はFPGA(Field Programmable Gate Array)等の処理回路10で構成することもできる。
FIGS. 11A and 11B are schematic diagrams illustrating hardware configuration examples.
A part or all of the digital signal processing units 110 and 210, the distortion specifying unit 314, and the distortion correcting unit 328 described above may be a single circuit or a composite circuit as shown in FIG. , A programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuits) or an FPGA (Field Programmable Gate Array).
 また、デジタル信号処理部110、210、歪み特定部314及び歪み補正部328の一部又は全部は、例えば、図11(b)に示されているように、メモリ11と、メモリ11に格納されているプログラムを実行するCPU(Central Processing Unit)等のプロセッサ12とにより構成することもできる。このようなプログラムは、ネットワークを通じて提供されてもよく、また、記録媒体に記録されて提供されてもよい。 In addition, a part or all of the digital signal processing units 110 and 210, the distortion specifying unit 314, and the distortion correcting unit 328 are stored in the memory 11 and the memory 11, for example, as illustrated in FIG. It can also be configured with a processor 12 such as a CPU (Central Processing Unit) that executes the program being executed. Such a program may be provided through a network, or may be provided by being recorded on a recording medium.
 100,200,300 光送信器、 110,210,310 デジタル信号処理部、 111,211,311 マッパ、 112,212 TN信号挿入部、 113,313 TN信号生成部、 114,314 歪み特定部、 115 周波数領域補正部、 120A,120B,120C,120D DAC、 121A,121B,121C,121D,321A,321B,321C,321D ドライバ、 122 光源、 123X,123Y I/Q変調器、 124 PBC、 125X,125Y カプラ、 126X,126Y PD、 127X,127Y ADC、 328 歪み補正部。 100, 200, 300 optical transmitter, 110, 210, 310 digital signal processing unit, 111, 211, 311 mapper, 112, 212 TN signal insertion unit, 113, 313 TN signal generation unit, 114, 314 distortion identification unit, 115 Frequency domain correction unit, 120A, 120B, 120C, 120D DAC, 121A, 121B, 121C, 121D, 321A, 321B, 321C, 321D driver, 122 light source, 123X, 123Y I / Q modulator, 124 PBC, 125X, 125Y coupler 126X, 126Y PD, 127X, 127Y ADC, 328 distortion correction unit.

Claims (18)

  1.  2値のビット列による交番パターンで構成されたクロック信号であるトレーニング信号を含む送信データ信号を生成するデジタル信号処理部と、
     前記送信データ信号をアナログ信号に変換する第1のコントローラと、
     前記アナログ信号を増幅して駆動信号を生成するドライバと、
     キャリア光を発する光源と、
     前記駆動信号に基づいて前記キャリア光を変調することで、光変調信号を生成する変調器と、
     前記光変調信号の強度を示す強度信号を生成する受光器と、
     前記強度信号をデジタル信号に変換する第2のコントローラと、を備え、
     前記デジタル信号処理部は、前記トレーニング信号と前記デジタル信号とを比較することで、前記光変調信号の波形歪みを検出して、当該波形歪みを補正すること
     を特徴とする光送信器。
    A digital signal processing unit that generates a transmission data signal including a training signal that is a clock signal configured by an alternating pattern of binary bit strings;
    A first controller for converting the transmission data signal into an analog signal;
    A driver that amplifies the analog signal to generate a drive signal;
    A light source that emits carrier light;
    A modulator that generates an optical modulation signal by modulating the carrier light based on the drive signal;
    A light receiver for generating an intensity signal indicating the intensity of the light modulation signal;
    A second controller for converting the intensity signal into a digital signal;
    The optical signal processing unit detects the waveform distortion of the optical modulation signal by comparing the training signal and the digital signal, and corrects the waveform distortion.
  2.  前記第2のコントローラは、前記強度信号で示される強度を平均化した値を示すように前記デジタル信号を生成すること
     を特徴とする請求項1に記載の光送信器。
    The optical transmitter according to claim 1, wherein the second controller generates the digital signal so as to indicate a value obtained by averaging the intensity indicated by the intensity signal.
  3.  前記デジタル信号処理部は、前記交番パターンにおいて、同じ値が連続するビット数を変化させることで、前記クロック信号の周波数を変化させて、周波数毎に前記波形歪みを検出すること
     を特徴とする請求項1又は2に記載の光送信器。
    The digital signal processing unit detects the waveform distortion for each frequency by changing the frequency of the clock signal by changing the number of consecutive bits having the same value in the alternating pattern. Item 3. The optical transmitter according to Item 1 or 2.
  4.  前記送信データ信号には、複数の同期信号が含まれており、
     前記デジタル信号処理部は、前記複数の同期信号の各々が検出される毎に、周波数を変えて前記トレーニング信号を前記送信データ信号に含めること
     を特徴とする請求項3に記載の光送信器。
    The transmission data signal includes a plurality of synchronization signals,
    The optical transmitter according to claim 3, wherein the digital signal processing unit changes the frequency and includes the training signal in the transmission data signal each time the plurality of synchronization signals are detected.
  5.  前記受光器は、前記光変調信号の内、前記トレーニング信号に対応する部分のみの強度を示すように前記強度信号を生成すること
     を特徴とする請求項4に記載の光送信器。
    The optical transmitter according to claim 4, wherein the optical receiver generates the intensity signal so as to indicate an intensity of only a portion corresponding to the training signal in the optical modulation signal.
  6.  前記デジタル信号処理部は、
     前記光送信器に入力されたデータ信号を、偏波を利用して処理することで、処理データ信号を生成するマッパと、
     前記トレーニング信号を生成するトレーニング信号生成部と、
     前記処理データ信号に前記トレーニング信号を挿入することで、挿入データ信号を生成するトレーニング信号挿入部と、
     前記クロック信号と、前記デジタル信号とを周波数毎に比較することで、利得の周波数特性を特定する歪み特定部と、
     前記利得の周波数特性に基づいて、前記挿入データ信号において、周波数毎に利得を補正することで、前記送信データ信号を生成する歪み補正部と、を備えること
     を特徴とする請求項1から5の何れか一項に記載の光送信器。
    The digital signal processor is
    A mapper that generates a processed data signal by processing the data signal input to the optical transmitter using polarization; and
    A training signal generator for generating the training signal;
    A training signal insertion unit for generating an insertion data signal by inserting the training signal into the processed data signal;
    By comparing the clock signal and the digital signal for each frequency, a distortion specifying unit that specifies a frequency characteristic of gain,
    The distortion correction part which produces | generates the said transmission data signal by correct | amending a gain for every frequency in the said insertion data signal based on the frequency characteristic of the said gain is provided. The optical transmitter according to any one of the above.
  7.  前記トレーニング信号挿入部は、前記処理データ信号を構成する複数の送信データフレームにおいて、前記データ信号を格納する領域の間に前記トレーニング信号を挿入すること
     を特徴とする請求項6に記載の光送信器。
    The optical transmission according to claim 6, wherein the training signal insertion unit inserts the training signal between areas in which the data signal is stored in a plurality of transmission data frames constituting the processed data signal. vessel.
  8.  前記デジタル信号処理部は、
     予め定められたデータ信号を、偏波を利用して処理することで、処理データ信号を生成するマッパと、
     前記トレーニング信号を生成するトレーニング信号生成部と、
     前記処理データ信号に前記トレーニング信号を挿入することで、挿入データ信号を生成するトレーニング信号挿入部と、
     前記クロック信号と、前記デジタル信号とを周波数毎に比較することで、利得の周波数特性を特定する歪み特定部と、
     前記利得の周波数特性に基づいて、前記挿入データ信号において、周波数毎に利得を補正することで、前記送信データ信号を生成する歪み補正部と、を備えること
     を特徴とする請求項1から5の何れか一項に記載の光送信器。
    The digital signal processor is
    A mapper that generates a processed data signal by processing a predetermined data signal using polarization; and
    A training signal generator for generating the training signal;
    A training signal insertion unit for generating an insertion data signal by inserting the training signal into the processed data signal;
    By comparing the clock signal and the digital signal for each frequency, a distortion specifying unit that specifies a frequency characteristic of gain,
    The distortion correction part which produces | generates the said transmission data signal by correct | amending a gain for every frequency in the said insertion data signal based on the frequency characteristic of the said gain is provided. The optical transmitter according to any one of the above.
  9.  前記トレーニング信号挿入部は、前記処理データ信号を構成する複数の送信データフレームにおいて、前記データ信号を格納する領域に前記トレーニング信号を挿入すること
     を特徴とする請求項8に記載の光送信器。
    The optical transmitter according to claim 8, wherein the training signal insertion unit inserts the training signal into an area in which the data signal is stored in a plurality of transmission data frames constituting the processed data signal.
  10.  前記歪み補正部は、前記歪み特定部で特定された利得の周波数特性に基づいて、周波数毎に利得を補正するように乗算器のパラメータを設定するFIR(Finite Impulse Response)フィルタであること
     を特徴とする請求項6から9の何れか一項に記載の光送信器。
    The distortion correction unit is an FIR (Finite Impulse Response) filter that sets a multiplier parameter so as to correct the gain for each frequency based on the frequency characteristic of the gain specified by the distortion specifying unit. An optical transmitter according to any one of claims 6 to 9.
  11.  2値のビット列の交番パターンで構成されたクロック信号を含む送信データ信号を生成するデジタル信号処理部と、
     前記送信データ信号をアナログ信号に変換する第1のコントローラと、
     前記アナログ信号を増幅するとともに、前記アナログ信号の波形を調整することで、駆動信号を生成するドライバと、
     キャリア光を発する光源と、
     前記駆動信号に基づいて前記キャリア光を変調することで、光変調信号を生成する変調器と、
     前記光変調信号の強度を示す強度信号を生成する受光器と、
     前記クロック信号に対応する部分の強度を示す前記強度信号から、予め定められた周波数よりも高い高調波成分を特定する歪み特定部と、
     前記ドライバに、前記高調波成分を抑制するように前記アナログ信号の波形を調整させることで、前記光変調信号の波形歪みを補正する歪み補正部と、を備えること
     を特徴とする光送信器。
    A digital signal processing unit for generating a transmission data signal including a clock signal composed of an alternating pattern of binary bit strings;
    A first controller for converting the transmission data signal into an analog signal;
    A driver that generates a drive signal by amplifying the analog signal and adjusting the waveform of the analog signal;
    A light source that emits carrier light;
    A modulator that generates an optical modulation signal by modulating the carrier light based on the drive signal;
    A light receiver for generating an intensity signal indicating the intensity of the light modulation signal;
    From the intensity signal indicating the intensity of the portion corresponding to the clock signal, a distortion specifying unit that specifies a higher harmonic component than a predetermined frequency,
    An optical transmitter comprising: a distortion correction unit that corrects a waveform distortion of the optical modulation signal by causing the driver to adjust a waveform of the analog signal so as to suppress the harmonic component.
  12.  前記歪み特定部は、前記クロック信号と、前記強度信号とを比較することで、前記高調波成分を特定すること
     を特徴とする請求項11に記載の光送信器。
    The optical transmitter according to claim 11, wherein the distortion specifying unit specifies the harmonic component by comparing the clock signal and the intensity signal.
  13.  前記歪み特定部は、前記クロック信号と、前記強度信号とを同期検波することで、前記高調波成分を特定すること
     を特徴とする請求項12に記載の光送信器。
    The optical transmitter according to claim 12, wherein the distortion specifying unit specifies the harmonic component by synchronously detecting the clock signal and the intensity signal.
  14.  前記歪み特定部は、前記クロック信号と、前記強度信号とをFFT(Fast Fourier Transform)により周波数領域に変換し、減算処理を行うことにより、前記高調波成分を特定すること
     を特徴とする請求項12に記載の光送信器。
    The distortion specifying unit specifies the harmonic component by converting the clock signal and the intensity signal into a frequency domain by FFT (Fast Fourier Transform) and performing a subtraction process. 13. The optical transmitter according to 12.
  15.  前記歪み特定部は、前記クロック信号の周波数より高い帯域のみを通過させるハイパスフィルタを使用することにより、前記強度信号から前記高調波成分を特定すること
     を特徴とする請求項12に記載の光送信器。
    The optical transmission according to claim 12, wherein the distortion specifying unit specifies the harmonic component from the intensity signal by using a high-pass filter that passes only a band higher than the frequency of the clock signal. vessel.
  16.  前記歪み補正部は、前記高調波成分が最小となるように前記ドライバを制御すること
     を特徴とする請求項11から15の何れか一項に記載の光送信器。
    The optical transmitter according to any one of claims 11 to 15, wherein the distortion correction unit controls the driver so that the harmonic component is minimized.
  17.  2値のビット列による交番パターンで構成されたクロック信号であるトレーニング信号を含む送信データ信号を生成し、
     前記送信データ信号をアナログ信号に変換し、
     前記アナログ信号を増幅して駆動信号を生成し、
     前記駆動信号に基づいてキャリア光を変調することで、光変調信号を生成し、
     前記光変調信号の強度を示す強度信号を生成し、
     前記強度信号をデジタル信号に変換し、
     前記トレーニング信号と前記デジタル信号とを比較することで、前記光変調信号の波形歪みを検出して、当該波形歪みを補正すること
     を特徴とする波形歪み補正方法。
    Generating a transmission data signal including a training signal, which is a clock signal composed of an alternating pattern of binary bit strings;
    Converting the transmission data signal into an analog signal;
    Amplifying the analog signal to generate a drive signal;
    By modulating the carrier light based on the drive signal, an optical modulation signal is generated,
    Generating an intensity signal indicating the intensity of the light modulation signal;
    Converting the intensity signal into a digital signal;
    A waveform distortion correction method comprising: comparing the training signal and the digital signal to detect waveform distortion of the optical modulation signal and correcting the waveform distortion.
  18.  2値のビット列の交番パターンで構成されたクロック信号を含む送信データ信号を生成し、
     前記送信データ信号をアナログ信号に変換し、
     前記アナログ信号を増幅することで、駆動信号を生成し、
     前記駆動信号に基づいてキャリア光を変調することで、光変調信号を生成し、
     前記光変調信号の強度を示す強度信号を生成し、
     前記クロック信号に対応する部分の強度を示す前記強度信号から、予め定められた周波数よりも高い高調波成分を特定し、
     前記高調波成分を抑制するように前記アナログ信号の波形を調整することで、前記光変調信号の波形歪みを補正すること
     を特徴とする波形歪み補正方法。
    Generating a transmission data signal including a clock signal composed of an alternating pattern of binary bit strings;
    Converting the transmission data signal into an analog signal;
    Amplifying the analog signal to generate a drive signal,
    By modulating the carrier light based on the drive signal, an optical modulation signal is generated,
    Generating an intensity signal indicating the intensity of the light modulation signal;
    From the intensity signal indicating the intensity of the portion corresponding to the clock signal, identify harmonic components higher than a predetermined frequency,
    A waveform distortion correction method, wherein the waveform distortion of the optical modulation signal is corrected by adjusting the waveform of the analog signal so as to suppress the harmonic component.
PCT/JP2016/087772 2016-12-19 2016-12-19 Optical transmitter and waveform distortion correction method WO2018116344A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087772 WO2018116344A1 (en) 2016-12-19 2016-12-19 Optical transmitter and waveform distortion correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087772 WO2018116344A1 (en) 2016-12-19 2016-12-19 Optical transmitter and waveform distortion correction method

Publications (1)

Publication Number Publication Date
WO2018116344A1 true WO2018116344A1 (en) 2018-06-28

Family

ID=62626370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087772 WO2018116344A1 (en) 2016-12-19 2016-12-19 Optical transmitter and waveform distortion correction method

Country Status (1)

Country Link
WO (1) WO2018116344A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072942A (en) * 2014-10-02 2016-05-09 富士通株式会社 Optical transmitter and waveform distortion correction method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072942A (en) * 2014-10-02 2016-05-09 富士通株式会社 Optical transmitter and waveform distortion correction method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAWAKAMI, HIROTO ET AL.: "Auto Bias Control Technique Based on Asymmetric Bias Dithering for Optical QPSK Modulation", IEEE JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 30, no. 7, 13 January 2012 (2012-01-13), pages 962 - 968, XP011422548, DOI: doi:10.1109/JLT.2012.2184261 *
LI, YUPENG ET AL.: "Any Bias Point Control Technique for Mach-Zehnder Modulator", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 25, no. 24, 9 October 2013 (2013-10-09), pages 2412 - 2415, XP055388814, DOI: doi:10.1109/LPT.2013.2285184 *
YOSHIDA TSUYOSHI ET AL.: "Automatic bias control for arbitrary optical signal generation with a dual parallel Mach-Zehnder Modulator (MZM)", IEICE TECHNICAL REPORT, 22 July 2010 (2010-07-22), pages 1 - 6, XP055606282, ISBN: 978-1-4244-6785-3 *

Similar Documents

Publication Publication Date Title
US9450680B2 (en) Optical communication system, optical transmitter, and optical receiver
JP4755690B2 (en) Optical field receiver and optical transmission system
US11082280B2 (en) Mitigating optical modulator impairment for coherent optical communication systems
US20090220239A1 (en) Methods and apparatus for optical transmission of digital signals
US20100150577A1 (en) Communication System and Method With Signal Constellation
EP2963846B1 (en) Wavelength-division multiplexing optical transmission device and wavelength-division multiplexing optical transmission method
US9960846B2 (en) Free-space optical communication system and method in scattering environments
JP6095797B2 (en) Optical data transmission method
US9191121B2 (en) Optical transmitter and method thereof
US10263724B2 (en) Wavelength-division multiplexing using shared process information
JP6231434B2 (en) Optical transmitter and linearity adjustment method
US20170250759A1 (en) Optical transmitter, optical transmission device, and transmission method
JP7037061B2 (en) Communication system, optical transmitter and receiver
US10205528B2 (en) Optical transmitter and optical communication method
WO2018116344A1 (en) Optical transmitter and waveform distortion correction method
US9479252B2 (en) Pre-equalization using phase correction
JP6609864B2 (en) High frequency modulation signal generator and phase fluctuation suppressing method
US20230275674A1 (en) Signal processing apparatus, optical transmitting apparatus, optical receiving apparatus, optical transmission system, and signal processing method
WO2017002178A1 (en) Optical transmitter, optical receiver, optical transmission system, and optical transmission method
JP2013016978A (en) Optical communication system and optical communication method
JP6919361B2 (en) Optical receiver, optical transmitter, optical communication system, and skew adjustment method
JP2023177722A (en) Data processing device, transmission device, communication system, data processing method, and program
JP2009111576A (en) Telecommunication apparatus and method for compensating in-phase quadrature mismatching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP