JP2009111576A - Telecommunication apparatus and method for compensating in-phase quadrature mismatching - Google Patents

Telecommunication apparatus and method for compensating in-phase quadrature mismatching Download PDF

Info

Publication number
JP2009111576A
JP2009111576A JP2007280148A JP2007280148A JP2009111576A JP 2009111576 A JP2009111576 A JP 2009111576A JP 2007280148 A JP2007280148 A JP 2007280148A JP 2007280148 A JP2007280148 A JP 2007280148A JP 2009111576 A JP2009111576 A JP 2009111576A
Authority
JP
Japan
Prior art keywords
signal
quadrature
phase
reference signal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007280148A
Other languages
Japanese (ja)
Other versions
JP4998207B2 (en
Inventor
Lars Jansen Sander
ラース ヤンセン サンダー
Itsuro Morita
逸郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Research Inc
Original Assignee
KDDI R&D Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI R&D Laboratories Inc filed Critical KDDI R&D Laboratories Inc
Priority to JP2007280148A priority Critical patent/JP4998207B2/en
Publication of JP2009111576A publication Critical patent/JP2009111576A/en
Application granted granted Critical
Publication of JP4998207B2 publication Critical patent/JP4998207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a telecommunication method for detecting in-phase quadrature mismatching without reducing the number of applicable sub-carriers. <P>SOLUTION: The telecommunication apparatus in the transmitting side transmits a quadrature modulated signal generated by the quadrature modulation and the signal generated on the basis of the signal including the reference signal of the predetermined amplitude. The telecommunication apparatus in the receiving side quadrature-demodulates the signal including the quadrature-modulated signal and the reference signal with the quadrature modulation method and outputs the first signal and the second signal to detect the in-phase quadrature mismatching based on the reference signal element included in the first signal and the reference signal element included in the second signal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、直交変復調を用いた有線又は無線通信システムに関し、より詳細には、受信側通信装置において、受信信号から同相信号と直交信号を分離し処理する回路の非対称性に起因する信号の劣化を補償する技術に関する。   The present invention relates to a wired or wireless communication system using quadrature modulation / demodulation, and more specifically, in a receiving-side communication apparatus, a signal caused by asymmetry in a circuit that separates and processes an in-phase signal and a quadrature signal from a received signal. The present invention relates to a technique for compensating for deterioration.

直交変復調処理を利用する通信方法として、例えば、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)変復調による通信方法がある。OFDM変復調技術は、送信データを複数のサブキャリアを用いて並列に伝送する方式であり、各サブキャリアのシンボルレートが比較的低くなるためシンボル間干渉に強く、デジタル地上波放送や、無線LAN(Local Area Network)システムで既に使用されており、光通信システムへの適用についても検討されている(例えば、非特許文献1、参照。)。   As a communication method that uses orthogonal modulation / demodulation processing, for example, there is a communication method based on orthogonal frequency division multiplexing (OFDM) modulation / demodulation. The OFDM modulation / demodulation technique is a method of transmitting transmission data in parallel using a plurality of subcarriers. Since the symbol rate of each subcarrier is relatively low, it is resistant to intersymbol interference, and can be used for digital terrestrial broadcasting, wireless LAN ( (Local Area Network) system has already been used, and application to an optical communication system is also being studied (for example, see Non-Patent Document 1).

OFDM通信システムにおいて、送信側通信装置は、通常、高速フーリエ逆変換(IFFT:Inverse Fast Fourier Transform)処理により、各サブキャリアが送信するデータから、時間軸上の複素サンプル値を求め、その実部から同相ベースバンド信号を、その虚部から直交ベースバンド信号を生成する。同相ベースバンド信号及び直交ベースバンド信号は、IQ多重とも呼ばれる直交変調処理により、1つのOFDM信号にまとめられる。ここで、Iは同相(In−phase)を、Qは直交(Quadrature)を意味している。具体的には、同相及び直交ベースバンド信号に、位相が互いにπ/2だけ異なる所定周波数の正弦波信号を乗じて周波数変換し、周波数変換後の信号を加算してOFDM信号とする。   In an OFDM communication system, a transmission-side communication apparatus usually obtains a complex sample value on a time axis from data transmitted by each subcarrier by inverse fast Fourier transform (IFFT) processing, and from its real part, A quadrature baseband signal is generated from the imaginary part of the in-phase baseband signal. The in-phase baseband signal and the quadrature baseband signal are combined into one OFDM signal by a quadrature modulation process also called IQ multiplexing. Here, I means in-phase, and Q means quadrature. Specifically, the in-phase and quadrature baseband signals are multiplied by a sine wave signal having a predetermined frequency that is different from each other by π / 2, frequency-converted, and the frequency-converted signals are added to obtain an OFDM signal.

IQ多重により生成されたOFDM信号は、例えば、更に、無線周波数(RF:Radio Frequency)帯の信号に周波数変換されて、無線信号として送信され、或いは、光変調器を用いて連続光を変調することにより光信号として送信される。   For example, the OFDM signal generated by IQ multiplexing is further frequency-converted to a radio frequency (RF) signal and transmitted as a radio signal, or modulated with continuous light using an optical modulator. As a result, it is transmitted as an optical signal.

また、受信側通信装置は、無線信号又は光信号を受信し、受信信号を、通常、中間周波数帯のOFDM信号に変換してIQ分離とも呼ばれる直交復調処理を行う。具体的には、OFDM信号に、位相が互いにπ/2だけ異なる所定周波数の正弦波信号を乗じて同相及び直交ベースバンド信号をそれぞれ出力する。なお、正弦波信号の位相は、OFDM信号の位相に応じて制御される。   The receiving-side communication apparatus receives a radio signal or an optical signal, converts the received signal into an OFDM signal in an intermediate frequency band, and performs orthogonal demodulation processing also called IQ separation. Specifically, the in-phase and quadrature baseband signals are output by multiplying the OFDM signal by a sine wave signal having a predetermined frequency that is different from each other by π / 2. Note that the phase of the sine wave signal is controlled according to the phase of the OFDM signal.

その後、同相及び直交ベースバンド信号はサンプリングされ、同相ベースバンド信号から得られるサンプル値を実部、直交ベースバンド信号から得られるサンプル値を虚部として、高速フーリエ変換(FFT:Fast Fourier Transform)処理を行い、各サブキャリアが表すデータ値の判定を行う。   Thereafter, the in-phase and quadrature baseband signals are sampled, and a fast Fourier transform (FFT) process is performed with the sample value obtained from the in-phase baseband signal as a real part and the sample value obtained from the quadrature baseband signal as an imaginary part. The data value represented by each subcarrier is determined.

以上、直交変復調を用いた通信システムにおいては、同相信号と直交信号とをそれぞれ処理するパスが必要であるが、IQ多重及び/又はIQ分離において乗ずる正弦波信号の位相差がπ/2ではない場合や、その振幅が一致していない場合、また、同相信号と直交信号とを処理するそれぞれのパスにおける増幅器の利得や減衰量等が一致していない場合には、同相直交不整合(IQ mismatch)効果により受信信号品質が劣化する。   As described above, in a communication system using quadrature modulation / demodulation, a path for processing an in-phase signal and a quadrature signal is necessary, but when the phase difference of a sine wave signal multiplied in IQ multiplexing and / or IQ separation is π / 2, If there is no match, or if the amplitudes do not match, or if the gain, attenuation, etc. of the amplifiers in the paths that process the in-phase signal and the quadrature signal do not match, then the in-phase quadrature mismatch ( The received signal quality deteriorates due to an IQ mismatch effect.

このため、非特許文献2には、受信側通信装置にて同相直交不整合を補償する構成が提案されている。非特許文献2によると、送信側通信装置は、IFFT演算において、異符号同一周波数のサブキャリアの組の一方に所定値を入力し、他方、すなわち、所定値を入力するサブキャリアのミラーサブキャリアには値“0”を入力する。つまり、一方のサブキャリアでは既知のデータ値を送信し、そのミラーサブキャリアは使用しない。雑音の影響を無視すると、ミラーサブキャリアに現れる信号は、同相直交不整合によるものであるため、受信側通信装置は、ミラーサブキャリアをモニタし、ミラーサブキャリアの位置に現れる信号に基づき、補償すべき振幅量及び位相量を求めて同相及び/又は直交信号の補償を行う。   For this reason, Non-Patent Document 2 proposes a configuration in which in-phase quadrature mismatch is compensated in the receiving-side communication device. According to Non-Patent Document 2, in the IFFT calculation, the transmission side communication apparatus inputs a predetermined value to one of a pair of subcarriers having different signs and the same frequency, that is, a mirror subcarrier of a subcarrier that inputs a predetermined value. The value “0” is entered for. That is, a known data value is transmitted on one subcarrier, and the mirror subcarrier is not used. If the influence of noise is ignored, the signal appearing on the mirror subcarrier is due to in-phase quadrature mismatch, so the receiving side communication device monitors the mirror subcarrier and compensates based on the signal appearing at the position of the mirror subcarrier. An amplitude amount and a phase amount to be obtained are obtained, and in-phase and / or quadrature signal compensation is performed.

Arthur James Lowery、et al.、“Orthogonal−frequency−division multiplexing for dispersion compensation of long−haul optical systems”、2006 Optical Society of America、OPTICS EXPRESS 2079、Vol.14 No.6、2006年3月Arthur James Lowry, et al. , “Orthogonal-frequency-division multiplexing for dispersal compensation of long-haul optical systems”, 2006 Optical Society of America ETS E No. 14 6, March 2006 H.Shafiee et al.、“Calibration of IQ Imbalance in OFDM Transceivers”、2003IEEE、0−7803−7802−4/03、pp.2081−2085H. Shafiee et al. "Calibration of IQ Imbalance in OFDM Transceivers", 2003 IEEE, 0-7803-7802-4 / 03, pp. 2081-2085

非特許文献2に記載の構成は、異符号同一周波数のサブキャリアの組を使用するものであり、情報伝送に使用できるサブキャリ数が低減する。また、種々の最適化がなされる情報伝送用の信号を利用するものであり、同相直交不整合量の検出に影響がでる可能性もある。   The configuration described in Non-Patent Document 2 uses a set of subcarriers having the same frequency and different codes, and the number of subcarriers that can be used for information transmission is reduced. In addition, the information transmission signal that is variously optimized is used, which may affect the detection of the in-phase / quadrature mismatch amount.

したがって、本発明は、従来技術より、使用できるサブキャリア数を低減させず、同相直交不整合量の検出を行う通信方法及び該方法用の通信装置を提供することを目的とする。また、情報伝送に使用される信号の最適化に対して影響を受けることなく、同相直交不整合量の検出を行う通信方法及び該方法用の通信装置を提供することも目的とする。   Therefore, an object of the present invention is to provide a communication method and a communication apparatus for the method that detect the amount of in-phase quadrature mismatch without reducing the number of subcarriers that can be used. It is another object of the present invention to provide a communication method and a communication apparatus for the method that detect an in-phase / orthogonal mismatch amount without being affected by optimization of signals used for information transmission.

本発明における通信装置によれば、
直交変調により生成した信号と、所定振幅の基準信号とを含む信号を直交復調し、第1の信号及び第2の信号を出力する手段と、第1の信号に含まれる基準信号成分と、第2の信号に含まれる基準信号成分とに基づき、同相直交不整合量を検出する手段とを備えていることを特徴とする。
According to the communication device of the present invention,
Means for orthogonally demodulating a signal including a signal generated by quadrature modulation and a reference signal having a predetermined amplitude and outputting a first signal and a second signal; a reference signal component included in the first signal; And a means for detecting an in-phase quadrature mismatch amount based on the reference signal component included in the second signal.

本発明の通信装置における他の実施形態によれば、
同相直交不整合量は、第1の信号に含まれる基準信号成分を実部、第2の信号に含まれる基準信号成分を虚部とする複素信号の振幅の変動を抑える位相量及び振幅量であることも好ましい。
According to another embodiment of the communication device of the present invention,
The in-phase quadrature mismatch amount is a phase amount and an amplitude amount that suppress fluctuations in amplitude of a complex signal in which the reference signal component included in the first signal is a real part and the reference signal component included in the second signal is an imaginary part. It is also preferable that there is.

また、本発明の通信装置における他の実施形態によれば、
直交変調は、同相信号及び直交信号を入力としたものであり、検出した同相直交不整合量に基づき第1の信号及び第2の信号から同相直交不整合を補償して同相信号及び直交信号を出力する手段を更に備えていることも好ましい。
According to another embodiment of the communication device of the present invention,
Quadrature modulation uses in-phase signal and quadrature signal as input, and compensates for in-phase quadrature mismatch from the first signal and the second signal based on the detected in-phase quadrature mismatch amount. It is also preferable to further include means for outputting a signal.

本発明における通信方法によれば、
送信側通信装置において、直交変調により生成した直交変調信号と、所定振幅の基準信号とを含む信号に基づき生成された信号を送信するステップと、受信側通信装置において、直交変調信号と基準信号とを含む信号を直交復調し、第1の信号及び第2の信号を出力するステップと、受信側通信装置において、第1の信号に含まれる基準信号成分と、第2の信号に含まれる基準信号成分とに基づき、同相直交不整合量を検出するステップとを備えていることを特徴とする。
According to the communication method of the present invention,
Transmitting a signal generated based on a signal including a quadrature modulation signal generated by quadrature modulation and a reference signal having a predetermined amplitude in the transmission side communication device; and in the reception side communication device, the quadrature modulation signal and the reference signal And a step of outputting a first signal and a second signal, a reference signal component included in the first signal, and a reference signal included in the second signal And a step of detecting an in-phase quadrature mismatch amount based on the components.

本発明の通信方法における他の実施形態によれば、
第1の信号に含まれる基準信号成分を実部、第2の信号に含まれる基準信号成分を虚部とする複素信号を、各推定位相量及び推定振幅量により変換し、所定期間内において、変換後の複素信号の絶対値を、前記所定期間内の絶対値の最大値で除した値の平均値を求め、求めた平均値を最大とする推定位相量及び推定振幅量を、同相直交不整合量とすることも好ましい。
According to another embodiment of the communication method of the present invention,
A complex signal having a reference signal component included in the first signal as a real part and a reference signal component included in the second signal as an imaginary part is converted by each estimated phase amount and estimated amplitude amount, and within a predetermined period, An average value obtained by dividing the absolute value of the converted complex signal by the maximum absolute value within the predetermined period is obtained, and an estimated phase amount and an estimated amplitude amount that maximize the obtained average value are obtained as in-phase orthogonal non-intensities. It is also preferable to set the matching amount.

また、本発明の通信方法における他の実施形態によれば、
送信側通信装置における直交変調信号と基準信号とを含む信号の生成は、同相信号及び/又は直交信号に所定の直流オフセットを加えるステップと、直流オフセットを加えた同相信号及び直交信号を直交変調するステップとを含んでいることも好ましい。
According to another embodiment of the communication method of the present invention,
The generation of the signal including the quadrature modulation signal and the reference signal in the transmission side communication device is performed by adding a predetermined DC offset to the in-phase signal and / or the quadrature signal, and orthogonalizing the in-phase signal and the quadrature signal to which the DC offset is added. Preferably including a step of modulating.

以上、所定振幅の基準信号を直交変調された信号に加えることで、同相直交不整合の補償を行う。本発明は、情報を有し種々の最適化がなされる直交変調された信号を同相直交不整量の検出には使用しないため従来技術より信頼性の高い補償を行うことができる。また、直交変調される信号の変調方法に制限はなく、かつ、直交変調される信号がOFDMであっても従来技術より使用できるサブキャリア数を低減させないという利点がある。   As described above, the in-phase quadrature mismatch is compensated by adding the reference signal having a predetermined amplitude to the quadrature-modulated signal. Since the present invention does not use a quadrature-modulated signal having information and various optimizations for detecting the in-phase quadrature irregularity, it is possible to perform compensation with higher reliability than the prior art. Further, there is no limitation on the modulation method of the orthogonally modulated signal, and even if the orthogonally modulated signal is OFDM, there is an advantage that the number of subcarriers that can be used is not reduced compared to the prior art.

本発明を実施するための最良の実施形態、ここでは、OFDM変復調技術を用いた実施形態について、以下では図面を用いて詳細に説明する。   BEST MODE FOR CARRYING OUT THE INVENTION The best embodiment for carrying out the present invention, here, an embodiment using an OFDM modulation / demodulation technique will be described in detail below with reference to the drawings.

図1は、本発明による通信装置の送信側のブロック図である。図1によると、通信装置は、IQ多重部11と、基準信号生成部12と、加算部13とを備えている。IQ多重部11には、IFFT演算により生成された同相信号Iと、直交信号Qが入力される。ここで、同相信号Iは、IFFT演算により得られた複素サンプル値の実部に基づき生成された信号であり、直交信号Qは虚部に基づき生成された信号である。IQ多重部11は、同相信号Iと、直交信号Qとを直交変調、つまり、互いに位相がπ/2だけ異なる所定周波数の正弦波信号をそれぞれに乗じて周波数変換し、周波数変換後の同相信号I及び直交信号Qを加算する。以後、IQ多重された信号を、その中心周波数によらずOFDM信号30として参照する。   FIG. 1 is a block diagram of a transmission side of a communication apparatus according to the present invention. As shown in FIG. 1, the communication apparatus includes an IQ multiplexing unit 11, a reference signal generation unit 12, and an addition unit 13. The IQ multiplexing unit 11 receives the in-phase signal I generated by the IFFT operation and the quadrature signal Q. Here, the in-phase signal I is a signal generated based on the real part of the complex sample value obtained by the IFFT calculation, and the quadrature signal Q is a signal generated based on the imaginary part. The IQ multiplexing unit 11 performs quadrature modulation on the in-phase signal I and the quadrature signal Q, that is, performs frequency conversion by multiplying each of the sine wave signals having predetermined frequencies different from each other by π / 2, and performs frequency conversion. The phase signal I and the quadrature signal Q are added. Hereinafter, the IQ multiplexed signal is referred to as the OFDM signal 30 regardless of the center frequency.

基準信号生成部12は、一定振幅の正弦波信号である基準信号50を生成し、加算部13は、OFDM信号30と基準信号50を加算する。基準信号50の周波数は、OFDM信号30とは周波数軸上で区別でき、妨害とならないもの、例えば、帯域外となるものを使用する。なお、基準信号50は、OFDM信号30と同期する必要はなく、OFDM信号30とは無関係に生成することができる。図3(a)は、加算部13が出力する電気信号の概略的なスペクトラムである。   The reference signal generator 12 generates a reference signal 50 that is a sine wave signal having a constant amplitude, and the adder 13 adds the OFDM signal 30 and the reference signal 50. The frequency of the reference signal 50 can be distinguished from that of the OFDM signal 30 on the frequency axis, and a signal that does not interfere, for example, a signal that is out of band is used. Note that the reference signal 50 does not need to be synchronized with the OFDM signal 30 and can be generated independently of the OFDM signal 30. FIG. 3A is a schematic spectrum of the electric signal output from the adding unit 13.

また、OFDM信号30内のサブキャリアの1つを使用しないこととし、このサブキャリアの位置を基準信号50に割り当てることも可能である。例えば、IFFT演算の、基準信号50に割り当てたサブキャリアに対応する入力に固定値を用いることで基準信号50を加えることが可能であり、この場合には加算部13は必要ない。好ましくは、OFDMベースバンド信号の直流成分の位置を基準信号50として使用する。この場合には、IFFT出力をアナログ変換することにより得られる同相及び/又は直交ベースバンド信号に直流オフセットを加えることで基準信号50をOFDM信号30に加算することができ、この場合にも加算部13を省略することができる。図3(b)は、OFDMベースバンド信号の直流成分の位置を基準信号50として使用する場合の、周波数スペクトラムである。   It is also possible not to use one of the subcarriers in the OFDM signal 30 and to assign the position of this subcarrier to the reference signal 50. For example, it is possible to add the reference signal 50 by using a fixed value for the input corresponding to the subcarrier assigned to the reference signal 50 in the IFFT calculation. In this case, the adding unit 13 is not necessary. Preferably, the position of the direct current component of the OFDM baseband signal is used as the reference signal 50. In this case, the reference signal 50 can be added to the OFDM signal 30 by adding a DC offset to the in-phase and / or quadrature baseband signal obtained by analog conversion of the IFFT output. 13 can be omitted. FIG. 3B is a frequency spectrum when the position of the direct current component of the OFDM baseband signal is used as the reference signal 50.

なお、OFDM信号30に対する基準信号50の追加をRF帯で行う等、基準信号50を加算する方法は上述した形態に限定されない。また、周波数軸上で見て、ある周波数位置に一定電力の信号がOFDM信号30とは周波数軸上にて区別、分離できる形態にて存在すれば、その信号を基準信号50として使用可能である。つまり、ある周波数に一定電力の周波数成分をもつ限り、正弦波を固定シンボルレートで位相変調した信号や、矩形波であっても基準信号50として使用可能である。   Note that the method of adding the reference signal 50 such as adding the reference signal 50 to the OFDM signal 30 in the RF band is not limited to the above-described form. In addition, if a signal of constant power exists in a form that can be distinguished and separated from the OFDM signal 30 on the frequency axis at a certain frequency position as seen on the frequency axis, the signal can be used as the reference signal 50. . That is, as long as a certain frequency has a frequency component of constant power, a signal obtained by phase-modulating a sine wave at a fixed symbol rate or a rectangular wave can be used as the reference signal 50.

OFDM信号30と基準信号50を含む信号は、その後、伝送媒体に応じた処理により無線信号や、光信号に変換されて伝送媒体に出力される。   The signal including the OFDM signal 30 and the reference signal 50 is then converted into a radio signal or an optical signal by processing according to the transmission medium and output to the transmission medium.

図2は、本発明による通信装置の受信側のブロック図である。図2によると通信装置は、IQ分離部21と、基準信号抽出部22と、検出部23と、補償部24とを備えている。IQ分離部21には、伝送媒体に送信された信号から変換されたOFDM信号30と基準信号50を含む信号が入力される。   FIG. 2 is a block diagram of the receiving side of the communication apparatus according to the present invention. As shown in FIG. 2, the communication apparatus includes an IQ separation unit 21, a reference signal extraction unit 22, a detection unit 23, and a compensation unit 24. The IQ separation unit 21 receives a signal including the OFDM signal 30 converted from the signal transmitted to the transmission medium and the reference signal 50.

IQ分離部21は、直交復調を行うため、位相がそれぞれπ/2だけ異なる所定周波数の正弦波信号を、入力信号に乗じて、信号I´及び基準信号成分Xを含む第1の信号と、信号Q´及び基準信号成分Yを含む第2の信号を出力する。なお、例えば、第1の信号を出力するための正弦波信号は、例えば、入力信号の搬送波に基づき位相を制御して生成し、第2の信号を出力するための正弦波信号は、第1の信号を出力するための正弦波信号の位相をπ/2だけシフトさせて生成する。   In order to perform quadrature demodulation, the IQ separation unit 21 multiplies the input signal by a sine wave signal having a predetermined frequency that is different in phase by π / 2, and a first signal including the signal I ′ and the reference signal component X, A second signal including the signal Q ′ and the reference signal component Y is output. For example, the sine wave signal for outputting the first signal is generated by controlling the phase based on the carrier wave of the input signal, for example, and the sine wave signal for outputting the second signal is the first signal. Is generated by shifting the phase of the sine wave signal for outputting the above signal by π / 2.

基準信号抽出部22は、IQ分離部21が出力する各信号から、基準信号成分、より正確には送信側にて挿入した基準信号50の固定電力を持つ周波数部分に対応する信号成分を抽出する。検出部23は、抽出した基準信号成分に基づき同相直交不整合量の検出、つまり、同相信号を処理するパスと、直交信号を処理するパスに起因する信号劣化を補償するための位相及び利得の補償量を検出し、補償部24は、検出した同相直交不整合量に基づきIQ分離部21が出力する信号の補償を行う。   The reference signal extraction unit 22 extracts, from each signal output from the IQ separation unit 21, a reference signal component, more precisely, a signal component corresponding to a frequency portion having a fixed power of the reference signal 50 inserted on the transmission side. . The detection unit 23 detects the in-phase quadrature mismatch amount based on the extracted reference signal component, that is, the phase and gain for compensating for the signal degradation caused by the path for processing the in-phase signal and the path for processing the quadrature signal. The compensation unit 24 compensates for the signal output from the IQ separation unit 21 based on the detected in-phase / quadrature mismatch amount.

図4は、本発明の動作原理を説明する図である。基準信号50は、一定振幅の正弦波信号であるため、複素平面上のある一点で表される。したがって、IQ分離部21が信号I´と共に出力する基準信号成分Xを実部、信号Q´と共に出力する基準信号成分Yを虚部とする信号Z=X+jYは、複素平面上のある一点で表される信号となる。しかしながら、通常、受信信号をOFDM信号30に変換する処理、例えば、無線信号を受信した場合における周波数変換処理や、光信号におけるヘテロダイン検波処理等において使用する受信側通信装置の局発信号と、受信信号との周波数差のオフセットやその変動により、受信側通信装置において信号Zを観測すると、その位相が回転し、図4(b)に示す様に、Zは、複素平面上において、所定半径の円上を移動する信号となる。   FIG. 4 is a diagram for explaining the operating principle of the present invention. Since the reference signal 50 is a sine wave signal having a constant amplitude, it is represented by a certain point on the complex plane. Therefore, the signal Z = X + jY having the reference signal component X output by the IQ separation unit 21 together with the signal I ′ as the real part and the reference signal component Y output together with the signal Q ′ as the imaginary part is represented by a certain point on the complex plane. Signal. However, in general, a process for converting a received signal into an OFDM signal 30, for example, a frequency conversion process when a radio signal is received, a heterodyne detection process for an optical signal, and the like are received from the local communication signal of the receiving communication device. When the signal Z is observed in the receiving side communication apparatus due to the offset of the frequency difference from the signal or its fluctuation, the phase rotates. As shown in FIG. 4B, Z has a predetermined radius on the complex plane. The signal moves on a circle.

ここで、更に、同相直交不整合があると、利得差及び位相差により、信号Zは所定半径の円状を移動する信号ではなく、図4(a)に示す様に、例えば、楕円上を移動する信号となる。検出部23は、この信号Zの軌跡から、信号Zを円に変換するために基準信号成分X及び/又は基準信号成分Yに対する振幅補償量と、位相補償量を決定し、補償部24は、検出部23の決定に基づき信号I´及び/又は信号Q´の補償を行い、同相信号I及び直交信号Qを出力する。   Here, if there is further in-phase and quadrature mismatch, the signal Z is not a signal that moves in a circular shape with a predetermined radius due to the gain difference and the phase difference. For example, as shown in FIG. It becomes a moving signal. The detection unit 23 determines an amplitude compensation amount and a phase compensation amount for the reference signal component X and / or the reference signal component Y in order to convert the signal Z into a circle from the trajectory of the signal Z. The compensation unit 24 Based on the determination of the detection unit 23, the signal I ′ and / or the signal Q ′ is compensated, and the in-phase signal I and the quadrature signal Q are output.

つまり、変換後の信号Zの振幅変動を極力抑える同相直交不整合量を検出部23は求める。例えば、検出部23は、推定振幅補償量及び推定位相補償量による変換後の信号Zを、Z´とし、所定期間内において、各Z´の絶対値を、Z´の絶対値の当該期間内における最大値で除した値の平均値を求める。各推定振幅補償量及び推定位相補償量に対して、この値を求め、この値を最大にする推定振幅補償量及び推定位相補償量を、補償部24における信号補償処理に使用する同相直交不整合量とする。   That is, the detection unit 23 obtains an in-phase quadrature mismatch amount that suppresses the amplitude fluctuation of the signal Z after conversion as much as possible. For example, the detection unit 23 sets the signal Z after conversion based on the estimated amplitude compensation amount and the estimated phase compensation amount to Z ′, and within a predetermined period, sets the absolute value of each Z ′ within the period of the absolute value of Z ′. Find the average of the values divided by the maximum value at. This value is obtained for each estimated amplitude compensation amount and estimated phase compensation amount, and the estimated amplitude compensation amount and estimated phase compensation amount that maximize this value are used for the signal compensation processing in the compensation unit 24. Amount.

以上、本発明によれば、OFDM信号30の帯域外に基準信号50を加えることで同相直交不整合の補償を行い、情報伝送に使用するOFDM信号30のサブキャリア数を減少させない。また、情報を搬送し伝送路の非線形効果等の影響を受けやすいOFDM信号30ではなく、無関係に挿入した基準信号50により、同相直交不整合の補償を行うため、従来技術より信頼性の高い補償を行うことができる。また、OFDM信号30のサブキャリアの位置を基準信号50として使用する形態においても、従来技術より、情報伝送に使用するサブキャリア数を減少させないという利点がある。   As described above, according to the present invention, in-phase quadrature mismatch is compensated by adding the reference signal 50 outside the band of the OFDM signal 30, and the number of subcarriers of the OFDM signal 30 used for information transmission is not reduced. In addition, compensation for in-phase and quadrature mismatch is performed by the reference signal 50 that is inserted irrelevantly instead of the OFDM signal 30 that carries information and is susceptible to nonlinear effects of the transmission path, etc., so that compensation more reliable than the prior art It can be performed. Further, even in the form in which the position of the subcarrier of the OFDM signal 30 is used as the reference signal 50, there is an advantage that the number of subcarriers used for information transmission is not reduced as compared with the prior art.

また、OFDM変復調技術を用いた実施形態にて説明をしたが、当業者には明らかなように、本発明は、直交変調及び復調を行う総ての通信システムに適用可能である。即ち、IQ多重部11に入力される同相信号I及び直交信号Qは、OFDM変調技術により生成された信号に限定されない。   Further, although the embodiments using the OFDM modulation / demodulation technology have been described, as will be apparent to those skilled in the art, the present invention can be applied to all communication systems that perform orthogonal modulation and demodulation. That is, the in-phase signal I and the quadrature signal Q input to the IQ multiplexing unit 11 are not limited to signals generated by the OFDM modulation technique.

本発明による通信装置の送信側のブロック図である。It is a block diagram of the transmission side of the communication apparatus by this invention. 本発明による通信装置の受信側のブロック図である。It is a block diagram of the receiving side of the communication apparatus by this invention. 加算部が出力する電気信号の概略的な周波数スペクトラムである。It is a rough frequency spectrum of the electric signal which an addition part outputs. 本発明の動作原理を説明する図である。It is a figure explaining the principle of operation of the present invention.

符号の説明Explanation of symbols

11 IQ多重部
12 基準信号生成部
13 加算部
21 IQ分離部
22 基準信号抽出部
23 検出部
24 補償部
30 OFDM信号
50 基準信号
DESCRIPTION OF SYMBOLS 11 IQ multiplexing part 12 Reference signal production | generation part 13 Addition part 21 IQ separation part 22 Reference signal extraction part 23 Detection part 24 Compensation part 30 OFDM signal 50 Reference signal

Claims (6)

直交変調により生成した信号と、所定振幅の基準信号とを含む信号を直交復調し、第1の信号及び第2の信号を出力する手段と、
第1の信号に含まれる基準信号成分と、第2の信号に含まれる基準信号成分とに基づき、同相直交不整合量を検出する手段と、
を備えている通信装置。
Means for orthogonally demodulating a signal including a signal generated by quadrature modulation and a reference signal having a predetermined amplitude, and outputting a first signal and a second signal;
Means for detecting an in-phase quadrature mismatch amount based on a reference signal component included in the first signal and a reference signal component included in the second signal;
A communication device comprising:
同相直交不整合量は、第1の信号に含まれる基準信号成分を実部、第2の信号に含まれる基準信号成分を虚部とする複素信号の振幅の変動を抑える位相量及び振幅量である、請求項1に記載の通信装置。   The in-phase quadrature mismatch amount is a phase amount and an amplitude amount that suppress fluctuations in amplitude of a complex signal in which the reference signal component included in the first signal is a real part and the reference signal component included in the second signal is an imaginary part. The communication device according to claim 1. 直交変調は、同相信号及び直交信号を入力としたものであり、
検出した同相直交不整合量に基づき第1の信号及び第2の信号から同相直交不整合を補償して同相信号及び直交信号を出力する手段を更に備えている請求項1又は2に記載の通信装置。
Quadrature modulation is an in-phase signal and quadrature signal input.
3. The apparatus according to claim 1, further comprising means for compensating for the in-phase quadrature mismatch from the first signal and the second signal based on the detected amount of the in-phase quadrature mismatch and outputting the in-phase signal and the quadrature signal. Communication device.
送信側通信装置において、直交変調により生成した直交変調信号と、所定振幅の基準信号とを含む信号に基づき生成された信号を送信するステップと、
受信側通信装置において、直交変調信号と基準信号とを含む信号を直交復調し、第1の信号及び第2の信号を出力するステップと、
受信側通信装置において、第1の信号に含まれる基準信号成分と、第2の信号に含まれる基準信号成分とに基づき、同相直交不整合量を検出するステップと、
を備えている通信方法。
In the transmission side communication device, transmitting a signal generated based on a signal including a quadrature modulation signal generated by quadrature modulation and a reference signal having a predetermined amplitude;
In the receiving-side communication device, a step of orthogonally demodulating a signal including the orthogonal modulation signal and the reference signal, and outputting a first signal and a second signal;
In the receiving communication device, detecting the in-phase quadrature mismatch amount based on the reference signal component included in the first signal and the reference signal component included in the second signal;
A communication method comprising:
第1の信号に含まれる基準信号成分を実部、第2の信号に含まれる基準信号成分を虚部とする複素信号を、各推定位相量及び推定振幅量により変換し、所定期間内において、変換後の複素信号の絶対値を、前記所定期間内の絶対値の最大値で除した値の平均値を求め、求めた平均値を最大とする推定位相量及び推定振幅量を、同相直交不整合量とする、
請求項4に記載の通信方法。
A complex signal having a reference signal component included in the first signal as a real part and a reference signal component included in the second signal as an imaginary part is converted by each estimated phase amount and estimated amplitude amount, and within a predetermined period, An average value obtained by dividing the absolute value of the converted complex signal by the maximum absolute value within the predetermined period is obtained, and an estimated phase amount and an estimated amplitude amount that maximize the obtained average value are obtained as in-phase orthogonal non-intensities. Alignment amount,
The communication method according to claim 4.
送信側通信装置における直交変調信号と基準信号とを含む信号の生成は、
同相信号及び/又は直交信号に所定の直流オフセットを加えるステップと、
直流オフセットを加えた同相信号及び直交信号を直交変調するステップと、
を含んでいる請求項4又は5に記載の通信方法。
Generation of a signal including a quadrature modulation signal and a reference signal in the transmission side communication device
Adding a predetermined DC offset to the in-phase signal and / or quadrature signal;
Quadrature modulating the in-phase signal and the quadrature signal to which a DC offset has been added;
The communication method according to claim 4 or 5, comprising:
JP2007280148A 2007-10-29 2007-10-29 Communication apparatus and method for compensating for in-phase quadrature mismatch Active JP4998207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280148A JP4998207B2 (en) 2007-10-29 2007-10-29 Communication apparatus and method for compensating for in-phase quadrature mismatch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280148A JP4998207B2 (en) 2007-10-29 2007-10-29 Communication apparatus and method for compensating for in-phase quadrature mismatch

Publications (2)

Publication Number Publication Date
JP2009111576A true JP2009111576A (en) 2009-05-21
JP4998207B2 JP4998207B2 (en) 2012-08-15

Family

ID=40779619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280148A Active JP4998207B2 (en) 2007-10-29 2007-10-29 Communication apparatus and method for compensating for in-phase quadrature mismatch

Country Status (1)

Country Link
JP (1) JP4998207B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112384A (en) * 2002-09-19 2004-04-08 Nippon Telegr & Teleph Corp <Ntt> Quadrature demodulation error compensating method and circuit thereof
WO2006132118A1 (en) * 2005-06-09 2006-12-14 Matsushita Electric Industrial Co., Ltd. Amplitude error compensating apparatus and orthogonality error compensating apparatus
JP2007208654A (en) * 2006-02-01 2007-08-16 Toshiba Corp Radio communication method using ofdm, ofdm transmitter, and ofdm receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112384A (en) * 2002-09-19 2004-04-08 Nippon Telegr & Teleph Corp <Ntt> Quadrature demodulation error compensating method and circuit thereof
WO2006132118A1 (en) * 2005-06-09 2006-12-14 Matsushita Electric Industrial Co., Ltd. Amplitude error compensating apparatus and orthogonality error compensating apparatus
JP2007208654A (en) * 2006-02-01 2007-08-16 Toshiba Corp Radio communication method using ofdm, ofdm transmitter, and ofdm receiver

Also Published As

Publication number Publication date
JP4998207B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US9270381B2 (en) Method and apparatus for transmitting and receiving coherent optical OFDM
US8582979B2 (en) Method and arrangement for transmitting an optical OFDM-signal
US9300407B2 (en) Channel estimation for optical orthogonal frequency division multiplexing systems
JP4893672B2 (en) Coherent optical communication apparatus and method
US8718160B2 (en) Multi-carrrier optical communication method and system based on DAPSK
WO2010073990A1 (en) Optical transmitter and optical ofdm communication system
US20120087668A1 (en) Method and device for generating and receiving oofdm signal, and wavelength-division multiplexing system
KR101278025B1 (en) Receiving apparatus with OFDM I/Q imbalance compensation and method thereof
CN104584502A (en) Loopback technique for IQ imbalance estimation for calibration in OFDM systems
JP2010041706A (en) Method and apparatus for phase modulation of optical orthogonal frequency division multiplexing signal
US8655177B2 (en) Optical transmitter
Yang et al. Optical OFDM basics
EP2613460A1 (en) Orthogonal frequency division multiplexing method with differential phase shift compensation
EP2073474A1 (en) Method and apparatus for transmitting an optical signal using orthogonal frequency division multiplexing
Zhao et al. Modulus mean square-based blind hybrid modulation format recognition for orthogonal frequency division multiplexing-based elastic optical networking
Chen et al. Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator
JP5361827B2 (en) Transmitter and transmission method
JP2009147498A (en) Transmitter, control method and program of transmitter, receiver, control method and program of receiver, and wireless communication system
Hussin et al. Performance analysis of RF-pilot phase noise compensation techniques in coherent optical OFDM systems
JP4998207B2 (en) Communication apparatus and method for compensating for in-phase quadrature mismatch
JP4864910B2 (en) Optical communication apparatus, system, and optical communication method
JPH11289312A (en) Multicarrier radio communication device
JP4941340B2 (en) Optical communication method and apparatus
JP5322227B2 (en) Optical orthogonal frequency division multiplexing communication apparatus and communication method
JP2001196981A (en) Distortion estimate device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

R150 Certificate of patent or registration of utility model

Ref document number: 4998207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350