WO2018113779A1 - 高速离心纺丝装置 - Google Patents

高速离心纺丝装置 Download PDF

Info

Publication number
WO2018113779A1
WO2018113779A1 PCT/CN2017/118003 CN2017118003W WO2018113779A1 WO 2018113779 A1 WO2018113779 A1 WO 2018113779A1 CN 2017118003 W CN2017118003 W CN 2017118003W WO 2018113779 A1 WO2018113779 A1 WO 2018113779A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
heating
jet
air
linear stretching
Prior art date
Application number
PCT/CN2017/118003
Other languages
English (en)
French (fr)
Inventor
邹守宝
袁建波
Original Assignee
杭州大铭光电复合材料研究院有限公司
邹守宝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州大铭光电复合材料研究院有限公司, 邹守宝 filed Critical 杭州大铭光电复合材料研究院有限公司
Publication of WO2018113779A1 publication Critical patent/WO2018113779A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/18Formation of filaments, threads, or the like by means of rotating spinnerets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing

Definitions

  • the invention relates to a high-speed centrifugal spinning device, in particular to a high-speed centrifugal spinning device for spinning nano-scale fiber filaments.
  • the existing techniques for spinning polymer materials by physical methods are as follows: 1. Melt-blown nonwoven spinning process, which is a common chemical fiber melt spinning process; 2. Electrospinning process; 3. Electrostatic centrifugal spinning or centrifugal electrospinning process; 4. High-speed centrifugal spinning process.
  • centrifugal electrospinning or electrostatic centrifugal spinning only two methods are combined.
  • the electrostatic coulombic electric field force is used to make the fibers spun by the centrifugal spinning more orderly distributed; or the centrifugally-stretched material (melt) of the higher-viscosity spinning material (melt) is pulled out or pulled out from the capillary tube to form a fiber flow or a jet.
  • the fiber flow or jet is then stretched using an electrostatic coulomb electric field force.
  • the name of the application filed by Donghua University in 2010 is: "A preparation method for preparing a nanofiber mass production device" (Application No. 201010018296.1), which is shown in the illustration of the patent application document: the nozzle is on the outer wall of the storage bucket Is exposed to the outside, the nozzle is in contact with the free air of the outside, the jet emerging from the tank wall hole directly enters the free air, or directly enters the free air with electric field force, that is, the jet emitted from the nozzle leaves the centrifugal force field The role of the process into the spiral stretching process.
  • the application name of Qingdao University was: “A device for preparing a nanofiber stranded structure” (Application No. 201110137417.9).
  • the L-shaped nozzle on the device is directly exposed to a free air environment, and the nozzle and the outside world. Free air contact, that is, the jet from the nozzle directly enters the free air environment, that is, the jet emerging from the nozzle leaves the centrifugal force field and enters the spiral stretching process.
  • the melt or solution forms a film on the plane of the rotating disk, it rubs against the plane of the rotating disk, and its resistance cancels part of the centrifugal force.
  • the film After the film is thinned, it will shrink into a line (referred to as finger shape in the literature) due to the agglomeration of the molecules, which will offset the effect of thinning the previous film, and will be subjected to tangential airflow shear during the trickle drawing process.
  • the influence of the shear force and the trickle on the surface of the rotating centrifugal disk affects the fineness and uniformity of the spinning.
  • the jets ejected from the nozzles are the direct drawing process of the spiral entering the free air, without the centrifugal force.
  • the fiber flow diameter reaches the micron level, and then enter the stretching stage of the spiral in free air.
  • the free air it is stretched in a spiral manner.
  • the jet ejected from the nozzle directly contacts the free air, and the degree of solidification of the jet increases when it is cold, which affects the degree of stretching of the jet, and ultimately affects The fineness of the filament is difficult to reach the micron level.
  • the inner diameter of the orifice can be made 150 microns, which is the limit size.
  • a 150 micron fiber stream is helically stretched into 1 micron fiber in free air, which itself has more difficult to control physical parameters, especially the fiber trajectory is easily disturbed by weak air flow.
  • the stretching time and the length of the fiber have great randomness, which results in a fiber having different diameters, uneven thickness, and a wide range of diameters, which is difficult to meet the requirements of nanofibers.
  • the object of the present invention is to solve the above problems in the prior art and to provide a high-speed centrifugal spinning device, which is provided with a linear stretching passage, and the length of the linear stretching passage is several times to several tens of times of the injection hole, and is formed by the injection hole.
  • the jet is linearly stretched by a linear stretching passage, and the diameter of the filament coming out of the linear stretching passage is close to the millimeter level, and then enters the stretching stage of the spiral in the free air, which can reach the nanometer level requirement and can
  • the distribution area of the diameter value of the fiber filament is small, and secondly, the inner section size of the linear stretching channel is several times to several tens of times the cross-sectional dimension in the injection hole, and the purpose is to draw the jet formed by the injection hole in a straight line.
  • the stretching channel is linearly stretched, it does not contact the inner wall of the linear stretching passage to avoid friction.
  • the heating plate and the hot air inlet pipe are combined to reduce the influence of free air on the temperature of the filament, and the melting point temperature is kept as much as possible.
  • the heating plate is set to greatly reduce the noise generated by the rotating disk and the air, and Stopping the rotary disc fixed to the consequences of unreliable due to the rotating disk fly generation occurs.
  • a high-speed centrifugal spinning device comprising:
  • Rotating body driven to rotate by the rotary driving device
  • the accommodating cavity is located at a central portion of the rotating body for accommodating the spinning raw material (including the raw material melt/solution, and for the sake of exemplification, the melt or the solution involved in the afternoon is a form of the raw material);
  • a feeding member the injection port cooperates with the receiving cavity for feeding the receiving cavity;
  • the plurality of injection holes are respectively distributed on the outer circumference of the accommodating chamber, and the accommodating chamber is in communication with each of the injection holes, and when the rotating body rotates, the spinning is performed;
  • the utility model is characterized in that it further comprises a linear stretching channel: a plurality of tracks uniformly arranged radially on the rotating body, and one of the linear stretching channels correspondingly cooperates with at least one injection hole to form a communication receiving cavity and a rotating body
  • the outer space is sprayed by a linear stretching passage, and the length b of the linear stretching passage is 3 to 1000 times the length a of the injection hole.
  • a linear stretching channel is added, and the length of the linear stretching channel is several times to several tens of times of the injection hole.
  • the molten liquid forms a jet through the injection hole, and the jet is stretched by a straight line of a long-distance linear stretching passage, and the jet has a stretching ratio of several tens to hundreds of times in the rotating disk, and the jet diameter has been emitted when the jet is emitted from the edge of the rotating body It reaches the micron level, and the rate of fire when the jet leaves the rotating body can reach more than 100 meters per second.
  • the jet When the jet is stretched in the long-distance linear stretching channel, it is not affected by the air tangential shearing force and the radial resistance, and is not affected by the frictional resistance of the capillary wall.
  • the jet has been greatly enlarged before leaving the rotating body. After stretching, it is injected into free air, and the stretching is continued in a spiral manner, and a fiber having a uniform diameter and a nanometer order can be spun.
  • the linear stretching passage is formed on the surface through groove of the rotating body, and the cover body is coupled to cover the linear stretching passage to form a linear stretching passage; or may be disposed inside the solid portion of the rotating body.
  • the air in the linear stretching passage when the rotating body rotates at a high speed, the air in the linear stretching passage generates a great inertial force due to the high-speed rotation, so that the mass of the material in the tunnel is thrown out, so the air is also scooped out due to the melt.
  • Filled with a spray hole or called a spray hole or a needle hole, which blocks the inlet of the jet linear stretching passage, prevents air from entering the linear stretching passage through the spray hole, so the air is only pulled out and cannot enter, only There is air at the beginning of the rotation.
  • a spray hole or called a spray hole or a needle hole
  • the internal environment of the linear stretching channel is close to the vacuum environment, reducing or even avoiding the influence of air on the jet (fibrity) through the linear stretching channel (including air). The resistance and the effect of the temperature taken away by the air).
  • the molten metal jet ejected from the injection hole enters the linear stretching passage, and in the linear stretching passage, the molten metal jet is drawn into a straight line by the centrifugal force.
  • the stretch trajectory of the jet is linear only in the jet linear stretching channel.
  • the formula for the jet flow velocity or the rate of fire when the jet exits the outside of the body is: (In the formula, v 2 is the velocity at which the jet exits the outer circumference of the rotating body, ⁇ is the angular velocity of the rotating body, r is the radius of the rotating body, r 0 is the radius from the center of the rotating body at the injection hole, and v 0 is the jet at the injection hole Jet velocity when flowing out of the injection hole).
  • the technical solution is to shorten the radial length of the injection hole (or the length of the needle) as much as possible, for example, about 2 mm. At the same time, increase the length of the linear stretching channel (rr 0 ) as much as possible.
  • the melt flow from the injection hole does not immediately enter the free air, but in the centrifugal force field formed by the rotating body, the centrifugal force is utilized as much as possible, and the melt flow is linearly stretched in the linear stretching passage. .
  • it is first necessary to increase the length of the linear stretching channel as much as possible ie, increase the diameter of the rotating body).
  • the second is to reduce the resistance and shear force of the melt flow in the process of linear stretching as much as possible. There is no radial resistance of air during the linear stretching process, air flow shear force in the circumferential direction, melt and straight line. The frictional resistance between the inner walls of the stretching channel. This is an effective method of obtaining as large a stretch factor as possible within the shortest possible distance compared to other physically feasible methods.
  • the present invention adopts the following technical measures: the inner cross-sectional dimension of the linear stretching channel is 3-20000 times the cross-sectional dimension in the injection hole.
  • the purpose of this arrangement is to prevent the melt jet from coming into contact with the inside of the linear stretching passage in the linear stretching passage, avoiding the friction generated by the contact, avoiding the frictional force from weakening the centrifugal force, and making the melt jet as much as possible Being stretched.
  • the center line of the linear stretching passage is disposed perpendicular to the rotation axis of the rotating body.
  • the rotating body includes a container, a rotating disk fixedly coupled to the container; the inner cavity of the container is the receiving cavity, the spraying hole is disposed on the container wall, and the rotary driving device drives the container Rotating, the container has its axis as the axis of rotation.
  • the first solution the container and the rotating disk are separated structures, and the detachable fixing is formed by the connecting member; the second solution: the container and the rotating disk are integrated. Since the size of the rotating disk is large, the first solution is a preferred solution for the convenience of processing.
  • the container may be a container resistant to high temperature and corrosion such as enamel.
  • a linear stretching passage can be matched with one injection hole or a plurality of injection holes.
  • the injection holes may be arranged one or more columns vertically and vertically, or may be laterally disposed. The jets ejected from each of the injection holes do not interfere with each other, and the respective jets are independently stretched linearly under the action of centrifugal force.
  • a first heating and holding tray and a second heating and holding tray are respectively disposed on the two sides of the rotating disc, and the first heating and holding tray and the second heating and holding tray are evenly spaced from the rotating disc, and the first heating and holding The outer edges of the disk and the second heating plate are evenly matched to the outer edges of the rotating disk.
  • the temperature in the free air needs to be maintained in a state in which the jet can be continuously stretched, which is somewhat difficult.
  • the most difficult to control is the ambient temperature around the jet and the surrounding airflow distribution.
  • the technical scheme adopts the first heating and holding tray and the second heating and holding tray to control the temperature of the jet stretching channel, and can be heated or cooled, and the temperature control is simple and easy, and the jet can be kept in a molten state.
  • the noise problem is solved by adopting the structural method in which the rotating body and the non-rotating first heating and holding tray and the second heating and holding tray constitute a "sandwich" in the technical solution.
  • the basis is that the surface area of the rotating body is exposed to free air as small as possible, and the gap between the rotating body and the stationary body is reduced as much as possible without interference, thereby reducing the noise generated by the airflow resistance.
  • the air in the gap between the rotating body and the first and second heating and holding plates of the stationary non-rotating body is affected by the high temperature, so that the air density in the gap is low, and the air resistance is Very small.
  • the side elevation of the edge of the rotating body is small, so that the side area is small, and although the line speed of the side is the largest, the contact area with the free air is small, so the noise decibel number generated by the air resistance can be effectively suppressed.
  • the convex portion In order to have a convex portion in the axial direction of the center of the rotating body, the convex portion is embedded as deep as possible into the central recess in the stationary first and second heating and holding trays.
  • the convex and concave inlaid portions are arranged above and below the axial direction.
  • the outer heating walls of the first heating and holding trays are respectively provided with blowing a gas pipe
  • the air blowing pipe is disposed adjacent to the rotating disk, and surrounds an outer sidewall of the first heating heat insulating disk and the second heating heat insulating disk, wherein a plurality of air blowing holes are arranged on the pipe wall of the air blowing pipe, and the airflow is blown It is outward toward the radial direction of the rotating disk.
  • the first and second heating and holding plates can respectively longitudinally surround the plurality of blowing pipes, and the blowing holes are in the same direction, which are perpendicular to the rotation axis of the rotating body and face outward.
  • first heating and the second heating plate are heated at a high temperature, in order to improve safety and prevent accidents such as burns, the first heating plate and the second heating plate are away from the surface of the rotating plate.
  • the arrangement of the heat insulation plate is also beneficial to improve the energy utilization rate, prevent the first heating insulation plate and the second heating insulation plate from being emitted into the air, and is also beneficial to improving the working state of the equipment and reducing thermal energy pollution.
  • An intake pipe is coupled in the accommodating cavity, and the intake pipe is connected to a hot gas supply device, and the intake pipe supplies hot air to the accommodating cavity. Since the accommodating chamber is in communication with the air around the device, the melt in the accommodating chamber has heat transfer with the air, and when the rotating body is sprayed in a straight line, the molten metal is difficult to maintain the molten state, which affects the linear stretching effect of the jet, and thus is set.
  • the air pipe raises the hot air of a sufficient high temperature to the accommodating cavity, thereby improving the effect of the linear stretching of the rotating body.
  • the air outlet of the air intake pipe is disposed near the center of the receiving cavity, and the air outlets are several, respectively distributed circumferentially at the pipe end of the air intake pipe.
  • the direction of the air outlet conforms to the direction of movement of the melt, which improves the fluidity of the liquid and facilitates the entry of the melt into the injection hole.
  • the injection member is a injection pipe, which is disposed next to the intake pipe; or the injection pipe is sleeved on the periphery of the intake pipe. Form a nested fit.
  • a linear stretching step or process of melt or solution is added. It is possible to cause the melt or solution jet to be linearly stretched before leaving the rotating body or the centrifugal orifice, and the stretching ratio is tens to hundreds of times.
  • the outer diameter of the fine stream of fibers that allows the melt or solution to exit the orifice is on the order of a few microns, and then enters the free air for helical arc stretching.
  • blowing holes at the outer circumferential position of the rotating body is used for blowing hot air, so that the temperature of the melt required for the melt spinning in the air to continue stretching is maintained as close as possible to the melting point temperature of the material to be spun. Conducive to continuous stretching.
  • the inner cross-sectional dimension of the linear stretching channel is several times to several tens of times the cross-sectional dimension in the injection hole, and the purpose is that the jet formed by the injection hole does not pull with the straight line when linearly stretching in the linear stretching channel
  • the inner wall of the extension channel is in contact to avoid friction, and the frictional force is prevented from hindering the linear stretching of the fiber.
  • a linear stretching channel is matched with a nozzle hole or a needle hole, and the liquid flows ejected from each of the nozzle holes or the needle holes do not interfere with each other, and the various types are maintained in a linear stretching state, and are linearly stretched in parallel with each other.
  • Figure 1 is a schematic illustration of a half cross-sectional view of the present invention.
  • a high-speed centrifugal spinning device includes:
  • Rotary drive device in Fig. 1, reference numeral 2 is a power transmission component of the drive device;
  • Rotating body driven to rotate by the rotary driving device
  • the accommodating chamber is located at a central portion of the rotating body for accommodating the spinning raw material (including the raw material melt/solution, for illustrative purposes, the melt or solution involved in the afternoon is a form of the raw material) 18;
  • a feeding member the injection port cooperates with the receiving cavity for feeding the receiving cavity;
  • the plurality of injection holes are respectively distributed on the outer circumference of the accommodating chamber, and the accommodating chamber is in communication with each of the injection holes, and when the rotating body rotates, the spinning is performed;
  • the utility model is characterized in that it further comprises a linear stretching channel: a plurality of tracks uniformly arranged radially on the rotating body, and one of the linear stretching channels correspondingly cooperates with at least one injection hole to form a communication receiving cavity and a rotating body
  • the outer space is sprayed by a linear stretching passage, and the length b of the linear stretching passage is 3 to 100 times the length a of the injection hole.
  • a linear stretching channel is added, and the length of the linear stretching channel is several times to several tens of times of the injection hole.
  • the molten liquid forms a jet through the injection hole, and the jet is stretched by a straight line of a long-distance linear stretching passage, and the jet has a stretching ratio of several tens to hundreds of times in the rotating disk, and the jet diameter has been emitted when the jet is emitted from the edge of the rotating body It reaches the micron level, and the rate of fire when the jet leaves the rotating body can reach more than 100 meters per second.
  • the jet When the jet is stretched in the long-distance linear stretching channel, it is not affected by the air tangential shearing force and the radial resistance, and is not affected by the frictional resistance of the capillary wall.
  • the jet has been greatly enlarged before leaving the rotating body. After stretching, it is injected into free air, and the stretching is continued in a spiral manner, and a fiber having a uniform diameter and a nanometer order can be spun.
  • the air in the linear stretching passage when the rotating body rotates at a high speed, the air in the linear stretching passage generates a great inertial force due to the high-speed rotation, so that the mass of the material in the tunnel is thrown out, so the air is also scooped out due to the melt.
  • Filled with a spray hole or called a spray hole or a needle hole, which blocks the inlet of the jet linear stretching passage, prevents air from entering the straight stretch passage through the spray hole, so the air is only pulled out and cannot enter, only There is air at the beginning of the rotation.
  • a spray hole or called a spray hole or a needle hole
  • the internal environment of the linear stretching channel is close to the vacuum environment, reducing or even avoiding the influence of air on the jet (fibrity) through the linear stretching channel (including air). The resistance and the effect of the temperature taken away by the air).
  • the formula for the jet flow velocity or the rate of fire when the jet exits the outside of the body is: (In the formula, v 2 is the velocity at which the jet exits the outer circumference of the rotating body, ⁇ is the angular velocity of the rotating body, r is the radius of the rotating body, r 0 is the radius from the center of the rotating body at the injection hole, and v 0 is the jet at the injection hole Jet velocity when flowing out of the injection hole).
  • the technical solution is to shorten the radial length of the injection hole (or the length of the needle) as much as possible, for example, about 2 mm. At the same time, increase the length of the linear stretching channel (rr 0 ) as much as possible.
  • the melt flow from the injection hole does not immediately enter the free air, but in the centrifugal force field formed by the rotating body, the centrifugal force is utilized as much as possible, and the melt flow is linearly stretched in the linear stretching passage. .
  • it is first necessary to increase the length of the linear stretching channel as much as possible ie, increase the diameter of the rotating body).
  • the second is to reduce the resistance and shear force of the melt flow in the process of linear stretching as much as possible. There is no radial resistance of air during the linear stretching process, air flow shear force in the circumferential direction, melt and straight line. The frictional resistance between the inner walls of the stretching channel. This is an effective method of obtaining as large a stretch factor as possible within the shortest possible distance compared to other physically feasible methods.
  • the present invention adopts the following technical measures: the inner cross-sectional dimension of the linear stretching passage is 3-2000 times the cross-sectional dimension in the injection hole.
  • the purpose of this arrangement is to prevent the melt jet from coming into contact with the inside of the linear stretching passage in the linear stretching passage, avoiding the friction generated by the contact, avoiding the frictional force from weakening the centrifugal force, and making the melt jet as much as possible Being stretched.
  • the center line of the linear stretching passage is disposed perpendicular to the rotation axis of the rotating body.
  • the rotating body comprises a container 1 and a rotating disk 3 fixedly coupled to the container, the inner cavity of the container is the receiving cavity, the spraying hole is disposed on the container wall, and the rotary driving device drives The container is rotated, and the container has its axis as the axis of rotation.
  • the first solution the container and the rotating disk are separated structures, and the detachable fixing is formed by the connecting member; the second solution: the container and the rotating disk are integrated. Since the size of the rotating disk is large, the first solution is a preferred solution for the convenience of processing.
  • the container may be a container resistant to high temperature and corrosion such as enamel.
  • a linear stretching passage can be matched with one injection hole or a plurality of injection holes.
  • the injection holes may be arranged one or more columns vertically and vertically, or may be laterally disposed. The jets ejected from each of the injection holes do not interfere with each other, and the respective jets are independently stretched linearly under the action of centrifugal force.
  • a first heating and holding tray and a second heating and holding tray are respectively disposed above and below the rotating disk, and the first heating and holding tray and the second heating and holding tray are evenly spaced from the rotating disk, and the first The outer edges of the heating plate and the second heating plate are evenly matched to the outer edges of the rotating disk.
  • the temperature in the free air needs to be maintained in a state in which the jet can be continuously stretched, which is somewhat difficult.
  • the most difficult to control is the ambient temperature around the jet and the surrounding airflow distribution.
  • the technical solution adopts the first heating and holding tray 6 and the second heating and holding tray 13 to control the temperature of the jet stretching channel, and can be heated or cooled, and the temperature control is simple and easy, and the jet can be kept in a molten state.
  • the noise problem is solved by adopting the structural method in which the rotating body and the non-rotating first heating and holding tray and the second heating and holding tray constitute a "sandwich" in the technical solution.
  • the basis is that the surface area of the rotating body is exposed to free air as small as possible, and the gap between the rotating body and the stationary body is reduced as much as possible without interference, thereby reducing the noise generated by the airflow resistance.
  • the air in the gap between the rotating body and the first and second heating and holding plates of the stationary non-rotating body is affected by the high temperature, so that the air density in the gap is low, and the air resistance is Very small.
  • the side elevation of the edge of the rotating body is small, so that the side area is small, and although the line speed of the side is the largest, the contact area with the free air is small, so the noise decibel number generated by the air resistance can be effectively suppressed.
  • the convex portion 20 In order to have the convex portion 20 in the axial direction of the center of the rotating body, the convex portion is embedded as deep as possible into the central recess 19 in the stationary first and second heating and holding trays.
  • the convex and concave inlaid portions are arranged above and below the axial direction.
  • the rotating body is separated from the limitation of the driving shaft, other equivalents are adopted for limiting the rotating body so that the rotating body is always kept in the area sandwiched by the first and second heating and holding plates to prevent outward flying (including upward The danger of flying out, flying down or flying in other directions.
  • the outer heating walls of the first heating and holding trays are respectively provided with blowing a gas pipe 8, 12
  • the blowing pipe is disposed adjacent to the rotating disk, and surrounds the outer wall of the first heating and the second heating and holding plate, and a plurality of blowing holes 7 are arranged on the pipe wall of the blowing pipe. 11. The blown airflow is outward toward the radial direction of the rotating disk.
  • the first and second heating and holding plates can respectively longitudinally surround the plurality of blowing pipes, and the blowing holes are in the same direction, which are perpendicular to the rotation axis of the rotating body and face outward.
  • first heating and the second heating plate are heated at a high temperature, in order to improve safety and prevent accidents such as burns, the first heating plate and the second heating plate are away from the surface of the rotating plate.
  • Heat shields 5, 14 are provided on the top.
  • the arrangement of the heat insulation plate is also beneficial to improve the energy utilization rate, prevent the first heating insulation plate and the second heating insulation plate from being emitted into the air, and is also beneficial to improving the working state of the equipment and reducing thermal energy pollution.
  • An intake pipe 16 is fitted in the accommodating cavity, and the intake pipe is connected to a hot gas supply device, and the intake pipe supplies hot air to the accommodating cavity. Since the accommodating chamber is in communication with the air around the device, the melt in the accommodating chamber has heat transfer with the air, and when the rotating body is sprayed in a straight line, the molten metal is difficult to maintain the molten state, which affects the linear stretching effect of the jet, and thus is set.
  • the air pipe raises the hot air of a sufficient high temperature to the accommodating cavity, thereby improving the effect of the linear stretching of the rotating body.
  • the air outlet 17 of the intake pipe is disposed near the center of the receiving cavity, and the air outlets are several, respectively distributed circumferentially at the pipe end of the intake pipe.
  • the direction of the air outlet conforms to the direction of movement of the melt, which improves the fluidity of the liquid and facilitates the entry of the melt into the injection hole.
  • the injection member is a injection pipe, which is disposed next to the intake pipe; or the injection pipe is sleeved on the intake pipe. Peripheral, forming a nested fit.
  • the radius of the rotating body 3 is five times the size of the injection hole 4 (the orifice or the needle hole) on the inner wall of the crucible from the center of rotation.
  • the rotational speed design value is 10,000 rpm.
  • the rotating body (excluding the motor drive shaft) weighs 23.5 kg.
  • the gap between the rotating body at normal temperature and the upper and lower heating plates that are not rotating at a constant temperature is 3 to 4 mm, and when heated to 200 ° C, the gap is 2 to 2.5 mm.
  • the maximum noise level is 8000 rpm
  • the noise level at 8000 rpm at normal temperature is 87 dB.
  • the noise at 8000 rpm is only 82 decibels.
  • the diameter of the rotating body 3 is 0.6 meters
  • the diameter of the container 1 (for example, ⁇ ) is 0.1 meters
  • the radius of the rotating body is the distance of the injection hole 4 (including the nozzle hole or the needle hole) on the inner wall of the cymbal. 6 times the size of the center.
  • the noise is 85 decibels in a state of 8000 rpm.
  • the driving of the rotating body 3 is directly driven by a variable frequency induction motor.
  • the output shaft of the induction motor must be lengthened. A sufficient length is left between the end cover of the output shaft of the induction motor and the bottom end surface of the rotating body 3, and the vacant shaft length is placed in the refrigerating air, the temperature of the cold air. Limited to 25 ° C, when the temperature rises, increase the flow rate of cold air.
  • the temperature of the heating disk 6 is raised to 360 ° C for 2 hours, the temperature of the induction motor casing is maintained below 50 ° C.
  • the injection hole 4 on the inner wall of the crucible has a diameter of 0.5 mm and the crucible wall has a thickness of 2.5 mm, that is, the radial length of the injection aperture having an inner diameter of 0.5 mm is 2.5 mm, and the length of the linear extension passage is 64 times the length of the orifice.
  • the cross-sectional area in the linear stretching channel is 36 times the cross-sectional area of the inner hole of the nozzle.
  • Each linear stretching channel corresponds to two nozzle holes and is symmetrically arranged.
  • the straight stretch channel has a rectangular cross section, but is not limited to a rectangle, and other shapes are also suitable.
  • the rotating body 3 has the same diameter as the rotating disk cover 10, and the rotating body 3 cooperates with the rotating disk cover 10 to close the linear stretching passage circumferentially.
  • the powdered polyacrylonitrile PAN has a molecular weight of 150,000 and the solvent is dimethylformamide DMF.
  • the mass fraction concentration is 8% to 14%.
  • the soft plug seal is mechanically stirred at room temperature for 24 hours.
  • the air inlet pipe and the feed pipe are taken out without adding the center air flow, and 5 ml of the solution is added every 5 minutes from the hollow portion of the intake pipe.
  • the feeding was started when the rotation speed was stabilized at 6000 rpm.
  • the fiber receiving distance is 20 cm, and the substrate receiving the fiber is a common medical gauze, or a polypropylene nonwoven fabric having a basis weight of 20 g per square meter. After spinning for half an hour, the obtained nanofibers weighed 2.2 grams and the fiber diameter was relatively uniform.
  • the concentration of the solution is reduced, the volume flow rate of the solution having the same inner diameter of the orifice is increased, and the increase in the flow rate of the fiber flow is constant, that is, the diameter of the fiber is increased.
  • the concentration is lowered, the effect of the concentration on the diameter of the volatilized fiber is smaller than the effect of the increase in the flow rate due to the decrease in the concentration.
  • the inner diameter of the orifice 4 on the wall of the crucible is drilled on a circular arc of a circular crucible having a diameter of 80 mm using a conventional 0.5 mm twist drill, which is the smallest diameter of this type of processing.
  • the technical solution is suitable for solution centrifugal spinning PVDF.
  • Polyvinylidene fluoride PVDF the solvent is still dimethylformamide DMF.
  • the mass fraction concentration is 8% to 10%.
  • the soft plug is mechanically agitated for 24 hours at 60 degrees Celsius.
  • the air intake pipe and the feed pipe are taken out without adding the center air flow, and 5 ml is fed every 5 minutes from the hollow portion of the intake pipe.
  • the feeding was started when the rotation speed was stabilized at 7000 rpm.
  • the fiber receiving distance is 20 cm, and the substrate receiving the fiber is a common medical gauze.
  • the diameter of the hole in the inner wall of the crucible is 0.5 mm, and the wall thickness of the crucible is 2.5 mm, that is, the length of the aperture having an inner diameter of 0.5 mm is 2.5 mm.
  • the reason why the rotation speed is increased to 7000 rpm is because PVDF has a higher viscosity than PAN at the same concentration.
  • Melt spinning although only one more process parameter: temperature.
  • the temperature is difficult to accurately control and measure, especially the temperature of the centrifugal disk rotating at high speed, the temperature of the material in the crucible, the temperature in the tunnel of the stretching jet, and the air encountered after the jet is ejected from the tunnel opening.
  • the temperature, or the temperature at which the jet spirally stretches the process in air, is actually a relatively complex temperature field.
  • Melt centrifugal spinning material polypropylene, pellets, melting value 25g/10min (test conditions 230 ° C, 2.16kg, the same below) to 1500g/10min.
  • the method of testing the rotating body and the crucible is to test with an infrared probe.
  • the screw extruder In the process of heating the pellets, the screw extruder is not used, so there is no agitation and extrusion process, and there is a problem of uneven plasticization, which causes the "granulated rice grains" to be formed by the melted material particles, and is not Completely molten fine particles appear on the fibers, creating a phenomenon of fiber beading. In the first feeding mode, the beading phenomenon on the fiber is very serious. The second feeding method is much better.
  • the first and second methods of adding the material do not use the feed tube inserted into the crucible. Because the inner diameter of the feed tube is small, the pellets are easily clogged in the tube, only when the melt is fully melted. The squeezing action can flow smoothly into the sputum.
  • the inner diameter of the hole or pinhole on the inner wall is 0.36 mm, and the inner diameter hole of 0.36 mm is 3 to 4 mm.
  • the inner cross-sectional area of the inner hole is 0.1 mm 2 , and the inner cross-sectional area of the linear stretching channel is 90 times the inner cross-sectional area of the injection hole.
  • the inner diameter of the hole or pinhole on the inner wall of the crucible was also tested to be 0.18 mm, and the inner diameter of the 0.18 mm inner hole was 4 mm.
  • the cross-sectional area of the inner hole is 0.025 mm 2
  • the inner cross-sectional area of the linear stretching channel is 353 times the inner cross-sectional area of the injection hole.
  • the engineering data of v 0 is obtained by the flow rate of the melt, the inner diameter of the orifice 4, and the value of v 0 can be obtained, and the flow rate at the orifice 4 and the flow rate at the outlet 9 of the linear stretching passage are equal, and the jet is obtained.
  • the flow rate v 2 at the exit 9 of the linear stretch channel is such that the outer diameter of the jet at the exit of the linear stretch channel can be obtained. It is also possible to derive the draw ratio of the jet in the linear stretching channel.
  • the accuracy of Equation 1 or the reference value of Equation 1 is verified by the actual measured straight line stretching the outer diameter of the jet at the channel opening.
  • the fluidity of the raw materials is very sensitive to the temperature of the raw materials
  • the fluidity of the raw materials in the calibration is calibrated according to the relevant test standards. Therefore, when doing the melt spinning test, it is necessary to roughly determine the fluidity of the material in the crucible, that is, how much extrusion force is required to extrude the high viscosity material from the small hole in the inner wall of the crucible.
  • the centrifugal force generated during spinning to determine the rotational speed and temperature during spinning. As long as the determined rotational speed does not exceed 8000 rpm and the temperature does not exceed the temperature rise limit of the test equipment itself, this parameter can be used to determine the high speed. Speed and temperature during centrifugal spinning.
  • stirring the flow of the cold air causes the temperature in the rotating body to decrease, and also causes the temperature in the linear stretching passage to decrease, so it is necessary to try to maintain the temperature inside the crucible and the temperature of the rotating body.
  • the temperature of the rotating external surface (measured by a non-contact infrared probe) can be considered as the temperature in the linear stretching channel.
  • a set of polypropylene pellet spinning test data is:
  • the polypropylene melt value was 25 g/10 min (230 ° C, 2.16 kg), the molecular weight was 210,000, the molecular weight distribution was 3.5, and the ash powder was 0.22%.
  • the inner diameter of the inner wall pinhole is 0.36 mm.
  • the temperature controller of the central intake pipe is set at 300 ° C, the temperature of the radial airflow in the crucible is about 215 ° C, and the intake pressure is 0.2 Mpa.
  • the intake pipe on the upper and lower heating plates enters the cold air at room temperature of 28 ° C, and the gas pressure in the pipe is 0.3 MPa.
  • the six-sided fan that vents outward from the center opens.
  • the timing is started when the rotational speed is stabilized at 7000 rpm.
  • the 7000 rpm was stably operated for 2 minutes, the fluctuation of the rotational speed was monitored for 1 minute, and the measured rotational speed fluctuation range was 6950 rpm to 6970 rpm, which also showed that the angular acceleration was small.
  • the high-speed rotating body Since the high-speed rotating body has convex portions on the upper and lower sides, it is embedded in the concave portion of the stationary upper and lower heating plates, and has an upward buoyancy when rotated at a high speed.
  • the airflow pressure in the upper and lower air gaps reaches equilibrium, the rotor of the motor, the shaft of the motor, and the rotating centrifugal disk 3 are suspended in the high-speed airflow.
  • the displacement of the axial movement is not measured by a conventional method.
  • the motor was turned off after 8 minutes of travel, and the motor spindle was at zero speed (with brake resistor) after 3.2 minutes.
  • the fibers collected on the fine wire were set by a fiber fineness analyzer at a magnification of 40 times, and the fiber having the largest diameter was found to be 6.5 ⁇ m in the screen display area.
  • the reason for finding the thickest fiber is that there are two kinds of fibers wound on the fine wire, one is the fiber that has just been ejected from the jet stretching tunnel, and the other is the stretch that has passed through the circumference of the half of the rotating body in the air. The fiber that has been stretched through the path.
  • the thickest diameter should be the fiber that has just been ejected from the jet-drawn tunnel opening.
  • the inner diameter of the nozzle is 0.36 mm.
  • the velocity of the jet from the jet tunnel opening can be calculated to be 123.1 m/s. It can also be calculated that the outer diameter of the jet when the jet exits the tunnel opening is 9.17 microns. The measured value is 6.5 microns. It can be seen that Formula 1 has practical reference value from the perspective of engineering technology.
  • the theoretically calculated ratio of the inner diameter of the orifice to the outer diameter of the jet exiting the exit of the tunnel is 39 times, and the actual measured value is 55.4 times.
  • a granule polypropylene material having a melt value of 1500 g/10 min was used.
  • the melt feed rate was 0.5 cubic centimeters per minute per orifice, calculated from the steady state of rotation, and 8.2 grams of fiber membrane was obtained by spinning for 10 minutes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

一种高速离心纺丝装置,包括:旋转驱动装置;旋转体(3),由旋转驱动装置驱动旋转;容纳腔,位于旋转体(3)的中心部位,用于容纳纺丝原料;注料件,注料口与容纳腔配合,用于向容纳腔内供料;喷射孔(4),为若干个,分别分布于容纳腔的外周,容纳腔与各个喷射孔(4)连通,旋转体旋转时,喷出纺丝;还包括直线拉伸通道,为若干道,均匀地径向设置在旋转体上,一道直线拉伸通道对应配合至少一个喷射孔(4),形成连通容纳腔及旋转体外部空间的喷射直线拉伸通道,直线拉伸通道的长度为喷射孔(4)长度的3~1000倍。

Description

高速离心纺丝装置 技术领域
本发明涉及一种高速离心纺丝装置,尤其涉及一种纺制纳米级别纤维丝的高速离心纺丝装置。
背景技术
现有的利用物理方法对高分子材料进行纺丝的技术大致有如下几种:1.熔喷无纺布纺丝工艺,为常见的化学纤维熔体纺丝工艺;2.静电纺丝工艺;3.静电离心纺丝或者离心静电纺丝工艺;4.高速离心纺丝工艺。
这些工艺方法中能够纺出亚微米至纳米级纤维的技术,只有静电纺丝和高速离心纺丝。至于离心静电纺丝或者静电离心纺丝只是将两种方法结合起来。利用静电库伦电场力使离心纺丝纺出的纤维更加有序分布;或者利用离心力对黏度较高的被纺材料(熔液)从毛细孔管中拉出或甩出,形成纤维流或者射流,再用静电库伦电场力进行拉伸纤维流或者射流。
关于高速离心纺丝技术的相关专利申请有:
2007年中国长春应用化学研究所申请的名称为“熔体和溶液离心纺丝制备非织造物的装置”(申请号为200710306660.2)的专利申请,该装置上的离心喷嘴露在外面,喷嘴与外界空气接触,从喷嘴射出的射流直接进入到自由空气环境中,即从喷嘴射出的射流离开了离心力场的作用,进入到螺旋线式地拉伸过程中。
2010年东华大学申请的名称为:“一种制备纳米纤维量产装置”(申请号为201010018296.1)的专利申请,在专利申请文件公开的图示中显示:喷嘴是在储料桶的外壁上,是露在外面的,喷嘴与外界自由空气接触,从罐壁孔射出的射流直接进入到自由空气中,或者直接进入到有电场力的自由空气中,即从喷嘴射出的射流离开了离心力场的作用,进入到螺旋线式地拉伸过程中。
2011年青岛大学申请的名称为:“一种制备纳米纤维绞线结构的装置”(申请号为201110137417.9)的专利申请,该装置上的L形喷嘴是直接暴露在自由空气环境中,喷嘴与外界自由空气接触,即喷嘴射出的射流直接进入到自由空气环境中,即从喷嘴射出的射流离开了离心力场的作用,进入到螺旋线式地拉伸过程中。
2013年中科昊泰新材料有限公司与北京化工大学联合申请的名称为:“一种微分分流离心纺丝法制备纳米纤维的装置”(申请号为201310163308.3)的专利申请,该装置上喷嘴与外界自由空气接触,其离心喷嘴射出的射流直接进入到自由空气的环境中,即从喷嘴射出的射流离开了离心力场的作用,进入到螺旋线式地拉伸过程中。
2008年纳幕尔杜邦公司申请的名称为:“Production of nanofibers by melt spinning”(专利号为ZL200880120862.0)的专利,该专利产品相对前述的几个申请专利产品而言,区别在于:比较充分的利用了旋转盘产生的离心力,类似于浙江理工大学的无针离心纺丝方案(2016年第3期,《产业用纺织品》“离心纺:一种高效制备微/纳米纤维的纺丝方法(二)”)。2010年华东师范大学申请的名称为“水平盘式旋转离心纺丝法”(申请号:201010252151.8)的专利申请,公开了无针离心纺丝法。但是熔体或溶液在旋转盘的平面上形成薄膜时,与旋转盘平面有摩擦,其阻力会抵消部分离心力。薄膜变薄后因分子的团聚作用,又会收缩成一条线(文献中称之为手指状),将先前膜变薄的效果抵消掉,而且细流拉伸过程中,会受到切向气流剪切力和细流在旋转离心盘平面上的摩擦力的影响,影响纺丝细度及均匀度。
2014年广东魏保平申请的名称为“一种嵌套式纺丝体”(申请号:201410698917.3)的专利申请,设备上的离心喷嘴同样是暴露在自由空气中,即从嘴喷出的射流直接进入到自由空气中,呈螺旋线式地拉伸。
2016年烟台森森环保科技有限公司申请的名称为“一种离心螺旋纺丝装置”(申请号201610224066.8)的专利申请,其离心喷嘴同样是暴露在自由空气中,从喷嘴喷出的射流直接进入到自由空气中,呈螺旋线式地拉伸。即从喷嘴射出 的射流离开了离心力场的作用,进入到螺旋线式地拉伸过程中。
综上所述,在离心纺丝或者离心静电纺丝技术中,从喷嘴(或喷射孔)喷出的射流,均是直接进入到自由空气中螺旋线的拉伸过程,没有在离心力的作用下继续直线地长距离地拉伸,直至纤维细流直径达到微米级后,再进入到自由空气中螺旋线的拉伸阶段。当进入到自由空气中时,呈螺旋线的方式拉伸,存在的问题:从喷嘴喷出的射流,直接接触自由空气,遇冷使射流的凝固度增加,影响射流的拉伸程度,最终影响纤维丝的细度,难以达到微米级。可能的解决方案:将喷孔的内径做得尽可能地小,使从喷孔出来的纤维丝直接到达接近纳米级别的细度。然而由于堵塞问题和机械加工工件内孔的小直径尺寸极限的限制,能够将喷孔内径做成150微米已经是极限尺寸了。然而150微米的纤维细流在自由空气中螺旋线式地拉伸成1微米的纤维,这本身有较多的比较难以控制的物理参数,尤其是纤维的轨迹很容易受到微弱空气流的扰动造成纤维的拉伸时间和路线长度具有很大的随机性,从而导致一根纤维的直径大小不一,粗细不匀,且直径大小的范围较宽,难以满足纳米纤维的要求。
发明内容
本发明的目的在于解决现有技术存在的上述问题而提供一种高速离心纺丝装置,增设直线拉伸通道,直线拉伸通道的长度是喷射孔的数倍至数十倍,通过喷射孔形成射流,通过直线拉伸通道进行直线拉伸,从直线拉伸通道出来的纤维丝的直径已经接近毫米级别,然后进入自由空气中的螺旋线的拉伸阶段,能够达到纳米级要求,而且能够使纤维丝的直径值的分布区域较小,其次,直线拉伸通道的内截面尺寸为所述喷射孔内截面尺寸的数倍至数十倍,达到的目的是通过喷射孔形成的射流在直线拉伸通道进行直线拉伸时不与直线拉伸通道的内壁接触,避免产生摩擦,此外,配合加热盘、热气进气管,减小自由空气对纤维丝温度的影响,尽可能保持熔点温度,最大可能的纺出纳米级的纤维丝,加热盘的设置既大为降低旋转盘旋转时与空气产生的噪音,又能防止旋转盘固定不可靠导致的旋转盘飞离产生的后果出现。
本发明的上述技术目的主要是通过以下技术方案解决的:一种高速离心纺 丝装置,包括:
旋转驱动装置;
旋转体:由所述旋转驱动装置驱动旋转;
容纳腔:位于所述旋转体的中心部位,用于容纳纺丝原料(包括原料熔液/溶液,为了举例说明,下午涉及的熔液或溶液都为原料的一种形态);
注料件:注料口与所述容纳腔配合,用于向容纳腔内供料;
喷射孔:为若干个,分别分布于所述容纳腔的外周,所述容纳腔与各个所述喷射孔连通,旋转体旋转时,喷出纺丝;
其特征在于,还包括直线拉伸通道:为若干道,均匀地径向设置在所述旋转体上,一道所述的直线拉伸通道对应的配合至少一个喷射孔,形成连通容纳腔及旋转体外部空间的喷射直线拉伸通道,所述直线拉伸通道的长度b为所述喷射孔长度a的3~1000倍。
增设直线拉伸通道,直线拉伸通道的长度是喷射孔的数倍至数十倍。熔液通过喷射孔形成射流,射流通过长距离的直线拉伸通道的直线拉伸,射流在旋转盘内拉伸倍率达到数十倍至数百倍,射流射出旋转体的边沿时,射流直径已经达到微米级,且射流离开旋转体时的射速可达到每秒百米以上。射流在长距离直线拉伸通道中被拉伸时,不受空气切向剪切力和径向的阻力,不受毛细管壁的摩擦阻力的影响,射流在离开旋转体之前,已经被大倍率地拉伸后再射出到自由空气中,进行螺旋线式地继续拉伸,能够纺制出直径均匀且能达到纳米级的纤维丝。
关于直线拉伸通道为形成在旋转体的表面通槽,再结合盖体,使直线拉伸通道盖合,形成直线拉伸通道;也可以设置在旋转体的实体部分的内部。
具体来说,旋转体高速旋转时,直线拉伸通道内的空气由于高速旋转产生极大的惯性力,使隧道内的有质量的物质均被甩出,因此空气也被甩出,由于熔液充满喷射孔(或称为喷孔或喷针孔),即堵住了喷射直线拉伸通道的入口,防止空气通过喷射孔进入直线拉伸通道,因此,空气只有被甩出,不能进入, 只有在刚开始旋转时存在空气,当空气大部分被甩出后,直线拉伸通道的内环境接近真空环境,减少甚至避免了空气对通过直线拉伸通道内射流(纤维丝)的影响(包括空气的阻力及空气带走的温度的影响)。
当旋转体的角速度足够大,且没有角加速度和轴向的加速度运动时,从喷射孔射出的熔液射流进入直线拉伸通道,在直线拉伸通道内,熔液射流被离心力拉成直线。只有在喷射直线拉伸通道内,射流的拉伸轨迹才是直线的。当射流在喷射直线拉伸通道的出口射出时,因空气的切向剪切力的作用,射流才从直线变成圆弧线(喷射直线拉伸通道的出口处为射流从直线变成弧线的转折点)。
通过溶液纺丝试验研究,并建立适合于工程应用的数学模型:射流射出旋转体外沿时的流速或者射速的公式是:
Figure PCTCN2017118003-appb-000001
(公式中,v 2是射流射出旋转体外沿时时的速度,ω是旋转体的角速度,r是旋转体的半径,r 0是喷射孔处距离旋转体中心的半径,v 0是喷射孔处射流流出喷射孔时的射流速度)。
现有技术中,基本情况均是r=r 0,v 2=v 0,即是喷射孔射出的熔液射流直接进入到螺旋线地拉伸射流的状态。
在本技术方案中,则是r>>r 0,v 2>>v 0的情况。即喷射孔射出的熔液射流没有直接进入到在自由空气中螺旋线地拉伸射流的状态,而是在(rr 0)的径向地长距离的直线拉伸通道内直线地拉伸后,再进入到自由空气中进行螺旋线式地弧线拉伸。
本技术方案是:尽可能地将喷射孔的径向长度(或者说喷针的长度)缩短,比如2毫米左右。同时,尽可能的增加直线拉伸通道的长度(rr 0)。从喷射孔射出的熔液细流不是立即进入到自由空气中,而是使其在旋转体形成的离心力场中,尽可能利用离心力,在直线拉伸通道中对熔液细流进行直线拉伸。要 使离心力对熔液细流沿着直线拉伸通道持续地直线拉伸,首先需要尽可能地加大直线拉伸通道的长度(即增加旋转体的直径尺寸)。其次是尽可能地减少熔液细流在被直线拉伸的过程中的阻力和剪切力,直线拉伸过程中没有空气的径向阻力、圆周方向的空气流剪切力、熔液与直线拉伸通道内壁之间的摩擦阻力。因为相比其他容易实现的物理方式而言,在尽可能短的距离内获得尽可能大的拉伸倍数的一种有效方法。
作为对上述技术方案的进一步完善和补充,本发明采用如下技术措施:所述直线拉伸通道的内截面尺寸为所述喷射孔内截面尺寸的3-20000倍。这种设置的目的在于防止熔液射流在直线拉伸通道中与直线拉伸通道的内部接触,避免出现因接触产生的摩擦力,避免产生的摩擦力削弱离心力的作用,使熔液射流尽可能的被拉伸。
为了能够充分利用离心力对熔液射流进行直线拉伸,所述直线拉伸通道的中心线与所述旋转体的旋转轴线垂直设置。
所述旋转体包括容器,与容器固定连接在一起的旋转盘;所述容器的内腔为所述容纳腔,所述喷射孔设置在所述容器壁上,所述旋转驱动装置驱动所述容器转动,所述容器以其轴线为转动轴线。在本技术方案中,第一种方案:容器与旋转盘为分体结构,通过连接件形成可拆卸式的固定;第二种方案:容器与旋转盘为一体结构。由于旋转盘的尺寸较大,为了方便加工,第一种方案为较佳方案。容器可以为坩埚等耐高温耐腐蚀的容器。由于直线拉伸通道的内截面尺寸较大,为喷射孔内截面尺寸数倍至数十倍,为了提高纺丝效率,一道直线拉伸通道可以配合一个喷射孔,也可以配合多个喷射孔,一道直线拉伸通道配合多个喷射孔时,喷射孔可以是上下竖向一列或多列设置,也可以是横向设置。每个喷射孔喷射出来的射流相互不干涉,各射流在离心力作用下各自独立的被直线拉伸。
所述旋转盘的两面分别设置第一加热保温盘和第二加热保温盘,所述第一加热保温盘和第二加热保温盘匀与所述旋转盘之间存在间隙,所述第一加热保 温盘和第二加热保温盘的外沿匀与所述旋转盘的外沿相适配。
对于现有技术的熔体纺丝而言,自由空气中的温度需要维持在射流能够被继续拉伸的状态,是有一定的难度的。其中最难控制的是射流周边的环境温度和周边的气流分布。
而本技术方案采用第一加热保温盘和第二加热保温盘的方式对射流拉伸通道进行控温,可以加热也可以制冷,控温简单易行,能够保持射流呈熔液状态。
当然,如果单纯的从控温方面来说,仅设置第一加热保温盘或第二加热保温盘也是可行的方案。当旋转离心盘的直径较大,转速较高时,会出现安全和噪声问题。为了减少旋转盘上下表面与空间接触,旋转时产生巨大噪音,也为了提高安全性,采用第一加热保温盘和第二加热保温盘,这样的方案为最佳方案。
噪声问题是采用本技术方案中使旋转体和不旋转的第一加热保温盘和第二加热保温盘构成“三明治”的结构方式来解决。依据是:将旋转体的表面积尽可能小地暴露在自由空气中,同时在不发生干涉的条件下,尽可能减小旋转体与静止体之间的间隙,从而减少气流阻力产生的噪声。同时选用噪声尽可能小的电动机。
当第一、第二加热保温盘加热后,旋转体与静止的不旋转体的第一、第二加热保温盘之间的间隙中空气受高温影响,使得间隙中的空气密度很低,空气阻力很小。而旋转体边沿的侧立面高度又很小,使得侧面积小,尽管侧面的线速度最大,但是与自由空气的接触面积小,所以气阻产生的噪声分贝数能够有效地得到抑制。
为了使旋转体的中心在轴向上有凸起部位,并且使凸起部位尽可能深地嵌入到静止的第一、第二加热保温盘中的中心凹部。这种凸凹镶嵌的部位在轴向的上方和下方均有布置。在旋转体高速旋转的过程中,即使驱动轴发生意外,旋转体也会被静止的不旋转体夹住。当然,当旋转体脱离驱动轴的限制时,采用其他等同方案,用于限制旋转体,使旋转体始终保持在第一、第二加热保温 盘夹持的区域内,防止向外飞(包括向上飞出、向下飞出或向其他方向飞出)出而带来的危害。
为了进一步使射出旋转体的射流能够持续的处于高温熔液状态,并且在一定程度上持续近似直线的拉伸射流,所述第一加热保温盘和第二加热保温盘的外侧壁上分别设置吹气管,所述吹气管靠近所述旋转盘设置,并环绕在所述第一加热保温盘和第二加热保温盘的外侧壁上,所述吹气管的管壁上设置若干吹气孔,吹出的气流朝所述旋转盘的径向方向向外。
为了增加吹气效果,第一、第二加热保温盘上可以分别纵向环绕多道吹气管,吹气孔吹气的方向一致,都是垂直于旋转体旋转轴线的方向,并朝外。
由于第一加热保温盘和第二加热保温盘加热时温度高,为了提高安全性,防止烫伤等意外情况发生,所述第一加热保温盘和第二加热保温盘上远离所述旋转盘的面上分别设置隔热盘。隔热盘的设置还有利于提高能源利用率,防止第一加热保温盘和第二加热保温盘散发到空气中,也有利于提高设备工作状态的环境,减少热能污染。
所述容纳腔内配合一进气管,所述进气管连接热气供给装置,所述进气管对所述容纳腔提供热气。由于容纳腔与设备周边的空气是连通的,容纳腔中的熔液与空气存在热传递,旋转体喷射直线拉伸时,熔液难以维持熔溶状态,影响喷射直线拉伸效果,因此设置进气管,对容纳腔提高足够高温的热气,提高旋转体喷射直线拉伸的效果。
为了减少进气管的气流对熔液运动状态的影响,所述进气管的出气口靠近所述容纳腔中心设置,所述出气口为若干个,分别圆周分布于所述进气管的管端。出气口的方向顺应熔液运动方向,提高液体的流动性,有利于熔体进入喷射孔。
为了使进气管和注料管尽可能的位于容器中心位置,所述注料件为注料管,与所述进气管紧挨设置;或者所述注料管套在所述进气管的外围,形成嵌套配合。
本发明具有的有益效果:
1、增加了一个熔体或者溶液的直线式地拉伸环节或者过程。能够使熔体或者溶液射流在离开旋转体或者离心喷孔之前,已经被直线地拉伸,其拉伸倍率达到数十至数百倍。能够使熔体或者溶液离开喷孔时的纤维细流的外径达到数微米级,然后再进入到自由空气中,进行螺旋式地弧线拉伸。
2、增设第一、第二加热盘,解决了旋转体的直径增大后,在高速旋转时产生的噪声和安全问题。
3、增设第一、第二加热盘,使熔体持续维持在熔点温度附近,有利于持续直线拉伸。
4、旋转体外圆周位置的吹气孔的设置,用于吹热气,使熔体纺丝时需要的熔体在空气里继续拉伸时的温度,尽可能地维持在被纺材料的熔点温度附近,有利于持续拉伸。
5、直线拉伸通道的内截面尺寸为所述喷射孔内截面尺寸的数倍至数十倍,达到的目的是通过喷射孔形成的射流在直线拉伸通道进行直线拉伸时不与直线拉伸通道的内壁接触,避免产生摩擦,避免摩擦力阻碍纤维的直线拉伸。
6、一个直线拉伸通道配合一个喷孔或喷针孔,每个喷孔或喷针孔喷射出来的液体流相互不干涉,各种维持在直线拉伸的状态,且彼此平行直线拉伸。
附图说明
图1是本发明的一种半剖结构示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:如图1所示,一种高速离心纺丝装置,包括:
旋转驱动装置,在图1中,标号2为驱动装置的动力传动部件;
旋转体:由所述旋转驱动装置驱动旋转;
容纳腔:位于所述旋转体的中心部位,用于容纳纺丝原料(包括原料熔液/溶液,为了举例说明,下午涉及的熔液或溶液都为原料的一种形态)18;
注料件:注料口与所述容纳腔配合,用于向容纳腔内供料;
喷射孔:为若干个,分别分布于所述容纳腔的外周,所述容纳腔与各个所述喷射孔连通,旋转体旋转时,喷出纺丝;
其特征在于,还包括直线拉伸通道:为若干道,均匀地径向设置在所述旋转体上,一道所述的直线拉伸通道对应的配合至少一个喷射孔,形成连通容纳腔及旋转体外部空间的喷射直线拉伸通道,所述直线拉伸通道的长度b为所述喷射孔长度a的3~100倍。
增设直线拉伸通道,直线拉伸通道的长度是喷射孔的数倍至数十倍。熔液通过喷射孔形成射流,射流通过长距离的直线拉伸通道的直线拉伸,射流在旋转盘内拉伸倍率达到数十倍至数百倍,射流射出旋转体的边沿时,射流直径已经达到微米级,且射流离开旋转体时的射速可达到每秒百米以上。射流在长距离直线拉伸通道中被拉伸时,不受空气切向剪切力和径向的阻力,不受毛细管壁的摩擦阻力的影响,射流在离开旋转体之前,已经被大倍率地拉伸后再射出到自由空气中,进行螺旋线式地继续拉伸,能够纺制出直径均匀且能达到纳米级的纤维丝。
具体来说,旋转体高速旋转时,直线拉伸通道内的空气由于高速旋转产生极大的惯性力,使隧道内的有质量的物质均被甩出,因此空气也被甩出,由于熔液充满喷射孔(或称为喷孔或喷针孔),即堵住了喷射直线拉伸通道的入口,防止空气通过喷射孔进入直线拉伸通道,因此,空气只有被甩出,不能进入,只有在刚开始旋转时存在空气,当空气大部分被甩出后,直线拉伸通道的内环境接近真空环境,减少甚至避免了空气对通过直线拉伸通道内射流(纤维丝)的影响(包括空气的阻力及空气带走的温度的影响)。
当旋转体的角速度足够大,且没有角加速度和轴向的加速度运动时,从喷射孔射出的熔液射流进入直线拉伸通道,在直线拉伸通道内,熔液射流被离心力拉成直线。只有在喷射直线拉伸通道内,射流的拉伸轨迹才是直线的。当射流在喷射直线拉伸通道的出口射出时,因空气的切向剪切力的作用,射流才从 直线变成圆弧线(喷射直线拉伸通道的出口处为射流从直线变成弧线的转折点)。
通过溶液纺丝试验研究,并建立适合于工程应用的数学模型:射流射出旋转体外沿时的流速或者射速的公式是:
Figure PCTCN2017118003-appb-000002
(公式中,v 2是射流射出旋转体外沿时时的速度,ω是旋转体的角速度,r是旋转体的半径,r 0是喷射孔处距离旋转体中心的半径,v 0是喷射孔处射流流出喷射孔时的射流速度)。
现有技术中,基本情况均是r=r 0,v 2=v 0,即是喷射孔射出的熔液射流直接进入到螺旋线地拉伸射流的状态。
在本技术方案中,则是r>>r 0,v 2>>v 0的情况。即喷射孔射出的熔液射流没有直接进入到在自由空气中螺旋线地拉伸射流的状态,而是在(r-r 0)的径向地长距离的直线拉伸通道内直线地拉伸后,再进入到自由空气中进行螺旋线式地弧线拉伸。
本技术方案是:尽可能地将喷射孔的径向长度(或者说喷针的长度)缩短,比如2毫米左右。同时,尽可能的增加直线拉伸通道的长度(rr 0)。从喷射孔射出的熔液细流不是立即进入到自由空气中,而是使其在旋转体形成的离心力场中,尽可能利用离心力,在直线拉伸通道中对熔液细流进行直线拉伸。要使离心力对熔液细流沿着直线拉伸通道持续地直线拉伸,首先需要尽可能地加大直线拉伸通道的长度(即增加旋转体的直径尺寸)。其次是尽可能地减少熔液细流在被直线拉伸的过程中的阻力和剪切力,直线拉伸过程中没有空气的径向阻力、圆周方向的空气流剪切力、熔液与直线拉伸通道内壁之间的摩擦阻力。因为相比其他容易实现的物理方式而言,在尽可能短的距离内获得尽可能大的拉伸倍数的一种有效方法。
作为对上述技术方案的进一步完善和补充,本发明采用如下技术措施:所 述直线拉伸通道的内截面尺寸为所述喷射孔内截面尺寸的3-2000倍。这种设置的目的在于防止熔液射流在直线拉伸通道中与直线拉伸通道的内部接触,避免出现因接触产生的摩擦力,避免产生的摩擦力削弱离心力的作用,使熔液射流尽可能的被拉伸。
为了能够充分利用离心力对熔液射流进行直线拉伸,所述直线拉伸通道的中心线与所述旋转体的旋转轴线垂直设置。
所述旋转体包括容器1,与容器固定连接在一起的旋转盘3,所述容器的内腔为所述容纳腔,所述喷射孔设置在所述容器壁上,所述旋转驱动装置驱动所述容器转动,所述容器以其轴线为转动轴线。在本技术方案中,第一种方案:容器与旋转盘为分体结构,通过连接件形成可拆卸式的固定;第二种方案:容器与旋转盘为一体结构。由于旋转盘的尺寸较大,为了方便加工,第一种方案为较佳方案。容器可以为坩埚等耐高温耐腐蚀的容器。由于直线拉伸通道的内截面尺寸较大,为喷射孔内截面尺寸数倍至数十倍,为了提高纺丝效率,一道直线拉伸通道可以配合一个喷射孔,也可以配合多个喷射孔,一道直线拉伸通道配合多个喷射孔时,喷射孔可以是上下竖向一列或多列设置,也可以是横向设置。每个喷射孔喷射出来的射流相互不干涉,各射流在离心力作用下各自独立的被直线拉伸。
所述旋转盘的上方和下方分别设置第一加热保温盘和第二加热保温盘,所述第一加热保温盘和第二加热保温盘匀与所述旋转盘之间存在间隙,所述第一加热保温盘和第二加热保温盘的外沿匀与所述旋转盘的外沿相适配。
对于现有技术的熔体纺丝而言,自由空气中的温度需要维持在射流能够被继续拉伸的状态,是有一定的难度的。其中最难控制的是射流周边的环境温度和周边的气流分布。
而本技术方案采用第一加热保温盘6和第二加热保温盘13的方式对射流拉伸通道进行控温,可以加热也可以制冷,控温简单易行,能够保持射流呈熔液状态。
当然,如果单纯的从控温方面来说,仅设置第一加热保温盘或第二加热保温盘也是可行的方案。当旋转离心盘的直径较大,转速较高时,会出现安全和噪声问题。为了减少旋转盘上下表面与空间接触,旋转时产生巨大噪音,也为了提高安全性,采用第一加热保温盘和第二加热保温盘,这样的方案为最佳方案。
噪声问题是采用本技术方案中使旋转体和不旋转的第一加热保温盘和第二加热保温盘构成“三明治”的结构方式来解决。依据是:将旋转体的表面积尽可能小地暴露在自由空气中,同时在不发生干涉的条件下,尽可能减小旋转体与静止体之间的间隙,从而减少气流阻力产生的噪声。同时选用噪声尽可能小的电动机。
当第一、第二加热保温盘加热后,旋转体与静止的不旋转体的第一、第二加热保温盘之间的间隙中空气受高温影响,使得间隙中的空气密度很低,空气阻力很小。而旋转体边沿的侧立面高度又很小,使得侧面积小,尽管侧面的线速度最大,但是与自由空气的接触面积小,所以气阻产生的噪声分贝数能够有效地得到抑制。
为了使旋转体的中心在轴向上有凸起部位20,并且使凸起部位尽可能深地嵌入到静止的第一、第二加热保温盘中的中心凹部19。这种凸凹镶嵌的部位在轴向的上方和下方均有布置。在旋转体高速旋转的过程中,即使驱动轴发生意外,旋转体也会被静止的不旋转体夹住。当然,当旋转体脱离驱动轴的限制时,采用其他等同方案,用于限制旋转体,使旋转体始终保持在第一、第二加热保温盘夹持的区域内,防止向外飞(包括向上飞出、向下飞出或向其他方向飞出)出而带来的危害。
为了进一步使射出旋转体的射流能够持续的处于高温熔液状态,并且在一定程度上持续近似直线的拉伸射流,所述第一加热保温盘和第二加热保温盘的外侧壁上分别设置吹气管8、12,所述吹气管靠近所述旋转盘设置,并环绕在所述第一加热保温盘和第二加热保温盘的外侧壁上,所述吹气管的管壁上设置 若干吹气孔7、11,吹出的气流朝所述旋转盘的径向方向向外。
为了增加吹气效果,第一、第二加热保温盘上可以分别纵向环绕多道吹气管,吹气孔吹气的方向一致,都是垂直于旋转体旋转轴线的方向,并朝外。
由于第一加热保温盘和第二加热保温盘加热时温度高,为了提高安全性,防止烫伤等意外情况发生,所述第一加热保温盘和第二加热保温盘上远离所述旋转盘的面上分别设置隔热盘5、14。隔热盘的设置还有利于提高能源利用率,防止第一加热保温盘和第二加热保温盘散发到空气中,也有利于提高设备工作状态的环境,减少热能污染。
所述容纳腔内配合一进气管16,所述进气管连接热气供给装置,所述进气管对所述容纳腔提供热气。由于容纳腔与设备周边的空气是连通的,容纳腔中的熔液与空气存在热传递,旋转体喷射直线拉伸时,熔液难以维持熔溶状态,影响喷射直线拉伸效果,因此设置进气管,对容纳腔提高足够高温的热气,提高旋转体喷射直线拉伸的效果。
为了减少进气管的气流对熔液运动状态的影响,所述进气管的出气口17靠近所述容纳腔中心设置,所述出气口为若干个,分别圆周分布于所述进气管的管端。出气口的方向顺应熔液运动方向,提高液体的流动性,有利于熔体进入喷射孔。
为了使进气管16和注料管15尽可能的位于容器中心位置,所述注料件为注料管,与所述进气管紧挨设置;或者所述注料管套在所述进气管的外围,形成嵌套配合。
具体举例来说明:
第一个举例:旋转体3直径为0.4米,容器1(在具体举例说明中都以坩埚为例)直径0.08米,用离心力拉伸射流的直线拉伸通道长度是0.16米。旋转体3的半径尺寸是坩埚内壁上的喷射孔4(喷孔或者喷针孔)距离旋转中心的尺寸的5倍。
旋转速度设计值10000rpm。旋转体(不计电动机驱动轴)重23.5kg。常温 下旋转体与静止不旋转的上下加热盘之间的间隙是3至4毫米,加热到200℃时,间隙是2至2.5毫米。实际运行时,最高8000rpm,常温下在8000rpm的噪声水平是87分贝。当高温时,8000rpm时的噪声只有82分贝。
第二个举例:旋转体3的直径是0.6米,容器1(例如坩埚)的直径是0.1米,旋转体的半径尺寸是坩埚内壁上的喷射孔4(包括喷孔或者喷针孔)距离旋转中心的尺寸的6倍。
在旋转体3的温度在250℃时,8000rpm的状态下,噪声是85分贝。
旋转体3的驱动采用变频感应电动机直接驱动。感应电动机的输出轴必须加长,在感应电动机输出轴的端盖与旋转体3的底部端面之间留出足够的长度,将这空出来的轴长段置于制冷的空气中,冷空气的温度限定在25℃,当温度升高时,提高冷空气的流速。当下加热圆盘6的温度升高到360℃,持续2小时后,感应电动机外壳的温度维持在50℃以下。
坩埚内壁上的喷射孔4的直径0.5毫米,坩埚壁厚2.5毫米,即内径0.5毫米的喷孔径的径向长度是2.5毫米,直线拉伸通道的长度是喷孔长度的64倍。直线拉伸通道内截面积是喷孔内圆截面积的36倍。每个直线拉伸通道对应2个喷孔数是两个,对称地布置。
直线拉伸通道截面为矩形,但不限于矩形,其他形状也是适用的。旋转体3与旋转盘盖10同直径,旋转体3与旋转盘盖10配合使直线拉伸通道周向闭合。
本技术方案适用于溶液离心纺PAN:
采用粉状聚丙烯腈PAN,分子量15万,溶剂是二甲基甲酰胺DMF。质量分数浓度wt 8%至14%。软塞密封常温机械搅拌24小时。
纺丝时,不加坩埚中心的气流,将进气管和进料管抽出,从进气管留出的中空处,每5分钟加溶液5毫升。当旋转速度稳定在6000rpm时开始加料。纤维接收距离20厘米,接受纤维的衬底是常见的医用纱布,或者克重为20克每平方米的聚丙烯无纺布。纺丝半小时,得到的纳米纤维重2.2克,纤维直径比较均匀。
从实际的试验结果验证了,采用本技术方案进行离心纺丝的过程中,纤维细流的拉伸主要不是靠纤维细流在空气中三维鞭动拉伸,而是主要靠旋转体上的径向直线拉伸通道进行离心拉伸。在这个离心力场中的物理参数的随机性要比在自由空气中的随机性要小很多。
当浓度降为wt8%时,纤维的直径变大,与国内外报道的纤维直径随着浓度的减小而增加的结论相似。这个现象在本发明中的一种解释是:溶液浓度减小,相同的喷孔内径的溶液的体积流量增加,纤维流流量增加在流速不变的情况下,就是纤维的直径会增加。尽管浓度降低了,但是相比浓度对挥发后的纤维的直径的影响要小于因浓度降低使流量增加的影响。
因为试验的次数有限,很难得出一个明确的关于本发明中的纤维直径与溶液浓度的关系的确切结论。
在试验中,只做了溶液浓度的改变,旋转速度和喷孔内径0.5毫米均没有变化。尤其是坩埚壁上的喷孔4内径是用常规直径0.5毫米的麻花钻头在直径80毫米的圆形坩埚的外圆弧上钻出来的,这已经是这种加工方式最小的直径了。
本技术方案适用于溶液离心纺PVDF。
聚偏氟乙烯PVDF,溶剂依然是二甲基甲酰胺DMF。质量分数浓度wt 8%至10%。软塞密封60摄氏度情况下机械搅拌24小时。
纺丝时,不加坩埚中心的气流,将进气管和进料管抽出,从进气管留出的中空处,每5分钟加料5毫升。当旋转速度稳定在7000rpm开始加料。纤维接收距离20厘米,接受纤维的衬底是常见的医用纱布。坩埚内壁上的孔的直径0.5毫米,坩埚壁厚2.5毫米,即内径0.5毫米的孔径长度是2.5毫米。之所以将转速增加到7000rpm,是因为相同浓度条件下,PVDF其黏度比PAN的要高。
尽管PVDF纤维的直径变小了,但是纤维表面的光滑程度和均匀性不及PAN材料。在本发明的实验中,说明PAN溶液相比PVDF溶液的可纺性好,这个结论与溶液静电纺丝的结论相同。
本技术方案适用于高聚物的熔体纺丝:
熔体纺丝尽管只多了一个工艺参数:温度。但是温度是很难准确的控制和 测量的,尤其是测量高速旋转的离心盘的温度,坩埚内物料的温度,拉伸射流的隧道内的温度,和射流从隧道口射出后遇到的空气的温度,或者说射流在空气中螺旋线地拉伸过程的温度,这实际是一个比较复杂的温度场。
熔体离心纺丝材料:聚丙烯,颗粒料,熔值25g/10min(测试条件230℃,2.16kg,以下同)至1500g/10min。
测试旋转体和坩埚的方法是用红外探头测试。
加进物料熔融的方法有两种,一种是:当坩埚的温度和旋转盘外沿的温度达到180℃至230℃时,起动电动机,转速稳定在5000rpm至8000rpm时,开始按照每两分钟两克的颗粒料加入到坩埚中,加料前,将坩埚中的空气管和进料管均抽出,加完颗粒料后,再插回到坩埚中。另一种是:将12至15克的颗粒料在启动加热装置前加入,将点温探头埋入物料中,当物料温度超过熔点温度后,将温度探头抽出,开始启动电动机。
颗粒料在加温的过程中,没用到螺杆挤出机,所以没有搅拌和挤压的过程,有塑化不均匀的问题,造成被熔融的物料颗粒出现“夹生饭粒”的情况,没有被完全熔融的细小颗粒,会出现在纤维上,产生纤维串珠的现象。第一种加料方式下,纤维上的串珠现象很严重。第二种加料方式串珠现象要好很多。
第一种和第二种加物料熔融的方式,都没有用到插入到坩埚中的进料管,因为进料管内径较小,颗粒料在管内容易堵塞,只有当充分熔融后的熔体在挤压作用才能够比较顺利地流入到坩埚中。
坩埚内壁上的孔或针孔的内径0.36毫米,0.36毫米的内径孔的长度是3至4毫米。内孔内圆截面积是0.1平方毫米,直线拉伸通道的内截面积是喷孔的内圆截面积的90倍。
坩埚内壁上的孔或针孔的内径还试验过0.18毫米,0.18毫米的内径孔的长度是4毫米。内孔截面积是0.025平方毫米,直线拉伸通道的内截面积是喷孔的内圆截面积的353倍。
由于物料的温度和黏度等参数很难准确确定,要想通过这些参数确定射流v 0初始速度是比较困难的。得到v 0的工程数据是通过熔体的流量,喷孔4的内 径,可以得到v 0的值,再通过喷孔4处的流量和直线拉伸通道出口9处的流量相等的原理,得到射流在直线拉伸通道出口9处的流速v 2,从而可以得到在直线拉伸通道出口处射流的外径。还可以导出射流在直线拉伸通道内的拉伸倍率。再通过实际测量的直线拉伸通道口处的射流的外径,来验证公式1的准确度或者评估公式1的参考价值。
因为原料的流动性对原料的温度是很敏感的,厂家在标定原料的流动性是按照相关的测试标准标定的。所以做熔体纺丝试验时,先要大致确定物料在坩埚内的流动性,即需要用多大的挤出力才能将高粘度的物料从坩埚内壁的小孔中挤出,这个挤出力与纺丝时产生的离心力有一种对应关系,从而确定出纺丝时的转速和温度,只要确定出的这个转速没有超过8000rpm,温度没有超过试验设备本身的升温极限,就可以用这个参数来确定高速离心纺丝时的转速和温度。
当旋转体高速旋转时,搅动冷空气的流动,会使旋转体坩埚内的温度降低,同时也会使直线拉伸通道内的温度降低,所以要设法维持坩埚内的温度和旋转体的温度,旋转体外表的温度(用非接触的红外探头测定)可以认定为直线拉伸通道内的温度。
一组聚丙烯颗粒料纺丝实验数据是:
聚丙烯熔值是25g/10min(230℃,2.16kg),分子量21万,分子量分布3.5,灰粉0.22%。
坩埚内壁针孔的内径是0.36毫米。
当坩埚温度升到220℃(红外探测温度),旋转体外沿侧立面红外探测210℃,此时加入颗粒料12克。加热时间15分钟,用点温计探头测得原料温度是224℃,此时起动电动机,设定转速7000rpm。
中心进气管的温度控制器设定在300℃,坩埚中径向气流的温度约为215℃,进气压力0.2Mpa。
上下加热盘上的进气管进入冷空气,室温28℃,管中气体压力0.3MPa。
六面的从中心向外排风的风机开启。
从转速稳定在7000rpm时开始计时。当7000rpm稳定运行2分钟时,监测转速的波动情况1分钟,测得转速波动范围是6950rpm至6970rpm,也说明了角加速度很小。
因高速旋转体上下均有凸部,嵌入到静止的上下加热盘的凹部,当高速旋转时,有向上的浮力。当上下气隙中气流压力达到平衡时,电动机的转子、电动机的轴和旋转离心盘3是悬浮在高速气流中的。而且轴向串动的位移用常规的方法测量不到。
同时用带有点温计探头(热敏电阻)的细铁丝深入到旋转离心盘边沿约2至4毫米处(因气流速度很高,探头受气流的影响而摆动),持续3秒钟收集刚从隧道射出的纤维,用于检测。同时可读出点温计的温度是45℃至47℃。
远行8分钟后关闭电动机,电动机主轴在3.2分钟后,转速为零(带有刹车电阻)。
打开设备的顶盖,检查坩埚内的残留料极少,认为物料在8+1+1=10分钟内,通过了两个内径0.36毫米的小孔(加两分钟是因为当转速达到5000rpm时,已经见到纤维出现,从5000rpm升至7000rpm需要近1分钟时间)。
收集在细铁丝上的纤维两组,用纤维细度分析仪,在光学倍率40倍,屏幕显示区域内找到直径最大的一根纤维是6.5微米。要找最粗的纤维的理由是,细铁丝上缠绕的纤维有两种,一种是刚从射流拉伸隧道内射出的纤维,一种是已经经过空气中半个旋转体周长的拉伸路径拉伸过的纤维。最粗直径的应该是刚从射流拉伸隧道口射出的纤维。
按照每个喷孔或者喷嘴每分钟0.5立方厘米的体积流量,喷孔内径是0.36毫米,根据旋转半径和旋转角速度,可计算出从射流拉伸隧道口射出的速度是123.1米/秒。还可计算出射流射出隧道口时的射流外径是9.17微米。而实测值是6.5微米。可见,从工程技术的角度来看公式1是具有实际的参考价值。
之所以会出现刚从直线拉伸通道口射出的纤维的外径的实测值小于理论值,一种解释是,在喷孔口4射出的射流的外径要小于喷孔的内径尺寸。
理论计算的喷孔内径与射出隧道出口处的射流的外径之比是39倍,实际测 出的值是55.4倍。
转速在6000rpm时,用熔值1500g/10min的颗粒聚丙烯料。熔体的进料速度是每个喷孔为每分钟0.5立方厘米,从转速稳定开始计算,纺丝10分钟得到8.2克纤维膜。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明。在上述实施例中,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种高速离心纺丝装置,包括:
    旋转驱动装置;
    旋转体:由所述旋转驱动装置驱动旋转;
    容纳腔:位于所述旋转体的中心部位,用于容纳纺丝原料;
    注料件:注料口与所述容纳腔配合,用于向容纳腔内供料;
    喷射孔:为若干个,分别分布于所述容纳腔的外周,所述容纳腔与各个所述喷射孔连通,旋转体旋转时,喷出纺丝;
    其特征在于,还包括直线拉伸通道:为若干道,均匀地径向设置在所述旋转体上,一道所述的直线拉伸通道对应的配合至少一个喷射孔,形成连通容纳腔及旋转体外部空间的喷射直线拉伸通道,所述直线拉伸通道的长度为所述喷射孔长度的3~1000倍。
  2. 根据权利要求1所述的高速离心纺丝装置,其特征在于所述直线拉伸通道的内截面尺寸为所述喷射孔内截面尺寸的3-20000倍。
  3. 根据权利要求2所述的高速离心纺丝装置,其特征在于所述直线拉伸通道的中心线与所述旋转体的旋转轴线垂直设置。
  4. 根据权利要求1或2或3所述的高速离心纺丝装置,其特征在于所述旋转体包括容器,与容器固定连接在一起的旋转盘;所述容器的内腔为所述容纳腔,所述喷射孔设置在所述容器壁上,所述旋转驱动装置驱动所述容器转动,所述容器以其轴线为转动轴线。
  5. 根据权利要求4所述的高速离心纺丝装置,其特征在于所述旋转盘的两面别设置第一加热保温盘和第二加热保温盘,所述第一加热保温盘和第二加热保温盘匀与所述旋转盘之间存在间隙,所述第一加热保温盘和第二加热保温盘的外沿匀与所述旋转盘的外沿相适配。
  6. 根据权利要求5所述的高速离心纺丝装置,其特征在于所述第一加热保温盘和第二加热保温盘的外侧壁上分别设置吹气管,所述吹气管靠近所述旋转盘设置,并环绕在所述第一加热保温盘和第二加热保温盘的外侧壁上,所述吹气管的管壁上设置若干吹气孔,吹出的气流朝所述旋转盘的径向方向向外。
  7. 根据权利要求6所述的高速离心纺丝装置,其特征在于所述第一加热保温盘和第二加热保温盘上远离所述旋转盘的面上分别设置隔热盘。
  8. 根据权利要求6所述的高速离心纺丝装置,其特征在于所述容纳腔内配合一进气管,所述进气管连接热气供给装置,所述进气管对所述容纳腔提供热气。
  9. 根据权利要求8所述的高速离心纺丝装置,其特征在于所述进气管的出气口靠近所述容纳腔中心设置,所述出气口为若干个,分别圆周分布于所述进气管的管端。
  10. 根据权利要求8所述的高速离心纺丝装置,其特征在于所述注料件为注料管,与所述进气管紧挨设置;或者所述注料管套在所述进气管的外围,形成嵌套配合。
PCT/CN2017/118003 2016-12-23 2017-12-22 高速离心纺丝装置 WO2018113779A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611206264.8 2016-12-23
CN201611206264.8A CN107201560B (zh) 2016-12-23 2016-12-23 高速离心纺丝装置

Publications (1)

Publication Number Publication Date
WO2018113779A1 true WO2018113779A1 (zh) 2018-06-28

Family

ID=59904833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118003 WO2018113779A1 (zh) 2016-12-23 2017-12-22 高速离心纺丝装置

Country Status (2)

Country Link
CN (1) CN107201560B (zh)
WO (1) WO2018113779A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457303A (zh) * 2018-12-05 2019-03-12 河北耐诺科技有限公司 离心力辅助发射极
CN113564735A (zh) * 2021-08-20 2021-10-29 北京化工大学 一种气流辅助的离心静电纺丝装置
CN114197065A (zh) * 2021-12-31 2022-03-18 武汉纺织大学 一种撑浮式离心纺丝装置及其使用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107201560B (zh) * 2016-12-23 2023-03-10 杭州大铭光电复合材料研究院有限公司 高速离心纺丝装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178336A (en) * 1977-03-11 1979-12-11 Imperial Chemical Industries Limited Production of fibres
CN104178826A (zh) * 2014-08-13 2014-12-03 杭州大铭光电复合材料研究院有限公司 离心静电连续纺纳米纤维装置
CN104389037A (zh) * 2014-11-26 2015-03-04 魏保平 一种嵌套式纺丝体
CN206447977U (zh) * 2016-12-23 2017-08-29 杭州大铭光电复合材料研究院有限公司 高速离心纺丝装置
CN107201560A (zh) * 2016-12-23 2017-09-26 杭州大铭光电复合材料研究院有限公司 高速离心纺丝装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693280A (en) * 1996-07-31 1997-12-02 Owens-Corning Fiberglas Technology, Inc. Method of producing organic fibers from a rotary process
US6245282B1 (en) * 1999-08-05 2001-06-12 Johns Manville International, Inc. Apparatus and method for forming fibers from thermoplastic fiberizable materials
US6361836B1 (en) * 1999-12-09 2002-03-26 Johns Manville International, Inc. Method of making spinner discs for rotary fiberization processes
CN101220544A (zh) * 2007-12-29 2008-07-16 中国科学院长春应用化学研究所 熔体和溶液离心纺丝制备非织造物的装置
US8597552B2 (en) * 2009-03-16 2013-12-03 Evan Koslow Apparatus, systems and methods for producing particles using rotating capillaries
CN104928777B (zh) * 2014-03-21 2017-08-25 馨世工程教育有限公司 用于生产若干种结构的复合纳米微米纤维离心纺丝设备
CN104928775B (zh) * 2014-03-21 2018-03-06 馨世工程教育有限公司 一种用于生产复合纳米微米纤维的离心纺丝装置
CN106222767A (zh) * 2016-08-29 2016-12-14 天津工业大学 一种同轴离心纺丝装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178336A (en) * 1977-03-11 1979-12-11 Imperial Chemical Industries Limited Production of fibres
CN104178826A (zh) * 2014-08-13 2014-12-03 杭州大铭光电复合材料研究院有限公司 离心静电连续纺纳米纤维装置
CN104389037A (zh) * 2014-11-26 2015-03-04 魏保平 一种嵌套式纺丝体
CN206447977U (zh) * 2016-12-23 2017-08-29 杭州大铭光电复合材料研究院有限公司 高速离心纺丝装置
CN107201560A (zh) * 2016-12-23 2017-09-26 杭州大铭光电复合材料研究院有限公司 高速离心纺丝装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457303A (zh) * 2018-12-05 2019-03-12 河北耐诺科技有限公司 离心力辅助发射极
CN109457303B (zh) * 2018-12-05 2023-12-08 河北耐诺科技有限公司 离心力辅助发射极
CN113564735A (zh) * 2021-08-20 2021-10-29 北京化工大学 一种气流辅助的离心静电纺丝装置
CN114197065A (zh) * 2021-12-31 2022-03-18 武汉纺织大学 一种撑浮式离心纺丝装置及其使用方法
CN114197065B (zh) * 2021-12-31 2023-04-18 武汉纺织大学 一种撑浮式离心纺丝装置及其使用方法

Also Published As

Publication number Publication date
CN107201560B (zh) 2023-03-10
CN107201560A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2018113779A1 (zh) 高速离心纺丝装置
Xu et al. A comparative study of jet formation in nozzle‐and nozzle‐less centrifugal spinning systems
US9827728B2 (en) Devices and methods for the production of microfibers and nanofibers in a controlled environment
CN102534829B (zh) 通过熔体纺丝法来制备纳米纤维
Liu et al. High‐efficiency preparation of polypropylene nanofiber by melt differential centrifugal electrospinning
ITRM20060335A1 (it) Apparecchio complesso e procedimento per la produzione di fibre nonche complesso comprendente tali fibre
JP6076322B2 (ja) 遠心紡糸装置及び方法
CN104674360A (zh) 一种气流辅助熔体微分离心纺丝装置及方法
US10590565B2 (en) Polymeric nanofibers and nanofibrous web
Zhiming et al. Spinning solution flow model in the nozzle and experimental study of nanofibers fabrication via high speed centrifugal spinning
JP6210422B2 (ja) 繊維集合体
Zhang et al. Stable multi-jet electrospinning with high throughput using the bead structure nozzle
CN206447977U (zh) 高速离心纺丝装置
CN107245764A (zh) 一种离心微分静电纺丝法制备纳米纤维的装置
JP2013514961A (ja) 無機繊維を形成するための繊維形成遠心機、装置及び方法
CN106367822B (zh) 一种化纤纺丝冷却系统及其应用
CN207435591U (zh) 一种离心微分静电纺丝法制备纳米纤维的装置
WO2017110057A1 (ja) 繊維集合体
KR20000029437A (ko) 유기섬유제조방법
CN214193015U (zh) 一种适用于玄武岩纤维生产的投料装置
CN204530052U (zh) 一种气流辅助熔体微分离心纺丝装置
CN204779948U (zh) 一种雾冷式熔丝喷头
WO2010105329A1 (en) Apparatus, systems and methods for producing particles using rotating capillaries
US11185790B2 (en) Particle production apparatus and particle production method
Liu et al. Investigation on the polymer drawing model of the centrifugal spinning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883363

Country of ref document: EP

Kind code of ref document: A1