WO2018113763A1 - 基于轨道交通的计算机平台 - Google Patents

基于轨道交通的计算机平台 Download PDF

Info

Publication number
WO2018113763A1
WO2018113763A1 PCT/CN2017/117890 CN2017117890W WO2018113763A1 WO 2018113763 A1 WO2018113763 A1 WO 2018113763A1 CN 2017117890 W CN2017117890 W CN 2017117890W WO 2018113763 A1 WO2018113763 A1 WO 2018113763A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
computer platform
rail transit
communication
main control
Prior art date
Application number
PCT/CN2017/117890
Other languages
English (en)
French (fr)
Inventor
薄云览
卓开阔
王发平
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018113763A1 publication Critical patent/WO2018113763A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/80Architectures of general purpose stored program computers comprising an array of processing units with common control, e.g. single instruction multiple data processors

Definitions

  • the invention relates to the technical field of rail transit safety, in particular to a computer platform based on rail transit.
  • a secure computer In order to realize the functions of safe input data processing, safety logic operation, and safe output data processing of the system, a secure computer is usually used as a common platform for implementing the security system.
  • the safety system can be Automatic Train Protection (ATP), Automatic Train Operation (ATO), Interlock, Zone Controller (ZC) and other wireless communication-based train automatic control system (Communication Based The Train Control System (CBTC) can also be other types of safety systems with digital input and output and communication interfaces.
  • Domestic security computers generally use a combined fail-safe structure of two or three to ensure the security and reliability of the system.
  • the trackside safety computer platform developed based on the requirements of the interlocking system the vehicle safety computer platform developed based on the requirements of the vehicle ATP and the ATO system, all adopt a combined fail-safe structure, combined with the partial design of the reaction failure safety and the inherent failure safety. Meet the security of the entire system.
  • the security computer of different application scenarios requires different features and implemented functions.
  • the vehicle safety computer requires rich interface, small product size, easy installation and high real-time performance.
  • the ground safety computer requires strong scalability, multiple input/output (I/O) interfaces, and strong communication processing capability.
  • mainstream security computers usually use two different sets of secure computer platforms as security cameras for vehicles and the ground.
  • the platform may have poor applicability, high development cost, different technical routes, and high maintenance costs.
  • the object of the present invention is to solve at least one of the above technical problems to some extent.
  • the present invention proposes a rail transit based computer platform capable of forming a secure computer platform capable of meeting various security system requirements to improve system security, reliability, configuration flexibility, and scalability. .
  • an embodiment of the present invention provides a computer platform based on rail transit, including: a first system, where the first system includes: a first power board, a second power board, a main control board, a communication board, and an input board. And the output board, where
  • the first power board is respectively connected to the main control board, the communication board, the input board, and the output board, and is used for supplying power to the main control board, the communication board, the input board, and the output board;
  • the second power board is respectively connected to the main control board, the input board and the output board, and is used for supplying power to the main control board, the input board and the output board;
  • the main control board is connected to the communication board through a high-speed bus, and is respectively connected to the input board and the output board through an industrial bus.
  • the rail transit-based computer platform comprises a first power supply board, a second power supply board, a main control board, a communication board, an input board and an output board, and the main control board passes the high speed bus and the communication board. Connected to the input and output boards via the industrial bus to form a secure computer platform that meets the needs of various security systems, reducing development and maintenance costs, and improving system security, reliability, real-time, and configuration. Flexibility, applicability, and scalability.
  • FIG. 1 is a block diagram of a computer platform based on rail transit according to an embodiment of the present invention
  • FIG. 2 is a block diagram of a rail transit based computer platform according to another embodiment of the present invention.
  • Figure 3 is an internal architecture diagram of the main control board
  • Figure 5 is an internal architecture diagram of the input board
  • Figure 6 is an internal architecture diagram of the output board
  • FIG. 7 is a block diagram of a rail transit based computer platform according to another embodiment of the present invention.
  • FIG. 1 is a block diagram of a rail transit based computer platform according to an embodiment of the present invention.
  • the rail transit based computer platform includes a first system 10. among them,
  • the first system 10 includes a first power board 101, a second power board 102, a main control board 103, a communication board 104, an input board 105, and an output board 106. among them,
  • the first power board 101 is connected to the main control board 103, the communication board 104, the input board 105, and the output board 106, respectively, for supplying power to the main control board 103, the communication board 104, the input board 105, and the output board 106.
  • the second power board 102 is connected to the main control board 103, the input board 105, and the output board 106, respectively, for supplying power to the main control board 103, the input board 105, and the output board 106.
  • the first system 10 further includes a power access board connected to the first power board 101 and the second power board 102 for accessing an external power source.
  • the power access board can connect an external 110V DC power supply or a 220V AC power supply to the internal power supply board 101 and the second power supply board 102 respectively.
  • the main control board 103 is connected to the communication board 104 via a high speed bus, and is connected to the input board 105 and the output board 106 via an industrial bus, respectively.
  • the high-speed bus includes at least one of a high-reliability external device interconnect bus (CPCI), a PCI-E (PCI-Express), and a PCI-serial;
  • the industrial bus includes a controller area network (CAN) (Controller Area Network) At least one of a bus, a Profibus, and an industrial Ethernet bus.
  • CPCI high-reliability external device interconnect bus
  • PCI-E PCI-Express
  • PCI-serial PCI-serial
  • the industrial bus includes a controller area network (CAN) (Controller Area Network) At least one of a bus, a Profibus, and an industrial Ethernet bus.
  • CAN Controller Area Network
  • the rail transit based computer platform may further include: a watchdog board 107.
  • the watchdog board 107 is connected to the main control board 103, the communication board 104, and the output board 106, and supplies power to the output circuits of the communication board 104 and the output board 106, and is used to monitor the operating state of the main control board 103.
  • the watchdog board 107 is capable of outputting a safe power source for supplying power to the output circuits of the communication board 104 and the output board 106, and causing the system to stop outputting signals when the system is powered off, thereby preventing the occurrence of a malfunction.
  • the watchdog board 107 is used to monitor the running state of the main control board 103, and realize the security monitoring function of the main control board 103.
  • the main control board 103 can control the watchdog board 107 to turn off the power output when the computer platform fails.
  • Figure 3 is an internal architecture diagram of the main control board.
  • the main control board 103 adopts a two-way CPU (Central Processing Unit) architecture, and includes a first CPU 201, a second CPU 202, a memory 203, a memory 204, and a first CPCI interface 205. among them,
  • a two-way CPU Central Processing Unit
  • the first CPU 201 includes a calculator 2011, a synchronizer 2012, a data exchanger 2013, a comparator 2014, and a first communication interface 2015. among them,
  • the calculator 2011 is connected to the synchronizer 2012, the data exchanger 2013, the comparator 2014, and the first communication interface 2015, respectively.
  • the synchronizer 2012 is connected to the calculator 2011.
  • the data exchanger 2013 is connected to the calculator 2011 and the comparator 2014.
  • the comparator 2014 is connected to the calculator 2011.
  • the first communication interface 2015 is connected to the calculator 2011.
  • the second CPU 202 includes a calculator 2021, a synchronizer 2022, a data exchanger 2023, a comparator 2024, and a first communication interface 2025. among them,
  • the calculator 2021 is coupled to the synchronizer 2022, the data exchanger 2023, the comparator 2024, and the first communication interface 2025, respectively.
  • the synchronizer 2022 is coupled to the calculator 2021.
  • Data switch 2023 is coupled to calculator 2021 and comparator 2024.
  • the comparator 2024 is connected to the calculator 2021.
  • the first communication interface 2025 is coupled to the calculator 2021.
  • the first communication interface 2015 of the first CPU 201 is connected to the first CPCI interface 205 and the input/output board 207, respectively; the first CPCI interface 205 is connected to the communication board 104; the memory 203 is connected to the calculator 2011; the memory 204 and the calculator 2021 is connected; the power source 208 and the power source 209 supply power to the first CPU 201 and the second CPU 202, respectively.
  • the main control board 103 can implement various functions, for example, implementing an application algorithm, implementing a secure voting algorithm of two and two, implementing a software scheduling algorithm based on an embedded real-time operating system to implement a secure computer platform layer, and implementing security protocol encapsulation and parsing of data, Realize periodic processing of communication data and I/O data, and achieve periodic synchronization between systems and CPUs.
  • the rail transit-based computer platform centrally designs the software scheduling algorithm on the main control board 103, which simplifies the system architecture level, improves the response speed of the computer platform, and reduces the security of the communication board 104. The time of the agreement. Compared to the distributed system architecture, the rail transit-based computer platform using the main control board 103 architecture can achieve better portability and testability.
  • the communication board 104 includes at least one of a CAN communication board, a serial communication board, and an Ethernet communication board. According to different application scenarios, various types of communication interfaces can be implemented by configuring different types of communication boards, and the interface configuration is flexible.
  • 4 is an internal architecture diagram of a communication board.
  • the communication board 104 includes a third communication interface 301, a Field-Programmable Gate Array (FPGA) 302, and a second CPCI interface 303. among them,
  • FPGA Field-Programmable Gate Array
  • the third communication interface 301 is connected to the watchdog board 107.
  • Field programmable gate array 302 is coupled to third communication interface 301.
  • the second CPCI interface 303 is coupled to the field programmable gate array 302.
  • the second CPCI interface 303 is connected to the main control board 103, and the third communication interface 301 is connected to the external device 306.
  • the communication board 104 is connected to the main control board 103 through the second CPCI interface 303, and can realize large-capacity and high-real-time data transmission and reception.
  • standard buses such as CPCI bus, CAN bus
  • it has good versatility.
  • the communication board 104 is controlled by the power of the watchdog board 107 to implement safe handling of the fault.
  • the input board 105 and the output board 106 are respectively connected to the main control board 103 through an industrial bus, which can realize the expansion of the I/O interface, and flexibly configure the I/O interface according to different application scenarios, such as relay flooding and speed sensor acquisition.
  • the input board 105 and the output board 106 are controlled by the power of the watchdog board 107 to implement safe handling of the fault.
  • Figure 5 is an internal architecture diagram of the input board.
  • the input board 105 adopts a dual CPU architecture, including a third CPU 401, a fourth CPU 402, and a security input interface 403. among them,
  • the third CPU 401 includes a calculator 4011, a synchronizer 4012, a data exchanger 4013, a comparator 4014, and a second communication interface 4015. among them,
  • the calculator 4011 is connected to the synchronizer 4012, the data exchanger 4013, the comparator 4014, and the second communication interface 4015, respectively.
  • the synchronizer 4012 is connected to the calculator 4011.
  • the data exchanger 4013 is connected to the calculator 4011 and the comparator 4014.
  • the comparator 4014 is connected to the calculator 4011.
  • the second communication interface 4015 is coupled to the calculator 4011.
  • the fourth CPU 402 includes a calculator 4021, a synchronizer 4022, a data exchanger 4023, a comparator 4024, and a second communication interface 4025. among them,
  • the calculator 4021 is connected to the synchronizer 4022, the data exchanger 4023, the comparator 4024, and the second communication interface 4025, respectively.
  • the synchronizer 4022 is connected to the calculator 4021.
  • Data exchanger 4023 is coupled to calculator 4021 and comparator 4024.
  • the comparator 4024 is connected to the calculator 4021.
  • the second communication interface 4025 is coupled to the calculator 4021.
  • the second communication interface 4015 and the second communication interface 4025 are respectively connected to the main control board 103 through an industrial bus; the third CPU 401 and the fourth CPU 402 are connected to the safety input interface 403; the safety input interface 403 is connected to the safety relay 405; The power source 407 supplies power to the third CPU 401 and the fourth CPU 402, respectively.
  • Figure 6 is an internal architecture diagram of the output board.
  • the output board 106 also adopts a dual CPU architecture, including a third CPU 501, a fourth CPU 502, and a security output interface 503. among them,
  • the third CPU 501 and the fourth CPU 502 have the same internal composition and connection mode as the third CPU 401 and the fourth CPU 402 of the input board 105. Therefore, the foregoing descriptions of the third CPU 401 and the fourth CPU 402 of the input board 105 are also applicable to the output.
  • the third CPU 501 and the fourth CPU 502 of the board 106 are not described herein again.
  • the second communication interface 4015 and the second communication interface 4025 are respectively connected to the main control board 103 through an industrial bus; the third CPU 501 and the fourth CPU 502 are connected to the safety output interface 503; the safety output interface 503 is connected to the safety relay 405; The power source 507 supplies power to the third CPU 501 and the fourth CPU 502, respectively.
  • the input board 105 and the output board 106 of the two-in-two architecture are composed of two physically independent CPUs, and are connected to the main control board 103 through the industrial bus, thereby ensuring the security of the input data and the output data.
  • the main control board 103 and the input board 105 and the output board 106 encapsulate a security protocol on the basis of the industrial bus to protect against packet loss, delay, and Insert errors and other errors to ensure the security of communication data.
  • the security protocol is a security protocol that complies with the European railway standard EN50159.
  • the rail transit-based computer platform comprises a first power supply board, a second power supply board, a main control board, a communication board, an input board and an output board, and the main control board passes the high speed bus and the communication board. Connected to the input and output boards via the industrial bus to form a secure computer platform that meets the needs of various security systems, reducing development and maintenance costs, and improving system security, reliability, real-time, and configuration. Flexibility, applicability, and scalability.
  • FIG. 7 is a block diagram of a rail transit based computer platform according to another embodiment of the present invention.
  • the rail transit based computer platform further includes a second system 20 and an interlock relay 30. among them,
  • the first system 10 is synchronized with the second system 20 data.
  • the first system 10 and the second system 20 perform data synchronization via an industrial bus.
  • the second system 20 is coupled to the first system 10 via an interlock relay 30.
  • the interlock relay 30 is used to control the master-slave relationship between the first system 10 and the second system 20.
  • first system 10 and the second system 20 are also connected to the communication peripheral 50 via the input/output peripheral 40.
  • the second system 20 has the same internal architecture as the first system 10, and the description of the first system 10 in the foregoing embodiment is also applicable to the second system 20, and details are not described herein again.
  • the rail transit-based computer platform of the embodiment of the present invention can realize data synchronization by communicating with the first system and the second system physically independent of each other through the high-speed Ethernet.
  • the master-slave relationship between the first system and the second system can be determined by collecting the contact state of the interlocking relay, thereby improving the availability of the system.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

一种基于轨道交通的计算机平台,包括:第一系统(10),第一系统(10)包括:第一电源板(101),第二电源板(102),主控板(103),通信板(104),输入板(105)和输出板(106),其中,第一电源板(102),分别与主控板(103)、通信板(104)、输入板(105)和输出板(106)相连,用于为主控板(103)、通信板(104)、输入板(105)和输出板(106)提供电源;第二电源板(102),分别与主控板(103)、输入板(105)和输出板(106)相连,用于为主控板(103)、输入板(105)和输出板(106)提供电源;主控板(103),通过高速总线与通信板(104)相连,通过工业总线分别与输入板(105)和输出板(106)相连。形成一套能够满足各类安全系统需求的安全计算机平台,提高系统的安全性、可靠性、实时性、配置的灵活性,以及可扩展性。

Description

基于轨道交通的计算机平台
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2016年12月23日提交的、发明名称为“基于轨道交通的计算机平台”的、中国专利申请号“201611204662.6”的优先权。
技术领域
本发明涉及轨道交通安全技术领域,尤其涉及一种基于轨道交通的计算机平台。
背景技术
为了实现系统的安全输入数据处理、安全逻辑运算、安全输出数据处理等功能,通常以安全计算机作为实现安全系统的公共平台。安全系统可以是列车自动防护(Automatic Train Protection,ATP)、列车自动驾驶(Automatic Train Operation,ATO)、联锁、区域控制器(Zone Controller,ZC)等基于无线通信的列车自动控制系统(Communication Based Train Control System,CBTC),也可以是具备数字量输入输出、通信接口的其他类安全系统。国产的安全计算机一般采用二取二或三取二的组合式故障安全结构,以保证系统的安全性和可靠性。例如,基于联锁系统需求开发的轨旁安全计算机平台、基于车载ATP、ATO系统需求开发的车载安全计算机平台,均采用组合式故障安全结构,结合反应故障安全和固有故障安全的局部设计,来满足整个系统的安全性。
通常,不同应用场景的安全计算机要求具备的特点和实现的功能不同。车载安全计算机要求支持接口丰富、产品体积小、易于安装、实时性高等特点;而地面安全计算机要求可扩展性强、输入/输出(I/O)接口多、通信处理能力强等特点。目前,主流的安全计算机通常采用两套不同的安全计算机平台分别作为车载和地面的安全计算机。然而,由于两类安全计算机平台的技术特点不同,可能导致平台适用性差、开发成本高、技术路线不一、维护成本高等问题。
发明内容
本发明的目的旨在至少在一定程度上解决上述的技术问题之一。
为此,本发明提出一种基于轨道交通的计算机平台,能够形成一套能够满足各类安全系统需求的安全计算机平台,以提高系统的安全性、可靠性、配置的灵活性,以及可扩展性。
为了实现上述目的,本发明实施例提出了一种基于轨道交通的计算机平台,包括: 第一系统,第一系统包括:第一电源板,第二电源板,主控板,通信板、输入板和输出板,其中,
第一电源板,分别与主控板、通信板、输入板和输出板相连,用于为主控板、通信板、输入板和输出板提供电源;
第二电源板,分别与主控板、输入板和输出板相连,用于为主控板、输入板和输出板提供电源;
主控板,通过高速总线与通信板相连,通过工业总线分别与输入板和输出板相连。
本发明实施例提出的基于轨道交通的计算机平台,通过第一电源板、第二电源板、主控板、通信板、输入板和输出板组成第一系统,主控板通过高速总线与通信板相连,通过工业总线分别与输入板和输出板相连,以形成一套能够满足各类安全系统需求的安全计算机平台,降低研发和维护成本,提高系统的安全性、可靠性、实时性、配置的灵活性、适用性,以及可扩展性。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一实施例提出的基于轨道交通的计算机平台的架构图;
图2是本发明另一实施例提出的基于轨道交通的计算机平台的架构图;
图3是主控板的内部架构图;
图4是通信板的内部架构图;
图5是输入板的内部架构图;
图6是输出板的内部架构图;
图7是本发明又一实施例提出的基于轨道交通的计算机平台的架构图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
图1是本发明一实施例提出的基于轨道交通的计算机平台的架构图。
如图1所示,该基于轨道交通的计算机平台包括:第一系统10。其中,
第一系统10包括:第一电源板101、第二电源板102、主控板103、通信板104、输入板105和输出板106。其中,
第一电源板101分别与主控板103、通信板104、输入板105和输出板106相连,用于为主控板103、通信板104、输入板105和输出板106提供电源。
第二电源板102分别与主控板103、输入板105和输出板106相连,用于为主控板103、输入板105和输出板106提供电源。
具体的,第一系统10还包括电源接入板,分别与第一电源板101和第二电源板102相连,用于接入外部电源。其中,电源接入板能够将外部110V的直流电源或者220V的交流电源接入系统内部,分别提供给第一电源板101和第二电源板102。
主控板103通过高速总线与通信板104相连,通过工业总线分别与输入板105和输出板106相连。
其中,高速总线包括高可靠性外部设备互联总线CPCI(Compact Peripheral Component Interconnect)、PCI-E(PCI-Express)、PCI-serial中的至少一种;工业总线包括控制器局域网网络CAN(Controller Area Network)总线、Profibus总线、工业以太网总线的至少一种。
此外,在本发明的一个实施例中,如图2所示,该基于轨道交通的计算机平台,还可以包括:看门狗板107。
看门狗板107与主控板103、通信板104和输出板106相连,为通信板104和输出板106的输出电路提供电源,同时用于监控主控板103的运行状态。
具体地,看门狗板107能够输出安全电源,用于为通信板104和输出板106的输出电路提供电源,并在系统出现故障时切断安全电源时,促使系统停止输出信号,避免故障发生。另外,看门狗板107用于监控主控板103的运行状态,实现对主控板103的安全监控功能。
主控板103在当计算机平台故障时,可控制看门狗板107关闭电源输出。图3是主控板的内部架构图。
如图3所示,主控板103采用二取二的双中央处理器CPU(Central Processing Unit)架构,包括第一CPU201、第二CPU202、存储器203、存储器204、第一CPCI接口205。其中,
第一CPU201包括:计算器2011、同步器2012、数据交换器2013、比较器2014,以及第一通信接口2015。其中,
计算器2011分别与同步器2012、数据交换器2013、比较器2014以及第一通信接口2015相连。
同步器2012与计算器2011相连。
数据交换器2013与计算器2011和比较器2014相连。
比较器2014与计算器2011相连。
第一通信接口2015与计算器2011相连。
第二CPU202包括:计算器2021、同步器2022、数据交换器2023、比较器2024,以及第一通信接口2025。其中,
计算器2021分别与同步器2022、数据交换器2023、比较器2024以及第一通信接口2025相连。
同步器2022与计算器2021相连。
数据交换器2023与计算器2021和比较器2024相连。
比较器2024与计算器2021相连。
第一通信接口2025与计算器2021相连。
另外,第一CPU201的第一通信接口2015分别与第一CPCI接口205和输入/输出板207相连;第一CPCI接口205与通信板104相连;存储器203与计算器2011相连;存储器204与计算器2021相连;电源208和电源209分别为第一CPU201和第二CPU202供电。
主控板103能够实现多种功能,比如,实现应用算法、实现二取二的安全表决算法、基于嵌入式实时操作系统实现安全计算机平台层的软件调度算法、实现数据的安全协议封装和解析、实现对通信数据和I/O数据的周期性处理,以及实现系统间和CPU间的周期性同步。
另外,本发明实施例提出的基于轨道交通的计算机平台,将软件调度算法集中设计在主控板103上,简化了系统架构层级,提高了计算机平台的响应速度,还减少了通信板104处理安全协议的时间。相较于分布式系统架构,使用主控板103架构的基于轨道交通的计算机平台能获得更优的可移植性和可测试性。
通信板104包括CAN通信板、串口通信板、以太网通信板中的至少一种,根据不同的应用场景,通过配置不同类型的通信板,能够实现各种类型的通信接口,接口配置灵活。
图4是通信板的内部架构图。
如图4所示,通信板104包括:第三通信接口301、现场可编程门阵列FPGA(Field-Programmable Gate Array)302、第二CPCI接口303。其中,
第三通信接口301与看门狗板107相连。
现场可编程门阵列302与第三通信接口301相连。
第二CPCI接口303与现场可编程门阵列302相连。
另外,第二CPCI接口303与主控板103相连,第三通信接口301与外部设备306相连。
通信板104通过第二CPCI接口303与主控板103相连,能够实现大容量、高实时性的数据收发。另外,由于标准总线(比如CPCI总线、CAN总线)的开放式架构,具有良好的通用性。当需要增加新的功能或板卡时,可以外购标准接口的硬件,也可自主研发对应接口类型的硬件,具有良好的灵活性。同时,通信板104受看门狗板107的电源控制,实现故障的安全处理。
输入板105和输出板106分别通过工业总线与主控板103相连,能够实现I/O接口的扩展,根据不同的应用场景灵活配置I/O接口,比如继电器驱采、速度传感器采集等。另外,输入板105和输出板106受看门狗板107的电源控制,实现故障的安全处理。
图5是输入板的内部架构图。
如图5所示,输入板105采用二取二的双CPU架构,包括第三CPU401、第四CPU402,以及安全输入接口403。其中,
第三CPU401包括:计算器4011、同步器4012、数据交换器4013、比较器4014,以及第二通信接口4015。其中,
计算器4011分别与同步器4012、数据交换器4013、比较器4014以及第二通信接口4015相连。
同步器4012与计算器4011相连。
数据交换器4013与计算器4011和比较器4014相连。
比较器4014与计算器4011相连。
第二通信接口4015与计算器4011相连。
第四CPU402包括:计算器4021、同步器4022、数据交换器4023、比较器4024,以及第二通信接口4025。其中,
计算器4021分别与同步器4022、数据交换器4023、比较器4024以及第二通信接口4025相连。
同步器4022与计算器4021相连。
数据交换器4023与计算器4021和比较器4024相连。
比较器4024与计算器4021相连。
第二通信接口4025与计算器4021相连。
另外,第二通信接口4015和第二通信接口4025分别通过工业总线与主控板103相连;第三CPU401和第四CPU402与安全输入接口403相连;安全输入接口403与安全 继电器405相连;电源406和电源407分别为第三CPU401和第四CPU402供电。
图6是输出板的内部架构图。
如图6所示,输出板106同样采用二取二的双CPU架构,包括第三CPU501、第四CPU502,以及安全输出接口503。其中,
第三CPU501、第四CPU502分别与输入板105的第三CPU401、第四CPU402具有相同的内部组成和连接方式,因此,前述对于输入板105的第三CPU401、第四CPU402的描述也适用于输出板106的第三CPU501、第四CPU502,此处不再赘述。
另外,第二通信接口4015和第二通信接口4025分别通过工业总线与主控板103相连;第三CPU501和第四CPU502与安全输出接口503相连;安全输出接口503与安全继电器405相连;电源506和电源507分别为第三CPU501和第四CPU502供电。
采用两个物理独立的CPU组成二取二架构的输入板105和输出板106,通过工业总线与主控板103相连,能够保证输入数据和输出数据的安全性。
本实施例提出的基于轨道交通的计算机平台,主控板103与输入板105和输出板106之间在工业总线的基础上封装安全协议,以防护通信链路上可能出现的丢包、延迟、插入等错误,保证通信数据的安全性。其中,安全协议为符合欧洲铁路标准EN50159的安全协议。
本发明实施例提出的基于轨道交通的计算机平台,通过第一电源板、第二电源板、主控板、通信板、输入板和输出板组成第一系统,主控板通过高速总线与通信板相连,通过工业总线分别与输入板和输出板相连,以形成一套能够满足各类安全系统需求的安全计算机平台,降低研发和维护成本,提高系统的安全性、可靠性、实时性、配置的灵活性、适用性,以及可扩展性。
图7是本发明又一实施例提出的基于轨道交通的计算机平台的架构图。
如图7所示,该基于轨道交通的计算机平台,还包括:第二系统20和互锁继电器30。其中,
第一系统10与第二系统20数据同步。
具体地,第一系统10与第二系统20通过工业总线进行数据同步。
第二系统20与第一系统10通过互锁继电器30相连。
互锁继电器30用于控制第一系统10和第二系统20之间的主备关系。
另外,第一系统10和第二系统20还通过输入/输出外设40和通信外设50相连。
需要说明的是,第二系统20与第一系统10具有相同的内部架构,前述实施例对第一系统10的描述也适用于第二系统20,此处不再赘述。
本发明实施例的基于轨道交通的计算机平台,通过物理完全独立的第一系统和第二 系统,第一系统和第二系统通过高速以太网进行通信,能够实现数据同步。另外,第一系统和第二系统之间通过驱动互锁继电器,能够通过采集互锁继电器的接点状态确定第一系统和第二系统的主备关系,提高系统的可用性。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的 特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (17)

  1. 一种基于轨道交通的计算机平台,其特征在于,包括:
    第一系统,所述第一系统包括:第一电源板,第二电源板,主控板,通信板,输入板和输出板,其中,
    所述第一电源板分别与所述主控板、所述通信板、所述输入板和所述输出板相连,用于为所述主控板、所述通信板、所述输入板和所述输出板提供电源;
    所述第二电源板分别与所述主控板、所述输入板和所述输出板相连,用于为所述主控板、所述输入板和所述输出板提供电源;
    所述主控板通过高速总线与所述通信板相连,通过工业总线分别与所述输入板和所述输出板相连。
  2. 如权利要求1所述的基于轨道交通的计算机平台,其特征在于,第一系统还包括:
    看门狗板,所述看门狗板分别与所述主控板、所述通信板和所述输出板相连,用于为所述通信板和所述输出板的输出电路提供电源,并用于监控所述主控板的运行状态。
  3. 如权利要求1或2所述的基于轨道交通的计算机平台,其特征在于,所述主控板、所述输入板和所述输出板均采用二取二的双CPU架构。
  4. 如权利要求1-3任一项所述的基于轨道交通的计算机平台,其特征在于,所述主控板包括第一CPU和第二CPU,所述第一CPU和所述第二CPU均包括:计算器,同步器,数据交换器,比较器和第一通信接口,其中,
    所述计算器分别与所述同步器、所述数据交换器、所述比较器以及所述第一通信接口相连;
    所述同步器与所述计算器相连;
    所述数据交换器与所述计算器和所述比较器相连;
    所述比较器与所述计算器相连;
    所述第一通信接口与所述计算器相连。
  5. 如权利要求4所述的基于轨道交通的计算机平台,其特征在于,所述第一CPU的第一通信接口与所述主控板的第一CPCI接口相连。
  6. 如权利要求2-5任一项所述的基于轨道交通的计算机平台,其特征在于,所述主控板,用于:
    当计算机平台故障时,控制所述看门狗板关闭电源输出。
  7. 如权利要求1-6任一项所述的基于轨道交通的计算机平台,其特征在于,所述输入板和所述输出板均包括第三CPU和第四CPU。
  8. 如权利要求7所述的基于轨道交通的计算机平台,其特征在于,所述第三CPU的第二通信接口和所述第四CPU的第二通信接口分别通过所述工业总线与所述主控板相连。
  9. 如权利要求1-8任一项所述的基于轨道交通的计算机平台,其特征在于,还包括:第二系统和互锁继电器,其中,
    所述第二系统与所述第一系统通过互锁继电器相连;
    所述互锁继电器用于控制所述第一系统和所述第二系统之间的主备关系。
  10. 如权利要求9所述的基于轨道交通的计算机平台,其特征在于,所述第一系统与所述第二系统数据同步。
  11. 如权利要求9或10所述的基于轨道交通的计算机平台,其特征在于,所述第一系统与所述第二系统通过所述工业总线进行数据同步。
  12. 如权利要求2-11任一项所述的基于轨道交通的计算机平台,其特征在于,所述通信板,包括:
    第三通信接口,所述第三通信接口与所述看门狗板相连;
    现场可编程门阵列,所述现场可编程门阵列与所述第三通信接口相连;
    第二CPCI接口,所述第二CPCI接口与所述现场可编程门阵列相连。
  13. 如权利要求1-12任一项所述的基于轨道交通的计算机平台,其特征在于,所述通信板包括CAN通信板、串口通信板、以太网通信板中的至少一种。
  14. 如权利要求1-13任一项所述的基于轨道交通的计算机平台,其特征在于,所述主控板分别与所述输入板和所述输出板之间封装安全协议。
  15. 如权利要求1-14任一项所述的基于轨道交通的计算机平台,其特征在于,所述高速总线包括CPCI、PCI-E、PCI-serial中的至少一种。
  16. 如权利要求1-15任一项所述的基于轨道交通的计算机平台,其特征在于,所述工业总线包括CAN总线、Profibus总线、工业以太网总线中的至少一种。
  17. 如权利要求1-16任一项所述的基于轨道交通的计算机平台,其特征在于,所述第一系统,还包括:
    电源接入板,所述电源接入板分别与所述第一电源板和所述第二电源板相连,用于接入外部电源。
PCT/CN2017/117890 2016-12-23 2017-12-22 基于轨道交通的计算机平台 WO2018113763A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611204662.6A CN107885695B (zh) 2016-12-23 2016-12-23 基于轨道交通的计算机平台
CN201611204662.6 2016-12-23

Publications (1)

Publication Number Publication Date
WO2018113763A1 true WO2018113763A1 (zh) 2018-06-28

Family

ID=61770213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117890 WO2018113763A1 (zh) 2016-12-23 2017-12-22 基于轨道交通的计算机平台

Country Status (2)

Country Link
CN (1) CN107885695B (zh)
WO (1) WO2018113763A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407585A (zh) * 2018-11-08 2019-03-01 中车大连机车研究所有限公司 一种轨道交通用空调控制器
CN109407585B (zh) * 2018-11-08 2024-04-30 中车大连机车研究所有限公司 一种轨道交通用空调控制器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109408454B (zh) * 2018-11-01 2021-10-22 郑州云海信息技术有限公司 一种芯片管理的方法以及相关装置
CN110008022A (zh) * 2019-03-25 2019-07-12 北京和利时系统工程有限公司 一种安全计算机模块和安全计算机
CN112395236A (zh) * 2020-11-13 2021-02-23 中车株洲电力机车有限公司 一种分布式车载安全计算机系统
CN113238983B (zh) * 2021-06-22 2023-12-22 江苏嘉擎信息技术有限公司 铁路安全计算机以及铁路安全管理平台

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201317379Y (zh) * 2008-11-10 2009-09-30 南京恩瑞特实业有限公司 城市轨道交通信号系统安全计算机
CN101700783A (zh) * 2009-11-11 2010-05-05 北京全路通信信号研究设计院 一种列控中心系统平台
CN102381342A (zh) * 2011-08-31 2012-03-21 北京和利时系统工程有限公司 一种计算机联锁系统及其控制城市轨道交通信号的方法
CN103407463A (zh) * 2013-08-21 2013-11-27 南京泰通科技有限公司 电子化半自动闭塞机及其工作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205068381U (zh) * 2015-09-09 2016-03-02 株洲南车时代电气股份有限公司 一种用于轨道交通的安全计算机平台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201317379Y (zh) * 2008-11-10 2009-09-30 南京恩瑞特实业有限公司 城市轨道交通信号系统安全计算机
CN101700783A (zh) * 2009-11-11 2010-05-05 北京全路通信信号研究设计院 一种列控中心系统平台
CN102381342A (zh) * 2011-08-31 2012-03-21 北京和利时系统工程有限公司 一种计算机联锁系统及其控制城市轨道交通信号的方法
CN103407463A (zh) * 2013-08-21 2013-11-27 南京泰通科技有限公司 电子化半自动闭塞机及其工作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407585A (zh) * 2018-11-08 2019-03-01 中车大连机车研究所有限公司 一种轨道交通用空调控制器
CN109407585B (zh) * 2018-11-08 2024-04-30 中车大连机车研究所有限公司 一种轨道交通用空调控制器

Also Published As

Publication number Publication date
CN107885695A (zh) 2018-04-06
CN107885695B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2018113763A1 (zh) 基于轨道交通的计算机平台
WO2017107665A1 (zh) 一种用于列车控制的安全计算机系统
CN205068381U (zh) 一种用于轨道交通的安全计算机平台
CN110361979B (zh) 一种铁路信号领域的安全计算机平台
RU2656684C2 (ru) Система шин и способ эксплуатации такой системы шин
US8924772B2 (en) Fault-tolerant system and fault-tolerant control method
EP3699764B1 (en) Redundant ethernet-based secure computer system
CN105159863A (zh) 一种用于轨道交通的安全计算机平台
CN103057567B (zh) 一种铁路信号领域的通用轨旁安全平台
CN104808572A (zh) 基于功能安全的高完整性plc控制器
CN107968775B (zh) 数据处理方法、装置、计算机设备及计算机可读存储介质
US9367375B2 (en) Direct connect algorithm
CN103825791A (zh) 一种mvb总线主控并联冗余控制的方法
KR102284080B1 (ko) 2채널 아키텍처
CN101700783B (zh) 一种列控中心系统平台
WO2022100232A1 (zh) 一种分布式车载安全计算机系统
WO2015152167A1 (ja) 冗長系制御装置及びその系切替方法
BR102014008488B1 (pt) Sistema de controle de trens
CN107943623A (zh) 一种存储系统
CN105398472A (zh) 一种平台主机插件
CN104424680A (zh) 一种门禁冗余控制系统
CN106796575B (zh) 具有高操作确定性的片上系统
WO2018233466A1 (zh) 车载控制系统
US10397081B2 (en) Distributed real-time computer system and method for forcing fail-silent behavior of a distributed real-time computer system
CN104765587A (zh) 用于使处理器同步到相同的计算点的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884626

Country of ref document: EP

Kind code of ref document: A1