WO2018113332A1 - 油气分离器、油气分离系统及航空发动机 - Google Patents

油气分离器、油气分离系统及航空发动机 Download PDF

Info

Publication number
WO2018113332A1
WO2018113332A1 PCT/CN2017/098583 CN2017098583W WO2018113332A1 WO 2018113332 A1 WO2018113332 A1 WO 2018113332A1 CN 2017098583 W CN2017098583 W CN 2017098583W WO 2018113332 A1 WO2018113332 A1 WO 2018113332A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
oil
cavity
rotating member
gas
Prior art date
Application number
PCT/CN2017/098583
Other languages
English (en)
French (fr)
Inventor
王军
曹渝华
Original Assignee
中国航发商用航空发动机有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航发商用航空发动机有限责任公司 filed Critical 中国航发商用航空发动机有限责任公司
Publication of WO2018113332A1 publication Critical patent/WO2018113332A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/14Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/08Separating lubricant from air or fuel-air mixture before entry into cylinder

Definitions

  • the invention relates to the field of gas turbine engines, in particular to an oil and gas separator, an oil and gas separation system and an aeroengine.
  • An aero-engine in the case of a gas turbine engine, generally includes a compressor, a combustion chamber, a low-pressure turbine, and a high-pressure turbine.
  • the compressor is mainly used to compress air and enter the core machine
  • the combustion chamber is mainly used for compressing air. It is mixed with fuel and fully burned to produce a high-energy gas stream
  • the high-pressure turbine is mainly used to extract energy from the high-energy gas stream ejected from the combustion chamber to drive the compressor.
  • a low pressure turbine located downstream of the core machine extracts energy from the high energy gas stream ejected from the combustion chamber and drives the fan to rotate, while the fan provides the most significant thrust generated by the engine.
  • the engine is usually fixed by a plurality of fulcrum bearings.
  • the pulsation bearings of 1, 2, and 5 are used to support the low-pressure rotor
  • the fulcrum bearings of the 3rd and 4th support are used to support the high-pressure rotor
  • the high- and low-pressure rotors rotate at high speed around the central axis of the engine.
  • the engine bearing is enclosed in the bearing cavity and oil is required to cool and lubricate the bearing.
  • the fuel consumption of the engine will rise due to the use of bearing cavity sealing measures, but this sealing must have an air passage that allows air to flow into and out of the bearing cavity.
  • the air stream will contain oil, and unless proper measures are taken to separate the oil from the bearing chamber, the oil in the air will not be recyclable and will greatly increase the engine as the air exits the engine. The amount of oil consumed.
  • an oil separator is required, and the oil droplets in the oil and gas mixture flowing out from the air outflow passage are separated by the oil separator and recovered into the bearing chamber to reduce the consumption of the oil.
  • the present invention provides an oil and gas separation structure including a separation chamber and a rotating member for oil and gas separation, the rotating member being disposed in the separation chamber to separate the separation chamber by the rotating member Dividing into at least two stages of chambers, the at least two stages of chambers being in fluid communication in sequence, and wherein the chamber located at the most upstream of the at least two stages of chambers is in fluid communication with the first chamber having a mixture of oil and gas to cause the mixture of oil and gas to After the first chamber flows out, at least two oil and gas separations are performed through the chamber located at the most upstream into the at least two stages.
  • each of the at least two stages of cavities includes one chamber; or each of the at least two stages of cavities includes at least two chambers, and at least two chambers are disposed in parallel.
  • the rotating member divides the separation chamber into two stages, respectively a second chamber and a third chamber, the second chamber and the third chamber communicate with each other, the second chamber and the second chamber
  • the first chamber is in communication such that the oil and gas mixture enters the second chamber from the first chamber to complete a separation, and then enters the third chamber for secondary separation.
  • the rotating member is provided with an opening groove to form at least one of the at least two stages of cavities through the opening groove and a part of the wall surface of the separating cavity.
  • the rotating member includes a plurality of the rotating members connected to each other to form a steering ring.
  • the opening grooves on each of the rotating members are independent of each other; or the opening grooves on each of the rotating members communicate with each other to form an annular groove on an outer circumference of the steering ring.
  • the rotating member is provided with a steering nozzle for fluidly communicating two adjacent ones of the at least two stages, the steering nozzle being configured to be capable of changing a flow of a fluid flowing through the steering nozzle And causing at least a portion of the fluid flowing out of the chambers downstream of the two adjacent chambers to have a velocity component tangential to a direction of rotation of the rotating member.
  • an anti-rotation structure for preventing rotation of the rotating member relative to the at least two stages of cavities is further included.
  • an inner wall of the separation chamber is provided with an anti-rotation platform
  • the anti-rotation structure includes a boss disposed on one of the rotating member and the anti-rotation table, and the rotating member and the anti-rotation The groove on the other of the turntables.
  • the rotating member is provided with an oil guiding hole for flowing oil separated in one of the at least two stages of cavities back to another chamber adjacent to the chamber.
  • the present invention also provides an oil and gas separation system for an aeroengine, comprising the above-described oil and gas separation structure.
  • the at least two stages of cavities include a second chamber and a third chamber
  • the rotating member is mounted on an inner wall of the fan shaft, and an open slot on the rotating member and an inner wall of the fan shaft Forming the second cavity, an end surface of the end cap, the rotating member, the fan shaft, the low-pressure shaft rotor, and the low-pressure shaft rotor encloses the third chamber.
  • a protrusion on the side of the end cover located in the separation cavity is provided for supporting the rotating member.
  • the at least two stages of the cavity include a second cavity and a third cavity
  • the rotating member is provided with a steering nozzle for fluidly connecting the second cavity and the third cavity, wherein the fan shaft is provided And a guide through hole communicating the first chamber and the second chamber, the steering nozzle including an inlet communicating with the second chamber, the guide through hole being staggered with the inlet.
  • the present invention provides an oil and gas separator including a separation chamber for oil and gas separation and a rotating member in fluid communication with a first chamber having a mixture of oil and gas, the rotating member being disposed in the separation chamber, Separating the separation chamber into a second chamber and a third chamber by the rotating member, the rotating member is provided with a steering nozzle fluidly connecting the second chamber and the third chamber to make the oil and gas After the mixture is separated once in the second chamber, it can enter the third chamber for secondary separation.
  • the rotating member is provided with an opening groove to form the second cavity through the opening groove and a part of the wall surface of the separation cavity.
  • the rotating member includes a plurality of the rotating members connected to each other to form a steering ring.
  • the opening grooves on each of the rotating members are independent of each other; or the opening grooves on each of the rotating members communicate with each other to form an annular groove on an outer circumference of the steering ring.
  • the steering nozzle is configured to be capable of changing a flow direction of a fluid flowing through the steering nozzle such that at least a portion of the fluid entering the third cavity has a tangent to a rotational direction of the rotating member Speed Degree component.
  • an anti-rotation structure for preventing rotation of the rotating member relative to the second chamber and the third chamber is further included.
  • an inner wall of the separation chamber is provided with an anti-rotation platform
  • the anti-rotation structure includes a boss disposed on one of the rotating member and the anti-rotation table, and the rotating member and the anti-rotation The groove on the other of the turntables.
  • the present invention also provides an oil and gas separation system for an aeroengine, comprising the above-described oil separator.
  • the rotating member is mounted on an inner wall of the fan shaft, and the second cavity is formed between an open groove on the rotating member and an inner wall of the fan shaft, the end cover, the rotation The end of the fan shaft, the low-pressure shaft rotor, and the low-pressure shaft rotor enclose the third chamber.
  • a protrusion on the side of the end cover located in the separation cavity is provided for supporting the rotating member.
  • the fan shaft is provided with a guiding through hole communicating with the first cavity and the second cavity
  • the steering nozzle includes an inlet communicating with the second cavity
  • the guiding through hole and the guiding hole Imports are staggered.
  • the rotating member is provided with an oil guiding hole for flowing the oil separated in the third cavity back to the second cavity.
  • the present invention also provides an aircraft engine including the above-described oil and gas separation system for an aircraft engine.
  • the present invention can be divided into at least two stages by setting a rotating member, so that the oil and gas mixture can complete the secondary oil and gas separation after completing the first oil and gas separation in the first stage cavity.
  • the separation efficiency is higher.
  • FIG. 1 is a schematic structural view of an embodiment of an aircraft engine of the present invention.
  • FIG. 2 is a cross-sectional half view of the front bearing cavity of the engine of FIG. 1.
  • FIG 3 is a schematic structural view of a steering ring in an embodiment of the oil and gas separator of the present invention.
  • Figure 4 is a cross-sectional view taken along line M-M of Figure 2;
  • Figure 5 is a cross-sectional view taken along line N-N of Figure 2;
  • the present invention first provides an oil and gas separator including a separation chamber and a rotating member for oil and gas separation, and the rotating member is a rotatable member for centrifugal action by rotation.
  • the oil and gas mixture is separated, and the rotating member is disposed in the separation chamber to divide the separation chamber into at least two stages through the rotating member.
  • the rotating member can also cooperate with other components to achieve the purpose of dividing the separation chamber into at least two stages.
  • At least two stages of chambers are in fluid communication in sequence, and a chamber located at the most upstream of the at least two stages of chambers is in fluid communication with the first chamber a having a mixture of oil and gas such that the oil and gas mixture flows out of the first chamber a and passes through at least two stages of the chamber Most
  • the upstream chamber enters at least two stages of the chamber for at least two oil and gas separations.
  • At least two stages of cavity mean at least a first stage cavity and a second stage cavity, wherein the first stage cavity and the second stage cavity are in fluid communication in sequence, that is, the air flow can flow from the first stage cavity into the second stage cavity, in the fluid In the flow direction, the first stage cavity is located upstream, the second stage cavity is located downstream, and the first stage cavity is in communication with the first cavity a, so that the oil and gas mixture can enter the first stage cavity from the first cavity a for the first oil and gas Separate and then enter the second stage chamber for a second oil and gas separation.
  • the oil and gas mixture can perform three oil and gas separations; when at least two stages of chambers include three or more stages, the oil and gas mixture can perform three or more oil and gas separations, which can effectively improve oil and gas separation. Efficiency, to achieve greater recovery of oil, reduce oil consumption.
  • each of the at least two stages of cavities may include only one chamber, or may include two or more chambers.
  • each stage chamber includes at least two chambers, preferably at least two chambers are arranged in parallel such that the gas stream flowing out of the upper stage chamber can simultaneously enter at least two chambers connected in parallel in the stage chamber. Or selectively entering a portion of at least two chambers, which further enhances the effect of oil and gas separation.
  • at least two chambers connected in parallel may be in communication with the lower stage chamber, respectively, so that the gas stream can enter the next stage chamber for another oil and gas separation.
  • At least two stages of the cavity include a second cavity c1 and a third cavity c2, that is, the rotating member divides the separation cavity into two stages, respectively a second cavity c1 and a third cavity c2, and the second cavity c1
  • the third cavity c2 serves as the second stage cavity
  • the second cavity c1 and the third cavity c2 are in communication with each other
  • the second cavity c1 is in communication with the first cavity a, such that the oil and gas mixture is from the first cavity a enters the second chamber c1, and then enters the third chamber c2, so that after the oil and gas mixture completes one separation in the second chamber c1, it can enter the third chamber c2 for secondary separation, and the separation efficiency is higher.
  • the specific structural form of the rotating member can have various options as long as the action can be achieved.
  • the rotating member is provided with an open groove, and the opening groove has a " ⁇ " shape in cross section, that is, the upper end of the opening groove is open, so that at least two can be formed through the opening groove and a part of the wall surface of the separation cavity.
  • the second chamber c1 is a chamber formed by the opening groove and the wall surface of the separation chamber.
  • the rotating member comprises a plurality of rotating members which can be uniformly distributed circumferentially in the separating chamber independently of each other, and the open groove on each rotating member forms a wall with the wall of the separating chamber
  • the second cavity c1 that is to say, the open groove can be a structure with only one side open, and the open groove and the separation cavity are combined to form a substantially closed second cavity c1, and the number and rotation of the second cavity c1
  • the number of the rotating members is the same, and the other portions of the separating chamber other than the portion partitioned by the second chamber c1 may be referred to as the third chamber c2.
  • the rotating member may be provided in an arc shape, and at the same time, the plurality of rotating members are connected to each other to form the steering ring 21.
  • the steering ring 21 is a one-piece annular structure, such that the plurality of steering nozzles 24 can be pre-mounted on the steering ring 21, that is, a plurality of steering nozzles 24 are integrated through the steering ring 21, and only
  • the steering ring 21 can be installed in the separation cavity, and does not need to be installed one by one, which reduces the number of parts and greatly simplifies the steps of installation and disassembly.
  • the opening slots on the respective rotating members forming the steering ring 21 may be independent of each other, such that a plurality of second chambers c1 are formed, and correspondingly, a plurality of communicating first chambers a are provided between the first chamber a and the separating chamber.
  • the guide through holes 23 of the respective second cavities c1 may be; of course, the open slots on the respective rotating members may also communicate with each other to form a through annular groove on the outer circumference of the steering ring 21, in the embodiment shown in FIG.
  • the number of pieces is limited.
  • the rotating member is provided with a steering nozzle 24 for fluidly communicating two adjacent ones of the at least two stages of cavities, in particular, the diverting nozzle 24 is operable to fluidly communicate the second chamber c1 and the third chamber C2, the steering nozzle 24 is preferably configured to be capable of changing the flow direction of the fluid flowing through the steering nozzle 24 such that at least a portion of the fluid entering the downstream of the two adjacent chambers has a direction of rotation of the rotating member
  • the velocity component of the cut, in particular, at least a portion of the fluid flowing out of the second chamber c1 and into the third chamber c2 has a velocity component tangential to the direction of rotation of the rotating member, and an increase in the tangential velocity may result in a stronger vortex and With greater centrifugal acceleration, oil droplets are more easily separated.
  • the oil separator is a rotating member, and the steering nozzle 24 therein also has a function of changing the direction of fluid flow, in order to prevent the steering nozzle 24 from rotating relative to the oil separator itself during the rotation, the oil separator can be disposed.
  • the anti-rotation structure prevents rotation of the steering ring 21 relative to the second cavity c1 and the third cavity c2 to avoid an influence on the direction of fluid flow.
  • the inner wall 19 of the separation chamber is provided with an anti-rotation table 29, and the anti-rotation structure includes a boss 31 provided on one of the rotating member and the anti-rotation table 29, and is disposed on the rotating member and the anti-rotation table.
  • the groove 30 on the other of the 29, by the cooperation of the boss 31 and the groove 30, can function to prevent the rotation of the rotating member relative to the second chamber c1 and the third chamber c2.
  • the rotating member is provided with an oil guiding hole 27.
  • the oil guiding hole 27 can be circumferentially disposed on the outer edge of the steering ring 27, and can be used to flow the oil separated in one of the at least two stages of the cavity.
  • the oil separated in the third chamber c2 can flow back to the second chamber c1 through the oil guiding hole 27, and then flows back to the first chamber a through the guiding through hole 23 between the second chamber c1 and the first chamber a.
  • the oil and gas separator in each of the above embodiments can be applied to any equipment that requires oil and gas separation and oil recovery, such as an automobile engine, a diesel engine, a gas turbine aeroengine, and the like.
  • the present invention also provides an oil and gas separation system for an aircraft engine including the above-described oil and gas separator.
  • the oil and gas separator system for an aeroengine further includes a fan shaft 7 coupled to the low-pressure shaft rotor 6, an outer annular structure 8 connected to the fan shaft 7 through a bearing, and an end cover fixed to the fan shaft 7. 22, a first cavity a is formed between the fan shaft 7 and the outer annular structure 8, and the end faces of the end cover 22, the fan shaft 7, the low-pressure shaft rotor 6, and the low-pressure shaft rotor 6 enclose a separation chamber.
  • the rotary member is mounted on the inner wall 19 of the fan shaft 7, and the second cavity c1 is formed between the open groove and the inner wall 19 of the fan shaft 7, the end cover 22, the rotary member, the fan shaft 7, the low-pressure shaft rotor 6 and the low
  • the end face of the final shaft rotor 6 encloses a third cavity c2.
  • the side of the end cap 22 located in the separation chamber is provided with a projection 32 which can be used to support the rotating member.
  • the fan shaft 7 is provided with a guiding through hole 23 communicating with the first cavity a and the second cavity c1.
  • the steering nozzle 24 includes an inlet 25 communicating with the second cavity c1, and the guiding through hole 23 is interlaced with the inlet 25, This prevents the oil and gas mixture from leaving the second chamber c1 directly from the inlet of the steering nozzle 24, extending the residence time of the oil and gas mixture in the second chamber c1.
  • the rotating members may be independently disposed in the circumferential direction, so that each of the rotating members may be provided with a steering nozzle 24 correspondingly, and the separation chamber is divided into at least two.
  • the step chamber, and the steering ring 21 can be considered to be connected by a plurality of rotating members, so that it is generally understood by those skilled in the art that some of the places involving the rotating member can be replaced with the steering ring 21.
  • FIG. 1 it is a structural diagram of an aero engine that uses the oil and gas separator and the oil and gas separation system provided by the present invention.
  • the aircraft engine has an axis A containing a core machine I, the core machine 1 includes a compressor 1, a combustion chamber 2 and a high pressure turbine 3, the compressor 1 is of multiple stages, and the high pressure turbine 3 is one or more stages, a high pressure turbine
  • the 3 drive compressor 1 rotates at a high speed about the axis A.
  • the compressor 1 and the high pressure turbine 3 are fixed to the high pressure shaft rotor 4.
  • Compressor The high pressure air produced is mixed with fuel in the combustion chamber 2 and ignited for full combustion to produce a high energy gas stream.
  • the high pressure turbine 3 extracts a portion of the energy from the high energy gas stream generated by the combustion chamber 2 to drive the compressor 1 to rotate at a high speed.
  • the gas stream ejected from the high pressure turbine 3 flows out of the core machine I into the low pressure turbine 5.
  • the low-pressure shaft rotor 6 inside the high-pressure shaft rotor 4 is supported by the yoke bearings 1, 2, and 5, and is disposed coaxially with the high-pressure shaft rotor 4 on the axis A, and is rotated relative to the high-pressure shaft rotor 4.
  • the low pressure shaft rotor 6 drives the fan shaft 7 to rotate.
  • FIG. 2 is a cross-sectional view of the front bearing cavity of the engine.
  • the bearing cavity a i.e., the first cavity a described above
  • the low-pressure shaft rotor 6 drives the fan shaft 7 to rotate relative to the fixed outer annular structure 8 of the bearing chamber a.
  • the front end of the fan shaft 7 is connected to the inner annular ring 141 of the No. 1 fulcrum bearing 14, and the fulcrum bearing seat 17 is connected to the No. 1 fulcrum.
  • the fixed outer annular structure 8 is connected to the fulcrum bearing block 17.
  • the inner annular ring 151 of the fulcrum bearing 15 is attached to the rear end of the fan shaft 7, and the outer annular ring 152 of the fulcrum bearing 15 is connected to the fulcrum bearing block 18, and the intermediate machine 13 and the 2nd The fulcrum bearing housing 18 is connected by bolts.
  • the lubricating oil is input through the oil supply conduit 9, and the lubricating oil is supplied to the fulcrum bearing 14 and the fulcrum bearing 15 of the first nozzle 10 and the second nozzle 11, respectively, for lubricating and cooling the fulcrum bearing 14 and 2
  • the fulcrum bearing 15 ensures the stable, continuous and efficient high-speed operation of the bearing. However, the lubricating oil then enters the bearing cavity a.
  • the pressurized air enters the plenum chamber b through the bleed air boosting tube 12, and the air in the plenum chamber b
  • part of the air entering the bearing cavity a must be controllably removed from the bearing cavity, thereby maintaining a moderate balance of pressure differential between the bearing cavity a and the boosting b.
  • the air discharge port 26 since the air entering the inside of the bearing chamber a and the oil particles are mixed with each other to form an oil-gas mixture, the surface surrounded by the inner ring line of the left end surface of the low-pressure shaft rotor 6 constitutes the air discharge port 26, once the oil droplets pass through the air with the air.
  • the discharge port 26 will be difficult to be separated again, so it is necessary to take appropriate measures to separate the oil and return it to the bearing chamber a while discharging the air, otherwise it will cause a large loss of the oil.
  • an oil and gas separator for separating oil and gas and recovering oil is provided on the aircraft engine.
  • the end cap 22 is fixed to the fan shaft 7 by a resilient retaining ring 33, and the fan shaft 7 is fixed to the low-pressure shaft rotor 6 by a lock nut 20, and with the low-pressure shaft rotor 6 Rotate around axis A.
  • FIG. 3 which is a schematic structural view of the steering ring 21
  • the outer circumference of the steering ring 21 forms an annular groove
  • the area enclosed by the fan shaft 7 and the steering ring 21 is a second cavity c1 , a fan shaft 7 , a steering ring 21
  • the region enclosed by the end cap 22, the low-pressure shaft rotor 6 and the end faces thereof is a third cavity c2
  • the oil-gas mixture respectively forms a high-speed rotating vortex in these two regions for oil and gas separation.
  • FIG. 4 it is an M-M sectional view of the anti-rotation table 29.
  • the anti-rotation table 29 is uniformly fixed to the inner radius of the inner cavity of the fan shaft 7 and is close to the inclined inner wall 19, and the steering ring 21 is matched with the groove 30 on the anti-rotation table 29 through the boss 31 provided on the side thereof to achieve anti-rotation the goal of.
  • the inner wall surface of the steering ring 21 is evenly distributed with a plurality of steering nozzles 24, and the inlet 25 of the steering nozzle 24 is alternately arranged with the guide through holes 23 provided on the fan shaft 7, that is, the inlet and outlet directions of the guide through holes 23.
  • the direction of the inlet of the steering nozzle 24 is not in a radial direction, which is staggered, so that the oil and gas mixture entering the second chamber c1 is prevented from flowing out of the second chamber c1 directly through the steering nozzle 24.
  • outlet direction of the steering nozzle 24 is not all along the axial direction, but has a certain tangential component, and may also have a certain radial component in the radially outward direction to prolong the time of oil and gas separation. Improve the efficiency of oil and gas separation.
  • the working process is: when the engine is in operation, the oil separator (also referred to as a vortex shaft ventilator) rotates at a high speed, and the oil and gas mixture in the bearing chamber a passes through the guiding through hole 23 into the second chamber c1.
  • the oil and gas mixture enters the second chamber c1
  • due to the large inertia a part of the oil droplets will be directly hit onto the steering ring wall surface 28 to be separated, and the separated oil oil is finally pulled to the bearing through the guide through hole 23. It is recovered in chamber a.
  • the separated oil and gas mixture enters the third chamber c2 through the steering nozzle 24, and since the direction of the steering nozzle 24 has a part of the tangential component, the oil and gas mixture entering the third chamber c2 from the steering nozzle 24 has a certain tangential velocity component. Thereby, the oil and gas mixture flows along a longer path before reaching the outlet of the third chamber c2, so the residence time of the oil and gas mixture in the third chamber c2 will be longer, and the chance of contacting the wall of the third chamber c2 is increased, and the bedding is increased.
  • the oil to the wall flows down the inclined inner wall 19 and enters the second chamber c1 through the oil guiding hole 27 on the steering ring 21, and is then taken up into the bearing chamber a through the guiding through hole 23 to be recovered.
  • the second separation of the oil and gas mixture greatly increase the efficiency of oil and gas separation.
  • the oil and gas separator, the oil and gas separation system and the aeroengine of the present invention have at least one or more of the following advantages:
  • the separation chamber is divided into at least two stages by rotating parts, and the oil and gas mixture realizes at least two oil and gas separations in at least two stages, and the separated oil is recovered into the bearing cavity through the guide through holes, thereby greatly improving Oil and gas separation efficiency;
  • a plurality of rotating members are connected end to end to form a steering ring, or a plurality of steering nozzles are integrated on the steering ring, which greatly reduces the number of parts and simplifies the assembly process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

一种油气分离器,油气分离器包括用于油气分离的分离腔和旋转件,所述旋转件设置在所述分离腔内,以通过所述旋转件将所述分离腔分为至少两级腔,所述至少两级腔依次流体连通,并且所述至少两级腔中的位于最上游的腔与具有油气混合物的第一腔(a)流体连通,以使所述油气混合物从所述第一腔(a)流出后通过所述位于最上游的腔进入所述至少两级腔进行至少两次油气分离。本装置通过设置旋转件,使得分离腔可以被分成至少两级腔,这样油气混合物在其中一级腔内完成一次油气分离后,可以进入另一级腔内进行二次油气分离,从而实现至少两次油气分离,分离效率更高。还提供了一种油气分离系统及航空发动机。

Description

油气分离器、油气分离系统及航空发动机 技术领域
本发明涉及燃气涡轮发动机领域,尤其涉及一种油气分离器、油气分离系统及航空发动机。
背景技术
航空发动机,以燃气涡轮发动机为例,一般主要包括压气机、燃烧室、低压涡轮和高压涡轮,其中,压气机主要用于将空气压缩并使其进入核心机,燃烧室主要用于将压缩空气和燃油混合,并发生充分燃烧,以产生高能量燃气流,而高压涡轮则主要用于从燃烧室喷出的高能量燃气流中提取能量来驱动压气机。在航空涡扇发动机中,位于核心机下游的低压涡轮从燃烧室喷出的高能量燃气流中提取能量并驱动风扇转动,而风扇则提供发动机产生的最主要推力。
发动机中通常由多个支点轴承来固定转子。一般地,对于双转子发动机来说,采用1、2、5号支点轴承来支撑低压转子,3、4号支点轴承来支撑高压转子,高、低压转子均绕着发动机的中心轴高速旋转。发动机轴承封闭在轴承腔中,需提供滑油对轴承进行冷却和润滑。为了避免轴承在高速旋转工作状态下发生过热现象,必须采取封严措施,以阻止发动机中的热空气从空气流道中进入轴承腔;此外,用于冷却和润滑轴承的滑油必须能够高效地带走由于轴承高速旋转而产生的热量。
发动机的耗油量会因为采用轴承腔封严措施而上升,但这种封严措施必须存在一个让空气流进和流出轴承腔的空气通道。而该空气流中将含有滑油,除非采取适当的措施将其中的滑油分离并送回轴承腔,否则空气中的滑油将不可回收,并随着空气排出发动机外,这将大大增加发动机的滑油消耗量。
因此,在通风系统中需要设置油气分离器,利用油气分离器将从空气流出通道中流出的油气混合物中的油滴分离,并将其回收到轴承腔中,以降低滑油的消耗。
尽管现有技术中已有多种方案来对油气混合物进行油气分离,但是分离效率仍待改善;另外,有些油气分离系统设有多个用于油气分离的小零件,无论是加工还是装配起来都比较繁琐。
需要说明的是,公开于本发明背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员 所公知的现有技术。
发明内容
本发明的目的是提出一种油气分离器、油气分离系统及航空发动机,以尽可能地提高油气分离的效率。
为实现上述目的,本发明提供了一种油气分离结构,包括用于油气分离的分离腔和旋转件,所述旋转件设置在所述分离腔内,以通过所述旋转件将所述分离腔分为至少两级腔,所述至少两级腔依次流体连通,并且所述至少两级腔中的位于最上游的腔与具有油气混合物的第一腔流体连通,以使所述油气混合物从所述第一腔流出后通过所述位于最上游的腔进入所述至少两级腔进行至少两次油气分离。
进一步地,所述至少两级腔中的每一级腔包括一个腔室;或者,所述至少两级腔中的每一级腔包括至少两个腔室,且至少两个腔室并联设置。
进一步地,所述旋转件将所述分离腔分为两级腔,分别为第二腔和第三腔,所述第二腔和所述第三腔相互连通,所述第二腔与所述第一腔连通,以使得所述油气混合物从所述第一腔进入所述第二腔内完成一次分离后,再进入所述第三腔内进行二次分离。
进一步地,所述旋转件上设有开口槽,以通过所述开口槽与所述分离腔的部分壁面形成所述至少两级腔中的至少一个。
进一步地,所述旋转件包括多个,多个所述旋转件相互连接,以形成转向环。
进一步地,各个所述旋转件上的所述开口槽相互独立;或者,各个所述旋转件上的所述开口槽相互连通,以在所述转向环的外周形成环形槽。
进一步地,所述旋转件上设有用于使所述至少两级腔中的两个相邻腔流体连通的转向喷嘴,所述转向喷嘴被构造为能够改变流经所述转向喷嘴的流体的流动方向,并使得流出所述两个相邻腔中位于下游的腔的至少一部分所述流体具有与所述旋转件的旋转方向相切的速度分量。
进一步地,还包括防转结构,所述防转结构用于防止所述旋转件相对于所述至少两级腔旋转。
进一步地,所述分离腔的内壁上设有防转台,所述防转结构包括设置于所述旋转件和所述防转台中的一个上的凸台以及设置于所述旋转件和所述防转台中的另一个上的凹槽。
进一步地,所述旋转件上设有导油孔,所述导油孔用于使在所述至少两级腔中的一个腔内分离出的油流回与该腔相邻的另一腔。
为实现上述目的,本发明还提供了一种用于航空发动机的油气分离系统,包括上述的油气分离结构。
进一步地,还包括与低压轴转子连接风扇轴、与所述风扇轴通过轴承连接的外环形结构和固定在所述风扇轴上的端盖,所述风扇轴和所述外环形结构之间形成所述第一腔,所述端盖、所述风扇轴、所述低压轴转子以及所述低压轴转子的端面围成所述分离腔。
进一步地,所述至少两级腔包括第二腔和第三腔,所述旋转件安装在所述风扇轴的内壁上,并且所述旋转件上的开口槽与所述风扇轴的内壁之间形成所述第二腔,所述端盖、所述旋转件、所述风扇轴、所述低压轴转子以及所述低压轴转子的端面围成所述第三腔。
进一步地,所述端盖的位于所述分离腔内的侧面上设有凸起,所述凸起用于支撑所述旋转件。
进一步地,所述至少两级腔包括第二腔和第三腔,所述旋转件上设有用于使所述第二腔和所述第三腔流体连通的转向喷嘴,所述风扇轴上设有连通所述第一腔和所述第二腔的导向通孔,所述转向喷嘴包括与所述第二腔连通的进口,所述导向通孔与所述进口交错设置。
为实现上述目的,本发明提供了一种油气分离器,包括用于油气分离的分离腔和与具有油气混合物的第一腔流体连通的旋转件,所述旋转件设置在所述分离腔内,以通过所述旋转件将所述分离腔分隔为第二腔和第三腔,所述旋转件上设有流体连通所述第二腔和所述第三腔的转向喷嘴,以使得所述油气混合物在所述第二腔内完成一次分离后,能够进入所述第三腔内进行二次分离。
进一步地,所述旋转件上设有开口槽,以通过所述开口槽与所述分离腔的部分壁面形成所述第二腔。
进一步地,所述旋转件包括多个,多个所述旋转件相互连接,以形成转向环。
进一步地,各个所述旋转件上的所述开口槽相互独立;或者,各个所述旋转件上的所述开口槽相互连通,以在所述转向环的外周形成环形槽。
进一步地,所述转向喷嘴被构造为能够改变流经所述转向喷嘴的流体的流动方向,以使得进入所述第三腔的至少一部分所述流体具有与所述旋转件的旋转方向相切的速 度分量。
进一步地,还包括防转结构,所述防转结构用于防止所述旋转件相对于所述第二腔和所述第三腔旋转。
进一步地,所述分离腔的内壁上设有防转台,所述防转结构包括设置于所述旋转件和所述防转台中的一个上的凸台以及设置于所述旋转件和所述防转台中的另一个上的凹槽。
为实现上述目的,本发明还提供了一种用于航空发动机的油气分离系统,包括上述的油气分离器。
进一步地,还包括与低压轴转子连接风扇轴、与所述风扇轴通过轴承连接的外环形结构和固定在所述风扇轴上的端盖,所述风扇轴和所述外环形结构之间形成所述第一腔,所述端盖、所述风扇轴、所述低压轴转子以及所述低压轴转子的端面围成所述分离腔。
进一步地,所述旋转件安装在所述风扇轴的内壁上,并且所述旋转件上的开口槽与所述风扇轴的内壁之间形成所述第二腔,所述端盖、所述旋转件、所述风扇轴、所述低压轴转子以及所述低压轴转子的端面围成所述第三腔。
进一步地,所述端盖的位于所述分离腔内的侧面上设有凸起,所述凸起用于支撑所述旋转件。
进一步地,所述风扇轴上设有连通所述第一腔和所述第二腔的导向通孔,所述转向喷嘴包括与所述第二腔连通的进口,所述导向通孔与所述进口交错设置。
进一步地,所述旋转件上设有导油孔,所述导油孔用于使在所述第三腔内分离出的油流回所述第二腔。
为实现上述目的,本发明还提供了一种航空发动机,包括上述的用于航空发动机的油气分离系统。
基于上述技术方案,本发明通过设置旋转件,使得分离腔可以被分成至少两级腔,这样油气混合物在其中一级腔内完成一次油气分离后,可以进入另一级腔内进行二次油气分离,从而实现至少两次油气分离,分离效率更高。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图 中:
图1为本发明航空发动机一个实施例的结构示意图。
图2为图1中发动机的前轴承腔的截面半图。
图3为本发明油气分离器一个实施例中转向环的结构示意图。
图4为图2中的M-M截面图。
图5为图2中的N-N截面图。
图中:
1、压气机;2、燃烧室;3、高压涡轮;4、高压轴转子;5、低压涡轮;6、低压轴转子;7、风扇轴;8、外环形结构;9、供油导管;10、第一喷嘴;11、第二喷嘴;12、引气增压管;13、中介机匣;14、1号支点轴承;141、内环形圈;142、外环形圈;15、2号支点轴承;151、内环形圈;152、外环形圈;16、密封件;17、1号支点轴承座;18、2号支点轴承座;19、内壁;20、锁紧螺母;21、转向环;22、端盖;23、导向通孔;24、转向喷嘴;25、进口;26、空气排出口;27、导油孔;28、转向环壁面;29、防转台;30、凹槽;31、凸台;32、凸起;33、挡圈;a、第一腔;b、增压腔;c1、第二腔;c2、第三腔。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
在本发明的描述中,需要理解的是,术语“中心”、“横向”、“纵向”、“前”、“后”、“左”、“右”、“上”、“下”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
参考图2~图5,本发明首先提供了一种油气分离器,该油气分离器包括用于油气分离的分离腔和旋转件,旋转件为可旋转的部件,以通过旋转时产生的离心作用对油气混合物进行分离,旋转件设置在分离腔内,以通过该旋转件将分离腔分为至少两级腔。当然,旋转件也可以与其他零部件相互配合,以共同实现将分离腔分成至少两级腔的目的。
至少两级腔依次流体连通,并且至少两级腔中的位于最上游的腔与具有油气混合物的第一腔a流体连通,以使油气混合物从第一腔a流出后通过至少两级腔中位于最 上游的腔进入至少两级腔内进行至少两次油气分离。
其中,至少两级腔的含义是至少包括第一级腔和第二级腔,第一级腔和第二级腔依次流体连通,即气流可以从第一级腔流入第二级腔,在流体流动方向上,第一级腔位于上游,第二级腔位于下游,第一级腔与第一腔a连通,这样油气混合物可以从第一腔a进入第一级腔内进行第一次的油气分离,然后再进入第二级腔内进行第二次的油气分离。当至少两级腔包括三级腔时,油气混合物可以进行三次油气分离;当至少两级腔包括三级以上的腔时,油气混合物可以进行三次以上的油气分离,这样可以有效地提高油气分离的效率,更大程度地实现滑油的回收,降低滑油消耗量。
进一步地,至少两级腔中的每一级腔可以只包括一个腔室,也可以包括两个或两个以上的腔室。当每一级腔包括至少两个腔室时,优选地,至少两个腔室并联设置,这样,从上一级腔中流出的气流可以同时进入该级腔中并联的至少两个腔室中,或者有选择地进入至少两个腔室中的一部分中,这样可以进一步增强油气分离的效果。另外,并联的至少两个腔室可以分别与下一级腔连通,以使气流可以进入下一级腔中进行再一次的油气分离。
作为一个优选的实施例,至少两级腔包括第二腔c1和第三腔c2,即旋转件将分离腔分为两级腔,分别为第二腔c1和第三腔c2,第二腔c1作为上述的第一级腔,第三腔c2作为上述的第二级腔,第二腔c1和第三腔c2相互连通,第二腔c1与第一腔a连通,这样油气混合物从第一腔a进入第二腔c1,然后再进入第三腔c2,以使得油气混合物在第二腔c1内完成一次分离后,能够进入第三腔c2内进行二次分离,分离效率更高。
其中,旋转件的具体结构形式可以有多种选择,只要能够实现其作用即可。
作为旋转件的一种优选实施方式,旋转件上设有开口槽,开口槽的横截面呈“凵”型,即开口槽的上端开口,这样可以通过开口槽与分离腔的部分壁面形成至少两级腔中的至少一个,如图2所示,第二腔c1就是通过开口槽与分离腔的壁面所形成的腔室。这种具有开口槽的旋转件可以方便地与分离腔的部分壁面相互配合,以形成第二腔c1,并同时使得分离腔的其他部分构成第三腔c2。
旋转件的个数可以根据需要灵活设置。在本发明油气分离器的一个优选实施例中,旋转件包括多个,多个旋转件可以彼此独立地沿周向均布在分离腔内,每个旋转件上的开口槽与分离腔的壁面形成一个第二腔c1,也就是说,开口槽可以为只有一侧开口的结构,开口槽与分离腔贴合即形成了基本封闭的第二腔c1,第二腔c1的个数与旋 转件的个数相同,而分离腔内除了被第二腔c1分隔的部分之外,其他部分均可以称为第三腔c2。
当然,为了节省零部件的个数,简化加工和装配,旋转件可以设置为弧形形状,同时,多个旋转件相互连接,以形成转向环21。如图3所示,转向环21为整体式的环形结构,这样多个转向喷嘴24可以预先安装在转向环21上,即通过转向环21集成了多个转向喷嘴24,在安装时,只需将转向环21安装在分离腔内即可,不需要逐个安装,既减少了零部件个数,又大大简化了安装和拆卸的步骤。
进一步地,形成转向环21的各个旋转件上的开口槽可以相互独立,这样还是形成多个第二腔c1,相应地,第一腔a与分离腔之间设置多个连通第一腔a与各个第二腔c1的导向通孔23即可;当然,各个旋转件上的开口槽也可以相互连通,以在转向环21的外周形成一个贯通的环形槽,在如图2所示的实施例中即为多个旋转件的开口槽相互连通的结构形式,这样可以形成一个相对较大的第二腔c1,导向通孔23的设置也相对比较灵活,导向通孔23的个数不受旋转件个数的限制。
在上述各个实施例中,旋转件上设有用于使至少两级腔中的两个相邻腔流体连通的转向喷嘴24,具体地,转向喷嘴24可用于流体连通第二腔c1和第三腔c2,转向喷嘴24优选地被构造为能够改变流经转向喷嘴24的流体的流动方向,以使得进入上述的两个相邻腔中位于下游的腔的至少一部分流体具有与旋转件的旋转方向相切的速度分量,具体地,可使流出第二腔c1并进入第三腔c2的至少一部分流体具有与旋转件的旋转方向相切的速度分量,切向速度的增加可以导致更强的漩涡和更大的离心加速度,油滴更容易被分离出来。
另外,由于油气分离器是旋转部件,并且其中的转向喷嘴24还具有改变流体流动方向的作用,因此为了防止转向喷嘴24在旋转过程中相对于油气分离器自身转动,油气分离器上还可以设置防转结构,以防止转向环21相对于第二腔c1和第三腔c2旋转,避免对流体流动方向的影响。
作为防转结构的一个优选实施方式,分离腔的内壁19上设有防转台29,防转结构包括设置于旋转件和防转台29中的一个上的凸台31以及设置于旋转件和防转台29中的另一个上的凹槽30,通过凸台31与凹槽30的配合,可以起到防止旋转件相对于第二腔c1和第三腔c2旋转的作用。
旋转件上设有导油孔27,优选地,导油孔27可以周向设置在转向环27的外边缘上,并用于使至少两级腔中的一个腔内分离出的滑油能够流回与该腔相邻的另一腔中, 比如,在第三腔c2中分离出来的油可以通过该导油孔27流回第二腔c1,进而通过第二腔c1与第一腔a之间的导向通孔23流回第一腔a,实现润滑油的回收。
上述各个实施例中的油气分离器可以应用于任何需要进行油气分离并进行滑油回收的设备中,比如汽车发动机、柴油机、燃气涡轮航空发动机等。
基于上述油气分离器,本发明还提供了一种包括上述的油气分离器的用于航空发动机的油气分离系统。
如图2所示,该用于航空发动机的油气分离器系统还包括与低压轴转子6连接风扇轴7、与风扇轴7通过轴承连接的外环形结构8和固定在风扇轴7上的端盖22,风扇轴7和外环形结构8之间形成第一腔a,端盖22、风扇轴7、低压轴转子6以及低压轴转子6的端面围成分离腔。
进一步地,旋转件安装在风扇轴7的内壁19上,并且开口槽与风扇轴7的内壁19之间形成第二腔c1,端盖22、旋转件、风扇轴7、低压轴转子6以及低压轴转子6的端面围成第三腔c2。
另外,端盖22的位于分离腔内的侧面上设有凸起32,该凸起32可以用于支撑旋转件。
进一步优选地,风扇轴7上设有连通第一腔a和第二腔c1的导向通孔23,转向喷嘴24包括与第二腔c1连通的进口25,导向通孔23与进口25交错设置,这样可以避免油气混合物直接从转向喷嘴24的进口离开第二腔c1,延长油气混合物在第二腔c1的停留时间。
需要说明的是,在本发明油气分离器的各个实施例中,旋转件可以沿周向独立地设置,因此每个旋转件上均可以相应地设置一个转向喷嘴24,并将分离腔分成至少两级腔,而转向环21可以看作是由多个旋转件连接而成,因此在本领域技术人员的通常理解下,其中一些涉及旋转件的地方可以用转向环21代替。
下面以航空发动机为例,并结合图1~图5对本发明油气分离器、油气分离系统及航空发动机一个实施例的具体结构和工作过程进行详细说明。
如图1所示,为航空发动机的结构示意图,该航空发动机应用了本发明提供的油气分离器和油气分离系统。
该航空发动机有一个轴线A,其含有一个核心机I,核心机I包括压气机1、燃烧室2和高压涡轮3,压气机1为多级,高压涡轮3是一级或者多级,高压涡轮3驱动压气机1绕轴线A高速旋转。压气机1和高压涡轮3固定在高压轴转子4上。压气机 1产生的高压空气在燃烧室2中与燃油混合,并被点燃进行充分燃烧,产生高能量气流。高压涡轮3从燃烧室2产生的高能量气流中提取部分能量,以驱动压气机1高速旋转。从高压涡轮3喷出的气流流出核心机I进入低压涡轮5。
处于高压轴转子4内部的低压轴转子6通过1、2、5号支点轴承支撑,并与高压轴转子4同轴地布置在轴线A上,相对于高压轴转子4旋转。低压轴转子6驱动风扇轴7转动。
图2为发动机前轴承腔的截面半图。轴承腔a(即上述的第一腔a)主要由外环形结构8和风扇轴7限定。低压轴转子6驱动风扇轴7相对于轴承腔a的固定外环形结构8旋转,风扇轴7的前端与1号支点轴承14的内环形圈141连接,1号支点轴承座17连接到1号支点轴承14的外环形圈142上,固定外环形结构8与1号支点轴承座17相连。2号支点轴承15的内环形圈151附装在风扇轴7的后端上,而2号支点轴承15的外环形圈152与2号支点轴承座18相连接,中介机匣13则与2号支点轴承座18通过螺栓连接。
滑油通过供油导管9输入,并分别通过第一喷嘴10和第二喷嘴11分别向1号支点轴承14和2号支点轴承15提供滑油,用于润滑和冷却1号支点轴承14和2号支点轴承15,从而保证轴承稳定持续有效地高速运转。然而,滑油随之进入了轴承腔a中,为了防止滑油通过篦齿型密封件16泄漏出去,加压空气通过引气增压管12进入增压腔b,增压腔b中的空气通过篦齿型密封件16被注入轴承腔a,进入轴承腔a的部分空气必须可控地从轴承腔排除,从而保持轴承腔a与增压强b之间压差的适度平衡。但是,由于进入轴承腔a内部的空气与滑油颗粒互相混合形成了油气混合物,低压轴转子6的左端面内环线围成的面构成空气排出口26,一旦滑油液滴随着空气通过空气排出口26将很难再被分离,所以在排出空气的同时必须采取适当的措施将滑油分离开并回收入轴承腔a,否则会造成滑油的大量损耗。
为此,在航空发动机上设置了用于将油和气分离并可以将油回收的油气分离器。
具体来说,如图2所示,端盖22通过具有弹性的挡圈33固定到风扇轴7上,风扇轴7通过锁紧螺母20固定在低压轴转子6上,并随着低压轴转子6绕轴线A旋转。
如图3所示,为转向环21的结构示意图,转向环21的外周形成环形凹槽,风扇轴7与转向环21所围成的区域为第二腔c1,风扇轴7、转向环21、端盖22、低压轴转子6及其端面所围成的区域为第三腔c2,油气混合物分别在这两个区域形成高速旋转旋涡进行油气分离。
如图4所示,为防转台29的M-M截面图。防转台29均布地固连在风扇轴7内腔最大半径且靠近倾斜的内壁19处,转向环21通过设置在其侧面的凸台31与防转台29上的凹槽30进行配合,达到防转的目的。
如图5所示,转向环21的内壁面均匀分布若干个转向喷嘴24,转向喷嘴24的进口25与设置在风扇轴7上的导向通孔23交错布置,即导向通孔23的进出口方向与转向喷嘴24的进口方向不在一个径向方向上,是交错的,这样防止进入第二腔c1的油气混合物直接通过转向喷嘴24流出第二腔c1。另外,转向喷嘴24的出口方向并不是全部沿着轴向方向,而是有一定的切向分量,而在径向向外方向上也可以有一定的径向分量,以延长油气分离的时间,提高油气分离效率。
具体地工作过程为:当发动机处于工作状态时,油气分离器(也可以称为旋涡式轴心通风器)高速旋转,轴承腔a内的油气混合物经过导向通孔23进入第二腔c1。当油气混合物进入第二腔c1时,油气混合物由于较大的惯性,一部分油滴会直接打到转向环壁面28上而被分离,被分离的滑油则最后通过导向通孔23被甩到轴承腔a中而被回收。一次分离后的油气混合物通过转向喷嘴24进入第三腔c2,由于转向喷嘴24的方向有一部分切向分量,故从转向喷嘴24进入第三腔c2的油气混合物均有一定的切向速度分量,从而使得油气混合物在到达第三腔c2的出口前沿较长的路径流动,所以油气混合物在第三腔c2中的停留时间将会更长,接触到第三腔c2壁面的机会增大,被甩到壁面的滑油沿着倾斜的内壁19流下来,并通过转向环21上的导油孔27进入第二腔c1,继而通过导向通孔23被甩到轴承腔a中而被回收,这样实现了油气混合物的第二次分离。油气混合物的两次分离大大增大了油气分离效率。
通过对本发明油气分离器、油气分离系统及航空发动机的多个实施例的说明,可以看到本发明油气分离器、油气分离系统及航空发动机实施例至少具有以下一种或多种优点:
1、通过旋转件将分离腔分为至少两级腔室,油气混合物分别在至少两级腔内实现至少两次油气分离,被分离的滑油通过导向通孔回收到轴承腔内,大大提高了油气分离效率;
2、多个旋转件首尾相接形成了转向环,或者说在转向环上集成了若干个转向喷嘴,大大减少了零件数目,简化了装配过程。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (16)

  1. 一种油气分离结构,其特征在于,包括用于油气分离的分离腔和旋转件,所述旋转件设置在所述分离腔内,以通过所述旋转件将所述分离腔分为至少两级腔,所述至少两级腔依次流体连通,并且所述至少两级腔中的位于最上游的腔与具有油气混合物的第一腔(a)流体连通,以使所述油气混合物从所述第一腔(a)流出后通过所述位于最上游的腔进入所述至少两级腔进行至少两次油气分离。
  2. 根据权利要求1所述的油气分离结构,其特征在于,所述至少两级腔中的每一级腔包括一个腔室;或者,所述至少两级腔中的每一级腔包括至少两个腔室,且至少两个腔室并联设置。
  3. 根据权利要求1所述的油气分离结构,其特征在于,所述旋转件将所述分离腔分为两级腔,分别为第二腔(c1)和第三腔(c2),所述第二腔(c1)和所述第三腔(c2)相互连通,所述第二腔(c1)与所述第一腔(a)连通,以使得所述油气混合物从所述第一腔(a)进入所述第二腔(c1)内完成一次分离后,再进入所述第三腔(c2)内进行二次分离。
  4. 根据权利要求1所述的油气分离结构,其特征在于,所述旋转件上设有开口槽,以通过所述开口槽与所述分离腔的部分壁面形成所述至少两级腔中的至少一个。
  5. 根据权利要求4所述的油气分离结构,其特征在于,所述旋转件包括多个,多个所述旋转件相互连接,以形成转向环(21)。
  6. 根据权利要求5所述的油气分离结构,其特征在于,各个所述旋转件上的所述开口槽相互独立;或者,各个所述旋转件上的所述开口槽相互连通,以在所述转向环(21)的外周形成环形槽。
  7. 根据权利要求1所述的油气分离结构,其特征在于,所述旋转件上设有用于使所述至少两级腔中的两个相邻腔流体连通的转向喷嘴(24),所述转向喷嘴(24)被构造为能够改变流经所述转向喷嘴(24)的流体的流动方向,并使得进入所述两个相邻腔中位于下游的腔的至少一部分所述流体具有与所述旋转件的旋转方向相切的速度分量。
  8. 根据权利要求1所述的油气分离结构,其特征在于,还包括防转结构,所述防转结构用于防止所述旋转件相对于所述至少两级腔旋转。
  9. 根据权利要求8所述的油气分离结构,其特征在于,所述分离腔的内壁(19) 上设有防转台(29),所述防转结构包括设置于所述旋转件和所述防转台(29)中的一个上的凸台(31)以及设置于所述旋转件和所述防转台(29)中的另一个上的凹槽(30)。
  10. 根据权利要求1所述的油气分离结构,其特征在于,所述旋转件上设有导油孔(27),所述导油孔(27)用于使在所述至少两级腔中的一个腔内分离出的油流回与该腔相邻的另一腔。
  11. 一种用于航空发动机的油气分离系统,其特征在于,包括如权利要求1~10任一项所述的油气分离结构。
  12. 根据权利要求11所述的用于航空发动机的油气分离系统,其特征在于,还包括与低压轴转子(6)连接风扇轴(7)、与所述风扇轴(7)通过轴承连接的外环形结构(8)和固定在所述风扇轴(7)上的端盖(22),所述风扇轴(7)和所述外环形结构(8)之间形成所述第一腔(a),所述端盖(22)、所述风扇轴(7)、所述低压轴转子(6)以及所述低压轴转子(6)的端面围成所述分离腔。
  13. 根据权利要求12所述的用于航空发动机的油气分离系统,其特征在于,所述至少两级腔包括第二腔(c1)和第三腔(c2),所述旋转件安装在所述风扇轴(7)的内壁(19)上,并且所述旋转件上的开口槽与所述风扇轴(7)的内壁(19)之间形成所述第二腔(c1),所述端盖(22)、所述旋转件、所述风扇轴(7)、所述低压轴转子(6)以及所述低压轴转子(6)的端面围成所述第三腔(c2)。
  14. 根据权利要求12所述的用于航空发动机的油气分离系统,其特征在于,所述端盖(22)的位于所述分离腔内的侧面上设有凸起(32),所述凸起(32)用于支撑所述旋转件。
  15. 根据权利要求12所述的用于航空发动机的油气分离系统,其特征在于,所述至少两级腔包括第二腔(c1)和第三腔(c2),所述旋转件上设有用于使所述第二腔(c1)和所述第三腔(c2)流体连通的转向喷嘴(24),所述风扇轴(7)上设有连通所述第一腔(a)和所述第二腔(c1)的导向通孔(23),所述转向喷嘴(24)包括与所述第二腔(c1)连通的进口(25),所述导向通孔(23)与所述进口(25)交错设置。
  16. 一种航空发动机,其特征在于,包括如权利要求11~15任一项所述的用于航空发动机的油气分离系统。
PCT/CN2017/098583 2016-12-20 2017-08-23 油气分离器、油气分离系统及航空发动机 WO2018113332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611180228.9 2016-12-20
CN201611180228.9A CN108204281B (zh) 2016-12-20 2016-12-20 油气分离器、油气分离系统及航空发动机

Publications (1)

Publication Number Publication Date
WO2018113332A1 true WO2018113332A1 (zh) 2018-06-28

Family

ID=62601893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098583 WO2018113332A1 (zh) 2016-12-20 2017-08-23 油气分离器、油气分离系统及航空发动机

Country Status (2)

Country Link
CN (1) CN108204281B (zh)
WO (1) WO2018113332A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113356944A (zh) * 2021-07-01 2021-09-07 中国航发沈阳发动机研究所 一种适于航空发动机的双层壁堵盖式轴承腔收油引气结构
WO2022153000A1 (fr) 2021-01-15 2022-07-21 Safran Aircraft Engines Module de soufflante comprenant des moyens d'etancheite ameliores d'une enceinte de lubrifiant
CN114922858A (zh) * 2022-07-21 2022-08-19 成都中科翼能科技有限公司 一种燃气轮机低压压气机静子结构及其装配方法
CN115013157A (zh) * 2022-06-29 2022-09-06 中国航发湖南动力机械研究所 一种双转子航空发动机燃气轮机的离心通风结构
US11506079B2 (en) * 2019-09-09 2022-11-22 Raytheon Technologies Corporation Fluid diffusion device for sealed bearing compartment drainback system
US11719127B2 (en) 2019-10-23 2023-08-08 Raytheon Technologies Corporation Oil drainback assembly for a bearing compartment of a gas turbine engine
CN116663157A (zh) * 2023-07-25 2023-08-29 中国航发四川燃气涡轮研究院 一种航空发动机无效漏气分析方法及抑制装置
US11970972B2 (en) 2019-10-23 2024-04-30 Rtx Corporation Windage blocker for oil routing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201817937D0 (en) * 2018-11-02 2018-12-19 Rolls Royce Plc Gas turbine engine
CN110899284B (zh) * 2019-11-26 2022-01-28 中国航发沈阳黎明航空发动机有限责任公司 一种转子用全自动碳氢清洗固定装置
CN112392563B (zh) * 2020-11-16 2022-11-29 四川航天中天动力装备有限责任公司 一种涡轮发动机用高转速油气分离器
CN115069027B (zh) * 2021-03-11 2024-04-26 中国航发商用航空发动机有限责任公司 油气分离装置和航空发动机
CN117432782B (zh) * 2023-12-19 2024-03-19 中国核动力研究设计院 一种用于超临界二氧化碳发电系统的防护装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083406A (en) * 1994-11-22 2000-07-04 Marine Oil Technology, Inc. Lubricating oil reconditioning system
CN200955384Y (zh) * 2006-09-23 2007-10-03 中国石化股份胜利油田分公司海洋采油厂 用于电潜泵的油气分离器
CN101581241A (zh) * 2009-06-12 2009-11-18 奇瑞汽车股份有限公司 一种油气分离装置
US20100162889A1 (en) * 2008-12-22 2010-07-01 Techspace Aero S.A. Combined Pumping And Separating Machine For The Oil Circuit Of A Turbojet
CN103470341A (zh) * 2013-09-26 2013-12-25 长城汽车股份有限公司 缸盖罩和具有其的汽车

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8292034B2 (en) * 2007-11-28 2012-10-23 General Electric Company Air-oil separator
US7935164B2 (en) * 2007-11-28 2011-05-03 General Electric Company Vortex air-oil separator system
CN202366597U (zh) * 2011-12-01 2012-08-08 株洲南方燃气轮机成套制造安装有限公司 油气分离装置
CN102872982B (zh) * 2012-10-08 2014-08-06 中国航空动力机械研究所 用于航空发动机附件传动齿轮箱的油气分离装置
CN103982300B (zh) * 2014-05-26 2016-08-24 中国航空动力机械研究所 航空发动机用离心分离装置
CN104141775B (zh) * 2014-07-03 2016-04-20 中国航空动力机械研究所 用于动力装置齿轮箱的油气分离器及航空发动机
CN204357528U (zh) * 2014-12-17 2015-05-27 中国南方航空工业(集团)有限公司 油气分离装置及具有该装置的滑油冷却系统
US9879604B2 (en) * 2015-03-11 2018-01-30 United Technologies Corporation Cooling passages for a mid-turbine frame
CN104847500B (zh) * 2015-04-30 2016-08-17 中国科学院工程热物理研究所 润滑油路系统、轴承共腔结构、燃气涡轮发动机
CN105863847B (zh) * 2016-04-13 2018-05-22 中国科学院工程热物理研究所 一种轴承腔轴心通风结构及具有该结构的燃气涡轮发动机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083406A (en) * 1994-11-22 2000-07-04 Marine Oil Technology, Inc. Lubricating oil reconditioning system
CN200955384Y (zh) * 2006-09-23 2007-10-03 中国石化股份胜利油田分公司海洋采油厂 用于电潜泵的油气分离器
US20100162889A1 (en) * 2008-12-22 2010-07-01 Techspace Aero S.A. Combined Pumping And Separating Machine For The Oil Circuit Of A Turbojet
CN101581241A (zh) * 2009-06-12 2009-11-18 奇瑞汽车股份有限公司 一种油气分离装置
CN103470341A (zh) * 2013-09-26 2013-12-25 长城汽车股份有限公司 缸盖罩和具有其的汽车

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506079B2 (en) * 2019-09-09 2022-11-22 Raytheon Technologies Corporation Fluid diffusion device for sealed bearing compartment drainback system
US11719127B2 (en) 2019-10-23 2023-08-08 Raytheon Technologies Corporation Oil drainback assembly for a bearing compartment of a gas turbine engine
US11970972B2 (en) 2019-10-23 2024-04-30 Rtx Corporation Windage blocker for oil routing
WO2022153000A1 (fr) 2021-01-15 2022-07-21 Safran Aircraft Engines Module de soufflante comprenant des moyens d'etancheite ameliores d'une enceinte de lubrifiant
FR3118993A1 (fr) * 2021-01-15 2022-07-22 Safran Aircraft Engines Module de soufflante comprenant des moyens d’etancheite ameliores d’une enceinte de lubrifiant
CN113356944A (zh) * 2021-07-01 2021-09-07 中国航发沈阳发动机研究所 一种适于航空发动机的双层壁堵盖式轴承腔收油引气结构
CN115013157A (zh) * 2022-06-29 2022-09-06 中国航发湖南动力机械研究所 一种双转子航空发动机燃气轮机的离心通风结构
CN114922858A (zh) * 2022-07-21 2022-08-19 成都中科翼能科技有限公司 一种燃气轮机低压压气机静子结构及其装配方法
CN114922858B (zh) * 2022-07-21 2022-09-30 成都中科翼能科技有限公司 一种燃气轮机低压压气机静子结构及其装配方法
CN116663157A (zh) * 2023-07-25 2023-08-29 中国航发四川燃气涡轮研究院 一种航空发动机无效漏气分析方法及抑制装置
CN116663157B (zh) * 2023-07-25 2023-10-03 中国航发四川燃气涡轮研究院 一种航空发动机无效漏气分析方法及抑制装置

Also Published As

Publication number Publication date
CN108204281B (zh) 2019-08-27
CN108204281A (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
WO2018113332A1 (zh) 油气分离器、油气分离系统及航空发动机
US10450951B2 (en) Cyclonic separator for a turbine engine
US11846209B2 (en) Turbine engine inducer assembly
US10697321B2 (en) Vented tangential on-board injector for a gas turbine engine
US7935164B2 (en) Vortex air-oil separator system
US9810079B2 (en) Cyclonic dirt separating turbine accelerator
JP4088557B2 (ja) ガスタービン及びその抽気方法
US8562285B2 (en) Angled on-board injector
US11541340B2 (en) Inducer assembly for a turbine engine
US7607286B2 (en) Regenerative turbine blade and vane cooling for a tip turbine engine
US10208628B2 (en) Turbine engine designs for improved fine particle separation efficiency
US20070089422A1 (en) Multi-slot inter-turbine duct assembly for use in a turbine engine
CN107013335A (zh) 用于高opr(t3)发动机的压缩机后转子边沿冷却
JP2013100817A (ja) ギアボックス、および空気とオイルの混合物からオイルを除去する方法
EP2557272B1 (en) Rotor stage for a gas turbine engine and corresponding method of separating oil from an internal flow
EP3190265A1 (en) Gas turbine engine with a cooled nozzle segment
EP3149310A2 (en) Turbine engine, components, and methods of cooling same
CN107420200A (zh) 用于轴承垫的气体分配迷宫件
JP2006161653A (ja) ガスタービンエンジン
US11549641B2 (en) Double journal bearing impeller for active de-aerator
EP3159486A1 (en) Wheel space purge flow mixing chamber
US20170198585A1 (en) Stator rim for a turbine engine
WO2016072998A1 (en) Compressor bleed passage with auxiliary impeller in an axial shaft bore
EP3184749A1 (en) Wheel space purge flow mixing chamber
US3397535A (en) Turbine propulsion-gas generator for aircraft and the like

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17883226

Country of ref document: EP

Kind code of ref document: A1