WO2018113183A1 - 一种制冰组件及制冰腔体的温度控制方法 - Google Patents

一种制冰组件及制冰腔体的温度控制方法 Download PDF

Info

Publication number
WO2018113183A1
WO2018113183A1 PCT/CN2017/085752 CN2017085752W WO2018113183A1 WO 2018113183 A1 WO2018113183 A1 WO 2018113183A1 CN 2017085752 W CN2017085752 W CN 2017085752W WO 2018113183 A1 WO2018113183 A1 WO 2018113183A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice making
ice
zone
fan
temperature sensor
Prior art date
Application number
PCT/CN2017/085752
Other languages
English (en)
French (fr)
Inventor
邵阳
司增强
Original Assignee
合肥华凌股份有限公司
合肥美的电冰箱有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥华凌股份有限公司, 合肥美的电冰箱有限公司 filed Critical 合肥华凌股份有限公司
Publication of WO2018113183A1 publication Critical patent/WO2018113183A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices

Definitions

  • the invention relates to the field of refrigeration equipment, and in particular to an ice making assembly and a temperature control method for an ice making chamber.
  • the ice maker of the prior art is generally installed at the back of the door, and the ice storage box (ice storage bucket) is directly placed under the ice maker.
  • the ice storage box ice storage bucket
  • the ice machine is completely connected with the space where the ice storage box is located, and the ice making and the ice storage are in the same cavity, so the temperature in the ice storage box of the ice making machine is similar to the temperature around the ice making machine during the ice making process.
  • the actual required storage temperature of the ice cube is higher than the ice making temperature, which causes the loss of the cooling capacity, which in turn causes the corresponding ice making amount to decrease.
  • the ice machine's heating wire works, which will cause the temperature around the ice machine to rise, causing the temperature in the ice storage box to fluctuate and affect the storage of the ice.
  • the technical problem to be solved by the present invention is to provide an ice making assembly that separates an ice making zone from an ice storage zone and provides a temperature control scheme after separation of ice making and ice storage.
  • the invention provides an ice making assembly, comprising an ice making chamber, an ice making machine installed on an upper part of the ice making chamber body, and an ice storage box located in an inner lower part of the ice making chamber, and further comprising:
  • a movable partition disposed between the ice maker and the ice storage bin for connecting or separating the ice maker and the ice storage box, the movable partition separating the ice making compartment into an ice making zone and Two parts of the ice storage area;
  • the fan is disposed at an opening of the upper end of the ice making cavity, the opening is connected to the cavity where the ice making evaporator is located and the ice making cavity;
  • An ice storage zone temperature sensor wherein the ice storage zone temperature sensor is located at a lower portion of the ice storage box and connected to an inner wall of the ice storage box for collecting an actual temperature of the ice storage zone;
  • a microprocessor is coupled to the ice storage zone temperature sensor and receives an actual temperature of the ice storage zone collected by the ice storage zone temperature sensor, the microprocessor being coupled to the fan and controlling the operating mode of the fan.
  • the beneficial effects of the invention are: ice making and ice storage partitioning, reducing energy loss, increasing ice making amount; avoiding fluctuation of temperature in the ice storage box when the ice making machine starts heating and deicing, affecting the storage of ice cubes; Ice and ice storage zone, the temperature of the ice storage compartment is relatively high, which can make the bubble layer around the ice storage room thinner, increase the size of the ice storage box, and increase the ice storage capacity; the ice sensor temperature sensor and the microprocessor can cooperate
  • the simple control of the temperature of the ice storage area after separation eliminates the need to add other devices and simplifies the structure.
  • the present invention can also be improved as follows.
  • ice making zone temperature sensor for collecting the actual temperature of the ice making zone is located above the ice making machine and connected to the inner wall of the ice making cavity; the microprocessor and the ice making The zone temperature sensor is connected and receives the actual temperature of the ice making zone collected by the ice zone temperature sensor.
  • the beneficial effect of adopting the above further solution is that by adding the ice zone temperature sensor and cooperating with the microprocessor, the temperature monitoring and collection of the ice making zone is realized, thereby further improving the temperature control.
  • the ice making assembly further includes a fixed partition, one end of the fixed partition is fixedly connected to the other side wall of the ice making chamber, and one end of the movable partition is opposite to a side wall of the ice making chamber Connecting and rotating with the connecting end as a rotating shaft, the non-connecting end of the movable partition is in contact with or separated from the fixed partition.
  • the advantage of using the above further solution is that the use of the fixed partition and the movable partition can better separate the space, and reduce the movable trajectory of the movable partition, which is more convenient to install and manufacture.
  • the movable partition is provided with a plurality of evenly distributed vents.
  • venting opening is arranged to make the inside of the ice making area
  • the cold air can be blown to the ice storage area to ensure the temperature of the ice storage.
  • the movable partition comprises a partition body and two connecting ears, the two connecting ears are fixedly connected to two sides of one end of the partition body; the inner wall of the ice making chamber has an inwardly extending connecting plate, The two connecting ears are respectively connected to the connecting plate through a connecting member, and the partition body is provided with a plurality of evenly distributed vents, and the other end of the partition body is in contact with the fixed partition.
  • center of gravity of the movable partition and the center of rotation of the movable partition are on the same vertical line.
  • the advantage of adopting the above further solution is that the center of gravity of the movable partition is on the same vertical line as the rotation point of the partition, ensuring that the initial state of the movable partition is inclined, and when the ice falls on the movable partition, the activity The partition is subjected to a downward force, and the movable partition is opened. When the ice cube is completely dropped, the movable partition returns to the initial position under its own gravity, and continues to function as a temperature barrier.
  • the advantage of adopting the above further solution is that the initial state of the movable partition is inclined according to the elastic force of the elastic member and the resistance of the fixed partition, and the movable partition is downward when the ice falls on the movable partition. Force, the movable partition will open, when the ice is completely dropped, the active partition will return to its original position under its own gravity and continue to function as a temperature barrier.
  • the elastic returning member is an elastic circlip
  • the connecting member is a bolt
  • the elastic circlip is sleeved on the bolt
  • the connecting ear and the connecting plate are respectively provided with a through hole
  • the connecting ear And two connecting plates, and the two connecting plates are located outside the two connecting ears, and the bolts are sequentially passed through and disposed in the through holes of the connecting ears and the connecting plate
  • the elastic card One end of the spring is connected to the inner wall of the ice making chamber, and the other end is connected to the bulkhead body.
  • the advantage of using the above further solution is to provide a specific solution that satisfies the separation space of the movable partition when rotating the ice during ice making.
  • the movable partition is an electric damper.
  • the advantage of using the above further solution is to provide a specific solution that satisfies the separation space of the movable partition when rotating the ice during ice making.
  • the minimum distance between the upper edge of the ice storage box and the center of rotation of the movable partition is smaller than The length of the active partition.
  • the ice making assembly further includes an ice making evaporator connected to the ice making chamber, the fan being disposed at an opening of the upper end of the ice making chamber, the opening being connected to the ice making evaporator The cavity and the ice making cavity.
  • the present invention also relates to a refrigerator comprising the ice making assembly as described above, the ice making assembly being mounted on the door of the refrigerator or in a storage compartment of the refrigerator.
  • the invention further relates to a temperature control method for an ice making chamber, which is achieved by the ice making assembly according to any one of claims 1-7, comprising the steps of:
  • the ice storage zone temperature sensor collects the actual temperature T2 of the ice storage zone and transmits it to the microprocessor;
  • the microprocessor controls the operation mode of the fan by comparing and analyzing the relationship between the preset temperature W2 of the ice storage area and the actual temperature T2 of the ice storage area.
  • the temperature control method of the ice making chamber of the present invention has the beneficial effects of providing a temperature control method for separating ice making and ice storage; the ice storage area can be separated by the temperature sensor of the ice storage area and the microprocessor
  • the simple control of the temperature eliminates the need to add other devices and simplifies the structure.
  • step 3 includes the following cases:
  • the fan is a common fan in a refrigerator, and the fan has at least two modes of high speed operation and low speed operation.
  • the beneficial effect of adopting the above further solution is that the temperature control method under different functional states is distinguished in detail, and the temperature is controlled, and the excessive control components are reduced, so that the structure is simple and the energy loss is reduced.
  • the ice making assembly further includes an ice making zone temperature sensor, the ice making zone temperature sensor is located above the ice making machine and connected to the inner wall of the ice making cavity for collecting the actual temperature of the ice making zone;
  • the processor is connected to the ice storage zone temperature sensor and receives the actual temperature of the ice storage zone collected by the ice storage zone temperature sensor;
  • the step 1) further includes setting an ice making zone preset temperature W1 in the microprocessor; the step 2) further comprises an ice making zone temperature sensor collecting the actual temperature T1 of the ice making zone and transmitting it to the microprocessor.
  • the step 3) includes the following cases:
  • the fan is a fan commonly used in a refrigerator.
  • the fan has at least two modes of high speed operation and low speed operation.
  • the fan has only two modes of high speed operation and low speed operation, when the ice making function is turned on, During the ice making process, if W1>T1, W2>T2, the fan stops rotating; if the fan has three modes of high speed running, low speed running and micro cycle, when the ice making function is turned on, during the ice making process, if W1>T1, W2>T2, the fan runs in micro-circulation mode, that is, very low speed rotation.
  • the beneficial effect of adopting the above further solution is that the temperature control methods of the ice making zone and the ice storage zone under different functional states are distinguished in detail, and the temperature is controlled, the excessive control components are reduced, and the structure is simple. Reduced energy consumption.
  • the ice making zone preset temperature W1 is -25 ° C ⁇ -10 ° C
  • the ice storage zone preset temperature W2 is -10 ° C ⁇ 0 ° C.
  • the beneficial effect of using the above further solution is that the above temperature interval is set to meet the requirements of ice making and ice storage, and to avoid unnecessary energy loss.
  • FIG. 1 is a schematic structural view of an ice making assembly when the movable partition of the present invention is closed;
  • FIG. 2 is a schematic structural view of an ice making assembly when the movable partition of the present invention is opened;
  • Figure 3 is a side view of the movable partition of the present invention.
  • Figure 4 is a top plan view of the movable partition of the present invention.
  • An ice making assembly comprising an ice making chamber, an ice making machine 1 mounted above the interior of the ice making chamber, and an ice storage box 2 located at an inner lower portion of the ice making chamber, further comprising:
  • a movable partition 3 disposed between the ice maker 1 and the ice storage box 2 for connecting or separating the ice maker 1 and the ice storage box 2, the movable partition 3 to be an ice making chamber
  • the body is divided into two parts: the ice making zone and the ice storage zone;
  • the fan 5 is disposed at an opening of the upper end of the ice making chamber, the opening is connected to the cavity where the ice making evaporator 6 is located and the ice making cavity;
  • An ice storage area temperature sensor 8 the ice storage area temperature sensor 8 for collecting the actual temperature of the ice storage area is located at a lower portion of the ice storage box and connected to the inner wall of the ice storage box;
  • a microprocessor connected to the ice storage zone temperature sensor 8 and receiving the actual temperature of the ice storage zone collected by the ice storage zone temperature sensor 8, the microprocessor being coupled to the fan 5 and controlling the operation of the fan 5. mode.
  • One end of the movable partition 3 is connected to a side wall of the ice making chamber and rotates with the connecting end as a rotating shaft, and the movable partition 3 includes a partition body 31 and two connecting ears 32, the two The connecting ears 32 are fixedly connected to two sides of one end of the partition body 31; the inner wall of the ice making chamber has an inwardly extending connecting plate, and the connecting ear and the connecting plate are connected by a connecting member, the partition The body 31 is provided with a plurality of evenly distributed vents 33, and the other end of the partition body 31 is in contact with the fixed partition 4.
  • the center of gravity of the movable partition 3 and the center of rotation X of the movable partition 3 are on the same vertical line.
  • the ice making assembly further includes an ice making evaporator 6, and the ice making evaporator 6 is connected to the ice making chamber
  • the fan 5 is disposed at an opening of the upper end of the ice making chamber, and the opening communicates with the cavity in which the ice making evaporator 6 is located and the ice making cavity.
  • the fan is a common fan in a refrigerator, and the fan has at least two modes of high speed operation and low speed operation.
  • the temperature control method of the ice making chamber includes the following steps:
  • the ice storage zone temperature sensor collects the actual temperature T2 of the ice storage zone and transmits it to the microprocessor;
  • the microprocessor controls the operation mode of the fan by comparing and analyzing the relationship between the preset temperature W2 of the ice storage area and the actual temperature T2 of the ice storage area;
  • the step 3) described therein includes the following cases:
  • the ice making zone preset temperature W1 is -25 ° C ⁇ -10 ° C
  • the ice storage zone preset temperature W2 is -10 ° C ⁇ 0 ° C.
  • An ice making assembly comprising an ice making chamber, an ice making machine 1 mounted above the interior of the ice making chamber, and an ice storage box 2 located at an inner lower portion of the ice making chamber, further comprising:
  • a movable partition 3 disposed between the ice maker 1 and the ice storage box 2 for connecting or separating the ice maker 1 and the ice storage box 2, the movable partition 3 to be an ice making chamber
  • the body is divided into two parts: the ice making zone and the ice storage zone;
  • the fan 5 is disposed at an opening of the upper end of the ice making chamber, the opening is connected to the cavity where the ice making evaporator 6 is located and the ice making cavity;
  • An ice making zone temperature sensor 7, the ice making zone temperature sensor 7 for collecting the actual temperature of the ice making zone is located above the ice making machine 1 and connected to the inner wall of the ice making cavity;
  • An ice storage area temperature sensor 8 the ice storage area temperature sensor 8 for collecting the actual temperature of the ice storage area is located at a lower portion of the ice storage box and connected to the inner wall of the ice storage box;
  • a microprocessor connected to the ice making zone temperature sensor 7 and receiving the actual temperature of the ice making zone collected by the ice making zone temperature sensor 7, the microprocessor being connected to the ice storage zone temperature sensor 8 and receiving The actual temperature of the ice storage zone collected by the ice storage zone temperature sensor 8 is connected to the fan 5 and controls the operation mode of the fan 5; the fixed partition 4, one end of the fixed partition 4 and the ice making cavity The other side wall of the movable partition plate 3 is fixedly connected to one side wall of the ice making cavity body and is rotated by the connecting end as a rotating shaft, and the non-connecting end of the movable partition plate 3 and the fixed partition plate 4 Contact or separate.
  • the movable partition 3 is an electric damper, and includes a driving motor and a partition body.
  • the partition body is rotated by a driving motor, and the partition body is provided with a plurality of evenly distributed vents 33.
  • the fan is a common fan in a refrigerator, and the fan has at least two modes of high speed operation and low speed operation.
  • a method for controlling temperature of an ice making chamber includes the following steps:
  • the ice zone temperature sensor collects the actual temperature T1 of the ice making zone and transmits it to the microprocessor; the ice storage zone temperature sensor collects the actual temperature T2 of the ice storage zone and transmits it to the microprocessor;
  • the microprocessor controls the operation mode of the fan by comparing and analyzing the preset temperature W2 of the ice storage area and the actual temperature T2 of the ice storage area and the relationship between the preset temperature W1 of the ice making zone and the actual temperature T1 of the ice making zone;
  • step 3 includes the following situations:
  • the ice making zone preset temperature W1 is -25 ° C ⁇ -10 ° C
  • the ice storage zone preset temperature W2 is -10 ° C ⁇ 0 ° C.
  • an ice making assembly includes an ice making chamber, an ice making machine 1 installed above the interior of the ice making chamber, and an ice storage box 2 located at an inner lower portion of the ice making chamber, and further includes :
  • a movable partition 3 disposed between the ice maker 1 and the ice storage box 2 for connecting or separating the ice maker 1 and the ice storage box 2, the movable partition 3 to be an ice making chamber
  • the body is divided into two parts: the ice making zone and the ice storage zone;
  • the fan 5 is disposed at an opening of the upper end of the ice making chamber, the opening is connected to the cavity where the ice making evaporator 6 is located and the ice making cavity;
  • An ice storage area temperature sensor 8 the ice storage area temperature sensor 8 for collecting the actual temperature of the ice storage area is located at a lower portion of the ice storage box and connected to the inner wall of the ice storage box;
  • a microprocessor connected to the ice storage zone temperature sensor 8 and receiving the actual temperature of the ice storage zone collected by the ice storage zone temperature sensor 8, the microprocessor being coupled to the fan 5 and controlling the operation of the fan 5. mode;
  • Ice making zone temperature sensor 7 the ice making zone temperature sensor 7 for collecting the actual temperature of the ice making zone is located above the ice making machine 1 and connected to the inner wall of the ice making chamber; the microprocessor and the ice making zone The temperature sensor 7 is connected and receives the actual temperature of the ice making zone collected by the ice making zone temperature sensor 7;
  • one end of the fixed partition 4 is fixedly connected to the other side wall of the ice making chamber, and one end of the movable partition 3 is connected to a side wall of the ice making chamber and connected The end is rotated by the rotating shaft, and the non-joining end of the movable partition 3 is in contact with or separated from the fixed partition 4.
  • the movable partition 3 is provided with a plurality of evenly distributed vents 33.
  • the movable partition 3 includes a partition body 31 and two connecting ears 32 fixedly connected to two sides of one end of the partition body 31; the inner wall of the ice making chamber has an inwardly extending wall a connecting plate, the connecting ear and the connecting plate are connected by a connecting member, wherein the baffle body 31 is provided with a plurality of evenly distributed vents 33, and the other end of the baffle body 31 and the fixed partition 4 Contact.
  • the utility model further comprises an elastic returning member connected between the inner wall of the ice making chamber and the partition body 31, the partition body 31 being separated from the fixed partition 4 by an external force, and being elasticized after the external force ends.
  • the position of the contact plate 4 is restored by the action of the sexual resetting member.
  • the elastic returning member is an elastic circlip
  • the connecting member is a bolt
  • the elastic circlip is sleeved on the bolt, and one end of the elastic circlip is connected to the inner wall of the ice making chamber, and the other end and the partition body are 31 connected.
  • the minimum distance between the upper edge of the ice bank 1 and the center of rotation of the movable partition 3 is smaller than the length of the movable partition 3.
  • the fan is a common fan in a refrigerator, and the fan has three modes of high speed operation, low speed operation and micro cycle.
  • a method for controlling temperature of an ice making chamber includes the following steps:
  • the ice zone temperature sensor collects the actual temperature T1 of the ice making zone and transmits it to the microprocessor; the ice storage zone temperature sensor collects the actual temperature T2 of the ice storage zone and transmits it to the microprocessor;
  • the microprocessor controls the operation mode of the fan by comparing and analyzing the preset temperature W2 of the ice storage area and the actual temperature T2 of the ice storage area and the relationship between the preset temperature W1 of the ice making zone and the actual temperature T1 of the ice making zone;
  • step 3 includes the following situations:
  • the ice making zone preset temperature W1 is -25 ° C ⁇ -10 ° C
  • the ice storage zone preset temperature W2 is -10 ° C ⁇ 0 ° C.
  • a refrigerator comprising the ice making assembly of any of embodiments 1-3, the ice making assembly being mounted on a refrigerator door or in a storage compartment of the refrigerator.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the description of the term "one embodiment” or the like means that a specific feature, structure, material or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms is not necessarily directed to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
  • various embodiments or examples described in the specification, as well as features of various embodiments or examples may be combined and combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

一种制冰组件,包括制冰腔体、安装在制冰腔体内部上方的制冰机(1)以及位于制冰腔体内部下方的储冰盒(2),还包括:设置在制冰机(1)和储冰盒(2)之间的用于连通或分隔制冰机(1)和储冰盒(2)的活动隔板(3)、设置在制冰腔体上端的开口处的风扇(5)、位于储冰盒(2)下部并且连接在储冰盒(2)内壁上的用于采集储冰区实际温度的储冰区温度传感器(8)以及与储冰区温度传感器(8)相连接并接收储冰区温度传感器(8)采集的储冰区实际温度的微处理器,微处理器与风扇(5)相连接并控制风扇的运行模式。

Description

一种制冰组件及制冰腔体的温度控制方法
交叉引用
本申请引用于2016年12月21日提交的专利名称为“一种制冰组件及制冰腔体的温度控制方法”的第2016111902713号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及冷藏设备领域,具体的说,涉及一种制冰组件及制冰腔体的温度控制方法。
背景技术
现有技术中的制冰机一般安装在门背部,储冰盒(蓄冰桶)直接安放在所述制冰机的下方,当制冰机满冰后,冰块直接落到所述储冰盒中。此时制冰机与储冰盒所处的空间完全连通,制冰与储冰在同一个凹腔中,所以制冰机在制冰过程中储冰盒中的温度与制冰机周围温度相近,而冰块的实际所需的储存温度相对于制冰温度较高,这样就造成了冷量的损耗,进而造成相应的制冰量减少。另外当制冰机开始加热脱冰时,制冰机加热丝工作,会使制冰机周围温度上升,造成储冰盒中的温度出现波动,影响冰块的储存。
发明内容
本发明所要解决的技术问题是提供一种将制冰区和储冰区分隔的制冰组件并提供一种对制冰和储冰分隔后的温度控制方案。
本发明解决上述技术问题的技术方案如下:
本发明提供一种制冰组件,包括制冰腔体、安装在制冰腔体内部上部的制冰机,以及位于制冰腔体内部下部的储冰盒,还包括:
活动隔板,所述活动隔板设置在制冰机与储冰盒之间的用于连通或分隔制冰机和储冰盒,所述活动隔板将制冰腔体分隔为制冰区和储冰区两部分;
风扇,所述风扇设置在制冰腔体上端的开口处,所述开口连通制冰蒸发器所在的腔体与制冰腔体;
储冰区温度传感器,所述储冰区温度传感器位于储冰盒下部并连接在储冰盒的内壁上,用于采集储冰区实际温度;
微处理器,所述微处理器与储冰区温度传感器相连接并接收储冰区温度传感器采集的储冰区实际温度,所述微处理器与风扇相连接并控制风扇的运行模式。
本发明的有益效果是:制冰与储冰分区,减少能量损耗,提升制冰量;避免制冰机开始加热脱冰时,造成储冰盒中的温度出现波动,影响冰块的储存;制冰与储冰分区,储冰室温度相对较高,可以使储冰室周围泡层减薄,增加储冰盒的大小,进而增加储冰量;储冰区温度传感器和微处理器的配合能够分隔后的储冰区温度的简单控制,不需要再添加其他器件,实现了结构的简单化。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,还包括制冰区温度传感器,所述用于采集制冰区实际温度的制冰区温度传感器位于制冰机的上方并连接在制冰腔体内壁上;所述微处理器与制冰区温度传感器相连接并接收制冰区温度传感器采集的制冰区实际温度。
采用上述进一步方案的有益效果是:通过添加制冰区温度传感器并与微处理器相配合,实现对制冰区的温度的监控与采集,进而使温度控制更为完善。
进一步,所述制冰组件还包括固定隔板,所述固定隔板的一端与制冰腔体的另一侧壁固定连接,所述活动隔板的一端与制冰腔体的一侧壁相连接并以连接端为转动轴转动,所述活动隔板非连接端与固定隔板相接触或分离。
采用上述进一步方案的有益效果是:固定隔板和活动隔板的配合使用能够更好的分隔空间,并且减少活动隔板的活动轨迹,安装制作起来更为方便。
进一步,所述活动隔板上设有多个均匀分布的通风口。
采用上述进一步方案的有益效果是:通风口的设置使制冰区域内的部 分冷气可以吹向储冰区域,从而保证储冰的温度。
进一步,所述活动隔板包括隔板本体和两个连接耳,所述两个连接耳固定连接在隔板本体一端的两侧;所述制冰腔体内壁上具有向内延伸的连接板,两个所述连接耳分别与所述连接板通过连接件相连接,所述隔板本体上设有多个均匀分布的通风口,所述隔板本体的另一端与固定隔板相接触。
进一步,所述活动隔板的重心和所述活动隔板的旋转中心在同一竖直直线上。
采用上述进一步方案的有益效果是:活动隔板的重心与隔板的旋转点在同一竖直线上,保证活动隔板的初始状态为倾斜状态,当冰块落在活动隔板上时,活动隔板受到向下的力,活动隔板便打开,当冰块完全落下时,活动隔板在自身重力下恢复初始位置,继续起到隔温作用。
进一步,还包括连接在所述制冰腔体内壁和隔板本体之间的弹性复位件,所述隔板本体在外力作用下与固定隔板相分离,在外力结束后在弹性复位件的作用下恢复至与固定隔板相接触的位置。
采用上述进一步方案的有益效果是:依靠弹性件的弹力和固定隔板的阻力,保证活动隔板的初始状态为倾斜状态,当冰块落在活动隔板上时,活动隔板受到向下的力,活动隔板便打开,当冰块完全落下时,活动隔板在自身重力下恢复初始位置,继续起到隔温作用。
进一步,所述弹性复位件为弹性卡簧,所述连接件为螺栓,所述弹性卡簧套接在螺栓上,所述连接耳和连接板均为上均设有通孔,所述连接耳和连接板均为两个,并且所述两个连接板位于所述两个连接耳的外侧,所述螺栓依次穿过并套设置在连接耳和连接板上的通孔内,所述弹性卡簧的一端与制冰腔体内壁相连接,另一端与隔板本体相连接。
采用上述进一步方案的有益效果是:提供一种具体的能够满足活动隔板在制冰时转动储冰时分隔空间的方案。
进一步,所述活动隔板为电动风门。
采用上述进一步方案的有益效果是:提供一种具体的能够满足活动隔板在制冰时转动储冰时分隔空间的方案。
进一步,所述储冰盒上沿与活动隔板旋转中心之间的最小距离小于所 述活动隔板的长度。
所述制冰组件还包括制冰蒸发器,所述制冰蒸发器连接在制冰腔体的上方,所述风扇设置在制冰腔体上端的开口处,所述开口连通制冰蒸发器所在的腔体与制冰腔体。
本发明还涉及一种冰箱,包括如上所述的制冰组件,所述制冰组件安装在冰箱门体上或者是冰箱的储藏腔内。
本发明还涉及一种制冰腔体的温度控制方法,通过如权利要求1-7任一所述的制冰组件实现,包括如下步骤:
1)在微处理器内设置储冰区预设温度W2;
2)储冰区温度传感器采集储冰区的实际温度T2并传递至微处理器中;
3)微处理器通过比较分析储冰区预设温度W2和储冰区的实际温度T2的关系,控制风扇的运行模式。
本发明的一种制冰腔体的温度控制方法的有益效果是:提供一种制冰与储冰分离的温度控制方法;储冰区温度传感器和微处理器的配合能够分隔后的储冰区温度的简单控制,不需要再添加其他器件,实现了结构的简单化。
进一步,所述步骤3)包括如下情况:
3-1)在制冰功能开启时,在制冰过程中,
若W2>T2,风扇低转速运行,
若W2<T2,风扇高转速运行;
3-2)在制冰功能开启时,在脱冰或者注水的过程中,风扇停止转动;
3-3)在制冰功能关闭时,
若W2>T2,风扇停止转动,
若W2<T2,风扇低转速运行。
其中所述风扇为冰箱中常用风扇,所述风扇至少具有高转速运行和低转速运行两种模式。
采用上述进一步方案的有益效果是:详细的区分了在不同功能状态下的温度控制方法,有效的控制温度的同时,减少了过多的控制部件,使得结构简单,能源损耗减少。
进一步,所述制冰组件还包括制冰区温度传感器,所述制冰区温度传感器位于制冰机的上方并连接在制冰腔体内壁上,用于采集制冰区实际温度;所述微处理器与储冰区温度传感器相连接并接收储冰区温度传感器采集的储冰区实际温度;
所述步骤1)中还包括在微处理器内设置制冰区预设温度W1;所述步骤2)中还包括制冰区温度传感器采集制冰区的实际温度T1并传递至微处理器中;所述步骤3)包括如下情况:
3-1)在制冰功能开启时,在制冰过程中,
若W1>T1,W2>T2,风扇停止转动或微循环,
若W1<T1,W2>T2,风扇低转速运行,
若W2<T2,风扇高转速运行;
3-2)在制冰功能开启时,在脱冰或者注水的过程中,风扇停止转动;
3-3)在制冰功能关闭时,
若W2>T2,风扇停止转动,
若W2<T2,风扇低转速运行。
其中所述风扇为冰箱中常用风扇,所述风扇至少具有高转速运行和低转速运行两种模式,当风扇只具有高转速运行和低转速运行两种模式时,在制冰功能开启时,在制冰过程中,若W1>T1,W2>T2,风扇停止转动;若是风扇具有高转速运行、低转速运行和微循环三种模式时,在制冰功能开启时,在制冰过程中,若W1>T1,W2>T2,风扇运行微循环模式即极低速转动。采用上述进一步方案的有益效果是:详细的区分了在不同功能状态下的制冰区和储冰区的温度控制方法,有效的控制温度的同时,减少了过多的控制部件,使得结构简单,能源损耗减少。
进一步,所述步骤1)中,所述制冰区预设温度W1为-25℃~-10℃,所述储冰区预设温度W2为-10℃~0℃。
采用上述进一步方案的有益效果是:上述温度区间的设置既能满足制冰和储冰需求,又能避免不必要的能量损耗。
附图说明
图1为本发明的活动隔板闭合时的制冰组件的结构示意图;
图2为本发明的活动隔板打开时的制冰组件的结构示意图;
图3为本发明的活动隔板的侧视图;
图4为本发明的活动隔板的俯视图。
附图中,各标号所代表的部件列表如下:
1、制冰机,2、储冰盒,3、活动隔板,31、隔板本体,32、连接耳,33、通风口,4、固定隔板,5、风扇,6、制冰机蒸发器,7、制冰区温度传感器,8、储冰区温度传感器。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
一种制冰组件,包括制冰腔体、安装在制冰腔体内部上方的制冰机1,以及位于制冰腔体内部下部的储冰盒2,还包括:
活动隔板3,所述活动隔板3设置在制冰机1与储冰盒2之间的用于连通或分隔制冰机1和储冰盒2,所述活动隔板3将制冰腔体分隔为制冰区和储冰区两部分;
风扇5,所述风扇5设置在制冰腔体上端的开口处,所述开口连通制冰蒸发器6所在的腔体与制冰腔体;
储冰区温度传感器8,所述用于采集储冰区实际温度的储冰区温度传感器8位于储冰盒下部并连接在储冰盒的内壁上;
微处理器,所述微处理器与储冰区温度传感器8相连接并接收储冰区温度传感器8采集的储冰区实际温度,所述微处理器与风扇5相连接并控制风扇5的运行模式。
所述活动隔板3的一端与制冰腔体的一侧壁相连接并以连接端为转动轴转动,所述活动隔板3包括隔板本体31和两个连接耳32,所述两个连接耳32固定连接在隔板本体31一端的两侧;所述制冰腔体内壁上具有向内延伸的连接板,所述连接耳与所述连接板通过连接件相连接,所述隔板本体31上设有多个均匀分布的通风口33,所述隔板本体31的另一端与固定隔板4相接触。所述活动隔板3的重心和所述活动隔板3的旋转中心X在同一竖直直线上。
所述制冰组件还包括制冰蒸发器6,所述制冰蒸发器6连接在制冰腔 体的上方,所述风扇5设置在制冰腔体上端的开口处,所述开口连通制冰蒸发器6所在的腔体与制冰腔体。
其中所述风扇为冰箱中常用风扇,所述风扇至少具有高转速运行和低转速运行两种模式。
上述制冰腔体的温度控制方法,包括如下步骤:
1)在微处理器内设置储冰区预设温度W2;
2)储冰区温度传感器采集储冰区的实际温度T2并传递至微处理器中;
3)微处理器通过比较分析储冰区预设温度W2和储冰区的实际温度T2的关系,控制风扇的运行模式;
其中所述步骤3)包括如下情况:
3-1)在制冰功能开启时,在制冰过程中,
若W2>T2,风扇低转速运行,
若W2<T2,风扇高转速运行;
3-2)在制冰功能开启时,在脱冰或者注水的过程中,风扇停止转动;
3-3)在制冰功能关闭时,
若W2>T2,风扇停止转动,
若W2<T2,风扇低转速运行。
所述步骤1)中,所述制冰区预设温度W1为-25℃~-10℃,所述储冰区预设温度W2为-10℃~0℃。
实施例2
一种制冰组件,包括制冰腔体、安装在制冰腔体内部上方的制冰机1,以及位于制冰腔体内部下部的储冰盒2,还包括:
活动隔板3,所述活动隔板3设置在制冰机1与储冰盒2之间的用于连通或分隔制冰机1和储冰盒2,所述活动隔板3将制冰腔体分隔为制冰区和储冰区两部分;
风扇5,所述风扇5设置在制冰腔体上端的开口处,所述开口连通制冰蒸发器6所在的腔体与制冰腔体;
制冰区温度传感器7,所述用于采集制冰区实际温度的制冰区温度传感器7位于制冰机1的上方并连接在制冰腔体内壁上;
储冰区温度传感器8,所述用于采集储冰区实际温度的储冰区温度传感器8位于储冰盒下部并连接在储冰盒的内壁上;
微处理器,所述微处理器与制冰区温度传感器7相连接并接收制冰区温度传感器7采集的制冰区实际温度,所述微处理器与储冰区温度传感器8相连接并接收储冰区温度传感器8采集的储冰区实际温度,所述微处理器与风扇5相连接并控制风扇5的运行模式;固定隔板4,所述固定隔板4的一端与制冰腔体的另一侧壁固定连接,所述活动隔板3的一端与制冰腔体的一侧壁相连接并以连接端为转动轴转动,所述活动隔板3非连接端与固定隔板4相接触或分离。
所述活动隔板3为电动风门,包括驱动电机和隔板本体,所述隔板本体在驱动电机的驱动下转动,所述隔板本体上设有多个均匀分布的通风口33。
其中所述风扇为冰箱中常用风扇,所述风扇至少具有高转速运行和低转速运行两种模式。
一种制冰腔体的温度控制方法,包括如下步骤:
1)在微处理器内设置制冰区预设温度W1和储冰区预设温度W2;
2)制冰区温度传感器采集制冰区的实际温度T1并传递至微处理器中;储冰区温度传感器采集储冰区的实际温度T2并传递至微处理器中;
3)微处理器通过比较分析储冰区预设温度W2和储冰区的实际温度T2以及制冰区预设温度W1和制冰区的实际温度T1的关系,控制风扇的运行模式;
其中,所述步骤3)包括如下情况:
3-1)在制冰功能开启时,在制冰过程中,
若W1>T1,W2>T2,风扇停止转动,
若W1<T1,W2>T2,风扇低转速运行,
若W2<T2,风扇高转速运行;
3-2)在制冰功能开启时,在脱冰或者注水的过程中,风扇停止转动;
3-3)在制冰功能关闭时,
若W2>T2,风扇停止转动,
若W2<T2,风扇低转速运行。
所述步骤1)中,所述制冰区预设温度W1为-25℃~-10℃,所述储冰区预设温度W2为-10℃~0℃。
实施例3
如图1-3所示,一种制冰组件,包括制冰腔体、安装在制冰腔体内部上方的制冰机1,以及位于制冰腔体内部下部的储冰盒2,还包括:
活动隔板3,所述活动隔板3设置在制冰机1与储冰盒2之间的用于连通或分隔制冰机1和储冰盒2,所述活动隔板3将制冰腔体分隔为制冰区和储冰区两部分;
风扇5,所述风扇5设置在制冰腔体上端的开口处,所述开口连通制冰蒸发器6所在的腔体与制冰腔体;
储冰区温度传感器8,所述用于采集储冰区实际温度的储冰区温度传感器8位于储冰盒下部并连接在储冰盒的内壁上;
微处理器,所述微处理器与储冰区温度传感器8相连接并接收储冰区温度传感器8采集的储冰区实际温度,所述微处理器与风扇5相连接并控制风扇5的运行模式;
制冰区温度传感器7,所述用于采集制冰区实际温度的制冰区温度传感器7位于制冰机1的上方并连接在制冰腔体内壁上;所述微处理器与制冰区温度传感器7相连接并接收制冰区温度传感器7采集的制冰区实际温度;
还包括固定隔板4,所述固定隔板4的一端与制冰腔体的另一侧壁固定连接,所述活动隔板3的一端与制冰腔体的一侧壁相连接并以连接端为转动轴转动,所述活动隔板3非连接端与固定隔板4相接触或分离。
所述活动隔板3上设有多个均匀分布的通风口33。
所述活动隔板3包括隔板本体31和两个连接耳32,所述两个连接耳32固定连接在隔板本体31一端的两侧;所述制冰腔体内壁上具有向内延伸的连接板,所述连接耳与所述连接板通过连接件相连接,所述隔板本体31上设有多个均匀分布的通风口33,所述隔板本体31的另一端与固定隔板4相接触。
还包括连接在所述制冰腔体内壁和隔板本体31之间的弹性复位件,所述隔板本体31在外力作用下与固定隔板4相分离,在外力结束后在弹 性复位件的作用下恢复至与固定隔板4相接触的位置。
所述弹性复位件为弹性卡簧,所述连接件为螺栓,所述弹性卡簧套接在螺栓上,所述弹性卡簧的一端与制冰腔体内壁相连接,另一端与隔板本体31相连接。
所述储冰盒1上沿与活动隔板3旋转中心之间的最小距离小于所述活动隔板3的长度。
其中所述风扇为冰箱中常用风扇,所述风扇具有高转速运行、低转速运行和微循环三种模式。
一种制冰腔体的温度控制方法,包括如下步骤:
1)在微处理器内设置制冰区预设温度W1和储冰区预设温度W2;
2)制冰区温度传感器采集制冰区的实际温度T1并传递至微处理器中;储冰区温度传感器采集储冰区的实际温度T2并传递至微处理器中;
3)微处理器通过比较分析储冰区预设温度W2和储冰区的实际温度T2以及制冰区预设温度W1和制冰区的实际温度T1的关系,控制风扇的运行模式;
其中,所述步骤3)包括如下情况:
3-1)在制冰功能开启时,在制冰过程中,
若W1>T1,W2>T2,风扇微循环,
若W1<T1,W2>T2,风扇低转速运行,
若W2<T2,风扇高转速运行;
3-2)在制冰功能开启时,在脱冰或者注水的过程中,风扇停止转动;
3-3)在制冰功能关闭时,
若W2>T2,风扇停止转动,
若W2<T2,风扇低转速运行。
所述步骤1)中,所述制冰区预设温度W1为-25℃~-10℃,所述储冰区预设温度W2为-10℃~0℃。
实施例4
一种冰箱,包括如实施例1-3任一所述的制冰组件,所述制冰组件安装在冰箱门体上或者是冰箱的储藏腔内。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、 “后”、“竖直”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。
在本说明书的描述中,参考术语“一个实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种制冰组件,包括制冰腔体、安装在制冰腔体内部上部的制冰机(1),以及位于制冰腔体内部下部的储冰盒(2),其特征在于,还包括:
    活动隔板(3),所述活动隔板(3)设置在制冰机(1)与储冰盒(2)之间的用于连通或分隔制冰机(1)和储冰盒(2),所述活动隔板(3)将制冰腔体分隔为制冰区和储冰区两部分;
    风扇(5),所述风扇(5)设置在制冰腔体上端的开口处;
    储冰区温度传感器(8),所述储冰区温度传感器(8)位于储冰盒下部并连接在储冰盒的内壁上,用于采集储冰区实际温度;
    微处理器,所述微处理器与储冰区温度传感器(8)相连接并接收储冰区温度传感器(8)采集的储冰区实际温度,所述微处理器与风扇(5)相连接并控制风扇(5)的运行模式。
  2. 根据权利要求1所述一种制冰组件,其特征在于,还包括制冰区温度传感器(7),所述制冰区温度传感器(7)位于制冰机(1)的上方并连接在制冰腔体内壁上,用于采集制冰区实际温度;所述微处理器与制冰区温度传感器(7)相连接并接收制冰区温度传感器(7)采集的制冰区实际温度。
  3. 根据权利要求1所述一种制冰组件,其特征在于,还包括固定隔板(4),所述固定隔板(4)的一端与制冰腔体的另一侧壁固定连接,所述活动隔板(3)的一端与制冰腔体的一侧壁相连接并以连接端为转动轴转动,所述活动隔板(3)非连接端与固定隔板(4)相接触或分离。
  4. 根据权利要求1所述一种制冰组件,其特征在于,所述活动隔板(3)上设有多个均匀分布的通风口(33)。
  5. 根据权利要求1-4任一所述一种制冰组件,其特征在于,所述活动隔板(3)包括隔板本体(31)和两个连接耳(32),所述两个连接耳(32)固定连接在隔板本体(31)一端的两侧;所述制冰腔体内壁上具有向内延伸的连接板,两个所述连接耳(32)分别与所述连接板通过连接件相连接,所述隔板本体(31)上设有多个均匀分布的通风口(33),所述隔板本体(31)的另一端与固定隔板(4)相接触。
  6. 根据权利要求5所述一种制冰组件,其特征在于,所述活动隔板(3)的重心和所述活动隔板(3)的旋转中心在同一竖直直线上。
  7. 根据权利要求5所述一种制冰组件,其特征在于,还包括连接在所述制冰腔体内壁和隔板本体(31)之间的弹性复位件,所述隔板本体(31)在外力作用下与固定隔板(4)相分离,在外力结束后在弹性复位件的作用下恢复至与固定隔板(4)相接触的位置。
  8. 一种冰箱,其特征在于,包括如权利要求1-7任一所述的制冰组件,所述制冰组件安装在冰箱门体上或者是冰箱的储藏腔内。
  9. 一种制冰腔体的温度控制方法,其特征在于,通过如权利要求1-7任一所述的制冰组件实现,包括如下步骤:
    1)在微处理器内设置储冰区预设温度W2;
    2)储冰区温度传感器采集储冰区的实际温度T2并传递至微处理器中;
    3)微处理器通过比较分析储冰区预设温度W2和储冰区的实际温度T2的关系,控制风扇的运行模式。
  10. 根据权利要求9所述的一种制冰腔体的温度控制方法,其特征在于,所述步骤3)包括如下情况:
    3-1)在制冰功能开启时,在制冰过程中,
    若W2>T2,风扇低转速运行,
    若W2<T2,风扇高转速运行;
    3-2)在制冰功能开启时,在脱冰或者注水的过程中,风扇停止转动;
    3-3)在制冰功能关闭时,
    若W2>T2,风扇停止转动,
    若W2<T2,风扇低转速运行。
  11. 根据权利要求9所述的一种制冰腔体的温度控制方法,其特征在于,所述制冰组件还包括制冰区温度传感器(7),所述制冰区温度传感器(7)位于制冰机(1)的上方并连接在制冰腔体内壁上,用于采集制冰区实际温度;所述微处理器与制冰区温度传感器(7)相连接并接收制冰区温度传感器(7)采集的制冰区实际温度;
    所述步骤1)中还包括在微处理器内设置制冰区预设温度W1;所述 步骤2)中还包括制冰区温度传感器采集制冰区的实际温度T1并传递至微处理器中;所述步骤3)包括如下情况:
    3-1)在制冰功能开启时,在制冰过程中,
    若W1>T1,W2>T2,风扇停止转动或微循环,
    若W1<T1,W2>T2,风扇低转速运行,
    若W2<T2,风扇高转速运行;
    3-2)在制冰功能开启时,在脱冰或者注水的过程中,风扇停止转动;
    3-3)在制冰功能关闭时,
    若W2>T2,风扇停止转动,
    若W2<T2,风扇低转速运行。
  12. 根据权利要求11所述的一种制冰腔体的温度控制方法,其特征在于,所述步骤1)中,所述制冰区预设温度W1为-25℃~-10℃,所述储冰区预设温度W2为-10℃~0℃。
PCT/CN2017/085752 2016-12-21 2017-05-24 一种制冰组件及制冰腔体的温度控制方法 WO2018113183A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611190271.3 2016-12-21
CN201611190271.3A CN106642859B (zh) 2016-12-21 2016-12-21 一种制冰组件及制冰腔体的温度控制方法

Publications (1)

Publication Number Publication Date
WO2018113183A1 true WO2018113183A1 (zh) 2018-06-28

Family

ID=58834486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085752 WO2018113183A1 (zh) 2016-12-21 2017-05-24 一种制冰组件及制冰腔体的温度控制方法

Country Status (2)

Country Link
CN (1) CN106642859B (zh)
WO (1) WO2018113183A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642859B (zh) * 2016-12-21 2020-08-18 合肥华凌股份有限公司 一种制冰组件及制冰腔体的温度控制方法
US12007151B2 (en) 2019-01-09 2024-06-11 Hefei Midea Refrigerator Co., Ltd. Refrigerator and method and device for controlling refrigeration thereof
US11920848B2 (en) * 2021-10-20 2024-03-05 Haier Us Appliance Solutions, Inc. Sensor assembly for detecting ice level in a water jacket cooled ice storage chamber

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260574A (ja) * 1990-03-09 1991-11-20 Toshiba Setsubi Kiki Kk アイスディスペンサ
JPH11304319A (ja) * 1998-04-17 1999-11-05 Hitachi Ltd 冷蔵庫の製氷装置
CN1831453A (zh) * 2005-03-11 2006-09-13 Lg电子株式会社 冰箱的储冰盒
CN202066283U (zh) * 2011-05-17 2011-12-07 合肥美的荣事达电冰箱有限公司 用于冰箱的制冰装置及其隔热组件、冰箱
CN102388280A (zh) * 2009-04-13 2012-03-21 Lg电子株式会社 冰箱
CN102414525A (zh) * 2009-04-23 2012-04-11 Lg电子株式会社 冰箱
CN106369903A (zh) * 2016-10-27 2017-02-01 合肥华凌股份有限公司 一种制冰组件及包含其的冰箱
CN106642859A (zh) * 2016-12-21 2017-05-10 合肥华凌股份有限公司 一种制冰组件及制冰腔体的温度控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062374B2 (ja) * 1997-07-10 2008-03-19 株式会社前川製作所 製氷器
KR101610953B1 (ko) * 2008-11-24 2016-04-08 엘지전자 주식회사 냉장고용 제빙장치 및 제빙장치의 제어방법
KR101741084B1 (ko) * 2010-01-04 2017-05-30 삼성전자주식회사 냉장고의 제어방법
CN102080918B (zh) * 2011-01-04 2012-08-22 合肥美的荣事达电冰箱有限公司 控制冰箱噪声的方法及装置
CN102226617B (zh) * 2011-05-31 2013-01-30 合肥美的荣事达电冰箱有限公司 一种冰箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260574A (ja) * 1990-03-09 1991-11-20 Toshiba Setsubi Kiki Kk アイスディスペンサ
JPH11304319A (ja) * 1998-04-17 1999-11-05 Hitachi Ltd 冷蔵庫の製氷装置
CN1831453A (zh) * 2005-03-11 2006-09-13 Lg电子株式会社 冰箱的储冰盒
CN102388280A (zh) * 2009-04-13 2012-03-21 Lg电子株式会社 冰箱
CN102414525A (zh) * 2009-04-23 2012-04-11 Lg电子株式会社 冰箱
CN202066283U (zh) * 2011-05-17 2011-12-07 合肥美的荣事达电冰箱有限公司 用于冰箱的制冰装置及其隔热组件、冰箱
CN106369903A (zh) * 2016-10-27 2017-02-01 合肥华凌股份有限公司 一种制冰组件及包含其的冰箱
CN106642859A (zh) * 2016-12-21 2017-05-10 合肥华凌股份有限公司 一种制冰组件及制冰腔体的温度控制方法

Also Published As

Publication number Publication date
CN106642859B (zh) 2020-08-18
CN106642859A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
KR101913423B1 (ko) 냉장고
US9958193B2 (en) Refrigerator
WO2018113183A1 (zh) 一种制冰组件及制冰腔体的温度控制方法
CN101929774B (zh) 制冰单元和具有所述制冰单元的制冷机
CN105444494A (zh) 冰箱
WO2019205690A1 (zh) 制冰机及冰箱
US20160370052A1 (en) Refrigerator including ice maker and method for collecting defrost water of the same
CN102226617B (zh) 一种冰箱
EP3232140A2 (en) Refrigerator
CN102226620B (zh) 一种冰箱
CN106369903B (zh) 一种制冰组件及包含其的冰箱
EP2320175A1 (en) Refrigerator with ice maker
CN102213527A (zh) 冰箱
CN102564031B (zh) 一种冰箱
WO2018145369A1 (zh) 一种制冰机、冰箱
WO2018059521A1 (zh) 一种风道组件及具有其的冰箱
CN102226618B (zh) 一种冰箱
CN102213521B (zh) 冰箱
CN102213522B (zh) 冰箱
CN102226619B (zh) 一种冰箱
WO2023029481A1 (zh) 制冷制热储物装置
CN109974366B (zh) 风冷冰箱
WO2013181811A1 (zh) 制冷系统及具有该制冷系统的冰箱
CN102213524B (zh) 冰箱
CN213931659U (zh) 一种冰箱中蒸发器的安全除霜结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884522

Country of ref document: EP

Kind code of ref document: A1