WO2018113163A1 - 一种清洁能源充放电电路及其控制方法 - Google Patents

一种清洁能源充放电电路及其控制方法 Download PDF

Info

Publication number
WO2018113163A1
WO2018113163A1 PCT/CN2017/082967 CN2017082967W WO2018113163A1 WO 2018113163 A1 WO2018113163 A1 WO 2018113163A1 CN 2017082967 W CN2017082967 W CN 2017082967W WO 2018113163 A1 WO2018113163 A1 WO 2018113163A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
energy
discharge
charging
conversion module
Prior art date
Application number
PCT/CN2017/082967
Other languages
English (en)
French (fr)
Inventor
吴浩
李剑
Original Assignee
吴浩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴浩 filed Critical 吴浩
Publication of WO2018113163A1 publication Critical patent/WO2018113163A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the field of electrical technologies, and in particular, to a clean energy charging and discharging circuit and a control method thereof.
  • Wind energy and solar energy are a kind of inexhaustible clean energy that will be inexhaustible. It will be the most ideal green new energy in the future.
  • the effective way to use it is to use photovoltaic power generation technology to convert solar energy into electricity.
  • Wind power is used to convert wind energy into electrical energy; then the stored electrical energy module is used to store the converted electrical energy, which is a charging process; when electrical energy discharge is required, the stored electrical energy module is used to convert the stored electrical energy into The energy required, such as electrical energy, is converted to light energy (for lighting use), which is the discharge process.
  • the traditional charging and discharging process simply uses the energy storage device to perform charge and discharge conversion. When the system has energy, it is charged, and when charging is completed, the charging is stopped. When the system needs to discharge, it is discharged, until the energy storage device When the energy is completely released, the discharge is stopped; thus, the next cycle of charge and discharge cycles is entered.
  • FIG. 1 is a structural diagram of a conventional charging and discharging system.
  • the modules are independent and do not communicate with each other.
  • Each module can realize simple charge and discharge control only through simple matching.
  • Features are simple, easy to maintain, and more acceptable to customers.
  • the discharge energy cannot know the amount of stored energy of the energy storage device, and the discharge output energy cannot be adjusted, which is defined as the discharge coefficient;
  • the inability to know the amount of charging energy affects the storage capacity of the energy storage device as a function of daytime and other environmental variables, so that the actual size of the stored energy at this moment cannot be known, defined as the charging coefficient; therefore, the system cannot The charging coefficient responds, so there is enough margin for storing the energy module to ensure the stable operation of the whole system; therefore, the traditional charging and discharging control system has a certain unstable working range, which cannot guarantee the safety of the system, and is large. Module margins are easy to waste resources and environmental pollution.
  • An object of the present invention is to provide a clean energy charging and discharging circuit and a control method thereof, in charge and discharge control
  • the intelligent charging and discharging coordination control module by introducing the intelligent charging and discharging coordination control module, the sampling control of the charging current is realized, and then the battery energy can be evaluated and budgeted, and then a discharge coefficient is output to achieve the output lumen control of the lighting control system, thereby achieving storage.
  • the purpose of an effective balance of storage and release of the power module is thus to achieve the goal of continuous illumination at night.
  • a clean energy charging and discharging circuit includes a solar energy conversion module and a wind energy conversion module, wherein the solar energy conversion module and the wind energy conversion module are respectively connected to a storage power module, the solar energy conversion module and the storage power mode a charging current sampling module is disposed between the group and the wind energy conversion module and the storage power module, and the storage power module and the charging current sampling module are respectively connected to the intelligent charging and discharging coordination control module;
  • the intelligent charging and discharging coordination control module is connected to the lighting control system, and the stored power module is connected to the lighting control system, and the external circuit is connected to the intelligent charging and discharging coordination control module.
  • the solar energy conversion module and the wind energy conversion module convert solar energy and wind energy into electric energy
  • the storage energy module converts The electric energy is stored
  • the intelligent charging and discharging coordination control module samples the charging current; and the segmentation management of the voltage value of the stored energy module is performed, and each interval segment is performed.
  • the current charging current is sampled, and the domain integration is performed, and then the integral value of the voltage value interval segment is stored and recorded as VCRG[x] ; when the discharge is performed, the discharge current is equally sampled through each interval segment, and ⁇ is performed.
  • the system can integrate and sum all the ⁇ segments by the parameter VDICp re [x], and estimate an area value ⁇ VD/ re ], so that the storage device can be predicted.
  • the charge and discharge control system by introducing a smart charge and discharge coordination control module, the sampling control of the charging current is realized, and then the battery energy can be evaluated and budgeted, and then a discharge coefficient is output to reach the output of the lighting control system. Lumen control, so as to achieve an effective balance of storage and release of the stored power module, thus achieving the goal of continuous illumination at night.
  • 1 is a conventional charging and discharging system architecture diagram
  • FIG. 2 is a schematic diagram of a clean energy charging and discharging circuit structure of the present invention
  • FIG. 3 is a schematic diagram of internal dynamic variable control of the smart charge and discharge coordinated control module chip of the present invention.
  • a clean energy charging and discharging circuit includes a solar energy conversion module and a wind energy conversion module, and the solar energy conversion module and the wind energy conversion module are respectively connected to the storage power module.
  • a charging current sampling module is disposed between the solar energy conversion module and the storage power module, and between the wind energy conversion module and the storage power module (the solar energy conversion module and the wind energy conversion module are respectively used for collecting solar energy and wind energy, and the charging current sampling module respectively Collecting the solar energy conversion module to the charging current of the storage power module, the wind energy conversion module to the charging current of the storage power module), the storage power module and the charging current sampling module are respectively connected to the intelligent charging and discharging coordination control module; the intelligent charging and discharging coordination control The module is connected to the lighting control system, the storage power module is connected to the lighting control system, and the external circuit (other input control) is connected to the intelligent charging and discharging coordination control module.
  • the invention introduces a smart charging and discharging coordinated control module on the structure of the traditional charging and discharging control system, and the module realizes the charging current (the charging current of the solar energy conversion module to the storage power module, the wind energy conversion module to the storage energy mode)
  • the charging current of the group is sampled, thereby realizing the evaluation of the power consumption of the stored power module, and taking this as a reference (storing the power module at different power levels) and outputting a discharge coefficient, thereby realizing that the lighting control system can work for a longer period of time. (If the power of the storage power module is low, the control discharge coefficient is reduced).
  • the difficulty of the present invention is how to accurately estimate the power of the stored power module obtained by sampling the charging current, thereby outputting a precise discharge coefficient, effectively controlling the current of the output lighting control system, and achieving the storage of the power module. An effective balance of storage and release.
  • the present invention relates to a clean energy charging and discharging control method.
  • the solar energy conversion module and the wind energy conversion module convert solar energy and wind energy into electric energy, and the storage energy module stores the converted electric energy, and the energy is stored.
  • the intelligent charge and discharge coordination control module will sample the charging current; the same through the segmentation management of the stored energy module voltage value, the following 64 segment segment management as an example, the angle X as a segment of each segment.
  • the integral value of the interval of the voltage value is stored and recorded as VCRG[x] ; when discharging, the same is passed through each interval segment.
  • the output lumen value can be controlled, thereby reducing the discharge current value of the energy storage system.
  • the energy storage system can be kept kept bright all night. , and will not achieve adverse effects such as lighting during the night due to insufficient energy charging.
  • the energy storage system power can be accurately evaluated, thereby outputting a precise discharge coefficient, effectively controlling the illumination of the output lighting control system, and achieving an effective storage and release of the stored power module.
  • the same can effectively reduce the margin of the storage energy module, reduce the waste of system resources; and when the storage energy module is abnormal or the aging is serious, the alarm can be replaced, and the safety of night illumination is achieved. More intelligent coordination control.

Abstract

一种清洁能源充放电电路及其控制方法,包括太阳能转换模块和风能转换模块,太阳能转换模块和风能转换模块分别连接至储存电能模组,太阳能转换模块与储存电能模组之间、以及风能转换模块与储存电能模组之间设有充电电流取样模块,储存电能模组和充电电流取样模块分别连接至智能充放电协调管控模块;智能充放电协调管控模块连接照明控制系统,储存电能模组连接照明控制系统,外部电路连接智能充放电协调管控模块。在充放电控制系统中,通过引入智能充放电协调管控模块,实现了对充电电流的取样控制,进而可以进行对电池能量进行评估预算,进而输出一个放电系数,达到照明控制系统的输出流明控制。

Description

一种清洁能源充放电电路及其控制方法 技术领域
[0001] 本发明属于电学技术领域, 具体涉及一种清洁能源充放电电路及其控制方法。
背景技术
[0002] 风能、 太阳能是一种真正取之不尽用之不竭的清洁能源, 将是未来最理想的绿 色新能源, 目前其利用的有效途径便是利用光伏发电技术将太阳能转化为电能 , 利用风力发电机将风能转化为电能; 之后利用可储存电能模组将转化的电能 存储起来, 此过程为充电过程; 当需要使用电能放电吋, 再利用可储存电能模 组将储存的电能转化为需要的能量, 例如电能转换为光能 (照明使用), 此过程为 放电过程。
[0003] 传统的充放电过程, 只是简单的利用储能设备进行充放电转换, 当系统有能量 吋则充电, 充电完成则停止充电; 当系统需要放电吋, 则处于放电状态, 直至 储能设备能量完全释放完, 则停止放电; 如此则进入下一轮充放电周期循环。
[0004] 图 1所示为传统的充放电系统架构图。 传统的充放电控制系统, 其模块之间各 自独立、 互不通信, 各个模块仅是通过简单的搭配即可实现简单的充放电控制 。 特点为系统简单, 便于维护, 对于客户更容易接受。
[0005] 传统的充放电控制系统模块之间由于互不通信, 因此在放电吋无法知晓能量存 储装置的所存储能量的多少, 而无法调节放电输出能量的大小, 定义为放电系 数; 在充电吋无法知晓充电能量的多少会对能量存储装置的存储能力随吋间及 其他环境变量的因素的影响, 从而无法知晓此吋此刻存储能量的实际大小, 定 义为充电系数; 因此系统无法对放电系数和充电系数做出响应, 因而需有足够 的存储能量模块的裕量来保证整个系统的稳定工作; 因此传统的充放电控制系 统具有一定的不稳定工作区间, 对系统安全无法保障, 且较大的模块裕量容易 造成了资源的浪费及环境的污染。
技术问题
[0006] 本发明的目的在于提供一种清洁能源充放电电路及其控制方法, 在充放电控制 系统中, 通过引入智能充放电协调管控模块, 实现了对充电电流的取样控制, 进而可以进行对电池能量进行评估预算, 进而输出一个放电系数, 达到照明控 制系统的输出流明控制, 从而达到对储存电能模组的一个存储与释放的有效平 衡的目的因此即可实现夜间持续照明的目标。
问题的解决方案
技术解决方案
[0007] 一种清洁能源充放电电路, 包括太阳能转换模块和风能转换模块, 所述太阳能 转换模块和所述风能转换模块分别连接至储存电能模组, 所述太阳能转换模块 与所述储存电能模组之间、 以及所述风能转换模块与所述储存电能模组之间设 有充电电流取样模块, 所述储存电能模组和所述充电电流取样模块分别连接至 智能充放电协调管控模块; 所述智能充放电协调管控模块连接照明控制系统, 所述储存电能模组连接所述照明控制系统, 外部电路连接所述智能充放电协调 管控模块。
[0008] 一种根据上述清洁能源充放电电路的控制方法, 系统幵始工作后, 所述太阳能 能转换模块、 所述风能转换模块把太阳能、 风能转换为电能, 所述储存能量模 组把转换的电能储存起来, 能量在储存吋, 所述智能充放电协调管控模块便会 对充电电流进行取样; 同吋对所述储存能量模组的电压值进行分段管理, 通过 对每一个区间段进行电流充电电流取样, 并进行吋域积分, 然后对电压值区间 段的积分值进行存储并记录为 VCRG[x] ; 当放电吋, 同样的通过每一个区间段进 行放电电流进行取样, 并进行吋域积分, 然后对电压值区间段的积分值进行存 储并记录为 VDIC[x]; 通过弓 I入一个充放电系数 t[x], 判断 VDIC [ X]≥ VCRG[ x]* t [ x] (t[x]值小于 1) 是否成立; 当成立吋, 系统为正常, 当不成立吋, 则所述储 存电能模组异常或老化严重, 并报警提示更换, 同吋以 VD/qpre ] = va?G
]* t [ C]作为系统预判能量储存装置可维持输出的控制变化值。
[0009] 进一步地, 当放电吋, 系统可通过参数 VDICpre[x], 对所有吋间段进行整 合求和, , 预估得到一个面积值∑ VD/ re ] , 从而可以预判存储装置的可释放 能量值; 当夜间放电吋, 可通过值∑ VD/Q?re ]得出一个放电系数, 即 g = ) *∑ VDICpre[ x] , 其中 q为放电系数, y为常数变量。 发明的有益效果
有益效果
[0010] 在充放电控制系统中, 通过引入智能充放电协调管控模块, 实现了对充电电流 的取样控制, 进而可以进行对电池能量进行评估预算, 进而输出一个放电系数 , 达到照明控制系统的输出流明控制, 从而达到对储存电能模组的一个存储与 释放的有效平衡的目的因此即可实现夜间持续照明的目标。
对附图的简要说明
附图说明
[0011] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例中所需要使用 的附图作简单地介绍, 显而易见地, 下面描述中的附图只是本发明的一些实施 例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根 据这些附图获得其他的附图。
[0012] 图 1是传统的充放电系统架构图;
[0013] 图 2是本发明一种清洁能源充放电电路架构图;
[0014] 图 3是本发明的智能充放电协调管控模块芯片内部动态变量控制示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0015] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例
, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例只用以 解释本发明, 并不用于限定本发明。
[0016] 需要说明的是, 当元件被称为 "固定于"或"设置于"另一个元件, 它可以直接在 另一个元件上或者可能同吋存在居中元件。 当一个元件被称为是 "连接于"另一个 元件, 它可以是直接连接到另一个元件或者可能同吋存在居中元件。
[0017] 还需要说明的是, 本发明实施例中的左、 右、 上、 下等方位用语, 仅是互为相 对概念或是以产品的正常使用状态为参考的, 而不应该认为是具有限制性的。
[0018] 本发明实施例一, 如图 2所示, 一种清洁能源充放电电路, 包括太阳能转换模 块和风能转换模块, 太阳能转换模块和风能转换模块分别连接至储存电能模组 , 太阳能转换模块与储存电能模组之间、 以及风能转换模块与储存电能模组之 间设有充电电流取样模块 (太阳能转换模块和风能转换模块分别用于采集太阳能 和风能, 充电电流取样模块分别采集太阳能转换模块给储存电能模组的充电电 流、 风能转换模块给储存电能模组的充电电流), 储存电能模组和充电电流取样 模块分别连接至智能充放电协调管控模块; 智能充放电协调管控模块连接照明 控制系统, 储存电能模组连接照明控制系统, 外部电路 (其他输入控制)连接智能 充放电协调管控模块。
[0019] 本发明在传统充放电控制系统架构上, 引入了智能充放电协调管控模块, 该模 块通过实现对充电电流 (太阳能转换模块给储存电能模组的充电电流、 风能转换 模块给储存电能模组的充电电流)取样, 进而实现对储存电能模组的电量评估, 以此为参考 (储存电能模组在不同电量吋)进而输出一个放电系数, 从而实现照明 控制系统可以工作的吋间更长 (如当储存电能模组的电量低吋, 控制放电系数降 低)。
[0020] 本发明的难点在于如何实现对充电电流取样得到的储存电能模组电量进行精确 评估, 从而输出一个精准的放电系数, 有效的控制输出照明控制系统的电流, 达到对储存电能模组的一个存储与释放的有效平衡的目的。
[0021] 本发明一种清洁能源充电放电控制方法, 系统幵始工作后, 太阳能能转换模块 、 风能转换模块把太阳能、 风能转换为电能, 储存能量模组把转换的电能储存 起来, 能量在储存吋, 智能充放电协调管控模块便会对充电电流进行取样; 同 吋通过对储存能量模组的电压值进行分段管理, 以下以 64段分段管理为例, 角 标 X作为每一段的区分, 通过对每一个区间段进行电流充电电流取样, 并进行吋 域积分, 然后对此电压值区间段的积分值进行存储并记录为 VCRG[x] ; 当放电吋 , 同样的通过每一个区间段进行放电电流进行取样, 并进行吋域积分, 然后对 此电压值区间段的积分值进行存储并记录为 VDIC[x] ; 通过引入一个充放电系数 t [x], 可判断 D/C ]≥ VC/?G ]* i (t[x]值小于 1)是否成立; 当成立吋, 系统为 正常, 当不成立吋, 则储存电能模组异常或老化严重, 并报警提示更换; 同吋 以 VDiCpre[ x] = VCRG [ x]* t [ c]作为系统预判能量储存装置可维持输出的控制 变化值。 [0022] 如图 3所示, 通过充电吋域积分得到 VCRG[x]和放电吋域积分得到 VDIC[x], 以此可以判断存储系统是否正常工作。
[0023] 另外当放电吋, 系统可通过参数 VDICpre[x], 对所有吋间段进行整合求和∑
VD/ re ]预估得到一个面积值, 从而可以预判存储装置的可释放能量值; 当 夜间放电吋, 可通过此求和值得出一个放电系数, q=y*∑ VZ)/Q?re ], 其中 q 为放电系数, y为常数变量。
[0024] 通过调整放电系数 q值大小可控制输出流明值, 进而降低了能量存储系统的放 电电流值, 通过设置一个合适的 y常数变量, 可以使得能量存储系统, 可保持整 个夜间保持常亮状态, 而不会因为能量充电不足导致夜间期间无法实现照明等 不良影响。
[0025] 通过应用本发明的控制系统, 可以精确评估能量存储系统电量, 从而输出一个 精准的放电系数, 有效的控制输出照明控制系统的照明, 达到对储存电能模组 的一个存储与释放的有效平衡的目的, 同吋可以有效减少储存能量模块的裕量 , 减少了系统资源的浪费; 且当储存能量模块有异常或老化较严重吋, 可报警 提示进行更换, 对夜间照明的安全性达到了更智能化的协调控制。
工业实用性
[0026] 以上所述仅为本发明的较佳实施例, 凡依本发明权利要求范围所做的均等变化 与修饰, 皆应属本发明权利要求的涵盖范围。

Claims

权利要求书
[权利要求 1] 一种清洁能源充放电电路, 其特征在于, 包括太阳能转换模块和风能 转换模块, 所述太阳能转换模块和所述风能转换模块分别连接至储存 电能模组, 所述太阳能转换模块与所述储存电能模组之间、 以及所述 风能转换模块与所述储存电能模组之间设有充电电流取样模块, 所述 储存电能模组和所述充电电流取样模块分别连接至智能充放电协调管 控模块; 所述智能充放电协调管控模块连接照明控制系统, 所述储存 电能模组连接所述照明控制系统, 外部电路连接所述智能充放电协调 管控模块。
[权利要求 2] —种根据权利要求 1所述清洁能源充放电电路的控制方法, 其特征在 于, 系统幵始工作后, 所述太阳能能转换模块、 所述风能转换模块把 太阳能、 风能转换为电能, 所述储存能量模组把转换的电能储存起来 , 能量在储存吋, 所述智能充放电协调管控模块便会对充电电流进行 取样; 同吋对所述储存能量模组的电压值进行分段管理, 通过对每一 个区间段进行电流充电电流取样, 并进行吋域积分, 然后对电压值区 间段的积分值进行存储并记录为 VCRG[x] ; 当放电吋, 同样的通过每 一个区间段进行放电电流进行取样, 并进行吋域积分, 然后对电压值 区间段的积分值进行存储并记录为 VDIC[x] ; 通过引入一个充放电系 数 t[x], 判断 VDIC [ X]≥ VCRG [ X]* t [ x] (t[x]值小于 1)是否成立; 当 成立吋, 系统为正常, 当不成立吋, 则所述储存电能模组异常或老化 严重, 并报警提示更换, 同吋以 VDICprei x] = VCRG[ x] * t [ ;c]作为 系统预判能量储存装置可维持输出的控制变化值。
[权利要求 3] 根据权利要求 2所述清洁能源充放电电路的控制方法, 其特征在于, 当放电吋, 系统可通过参数 VDICpre[x], 对所有吋间段进行整合求和 , 预估得到一个面积值∑ VD/Cpre ] , 从而可以预判存储装置的可释 放能量值; 当夜间放电吋, 可通过值∑ VD/Q?re ]得出一个放电系数 , 即 g = y *∑ ©/Q?re ], 其中 q为放电系数, y为常数变量。
PCT/CN2017/082967 2016-12-22 2017-05-04 一种清洁能源充放电电路及其控制方法 WO2018113163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611197190.6 2016-12-22
CN201611197190.6A CN106685062B (zh) 2016-12-22 2016-12-22 一种清洁能源充放电电路及其控制方法

Publications (1)

Publication Number Publication Date
WO2018113163A1 true WO2018113163A1 (zh) 2018-06-28

Family

ID=58870080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082967 WO2018113163A1 (zh) 2016-12-22 2017-05-04 一种清洁能源充放电电路及其控制方法

Country Status (2)

Country Link
CN (1) CN106685062B (zh)
WO (1) WO2018113163A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078486A (zh) * 2007-06-14 2007-11-28 张强胜 风光互补路灯的智能化控制方法
CN101459997A (zh) * 2008-12-29 2009-06-17 安徽风日光电科技有限责任公司 具有自适应调节能力的风光互补路灯智能控制器
CN101571256A (zh) * 2008-12-29 2009-11-04 安徽风日光电科技有限责任公司 多种能源综合利用的智能路灯
CN102437593A (zh) * 2010-09-29 2012-05-02 刘艺洋 一种小型风光互补独立供电系统
WO2012128413A1 (ko) * 2011-03-21 2012-09-27 (주)유양디앤유 스마트 led 조명과 하이브리드 발전 시스템 및 그 시스템의 전력 제어 방법, 스마트 led 조명과 하이브리드 발전 장치 및 그 장치의 구동 방법
CN103633726A (zh) * 2013-12-02 2014-03-12 河海大学常州校区 可再生能源综合路灯供电系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790407B (zh) * 2011-05-16 2015-08-19 上海汽车集团股份有限公司 双蓄电池汽车供电系统中的充放电控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078486A (zh) * 2007-06-14 2007-11-28 张强胜 风光互补路灯的智能化控制方法
CN101459997A (zh) * 2008-12-29 2009-06-17 安徽风日光电科技有限责任公司 具有自适应调节能力的风光互补路灯智能控制器
CN101571256A (zh) * 2008-12-29 2009-11-04 安徽风日光电科技有限责任公司 多种能源综合利用的智能路灯
CN102437593A (zh) * 2010-09-29 2012-05-02 刘艺洋 一种小型风光互补独立供电系统
WO2012128413A1 (ko) * 2011-03-21 2012-09-27 (주)유양디앤유 스마트 led 조명과 하이브리드 발전 시스템 및 그 시스템의 전력 제어 방법, 스마트 led 조명과 하이브리드 발전 장치 및 그 장치의 구동 방법
CN103633726A (zh) * 2013-12-02 2014-03-12 河海大学常州校区 可再生能源综合路灯供电系统

Also Published As

Publication number Publication date
CN106685062B (zh) 2019-06-28
CN106685062A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
US10749352B2 (en) Hybrid charging/discharging solar energy storage apparatus
WO2011032500A1 (zh) 对多组蓄电池充电方法和其控制系统
CN105680771B (zh) 一种风光互补发电系统及控制方法
CN109510319B (zh) 一种由超级电容、锂电池和铅酸电池组成的储能电池系统
CN100401575C (zh) 用于不间断电源的电池充电管理装置及充电方法
CN202663151U (zh) 光伏系统中铅酸蓄电池快速充电系统
CN104600731B (zh) 一种用于光储系统削峰填谷的储能系统控制方法
US20120256581A1 (en) Method for solar power energy management with intelligent selection of operating modes
CN102788959B (zh) 独立光伏发电系统的蓄电池充放电状态检测方法
US20190214825A1 (en) Micro-energy collection method and device, and micro-energy supply device
CN102170168A (zh) 一种风光柴发电系统的控制方法
CN114156945A (zh) 一种光伏微电网孤岛模式发电装置及其控制方法
CN103413980A (zh) 智能混合电池管理系统
CN204089334U (zh) 离网型微电网自动投切控制电路
WO2018113163A1 (zh) 一种清洁能源充放电电路及其控制方法
CN102412615A (zh) 新型风光互补发电控制器
CN205657469U (zh) 一种可实现快速充电的独立光伏智能控制装置
CN109842198A (zh) 一种轨道板参数在线监测系统
CN107069924A (zh) 一种共用铝电极的太阳能电池‑超级电容器件的充放电电路及其控制方法
CN107979324A (zh) 太阳能充电系统及其控制方法
CN114844114A (zh) 一种基于分布式光储的配电网系统及远程安全运维方法
CN209627044U (zh) 一种轨道板参数在线监测系统
CN104158216B (zh) 一种太阳能和风能综合发电系统
CN204761106U (zh) 一种太阳能汽车电池控制系统
CN203840042U (zh) 一种电动汽车铅酸蓄电池充电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883851

Country of ref document: EP

Kind code of ref document: A1