WO2018113052A1 - 一种智能化分布式天线的实现方法 - Google Patents

一种智能化分布式天线的实现方法 Download PDF

Info

Publication number
WO2018113052A1
WO2018113052A1 PCT/CN2017/070815 CN2017070815W WO2018113052A1 WO 2018113052 A1 WO2018113052 A1 WO 2018113052A1 CN 2017070815 W CN2017070815 W CN 2017070815W WO 2018113052 A1 WO2018113052 A1 WO 2018113052A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
receiving
signal
transmitting
isolation
Prior art date
Application number
PCT/CN2017/070815
Other languages
English (en)
French (fr)
Inventor
徐锡强
陈青松
吴志坚
李鑫
褚如龙
Original Assignee
三维通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三维通信股份有限公司 filed Critical 三维通信股份有限公司
Publication of WO2018113052A1 publication Critical patent/WO2018113052A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the invention belongs to the field of mobile communication network optimization, and relates to an implementation method of an intelligent distributed antenna.
  • the traditional indoor distributed antenna system (DAS: Distributed Antenna System) has high cost in multi-frequency filtering and multi-frequency combining.
  • DAS Distributed Antenna System
  • the multi-frequency transmission signal can be transmitted and covered via one transmitting antenna, and the multi-frequency receiving signal is received and covered via another receiving antenna, thereby eliminating expensive multi-frequency filtering and multi-frequency combining.
  • the cost of the road; however, the implementation of the isolation of the transmitting and receiving antennas in the distributed antenna is the biggest difficulty encountered in current engineering installations.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide an implementation method of an intelligent distributed antenna.
  • the transceiver isolation requirement between the transmitting and receiving antennas is ensured.
  • the transmitting channel and the receiving channel respectively transmit and receive signals through the transmitting antenna and the receiving antenna in the distributed antenna;
  • the FPGA performs functions other than the normal transmitting signal and the digital processing function of the receiving signal.
  • the test signal is used to test the isolation between the distributed antennas, and the tilt direction of the transmitting antenna and the receiving antenna of the distributed antenna is intelligently adjusted in real time according to the test results and engineering requirements.
  • the local oscillator is set to the local frequency of the transmitting channel during the engineering installation process, and is used as a distributed antenna isolation detecting channel;
  • the FPGA generates a test signal, and the transmitting antenna end generates an amplified fixed power test signal through the transmitting channel;
  • the FPGA compares the isolation between the transmitting antenna and the receiving antenna with the isolation requirement in the actual use scenario, that is, whether the isolation is greater than a predefined threshold
  • step 5 If the isolation is less than or equal to the predefined threshold, adjust the angle of the dip direction of the transmitting antenna and the receiving antenna, and return to step 2) to perform the calculation again until the isolation is greater than the predefined threshold, that is, finally distributed.
  • the isolation between the antennas is required while ensuring the actual signal coverage requirements.
  • the transmitting antenna is a directional antenna, and is responsible for the amplification and directional coverage function of the transmitted signal;
  • the receiving antenna is a directional antenna, which is responsible for the amplification and directional coverage of the received signal, and serves as an isolation between the transmitting antenna and the receiving antenna. Detection channel.
  • the transmitting channel converts the FPGA digital baseband signal into an analog intermediate frequency signal via a DAC, After being filtered by the IF filter, it is converted into a radio frequency signal after passing through the mixer, and finally amplified by the PA signal; the RF portion of the transmitting channel is omitted from the filter/duplexer and directly transmitted through the transmitting antenna.
  • the signal received by the receiving antenna is amplified by the LNA, converted into an intermediate frequency signal after passing through the attenuator and the mixer, and the intermediate frequency receiving signal passes through the IF filter and then passes through the analog-to-digital converter ADC in the FPGA.
  • the digital processing is performed internally; the receiving local oscillator of the receiving channel is set to the local frequency of the transmitting channel during the engineering installation process, and is used as a distributed detection antenna of the distributed antenna.
  • the beneficial effects of the present invention are: using FPGA to calculate and analyze the interference degree of the transmitting antenna signal in the distributed antenna to the receiving antenna, and intelligently adjust the inclination direction of the transmitting antenna and the receiving antenna in the distributed antenna to meet the coverage. Under the premise of the scope, the isolation between distributed antennas is guaranteed to meet the requirements of use, thus avoiding complicated engineering measurement and installation process.
  • Figure 1 is a system block diagram of an implementation of an intelligent distributed antenna
  • Figure 2 is a flow chart of intelligent adjustment of transceiver antenna isolation.
  • the transmitting channel and the receiving channel respectively transmit and receive signals through the transmitting antenna and the receiving antenna in the distributed antenna, as shown in FIG. 1;
  • the FPGA calculates and analyzes the interference level of the transmitting antenna signal in the distributed antenna to the receiving antenna, and uses the test signal to isolate the distributed antenna.
  • Test and according to the test results and engineering requirements, the tilt direction of the transmitting antenna and the receiving antenna of the distributed antenna can be intelligently adjusted in real time (as shown by 1 ⁇ 2 ⁇ 3 in Figure 1), under the premise of satisfying the coverage. Ensure that the isolation between distributed antennas meets the requirements for use, thus avoiding complicated engineering measurement and installation processes, as shown in Figure 2; the steps include the following steps:
  • the local oscillator is set to the local frequency of the transmitting channel during the engineering installation process, and is used as a distributed antenna isolation detecting channel;
  • the FPGA generates a test signal, and the transmitting antenna end generates an amplified fixed power test signal through the transmitting channel;
  • the FPGA compares the isolation between the transmitting antenna and the receiving antenna with the isolation requirement in the actual use scenario, that is, whether the isolation is greater than a predefined threshold
  • step 5 If the isolation is less than or equal to the predefined threshold, adjust the angle of the dip direction of the transmitting antenna and the receiving antenna, and return to step 2) to perform the calculation again until the isolation is greater than the predefined threshold, that is, the distribution is finally reached.
  • the isolation between the antennas meets the requirements while ensuring the actual signal coverage requirements.
  • the transmitting antenna is a directional antenna, and is responsible for the amplification and directional coverage function of the transmitted signal;
  • the receiving antenna is a directional antenna, and is responsible for the amplification and directional coverage function of the received signal, and serves as an isolation detecting channel between the transmitting antenna and the receiving antenna.
  • the transmitting channel converts the FPGA digital baseband signal into an analog intermediate frequency signal via a DAC, is filtered by the intermediate frequency filter, is converted into a radio frequency signal after passing through the mixer, and finally amplified by the PA signal; the RF portion of the transmitting channel is omitted from the filter/ The duplexer transmits directly via the transmit antenna.
  • the signal received by the receiving antenna is amplified by the LNA, converted into an intermediate frequency signal after passing through the attenuator and the mixer, and the intermediate frequency receiving signal is subjected to digital processing in the FPGA through the analog-to-digital converter ADC after passing through the intermediate frequency filter.
  • the receiving local oscillator is set to the transmitting channel local oscillator frequency during the engineering installation process, and is used as a distributed antenna intelligent detection channel.
  • the FPGA uses the test signal to test the isolation between the distributed antennas during the engineering installation, and transmits the antenna of the distributed antenna according to the test results and engineering requirements. Real-time intelligent adjustment with the tilt angle of the receiving antenna to ensure the final project use requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明提供了一种智能化分布式天线的实现方法,发射通道和接收通道分别通过分布式天线中的发射天线和接收天线,分别进行信号发射和接收;FPGA除了正常的发射信号和接收信号数字化处理功能之外,在工程安装的时候,采用测试信号对分布式天线之间的隔离度进行测试,并根据测试结果和工程要求对分布式天线的发射天线和接收天线的倾角方向进行实时的智能化调整。本发明的有益效果为:采用FPGA通过计算和分析分布式天线中发射天线信号对接收天线的干扰程度,对分布式天线中的发射天线和接收天线的倾角方向进行智能化实时调整,在满足覆盖范围的前提下保证分布式天线之间的隔离度达到使用的要求,从而避免繁杂的工程测量和安装过程。

Description

一种智能化分布式天线的实现方法 技术领域
本发明属于移动通信网络优化领域,涉及一种智能化分布式天线的实现方法。
背景技术
随着移动互联网迅猛发展,室内信号覆盖未来将呈现2G、3G与4G多运营商、多系统、多制式、多频段局面将长期并存的局面。目前传统的室内分布式天线系统(DAS:Distributed Antenna System),在多频滤波、多频合路方面成本居高不下。采用分布式天线方案后可以将多频发射信号经由一根发射天线进行发射和覆盖,多频接收信号则经由另一根接收天线进行接收和覆盖,省去了昂贵的多频滤波、多频合路器成本;不过分布式天线中发射天线和接收天线的隔离度的实现方式是目前工程安装的遇到的最大困难。
发明内容
本发明的目的在于克服现有技术存在的不足,而提供一种智能化分布式天线的实现方法,在安装发射天线和接收天线过程中,保证收发天线之间的收发隔离度要求。
本发明的目的是通过如下技术方案来完成的。这种智能化分布式天线的实现方法,发射通道和接收通道分别通过分布式天线中的发射天线和接收天线,分别进行信号发射和接收;FPGA除了正常的发射信号和接收信号数字化处理功能之外,在工程安装的时候,采用测试信号对分布式天线之间的隔离度进行测试,并根据测试结果和工程要求对分布式天线的发射天线和接收天线的倾角方向进行实时的智能化调整,具体包括如下步骤:
1)、接收通道的接收本振在工程安装过程中设置成发射通道本振频率,作为分布式天线隔离度检测通道使用;
2)、FPGA产生测试信号,经过发射通道使得发射天线端产生放大的固定功率测试信号;
3)、通过接收天线和接收通道接收并检测测试信号的功率大小,从而计算出分布式天线中发射天线和接收天线之间的隔离度;
4)、FPGA根据发射天线和接收天线之间的隔离度和实际使用场景中隔离度要求进行比较,即,隔离度是否大于预定义门限;
5)、如果隔离度小于等于预定义门限,则对发射天线和接收天线的倾角方向角度进行调整,并返回步骤2)进行再次计算,直至满足隔离度大于预定义门限为止,即最终达到分布式天线之间隔离度要求,同时保证实际信号覆盖的要求。
更进一步的,所述的发射天线为定向天线,负责发射信号的放大和定向覆盖功能;接收天线为定向天线,负责接收信号的放大和定向覆盖功能,同时作为发射天线和接收天线之间隔离度检测通道。
更进一步的,所述的发射通道,将FPGA数字基带信号经由DAC转化成模拟中频信号, 经过中频滤波器滤波后经过混频器后转化成射频信号,最后经过PA信号放大;发射通道射频部分省去滤波器/双工器,直接经由发射天线进行发射。
更进一步的,所述的接收通道,接收天线接收的信号经过LNA放大后,经过衰减器和混频器后转化为中频信号,中频接收信号经过中频滤波器后经过模数转换器ADC,在FPGA内部进行数字化处理;接收通道的接收本振在工程安装过程中设置成发射通道本振频率,作为分布式天线智能化检测通道使用。
本发明的有益效果为:采用FPGA通过计算和分析分布式天线中发射天线信号对接收天线的干扰程度,对分布式天线中的发射天线和接收天线的倾角方向进行智能化实时调整,在满足覆盖范围的前提下保证分布式天线之间的隔离度达到使用的要求,从而避免繁杂的工程测量和安装过程。
附图说明
图1智能化分布式天线的实现方式系统框图;
图2收发天线隔离度智能化调整流程图。
具体实施方式
下面将结合附图和实施例对本发明做详细的介绍:
本发明所述的这种智能化分布式天线的实现方法,发射通道和接收通道分别通过分布式天线中的发射天线和接收天线,分别进行信号发射和接收,如图1所示;FPGA除了正常的发射信号和接收信号数字化处理功能之外,在工程安装的时候,FPGA通过计算和分析分布式天线中发射天线信号对接收天线的干扰程度,采用测试信号对分布式天线之间的隔离度进行测试,并根据测试结果和工程要求对分布式天线的发射天线和接收天线的倾角方向进行实时的智能化调整(如图1中的①→②→③所示),在满足覆盖范围的前提下保证分布式天线之间的隔离度达到使用的要求,从而避免繁杂的工程测量和安装过程,如图2所示;具体包括如下步骤:
1)、接收通道的接收本振在工程安装过程中设置成发射通道本振频率,作为分布式天线隔离度检测通道使用;
2)、FPGA产生测试信号,经过发射通道使得发射天线端产生放大的固定功率测试信号;
3)、通过接收天线和接收通道接收并检测测试信号的功率大小,从而计算出分布式天线中发射天线和接收天线之间的隔离度;
4)、FPGA根据发射天线和接收天线之间的隔离度和实际使用场景中隔离度要求进行比较,即,隔离度是否大于预定义门限;
5)、如果隔离度小于等于预定义门限,则对发射天线和接收天线的倾角方向角度进行调整,并返回步骤2)进行再次计算,直至满足隔离度大于预定义门限为止,即最终达到分布 式天线之间隔离度满足要求,同时保证实际信号覆盖的要求。
所述的发射天线为定向天线,负责发射信号的放大和定向覆盖功能;接收天线为定向天线,负责接收信号的放大和定向覆盖功能,同时作为发射天线和接收天线之间隔离度检测通道。
所述的发射通道,将FPGA数字基带信号经由DAC转化成模拟中频信号,经过中频滤波器滤波后经过混频器后转化成射频信号,最后经过PA信号放大;发射通道射频部分省去滤波器/双工器,直接经由发射天线进行发射。
所述的接收通道,接收天线接收的信号经过LNA放大后,经过衰减器和混频器后转化为中频信号,中频接收信号经过中频滤波器后经过模数转换器ADC,在FPGA内部进行数字化处理;接收通道的接收本振在工程安装过程中设置成发射通道本振频率,作为分布式天线智能化检测通道使用。
FPGA除了正常的发射信号和接收信号数字化处理功能之外,在工程安装的时候,采用测试信号对分布式天线之间的隔离度进行测试,并根据测试结果和工程要求对分布式天线的发射天线和接收天线的倾角方向进行实时的智能化调整,保证最终工程使用的要求。
可以理解的是,对本领域技术人员来说,对本发明的技术方案及发明构思加以等同替换或改变都应属于本发明所附的权利要求的保护范围。

Claims (4)

  1. 一种智能化分布式天线的实现方法,发射通道和接收通道分别通过分布式天线中的发射天线和接收天线,分别进行信号发射和接收;其特征在于:FPGA除了正常的发射信号和接收信号数字化处理功能之外,在工程安装的时候,采用测试信号对分布式天线之间的隔离度进行测试,并根据测试结果和工程要求对分布式天线的发射天线和接收天线的倾角方向进行实时的智能化调整,具体包括如下步骤:
    1)、接收通道的接收本振在工程安装过程中设置成发射通道本振频率,作为分布式天线隔离度检测通道使用;
    2)、FPGA产生测试信号,经过发射通道使得发射天线端产生放大的固定功率测试信号;
    3)、通过接收天线和接收通道接收并检测测试信号的功率大小,从而计算出分布式天线中发射天线和接收天线之间的隔离度;
    4)、FPGA根据发射天线和接收天线之间的隔离度和实际使用场景中隔离度要求进行比较,即,隔离度是否大于预定义门限;
    5)、如果隔离度小于等于预定义门限,则对发射天线和接收天线的倾角方向角度进行调整,并返回步骤2)进行再次计算,直至满足隔离度大于预定义门限为止,即最终达到分布式天线之间隔离度要求,同时保证实际信号覆盖的要求。
  2. 根据权利要求1所述的智能化分布式天线的实现方法,其特征在于:所述的发射天线为定向天线,负责发射信号的放大和定向覆盖功能;接收天线为定向天线,负责接收信号的放大和定向覆盖功能,同时作为发射天线和接收天线之间隔离度检测通道。
  3. 根据权利要求1所述的智能化分布式天线的实现方法,其特征在于:所述的发射通道,将FPGA数字基带信号经由DAC转化成模拟中频信号,经过中频滤波器滤波后经过混频器后转化成射频信号,最后经过PA信号放大;发射通道射频部分省去滤波器/双工器,直接经由发射天线进行发射。
  4. 根据权利要求1所述的智能化分布式天线的实现方法,其特征在于:所述的接收通道,接收天线接收的信号经过LNA放大后,经过衰减器和混频器后转化为中频信号,中频接收信号经过中频滤波器后经过模数转换器ADC,在FPGA内部进行数字化处理;接收通道的接收本振在工程安装过程中设置成发射通道本振频率,作为分布式天线智能化检测通道使用。
PCT/CN2017/070815 2016-12-21 2017-01-11 一种智能化分布式天线的实现方法 WO2018113052A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611190979.9 2016-12-21
CN201611190979.9A CN106656283A (zh) 2016-12-21 2016-12-21 一种智能化分布式天线的实现方法

Publications (1)

Publication Number Publication Date
WO2018113052A1 true WO2018113052A1 (zh) 2018-06-28

Family

ID=58834504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070815 WO2018113052A1 (zh) 2016-12-21 2017-01-11 一种智能化分布式天线的实现方法

Country Status (2)

Country Link
CN (1) CN106656283A (zh)
WO (1) WO2018113052A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107566067A (zh) * 2017-09-27 2018-01-09 四川省大见通信技术有限公司 一种用cw信号检测同频端口隔离度的方法
CN112118024B (zh) * 2019-12-31 2021-10-19 中兴通讯股份有限公司 通信链路的调整方法及装置、电子设备、可读介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098794A (zh) * 2011-01-30 2011-06-15 大唐移动通信设备有限公司 随机接入冲突的处理方法和设备
CN102104949A (zh) * 2009-12-21 2011-06-22 大唐移动通信设备有限公司 一种dpch的空分方法、系统和设备
CN102306266A (zh) * 2011-07-07 2012-01-04 上海集成电路技术与产业促进中心 用于射频识别的模拟器
CN104600427A (zh) * 2015-01-22 2015-05-06 成都锦江电子系统工程有限公司 一种平面裂缝阵列天线及其口面幅相控制方法
WO2015126520A1 (en) * 2014-02-21 2015-08-27 Commscope Technologies Llc Optimizing network resources in a telecommunications system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359956B (zh) * 2008-09-12 2011-04-20 北京创毅视讯科技有限公司 一种直放站
CN203537388U (zh) * 2013-11-04 2014-04-09 合肥正弦波无线技术有限公司 一种自测隔离度并调制增益的lte直放站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104949A (zh) * 2009-12-21 2011-06-22 大唐移动通信设备有限公司 一种dpch的空分方法、系统和设备
CN102098794A (zh) * 2011-01-30 2011-06-15 大唐移动通信设备有限公司 随机接入冲突的处理方法和设备
CN102306266A (zh) * 2011-07-07 2012-01-04 上海集成电路技术与产业促进中心 用于射频识别的模拟器
WO2015126520A1 (en) * 2014-02-21 2015-08-27 Commscope Technologies Llc Optimizing network resources in a telecommunications system
CN104600427A (zh) * 2015-01-22 2015-05-06 成都锦江电子系统工程有限公司 一种平面裂缝阵列天线及其口面幅相控制方法

Also Published As

Publication number Publication date
CN106656283A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN103580720B (zh) 一种同频全双工自干扰抵消装置
CN102711151B (zh) 智能数字无线直放站的控制方法及智能数字无线直放站
WO2019127859A1 (zh) 一种支持全频段的分布式天线系统远端单元及实现方法
WO2015092416A3 (en) Apparatus and method for reducing interference in a wireless communication system
WO2018113052A1 (zh) 一种智能化分布式天线的实现方法
WO2022057315A1 (zh) 模拟域消除同频和邻频干扰的方法及装置
CN102186233A (zh) 快速自动增益控制方法、自动增益控制系统及接收机系统
MX2023001235A (es) Metodo y sistema para la gestion dinamica de conexiones inalambricas.
CN101860404A (zh) 一种无线电监测与管制系统
CN107888274A (zh) 移动信号中继放大装置
CN103957046B (zh) 一种动中通天线邻星干扰截发方法
CN202634703U (zh) 一种智能数字无线直放站
CN105634629A (zh) 一种移动通信射频信号放大设备的自激判定方法
CN204145497U (zh) 一种wifi无线中继装置
US10129763B1 (en) Method and system for controlling radio frequency interference to public safety communication
CN203086477U (zh) 一种光纤直放站上行开站增益检测装置
CN105227207B (zh) 射频收发器及其信号强度检测处理方法
CN111934698B (zh) 一种射频信号接收方法、射频信号发送方法及装置
CN103997382B (zh) 一种发射信号功率检测电路及方法
CN102325326A (zh) 一种利用金属通风管道实现室内无线信号覆盖的方法
KR102295341B1 (ko) 철도용 스마트 양방향 증폭 중계 장치
US20180138931A1 (en) Multimode Terminal
CN113068159A (zh) 一种5g nr物联网覆盖系统
CN101237261B (zh) 射频单元及其信号幅度调整方法
CN204180090U (zh) 一种车载式无线电监测测向系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884392

Country of ref document: EP

Kind code of ref document: A1