WO2018112860A1 - 电容检测电路及电子装置 - Google Patents

电容检测电路及电子装置 Download PDF

Info

Publication number
WO2018112860A1
WO2018112860A1 PCT/CN2016/111595 CN2016111595W WO2018112860A1 WO 2018112860 A1 WO2018112860 A1 WO 2018112860A1 CN 2016111595 W CN2016111595 W CN 2016111595W WO 2018112860 A1 WO2018112860 A1 WO 2018112860A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
capacitance
detecting circuit
electrode
receiving
Prior art date
Application number
PCT/CN2016/111595
Other languages
English (en)
French (fr)
Inventor
梁颖思
文亚南
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2016/111595 priority Critical patent/WO2018112860A1/zh
Priority to CN201680002043.0A priority patent/CN108700974B/zh
Publication of WO2018112860A1 publication Critical patent/WO2018112860A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a capacitance detecting circuit and an electronic device, and more particularly to a capacitance detecting circuit and an electronic device for improving mutual capacitance sensing accuracy.
  • the operational interfaces of various electronic products have gradually become more humanized in recent years.
  • the user can directly operate on the screen with a finger or a stylus, input information/text/pattern, and save the trouble of using an input device such as a keyboard or a button.
  • the touch screen usually consists of a sensing panel and a display disposed behind the sensing panel.
  • the electronic device judges the meaning of the touch according to the position touched by the user on the sensing panel and the picture presented by the display at the time, and executes the corresponding operation result.
  • the main purpose of the present application is to provide a capacitance detecting circuit and an electronic device that improve mutual capacitance sensing accuracy.
  • the present application provides a capacitance detecting circuit applied to an electronic device, wherein the capacitance detecting circuit includes a plurality of transmitting electrodes; at least one receiving electrode; and a driving sensing circuit coupled
  • the at least one receiving electrode is configured to generate a driving signal to the at least one receiving electrode, and measure a voltage of the at least one receiving electrode to generate at least one output signal; wherein the at least one output signal is related to a capacitance value of at least one mutual capacitance between the at least one receiving electrode and a transmitting electrode of the plurality of transmitting electrodes.
  • the present application further provides an electronic device, including a capacitance detecting circuit, including a plurality of transmitting electrodes; at least one receiving electrode; and a driving sensing circuit coupled to the at least one receiving electrode for generating a driving signal And measuring at least one receiving electrode, and measuring a voltage of the at least one receiving electrode to generate a plurality of output signals, wherein the plurality of output signals are related to the at least one receiving electrode and the plurality of transmitting electrodes And a signal processing module coupled to the driving and sensing circuit, and determining, according to the plurality of output signals, at least one touch position of the touch screen.
  • a capacitance detecting circuit including a plurality of transmitting electrodes; at least one receiving electrode; and a driving sensing circuit coupled to the at least one receiving electrode for generating a driving signal And measuring at least one receiving electrode, and measuring a voltage of the at least one receiving electrode to generate a plurality of output signals, wherein the plurality of output signals are related to the at least one receiving electrode and the plurality of transmit
  • FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic view showing the capacitance effect between an electrode and an electrode and between an electrode and a finger according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of equivalent capacitance between a driving sensing circuit and a grounding end according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a driving sensing circuit according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a driving sensing circuit according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a driving sensing circuit according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a determination process according to Embodiment 1 of the present application.
  • FIG. 8 is a schematic diagram of a capacitance detecting circuit according to an embodiment of the present application.
  • FIG. 9 is a plan view of a plurality of transfer electrodes and a plurality of receiving electrodes.
  • Figure 10 is a side elevational view of a plurality of transfer electrodes and a plurality of receive electrodes along an A-A' line.
  • FIG. 1 is a schematic diagram of an electronic device 10 according to an embodiment of the present application.
  • the electronic device 10 can be an electronic product such as a notebook, a smart phone or a computer, and includes a capacitance detecting circuit 14 and a signal processing module 16.
  • the capacitance detecting circuit 14 is connected to the transmitting electrodes TX 1 to TX N and the receiving electrodes RX 1 to RX M , and the capacitance detecting circuit 14 includes a driving sensing circuit 140.
  • the transmitting electrodes TX 1 -TX N and the receiving electrodes RX 1 -RX M can be disposed on a touch screen of the electronic device 10, and the touch screen can be a flexible screen or a flexible screen.
  • the driving and sensing circuit 140 (which can be coupled to the receiving electrodes RX 1 to RX M through a multiplexer MUX) drives the sensing circuit 140 to generate a driving signal VDR to the receiving electrodes RX 1 to RX M and measure at different times.
  • the voltages of the electrodes RX 1 -RX M are received to generate output signals VO 11 -VO MN - , wherein the output signals VO 11 -VO MN - are associated between the transmitting electrodes TX 1 -TX N and the receiving electrodes RX 1 -RX M
  • the capacitance values of the formed Mutual Capacitance CM 11 to CM MN can be used to characterize the measured capacitance values of CM 11 to CM MN with the output signals VO 11 to VO MN .
  • the signal processing module 16 is coupled to the capacitance detecting circuit 14 and determines the position at which the touch occurs based on the output signals VO 11 to VO MN ⁇ .
  • the transfer electrodes TX 1 ⁇ TX N through the switch SW 1 ⁇ SW N is coupled to the GND a ground terminal, when the capacitance detecting circuit 14 to be detected (interpretation) transfer electrodes of TX 1 ⁇ TX N a transmission electrode and the reception electrode TX n RX 1 ⁇ RX m when a receiver in a mutual capacitance CM mn between the electrodes RX m, corresponding to the transfer electrode TX n is a disconnection switch SW n (Cut off), while the remaining switches SW 1 to SW n-1 and SW n+1 to SW N are Conducted.
  • the capacitance detecting circuit 14 when the capacitance detecting circuit 14 is to interpret the mutual capacitance between any one of the receiving electrodes RX 1 to RX M and the transmitting electrode TX n , the transmitting electrode TX n assumes a floating state, and the remaining transmission The electrodes TX 1 to TX n-1 and TX n+1 to TX N are coupled to the ground GND.
  • the switch SW 1 when the capacitance detecting circuit 14 is to interpret the mutual capacitance between the receiving electrode RX m and the transmitting electrode TX 1 , the switch SW 1 is open, the transmitting electrode TX 1 assumes a floating state, and the remaining switches SW 2 SW SW N To be turned on, the remaining transfer electrodes TX 2 to TX N are coupled to the ground GND.
  • FIG. 2 illustrates the capacitance effect between the electrode and the electrode and the electrode and the finger when the capacitance detecting circuit 14 wants to interpret the mutual capacitance between the receiving electrode RX m and the transmitting electrode TX 1 .
  • C TX1 represents the capacitance between the transmitting electrode TX 1 and the finger
  • C RXm represents the capacitance between the receiving electrode RX m and the finger
  • CM m1 represents the capacitance between the receiving electrode RX m and the transmitting electrode TX 1
  • CM m2 to CM mN represent the capacitance between the receiving electrode RX m and the transmitting electrodes TX 2 to TX N
  • C FE represents the capacitance between the finger and the ground GND.
  • a current I flowing from the driving sensing circuit 140 can be shunted into a current I 1 , a current I 2 , and a current I B , wherein the current I 1 represents the flow from the receiving electrode RX m The current flowing from the capacitor C TX1 and the capacitor C M1 to the finger, and the current I 2 represents the current flowing from the receiving electrode RX m through the capacitor C RXm to the finger, and the current I B represents the flow from the receiving electrode RX m to the remaining transmitting electrode TX 2 ⁇ TX N current.
  • FIG. 3 indicates a node N F , a node N TX1 , a node N RXm , and a capacitor CM 2-N .
  • node N F represents the finger in FIG. 2
  • node N TX1 represents the transmitting electrode TX 1 in FIG. 2
  • node N RXm represents the receiving electrode RX m in FIG. 2
  • capacitance CM 2-N represents CM m2 ⁇ CM mN
  • the capacitance between the receiving electrode RX/node N RXm and the ground GND can be equivalent to a capacitance C UT to be measured, that is, the capacitances C FE , C TX1 , C RXm , CM m1 , CM 2-N can be A capacitance C UT to be tested is formed between the receiving electrode RX m / the node N RXm and the ground GND.
  • the current I to a node N RXm split into a current I 1, the current I 2 and the current I B, the current I 1 flowing through the capacitor from the node N RXm CM m1 and the capacitor C TX1 to node N F, the node and the current I 2 from N RXm flows through capacitor C RXm to node N F , and current I B flows from node N RXm through capacitor CM 2-N to ground GND.
  • the capacitances C TX1 and C RXm are much larger than the capacitance CM m1 (ie, the capacitances C FE , CTX1 , C RXm are much larger than the capacitance C M ), and the capacitances C TX1 and C RXm is equivalent, the electronic device 10 can be operated by the signal processing module 16 to eliminate the effect of the current I B , and the circuit structure shown in FIG. 2 and FIG. 3 can make the current I1 more reflect the capacitance CM m1 .
  • the size of the capacitor makes the capacitance interpretation more accurate, so that the judgment of the touch position is more accurate, thereby improving the overall performance.
  • FIG. 4 to FIG. 6 are schematic diagrams of driving sensing circuits 440 , 540 , 640 according to various embodiments of the present application, and driving sensing. Circuits 440, 540, 640 can each be used to implement drive sensing circuit 140.
  • FIG. 4 to FIG. 6 each illustrate that the driving sensing circuit 140 is to read the mutual capacitance CM m1 as an example, and the capacitances to be tested C UT shown in FIG. 4 to FIG. 6 represent the capacitance detecting circuit 14 .
  • the drive sensing circuit 440 includes a drive circuit 442 and a measurement circuit 444.
  • the driving circuit 442 is coupled to the receiving electrode RX m / the node N RXm for generating the driving signal V DR
  • the measuring circuit 444 is coupled to the receiving electrode RX m / the node N RXm for measuring the voltage of the receiving electrode RX m .
  • the driving circuit 442 can include an AC signal generator AC4 and an impedance unit Z4 coupled between the AC signal generator AC4 and the impedance unit Z4.
  • the AC signal generator AC4 can generate a driving signal V DR ' to the impedance. unit Z4, Z4 and an impedance means to the driving signal V DR 'is transmitted to the receiving electrode RX m, wherein the impedance unit Z4 may be resistive or capacitive components.
  • the measurement circuit 444 can include a filter, an amplifier, or an analog-to-digital converter (ADC).
  • the capacitance detecting circuit 14 compares the driving signal V DR ' and the voltage of the receiving electrode RX m to determine the capacitance of the capacitor C UT to be tested.
  • the driving and sensing circuit 540 includes a charge transfer circuit 542 and a measurement circuit 544.
  • the charge transfer circuit 542 is coupled to the receive electrode RX m / the node N RXm , and the charge transfer circuit 542 can include the transfer switch S1. S2 and a cumulative capacitor C I5 , wherein the accumulated capacitor C I5 is used for charge exchange with the capacitor C UT to be tested, and the measuring circuit 544 is used to measure a cumulative voltage of the accumulated capacitor C I5 and generate an output signal VO m1 .
  • One end of the switch S1 is coupled to a first end of the cumulative capacitor C I5 and the receiving electrode RX m / the node N RXm , the other end of the switch S1 is coupled to the ground GND; one end of the switch S2 is coupled to the cumulative capacitor C I5 A second end of the switch S2 is coupled to a voltage generator 5420 to receive a voltage V H5 generated by the voltage generator 5420.
  • the measurement circuit 544 is coupled to the second end of the accumulation capacitor C I5 .
  • the transfer switch S1 and transferred to disconnect the switch S2 is turned on, then a cumulative voltage generator 5420 and measured capacitance C I5 charging capacitor C UT, accumulated capacitance C I5 with a test capacitance C UT Charge sharing is performed between them; in a second time, the transfer switch S1 is turned on and the transfer switch S2 is turned off.
  • the measuring circuit 544 can measure the accumulated voltage of the accumulated capacitance C I5 , and The output signal VO m1 is output to the signal processing module 16.
  • the measuring circuit 544 can also include a filter, an amplifier, and/or an analog to digital converter, and the driving signal V DR generated by the driving sensing circuit 540 can be regarded as a square wave signal.
  • the driving and sensing circuit 640 includes a charge transfer circuit 642 and a measurement circuit 644 .
  • the charge transfer circuit 642 is coupled to the receiving electrode RX m / the node N RXm , and the charge transfer circuit 642 can include a transfer switch S3. S4 and a cumulative capacitor C I6 , wherein the accumulated capacitor C I6 is used for charge exchange with the capacitor C UT to be tested, and the measuring circuit 644 is used to measure a cumulative voltage of the accumulated capacitor C I6 and generate an output signal VO m1 .
  • One end of the transfer switch S3 is coupled to a first end of the cumulative capacitor C I6 , the other end of the transfer switch S3 is coupled to the ground GND; one end of the switch S4 is coupled to the receiving electrode RX m / the node N RXm , the switch S4 The other end is coupled to a voltage generator 6420 for receiving a voltage V H6 generated by the voltage generator 6420.
  • a second end of the accumulated capacitor C I6 is coupled to the receiving electrode RX m / the node N RXm , and the measuring circuit 644 is coupled to the second end of the accumulated capacitor C I6 .
  • the transfer switch S3 In a third time, the transfer switch S3 is open circuit and the transfer switch S4 is turned on, at this time, the voltage generator 6420 charges the capacitance C UT to be measured; in a fourth time, the transfer switch S3 is turned on and the transfer switch S4 In order to open the circuit, the accumulated capacitor C I6 is charged and exchanged with the capacitor C UT to be tested.
  • the measuring circuit 644 can measure the accumulated voltage of the accumulated capacitor C I6 and output the output signal VO m1 to the signal processing module 16 .
  • the measuring circuit 644 can also include a filter, an amplifier or an analog to digital converter, and the driving signal V DR generated by the driving sensing circuit 640 can be regarded as a square wave signal.
  • the signal processing module 16 may be the output signal V Out corresponding to the mutual capacitance CM 11 ⁇ CM MN- output signal VO 11 ⁇ VO MN, determines the coordinate position of the touch occurs.
  • the signal processing module 16 can arrange the output signals VO 11 ⁇ VO MN into an output signal matrix (as shown in Table 1), wherein the output signal VO mn is related to the transmitting electrode TX n The mutual capacitance CM mn between the receiving electrode RX m and the receiving electrode.
  • the output signal VO ig (correlated with the mutual capacitance CM ig between the transmitting electrode TX g and the receiving electrode RX i ) is VSi+VSg+BL, and the output signal VO kj (related to the transmitting electrode TX j and the receiving electrode)
  • the mutual capacitance CM kj ) between RX k is VSk+VSj+BL
  • the output signal VO ij (correlated with the mutual capacitance CM ij between the transmitting electrode TX j and the receiving electrode RX i ) is VSi′+VSj+BL
  • the output is
  • the value of the signal VO kg (corresponding to the mutual capacitance CM kg between the transmitting electrode TX g and the receiving electrode RX k ) is VSk' + VSg + BL
  • the ith row (Row) of the matrix M1 is in addition to the output signal VOig and the output signal VOij
  • the values of the other column elements (Column Entry) other than the signal VO ij and the output signal VO kj are VSj+BL, and the values of the other column elements except the output signal VO ig and the output signal VO kg in the gth column are VSg+BL, and
  • the matrix M1 has the values of the elements other than the above elements (BL), where VSi, VSk, VSj, VSg can represent specific values of the output signal.
  • BL represents a baseline value (Baseline). It should be noted that the (i, j)th position and the (k, g)th position of the matrix M1 are the positions where the actual touch points occur, and the (i, g)th position and the (k) of the matrix M1. , j) positions are likely to cause misjudgment of the touch position to form a ghost point.
  • the signal processing module 16 can select the special row of the i-th row and the k-th behavior matrix M1 of the matrix M1, and select the j-th column and the g-th column as a matrix. Special column for M1.
  • the signal processing module 16 can subtract the output value of the special line (the i-th row) by the specific value VSi, and reduce the output signal of the special line (the k-th line). To the specific value VSk, the output signal in the special column (jth column) is subtracted from the specific value VSj, and the output signal in the special column (g column) is subtracted from the specific value VSg. In this way, the signal processing module 16 can obtain the matrix M2.
  • the signal processing module 16 can select the (i, j)th The element and the (k, g)th element are special elements, and the position at which the touch occurs is located at the transmitting electrode TX according to the position of the (i, j)th element and the (k, g)th element of the matrix M2. Between j ⁇ and the receiving electrode RX i ⁇ and between the transmitting electrode TX g ⁇ and the receiving electrode RX k ⁇ .
  • the signal processing module 16 may calculate the specific value VSi from the i-th row of the matrix M1, calculate the specific value VSk from the k-th row, calculate the specific value VSj from the j-th column of the matrix M1, and calculate the specific value VSg from the g-th column.
  • the signal processing module 16 can calculate the output signals VO i1 ⁇ VO i(j-1) , VO i(j+1) ⁇ VO i(g-1) , VO i(g+1) ⁇ VO iN .
  • the specific value VSi is calculated based on the output signals VOk1 to VO k(j-1) , VO k(j+1) to VO k(g-1) , and VO k(g+1) to VO kN by the specific value VSk.
  • the signals VO 1j ⁇ VO (i-1) j , VO (i+1) j ⁇ VO (k-1) j , VO (k+1) j ⁇ VO Mj calculate a specific value VSj, and according to the output signal VO 1g ⁇ VO (i-1) g , VO (i+1) g to VO (k-1) g , and VO (k+1) g to VO Mg calculate a specific value VSg.
  • FIG. 7 is a schematic diagram of a determination process 70 according to an embodiment of the present application.
  • the determination process 70 includes the following steps:
  • Step 700 Arranging the output signals VO 11 to VO MN into a matrix M1.
  • Step 702 Select a special row of the i-th row and the k-th behavior matrix M1 from the matrix M1, and select the j-th column and the g-th column as a special column of the matrix M1, wherein the row vector formed by the i-th row and the k-th row
  • the column vectors formed by the jth column and the gth column are different from the column vectors formed by the other columns of the matrix M1.
  • Step 704 Subtracting the output signals VO i1 ⁇ VO iN located in the ith row by a specific value VSi, subtracting the output signals VO k1 ⁇ VO kN located at the kth row by a specific value VSk, and outputting the signal VO located in the jth column 1j to VO Mj are subtracted from the specific value VSj, and the output signals VO 1g to VO Mg located in the gth column are subtracted by the specific value VS2g to form the matrix M2.
  • Step 706 Select the (i, j)th element and the (k, g)th element from the matrix M2 as a special element, wherein the (i, j)th element and the (k, g)th element are different from each other.
  • Step 708 Determine the position where the touch occurs according to the position of the (i, j)th element and the (k, g)th element in the matrix M2.
  • Tables 2 and 3 assume that a touch point generates a special line and a special column as an example. In fact, one touch point generates multiple special lines and multiple special columns.
  • the pre-technical person can determine a plurality of special elements according to the concept of the judgment flow 70, thereby determining the position where the touch occurs.
  • the determination process 70 can be utilized for the transmitting electrodes TX 1 -TX N and the receiving electrodes RX 1 -RX M having an asymmetric symmetry pattern (such as a double indium tin oxide (DITO) line type).
  • the transmission electrodes TX 1 to TX N and the reception electrodes RX 1 to RX M have different line widths.
  • FIG. 9 is a plan view of the transmitting electrodes TX 1 to TX N and the receiving electrodes RX 1 to RX M respectively
  • FIG. 10 is the transmitting electrodes TX 1 to TX N and the receiving electrodes RX 1 to Side view of the RX M along an A-A' line.
  • the transmitting electrodes TX 1 to TX N are parallel to each other, and the receiving electrodes RX 1 to RX M are also parallel to each other, and the transmitting electrodes TX 1 to TX N and the receiving electrodes RX 1 to RX M are alternately arranged, for example,
  • the electrodes TX 1 to TX N and the receiving electrodes RX 1 to RX M may be perpendicular to each other.
  • the transmitting electrodes TX 1 -TX N have a line width W1, the transmitting electrodes TX 1 -TX N have a spacing G1 therebetween; the receiving electrodes RX 1 -RX M have a line width W2, and the receiving electrodes RX 1 -RX M have a spacing therebetween G2.
  • the line width W1 of the transmitting electrodes TX 1 to TX N is larger than the line width W2 of the receiving electrodes RX 1 to RX M
  • the spacing G1 between the transmitting electrodes TX 1 to TX N is smaller than between the receiving electrodes RX 1 to RX M Spacing G2.
  • the transmitting electrodes TX 1 -TX N and the receiving electrodes RX 1 -RX M are all disposed on a display screen 120 of the electronic device 10.
  • the receiving electrodes RX 1 - RX M can be set.
  • the transmitting electrodes TX 1 -TX N are alternately disposed above the receiving electrodes RX 1 - RX M , that is, when the transmitting electrodes TX 1 -TX N are disposed at a horizontal level L1,
  • the horizontal level L2 of the receiving electrodes RX 1 to RX M is located between the display panel 120 and the horizontal level L1 of the transmitting electrodes TX 1 to TX N .
  • the capacitance detecting circuit 14 when the capacitance detecting circuit 14 to be the receiving electrode RX i interpretation and transfer electrodes TX 1 ⁇ TX N transfer electrodes in a TX a (wherein transmitting The electrode TX a is a transfer electrode other than the transfer electrode TX j among the transfer electrodes TX 1 to TX N , that is, the transfer electrode TX a is one of TX 1 to TX j-1 and TX j+1 to TX N )
  • the transfer electrode TX j will shield the receiving electrode RX i to produce a shielding effect;
  • the driving and sensing circuit of the present application is not limited to being coupled to a plurality of receiving electrodes through a multiplexer.
  • the driving and sensing circuit of the present application may be coupled to only a single receiving electrode, that is, the electronic device of the present application may be A plurality of driving sensing circuits are included, and each sensing circuit is coupled to only one receiving electrode of the plurality of receiving electrodes, and the signal processing module can determine the position where the touch occurs according to the output signals output by the plurality of sensing circuits.
  • FIG. 8 is a schematic diagram of a capacitance detecting circuit 84 according to an embodiment of the present application.
  • the capacitance detecting circuit 84 only shows a receiving electrode RX.
  • the capacitance detecting circuit 84 is similar to the capacitance detecting circuit 14, so the same components follow the same symbols.
  • the capacitance detecting circuit 84 when the capacitance detecting circuit 84 to be interpreted when the mutual capacitance between the reception electrode RX and TX n transfer electrodes, the transfer electrodes corresponding to the switch SW n TX n open circuit, and the remaining switches SW 1 ⁇ SW n-1, SW n + 1 ⁇ SW N is turned on. Unlike the capacitance detecting circuit 14, the switches SW 1 to SW N are coupled to the receiving electrode RX.
  • the transfer electrodes TX n remains in a floating state, and the remaining transfer electrodes TX 1 ⁇ TX n-1, TX n +1 to TX N are coupled to the receiving electrode RX.
  • the signal processing module 16 determines that the baseline value BL when determining the coordinate position at which the touch occurs can be reduced, and the interpretation of the touch position is more accurate.
  • the present application utilizes a driving sensing circuit to generate a driving signal to the receiving electrode, and measures the voltage of the receiving electrode; the switch is used to control the plurality of transmitting electrodes, so that the transmitting electrode to be tested is in a floating state; ghost points cause misjudgment of the touch position.
  • the electronic device of the present application can determine the touch position sharply and accurately.

Abstract

一种电容检测电路(14),应用于一电子装置(10),其中,所述电容检测电路(14)包括多个传送电极(TX 1~TX N);至少一接收电极(RX 1~RX M);以及一驱动感测电路(140),耦接于所述至少一接收电极(RX 1~RX M),用来产生一驱动信号(VDR)至所述至少一接收电极(RX 1~RX M),并量测所述至少一接收电极(RX 1~RX M)的电压,以产生至少一输出信号(VO 11~VO MN-);其中,所述至少一输出信号(VO 11~VO MN-)相关于所述至少一接收电极(RX 1~RX M)与所述多个传送电极(TX 1~TX N)的一传送电极之间的至少一互电容(CM 11~CM MN)的电容值。

Description

电容检测电路及电子装置 技术领域
本申请涉及一种电容检测电路及电子装置,尤其涉及一种增进互容感测精准度的电容检测电路及电子装置。
背景技术
随着科技日益进步,近年来各种电子产品的操作接口逐渐人性化。举例而言,透过触控屏,使用者可直接以手指或触控笔在屏幕上操作、输入信息/文字/图样,省去使用键盘或按键等输入设备的麻烦。实际上,触控屏通常由一感应面板及设置于感应面板后方的显示器组成。电子装置根据用户在感应面板上所触碰的位置,以及当时显示器所呈现的画面,来判断该次触碰的意涵,并执行相对应的操作结果。
互容式电容感测已广泛地应用于具有触控屏的电子装置中,而随着科技演进以及市场需求,现有技术已发展出具有超薄保护层的触控屏(如柔性屏),然而,对具有超薄保护层的触控屏来说,其电极与手指之间的耦合电容较大,而导致互容感测的困难度增加。
因此,现有技术实有改善之必要。
发明内容
因此,本申请的主要目的即在于提供一种增进互容感测精准度的电容检测电路及电子装置。
为了解决上述技术问题,本申请提供了一电容检测电路,应用于一电子装置,其特征在于,所述电容检测电路包括多个传送电极;至少一接收电极;以及一驱动感测电路,耦接于所述至少一接收电极,用来产生一驱动信号至所述至少一接收电极,并量测所述至少一接收电极的电压,以产生至少一输出信号;其中,所述至少一输出信号相关于所述至少一接收电极与所述多个传送电极的一传送电极之间的至少一互电容的电容值。
另外,本申请另提供一电子装置,包含一电容检测电路,包括多个传送电极;至少一接收电极;以及一驱动感测电路,耦接于所述至少一接收电极,用来产生一驱动信号至所述至少一接收电极,并量测所述至少一接收电极的电压,以产生多个输出信号,其中,所述多个输出信号相关于所述至少一接收电极与所述多个传送电极之间的多个互电容的电容值;以及一信号处理模块,耦接于所述驱动感测电路,并根据所述多个输出信号,判断于所述触控屏的至少一触碰位置。
附图说明
图1为本申请实施例一电子装置的示意图。
图2为本申请实施例电极与电极之间以及电极与手指之间的电容效应示意图。
图3为本申请实施例一驱动感测电路与一接地端之间的等效电容示意图。
图4为本申请实施例一驱动感测电路的示意图。
图5为本申请实施例一驱动感测电路的示意图。
图6为本申请实施例一驱动感测电路的示意图。
图7为本申请实施例一判断流程的示意图。
图8为本申请实施例一电容检测电路的示意图。
图9为多个传送电极及多个接收电极的俯视图。
图10为多个传送电极及多个接收电极沿一A-A’线的侧视图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请参考图1,图1为本申请实施例一电子装置10的示意图。电子装置10可为一笔记本、一智能手机或一计算机等电子产品,其包括一电容检测电路14以及一信号处理模块16。电容检测电路14连接至传送电极TX1~TXN、接收电极RX1~RXM,电容检测电路14包括一驱动感测电路140。传送电极TX1~TXN及接收电极RX1~RXM可设置于电子装置10的一触控屏,触控屏可为一柔性屏或一可挠式(Flexible)屏幕。驱动感测电路140(可通过一复用器MUX)耦接于接收电极RX1~RXM,驱动感测电路140产生一驱动信号VDR至接收电极RX1~RXM,并于不同时间量测接收电极RX1~RXM的电压,以产生输出信号VO11~VOMN‐,其中输出信号VO11~VOMN‐相关于传送电极TX1~TXN与接收电极RX1~RXM之间所形成的互电容(Mutual Capacitance)CM11~CMMN的电容值,即可以用输出信号VO11~VOMN表征所量测的CM11~CMMN的电容值。 信号处理模块16耦接于电容检测电路14,并根据输出信号VO11~VOMN‐判断触碰发生的位置。
另一方面,如图1所示,传送电极TX1~TXN通过开关SW1~SWN耦接于一接地端GND,当电容检测电路14欲检测(判读)传送电极TX1~TXN中一传送电极TXn与接收电极RX1~RXM中一接收电极RXm之间的一互电容CMmn时,对应于传送电极TXn的一开关SWn为断路(Cut off),而其余开关SW1~SWn-1、SWn+1~SWN为导通(Conducted)。换句话说,当电容检测电路14欲判读接收电极RX1~RXM中任一接收电极与传送电极TXn之间的互电容时,传送电极TXn呈现浮接(Floating)状态,而其余传送电极TX1~TXn-1、TXn+1~TXN耦接至接地端GND。举例来说,当电容检测电路14欲判读接收电极RXm与传送电极TX1之间的互电容时,开关SW1为断路,传送电极TX1呈现浮接状态,而其余开关SW2~SWN为导通,此时其余传送电极TX2~TXN耦接至接地端GND。
详细来说,请参考图2,图2绘示当电容检测电路14欲判读接收电极RXm与传送电极TX1之间的互电容时,电极与电极之间的电容效应以及电极与手指之间的电容效应,其中,CTX1代表传送电极TX1与手指之间的电容,CRXm代表接收电极RXm与手指之间的电容,CMm1代表接收电极RXm与传送电极TX1之间的电容,CMm2~CMmN代表接收电极RXm与传送电极TX2~TXN之间的电容,而CFE代表手指与接地端GND之间的电容。由于传送电极TX1为浮接状态,自驱动感测电路140流出的一电流I可分流成一电流I1、一电流I2以及一电流IB,其中电流I1代表自接收电极RXm流经电容CTX1及电容CM1而流向手指的电流,而电流I2代表自接收电极RXm流经电容CRXm流向而流向手指的电流,电 流IB代表自接收电极RXm流向其余传送电极TX2~TXN的电流。
更进一步地,驱动感测电路140与接地端GND之间的等效电容绘示于图3,图3标示有一节点NF、一节点NTX1、一节点NRXm以及一电容CM2-N,其中,节点NF代表图2中的手指,节点NTX1代表图2中的传送电极TX1,节点NRXm代表图2中的接收电极RXm,电容CM2-N代表CMm2~CMmN所形成的一等效电容。为了方便后续说明,接收电极RX/节点NRXm与接地端GND之间的电容可等效成为一待测电容CUT,即电容CFE、CTX1、CRXm、CMm1、CM2-N可于接收电极RXm/节点NRXm与接地端GND之间形成为待测电容CUT。同样地,电流I于节点NRXm分流成电流I1、电流I2以及电流IB,电流I1自节点NRXm流经电容CMm1及电容CTX1流向节点NF,而电流I2自节点NRXm流经电容CRXm流向节点NF,电流IB自节点NRXm流经电容CM2-N流向接地端GND。另外,在触控屏12为柔性屏的情境下,电容CTX1、CRXm远大于电容CMm1(即电容CFE、CTX1、CRXm皆远大于电容CM),且电容CTX1与电容CRXm相当,电子装置10可利用信号处理模块16进行运算,以消除电流IB所产生的效果,并利用图2及图3所示的电路结构,可使得电流I1更能反应出电容CMm1的电容大小,而使电容判读更为准确,以至于对触控位置的判断更加准确,进而提升整体效能。
另外,关于驱动感测电路140的具体电路结构,请参考图4至图6,图4至图6分别为本申请多个实施例的驱动感测电路440、540、640的示意图,驱动感测电路440、540、640均可用来实现驱动感测电路140。为了方便说明,图4至图6皆以驱动感测电路140欲判读互电容CMm1为例进行说明,而图4至图6所绘示的待测电容CUT均代表当电容检测电路14欲判读接收电极RXm与传送电极TX1之间的互电容时,电容检测电路14与接地端GND之间(即接 收电极RXm/节点NRXm与接地端GND之间)的等效电容。如图4所示,驱动感测电路440包含一驱动电路442以及一量测电路444。驱动电路442耦接于接收电极RXm/节点NRXm,用来产生驱动信号VDR,量测电路444耦接于接收电极RXm/节点NRXm,用来量测接收电极RXm的电压,并产生输出信号VOm1。驱动电路442可包含一交流信号产生器AC4以及一阻抗单元Z4,阻抗单元Z4耦接于交流信号产生器AC4与阻抗单元Z4之间,交流信号产生器AC4可产生一驱动信号VDR’至阻抗单元Z4,而阻抗单元Z4即可将驱动信号VDR’传递至接收电极RXm,其中阻抗单元Z4可由电阻或电容组成。另外,量测电路444可包含一滤波器、一放大器或一模数转换器(Analog-to-Digital Converter,ADC)。于一实施例中,电容检测电路14可比较驱动信号VDR’以及接收电极RXm的电压,而判断待测电容CUT的电容大小。
如图5所示,驱动感测电路540包含一电荷转移电路542以及一量测电路544,电荷转移电路542耦接于接收电极RXm/节点NRXm,电荷转移电路542可包含转移开关S1、S2以及一累积电容CI5,其中累积电容CI5用来与待测电容CUT进行电荷交换,而量测电路544用来量测累积电容CI5的一累积电压,并产生输出信号VOm1。开关S1的一端耦接于累积电容CI5的一第一端及接收电极RXm/节点NRXm,开关S1的另一端耦接于接地端GND;开关S2的一端耦接于累积电容CI5的一第二端,开关S2的另一端耦接于一电压产生器5420,以接收电压产生器5420所产生的一电压VH5。量测电路544耦接于累积电容CI5的第二端。于一第一时间中,转移开关S1为断路且转移开关S2为导通,此时电压产生器5420对累积电容CI5及待测电容CUT充电,而累积电容CI5与待测电容CUT之间会进行电荷分享(Charge Sharing);于一第二时间中,转移开关S1 为导通且转移开关S2为断路,此时,量测电路544可量测累积电容CI5的累积电压,并据以输出输出信号VOm1至信号处理模块16。另外,量测电路544亦可包含一滤波器、一放大器和/或一模数转换器,而驱动感测电路540所产生的驱动信号VDR可视为一方波信号。
如图6所示,驱动感测电路640包含一电荷转移电路642以及一量测电路644,电荷转移电路642耦接于接收电极RXm/节点NRXm,电荷转移电路642可包含转移开关S3、S4以及一累积电容CI6,其中累积电容CI6用来与待测电容CUT进行电荷交换,而量测电路644用来量测累积电容CI6的一累积电压,并产生输出信号VOm1。转移开关S3的一端耦接于累积电容CI6的一第一端,转移开关S3的另一端耦接于接地端GND;开关S4的一端耦接于接收电极RXm/节点NRXm,开关S4的另一端耦接于一电压产生器6420,以接收电压产生器6420所产生的一电压VH6。另外,累积电容CI6的一第二端耦接于接收电极RXm/节点NRXm,且量测电路644耦接于累积电容CI6的第二端。于一第三时间中,转移开关S3为断路且转移开关S4为导通,此时电压产生器6420对待测电容CUT充电;于一第四时间中,转移开关S3为导通且转移开关S4为断路,此时累积电容CI6与待测电容CUT进行电荷交换,如此一来,量测电路644可量测累积电容CI6的累积电压并据以输出输出信号VOm1至信号处理模块16。另外,量测电路644亦可包含一滤波器、一放大器或一模数转换器,而驱动感测电路640所产生的驱动信号VDR可视为一方波信号。
另外,信号处理模块16可根据输出信号VOut中对应于互电容CM11~CMMN‐的输出信号VO11~VOMN,判断触控发生的坐标位置。详细来说,信号处理模块16接收输出信号VO11~VOMN后可将输出信号VO11~VOMN排列成一 输出信号矩阵(如表1所示),其中输出信号VOmn相关于传送电极TXn与接收电极RXm之间的互电容CMmn
为了方便说明,假设一触控点发生于传送电极TXj‐与接收电极RXi‐之间,而另一触控点发生于传送电极TXg‐与接收电极RXk‐之间,而输出信号矩阵的实际值将形成为一矩阵M1(如表2所示)。于矩阵M1中,输出信号VOig(相关于传送电极TXg与接收电极RXi之间的互电容CMig)为VSi+VSg+BL,输出信号VOkj(相关于传送电极TXj与接收电极RXk之间的互电容CMkj)为VSk+VSj+BL,输出信号VOij(相关于传送电极TXj与接收电极RXi之间的互电容CMij)为VSi’+VSj+BL,输出信号VOkg(相关于传送电极TXg与接收电极RXk之间的互电容CMkg)的值为VSk’+VSg+BL,矩阵M1的第i行(Row)除了输出信号VOig及输出信号VOij以外其余行元素(Row Entry)的值皆为VSi+BL,第k行除了输出信号VOkj及输出信号VOkg以外其余行元素的值皆为VSk+BL,矩阵M1的第j列(Column)除了输出信号VOij及输出信号VOkj以外其余列元素(Column Entry)的值皆为VSj+BL,第g列除了输出信号VOig及输出信号VOkg以外其余列元素的值皆为VSg+BL,而矩阵M1除了上述元素以外其余的元素(Entry)的值皆为BL,其中VSi、VSk、VSj、VSg可代表输出信号的特定值,而BL代表一基线值(Baseline)。需注意的是,矩阵M1的第(i,j)个位置以及第(k,g)个位置为实际触控点发生的位置,而矩阵M1的第(i,g)个位置以及第(k,j)个位置容易造成触控位置的误判而形成鬼点。
表1
Figure PCTCN2016111595-appb-000001
表2(矩阵M1)
Figure PCTCN2016111595-appb-000002
需注意的是,矩阵M1的第i行以及第k行所形成的行向量为相异于矩阵M1其他行所形成的行向量,矩阵M1的第j列以及第g列所形成的列向量为相异于矩阵M1其他列所形成的列向量,因此,信号处理模块16可选定矩阵M1的第i行以及第k行为矩阵M1的特殊行,以及选定第j列以及第g列为矩 阵M1的特殊列。另外,为了避免鬼点造成触控位置的误判,信号处理模块16可将位于特殊行(第i行)的输出信号减去特定值VSi,将位于特殊行(第k行)的输出信号减去特定值VSk,将位于特殊列(第j列)的输出信号减去特定值VSj,并将位于特殊列(第g列)的输出信号减去特定值VSg。如此一来,信号处理模块16即可得到矩阵M2。如表3所示,矩阵M2中仅第(i,j)个元素以及第(k,g)个元素的值为VSi’-VSi+BL及VSk’-VSk+BL,其余元素的值皆为BL,在此情形下,因第(i,j)个元素以及第(k,g)个元素皆相异于矩阵M2的其他元素,因此信号处理模块16可选定第(i,j)个元素以及第(k,g)个元素为特殊元素,并根据矩阵M2的第(i,j)个元素以及第(k,g)个元素所在的位置,判断触控发生的位置位于传送电极TXj‐与接收电极RXi‐之间以及传送电极TXg‐与接收电极RXk‐之间。
表3(矩阵M2)
Figure PCTCN2016111595-appb-000003
另外,信号处理模块16可根据矩阵M1的第i行计算特定值VSi,根据第k行计算特定值VSk,根据矩阵M1的第j列计算特定值VSj,并根据第g列计算特定值VSg。举例来说,信号处理模块16可根据输出信号VOi1~VOi(j-1)、VOi(j+1)~VOi(g-1)、VOi(g+1)~VOiN计算特定值VSi,根据输出信号VOk1~VOk(j-1)、VOk(j+1)~VOk(g-1)、VOk(g+1)~VOkN计算特定值VSk,根据输出信号VO1j~VO(i-1)j、VO(i+1)j~VO(k-1)j、VO(k+1)j~VOMj计算特定值VSj,并根据输出信号VO1g~VO(i-1) g、VO(i+1)g~VO(k-1)g、VO(k+1)g~VOMg计算特定值VSg。
关于信号处理模块16根据输出信号VO11~VOMN判断触控发生位置的操作方式,可进一步归纳为一判断流程。请参考图7,图7为本申请实施例一判断流程70之示意图,判断流程70包含以下步骤:
步骤700:将输出信号VO11~VOMN排列成矩阵M1。
步骤702:自矩阵M1中选取第i行及第k行为矩阵M1的特殊行,以及选取第j列及第g列为矩阵M1的特殊列,其中第i行以及第k行所形成的行向量为相异于矩阵M1其他行所形成的行向量,第j列以及第g列所形成的列向量为相异于矩阵M1其他列所形成的列向量。
步骤704:将位于第i行的输出信号VOi1~VOiN减去特定值VSi,将位于第k行的输出信号VOk1~VOkN减去特定值VSk,将位于第j列的输出信号VO1j~VOMj减去特定值VSj,并将位于第g列的输出信号VO1g~VOMg减去特定值VS2g,以形成矩阵M2。
步骤706:自矩阵M2中选取第(i,j)个元素以及第(k,g)个元素为特殊元素,其中第(i,j)个元素以及第(k,g)个元素相异于矩阵M2的其他元素。
步骤708:根据第(i,j)个元素以及第(k,g)个元素于矩阵M2的位置,判断触控发生的位置。
关于判断流程70的操作细节,请参考前述相关段落,于此不再赘述。
需注意的是,表2及表3为假设一个触控点产生一个特殊行以及一个特殊列为例进行说明,实际上,一个触控点产生可多个特殊行以及多个特殊列,而本领预技术人员可根据判断流程70的概念据以变化,而求出多个特殊元素,进而判断触控发生位置。
另外,判断流程70可利用于传送电极TX1~TXN及接收电极RX1~RXM具有非对称线型(Asymmetric Pattern,如双层氧化铟锡(Double Indium Tin Oxide,DITO)线型)的电子装置中,即传送电极TX1~TXN与接收电极RX1~RXM具有不同的线宽。举例来说,请参考图9及图10,图9分别为传送电极TX1~TXN及接收电极RX1~RXM的俯视图,图10为传送电极TX1~TXN及接收电极RX1~RXM沿一A-A’线的侧视图。如图9所示,传送电极TX1~TXN相互平行,接收电极RX1~RXM亦相互平行,传送电极TX1~TXN与接收电极RX1~RXM可相互交错设置,例如,送电极TX1~TXN与接收电极RX1~RXM可相互垂直。另外,传送电极TX1~TXN具有一线宽W1,传送电极TX1~TXN之间距有一间距G1;接收电极RX1~RXM具有一线宽W2,接收电极RX1~RXM之间距有一间距G2。其中,传送电极TX1~TXN的线宽W1大于接收电极RX1~RXM的线宽W2,而传送电极TX1~TXN之间的间距G1小于接收电极RX1~RXM之间的间距G2。另外,如图10所示,传送电极TX1~TXN及接收电极RX1~RXM皆设置于电子装置10的一显示屏120之上,详细来说,接收电极RX1~RXM可设置于显示屏120之上,而传送电极TX1~TXN可交错地设置于接收电极 RX1~RXM之上,也就是说,当传送电极TX1~TXN设置于一水平位准L1,接收电极RX1~RXM设置于一水平位准L2时,接收电极RX1~RXM的水平位准L2位于显示屏120与传送电极TX1~TXN的水平位准L1之间。
当传送电极TX1~TXN及接收电极RX1~RXM具有图9及图10所绘示(应用于DITO)的非对称线型时,利用判断流程70可得到更加的信杂比(Signal-to-Noise Ratio,SNR)。详细来说,假设触控点发生在传送电极TXj与接收电极RXi之间,当电容检测电路14欲判读接收电极RXi与传送电极TX1~TXN中一传送电极TXa(其中传送电极TXa为传送电极TX1~TXN中除了传送电极TXj以外其他传送电极,即传送电极TXa为TX1~TXj-1、TXj+1~TXN中其中之一传送电极)之间的互电容时,因传送电极TXj具有较大的线宽W1且较小的间距G1且传送电极TXj位于上层,而传送电极TXj将屏蔽接收电极RXi而产生屏蔽效应;而当电容检测电路14欲判读接收电极RXi与传送电极TXj之间的互电容时,传送电极TXj为浮接状态而没有屏蔽效应。如此一来,可增强矩阵M2中VSi’-VSi及VSk’-VSk的值(或等效于降低BL的值),而使得触控点位置的判读更加的精准。
需注意的是,前述实施例用来说明本申请之概念,本领域具通常知识者当可据以做不同之修饰。举例来说,本申请的驱动感测电路不限于透过复用器耦接于多个接收电极,本申请的驱动感测电路亦可仅耦接于单一接收电极,即本申请的电子装置可包含多个驱动感测电路,而每一感测电路仅耦接于多个接收电极的一接收电极,信号处理模块可根据多个感测电路所输出的输出信号判断触控发生的位置。
另外,电容检测电路的开关SW1~SWN不限于耦接于接地端GND。举 例来说,请参考图8,图8为本申请实施例一电容检测电路84的示意图,为了方便说明,电容检测电路84仅绘示一接收电极RX。电容检测电路84与电容检测电路14相似,故相同组件沿用相同符号。相似地,当电容检测电路84欲判读接收电极RX与传送电极TXn之间的互电容时,对应于传送电极TXn的开关SWn为断路,而其余开关SW1~SWn-1、SWn+1~SWN为导通。与电容检测电路14不同的是,开关SW1~SWN耦接于接收电极RX。换句话说,当电容检测电路84欲判读接收电极RX与传送电极TXn之间的互电容时,传送电极TXn仍处于浮接状态,而其余传送电极TX1~TXn-1、TXn+1~TXN耦接至接收电极RX。如此一来,当电容检测电路84欲判读接收电极RX与传送电极TXn之间的互电容时,不会有电流自接收电极RX流向其余传送电极TX1~TXn-1、TXn+1~TXN,信号处理模块16判断判断触控发生的坐标位置时的基线值BL可因此降低,而使触控位置的判读更加精准。
综上所述,本申请利用驱动感测电路产生驱动信号至接收电极,并量测接收电极的电压;利用开关以控制多个传送电极,使得欲测传送电极呈现浮接状态;利用判断流程避免鬼点造成触控位置的误判。如此一来,本申请的电子装置可敏锐且精准地判断触控位置。
以上所述仅为本申请的部分实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (26)

  1. 一种电容检测电路,应用于一电子装置,所述电子装置包括触控屏,所述触控屏包括多个传送电极和至少一接收电极,其中,所述电容检测电路包括:
    一驱动感测电路,耦接于所述至少一接收电极,用来产生一驱动信号至所述至少一接收电极,并量测所述至少一接收电极的电压,以产生至少一输出信号;其中,所述至少一输出信号相关于所述至少一接收电极与所述多个传送电极的一传送电极之间的至少一互电容的电容值。
  2. 权利要求1所述的电容检测电路,其中,当所述电容检测电路检测所述多个传送电极的一第一传送电极与所述至少一接收电极的一第一接收电极之间的一第一互电容时,所述第一传送电极为浮接。
  3. 如权利要求2所述的电容检测电路,其中,所述多个传送电极中除了所述第一传送电极以外的其余传送电极耦接至一接地端。
  4. 如权利要求2所述的电容检测电路,其中,所述多个传送电极中除了所述第一传送电极以外的其余传送电极耦接至所述第一接收电极。
  5. 如权利要求1所述的电容检测电路,其中,另包含:
    多个开关,每一开关的一第一端耦接于所述多个传送电极的一传送电极;
    其中,当所述电容检测电路判读所述多个传送电极的一第一传送电极与所述至少一接收电极的一第一接收电极之间的一第一互电容时,所述多个开关中对应于所述第一传送电极的一第一开关为断路,其余开关为导通。
  6. 如权利要求5所述的电容检测电路,其中,所述多个开关中每一开关的一第二端耦接至一接地端。
  7. 如权利要求5所述的电容检测电路,其中,所述多个开关中每一开关的一第二端耦接至所述第一接收电极。
  8. 如权利要求1所述的电容检测电路,其中,所述驱动感测电路包括:
    一驱动电路,耦接于所述至少一接收电极,用来产生所述驱动信号;以及
    一量测电路,耦接于所述至少一接收电极,用来量测所述至少一接收电极的电压。
  9. 如权利要求8所述的电容检测电路,其中,所述驱动电路包括:
    一交流信号产生器;以及
    一阻抗单元,耦接于所述交流信号产生器与所述至少一接收电极之间。
  10. 如权利要求1所述的电容检测电路,其中,所述驱动感测电路包括:
    一电荷转移电路,耦接于所述至少一接收电极,包括一累积电容,其中所述累积电容用来与一待测电容进行电荷交换,其中所述待测电容相关于所述多个互电容的一互电容;以及
    一量测电路,用来量测所述累积电容的一累积电压,以产生所述输出信号。
  11. 如权利要求10所述的电容检测电路,其中,所述电荷转移电路包括:
    一第一转移开关,其一端耦接于所述累积电容及所述至少一接收电极,另一端耦接于一接地端;以及
    一第二转移开关,其一端耦接于所述累积电容与所述量测电路,另一端耦接于一第一电压产生器。
  12. 如权利要求11所述的电容检测电路,其中,于一第一时间中,所述第一转移开关为断路(Cutoff),所述第二转移开关为导通(Conducted),以及于一第二时间中,所述第一转移开关为导通,所述第二转移开关为断路。
  13. 如权利要求12所述的电容检测电路,其中,于所述第一时间中,所述第一电压产生器对所述待测电容及所述累积电容充电,以及于所述第二时间中,所述量测电路量测所述累积电容的所述累积电压。
  14. 如权利要求10所述的电容检测电路,其中,所述电荷转移电路包括:
    一第三转移开关,其一端耦接于所述累积电容,另一端耦接于一接地端;以及
    一第四转移开关,其一端耦接于所述至少一接收电极,另一端接收一第一电压。
  15. 如权利要求14所述的电容检测电路,其中,于一第三时间中,所述第三转移开关为断路,所述第四转移开关为导通,以及于一第四时间中,所述第三转移开关为导通,所述第四转移开关为断路。
  16. 如权利要求15所述的电容检测电路,其中,于所述第三时间中,所述第一电压产生器对所述待测电容充电,以及于所述第四时间中,所述待测电容与所述累积电容进行电荷交换。
  17. 如权利要求8或10所述的电容检测电路,其中,所述量测电路包含一滤波器、一放大器或一模数转换器。
  18. 一种电子装置,其中,包括:
    一电容检测电路,其包括:
    多个传送电极;
    多个接收电极;以及
    一驱动感测电路,耦接于所述多个接收电极,用来产生一驱动信号至所述多个接收电极,并量测所述多个接收电极的电压,以产生多个输出信号,其中,所述多个输出信号相关于所述多个接收电极与所述多个传送电极之间的多个互电容的电容值;以及
    一信号处理模块,耦接于所述驱动感测电路,并根据所述多个输出信号,判断于所述触控屏的至少一触碰位置。
  19. 如权利要求18所述的电容检测电路,其中,所述信号处理模块用来执行以下步骤,以根据所述多个输出信号,判断于所述触控屏的至少一触碰位置:
    将所述多个输出信号排列成一第一矩阵;
    自所述第一矩阵中选取至少一特殊行以及至少一特殊列;
    将对应于所述至少一特殊行中一第一特殊行的多个第一输出信号减去一第一特定值,将对应于所述至少一特殊列中一第一特殊列的多个第二输出信号减去一第二特定值,以形成一第二矩阵;
    自所述第二矩阵选取至少一特殊元素,其中所述至少一特殊元素相异于所述第二矩阵的其他元素;以及
    根据所述至少一特殊元素于所述第二矩阵的位置,判断于所述触控屏的至少一触碰位置。
  20. 如权利要求19所述的电容检测电路,其中,所述信号处理模块另用来执行以下步骤:
    根据所述第一矩阵的所述第一特殊行,计算所述第一特定值;以及
    根据所述第一矩阵的所述第一特殊列,计算所述第二特定值。
  21. 如权利要求18所述的电子装置,其中,所述多个传送电极相互平行,所述多个接收电极相互平行。
  22. 如权利要求18所述的电子装置,其中,所述多个传送电极与所述多个接收电极相互交错设置。
  23. 如权利要求18所述的电子装置,其中,所述多个传送电极与所述多个接收 电极相互垂直。
  24. 如权利要求18所述的电子装置,其中,所述多个传送电极具有一第一线宽,多个接收电极具有一第二线宽,所述第一线宽大于所述第二线宽。
  25. 如权利要求18所述的电子装置,其中,所述多个传送电极具有一第一间距,多个接收电极具有一第二间距,所述第一间距小于所述第二间距。
  26. 如权利要求18所述的电子装置,其中,另包含:
    一显示屏;
    其中,所述多个传送电极设置于一第一水平位准,所述多个接收电极设置于一第二水平位准;
    其中,所述第二水平位准位于所述显示屏与第一水平位准之间。
PCT/CN2016/111595 2016-12-22 2016-12-22 电容检测电路及电子装置 WO2018112860A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/111595 WO2018112860A1 (zh) 2016-12-22 2016-12-22 电容检测电路及电子装置
CN201680002043.0A CN108700974B (zh) 2016-12-22 2016-12-22 电容检测电路及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/111595 WO2018112860A1 (zh) 2016-12-22 2016-12-22 电容检测电路及电子装置

Publications (1)

Publication Number Publication Date
WO2018112860A1 true WO2018112860A1 (zh) 2018-06-28

Family

ID=62624159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111595 WO2018112860A1 (zh) 2016-12-22 2016-12-22 电容检测电路及电子装置

Country Status (2)

Country Link
CN (1) CN108700974B (zh)
WO (1) WO2018112860A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102289332A (zh) * 2010-06-21 2011-12-21 安华高科技Ecbuip(新加坡)私人有限公司 减少电容性触摸屏系统中的电磁干扰
CN103309495A (zh) * 2012-03-14 2013-09-18 乐金显示有限公司 具有集成触摸屏的显示装置
US20140043247A1 (en) * 2012-08-10 2014-02-13 Research In Motion Limited Electronic device including touch-sensitive display and method of detecting touches
CN104205025A (zh) * 2012-03-30 2014-12-10 夏普株式会社 互电容触摸屏装置和用于创建互电容触摸屏装置的方法
CN104238836A (zh) * 2013-06-14 2014-12-24 群创光电股份有限公司 触控显示装置及其驱动感测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101641690B1 (ko) * 2013-09-25 2016-07-21 엘지디스플레이 주식회사 터치스크린 일체형 표시장치
KR102044083B1 (ko) * 2016-06-16 2019-11-12 선전 구딕스 테크놀로지 컴퍼니, 리미티드 터치 검출 장치 및 검출 방법, 그리고 터치 기기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102289332A (zh) * 2010-06-21 2011-12-21 安华高科技Ecbuip(新加坡)私人有限公司 减少电容性触摸屏系统中的电磁干扰
CN103309495A (zh) * 2012-03-14 2013-09-18 乐金显示有限公司 具有集成触摸屏的显示装置
CN104205025A (zh) * 2012-03-30 2014-12-10 夏普株式会社 互电容触摸屏装置和用于创建互电容触摸屏装置的方法
US20140043247A1 (en) * 2012-08-10 2014-02-13 Research In Motion Limited Electronic device including touch-sensitive display and method of detecting touches
CN104238836A (zh) * 2013-06-14 2014-12-24 群创光电股份有限公司 触控显示装置及其驱动感测方法

Also Published As

Publication number Publication date
CN108700974A (zh) 2018-10-23
CN108700974B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
US9870097B2 (en) Noise cancellation technique for capacitive touchscreen controller using differential sensing
US20200409491A1 (en) Passive Touch Detection for Capacitive Sense Array
EP3144790B1 (en) Touch panel and touch detection circuit
US10261628B2 (en) Driving chip, circuit film, chip-on-film type driving circuit, and display device having built-in touchscreen
KR101237640B1 (ko) 기생 캐패시턴스 방지 구조를 구비한 터치스크린 장치
US9710114B2 (en) Touch detection device, touch detection method and touch screen panel, using driving back phenomenon, and display device with built-in touch screen panel
US10228797B2 (en) Continuous time anti-alias filter for capacitive touch sensing
JP6042763B2 (ja) タッチ検出機能付き表示装置及び電子機器
US20120256869A1 (en) Active integrator for a capacitive sense array
US20110181519A1 (en) System and method of driving a touch screen
US20140085246A1 (en) Self capacitance implementation method
US9606670B2 (en) Real-time spectral noise monitoring for proximity sensing device
KR20140010859A (ko) 고속 패널 스캐닝을 위한 이득 정정
KR20120003846A (ko) 네거티브 픽셀 보상
US9442597B2 (en) Sensor-based ESD detection
JP6956056B2 (ja) センサ電極のためのオーム計
WO2018112860A1 (zh) 电容检测电路及电子装置
WO2018112861A1 (zh) 电容检测电路及电子装置
US11126298B2 (en) Touch detection apparatus, touch control apparatus, touch and display driver integration chip, touch control display apparatus, and touch detection and resistance measurement method
Lee et al. P‐73: Innovative Controller for Touch‐Sensor Panel in Heavy‐Load Parasitic Capacitance
WO2017012221A1 (zh) 电容感测电路及自容式触控面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924733

Country of ref document: EP

Kind code of ref document: A1