WO2018110859A2 - 다이어프램 조립체 및 이를 포함하는 압력 트랜스미터 시스템 - Google Patents

다이어프램 조립체 및 이를 포함하는 압력 트랜스미터 시스템 Download PDF

Info

Publication number
WO2018110859A2
WO2018110859A2 PCT/KR2017/013593 KR2017013593W WO2018110859A2 WO 2018110859 A2 WO2018110859 A2 WO 2018110859A2 KR 2017013593 W KR2017013593 W KR 2017013593W WO 2018110859 A2 WO2018110859 A2 WO 2018110859A2
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
housing
diaphragm
fluid
conduit
Prior art date
Application number
PCT/KR2017/013593
Other languages
English (en)
French (fr)
Other versions
WO2018110859A3 (ko
Inventor
김태준
Original Assignee
주식회사 미래엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미래엔지니어링 filed Critical 주식회사 미래엔지니어링
Publication of WO2018110859A2 publication Critical patent/WO2018110859A2/ko
Publication of WO2018110859A3 publication Critical patent/WO2018110859A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/26Details or accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type

Definitions

  • the embodiments below relate to a diaphragm assembly for measuring the pressure of a hot fluid flowing through a vessel or piping and a transmitter system comprising the same.
  • High temperature fluid flows through equipment such as vessels and pipes used in the process requiring high temperature. In this process, it is necessary to grasp the state of the fluid such as pressure, level and flow rate.
  • an accessory such as a pipe for extracting a fluid separately is required so that the pressure measuring device can be connected.
  • Such an accessory takes up a lot of space and installs the accessory. If there is no space, there are many difficulties in measuring pressure.
  • the registration number 10-1040332 discloses a pressure gauge that can be used at high temperatures through a diaphragm.
  • An object according to an embodiment is to provide a diaphragm assembly capable of measuring pressure without a separate measuring device by connecting the pressure measurement object to the housing and positioning the diaphragm to detect the pressure of the fluid acting on the bottom of the housing. .
  • An object according to one embodiment is to provide a diaphragm assembly and a pressure transmitter system by placing a diaphragm on the underside of a housing, whereby the pressure of the fluid acts on the entire diaphragm, allowing for more accurate pressure measurement.
  • An object according to one embodiment is to provide a diaphragm assembly and transmitter system that the diaphragm is located on the bottom of the housing has less influence of the liquid level, so that accurate pressure measurement can be made regardless of the size of the diaphragm.
  • the housing is provided with an inner space; A fluid entrance formed through the side surface of the housing; And a diaphragm provided at the bottom of the housing to detect a pressure acting on the bottom of the inner space.
  • the bottom surface of the housing may be formed to be inclined relative to the fluid inlet.
  • the bottom surface may be formed to be inclined upward toward the inside of the housing from the fluid inlet.
  • the bottom surface of the housing may be formed in a shape that is symmetrical to each other based on the side.
  • the inclination of the bottom may be adjustable.
  • the diaphragm assembly may further include a pressure conduit connected to the diaphragm through the housing and transmitting a pressure detected by the diaphragm.
  • the diaphragm assembly further comprises an outer conduit connected to the side of the housing, wherein the pressure conduit extends from an outer surface of the housing, at least a portion of which may be received in the outer conduit.
  • a heat dissipation unit for receiving at least a portion of the pressure conduit.
  • one side may further include a fluid inlet pipe connected to the fluid inlet, the other side is connected to the pressure measurement object.
  • the housing is provided with an internal space; A fluid outlet formed through the side surface of the housing; A diaphragm provided on the bottom surface to detect a fluid pressure acting on the bottom surface of the inner space; One side is connected to the diaphragm and the other side is a pressure conduit penetrating the outer surface of the housing; And a pressure transmitter connected to the other side of the pressure conduit to measure the pressure of the fluid.
  • the pressure transmitter for measuring the pressure of the fluid;
  • a first pressure conduit connected at one side to the pressure transmitter;
  • a first diaphragm assembly having a first diaphragm connected to the other side of the first pressure conduit;
  • a second pressure conduit having one side connected to the first diaphragm assembly;
  • a second diaphragm assembly having a second diaphragm connected to the other side of the second pressure conduit, and including a second diaphragm assembly connected to a pressure measurement object, wherein the second diaphragm is located on a bottom surface of the second diaphragm assembly, It is possible to detect the pressure acting on the underside of the fluid flowing through the two diaphragm assembly side.
  • an organic heat medium may be accommodated in the first pressure conduit, and a sodium-potassium (Na-K) alloy may be accommodated in the second pressure conduit.
  • Na-K sodium-potassium
  • the pressure can be measured even if there is no space to install a separate measurement equipment on the pressure measurement object.
  • the diaphragm is located on the bottom of the housing, it is possible to minimize the error of the fluid pressure due to the remaining of the gas layer.
  • the diaphragm is located on the bottom of the housing, which allows accurate pressure measurement regardless of the size of the diaphragm used.
  • FIG. 1 is a perspective view illustrating a diaphragm assembly according to an embodiment.
  • FIG. 2 is a side cross-sectional view showing a cross section of the diaphragm assembly according to the embodiment.
  • FIG 3 is a top cross-sectional view illustrating a top cross section of a diaphragm assembly according to an embodiment.
  • FIG. 4 is a schematic view showing a transmitter system connected to external pressure means.
  • FIG. 5 is a schematic diagram illustrating a transmitter system having a first diaphragm assembly and a second diaphragm assembly.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • the pressure measurement object 500 represented in the present invention is a high temperature fluid containing a molten metal, for example, a storage vessel in which a flowable substance including a liquid and a gas is stored or a piping system through which a high temperature fluid flows. it means.
  • FIG. 1 is a perspective view of a diaphragm assembly according to an embodiment
  • FIG. 2 is a side cross-sectional view of the diaphragm assembly according to the embodiment
  • FIG. 3 is a top view of the diaphragm assembly according to the embodiment.
  • the diaphragm assembly 10 is provided at a housing 100 provided with an inner space, a fluid entrance 110 formed to penetrate a side surface of the housing, and an inner surface of the housing 100, and is pressured.
  • Diaphragm 120 for detecting the pressure, the pressure conduit 130 is connected to the diaphragm, it may include an outer conduit 140 connected to the side of the housing.
  • the housing 100 may include an interior space for accommodating the fluid.
  • the housing 100 may include a material having high heat resistance. Therefore, when used in a high temperature environment or when receiving a high temperature fluid inside the housing 100, it is possible to prevent the housing 100 from being damaged.
  • the housing 100 may have various shapes, depending on the type of fluid contained therein or the pressure measurement target 500 to be connected thereto.
  • the housing 100 may have a cylindrical shape as shown in the figure.
  • the housing 100 may have a shape such as a hexahedron or a prismatic pole.
  • the fluid inlet 110 penetrates the inner surface and the outer surface of the housing 100, thereby allowing fluid to flow into the inner space of the housing 100.
  • the fluid inlet 110 may be formed on the side of the housing 100.
  • the shape and size of the fluid inlet 110 may be changed according to the pressure measurement object 500.
  • the fluid inlet 110 may have a shape and size corresponding to the pipe connecting the pressure measuring object 500 and the housing 100.
  • the fluid inlet pipe 111 may be connected to the fluid inlet 110.
  • the fluid inlet pipe 111 may be detachably connected to the fluid inlet 110.
  • a step may be formed in the fluid inlet 110, and the fluid inlet pipe 111 may be inserted into the fluid inlet 110 and the position may be fixed through the step.
  • the fluid inlet pipe 111 may connect the fluid inlet 110 and the pressure measurement object 500 to flow the fluid flowing through the pressure measurement object 500 into the interior of the housing 100.
  • the fluid access pipe 111 may be a pipe, but is not limited thereto, and may vary in size, cross-sectional shape, and length according to measurement equipment provided in the pressure measuring object 500.
  • the inner bottom of the housing 100 may be formed to be inclined.
  • the inner bottom surface of the housing 100 may be formed to have an inclination upward from the fluid inlet 110 toward the inside of the housing 100.
  • both bottom surfaces of the housing 100 may be symmetrical to each other. That is, the inner space of the housing may have a shape that is symmetric about an inner side surface of the housing 100.
  • the liquid level of the fluid introduced into the housing 100 may be lowered from the fluid inlet 110 toward the inside of the housing. Therefore, the fluid contained in the housing 100 can be easily discharged, and it is possible to prevent the solution from remaining inside the housing 100 even after the pressure detection is completed.
  • the inclination of the inner bottom of the housing 100 may be adjusted.
  • the side and the upper and lower parts of the housing 100 may be provided to be assembled with each other, and by adjusting the assembly angle of the upper and lower parts with respect to the side, the inclination of the inner bottom of the housing 100 may be adjusted with respect to the side.
  • the angle of the bottom surface with respect to the side of the housing 100 through a motor, a screw, etc. may be formed to be adjusted, it is also possible to replace the bottom surface of the housing 100 having a different inclination.
  • the inclination of the bottom surface of the housing 100 with respect to the side surface may be determined according to various factors. For example, when the viscosity of the fluid to be introduced into the housing 100 is large, it is possible to induce a smooth fluid discharge by inclination of the inclination, on the other hand, when the viscosity of the fluid is low, the inclination is adjusted gently, the diaphragm While 120 detects the pressure, the fluid can remain sufficiently inside the housing 100.
  • the diaphragm 120 may be provided in the inner space of the housing 100 to detect a pressure inside the housing 100. In other words, the diaphragm 120 may detect the pressure of the fluid flowing through the pressure measuring object 500 connected to the housing 100. The diaphragm 120 may detect the pressure of the fluid flowing in the pressure measuring object 500 in a direction different from the flow direction of the fluid.
  • the pressure of the fluid may be indirectly measured by indirectly measuring the pressure of the fluid flowing into the housing 100 without the complicated measuring equipment for connecting to the pressure measuring object 500. That is, the diaphragm assembly 10 may detect the pressure by directly connecting the diaphragm assembly 10 to the pressure measuring object 500 even though the pipe for connecting the diaphragm 120 is not provided to the pressure measuring object 500. Therefore, it does not require a space for installing the pipe.
  • the diaphragm 120 may be provided on an inner bottom surface of the housing 100 to reduce an error in pressure measurement by the gas layer inside the housing 100.
  • a gas layer positioned above the fluid may be formed in the interior space of the housing.
  • only the pressure of the fluid may act on the diaphragm 120 by preventing the gas layer from applying pressure to the valve of the diaphragm 120.
  • the diaphragm 120 is provided on the inner bottom surface of the housing 100, it is possible to prevent the occurrence of an error with the actual pressure of the fluid flowing through the pressure measuring object 500.
  • the diaphragm 120 is provided on the inner bottom surface of the housing 100, this is merely an example, and the diaphragm 120 may be provided on the inner top surface of the housing 100. That is, the bottom of the housing means a surface excluding the side of the housing inner space.
  • the diaphragm 120 may have various sizes according to the size or shape of the housing 100.
  • the diaphragm 120 in the diaphragm assembly 10 is installed to measure the pressure at which the fluid acts on the inner bottom of the housing 100, only the pressure of the fluid may act on the entire diaphragm 120 valve. Therefore, even when the size of the diaphragm 120 is increased, since only the pressure of the fluid acts on the diaphragm 120, accurate pressure measurement is possible. In other words, for accurate pressure detection, since the fluid does not have to fill the inside of the housing 100, the use of a large diaphragm 120 may have the same effect as using a small diaphragm 120.
  • the diaphragm 120 may have a thin corrugated valve.
  • the shape of the diaphragm 120 is not limited thereto, and various known diaphragms may be used substantially.
  • the pressure conduit 130 may be connected to the diaphragm 120 through the housing 100.
  • the pressure conduit 130 may communicate from the inside of the housing 100 to the outside.
  • the pressure conduit 130 may transmit the pressure of the fluid detected by the diaphragm 120 to the pressure measuring means.
  • the pressure conduit 130 may extend from an outer surface of the housing 100, for example, a bottom surface.
  • the pressure conduit 130 extends to the outside of the housing, at least a part of the pressure conduit 140 may be inserted into the outer conduit 140 to be connected to other equipment.
  • the pressure conduit 130 may be connected with a pressure transmitter or other diaphragm assembly to deliver the pressure detected by the diaphragm 120.
  • the size of the pressure conduit 130 may vary.
  • pressure conduit 130 may have a variety of sizes, from capillary diameter tube sizes of 1/16 in to tube tube sizes of 1/2 in.
  • the pressure conduit 130 may accommodate a sodium-potassium (Na-K) alloy that is liquid at room temperature.
  • Na-K sodium-potassium
  • the sodium-potassium (Na-K) alloy rises at a high temperature of 700 ° C. or more, metal vapor is generated, and thus the pressure conduit 130 may be provided with cooling means.
  • the outer conduit 140 may be connected to the outer surface of the housing 100.
  • the outer conduit 140 may include a first connector 141 connected to the housing and a second connector 142 connected to the first connector 141.
  • the first connector 141 may be connected to an outer surface of the housing 100, for example, a side of the housing 100.
  • a pressure conduit 130 extending from the bottom surface of the housing 100 may be inserted into the first connection portion 141 to accommodate at least a portion of the pressure conduit 130 therein.
  • the first connector 141 may include a plurality of holes for discharging heat generated from the pressure conduit according to the high temperature.
  • One side of the second connector 142 may be connected to the first connector 141, and the other side of the second connector 142 may be connected to a pressure transmitter or another diaphragm assembly.
  • the second connector 142 may accommodate the pressure conduit 130 inserted through the first connector 141 therein and protect the pressure conduit 130 from being connected to another device.
  • the outer conduit 140 can prevent the user's injury or damage to the pressure conduit by the high temperature pressure conduit 130.
  • the diaphragm assembly 10 may further include a heat dissipation part 150 provided at an outer side of the housing 100.
  • the heat dissipation unit 150 may be provided at, for example, a bottom surface of the housing 100 to accommodate the pressure conduit 130 extending to the bottom surface of the housing 100.
  • a plurality of holes may be formed on the outer surface of the heat dissipation unit 150. Therefore, the heat dissipation unit 150 may discharge heat due to the high temperature fluid inside the housing 100 to the outside. In addition, an accident occurring when the pressure conduit 130 is at a high temperature or a problem in which the pressure conduit 130 collides with the outside may be prevented.
  • FIG. 4 is a schematic diagram of a pressure transmitter system 1 with a pressure transmitter 160 connected to a diaphragm assembly 10.
  • the pressure transmitter system 1 may include a diaphragm assembly 10 and a pressure transmitter 160.
  • the diaphragm assembly 10 may include a housing 100, a fluid inlet 110, a diaphragm 120, a pressure conduit 130, an outer conduit 140, and a heat dissipation unit 150.
  • the diaphragm assembly 10 may be connected to the pressure measuring object 500 through the fluid inlet 110, and the fluid flowing through the pressure measuring object 500 may be accommodated in the housing 100.
  • the diaphragm 120 may detect the pressure of the fluid acting inside the housing 100 and transmit it to the pressure transmitter 160 through the pressure conduit 130.
  • the pressure transmitter 160 may be connected to the pressure conduit 130 to measure the fluid pressure acting inside the housing 100 detected by the diaphragm 120.
  • the pressure transmitter 160 may include a pressure gauge and convert the pressure of the fluid flowing through the pressure measuring object 500 into a numerical value through the pressure gauge.
  • the pressure transmitter system 1 causes the fluid to flow into the housing 100 and indirectly pressurizes the fluid acting inside the housing 100 in measuring the pressure of the fluid flowing through the pressure measuring object 500. It can be measured by Through this structure, the pressure transmitter system 1 directly attaches the housing 100 to the pressure measuring object 500 without measuring the pressure by attaching the diaphragm 120 to a measuring device separately provided on the pressure measuring object 500. The pressure of the fluid may be detected by the diaphragm 120 provided inside the housing 100.
  • the diaphragm 120 detects the fluid pressure through the pressure acting on the bottom surface of the housing 100, the gas layer generated inside the housing is prevented from applying pressure to the diaphragm 120, and is generated by the gas layer.
  • the error of the pressure measurement can be minimized. Since the pressure transmitter system 1 is formed to be inclined to the inner bottom of the housing 100, it is easy to discharge the fluid after the pressure detection is finished, thereby preventing the fluid from remaining inside the housing 100.
  • FIG. 5 is a schematic diagram of a pressure transmitter system 2 comprising a plurality of diaphragm assemblies.
  • the pressure transmitter system 2 includes a pressure transmitter 250 that measures pressure, a first pressure conduit 240 connected to one side of the pressure transmitter 250, and the other side of the first pressure conduit 240.
  • a first diaphragm assembly 230 including a first diaphragm 231 and a first diaphragm 231, a second pressure conduit 220, and a second pressure connected to one side of the first diaphragm assembly 230.
  • the second diaphragm 211 and the second diaphragm 211 connected to the other side of the conduit 220 may include a second diaphragm assembly 210 connected to the pressure measuring object 500.
  • first diaphragm 231 and the second diaphragm 211 may have a thin corrugated valve form.
  • the present invention is not limited thereto, and the first diaphragm 231 and the second diaphragm 211 may be variously changed, including metal and nonmetal.
  • first pressure conduit 240 may be connected to the pressure transmitter 250, and the other side thereof may be connected to the first diaphragm 231.
  • an organic heating medium capable of withstanding a temperature of 300 may be used for the first pressure conduit 240.
  • Dow Corning 702, 704, 705, or the like may be used as the organic heating medium.
  • the first pressure conduit 240 may be used from a capillary diameter tube size of 1/16 in to a tube tube size of 1/2 in.
  • the first pressure conduit 240 may be kept warm because an error in the pressure measurement due to the influence of the ambient air temperature may occur.
  • the first diaphragm assembly 230 having the first diaphragm 231 connected to the first pressure conduit 240 may be connected to one side of the second pressure conduit 220.
  • the other side of the second pressure conduit 220 may be connected to the second diaphragm 211.
  • sodium-potassium (Na-K) alloy which is liquid at room temperature
  • sodium-potassium (Na-K) alloy may be used in the second pressure conduit 220.
  • cooling means may be provided in the second pressure conduit 220.
  • the pressure transmitter system 2 does not necessarily have to have cooling means.
  • the second diaphragm assembly 210 having the second diaphragm 211 may be connected to the pressure measuring object 500.
  • the fluid flowing through the pressure measuring object 500 may flow into the second diaphragm assembly 210 through a fluid outlet formed at the side of the second diaphragm assembly 210, and inside the second diaphragm assembly 210.
  • the second diaphragm 211 positioned at the bottom may detect the pressure at which the introduced fluid acts on the bottom.
  • the second diaphragm assembly 210 is directly connected to the pressure measuring object 500. Since the pressure of the fluid is detected by the second diaphragm 211 provided inside the second diaphragm assembly 210, the pressure measuring object 500 does not need to be provided with a separate measuring device.
  • the second diaphragm 211 is provided to detect the pressure acting on the bottom surface of the second diaphragm assembly 210, even when a gas layer is generated inside the second diaphragm assembly 210, an error may be prevented from occurring. Can be.
  • the gas layer may be prevented from applying pressure to a part of the valve of the second diaphragm 211, thereby reducing an error with the actual pressure of the pressure measuring object 500.
  • the second diaphragm 211 having various sizes may be used regardless of the size or shape of the second diaphragm assembly 211.
  • the second diaphragm 211 is positioned to measure the pressure acting on the bottom surface of the second diaphragm assembly 210, the fluid introduced into the second diaphragm assembly 210 is formed on the entire surface of the second diaphragm 211. Can be contacted. Thus, regardless of the size, the pressure of the fluid can act on the entire second diaphragm 211.
  • the fluid introduced from the pressure measuring object 500 does not have to fill the inside of the second diaphragm assembly 210, the fluid may have the same effect regardless of the size of the second diaphragm 211. .
  • the pressure transmitter system 2 can be directly connected to the pressure measuring object 500 so that the pressure can be detected. Without this, the pressure can be measured.
  • the inside of the second diaphragm assembly 210 may be inclined to facilitate the discharge of the fluid. Specifically, as the fluid enters the second diaphragm assembly 210, the height of the flow cross section of the fluid may be reduced. Through this inclination, when the pressure detection is finished, it is possible to prevent the fluid from remaining inside the second diaphragm assembly 210, and more accurate pressure measurement is possible.
  • the inclination of the inside may be adjusted differently according to the viscosity of the fluid flowing into the second diaphragm assembly 210.
  • the angle of inclination is formed rapidly to facilitate the discharge of the fluid, and when the viscosity of the fluid is small, the angle is formed gently so that the diaphragm 211 increases the fluid pressure.
  • the discharge rate can be lowered to detect sufficiently.
  • the fluid is introduced into the diaphragm assembly 10 and the pressure of the pressure measuring object 500 is detected through the diaphragm 120 installed in a direction different from the flow direction of the fluid. It is possible to measure pressure without measuring equipment or instrument. Through such a pressure measurement, even if there is no space to install the measuring device in the pressure measuring object 500 has the advantage that the pressure can be measured.
  • the diaphragm 120 is positioned in a horizontal or inclined form, regardless of the gas layer inside the housing 100, the fluid pressure acts on the entire diaphragm 120, so that a more accurate pressure measurement is possible.
  • the diaphragm 120 may detect a fluid pressure regardless of the fluid level introduced into the housing 100, and may use various diaphragms 120.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

압력 트랜스미터 시스템은 내부공간이 마련된 하우징, 상기 하우징 측면을 관통하여 형성된 유체출입구, 상기 내부공간의 밑면에 작용하는 유체압력을 검출하도록, 상기 밑면에 구비되는 다이어프램, 일측은 상기 다이어프램과 연결되고, 타측은 상기 하우징 외면을 관통하는 압력도관 및, 상기 압력도관의 타측과 연결되어 유체의 압력을 측정하는 압력 트랜스미터를 포함한다.

Description

다이어프램 조립체 및 이를 포함하는 압력 트랜스미터 시스템
아래의 실시예들은 용기 또는 배관을 흐르는 고온 유체의 압력을 측정하는 다이어프램 조립체 및 이를 포함하는 트랜스미터 시스템에 관한 것이다.
높은 온도가 필요한 과정에서 사용되는 용기, 배관등의 장비에는 고온의 유체가 유동하고 있으며, 이러한 과정에서는 유체의 압력, 레벨, 유량 등의 상태를 파악할 필요가 있다.
상온용의 상용 제품을 고온의 유체가 유동하는 장비에 부착하기 위해서는 많은 부속 설비가 소요되고, 부속 설비로 인해 장치 공간이 좁아지는 문제가 많다.
즉, 압력을 측정하기 위한 장비의 압력을 측정하기 위해서는, 압력측정장치가 연결될 수 있도록, 유체를 별도로 뽑아내는 배관등의 부속설비가 필요하며, 이러한 부속설비는 많은 공간을 차지하고, 부속설비를 설치할 공간이 없는 경우에는 압력측정을 하는데 많은 어려움이 있다.
이와 관련하여 등록번호 제10-1040332는 다이어프램을 통해 고온에서 사용이 가능한 압력측정기를 개시한다.
일 실시예에 따른 목적은, 압력측정대상을 하우징과 연결시키고, 하우징 밑면에 작용하는 유체의 압력을 검출하도록 다이어 프램을 위치함으로써, 별도의 계측설비가 없이도 압력측정이 가능한 다이어프램 조립체를 제공하는 것이다.
일 실시예에 따른 목적은, 하우징 밑면에 다이어프램을 위치시킴으로써, 다이어프램 전체에 유체의 압력이 작용하여, 보다 정확한 압력측정이 가능한 다이어프램 조립체 및 압력 트랜스미터 시스템을 제공하는 것이다.
일 실시예에 따른 목적은, 다이어프램이 하우징 밑면에 위치함으로써 액위에 따른 영향이 적어, 다이어프램의 크기의 관계없이 정확한 압력측정이 가능한 다이어프램 조립체 및 트랜스미터 시스템을 제공하는 것이다.
일 실시예에 따른 다이어프램 조립체는, 내부공간이 마련된 하우징; 상기 하우징 측면을 관통하여 형성되는 유체출입구; 및 상기 내부공간의 밑면에 작용하는 압력을 검출하도록, 상기 하우징 밑면에 구비되는 다이어프램을 포함할 수 있다.
일 측에 있어서, 상기 하우징의 밑면은 상기 유체출입구를 기준으로, 경사지게 형성될 수 있다.
일 측에 있어서, 상기 밑면은, 상기 유체출입구로부터 상기 하우징의 내측을 향하여 상향 경사지게 형성될 수 있다.
일 측에 있어서, 상기 하우징의 밑면은, 상기 측면을 기준으로 서로 대칭되는 형상으로 형성될 수 있다.
일 측에 있어서, 상기 밑면의 경사는 조절 가능할 수 있다.
일 측에 있어서, 상기 다이어프램 조립체는, 상기 하우징을 관통하여 상기 다이어프램과 연결되고, 상기 다이어프램이 검출한 압력을 전달하는 압력도관을 더 포함할 수 있다.
일 측에 있어서, 상기 다이어프램 조립체는, 상기 하우징의 측면에 연결되는 외부도관을 더 포함하고, 상기 압력도관은, 상기 하우징의 외면으로부터 연장되고, 적어도 일부가 상기 외부도관에 수용될 수 있다.
일 측에 있어서, 상기 하우징의 외측에 구비되고, 상기 압력도관의 적어도 일부를 수용하는 방열부를 더 포함할 수 있다.
일 측에 있어서, 일측은 상기 유체출입구에 연결되고, 타측은 압력측정대상에 연결되는 유체출입관을 더 포함할 수 있다.
일 실시 예에 따른 압력 트랜스미터 시스템은, 내부공간이 마련된 하우징; 상기 하우징 측면을 관통하여 형성된 유체출입구; 상기 내부공간의 밑면에 작용하는 유체압력을 검출하도록, 상기 밑면에 구비되는 다이어프램; 일측은 상기 다이어프램과 연결되고, 타측은 상기 하우징 외면을 관통하는 압력도관; 및 상기 압력도관의 타측과 연결되어 유체의 압력을 측정하는 압력 트랜스미터를 포함하는 압력 트랜스미터 시스템.
일 실시 예에 따른 압력 트랜스미터 시스템은, 유체의 압력을 측정하는 압력 트랜스미터; 일측이 상기 압력트랜스미터에 연결되는 제1압력도관; 상기 제1압력도관의 타측에 연결되는 제1다이어프램을 구비한 제1다이어프램조립체; 일측이 상기 제1다이어프램조립체에 연결되는 제2압력도관; 상기 제2압력도관의 타측에 연결되는 제2다이어프램을 구비하고, 압력측정대상에 연결되는 제2다이어프램조립체를 포함하고, 상기 제2다이어프램은, 상기 제2다이어프램 조립체의 밑면에 위치하여, 상기 제2다이어프램조립체 측면을 통해 유입되는 유체가 상기 밑면에 작용하는 압력을 검출할 수 있다.
일 측에 있어서, 상기 제1압력도관에는 유기 열매체가 수용되고, 상기 제2압력도관에는 소듐-포타슘(Na-K) 합금이 수용될 수 있다.
일 실시예에 따르면, 압력측정대상에 별도의 계측설비를 설치할 공간이 없어도, 압력의 측정이 가능하다.
일 실시예에 따르면, 하우징 밑면에 다이어프램이 위치함으로써, 가스층의 잔존에 따른 유체압력의 오차를 최소화할 수 있다.
일 실시예에 따르면, 하우징 밑면에 다이어프램이 위치함으로써, 사용되는 다이어프램의 크기에 관계없이 정확한 압력측정이 가능하다.
일 실시예에 따르면, 하우징 내부에 경사를 형성하여 유체의 배출을 용이하게 함으로써, 압력측정이 끝난 이후, 하우징 내부에 유체가 남아있는 것을 방지할 수 있다.
본 발명의 효과는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 통상의 기술을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.
도 1은, 실시예에 따른 다이어프램 조립체를 도시한 사시도이다.
도 2는, 실시예에 따른 다이어프램 조립체의 단면을 도시한 측면단면도이다.
도 3은, 실시예에 따른 다이어프램 조립체의 상부 단면을 도시한 상부 단면도이다.
도 4는, 외부압력수단에 연결된 트랜스미터 시스템을 도시한 개략도이다.
도 5는, 제1다이어프램조립체 및 제2다이어프램조립체를 구비한 트랜스미터 시스템을 도시한 개략도이다.
이하, 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 실시예에 따른 다이어프램 조립체(10) 및 이를 포함하는 압력 트랜스미터 시스템(1)에 대해 설명한다. 본 발명에서 표현되는 압력측정대상(500)은 용융된 금속을 포함하는 고온의 유체, 예를 들어, 액체 및 기체를 포함하는 유동 가능한 물질이 보관되는 저장용기 또는 고온의 유체가 흐르는 배관 계통등을 의미한다.
도 1은 실시예에 따른 다이어프램 조립체의 사시도이고, 도 2는 실시 예에 따른 다이어프램 조립체의 측단면도이며, 도 3은 실시예에 따른 다이어프램 조립체의 상단면도이다.
도 1 내지 도 3을 참조하면, 다이어프램 조립체(10)는, 내부공간이 마련된 하우징(100), 하우징의 측면을 관통하도록 형성되는 유체 출입구(110) 및 하우징(100) 내부면에 구비되고, 압력을 검출하기 위한 다이어프램(120), 다이어프램과 연결되는 압력도관(130), 하우징의 측면에 연결되는 외부도관(140)을 포함할 수 있다.
하우징(100)은 유체를 수용하기 위한 내부공간을 포함할 수 있다. 하우징(100)은 내열성이 높은 재질을 포함할 수 있다. 따라서, 고온의 환경에서 사용되거나, 하우징(100)의 내부에 고온의 유체를 수용하는 경우에, 하우징(100)이 손상되는 것을 방지할 수 있다.
하우징(100)은 내부에 수용하는 유체의 종류 또는 연결되는 압력측정대상(500)에 따라, 다양한 형상을 가질 수 있다. 예를 들어, 하우징(100)은 도면과 같이 원기둥의 형상을 가질 수 있으며, 이와 달리 육면체, 각기둥과 같은 형상을 가질 수도 있다.
유체출입구(110)는 하우징(100)의 내면과 외면을 관통함으로써, 하우징(100)의 내부공간으로 유체를 유동시킬 수 있다. 예를 들어, 유체 출입구(110)는 하우징(100)의 측면에 형성될 수 있다. 유체출입구(110)의 형상 및 크기는 압력측정대상(500)에 따라 변경될 수 있다. 예를 들어, 유체출입구(110)는 압력측정대상(500) 및 하우징(100)을 연결하는 파이프에 대응하는 형상 및 크기를 가질 수 있다.
유체출입구(110)에는 유체출입관(111)이 연결될 수 있다. 유체출입관(111)은 유체출입구(110)에 탈착 가능하게 연결될 수 있다. 예를 들어, 유체출입구(110)에는 단턱이 형성되고, 유체출입관(111)은 유체출입구(110)에 삽입되고 단턱을 통해 위치가 고정될 수 있다.
유체출입관(111)은 유체출입구(110) 및 압력측정대상(500)을 연결함으로써, 압력측정대상(500)을 유동하는 유체를 하우징(100)의 내부로 유동시킬 수 있다. 유체출입관(111)은 파이프(pipe)일 수 있으나, 이에 한정되는 것은 아니며, 압력측정대상(500)에 마련된 계측설비에 따라 크기, 단면형상, 길이가 다양할 수 있다.
하우징(100) 내부 밑면은 경사지게 형성될 수 있다. 예를 들어, 하우징(100) 내부 밑면은 유체출입구(110)로부터 하우징(100)의 내측을 향해 상향지는 경사를 가지도록 형성될 수 있다. 이 경우, 하우징(100)의 양 밑면은 서로 대칭되는 형상일 수 있다. 즉, 하우징의 내부공간은 하우징(100) 내부 측면을 중심으로 대칭되는 형상을 가질 수 있다.
이와 같은 구조에 의하면, 유체출입구(110)로부터 하우징 내측으로 향할수록, 하우징(100) 내부에 유입된 유체의 액위가 낮아질 수 있다. 따라서, 하우징(100) 내부에 수용된 유체가 용이하게 배출될 수 있으며, 압력 검출이 끝난 이후에도 하우징(100) 내부에 용액이 남아있는 것을 방지할 수 있다.
하우징(100) 내부 밑면의 경사는 조절될 수 있다. 예를 들어, 하우징(100)의 측면 및 상하부는 서로 조립 가능하게 마련될 수 있고, 측면에 대한 상하부의 조립 각도를 조절함으로써, 하우징(100)의 내부 밑면이 측면에 대하여 이루는 경사를 조절할 수 있다. 반면, 모터, 나사등을 통해 하우징(100)의 측면에 대한 밑면의 각도가 조절되도록 형성될 수도 있으며, 다른 경사를 가지는 하우징(100) 밑면을 교체하는 구성도 가능하다.
하우징(100)의 밑면이 측면에 대하여 이루는 경사는 다양한 요인에 따라 결정될 수 있다. 예를 들어, 하우징(100) 내부로 유입시키고자 하는 유체의 점성이 큰 경우에는 경사의 급하게 하여 원활한 유체 배출을 유도할 수 있으며, 반면 유체의 점성이 낮은 경우에는 경사를 완만하게 조절하여, 다이어프램(120)이 압력을 검출할 동안, 유체가 하우징(100) 내부에 충분히 머물러 있도록 할 수 있다.
다이어프램(120)은 하우징(100)의 내부공간에 구비되어, 하우징(100)의 내부의 압력을 검출할 수 있다. 다시 말하면, 다이어프램(120)은 하우징(100)과 연결된 압력측정대상(500)을 유동하는 유체의 압력을 검출할 수 있다. 다이어프램(120)은 압력측정대상(500)을 흐르는 유체의 압력을, 유체의 유동방향과 다른 방향에서 검출할 수 있다.
따라서, 압력측정대상(500)에 연결되기 위한 복잡한 계측설비가 없이도, 하우징(100)내부에 유입하는 유체의 압력을 간접적으로 측정하여, 유체의 압력을 검출할 수 있다. 즉, 다이어프램 조립체(10)는 압력측정대상(500)에 다이어프램(120)을 연결하기 위한 배관이 구비되지 않아도, 다이어프램 조립체(10)를 압력측정대상(500)에 직접 연결하여 압력을 검출할 수 있으므로, 배관을 설치할 공간을 요구하지 않는다.
다이어프램(120)은 하우징(100)의 내부 밑면에 구비되어, 하우징(100) 내부의 가스층에 의한 압력측정의 오차를 줄일 수 있다. 구체적으로, 고온의 유체가 하우징에 유입되는 경우에는, 유체의 상부에 위치하는 가스층이 하우징 내부공간에 형성될 수 있다. 이 경우, 다이어프램(120)이 하우징(100)의 내부 밑면에 구비되면, 가스층이 다이어프램(120)의 판막에 압력을 가하는 것을 방지함으로써, 유체의 압력만이 다이어프램(120)에 작용할 수 있다. 결과적으로, 다이어프램(120)이 하우징(100) 내부 밑면에 구비됨으로써, 압력측정대상(500)을 흐르는 유체의 실제 압력과의 오차 발생을 방지할 수 있다.
비록, 도면에서는 다이어프램(120)이 하우징(100)의 내부 밑면에 구비되는 것으로 도시하였으나, 이는 일 예시에 불과하며, 다이어프램(120)이 하우징(100)의 내부 상면에 구비되는 구성도 가능하다. 즉, 하우징의 밑면은 하우징 내부 공간의 측면을 제외한 면을 의미한다.
다이어프램(120)은 하우징(100)의 크기나 형상에 따라 다양한 크기를 가질 수 있다. 이 경우, 다이어프램 조립체(10)에서 다이어 프램(120)은 유체가 하우징(100) 내부 밑면에 작용하는 압력을 측정하도록 설치되므로, 다이어프램(120) 판막 전체에 유체의 압력만이 작용할 수 있다. 따라서, 다이어 프램(120)의 크기가 커지는 경우에도, 유체의 압력만이 다이어프램(120)에 작용하므로, 정확한 압력 측정이 가능하다. 다시 말하면, 정확한 압력검출을 위해, 유체가 하우징(100) 내부를 가득 채우지 않아도 되므로, 크기가 큰 다이어프램(120)을 사용해도 크기가 작은 다이어프램(120)을 사용하는 것과 같은 효과를 나타낼 수 있다.
그리고, 다이어프램(120)은 얇은 주름 판막을 가질 수 있다. 그러나, 그러나 다이어프램(120)의 형상이 이에 한정되는 것은 아니며, 공지된 다양한 다이어프램이 실질적으로 사용될 수 있다.
압력도관(130)은 하우징(100)을 관통하여 다이어프램(120)과 연결될 수 있다. 예를 들어, 압력도관(130)은 하우징(100)의 내부로부터 외부로 연통될 수 있다. 압력도관(130)은 다이어프램(120)이 검출한 유체의 압력을 압력측정수단에 전달할 수 있다. 압력도관(130)은 하우징(100)의 외면, 예를 들어 밑면)으로부터 연장 형성될 수 있다. 구체적으로, 압력도관(130)은 하우징의 외부로 연장되어, 외부도관(140)에 적어도 일부가 삽입되어, 다른 장비와 연결될 수 있다. 예를 들어, 압력도관(130)은 압력 트랜스미터 또는 다른 다이어프램 조립체와 연결되어, 다이어프램(120)이 검출한 압력을 전달할 수 있다.
압력도관(130)의 크기는 다양할 수 있다. 예를 들어, 압력도관(130)은 1/16 in의 모세관(capillary) 지름 관 크기부터 1/2 in의 튜브(tube)관 크기까지, 다양한 크기를 가질 수 있다. 압력도관(130)에는 상온에서 액체인 소듐-포타슘(Na-K) 합금이 수용될 수 있다. 이 경우, 소듐-포타슘(Na-K) 합금이 고온 700℃ 이상 상승하는 경우에는 금속 증기가 발생하므로, 압력도관(130)에는 냉각수단이 구비될 수도 있다.
외부도관(140)은 하우징(100)의 외면에 연결될 수 있다. 외부도관(140)은 하우징과 연결되는 제1연결부(141) 및 제1연결부(141)와 연결되는 제2연결부(142)를 포함할 수 있다.
제1연결부(141)는 하우징(100)의 외면, 예를 들어, 하우징(100)의 측면에 연결될 수 있다. 제1연결부(141)에는 하우징(100)의 밑면에서 연장되는 압력도관(130)이 삽입되어, 압력도관(130)의 적어도 일부를 내부에 수용할 수 있다. 제1연결부(141)는, 고온에 따라 압력도관에서 발생하는 열을 배출하기 위한 홀을 복수개 포함할 수 있다.
제2연결부(142)는 일측이 제1연결부(141)와 연결되고, 타측은 압력 트랜스미터 또는 다른 다이어프램 조립체 등과 연결될 수 있다. 이 경우, 제2연결부(142)는 제1연결부(141)를 통해 삽입된 압력도관(130)을 내부에 수용하고 압력도관(130)을 다른 장치에 연결하도록 보호할 수 있다. 결과적으로, 외부도관(140)은 고온의 압력도관(130)에 의한 사용자의 부상 또는 압력도관의 손상을 방지할 수 있다.
다이어프램 조립체(10)는 하우징(100)의 외측에 구비되는 방열부(150)를 더 포함할 수 있다.
방열부(150)는, 예를 들어, 하우징(100)의 밑면에 구비되어, 하우징(100)의 밑면에 연장되는 압력도관(130)을 수용할 수 있다. 방열부(150)의 외면에는 복수개의 홀이 형성될 수 있다. 따라서, 방열부(150)는 하우징(100) 내부의 고온 유체에 의한 열을 외부로 방출시킬 수 있다. 또한, 압력도관(130)이 고온인 경우 발생하는 사고 또는, 압력도관(130)이 외부와 충돌하는 문제를 방지할 수 있다.
이하, 실시 예에 따른 압력 트랜스미터 시스템(1)에 대하여 설명하도록 한다. 압력 트랜스미터 시스템(1)을 설명함에 있어서, 상술한 내용과 중복되는 기재는 생략하도록 한다.
도 4는 다이어프램 조립체(10)에 압력 트랜스미터(160)이 연결된 압력 트랜스미터 시스템(1)에 대한 개략도이다.
압력 트랜스미터 시스템(1)은, 다이어프램 조립체(10) 및 압력 트랜스미터(160)를 포함할 수 있다. 다이어프램 조립체(10)는, 하우징(100), 유체출입구(110), 다이어프램(120), 압력도관(130), 외부도관(140) 및 방열부(150)을 포함할 수 있다.
다이어프램 조립체(10)는 유체출입구(110)를 통해 압력측정대상(500)과 연결되고, 압력측정대상(500)을 흐르는 유체는 하우징(100)에 수용될 수 있다. 다이어프램(120)은 하우징(100)의 내부에 작용하는 유체의 압력을 검출하고, 이를 압력도관(130)을 통해서 압력 트랜스미터(160)에 전달할 수 있다.
압력 트랜스미터(160)는 압력도관(130)과 연결되어, 다이어프램(120)이 검출한, 하우징(100) 내부에 작용하는 유체압력을 측정할 수 있다. 압력 트랜스미터(160)는 압력측정기를 포함할 수 있으며, 압력측정기를 통해 압력측정대상(500)을 흐르는 유체의 압력을 수치로 변환하여 표시할 수 있다.
결과적으로, 압력 트랜스미터 시스템(1)은 압력측정대상(500)을 흐르는 유체의 압력을 측정함에 있어서, 유체를 하우징(100) 내부로 유동시키고, 유체가 하우징(100) 내부에 작용하는 압력을 간접적으로 측정할 수 있다. 이러한 구조를 통해, 압력 트랜스미터 시스템(1)은 압력측정대상(500)에 별도로 구비된 계측기기에 다이어프램(120)을 부착하여 압력을 측정하지 않고, 하우징(100)을 압력측정대상(500)에 직접 연결하고, 하우징(100) 내부로 구비된 다이어프램(120)으로 유체의 압력을 검출할 수 있다.
즉, 압력측정대상(500)에 다이어프램(120)을 연결하기 위한 배관이 구비되지 않아도, 압력 트랜스미터 시스템(1)을 압력측정대상(500)에 직접 연결하여 압력을 검출할 수 있으므로, 배관을 설치할 공간을 요구하지 않는다.
또한, 다이어프램(120)이 하우징(100)의 밑면에 작용하는 압력을 통해, 유체 압력을 검출하기 때문에, 하우징 내부에 발생하는 가스층이 다이어프램(120)에 압력을 가하는 것을 방지하여, 가스층에 의해 발생하는 압력측정의 오차를 최소화할 수 있다. 압력 트랜스미터 시스템(1)은 하우징(100)의 내부 밑면이 경사지게 형성되기 때문에, 압력 검출이 끝난 이후에 유체의 배출이 용이하여, 하우징(100) 내부에 유체가 남아있는 것을 방지할 수 있다.
이하, 다른 실시예에 따른 압력 트랜스미터 시스템(2)를 설명하도록 한다.
도 5는, 복수개의 다이어프램 조립체를 포함하는 압력 트랜스미터 시스템(2)의 개략도이다.
도 5를 참조하면, 압력 트랜스미터 시스템(2)은 압력을 측정하는 압력 트랜스미터(250), 압력 트랜스미터(250)와 일측이 연결되는 제1압력도관(240), 제1압력도관(240)의 타측과 연결되는 제1다이어프램(231) 및 제1다이어프램(231)을 포함하는 제1다이어프램조립체(230), 제1다이어프램조립체(230)과 일측이 연결되는 제2압력도관(220), 제2압력도관(220)의 타측과 연결되는 제2다이어프램(211) 및 제2다이어프램(211)을 포함하고 압력측정대상(500)과 연결되는 제2다이어프램조립체(210)를 포함할 수 있다.
이 경우, 제1다이어프램(231) 및 제2다이어프램(211)은 얇은 주름 판막 형태를 가질 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 제1다이어프램(231) 및 제2다이어프램(211)은 금속제, 비금속제를 포함하여 다양하게 변경될 수 있다.
제1압력도관(240)은 일측이 압력 트랜스미터(250)에 연결되며, 타측은 제1다이어프램(231)과 연결될 수 있다. 그리고, 제1압력도관(240)에는 300의 온도에 견딜 수 있는 유기 열매체가 사용될 수 있다. 예를 들어, 유기 열매체는 Dow Corning 702, 704, 705 등이 사용될 수 있다.
그리고, 제1압력도관(240)은 1/16 in의 모세관(capillary) 지름 관 크기부터 1/2 in의 튜브(tube)관 크기까지 사용될 수 있다. 또한, 제1압력도관(240)은 주변 대기 온도의 영향에 따른 압력 측정치의 오차가 발생할 수 있기 때문에, 보온될 수 있다.
제1압력도관(240)과 연결되는 제1다이어프램(231)을 구비하는 제1다이어프램조립체(230)는 제2압력도관(220)의 일 측과 연결될 수 있다. 그리고, 제2압력도관(220)의 타 측은 제2다이어프램(211)과 연결될 수 있다.
제2압력도관(220)에는 상온에서 액체인 소듐-포타슘(Na-K) 합금이 사용될 수 있다. 이 경우, 소듐-포타슘(Na-K) 합금은 700℃ 이상에서는 기화될 수 있기 때문에, 제2압력도관(220)에 냉각수단이 구비될 수 있다. 그러나 압력 트랜스미터 시스템(2)이 냉각수단을 반드시 구비해야 하는 것은 아니다.
제2다이어프램(211)을 구비하는 제2다이어프램조립체(210)는 압력측정대상(500)과 연결될 수 있다. 이 경우, 압력측정대상(500)을 유동하는 유체는 제2다이어프램조립체(210)의 측면에 형성된 유체출입구를 통해 제2다이어프램조립체(210)로 유입할 수 있으며, 제2다이어프램조립체(210) 내부 밑면에 위치한 제2다이어프램(211)은 유입된 유체가 밑면에 작용하는 압력을 검출할 수 있다.
즉, 압력측정대상(500)에 별도로 구비된 계측기기에 제2다이어프램(211)을 부착하여 압력을 측정하는 것이 아니라, 제2다이어프램조립체(210)를 압력측정대상(500)에 직접 연결하고, 제2다이어프램조립체(210) 내부에 구비된 제2다이어프램(211)으로 유체의 압력을 검출하므로, 압력측정대상(500)에 별도의 계측기기가 구비될 필요가 없다
또한, 제2다이어프램(211)이 제2다이어프램조립체(210) 밑면에 작용하는 압력을 검출하도록 구비되므로, 제2다이어프램조립체(210) 내부에 가스층이 발생하는 경우에도, 오차가 발생하는 것을 방지할 수 있다.
즉, 가스층이 제2다이어프램(211)의 판막 일부에 압력을 가하는 것을 방지하여, 압력측정대상(500)의 실제압력과의 오차를 줄일 수 있다.
또한, 제2다이어프램조립체(211)의 크기나 형상에 관계없이 다양한 크기의 제2다이어프램(211)을 사용할 수 있다.
이 경우, 제2다이어프램(211)은 제2다이어프램조립체(210) 밑면에 작용하는 압력을 측정하도록 위치하므로, 제2다이어프램조립체(210) 내부로 유입된 유체가 제2다이어프램(211) 전체면에 접촉할 수 있다. 따라서, 크기에 관계없이, 유체의 압력이 제2다이어프램(211) 전체에 작용할 수 있다.
즉, 정확한 압력검출을 위해, 압력측정대상(500)으로부터 유입된 유체가 제2다이어프램조립체(210) 내부를 가득 채우지 않아도 되므로, 제2다이어프램(211)의 크기에 관계없이 동일한 효과를 가질 수 있다.
그리고, 압력측정대상(500)에 다이어프램을 연결하기 위한 배관이 구비되지 않아도, 압력 트랜스미터 시스템(2)을 압력측정대상(500)에 직접 연결하여 압력을 검출할 수 있으므로, 배관이 설치될 공간이 없어도, 압력의 측정이 가능하다.
또한, 제2다이어프램조립체(210) 내부는 경사지게 형성되어, 유체의 배출이 용이하도록 할 수 있다. 구체적으로, 유체가 제2다이어프램조립체(210) 내부로 들어갈수록 유체의 유동단면의 높이가 작아지도록 형성될 수 있다. 이러한 경사를 통해, 압력검출이 끝난 경우, 유체가 제2다이어프램조립체(210) 내부에 남아있는 것을 방지할 수 있으며, 보다 정확한 압력측정이 가능하다.
그리고, 내부의 경사는 제2다이어프램조립체(210) 내부로 유입되는 유체의 점성에 따라 다르게 조절될 수 있다. 예를 들어, 유체의 점성이 큰 경우에는 경사의 각도가 급하게 형성되어 유체의 배출을 용이하게 할 수 있으며, 유체의 점성이 작은 경우에는 각도를 완만하게 형성하여, 다이어프램(211)이 유체압력을 충분히 검출하도록 배출속도를 낮출 수 있다.
이와 같이 상술한 실시예들에 따르면, 다이어프램 조립체(10) 내부로 유체를 유입시키고, 유체의 유동방향과 다른 방향으로 설치된 다이어프램(120)을 통해 압력측정대상(500)의 압력을 검출하여, 별도의 계측설비나 기기가 없이도 압력측정이 가능하다. 이러한 압력측정을 통해, 압력측정대상(500)에 계측기기를 설치할 공간이 없더라도 압력측정이 가능하다는 장점이 있다.
또한, 다이어프램(120)이 수평 또는 경사의 형태로 위치하여, 하우징(100) 내부의 가스층에 관계없이, 유체압력이 다이어프램(120) 전체에 작용하므로, 보다 정확한 압력측정이 가능하다.
그리고, 다이어프램(120) 하우징(100)내부에 유입된 유체 액위의 관계없이 유체압력을 검출하여, 크기가 다양한 다이어프램(120)을 사용할 수 있다.
이상과 같이 비록 한정된 도면에 의해 실시 예들이 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구조, 장치 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시 예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (12)

  1. 내부공간이 마련된 하우징;
    상기 하우징 측면을 관통하여 형성되는 유체출입구; 및
    상기 내부공간의 밑면에 작용하는 압력을 검출하도록, 상기 하우징 밑면에 구비되는 다이어프램을 포함하는 다이어프램 조립체.
  2. 제1항에 있어서,
    상기 하우징의 밑면은 상기 유체출입구를 기준으로, 경사지게 형성되는 다이어프램 조립체.
  3. 제2항에 있어서,
    상기 밑면은, 상기 유체출입구로부터 상기 하우징의 내측을 향하여 상향 경사지게 형성되는 다이어프램 조립체.
  4. 제3항에 있어서,
    상기 하우징의 밑면은, 상기 측면을 기준으로 서로 대칭되는 형상으로 형성되는 다이어프램 조립체.
  5. 제2항에 있어서,
    상기 밑면의 경사는 조절 가능한, 다이어프램 조립체.
  6. 제1항에 있어서,
    상기 하우징을 관통하여 상기 다이어프램과 연결되고, 상기 다이어프램이 검출한 압력을 전달하는 압력도관을 더 포함하는, 다이어프램 조립체.
  7. 제6항에 있어서,
    상기 하우징의 측면에 연결되는 외부도관을 더 포함하고,
    상기 압력도관은, 상기 하우징의 외면으로부터 연장되고, 적어도 일부가 상기 외부도관에 수용되는, 다이어프램 조립체.
  8. 제 6항에 있어서,
    상기 하우징의 외측에 구비되고, 상기 압력도관의 적어도 일부를 수용하는 방열부를 더 포함하는, 다이어프램 조립체.
  9. 제1항에 있어서,
    일측은 상기 유체출입구에 연결되고, 타측은 압력측정대상에 연결되는 유체출입관을 더 포함하는 다이어프램 조립체.
  10. 내부공간이 마련된 하우징;
    상기 하우징 측면을 관통하여 형성된 유체출입구;
    상기 내부공간의 밑면에 작용하는 유체압력을 검출하도록, 상기 밑면에 구비되는 다이어프램;
    일측은 상기 다이어프램과 연결되고, 타측은 상기 하우징 외면을 관통하는 압력도관;
    상기 압력도관의 타측과 연결되어 유체의 압력을 측정하는 압력 트랜스미터를 포함하는 압력 트랜스미터 시스템.
  11. 유체의 압력을 측정하는 압력 트랜스미터;
    일측이 상기 압력 트랜스미터에 연결되는 제1압력도관;
    상기 제1압력도관의 타측에 연결되는 제1다이어프램을 구비한 제1다이어프램조립체;
    일측이 상기 제1다이어프램조립체에 연결되는 제2압력도관;
    상기 제2압력도관의 타측에 연결되는 제2다이어프램을 구비하고, 압력측정대상에 연결되는 제2다이어프램조립체를 포함하고,
    상기 제2다이어프램은,
    상기 제2다이어프램 조립체의 밑면에 위치하여, 상기 제2다이어프램조립체 측면을 통해 유입되는 유체가 상기 밑면에 작용하는 압력을 검출하는 압력 트랜스미터 시스템.
  12. 제 11항에 있어서,
    상기 제1압력도관은 유기 열매체를 포함하고,
    상기 제2압력도관은 소듐-포타슘(Na-K) 합금을 포함하는 압력 트랜스미터 시스템.
PCT/KR2017/013593 2016-12-12 2017-11-27 다이어프램 조립체 및 이를 포함하는 압력 트랜스미터 시스템 WO2018110859A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160168904A KR101968324B1 (ko) 2016-12-12 2016-12-12 다이어프램 조립체 및 이를 포함하는 압력 트랜스미터 시스템
KR10-2016-0168904 2016-12-12

Publications (2)

Publication Number Publication Date
WO2018110859A2 true WO2018110859A2 (ko) 2018-06-21
WO2018110859A3 WO2018110859A3 (ko) 2018-09-07

Family

ID=62558833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013593 WO2018110859A2 (ko) 2016-12-12 2017-11-27 다이어프램 조립체 및 이를 포함하는 압력 트랜스미터 시스템

Country Status (2)

Country Link
KR (1) KR101968324B1 (ko)
WO (1) WO2018110859A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102483155B1 (ko) * 2019-09-03 2023-01-04 주식회사 경동나비엔 어댑터 및 이를 포함하는 압력센서 조립체

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515711A (en) * 1995-06-26 1996-05-14 Mks Instruments, Inc. Pressure measurement and calibration apparatus using gravity-induced diaphragm deflection
JPH1194671A (ja) * 1997-09-16 1999-04-09 Yokogawa Electric Corp 圧力センサ
JP3521243B2 (ja) 1998-10-28 2004-04-19 横河電機株式会社 圧力測定装置
US6526357B1 (en) * 1999-08-09 2003-02-25 Gambro, Inc. Associated parameter measuring and/or monitoring such as in the evaluation of pressure differences
FR2817754B1 (fr) * 2000-12-08 2003-09-12 Hospal Internat Marketing Man Dispositif pour la mesure de pression comportant une membrane moulee dans une cassette
CA2381456C (en) * 2001-04-25 2011-08-02 Oertli-Instrumente Ag Pressure measuring system for measuring line pressure
KR101040332B1 (ko) 2009-04-03 2011-06-10 한국수력원자력 주식회사 소듐 취급 계통에서 사용 가능한 압력 측정기
EP3489649B8 (en) 2012-03-06 2021-06-23 Rosemount Inc. Remote seal pressure measurement system for subsea use
KR101200170B1 (ko) * 2012-07-09 2012-11-13 한국수력원자력 주식회사 고온 압력 트랜스미터 시스템
CN103278288A (zh) 2013-06-14 2013-09-04 昆山市润苏物资有限公司 一种罐用防冻压力表

Also Published As

Publication number Publication date
KR20180067314A (ko) 2018-06-20
KR101968324B1 (ko) 2019-04-12
WO2018110859A3 (ko) 2018-09-07

Similar Documents

Publication Publication Date Title
EP2107347B1 (en) Flow detector with a housing
CN102607730B (zh) 多点柔性热电偶
WO2011111942A2 (ko) 복수개의 센서를 구비하여 정밀하고 신뢰성 있는 압력탱크의 수위제어 방법
WO2018110859A2 (ko) 다이어프램 조립체 및 이를 포함하는 압력 트랜스미터 시스템
CN107796524A (zh) 温度探针
CN104011478A (zh) 即热式热水器
WO2018199498A2 (en) Hot water generation module for water treatment apparatus
US8582295B2 (en) Electronic system
WO2020009406A1 (ko) 스팀트랩 장치용 스트레이너
WO2018030598A1 (ko) 극저온 냉동기를 이용한 시편의 열물성 측정 장치 및 방법
WO2021201631A1 (ko) 차압식 유량계 시스템
WO2018151500A1 (ko) 소화용기의 소화약제 누출여부를 감시하는 시스템 및 방법
CN108801327A (zh) 一种热介质循环的综合试验系统
CN114705324A (zh) 一种温度传感器检测装置
CN210504033U (zh) 一种用于反应罐油品加热保温的拆卸式加热装置
WO2023282430A1 (ko) 누설 검출장치
WO2023068636A1 (en) Device for generating aerosol
WO2019022339A1 (ko) 유체 상태 측정 장치
WO2011068293A1 (ko) 나노유체의 열확산율 측정장치
WO2023140578A1 (en) Aerosol generating device
WO2019172644A1 (ko) 유로 가이드 탱크를 포함하는 비데용 온수 시스템 및 이를 이용한 온수 모드 방법
WO2016060496A1 (ko) 멀티어플리케이션 오리피스 스팀트랩 장치
WO2019182214A1 (ko) 방수검사장치
WO2015080443A1 (en) Continuous temperature measuring device and rh apparatus including the same
WO2024076090A1 (ko) 차량의 실내온도 감지센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881236

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881236

Country of ref document: EP

Kind code of ref document: A2