WO2018110660A1 - Particulate matter detection apparatus - Google Patents

Particulate matter detection apparatus Download PDF

Info

Publication number
WO2018110660A1
WO2018110660A1 PCT/JP2017/044959 JP2017044959W WO2018110660A1 WO 2018110660 A1 WO2018110660 A1 WO 2018110660A1 JP 2017044959 W JP2017044959 W JP 2017044959W WO 2018110660 A1 WO2018110660 A1 WO 2018110660A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate matter
voltage
detection
unit
electrodes
Prior art date
Application number
PCT/JP2017/044959
Other languages
French (fr)
Japanese (ja)
Inventor
小池 和彦
豪 宮川
Original Assignee
株式会社Soken
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017238902A external-priority patent/JP6596482B2/en
Application filed by 株式会社Soken, 株式会社デンソー filed Critical 株式会社Soken
Priority to DE112017006342.6T priority Critical patent/DE112017006342T5/en
Priority to CN201780077511.5A priority patent/CN110114660A/en
Publication of WO2018110660A1 publication Critical patent/WO2018110660A1/en
Priority to US16/439,983 priority patent/US20190293541A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance

Definitions

  • the present disclosure relates to a particulate matter detection device for detecting the number of particulate matter discharged from an internal combustion engine.
  • Particulate matter contained in automobile exhaust gas (that is, Particulate Matter; hereinafter referred to as PM as appropriate) is mainly composed of conductive soot (that is, soot), and SOF derived from unburned fuel or engine oil ( That is, it is a mixture containing Soluble Organic Fraction (soluble organic component).
  • the particulate matter detection device includes, for example, an electric resistance type sensor element, applies a voltage to the detection electrode portion provided on the surface of the insulating substrate to form an electrostatic field, and collects particulate matter. The change in the resistance value of the detection electrode portion due to the is detected.
  • Patent Document 1 discloses a sensor control device in which a plurality of electric resistance type PM detection units are arranged and the particulate matter adhering to each PM detection unit is set to have a different particle size distribution. .
  • the average particle mass per PM is set for each PM detection unit, and the number of PM particles is calculated using the PM mass detected from the sensor output of each PM detection unit and the set average particle mass. .
  • the average particle mass is set by adjusting the applied voltage to each PM detection unit and utilizing the fact that the particle size range of the particulate matter that adheres increases as the applied voltage increases,
  • the number of PM particles in the particle size range can be calculated.
  • the state of the particulate matter discharged together with the exhaust gas varies greatly depending on the engine operating conditions. Therefore, for example, if a deviation occurs between the particle diameter of the particulate matter deposited on each PM detection unit and the set particle diameter, there is a problem that the detection accuracy of the number of PM particles calculated thereby also decreases.
  • a problem has been found that the apparatus configuration is complicated, and it is likely to increase the size and cost.
  • An object of the present disclosure is to provide a particulate matter detection device that improves the detection accuracy of particulate matter by calculating the number of particles by reflecting changes in the particle size of the particulate matter depending on engine operating conditions. To do.
  • a particulate matter detection device for detecting particulate matter contained in a gas to be measured, A sensor unit having a detection unit in which a pair of electrodes spaced apart from each other are arranged on the surface of the substrate exposed to the gas to be measured, and outputting a signal corresponding to the amount of particulate matter electrostatically collected by the detection unit
  • a sensor control unit that detects the number of particles of the particulate matter electrostatically collected by the detection unit based on a sensor output transmitted from the sensor unit;
  • the sensor control unit A collection control unit that applies a first voltage between the pair of electrodes of the detection unit and causes the detection unit to electrostatically collect particulate matter;
  • the resistance value between the pair of electrodes is detected after changing the applied voltage between the pair of electrodes to a second voltage different from the first voltage in a state where the sensor output at the first voltage has reached a threshold value.
  • a particle number calculating unit that calculates the number of particles using an average particle diameter of the particulate substance estimated from the resistance value and
  • a particulate matter detection device that detects particulate matter contained in a gas to be measured.
  • a sensor unit having a detection unit in which a pair of electrodes spaced apart from each other are arranged on the surface of the substrate exposed to the gas to be measured, and outputting a signal corresponding to the amount of particulate matter electrostatically collected by the detection unit
  • a sensor control unit that detects the number of particles of the particulate matter electrostatically collected by the detection unit based on a sensor output transmitted from the sensor unit;
  • the sensor control unit A collection control unit that applies a first voltage between the pair of electrodes of the detection unit and causes the detection unit to electrostatically collect particulate matter; In a state where the sensor output at the first voltage reaches a threshold value, the voltage applied between the pair of electrodes is changed to a second voltage different from the first voltage, and then the pair at a plurality of voltages having different magnitudes.
  • the number of particles for detecting the resistance value between the electrodes and calculating the number of particles using the average particle size of the particulate matter estimated from the resistance value and the mass of the particulate matter estimated from the sensor output A particulate matter detection device having a calculation unit.
  • Still another aspect of the present disclosure is a particulate matter detection device that detects particulate matter contained in a gas to be measured.
  • a sensor unit having a detection unit in which a pair of electrodes spaced apart from each other are arranged on the surface of the substrate exposed to the gas to be measured, and outputting a signal corresponding to the amount of particulate matter electrostatically collected by the detection unit
  • a sensor control unit that detects the number of particles of the particulate matter electrostatically collected by the detection unit based on a sensor output transmitted from the sensor unit;
  • the sensor control unit A collection control unit that applies a first voltage between the pair of electrodes of the detection unit and causes the detection unit to electrostatically collect particulate matter; In a state where the sensor output at the first voltage reaches a threshold value, the voltage applied between the pair of electrodes is changed to a second voltage different from the first voltage, and then the pair at a plurality of voltages having different magnitudes.
  • the resistance value between the electrodes is detected, and the average particle diameter of the particulate matter estimated from the slope in the relationship between the plurality of voltages and the resistance value and the mass of the particulate matter estimated from the sensor output are used.
  • a particle number calculating unit for calculating the number of particles.
  • Still another aspect of the present disclosure is a particulate matter detection device that detects particulate matter contained in a gas to be measured.
  • a sensor unit having a detection unit in which a pair of electrodes spaced apart from each other are arranged on the surface of the substrate exposed to the gas to be measured, and outputting a signal corresponding to the amount of particulate matter electrostatically collected by the detection unit
  • a sensor control unit that detects the number of particles of the particulate matter electrostatically collected by the detection unit based on a sensor output transmitted from the sensor unit;
  • the sensor control unit A collection control unit that applies a first current between the pair of electrodes of the detection unit and electrostatically collects particulate matter in the detection unit;
  • the resistance value between the pair of electrodes is detected after the applied current between the pair of electrodes is changed to a second current different from the first current with the sensor output at the first current reaching a threshold value.
  • a particle number calculating unit that calculates the number of particles using an average particle diameter of the particulate substance estimated
  • the sensor control unit activates the collection control unit to start electrostatic collection of the particulate matter.
  • the voltage control unit is operated to change the first voltage for collection from the first voltage to the second voltage, and after changing the collection state, the resistance value between the pair of electrodes is detected. To do.
  • the average particle diameter of the particulate matter can be estimated from the detected resistance value.
  • the number of particles can be calculated by the particle number calculation unit using the mass of the particulate matter estimated from the sensor output.
  • the resistance value in each voltage can also be detected in several voltages.
  • the average particle diameter of the particulate matter can be estimated using resistance values at a plurality of voltages.
  • the average particle diameter of a particulate matter can also be estimated using the inclination in the relationship between a some voltage and resistance value like the said further another aspect.
  • the first current and the second current may be applied between the pair of electrodes, and the average particle size of the particulate matter may be reduced. Can be estimated.
  • the number of particles can be calculated by reflecting the change in the particle size of the particulate matter depending on the engine operating conditions, and the particulate matter detection with improved detection accuracy of the particulate matter.
  • An apparatus can be provided.
  • FIG. 1 is an enlarged view of a main part showing an example of a particulate matter detection sensor constituting a particulate matter detection device in Embodiment 1.
  • FIG. 2 is an overall perspective view showing a configuration example of a sensor element of the particulate matter detection sensor in Embodiment 1.
  • FIG. 3 is a schematic configuration diagram illustrating an overall configuration of an exhaust gas purification apparatus for an internal combustion engine including the particulate matter detection device according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of sensor output characteristics of the particulate matter detection sensor according to the first embodiment.
  • FIG. 5 is an enlarged view of a main part showing another example of the particulate matter detection sensor according to the first embodiment.
  • FIG. 6 is an overall perspective view illustrating another configuration example of the sensor element of the particulate matter detection sensor according to the first embodiment.
  • FIG. 7 is a flowchart of particulate matter detection processing executed by the sensor control unit of the particulate matter detection device according to the first embodiment.
  • FIG. 8 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the detection time in Embodiment 1.
  • FIG. 9 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the interelectrode resistance in the first embodiment.
  • FIG. 10 is an overall schematic configuration diagram of a model exhaust gas purification apparatus used for examining the relationship between the voltage applied to the detection unit of the sensor element and the interelectrode resistance in the first embodiment.
  • FIG. 11 is a diagram illustrating the relationship between the average particle diameter of the particulate matter collected by the detection unit of the sensor element and the interelectrode resistance in Embodiment 1.
  • FIG. 12 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the slope of a straight line indicating the relationship between the average particle diameter of the particulate matter and the interelectrode resistance in the first embodiment.
  • FIG. 13 is a diagram showing the relationship between the reciprocal of the average particle diameter of the collected particulate matter and the interelectrode resistance in Embodiment 1.
  • FIG. 14 is a schematic diagram for explaining changes in interelectrode resistance depending on the average particle size of the particulate matter and the applied voltage in Embodiment 1.
  • FIG. 15 is a diagram illustrating the relationship between the estimated number of particulate substances and the actually measured number of particulate substances in Embodiment 1.
  • FIG. 16 is a flowchart of particulate matter detection processing executed by the sensor control unit of the particulate matter detection device in Embodiment 2.
  • FIG. 17 is a diagram illustrating an example of the relationship between the number of particles of particulate matter estimated under the condition that there is one detection voltage and the number of particles of actually measured particulate matter in the second embodiment.
  • FIG. 18 is a diagram illustrating an example of the relationship between the number of particles of particulate matter estimated under the condition that there are a plurality of detection voltages and the number of particles of actually measured particulate matter in Embodiment 2.
  • FIG. 19 is a flowchart of particulate matter detection processing executed by the sensor control unit of the particulate matter detection device in Embodiment 3.
  • FIG. 20 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the interelectrode resistance in the third embodiment.
  • FIG. 21 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the interelectrode resistance in the third embodiment.
  • FIG. 22 is a diagram showing the relationship between the reciprocal of the average particle diameter of the collected particulate matter and the interelectrode resistance in Embodiment 3.
  • FIG. 23 is a diagram showing the relationship between the reciprocal of the average particle diameter of the collected particulate matter and the slope of the relational expression between applied voltage and interelectrode resistance in Embodiment 3.
  • FIG. 24 is a flowchart of particulate matter detection processing executed by the sensor control unit of the particulate matter detection device in Embodiment 4.
  • FIG. 25 is a diagram showing a change in element temperature during heat treatment of the sensor element in the fourth embodiment.
  • FIG. 26 is a diagram showing the relationship between the presence / absence of heat treatment of the sensor element, the reciprocal of the average particle diameter of the particulate matter, and the interelectrode resistance in Embodiment 4.
  • FIG. 27 is a flowchart of particulate matter detection processing executed by the sensor control unit of the particulate matter detection device according to the fifth embodiment.
  • FIG. 28 is an overall view showing a configuration example of a sensor element of a particulate matter detection sensor in Embodiment 6.
  • FIG. 29 is a cross-sectional view illustrating a configuration example of the detection unit of the sensor element in the sixth embodiment, and is a cross-sectional view taken along the line AA in FIG. FIG.
  • FIG. 30 is a graph showing the relationship between the surface electrical resistivity and the temperature of the high-resistance conductive material constituting the detection unit of the sensor element in Embodiment 6.
  • FIG. 31 is a diagram for explaining a method of measuring the surface electrical resistivity in the sixth embodiment.
  • FIG. 32 is a diagram for explaining a method for measuring bulk electrical resistivity in the sixth embodiment.
  • FIG. 33 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the interelectrode resistance in the sixth embodiment.
  • FIG. 34 is a diagram showing the relationship between the reciprocal of the average particle diameter of the collected particulate matter and the interelectrode resistance in Embodiment 6.
  • FIG. 31 is a diagram for explaining a method of measuring the surface electrical resistivity in the sixth embodiment.
  • FIG. 32 is a diagram for explaining a method for measuring bulk electrical resistivity in the sixth embodiment.
  • FIG. 33 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the
  • FIG. 35 is an enlarged cross-sectional view schematically showing an initial state in which particulate matter is not deposited on the detection part of the sensor element in the sixth embodiment.
  • FIG. 36 is an enlarged cross-sectional view schematically showing a state in which particulate matter adheres to the detection part of the sensor element in the sixth embodiment.
  • FIG. 37 is a diagram illustrating the relationship between the amount of particulate matter deposited on the detection unit of the sensor element and the sensor output in the sixth embodiment.
  • FIG. 38 is a diagram illustrating an example of the relationship between the estimated number of particulate matter particles and the actually measured number of particulate matter particles in Embodiment 6.
  • FIG. 39 is a flowchart of the particulate matter detection process executed by the sensor control unit of the particulate matter detection device according to the seventh embodiment.
  • FIG. 40 is a diagram showing the relationship between the average particle size and specific gravity of particulate matter in Embodiment 7.
  • FIG. 41 is a diagram illustrating an example of the relationship between the estimated number of particles of particulate matter and the actually measured number of particles of particulate matter in the embodiment 7.
  • FIG. 42 is a diagram illustrating an example of the relationship between the estimated number of particulate substances and the actually measured number of particulate substances in Embodiment 7.
  • FIG. 43 is a flowchart of particulate matter detection processing executed by the sensor control unit of the particulate matter detection device in Embodiment 8.
  • FIG. 40 is a diagram showing the relationship between the average particle size and specific gravity of particulate matter in Embodiment 7.
  • FIG. 41 is a diagram illustrating an example of the relationship between the estimated number of particles of particulate matter and the actually measured number of
  • FIG. 44 is a diagram showing the relationship between the average particle size of the collected particulate matter and the interelectrode resistance in Embodiment 8.
  • FIG. 45 is a diagram illustrating an example of the relationship between the estimated number of particulate matter particles and the actually measured number of particulate matter particles in Embodiment 8.
  • FIG. 46 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the interelectrode resistance in the eighth embodiment.
  • FIG. 47 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the measurement current in the eighth embodiment;
  • FIG. 48 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the amount of change in resistance between the electrodes in the eighth embodiment.
  • FIG. 49 is a diagram showing the relationship between the average particle size of collected particulate matter and the resistance change between electrodes in Embodiment 8.
  • FIG. 50 is a diagram showing the relationship between the average particle diameter of the particulate matter to be collected and the resistance change amount between the electrodes in Embodiment 8.
  • FIG. 51 is a diagram showing the relationship between the average particle diameter of the collected particulate matter and the interelectrode resistance in the eighth embodiment.
  • the particulate matter detection device detects particulate matter contained in the gas G to be measured, and includes a particulate matter detection sensor 1 as a sensor unit, and particulate matter detection.
  • An electronic control unit (hereinafter referred to as an ECU) 4 is provided as a sensor control unit that detects the number of particles of the collected particulate matter based on the sensor output from the sensor 1.
  • the ECU 4 includes a collection control unit 41, a particle number calculation unit 42, and a heating control unit 43.
  • the ECU 4 outputs a control signal to the particulate matter detection sensor 1 or receives a detection signal to capture the particulate matter. Control collection and detection.
  • the particle number calculation unit 42 includes a voltage control unit 421 and an interelectrode resistance detection unit 422. Details of these parts will be described later.
  • the particulate matter detection sensor 1 includes an electric resistance type sensor element 10 and a protective cover 12 covering the outer periphery thereof.
  • the sensor element 10 is detected by being exposed to the gas G to be measured on the front end side (that is, the lower end side in FIG. 1) with the axial direction of the protective cover 12 as the longitudinal direction X (that is, the vertical direction in FIG. 1).
  • Part 2 is provided.
  • the detection unit 2 can be heated by a heater unit 3 built in the sensor element 10.
  • the protective cover 12 has a cylindrical body shape made of a metal material such as stainless steel, and has a plurality of measured gas flow holes 13 and 14 on the side surface and the front end surface.
  • the gas to be measured is introduced into the protective cover 12 from the gas flow hole 13 to be measured on the side surface facing the detection unit 2, and the gas to be measured on the tip surface along the surface of the detection unit 2.
  • a flow of the gas to be measured G toward the flow hole 14 is formed.
  • the sensor element 10 has a rectangular parallelepiped-shaped insulating base 11 as a base, and the front end side in the longitudinal direction X of the insulating base 11 (that is, the right end side in the left-right direction in FIG. 2). It has a detection unit 2 to be formed and a heater unit 3 embedded in the insulating substrate 11.
  • the detection unit 2 includes a pair of electrodes 21 and 22 that are printed in a comb shape on one side surface of the insulating substrate 11 (that is, the upper side surface in FIG. 2 and the left side surface in FIG. 1).
  • the comb-like electrodes 21 and 22 are each composed of a plurality of linear electrodes, and linear electrodes having different polarities are alternately arranged in parallel to constitute a plurality of electrode pairs.
  • the electrodes 21 and 22 are respectively connected to linear lead electrodes 21a and 22a extending from the distal end side of the insulating base 11 to the proximal end side (that is, the left end side in FIG. 2).
  • the heater unit 3 includes a heater electrode 31 disposed on the distal end side of the insulating substrate 11 and lead electrodes 31a and 31b connected to the heater electrode 31 and extending to the proximal end side.
  • the insulative base 11 is constituted by a laminated body of a plurality of insulative sheets made of an insulative ceramic material such as alumina, for example.
  • the heater electrode 31 and the lead electrodes 31a and 31b are printed on the surface of the insulating sheet, and the other insulating sheets are overlapped to form a predetermined rectangular parallelepiped shaped body, which is fired. Thereby, the sensor element 10 which incorporates the heater part 3 can be formed.
  • the electrodes 21 and 22 of the detection unit 2, the lead electrodes 21 a and 22 a, the heater electrode 31 of the heater unit 3, and the lead electrodes 31 a and 31 b are made of a conductive material such as a noble metal, for example, and are predetermined electrodes using screen printing or the like. It can be formed into a shape.
  • the heater part 3 is not embedded in the insulating base
  • the heater unit 3 only needs to be configured to be able to heat the detection unit 2, and can be provided separately from the insulating substrate 11, for example.
  • a predetermined voltage is applied from the ECU 4 to the electrodes 21 and 22 of the detection unit 2 via the lead electrodes 21a and 22a, respectively. That is, when the collection control unit 41 is operated, the first voltage is applied between the pair of electrodes 21 and 22, and the sensor output V corresponding to the amount of particulate matter electrostatically collected is acquired.
  • a second voltage is applied from the voltage control unit 421, and the resistance value between the electrodes 21 and 22 at the second voltage (hereinafter, appropriately between the electrodes) is detected by the interelectrode resistance detection unit 422. R) (referred to as resistance) is measured.
  • the gas to be measured G is, for example, combustion exhaust gas discharged from the internal combustion engine E shown in FIG. 3, and the particulate matter (that is, PM) is soot (that is, soot) that is a conductive component and an organic component.
  • the discharge amount of particulate matter and the state of particles, for example, the particle size and chemical composition vary depending on the operating state of the internal combustion engine E.
  • the internal combustion engine E is, for example, a diesel engine, and a diesel particulate filter (hereinafter referred to as a DPF) 5 serving as a particulate matter collecting unit is disposed in an exhaust gas passage E1 through which exhaust gas flows.
  • a DPF diesel particulate filter
  • the particulate matter detection sensor 1 is disposed downstream of the DPF 5 and is fixedly attached to the wall of the exhaust gas passage E1 so that the tip half is located in the exhaust gas passage E1.
  • the particulate matter detection sensor 1 is connected to the ECU 4 and outputs a detection signal corresponding to the amount of PM in the exhaust gas downstream of the DPF 5 to the ECU 4.
  • the ECU 4 controls the operation of the detection unit 2 and the heater unit 3 of the particulate matter detection sensor 1 and controls the operating state of the internal combustion engine E.
  • an exhaust gas temperature sensor 51 is attached and fixed to the wall of the exhaust gas passage E1 in the vicinity of the particulate matter detection sensor 1 so that the exhaust gas temperature downstream of the DPF 5 can be detected.
  • An air flow meter 52 is provided to detect the intake flow rate.
  • a rotation speed sensor 53 for detecting the rotation speed of the internal combustion engine E
  • an accelerator pedal sensor 54 for detecting the operation of the accelerator pedal, and other various detection devices are provided. Detection signals from these various detection devices are input to the ECU 4.
  • the ECU4 is a well-known structure provided with the microcomputer 4A, and is connected to various detection apparatuses via the input / output interface I / F.
  • the microcomputer 4A includes a CPU that performs arithmetic processing, a ROM that stores programs and data, and a RAM.
  • the microcomputer 4A periodically executes the program to control each part of the internal combustion engine E including the particulate matter detection sensor 1. To do.
  • the ECU 4 executes a particulate matter detection process based on a prestored program, outputs a control signal to the particulate matter detection sensor 1, deposits the particulate matter on the detection unit 2 of the sensor element 10, and Based on the output signal transmitted from the element 10, the particulate matter electrostatically collected by the detection unit 2 is detected.
  • the particle diameter of the particulate matter discharged into the exhaust gas passage E1 varies depending on the operating conditions of the internal combustion engine E.
  • the conductivity changes, so the resistance of the particulate matter collected by the detection unit 2 changes, and even if the collected amount is the same with the same chemical composition It has been found that the sensor output V is different. Therefore, in this embodiment, the change in the resistance value between the pair of electrodes 21 and 22 accompanying the change in the average particle diameter is grasped in advance, so that the particle diameter of the particulate matter is estimated and the number of particles is accurately calculated. .
  • the ECU 4 applies a first voltage between the pair of electrodes 21 and 22 of the detection unit 2 to form an electrostatic field, and generates particulate matter in the gas G to be measured.
  • a collection control unit 41 that electrostatically collects and a particle number calculation unit 42 that calculates the number N of particles of the collected particulate matter are provided.
  • the particle number calculation unit 42 detects the resistance value R between the pair of electrodes 21 and 22 after changing to the second voltage different from the first voltage in a state where the sensor output V at the first voltage reaches the threshold value. Then, the number N of particles is calculated using the average particle diameter D of the particulate matter estimated from the detected resistance value R and the mass M of the particulate matter estimated from the sensor output V.
  • the particle number calculation unit 42 determines the voltage applied between the pair of electrodes 21 and 22 at the time when the sensor output V at the first voltage for electrostatic collection reaches a threshold value. After changing to the second voltage for changing the collection state of the substance, between the voltage control unit 421 that controls to the detection voltage and the resistance value R between the pair of electrodes 21 and 22 in the detection voltage A resistance detection unit 422.
  • the detection voltage is the same voltage as or different from the second voltage, and is a voltage for detecting the interelectrode resistance.
  • the output characteristic of the particulate matter detection sensor 1 (for example, shown here as a current-time characteristic) is a dead period in which the sensor output becomes zero for a certain period after the start of collection. Thereafter, when the pair of electrodes 21 and 22 are electrically connected by the collected particulate matter, the sensor output starts to increase, and the sensor output increases as the deposition amount increases. Particulate matter can be detected after this output value reaches a preset threshold value (ie, detection time t in FIG. 4).
  • the first voltage is set so that electrostatic collection of the particulate matter by the collection control unit 41 is promoted and the sensor output V rises quickly.
  • the threshold value can be reached quickly, and then the process can proceed to the calculation of the particle number N by the particle number calculation unit 42.
  • the second voltage is set so that the collection state of the particulate matter at the time when the threshold value is reached, for example, the contact resistance and the contact state of the collected particulate matter are changed.
  • the second voltage can be set to any voltage different from the first voltage, and may be higher or lower than the first voltage.
  • the detection voltage is set to a voltage that makes it easy to determine the change in the resistance value R according to the particle diameter.
  • the detection voltage can be set to any voltage suitable for detecting the resistance value R, and may be the same voltage as the first voltage or the second voltage.
  • the second voltage has a larger voltage difference with respect to the first voltage, and the change in the collection state becomes larger.
  • the detection voltage may be set so that the voltage difference from the first voltage is larger within a range in which the resistance value R can be detected with high sensitivity.
  • the resistance value R between the pair of electrodes 21 and 22 tends to increase, and the tendency increases as the particle diameter increases.
  • the voltage lower than the first voltage can be set as the second voltage to change the collection state of the particulate matter, and further, the resistance value R can be detected using the second voltage as the detection voltage. Then, the average particle diameter D can be estimated from the resistance value R detected at the second voltage and the relational expression between the prepared resistance value R and the average particle diameter D of the particulate matter.
  • the resistance value R is detected with high sensitivity, and the average particle diameter D is accurately estimated from the resistance value R. Is possible. Then, the mass M of the particulate matter can be known from the sensor output V, and the average particle diameter D estimated from the resistance value R can be used to accurately calculate the number N of particles.
  • the ECU 4 includes a heating control unit 43 that supplies power to the heater electrode 31 of the heater unit 3 to heat the detection unit 2 to a predetermined temperature.
  • the heating control unit 43 can, for example, operate the heater unit 3 prior to the collection and detection of the particulate matter and burn and remove the particulate matter deposited on the detection unit 2. Thereby, the particulate matter detection sensor 1 can be regenerated.
  • the sensor element 10 of the particulate matter detection sensor 1 is configured to have a detection unit 2 including a pair of electrodes 21 and 22 having a laminated structure on the distal end surface of an insulating substrate 11. Also good.
  • the sensor element 10 is formed, for example, by firing a laminate in which electrode films to be the electrodes 21 or 22 are alternately arranged between a plurality of insulating sheets to be the insulating base 11. At this time, the edge portions of the electrode films to be the electrodes 21 and 22 are alternately exposed on the front end surface of the insulating substrate 11 to form a plurality of electrode pairs composed of linear electrodes having different polarities.
  • the electrode films to be the electrodes 21 or 22 are connected to lead electrodes (not shown), and are connected to each other on the base end side of the insulating substrate 11.
  • the sensor element 10 having the detection unit 2 having a laminated structure has a distal end surface slightly located at the distal end surface where the detection unit 2 is located than the plurality of gas flow holes 13 to be measured opened on the side surface of the protective cover 12. It is arranged to be located on the side.
  • the configuration of the protective cover 12 is the same as that of the example shown in FIG. 1, and the measured gas G flows into the protective cover 12 from the plurality of measured gas flow holes 13 on the side surface, and the measured gas flow on the front end surface. The gas flows toward the hole 14.
  • the flow of the gas to be measured G does not go directly from the gas to be measured flow hole 13 to the detection unit 2, and the flow of the gas to be measured G introduced into the protective cover 12 is in the vicinity of the front end surface of the sensor element 10.
  • the gas flows toward the gas flow hole 14 to be measured on the front end surface.
  • the sensor element 10 is also provided with a heater unit 3 (not shown), and the heater electrode 31 and its lead electrodes 31a and 31b are embedded in the insulating base 11 or printed on the surface of the insulating base 11. Can do.
  • the detection unit 2 may be disposed on one side surface of the distal end side without being formed on the distal end surface. Also in this case, the configuration in which the insulating films to be the electrodes 21 and 22 are arranged between the insulating sheets to be the insulating base 11 and the thickness of the insulating sheet is the distance between the electrodes 21 and 22 is the same.
  • Such a particulate matter detection device can be used for failure diagnosis of the DPF 5 arranged upstream of the particulate matter detection sensor 1 in FIG.
  • the DPF 5 is normal, the discharged particulate matter is collected by the DPF 5 and hardly discharged downstream.
  • the particulate matter detection sensor 1 on the downstream side measures the number N of the particulate matter to be discharged. Presence / absence can be determined. At that time, the detection variation due to the influence of the particle size of the particulate matter is reduced, so that the detection accuracy of the particulate matter detection sensor 1 can be improved and the abnormality can be detected promptly.
  • the present embodiment is an example in which the second voltage and the detection voltage are the same voltage, and the second voltage is lower than the first voltage.
  • the particulate matter detection process is started, the particulate matter is collected in the detection unit 2 of the particulate matter detection sensor 1 in step S1.
  • the particulate matter is burned and removed in advance by the regeneration process of the particulate matter detection sensor 1 performed in a separate routine, and the particulate matter is not deposited on the detection unit 2.
  • the regeneration process is performed by energizing the heater unit 3 built in the sensor element 10 and heating the detection electrode unit 2.
  • the temperature of the detection unit 2 at the time of regeneration is normally set to 600 ° C. or higher at which the Soot can be burned and removed.
  • Step S ⁇ b> 1 is a process as the collection control unit 41 of the ECU 4, and a preset first voltage is applied between the pair of electrodes 21 and 22 of the sensor element 10 and is introduced into the protective cover 12. Particulate matter is deposited on the detector 2.
  • the particulate matter detection sensor 1 captures the particulate matter between the pair of electrodes 21 and 22, and detects an electrical characteristic that changes depending on the amount of the particulate matter.
  • the particulate matter detection sensor 1 preferably has the sensor output V quickly reaching the threshold value.
  • the collection control unit 41 selects the first voltage applied between the pair of electrodes 21 and 22 so that the detection time of the sensor output V is minimized.
  • the threshold is, for example, a predetermined output serving as a detection reference for failure diagnosis of the DPF 5, and can be set to an output value V0 corresponding to the minimum amount of particulate matter that can be detected.
  • the distance between the pair of electrodes 21 and 22 (that is, the electrode interval) is set, for example, in the range of 5 ⁇ m to 100 ⁇ m. In general, the detection sensitivity increases as the distance decreases.
  • the detection time is relatively long in the region where the applied voltage is low, and the detection time decreases as the applied voltage increases, For example, the detection time is shortest when the applied voltage is in the vicinity of 30V to 40V. As the applied voltage becomes higher, the detection time increases again. Therefore, the sensor output V can be quickly raised by setting the first voltage within a range of 30 V to 40 V (for example, 35 V) that minimizes the detection time.
  • the electric adhesion force P is determined by the balance between the Coulomb force and the repulsive force, and there is an optimum value of the applied voltage that minimizes the detection time because the Coulomb force is relatively large and the repulsive force is relatively small. Inferred.
  • step S2 the sensor output V from the sensor element 10 is taken in, and it is determined whether or not the output value V0 which is a threshold value has been reached. If the sensor output V is less than the output value V0, a negative determination is made in step S2, and the process returns to step S1 to continue electrostatic collection and sensor output V capture.
  • step S2 when the sensor output V reaches the output value V0, it is determined that the timing for calculating the number of particles of the particulate matter has been reached, and the process proceeds to step S3. . At this time, the particulate matter is deposited and electrically connected between the pair of electrodes 21 and 22.
  • Steps S3 to S7 are processing as the particle number calculation unit 42 of the ECU 4. Of these, step S3 is processing as the voltage control unit 421, and step S4 is processing as the interelectrode resistance detection unit 422.
  • step S3 the voltage applied between the pair of electrodes 21 and 22 of the sensor element 10 is changed from the first voltage to a lower second voltage. At this time, the state in which the deposited particulate matter is electrically connected changes. Further, in step S4, the interelectrode resistance R between the pair of electrodes 21 and 22 at the second voltage as the detection voltage is measured. Then, it progresses to step S5 and estimates the average particle diameter D of a particulate matter based on the measured resistance R between electrodes.
  • the second voltage applied in step S3 may be a voltage different from the first voltage, for example, a voltage lower than the first voltage.
  • the difference between the first voltage and the second voltage is preferably large.
  • the difference is set in advance using the relationship between the applied voltage and the interelectrode resistance R shown in FIG. This relationship is measured using the model exhaust gas purification apparatus shown in FIG. 10, and the PM generator 100 that generates particulate matter mainly made of soot in the model exhaust gas flow path 101 in which the DPF 5 is installed. Is connected.
  • the particulate matter detection sensor 1 is arranged on the upstream side of the DPF 5, and a commercially available particle size distribution measuring device (that is, EPSS: Engine Exhaust Particle Sizer) 102 is arranged on the upstream side of the particulate matter detection sensor 1. Is done.
  • EPSS Engine Exhaust Particle Sizer
  • PM collection by the particulate matter detection sensor 1 was performed by changing the average particle diameter D of the particulate matter contained in the model exhaust gas.
  • V0 for example, 0.12 V
  • Model gas temperature 200 ° C
  • Model gas flow rate 15m / s Average particle diameter D: 74 nm, 63 nm, 58 nm
  • Applied voltage when collecting PM 35V Applied voltage at the time of measurement: 1V (not measurable), 5V, 10V, 20V, 30V, 35V
  • Electrode spacing 20 ⁇ m
  • the difference in inter-electrode resistance R due to increases For example, when the applied voltage at the time of PM collection and measurement remains the same (that is, 35 V) without changing to the second voltage, there is no sufficiently large difference.
  • the applied voltage at the time of measurement becomes lower than 35 V, the interelectrode resistance R increases, and the difference in the interelectrode resistance R due to the average particle diameter D increases.
  • the average particle diameter D (unit: nm) of the particulate matter and the interelectrode resistance R (unit: ⁇ ) are in a proportional relationship, and a straight line representing these relationships
  • the slope (unit: ⁇ / nm) increases as the applied voltage decreases, as shown in FIG.
  • the second voltage is set to about 60% of the first voltage (for example, when the first voltage is 35V, the second voltage is 20V) or less.
  • the measurement variation was large, so it was not shown in FIG. Therefore, when the second voltage as the detection voltage is selected, for example, the current flowing between the pair of electrodes 21 and 22 at the time of resistance measurement is 1 ⁇ A so that the measurement can be performed in accordance with the circuit configuration. It is desirable to set a voltage that is about a lower limit value so as not to be lower than that. Thereby, the measurement accuracy of the interelectrode resistance R in step S4 can be improved, and the circuit cost can be reduced.
  • step S5 based on the measured interelectrode resistance R, for example, the average particle diameter D of the particulate matter is estimated using the relationship shown in FIG.
  • the horizontal axis represents the reciprocal of the average particle diameter D (that is, the median diameter), and the interelectrode resistance R on the vertical axis increases as the average particle diameter D increases.
  • the interelectrode resistance R increases as the second voltage, which is the applied voltage at the time of measurement, decreases. As shown in FIG. 14, this is different in the case where the average particle diameter D is small and large, when the arrangement of the particulate matter collected by the applied voltage level is changed. This is probably because of this.
  • the applied voltage is relatively high and the electric field strength between the pair of electrodes 21 and 22 is high.
  • the state in which the particulate matter (that is, PM in the figure) arranged between both electrodes is aligned and electrically connected to each other is largely different depending on the average particle diameter D. Does not occur.
  • the second voltage is a relatively high voltage
  • the change in the electric field strength is small and the change in the collection state is also small. That is, the arrangement of the particulate matter is substantially the same as the state in which the sensor output V at the time of PM collection reaches the predetermined output value V0. For this reason, there is no significant difference in the measured interelectrode resistance R.
  • the applied voltage is further lowered, the electric field strength between the pair of electrodes 21 and 22 is further reduced, so that the force for restraining the particulate matter is weakened. Then, as shown in the drawing, it is considered that the alignment state of the particulate substances is disturbed, and the contact resistance between the adjacent particulate substances is increased. Further, the contact state of the particulate matter connecting the pair of electrodes 21 and 22 (for example, the formation state of the conductive path) is changed, and the change is larger than that in the case where the average particle size D is relatively small. Tends to be prominent when is relatively large.
  • the particulate matter has a higher resistance as the particle diameter is smaller, when the predetermined sensor output V0 is reached, more particulate matter is collected as the particle diameter of the particulate matter is smaller. Since the interelectrode resistance R becomes the combined resistance of the contact resistance of the particulate matter and the resistance depending on the contact state, the change in the interelectrode resistance R is smaller as the particle size is smaller. Become.
  • the second state is changed to a second voltage different from that at the time of collecting the particulate matter, and the collection state is changed.
  • the average particle diameter D of the particulate matter can be estimated by measuring the interelectrode resistance R. Therefore, these relationships are examined in advance for each operation condition and measurement condition, stored in a ROM as a storage area of the ECU 4 as a relational expression or a map, and the average particle diameter D is estimated from the measured interelectrode resistance R. be able to.
  • the average particle diameter D obtained by this process is the average particle diameter of the particulate matter discharged downstream of the DPF 5 during the collection period from the start of electrostatic collection in step S1 to the arrival of the determination timing in step S2. is there.
  • step S6 the mass M of the particulate matter discharged during the collection period is estimated from the sensor output V.
  • the sensor output V has a substantially positive correlation with the mass M of the particulate matter collected by the detection unit 2 of the sensor element 10 during the collection period.
  • a predetermined output value V0 is used.
  • step S2 it is determined whether or not the sensor output V has reached the output value V0, and the sensor output V at the time when the determination is affirmative is substantially equal to the output value V0 that is a threshold value.
  • step S7 calculates the particle number N of a particulate matter by the following formula 2 and formula 3 using the mass M of the estimated particulate matter, and the average particle diameter D.
  • the specific gravity (that is, PM specific gravity) of the particulate matter can be a predetermined constant value (for example, 1 g / cm 3 ).
  • the average volume of the particulate matter (that is, the PM average volume) is calculated from the estimated average particle diameter D of the particulate matter, by regarding the particulate matter as a sphere, by the above Equation 3.
  • the particle number N of the particulate matter calculated through the series of steps is compared with the actually measured particle number, as shown in FIG. 15, the relationship between the estimated PM number and the actually measured PM number almost coincides. It was confirmed that Thus, by considering the average particle diameter D of the particulate matter, the number N of particles of the particulate matter can be accurately estimated.
  • the basic configuration of the particulate matter detection sensor 1 as a sensor unit and the ECU 4 as a sensor control unit is the same as that of the first embodiment.
  • the average particle diameter D of the particulate matter is estimated based on the interelectrode resistance R in the second voltage as the detection voltage, but a plurality of voltages lower than the first voltage are set as the detection voltage.
  • the interelectrode resistance R may be measured at a plurality of voltages having different magnitudes.
  • the plurality of voltages may include a voltage having the same magnitude as the second voltage. Details of the particulate matter detection process executed by the ECU 4 in this case will be described with reference to FIG.
  • the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
  • the particulate matter detection process executed by the ECU 4 that is the sensor control unit is obtained by changing a part of the procedure of the first embodiment shown in FIG. 7. Specifically, since steps S11 to S14 are the same as steps S1 to S4 in FIG. 7, the description will be simplified, and steps S15 and after that will be different will be mainly described.
  • steps S11 to S14 electrostatic collection is performed by applying a first voltage to the pair of electrodes 21 and 22 of the detection unit 2, and when the sensor output V reaches the output value V0, it is changed to the second voltage and captured. After changing the collection state, the interelectrode resistance R is measured at the second voltage.
  • step S15 the voltage applied to the pair of electrodes 21 and 22 is changed to a third voltage lower than the second voltage, and further proceeding to step S16 to measure the interelectrode resistance R1 at the third voltage.
  • the second voltage and the third voltage as the detection voltages may be voltages that are lower than the first voltage and different in magnitude from each other.
  • at least one or both of the second voltage and the third voltage is about 60% or less of the first voltage, and the lower the applied voltage, the more accurate the average particle diameter D is estimated. Get higher. Further, it is more preferable that the difference between the second voltage and the third voltage is relatively large.
  • the average particle diameter D is estimated based on the resistance values at a plurality of voltages serving as detection voltages, that is, the interelectrode resistance R at the second voltage and the interelectrode resistance R1 at the third voltage.
  • the average particle diameter D can be estimated for each of the interelectrode resistances R and R1 using the relationship shown in FIG. 13, and the average value thereof can be calculated.
  • the estimation accuracy can be increased by weighting each voltage. Specifically, it is preferable to weight the interelectrode resistances R and R1 so that the weight is increased as the measured voltage is lower.
  • step S18 the mass M of the particulate matter is estimated using the output value V0 as the sensor output V when step 12 is positively determined. Further, in step S19, the number N of the particulate matter is calculated by the above formulas 2 and 3 using the estimated mass M of the particulate matter and the average particle diameter D.
  • the average particle diameter D can be estimated more accurately.
  • the plurality of voltages are not limited to two different voltages as in the present embodiment, but three or more different voltages can be set and the interelectrode resistance R can be measured for each of them.
  • the estimated particle diameter and the actually measured particle diameter are The maximum difference between the two is about 16%.
  • the difference between the estimated particle diameter and the actually measured particle diameter is about 5% at the maximum. Can be reduced.
  • the basic configuration of the particulate matter detection sensor 1 as a sensor unit and the ECU 4 as a sensor control unit is the same as that of the second embodiment.
  • a plurality of voltages lower than the first voltage are set as detection voltages, and the interelectrode resistance R is measured at each of the plurality of voltages.
  • the average particle diameter D was estimated from the measured interelectrode resistance R, but based on the slope I in the relationship between the plurality of voltages and the measured interelectrode resistance R, the average particle diameter D may be estimated.
  • step S17 for estimating the average particle diameter D is performed in two stages of steps S171 and S172.
  • Step S171 is processing as an inclination calculation unit, and steps S11 to S16 and S18 to S19 are the same processing as in FIG.
  • the measured interelectrode resistance R may fluctuate due to the influence of disturbances such as the measured temperature.
  • FIG. 21 shows a case where the measured temperatures are all set correctly.
  • the average particle diameter D of the particulate matter is in a relatively close range (for example, 65.2 nm, 54.7 nm, 52. 3 nm, 48.5 nm)
  • the relationship between the applied voltage and the interelectrode resistance R shows a good correlation with the average particle size D.
  • the variation range of the inter-electrode resistance R at each applied voltage is shown. For example, even in the case of 54.7 nm and 52.3 nm where the difference in the average particle diameter D is small, there is almost no variation range overlap.
  • the average particle diameter D can be estimated by the procedure of the second embodiment.
  • FIG. 20 shows the result of measuring the interelectrode resistance R at a measurement temperature lower by 50 ° C. only when the average particle diameter D is 52.3 nm. Compared to FIG. 21, the average particle diameter D is 54.7 nm. It approaches the value of the interelectrode resistance R. Therefore, as shown in FIG. 22 where the applied voltage is 5 V, the reciprocal of the average particle diameter D and the interelectrode resistance R show a good correlation as a whole, but under conditions where the temperature is low (that is, in FIG. 22). Since the value of the interelectrode resistance R is large when there is no disturbance, the estimation accuracy may be reduced.
  • the slope I of the approximate expression (that is, the approximate straight line expression shown in FIG. 20) that linearly approximates the relationship between the applied voltage and the interelectrode resistance R is a constant value. This is because the same displacement occurs in the interelectrode resistance R at each applied voltage due to the influence of the disturbance. As shown in FIG. Is not affected by disturbance (ie, indicated by white circles in FIG. 23). Therefore, the estimation accuracy can be improved by estimating the average particle diameter D using the slope I.
  • step S11 to S16 electrostatic collection is performed at the first voltage, and after the sensor output V reaches the output value V0, the second voltage is changed.
  • the interelectrode resistances R and R1 at the third voltage are measured.
  • step S171 an inclination I of an approximate expression that linearly approximates these relationships is calculated from the second voltage, the third voltage, and the interelectrode resistances R and R1.
  • step S172 the average particle diameter D of the particulate matter can be accurately estimated from the calculated slope I of the approximate expression based on the relationship shown in FIG.
  • the basic configuration of the particulate matter detection sensor 1 as a sensor unit and the ECU 4 as a sensor control unit is the same as that of the first embodiment.
  • the heater unit 3 of the particulate matter detection sensor 1 is used for the regeneration of the detection unit 2 prior to the collection of the particulate matter.
  • the detection unit 2 is used. It can also be used for heat treatment of particulate matter deposited on the substrate.
  • the heating control unit 43 of the ECU 4 energizes the heater unit 3 so that the temperature of the detection unit 2 is lower than that at the time of regeneration, for example, SOF in the accumulated particulate matter can be volatilized and the soot does not burn. Heat to a suitable temperature.
  • the particulate matter detection process executed by the ECU 4 serving as the sensor control unit is obtained by changing a part of the procedure of the first embodiment shown in FIG. Specifically, steps S21 to S22 are the same processing as steps S1 to S2 in FIG.
  • step S23 electric power is supplied to the heater unit 3 of the sensor element 10 to heat the detection unit 2, and the temperature is raised to a first temperature at which only SOF is volatilized and removed, and soot is not removed.
  • the first temperature which is the heat treatment temperature
  • the heating control unit 43 starts heating after the time point when the output value V0 is reached, and controls the temperature increase rate so as to converge to a predetermined first temperature.
  • the temperature rising rate can be kept constant until the vicinity of the first temperature, and then the temperature rising rate can be gradually reduced to converge to the first temperature.
  • the sensor output V also draws a similar curve and converges to the first output value V1 at the first temperature. To do. At that time, the detection unit 2 is heated and SOF is volatilized, and only the soot is used to improve the conductivity. Therefore, the first output value V1 is generally larger than the output value V0. This also includes a temperature-specific effect that lowers the resistance of the soot due to a temperature rise.
  • step S24 after reaching the first temperature, the first output value V1 at the first temperature is captured.
  • the time required to reach the first temperature is the time necessary to heat and hold until the first temperature is reached and the SOF is sufficiently volatilized, and can be arbitrarily set by conducting a test or the like in advance.
  • step S25 the voltage applied to the pair of electrodes 21 and 22 of the detection unit 2 is changed from the first voltage to the second voltage, and the process further proceeds to step S26, where the interelectrode resistance in the second voltage as the detection voltage is reached. Measure R. Then, it progresses to step S27 and estimates the average particle diameter D of a particulate matter based on the measured resistance R between electrodes.
  • the influence of SOF in the discharged particulate matter is not necessarily great.
  • the SOF is less likely to volatilize under conditions where the exhaust temperature is low, the SOF ratio in the particulate matter tends to increase.
  • the relationship between the resistance R between electrodes measured before and after the heat treatment and the average particle diameter D shows a large difference in resistance value depending on the presence or absence of the heat treatment. It can be seen that the detection error is reduced by volatilizing.
  • the process proceeds to step S28, and the mass M of the particulate matter collected by the detection unit 2 of the sensor element 10 during the collection period is estimated based on the first output value V1.
  • the first output value V1 is a sensor output V based on the particulate matter mainly composed of Soot, and has a positive correlation with the mass M of the particulate matter.
  • step S29 the process proceeds to step S29, and the number N of particles of the particulate matter is calculated from the estimated mass M of the particulate matter and the average particle diameter D in the same procedure as in step S7 of FIG.
  • the influence of SOF and exhaust temperature can be eliminated by performing the heat treatment of the detection unit 2 after collection.
  • the basic configuration of the particulate matter detection sensor 1 as a sensor unit and the ECU 4 as a sensor control unit is the same as that of the first embodiment.
  • the procedure for eliminating the influence of SOF by performing the heat treatment of the detection unit 2 after collection by the heating control unit 43 of the ECU 4 is the same as in the fourth embodiment, and the mass M of the particulate matter is estimated. Only the procedure is different.
  • steps S31 to S37 are the same as steps S21 to S27 of the fourth embodiment shown in FIG.
  • the average particle diameter D of the particulate matter is accurately estimated by changing to the second voltage after the heat treatment and measuring the interelectrode resistance R.
  • step S38 the mass M of the particulate matter collected by the detection unit 2 of the sensor element 10 during the collection period is estimated based on the output value V0 that is the sensor output V in step 32. Since the SOF ratio in the mass M of the particulate matter is relatively small, the mass M of the particulate matter can be estimated based on the output value V0 as in the first embodiment. Thereafter, in step S39, the number N of particulate matter particles can be calculated using the estimated mass M of the particulate matter and the average particle diameter D.
  • the particulate matter detection sensor 1 is the laminated sensor element 10 having the detection unit 2 having the laminated structure.
  • the print type sensor element 10 in which the pair of electrodes 21 and 22 are formed by printing on the surface of the rectangular parallelepiped insulating base 11 can be provided.
  • the distance between the pair of electrodes 21, 22, that is, the electrode interval is wider than that of the laminated sensor element 10, and can be appropriately selected within a range of 50 ⁇ m to 500 ⁇ m, for example.
  • the detection conductive portion 23 can be disposed on the surface of the insulating base 11 serving as the base.
  • the detection conductive portion 23 is a conductive material having a higher electrical resistivity than the particulate matter, and is made of a high-resistance conductive material described later.
  • the particulate matter detection process executed by the ECU 4 is formed not only with a configuration in which the pair of electrodes 21 and 22 of the sensor element 10 is formed of an insulating material as in the above embodiments, but also with a high-resistance conductive material. This is also effective for the configuration described above, and will be described below.
  • the conductive portion for detection 23 is arranged on the surface of the distal end side in the longitudinal direction X (that is, one end side in FIG. 28) to be the detection portion 2.
  • the pair of electrodes 21, 22 are arranged so as to extend in the longitudinal direction X with a spacing from the surface of the detection conductive portion 23 (that is, the surface opposite to the base 11).
  • the pair of electrodes 21 and 22 are connected to linear lead electrodes 21a and 22a extending from the distal end side of the insulating base 11 to the proximal end side (that is, the other end side in FIG. 28), respectively.
  • the pair of electrodes 21 and 22 may have a configuration in which a plurality of pairs of electrodes are arranged in, for example, a comb-like shape, similarly to the sensor element 10 shown in FIG.
  • the high resistance conductive material 20 used for the detection conductive portion 23 has a surface electrical resistivity of 1.0 ⁇ 10 7 to 1.0 in a temperature range of 100 to 500 ° C.
  • a conductive material in the range of ⁇ 10 10 ⁇ ⁇ cm is desirable.
  • ceramics having a perovskite structure whose molecular formula is represented by ABO 3 can be used as a conductive material whose surface electrical resistivity satisfies the above numerical range.
  • the A site is at least one selected from La, Sr, Ca, and Mg
  • the B site is at least one selected from Ti, Al, Zr, and Y.
  • perovskite-type ceramics ie, Sr 1-X La X TiO 3 ), in which the main component is Sr and the subcomponent is La and the B site is Ti, is used for the A site.
  • the “surface electrical resistivity ⁇ ” is calculated by creating the sample S shown in FIG. 31, measuring the electrical resistance between the measurement electrodes 101 and 102 (that is, the interelectrode resistance), and using the following formula 4. Means the value.
  • the surface electrical resistivity ⁇ of the conductive material is measured as follows. That is, first, a sample S shown in FIG. 31 is created. This sample S is made of a conductive material and has a plate-like substrate 100 having a thickness T of 1.4 mm, and a pair of measuring electrodes 101 formed on the main surface of the plate-like substrate 100 and having a length L and a distance D. , 102. Such a sample S is formed, and the electrical resistance R (unit: ⁇ ) between the pair of measurement electrodes 101 and 102 is measured.
  • a bulk sample S1 including a substrate portion 200 made of a conductive material and a pair of measurement electrodes 201 and 202 formed on the side surface of the substrate portion 200 is prepared. It can be calculated by measuring the electrical resistance between the measurement electrodes 201 and 202.
  • the surface electrical resistivity ⁇ is about 1.0 ⁇ 10 5 to 1.0 ⁇ 10 11 ⁇ in the temperature range of 100 to 500 ° C. It is cm, and is out of the range of 1.0 ⁇ 10 7 to 1.0 ⁇ 10 10 ⁇ ⁇ cm on the low temperature side and the high temperature side. From this result, it can be seen that when La is added to the ceramic, the change in surface electrical resistivity ⁇ due to temperature is small.
  • each sample S has a plate-like substrate 100 having a thickness T of 1.4 mm and a pair of measuring electrodes 101 and 102 formed on the main surface of the plate-like substrate 100 and having a length L of 16 mm and a distance D of 800 ⁇ m. With. Then, the sample S was heated to 100 to 500 ° C. in the atmosphere, a voltage of 5 to 1000 V was applied between the measuring electrodes 101 and 102, and the electric resistance R was measured. And the surface electrical resistivity (rho) was computed using the said Formula 4.
  • any of the first to fifth embodiments may be applied to the particulate matter detection process executed by the ECU 4 serving as the sensor control unit. That is, when the particulate matter is collected, the first voltage is applied to quickly reach the threshold, and then, for example, the second voltage lower than the first voltage is changed, and then detected at the second voltage or a plurality of voltages.
  • the average particle diameter D can be accurately estimated from the resistance value.
  • the number N of particles in the collection period is calculated from the mass M of the particulate matter estimated using the output value V0 or the first output value V1 after the heat treatment and the PM specific gravity which is a known constant. Can do.
  • steps S1 to S7 of the first embodiment shown in FIG. 7 can be performed. That is, in steps S1 to S3, the first voltage is applied to the pair of electrodes 21 and 22 of the detection unit 2 to perform electrostatic collection, and when the sensor output V reaches the output value V0, the second voltage is changed. Then, in step S4, the interelectrode resistance R at the second voltage as the detection voltage is measured, and in step S5, the average particle diameter D of the particulate matter is calculated from the interelectrode resistance R in step S4. presume.
  • step S6 to S7 the mass M of the particulate matter is estimated based on the output value V0, and the number N of particulate matter particles is determined using the specific gravity of the particulate matter and the estimated mass M of the particulate matter. Is calculated.
  • the relationship between the applied voltage and the interelectrode resistance is such that the average particle diameter D (for example, 56.9 nm, 65. 4 nm, 80.0 nm) shows a tendency that the difference in inter-electrode resistance R increases.
  • Measurement conditions were as follows. Model gas temperature: 200 ° C Model gas flow rate: 15m / s PM concentration: 10 mg / m 3 Surface electrical resistivity ⁇ : 2.4 ⁇ 10 8 ⁇ ⁇ cm Average particle diameter D: 56.9 nm, 65.4 nm, 80.0 nm Electrode spacing: 60 ⁇ m x 5 sets Number of particles N: 1 to 2 x 10 14
  • the interelectrode resistance R increases as the average particle diameter D increases. Becomes larger.
  • the interelectrode resistance R increases as the reciprocal of the average particle diameter D decreases. Using this relationship, the average particle diameter D of the particulate matter can be estimated with high accuracy.
  • the detection unit 2 of the present embodiment has a pair of electrodes 21 and 22 arranged on the surface of the high-resistance conductive material 20 that becomes the detection conductive unit 23. Even in the initial state in which no PM is deposited, a minute current (for example, indicated by an arrow in the drawing) flows between the electrodes 21 and 22 via the high-resistance conductive material 20. In this state, as shown in FIG. 36, when particulate matter adheres to the surface of the high-resistance conductive material 20, the inter-electrode resistance R between the pair of electrodes 21 and 22 becomes high-resistance conductive material 20 and particulate matter. This is the combined resistance. Therefore, the inter-electrode resistance R changes as much as the particulate matter adheres, and the high resistance conductive material 20 has a higher electrical resistivity than the particulate matter. Therefore, as shown in FIG. Sensor output increases in proportion to.
  • FIG. 38 shows a comparison of the number of particles N of the particulate matter calculated through these series of steps with the number of particles actually measured, and the estimated number of PMs and the number of measured PMs have a correlation. confirmed.
  • the basic configuration of the particulate matter detection sensor 1 as a sensor unit and the ECU 4 as a sensor control unit is the same as that of the first embodiment.
  • the mass M of the particulate matter is calculated with the specific gravity of the particulate matter as a constant value, but instead of using the PM specific gravity as a known constant, based on the estimated average particle diameter D You may make it estimate PM specific gravity.
  • the details of the particulate matter detection process executed by the ECU 4 will be described with reference to FIG.
  • the particulate matter detection process executed by the ECU 4 serving as the sensor control unit is performed in steps S41 to S45 from steps S1 to S5 in the first embodiment shown in FIG. Is the same process. That is, electrostatic collection is performed by applying a first voltage to the pair of electrodes 21 and 22 of the detection unit 2, and when the sensor output V reaches the output value V0, the collection state is changed by changing to the second voltage. Let Thereafter, the process proceeds to step S44, in which the interelectrode resistance R at the second voltage as the detection voltage is measured. In step S45, the average particle diameter D of the particulate matter is estimated from the interelectrode resistance R.
  • step S46 the specific gravity of the collected particulate matter is estimated from the estimated average particle diameter D.
  • the average particle diameter D unit: nm
  • the specific gravity unit: g / cm 3
  • step S47 the mass M of the particulate matter is estimated based on the output value V0. Further, in step S48, the particulate matter is estimated using the estimated specific gravity of the particulate matter and the mass M of the particulate matter. The number N of particles of the substance can be calculated. Note that the method of estimating the average particle diameter D of the particulate matter that is the basis for calculating the specific gravity is not limited to the method of estimating from the interelectrode resistance R shown here, but the method of estimating from the amplification factor of the sensor output due to heating, high frequency It is also possible to use a method of estimating from the impedance.
  • FIG. 41 shows the relationship between the number N of particulate matter calculated using a known PM specific gravity and the number of measured particles without performing the estimation of the PM specific gravity in step S46 in the series of steps.
  • the estimated number of PMs is in a range of about ⁇ 20% of the actually measured PM number.
  • FIG. 42 when the PM specific gravity estimated in step S46 is used, the difference between the estimated PM number and the actually measured PM number is smaller, and the detection accuracy of the particle number N is improved. Can be improved.
  • the basic configuration of the particulate matter detection sensor 1 as a sensor unit and the ECU 4 as a sensor control unit is the same as that of the sixth embodiment.
  • the sensor element 10 includes a detection unit 2 using a detection conductive unit 23 capable of detecting a minute amount of particulate matter.
  • the interelectrode resistance R was measured with the second voltage as the detection voltage. The voltage is changed to a detection voltage (for example, a third voltage) different from the two voltages, and the interelectrode resistance R is measured. Details of the particulate matter detection process executed by the ECU 4 in this case will be described with reference to FIG.
  • the particulate matter detection process executed by the ECU 4 that is the sensor control unit is obtained by changing a part of the procedure of the first embodiment shown in FIG. Specifically, steps S51 to S53 are the same as steps S1 to S3 in FIG. 7, and electrostatic collection is performed by applying a first voltage to the pair of electrodes 21 and 22 of the detection unit 2, When the sensor output V reaches the output value V0, the collection state is changed by changing to the second voltage. Subsequently, it progresses to step S54 and changes the applied voltage to a pair of electrodes 21 and 22 of the detection part 2 from a 2nd voltage to a 3rd voltage.
  • the second voltage and the third voltage in steps S53 and S54 are set to, for example, 0 V and 20 V, and the process proceeds to step S55, where the interelectrodes at the third voltage as the detection voltage are set. Measure resistance R. Further, the process proceeds to step S56, and the average particle diameter D of the particulate matter can be accurately estimated based on the measured interelectrode resistance R and the relationship shown in FIG. Then, after estimating the mass M of the particulate matter from the output value V0 in step S57, the number N of particulate matter particles is calculated in step S58.
  • FIG. 45 shows the relationship between the number of particles N of the particulate matter calculated by the series of steps and the number of actually measured particles, and there is a good correlation between the estimated number of PMs and the number of actually measured PMs.
  • a third voltage which is a detection voltage
  • a third voltage is applied during PM collection according to the sensor output characteristics. It is good also as a voltage higher than the 1st voltage (for example, 35V).
  • the measurement conditions in this example were as follows. Model gas temperature: 200 ° C
  • Average particle diameter D 55 nm, 61 nm, 66 nm
  • Electrode spacing 80 ⁇ m ⁇ 9 sets Number of particles N: about 1 ⁇ 10 13
  • the measured current (that is, the electrode) by the average particle diameter D is set.
  • An arbitrary voltage with which the difference in the resistance change amount) can be determined can be set as the third voltage. For example, as shown in FIG. 49, when the third voltage is 60 V, the difference in the amount of change in the interelectrode resistance R with respect to the average particle diameter D is sufficiently large. Therefore, the average particle diameter D can be estimated using this relationship, and the number N of particles can be calculated.
  • FIG. 50 shows a modification of the present embodiment, in which the second voltage (for example, 70 V) and the third voltage (for example, 70 V) are set to higher voltages with respect to the first voltage (for example, 35 V).
  • the relationship between the average particle diameter D and the amount of change in the interelectrode resistance R is shown.
  • the second voltage can be higher than the first voltage, and the change in the collection state can be increased by increasing the difference.
  • the second voltage and the detection voltage can be set to the same voltage, and the interelectrode resistance R can be measured without changing the applied voltage.
  • FIG. 51 is a modification of the present embodiment, and after changing from a first voltage (for example, 35V) to a lower second voltage (for example, 0V), a higher detection voltage (that is, a third voltage; , 35 V), the relationship between the average particle diameter D and the interelectrode resistance R is shown.
  • the measurement conditions in this example are as follows, and the particulate matter detection sensor 1 uses a sensor element 10 including a print-type detection unit 2 that does not use the detection conductive unit 23.
  • Model gas flow rate 15m / s PM concentration: 10 mg / m 3
  • the interelectrode resistance R due to the average particle diameter D can be obtained by changing to the second voltage and changing the collection state. It is possible to sufficiently discriminate the difference. Therefore, using this relationship, the average particle diameter D can be estimated and the number N of particles can be calculated.
  • the second voltage for changing the collection state of the particulate matter is higher or lower than the first voltage, and it is better that the potential difference is larger.
  • the repulsive force is larger than the attractive force that attracts the particulate matter, so there is a risk that the particulate matter may peel off or discharge may occur. desirable.
  • the strength of the electrostatic field between the electrodes becomes weak, so that the contact state is likely to change, and since the strength of the electrostatic field becomes zero at an applied voltage of 0 V, the effect of changing the contact state is most effective. growing.
  • the detection voltage for measuring the interelectrode resistance R may be any voltage that can read the difference in the interelectrode resistance R depending on the particle diameter, and a higher voltage is easier to read.
  • a high voltage is better because the difference in resistance between electrodes due to the particle diameter is not clear at low voltage.
  • the second voltage and the detection voltage may be the same as long as the difference between the electrode resistances R due to the particle size can be read because it is necessary to suppress the voltage so that the separation of the particulate matter and the discharge do not occur.
  • the change in the interelectrode resistance R includes an irreversible change
  • the detection is performed by measuring the first voltage that is the collection voltage and the interelectrode resistance.
  • the working voltage may be the same.
  • a voltage is applied to the detection unit 2 of the particulate matter detection sensor 1 to collect the particulate matter, and the applied voltage is changed to measure the interelectrode resistance R.
  • the sensor control unit that calculates the number of particles of the particulate matter, the number of particles of the particulate matter can be accurately detected.
  • such a particulate matter detection device can be used for an exhaust gas purification device of an internal combustion engine or the like to perform a failure diagnosis of the DPF 5 disposed upstream.
  • the average particle diameter of the particulate matter is estimated from the resistance value obtained by changing the voltage.
  • the particulate matter is obtained using the resistance value obtained by changing the current.
  • the average particle diameter D may be estimated. That is, the first current is applied to the detection unit 2 of the particulate matter detection sensor 1 to collect the particulate matter, and the applied current is different from the first current in a state where the sensor output reaches the threshold value.
  • the interelectrode resistance R in the detection unit 2 may be detected.
  • the threshold value was set to the predetermined output value V0 used as the detection reference in the collection control part 41, it is not restricted to this,
  • the sensor output V which can detect a particulate matter is used. Based on this, it can be set arbitrarily.
  • the value is not limited to the sensor output V, and may be any value that serves as a reference indicating that particulate matter can be detected. For example, an elapsed time from when electrostatic collection is started by applying a first voltage in the collection control unit 41 until detection of particulate matter is possible (for example, detection time t in FIG. 4).
  • a threshold can also be set based on
  • the sensor output may be an output voltage or an output current.
  • the particulate matter detection device of the present disclosure including the particulate matter detection sensor 1 and the ECU 4 is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present disclosure.
  • the protective cover 12 that covers the sensor element 10 of the particulate matter detection sensor 1 has a single cylinder structure, but a double cylinder structure including an inner cylinder and an outer cylinder may be used.
  • the arrangement and number of the gas flow holes 13 and 14 to be measured provided in the protective cover 12 can also be set arbitrarily.
  • the shape and material of each part of the sensor element 10 and the protective cover 12 constituting the particulate matter detection sensor 1 can be appropriately changed.
  • the internal combustion engine E is a diesel engine and the DPF 5 serving as a particulate matter collection unit is disposed.
  • a gasoline particulate filter may be disposed using the internal combustion engine E as a gasoline engine.
  • the present invention is not limited to the combustion exhaust gas of the internal combustion engine E, and can be applied to any gas to be measured as long as it includes a particulate matter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The present invention is provided with a sensor unit (1) for outputting a signal corresponding to an amount of particulate matter, and a sensor control unit (4) for detecting a particle count (N) of the particulate matter. The sensor control unit has: a collection control unit (41) for applying a first voltage to a pair of electrodes (21), (22) and causing particulate matter to be electrostatically collected; and a particle count calculation unit (42) for detecting a resistance value (R) between the pair of electrodes after a change to a second voltage different from the first voltage is made in a state in which the sensor output at the first voltage has reached a threshold value, and calculating the particle count using the average particle diameter of the particulate matter estimated from the resistance value and the mass (M) of the particulate matter estimated from the sensor output.

Description

粒子状物質検出装置Particulate matter detector 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年12月15日に出願された特許出願番号2016-243417号と、2017年12月13日に出願された特許出願番号2017-238902号に基づくもので、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on Patent Application No. 2016-243417 filed on December 15, 2016 and Patent Application No. 2017-238902 filed on December 13, 2017. The contents of are hereby incorporated by reference.
 本開示は、内燃機関から排出される粒子状物質の粒子数を検出するための粒子状物質検出装置に関する。 The present disclosure relates to a particulate matter detection device for detecting the number of particulate matter discharged from an internal combustion engine.
 自動車排ガス中に含まれる粒子状物質(すなわち、Particulate Matter;以下、適宜PMと称する)は、導電性のSoot(すなわち、煤)を主成分とし、未燃の燃料やエンジンオイルに由来するSOF(すなわち、Soluble Organic Fraction;可溶性有機成分)を含む混合物である。粒子状物質検出装置は、例えば、電気抵抗式のセンサ素子を備え、絶縁性基体の表面に設けた検出電極部に電圧を印加して静電場を形成し、粒子状物質が捕集されることによる検出電極部の抵抗値変化を検出する。 Particulate matter contained in automobile exhaust gas (that is, Particulate Matter; hereinafter referred to as PM as appropriate) is mainly composed of conductive soot (that is, soot), and SOF derived from unburned fuel or engine oil ( That is, it is a mixture containing Soluble Organic Fraction (soluble organic component). The particulate matter detection device includes, for example, an electric resistance type sensor element, applies a voltage to the detection electrode portion provided on the surface of the insulating substrate to form an electrostatic field, and collects particulate matter. The change in the resistance value of the detection electrode portion due to the is detected.
 近年、排出規制がより厳しくなっており、粒子状物質検出装置の検出精度を高めることが重要となっている。一般に、粒子状物質検出装置では、センサ素子の出力から、粒子状物質の排出量を推定しており、さらに、排出される粒子状物質を粒子数で規制することが検討されている。例えば、特許文献1には、複数の電気抵抗式のPM検出部を配置し、各PM検出部に付着する粒子状物質が異なる粒子径分布となるように設定したセンサ制御装置が開示されている。この装置では、PM検出部ごとにPM1個当たりの平均粒子質量を設定し、各PM検出部のセンサ出力から検出したPM質量と設定した平均粒子質量を用いて、PM粒子数を算出している。 In recent years, emission regulations have become stricter, and it is important to improve the detection accuracy of particulate matter detection devices. In general, in particulate matter detection devices, the amount of particulate matter discharged is estimated from the output of a sensor element, and further, regulation of the amount of particulate matter to be discharged is being studied. For example, Patent Document 1 discloses a sensor control device in which a plurality of electric resistance type PM detection units are arranged and the particulate matter adhering to each PM detection unit is set to have a different particle size distribution. . In this apparatus, the average particle mass per PM is set for each PM detection unit, and the number of PM particles is calculated using the PM mass detected from the sensor output of each PM detection unit and the set average particle mass. .
特開2012-52811号公報JP 2012-52811 A
 特許文献1の装置では、各PM検出部への印加電圧を調整し、印加電圧が高いほど付着する粒子状物質の粒径範囲が拡がることを利用して、平均粒子質量を設定し、所望の粒径範囲のPM粒子数を算出可能としている。ところで、排ガスと共に排出される粒子状物質の状態は、エンジン運転条件により大きく変化する。そのため、例えば、各PM検出部に堆積する粒子状物質の粒子径と、設定した粒子径との間にずれが生じると、それにより算出されるPM粒子数の検出精度も低下する問題がある。また、複数のPM検出部を用いているため、装置構成が複雑となり、大型化やコスト増をまねきやすい、といった課題が見出された。 In the apparatus of Patent Literature 1, the average particle mass is set by adjusting the applied voltage to each PM detection unit and utilizing the fact that the particle size range of the particulate matter that adheres increases as the applied voltage increases, The number of PM particles in the particle size range can be calculated. By the way, the state of the particulate matter discharged together with the exhaust gas varies greatly depending on the engine operating conditions. Therefore, for example, if a deviation occurs between the particle diameter of the particulate matter deposited on each PM detection unit and the set particle diameter, there is a problem that the detection accuracy of the number of PM particles calculated thereby also decreases. In addition, since a plurality of PM detection units are used, a problem has been found that the apparatus configuration is complicated, and it is likely to increase the size and cost.
 本開示の目的は、エンジン運転条件による粒子状物質の粒子径の変化を反映させて粒子数の算出を行うことで、粒子状物質の検出精度を向上させた粒子状物質検出装置を提供しようとするものである。 An object of the present disclosure is to provide a particulate matter detection device that improves the detection accuracy of particulate matter by calculating the number of particles by reflecting changes in the particle size of the particulate matter depending on engine operating conditions. To do.
 本開示の一態様は、
 被測定ガスに含まれる粒子状物質を検出する粒子状物質検出装置であって、
 被測定ガスに晒される基体の表面に互いに離間する一対の電極を配置した検出部を有して、上記検出部に静電捕集される粒子状物質の量に応じた信号を出力するセンサ部と、
 上記センサ部から送信されるセンサ出力に基づいて、上記検出部に静電捕集された粒子状物質の粒子数を検出するセンサ制御部と、を備えており、
 上記センサ制御部は、
 上記検出部の上記一対の電極間へ第1電圧を印加して、上記検出部に粒子状物質を静電捕集させる捕集制御部と、
 上記第1電圧における上記センサ出力が閾値に到達した状態で、上記一対の電極間への印加電圧を上記第1電圧と異なる第2電圧に変更した後に、上記一対の電極間の抵抗値を検出し、上記抵抗値から推定される粒子状物質の平均粒径と、上記センサ出力から推定される粒子状物質の質量を用いて、上記粒子数を算出する粒子数算出部と、を有する、粒子状物質検出装置にある。
One aspect of the present disclosure is:
A particulate matter detection device for detecting particulate matter contained in a gas to be measured,
A sensor unit having a detection unit in which a pair of electrodes spaced apart from each other are arranged on the surface of the substrate exposed to the gas to be measured, and outputting a signal corresponding to the amount of particulate matter electrostatically collected by the detection unit When,
A sensor control unit that detects the number of particles of the particulate matter electrostatically collected by the detection unit based on a sensor output transmitted from the sensor unit;
The sensor control unit
A collection control unit that applies a first voltage between the pair of electrodes of the detection unit and causes the detection unit to electrostatically collect particulate matter;
The resistance value between the pair of electrodes is detected after changing the applied voltage between the pair of electrodes to a second voltage different from the first voltage in a state where the sensor output at the first voltage has reached a threshold value. A particle number calculating unit that calculates the number of particles using an average particle diameter of the particulate substance estimated from the resistance value and a mass of the particulate substance estimated from the sensor output. It is in the particulate matter detection device.
 本開示の他の態様は、被測定ガスに含まれる粒子状物質を検出する粒子状物質検出装置であって、
 被測定ガスに晒される基体の表面に互いに離間する一対の電極を配置した検出部を有して、上記検出部に静電捕集される粒子状物質の量に応じた信号を出力するセンサ部と、
 上記センサ部から送信されるセンサ出力に基づいて、上記検出部に静電捕集された粒子状物質の粒子数を検出するセンサ制御部と、を備えており、
 上記センサ制御部は、
 上記検出部の上記一対の電極間へ第1電圧を印加して、上記検出部に粒子状物質を静電捕集させる捕集制御部と、
 上記第1電圧における上記センサ出力が閾値に到達した状態で、上記一対の電極間への印加電圧を上記第1電圧と異なる第2電圧に変更した後に、大きさが異なる複数の電圧における上記一対の電極間の抵抗値を検出し、上記抵抗値から推定される粒子状物質の平均粒径と、上記センサ出力から推定される粒子状物質の質量を用いて、上記粒子数を算出する粒子数算出部と、を有する、粒子状物質検出装置にある。
Another aspect of the present disclosure is a particulate matter detection device that detects particulate matter contained in a gas to be measured.
A sensor unit having a detection unit in which a pair of electrodes spaced apart from each other are arranged on the surface of the substrate exposed to the gas to be measured, and outputting a signal corresponding to the amount of particulate matter electrostatically collected by the detection unit When,
A sensor control unit that detects the number of particles of the particulate matter electrostatically collected by the detection unit based on a sensor output transmitted from the sensor unit;
The sensor control unit
A collection control unit that applies a first voltage between the pair of electrodes of the detection unit and causes the detection unit to electrostatically collect particulate matter;
In a state where the sensor output at the first voltage reaches a threshold value, the voltage applied between the pair of electrodes is changed to a second voltage different from the first voltage, and then the pair at a plurality of voltages having different magnitudes. The number of particles for detecting the resistance value between the electrodes and calculating the number of particles using the average particle size of the particulate matter estimated from the resistance value and the mass of the particulate matter estimated from the sensor output A particulate matter detection device having a calculation unit.
 本開示のさらに他の態様は、被測定ガスに含まれる粒子状物質を検出する粒子状物質検出装置であって、
 被測定ガスに晒される基体の表面に互いに離間する一対の電極を配置した検出部を有して、上記検出部に静電捕集される粒子状物質の量に応じた信号を出力するセンサ部と、
 上記センサ部から送信されるセンサ出力に基づいて、上記検出部に静電捕集された粒子状物質の粒子数を検出するセンサ制御部と、を備えており、
 上記センサ制御部は、
 上記検出部の上記一対の電極間へ第1電圧を印加して、上記検出部に粒子状物質を静電捕集させる捕集制御部と、
 上記第1電圧における上記センサ出力が閾値に到達した状態で、上記一対の電極間への印加電圧を上記第1電圧と異なる第2電圧に変更した後に、大きさが異なる複数の電圧における上記一対の電極間の抵抗値を検出し、上記複数の電圧と上記抵抗値との関係における傾きから推定される粒子状物質の平均粒径と、上記センサ出力から推定される粒子状物質の質量を用いて、上記粒子数を算出する粒子数算出部と、を有する、粒子状物質検出装置にある。
Still another aspect of the present disclosure is a particulate matter detection device that detects particulate matter contained in a gas to be measured.
A sensor unit having a detection unit in which a pair of electrodes spaced apart from each other are arranged on the surface of the substrate exposed to the gas to be measured, and outputting a signal corresponding to the amount of particulate matter electrostatically collected by the detection unit When,
A sensor control unit that detects the number of particles of the particulate matter electrostatically collected by the detection unit based on a sensor output transmitted from the sensor unit;
The sensor control unit
A collection control unit that applies a first voltage between the pair of electrodes of the detection unit and causes the detection unit to electrostatically collect particulate matter;
In a state where the sensor output at the first voltage reaches a threshold value, the voltage applied between the pair of electrodes is changed to a second voltage different from the first voltage, and then the pair at a plurality of voltages having different magnitudes. The resistance value between the electrodes is detected, and the average particle diameter of the particulate matter estimated from the slope in the relationship between the plurality of voltages and the resistance value and the mass of the particulate matter estimated from the sensor output are used. And a particle number calculating unit for calculating the number of particles.
 本開示のさらに他の態様は、被測定ガスに含まれる粒子状物質を検出する粒子状物質検出装置であって、
 被測定ガスに晒される基体の表面に互いに離間する一対の電極を配置した検出部を有して、上記検出部に静電捕集される粒子状物質の量に応じた信号を出力するセンサ部と、
 上記センサ部から送信されるセンサ出力に基づいて、上記検出部に静電捕集された粒子状物質の粒子数を検出するセンサ制御部と、を備えており、
 上記センサ制御部は、
 上記検出部の上記一対の電極間へ第1電流を印加して、上記検出部に粒子状物質を静電捕集させる捕集制御部と、
 上記第1電流における上記センサ出力が閾値に到達した状態で、上記一対の電極間への印加電流を上記第1電流と異なる第2電流に変更した後に、上記一対の電極間の抵抗値を検出し、上記抵抗値から推定される粒子状物質の平均粒径と、上記センサ出力から推定される粒子状物質の質量を用いて、上記粒子数を算出する粒子数算出部と、を有する、粒子状物質検出装置にある。
Still another aspect of the present disclosure is a particulate matter detection device that detects particulate matter contained in a gas to be measured.
A sensor unit having a detection unit in which a pair of electrodes spaced apart from each other are arranged on the surface of the substrate exposed to the gas to be measured, and outputting a signal corresponding to the amount of particulate matter electrostatically collected by the detection unit When,
A sensor control unit that detects the number of particles of the particulate matter electrostatically collected by the detection unit based on a sensor output transmitted from the sensor unit;
The sensor control unit
A collection control unit that applies a first current between the pair of electrodes of the detection unit and electrostatically collects particulate matter in the detection unit;
The resistance value between the pair of electrodes is detected after the applied current between the pair of electrodes is changed to a second current different from the first current with the sensor output at the first current reaching a threshold value. A particle number calculating unit that calculates the number of particles using an average particle diameter of the particulate substance estimated from the resistance value and a mass of the particulate substance estimated from the sensor output. It is in the particulate matter detection device.
 上記一態様における上記粒子状物質検出装置において、センサ制御部は、捕集制御部を作動させて粒子状物質の静電捕集を開始する。センサ出力が閾値に到達したら、電圧制御部を作動させて捕集のための第1電圧から第2電圧に変更して、捕集状態を変化させた後に、一対の電極間の抵抗値を検出する。このとき、一対の電極間の抵抗値と粒子状物質の平均粒径との間には相関があり、平均粒径が大きいほど検出される抵抗値が高くなることが判明している。この関係を利用して、検出した抵抗値から、粒子状物質の平均粒径を推定することができる。さらに、センサ出力から推定される粒子状物質の質量を用いて、粒子数算出部において粒子数を算出することができる。
 上記他の態様のように、第1電圧と異なる第2電圧に変更した後に、複数の電圧において、各電圧における抵抗値を検出することもできる。その場合には、複数の電圧における抵抗値を用いて粒子状物質の平均粒径を推定することができる。あるいは、上記さらに他の態様のように、複数の電圧と抵抗値との関係における傾きを利用して、粒子状物質の平均粒径を推定することもできる。または、上記さらに他の態様のように、第1電圧及び第2電圧に代えて、一対の電極間へ第1電流及び第2電流を印加するようにしても、粒子状物質の平均粒径を推定することができる。
In the particulate matter detection device according to the aspect, the sensor control unit activates the collection control unit to start electrostatic collection of the particulate matter. When the sensor output reaches the threshold value, the voltage control unit is operated to change the first voltage for collection from the first voltage to the second voltage, and after changing the collection state, the resistance value between the pair of electrodes is detected. To do. At this time, it has been found that there is a correlation between the resistance value between the pair of electrodes and the average particle diameter of the particulate matter, and the detected resistance value increases as the average particle diameter increases. Using this relationship, the average particle diameter of the particulate matter can be estimated from the detected resistance value. Furthermore, the number of particles can be calculated by the particle number calculation unit using the mass of the particulate matter estimated from the sensor output.
Like the said other aspect, after changing to the 2nd voltage different from a 1st voltage, the resistance value in each voltage can also be detected in several voltages. In that case, the average particle diameter of the particulate matter can be estimated using resistance values at a plurality of voltages. Or the average particle diameter of a particulate matter can also be estimated using the inclination in the relationship between a some voltage and resistance value like the said further another aspect. Alternatively, as in the above other embodiment, instead of the first voltage and the second voltage, the first current and the second current may be applied between the pair of electrodes, and the average particle size of the particulate matter may be reduced. Can be estimated.
 以上のごとく、上記態様によれば、エンジン運転条件による粒子状物質の粒子径の変化を反映させて粒子数の算出を行うことができ、粒子状物質の検出精度を向上させた粒子状物質検出装置を提供することができる。 As described above, according to the above aspect, the number of particles can be calculated by reflecting the change in the particle size of the particulate matter depending on the engine operating conditions, and the particulate matter detection with improved detection accuracy of the particulate matter. An apparatus can be provided.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、粒子状物質検出装置を構成する粒子状物質検出センサの一例を示す要部拡大図であり、 図2は、実施形態1における、粒子状物質検出センサのセンサ素子の構成例を示す全体斜視図であり、 図3は、実施形態1における、粒子状物質検出装置を備える内燃機関の排ガス浄化装置の全体構成を示す概略構成図であり、 図4は、実施形態1における、粒子状物質検出センサのセンサ出力特性の一例を示す図であり、 図5は、実施形態1における、粒子状物質検出センサの他の例を示す要部拡大図であり、 図6は、実施形態1における、粒子状物質検出センサのセンサ素子の他の構成例を示す全体斜視図であり、 図7は、実施形態1における、粒子状物質検出装置のセンサ制御部で実行される粒子状物質検出処理のフローチャート図であり、 図8は、実施形態1における、センサ素子の検出部への印加電圧と検出時間との関係を示す図であり、 図9は、実施形態1における、センサ素子の検出部への印加電圧と電極間抵抗との関係を示す図であり、 図10は、実施形態1における、センサ素子の検出部への印加電圧と電極間抵抗との関係を調べるために用いたモデル排ガス浄化装置の全体概略構成図であり、 図11は、実施形態1における、センサ素子の検出部に捕集される粒子状物質の平均粒径と電極間抵抗との関係を示す図であり、 図12は、実施形態1における、センサ素子の検出部への印加電圧と、粒子状物質の平均粒径と電極間抵抗の関係を示す直線の傾きとの関係を示す図であり、 図13は、実施形態1における、捕集される粒子状物質の平均粒径の逆数と電極間抵抗との関係を示す図であり、 図14は、実施形態1における、粒子状物質の平均粒径の大小と印加電圧の高低による電極間抵抗の変化を説明するための模式的な図であり、 図15は、実施形態1における、推定された粒子状物質の粒子数と、実測された粒子状物質の粒子数との関係を示す図であり、 図16は、実施形態2における、粒子状物質検出装置のセンサ制御部で実行される粒子状物質検出処理のフローチャート図であり、 図17は、実施形態2における、検出用電圧が1つである条件で推定された粒子状物質の粒子数と、実測された粒子状物質の粒子数との関係の一例を示す図であり、 図18は、実施形態2における、検出用電圧が複数である条件で推定された粒子状物質の粒子数と、実測された粒子状物質の粒子数との関係の一例を示す図であり、 図19は、実施形態3における、粒子状物質検出装置のセンサ制御部で実行される粒子状物質検出処理のフローチャート図であり、 図20は、実施形態3における、センサ素子の検出部への印加電圧と電極間抵抗との関係を示す図であり、 図21は、実施形態3における、センサ素子の検出部への印加電圧と電極間抵抗との関係を示す図であり、 図22は、実施形態3における、捕集される粒子状物質の平均粒径の逆数と電極間抵抗との関係を示す図であり、 図23は、実施形態3における、捕集される粒子状物質の平均粒径の逆数と、印加電圧-電極間抵抗の関係式の傾きとの関係を示す図であり、 図24は、実施形態4における、粒子状物質検出装置のセンサ制御部で実行される粒子状物質検出処理のフローチャート図であり、 図25は、実施形態4における、センサ素子の加熱処理時の素子温度の変化を示す図であり、 図26は、実施形態4における、センサ素子の加熱処理の有無と、粒子状物質の平均粒径の逆数と電極間抵抗との関係を示す図であり、 図27は、実施形態5における、粒子状物質検出装置のセンサ制御部で実行される粒子状物質検出処理のフローチャート図であり、 図28は、実施形態6における、粒子状物質検出センサのセンサ素子の構成例を示す全体図であり、 図29は、実施形態6における、センサ素子の検出部の構成例を示す断面図で、図28のA-A線断面図であり、 図30は、実施形態6における、センサ素子の検出部を構成する高抵抗導電材料の、表面電気抵抗率と温度との関係を表したグラフであり、 図31は、実施形態6における、表面電気抵抗率の測定方法を説明するための図であり、 図32は、実施形態6における、バルクの電気抵抗率を測定する方法を説明するための図であり、 図33は、実施形態6における、センサ素子の検出部への印加電圧と電極間抵抗との関係を示す図であり、 図34は、実施形態6における、捕集される粒子状物質の平均粒径の逆数と電極間抵抗との関係を示す図であり、 図35は、実施形態6における、センサ素子の検出部に粒子状物質が堆積していない初期状態を模式的に示す拡大断面図であり、 図36は、実施形態6における、センサ素子の検出部に粒子状物質が付着した状態を模式的に示す拡大断面図であり、 図37は、実施形態6における、センサ素子の検出部への粒子状物質の堆積量とセンサ出力との関係を示す図であり、 図38は、実施形態6における、推定された粒子状物質の粒子数と、実測された粒子状物質の粒子数との関係の一例を示す図であり、 図39は、実施形態7における、粒子状物質検出装置のセンサ制御部で実行される粒子状物質検出処理のフローチャート図であり、 図40は、実施形態7における、粒子状物質の平均粒径と比重との関係を示す図であり、 図41は、実施形態7における、推定された粒子状物質の粒子数と、実測された粒子状物質の粒子数との関係の一例を示す図であり、 図42は、実施形態7における、推定された粒子状物質の粒子数と、実測された粒子状物質の粒子数との関係の一例を示す図であり、 図43は、実施形態8における、粒子状物質検出装置のセンサ制御部で実行される粒子状物質検出処理のフローチャート図であり、 図44は、実施形態8における、捕集される粒子状物質の平均粒径と電極間抵抗との関係を示す図であり、 図45は、実施形態8における、推定された粒子状物質の粒子数と、実測された粒子状物質の粒子数との関係の一例を示す図であり、 図46は、実施形態8における、センサ素子の検出部への印加電圧と電極間抵抗との関係を示す図であり、 図47は、実施形態8における、センサ素子の検出部への印加電圧と測定電流との関係を示す図であり、 図48は、実施形態8における、センサ素子の検出部への印加電圧と電極間抵抗変化量との関係を示す図であり、 図49は、実施形態8における、捕集される粒子状物質の平均粒径と電極間抵抗変化量との関係を示す図であり、 図50は、実施形態8における、捕集される粒子状物質の平均粒径と電極間抵抗変化量との関係を示す図であり、 図51は、実施形態8における、捕集される粒子状物質の平均粒径と電極間抵抗との関係を示す図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is an enlarged view of a main part showing an example of a particulate matter detection sensor constituting a particulate matter detection device in Embodiment 1. FIG. 2 is an overall perspective view showing a configuration example of a sensor element of the particulate matter detection sensor in Embodiment 1. FIG. 3 is a schematic configuration diagram illustrating an overall configuration of an exhaust gas purification apparatus for an internal combustion engine including the particulate matter detection device according to the first embodiment. FIG. 4 is a diagram illustrating an example of sensor output characteristics of the particulate matter detection sensor according to the first embodiment. FIG. 5 is an enlarged view of a main part showing another example of the particulate matter detection sensor according to the first embodiment. FIG. 6 is an overall perspective view illustrating another configuration example of the sensor element of the particulate matter detection sensor according to the first embodiment. FIG. 7 is a flowchart of particulate matter detection processing executed by the sensor control unit of the particulate matter detection device according to the first embodiment. FIG. 8 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the detection time in Embodiment 1. FIG. 9 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the interelectrode resistance in the first embodiment. FIG. 10 is an overall schematic configuration diagram of a model exhaust gas purification apparatus used for examining the relationship between the voltage applied to the detection unit of the sensor element and the interelectrode resistance in the first embodiment. FIG. 11 is a diagram illustrating the relationship between the average particle diameter of the particulate matter collected by the detection unit of the sensor element and the interelectrode resistance in Embodiment 1. FIG. 12 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the slope of a straight line indicating the relationship between the average particle diameter of the particulate matter and the interelectrode resistance in the first embodiment. FIG. 13 is a diagram showing the relationship between the reciprocal of the average particle diameter of the collected particulate matter and the interelectrode resistance in Embodiment 1. FIG. 14 is a schematic diagram for explaining changes in interelectrode resistance depending on the average particle size of the particulate matter and the applied voltage in Embodiment 1. FIG. 15 is a diagram illustrating the relationship between the estimated number of particulate substances and the actually measured number of particulate substances in Embodiment 1. FIG. 16 is a flowchart of particulate matter detection processing executed by the sensor control unit of the particulate matter detection device in Embodiment 2. FIG. 17 is a diagram illustrating an example of the relationship between the number of particles of particulate matter estimated under the condition that there is one detection voltage and the number of particles of actually measured particulate matter in the second embodiment. FIG. 18 is a diagram illustrating an example of the relationship between the number of particles of particulate matter estimated under the condition that there are a plurality of detection voltages and the number of particles of actually measured particulate matter in Embodiment 2. FIG. 19 is a flowchart of particulate matter detection processing executed by the sensor control unit of the particulate matter detection device in Embodiment 3. FIG. 20 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the interelectrode resistance in the third embodiment. FIG. 21 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the interelectrode resistance in the third embodiment. FIG. 22 is a diagram showing the relationship between the reciprocal of the average particle diameter of the collected particulate matter and the interelectrode resistance in Embodiment 3. FIG. 23 is a diagram showing the relationship between the reciprocal of the average particle diameter of the collected particulate matter and the slope of the relational expression between applied voltage and interelectrode resistance in Embodiment 3. FIG. 24 is a flowchart of particulate matter detection processing executed by the sensor control unit of the particulate matter detection device in Embodiment 4. FIG. 25 is a diagram showing a change in element temperature during heat treatment of the sensor element in the fourth embodiment. FIG. 26 is a diagram showing the relationship between the presence / absence of heat treatment of the sensor element, the reciprocal of the average particle diameter of the particulate matter, and the interelectrode resistance in Embodiment 4. FIG. 27 is a flowchart of particulate matter detection processing executed by the sensor control unit of the particulate matter detection device according to the fifth embodiment. FIG. 28 is an overall view showing a configuration example of a sensor element of a particulate matter detection sensor in Embodiment 6. FIG. 29 is a cross-sectional view illustrating a configuration example of the detection unit of the sensor element in the sixth embodiment, and is a cross-sectional view taken along the line AA in FIG. FIG. 30 is a graph showing the relationship between the surface electrical resistivity and the temperature of the high-resistance conductive material constituting the detection unit of the sensor element in Embodiment 6. FIG. 31 is a diagram for explaining a method of measuring the surface electrical resistivity in the sixth embodiment. FIG. 32 is a diagram for explaining a method for measuring bulk electrical resistivity in the sixth embodiment. FIG. 33 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the interelectrode resistance in the sixth embodiment. FIG. 34 is a diagram showing the relationship between the reciprocal of the average particle diameter of the collected particulate matter and the interelectrode resistance in Embodiment 6. FIG. 35 is an enlarged cross-sectional view schematically showing an initial state in which particulate matter is not deposited on the detection part of the sensor element in the sixth embodiment. FIG. 36 is an enlarged cross-sectional view schematically showing a state in which particulate matter adheres to the detection part of the sensor element in the sixth embodiment. FIG. 37 is a diagram illustrating the relationship between the amount of particulate matter deposited on the detection unit of the sensor element and the sensor output in the sixth embodiment. FIG. 38 is a diagram illustrating an example of the relationship between the estimated number of particulate matter particles and the actually measured number of particulate matter particles in Embodiment 6. FIG. 39 is a flowchart of the particulate matter detection process executed by the sensor control unit of the particulate matter detection device according to the seventh embodiment. FIG. 40 is a diagram showing the relationship between the average particle size and specific gravity of particulate matter in Embodiment 7. FIG. 41 is a diagram illustrating an example of the relationship between the estimated number of particles of particulate matter and the actually measured number of particles of particulate matter in the embodiment 7. FIG. 42 is a diagram illustrating an example of the relationship between the estimated number of particulate substances and the actually measured number of particulate substances in Embodiment 7. FIG. 43 is a flowchart of particulate matter detection processing executed by the sensor control unit of the particulate matter detection device in Embodiment 8. FIG. 44 is a diagram showing the relationship between the average particle size of the collected particulate matter and the interelectrode resistance in Embodiment 8. FIG. 45 is a diagram illustrating an example of the relationship between the estimated number of particulate matter particles and the actually measured number of particulate matter particles in Embodiment 8. FIG. 46 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the interelectrode resistance in the eighth embodiment. FIG. 47 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the measurement current in the eighth embodiment; FIG. 48 is a diagram illustrating the relationship between the voltage applied to the detection unit of the sensor element and the amount of change in resistance between the electrodes in the eighth embodiment. FIG. 49 is a diagram showing the relationship between the average particle size of collected particulate matter and the resistance change between electrodes in Embodiment 8. FIG. 50 is a diagram showing the relationship between the average particle diameter of the particulate matter to be collected and the resistance change amount between the electrodes in Embodiment 8. FIG. 51 is a diagram showing the relationship between the average particle diameter of the collected particulate matter and the interelectrode resistance in the eighth embodiment.
(実施形態1)
 次に、粒子状物質検出装置の実施形態について、図面を参照して説明する。図1~図3に示すように、粒子状物質検出装置は、被測定ガスGに含まれる粒子状物質を検出するものであり、センサ部としての粒子状物質検出センサ1と、粒子状物質検出センサ1からのセンサ出力に基づいて、捕集された粒子状物質の粒子数を検出するセンサ制御部としての電子制御ユニット(以下、ECUと称する)4とを備えている。
 ECU4は、捕集制御部41、粒子数算出部42及び加熱制御部43を備えており、粒子状物質検出センサ1に制御信号を出力し、又は検出信号を受信して、粒子状物質の捕集と検出を制御する。粒子数算出部42は、電圧制御部421及び電極間抵抗検出部422を備える。これら各部の詳細については、後述する。
(Embodiment 1)
Next, an embodiment of the particulate matter detection device will be described with reference to the drawings. As shown in FIGS. 1 to 3, the particulate matter detection device detects particulate matter contained in the gas G to be measured, and includes a particulate matter detection sensor 1 as a sensor unit, and particulate matter detection. An electronic control unit (hereinafter referred to as an ECU) 4 is provided as a sensor control unit that detects the number of particles of the collected particulate matter based on the sensor output from the sensor 1.
The ECU 4 includes a collection control unit 41, a particle number calculation unit 42, and a heating control unit 43. The ECU 4 outputs a control signal to the particulate matter detection sensor 1 or receives a detection signal to capture the particulate matter. Control collection and detection. The particle number calculation unit 42 includes a voltage control unit 421 and an interelectrode resistance detection unit 422. Details of these parts will be described later.
 図1に示すように、粒子状物質検出センサ1は、電気抵抗型のセンサ素子10と、その外周囲を覆う保護カバー12からなる。センサ素子10は、保護カバー12の軸方向を長手方向X(すなわち、図1の上下方向)として、その先端側(すなわち、図1における下端側)の表面に、被測定ガスGに晒される検出部2を備える。検出部2は、センサ素子10に内蔵されるヒータ部3によって加熱可能となっている。保護カバー12は、ステンレス鋼等の金属材料からなる筒状体形状で、側面及び先端面に、複数の被測定ガス流通孔13、14を有している。例えば、図示するように、検出部2に対向する側面の被測定ガス流通孔13から、保護カバー12内に被測定ガスが導入され、検出部2の表面に沿って、先端面の被測定ガス流通孔14へ向かう被測定ガスGの流れが形成される。 As shown in FIG. 1, the particulate matter detection sensor 1 includes an electric resistance type sensor element 10 and a protective cover 12 covering the outer periphery thereof. The sensor element 10 is detected by being exposed to the gas G to be measured on the front end side (that is, the lower end side in FIG. 1) with the axial direction of the protective cover 12 as the longitudinal direction X (that is, the vertical direction in FIG. 1). Part 2 is provided. The detection unit 2 can be heated by a heater unit 3 built in the sensor element 10. The protective cover 12 has a cylindrical body shape made of a metal material such as stainless steel, and has a plurality of measured gas flow holes 13 and 14 on the side surface and the front end surface. For example, as shown in the drawing, the gas to be measured is introduced into the protective cover 12 from the gas flow hole 13 to be measured on the side surface facing the detection unit 2, and the gas to be measured on the tip surface along the surface of the detection unit 2. A flow of the gas to be measured G toward the flow hole 14 is formed.
 図2に示すように、センサ素子10は、基体としての、直方体形状の絶縁性基体11と、絶縁性基体11の長手方向Xの先端側(すなわち、図2における左右方向の右端側)表面に形成される検出部2と、絶縁性基体11の内部に埋設されるヒータ部3を有している。検出部2は、絶縁性基体11の一側面(すなわち、図2における上側面で、図1における左側面)に櫛歯状に印刷形成された、一対の電極21、22からなる。櫛歯状の電極21、22は、それぞれ、複数の線状電極からなり、極性の異なる線状電極が交互に平行配設されて複数の電極対を構成している。電極21、22は、それぞれ、絶縁性基体11の先端側から基端側(すなわち、図2における左端側)へ延びる線状のリード電極21a、22aに接続される。 As shown in FIG. 2, the sensor element 10 has a rectangular parallelepiped-shaped insulating base 11 as a base, and the front end side in the longitudinal direction X of the insulating base 11 (that is, the right end side in the left-right direction in FIG. 2). It has a detection unit 2 to be formed and a heater unit 3 embedded in the insulating substrate 11. The detection unit 2 includes a pair of electrodes 21 and 22 that are printed in a comb shape on one side surface of the insulating substrate 11 (that is, the upper side surface in FIG. 2 and the left side surface in FIG. 1). The comb- like electrodes 21 and 22 are each composed of a plurality of linear electrodes, and linear electrodes having different polarities are alternately arranged in parallel to constitute a plurality of electrode pairs. The electrodes 21 and 22 are respectively connected to linear lead electrodes 21a and 22a extending from the distal end side of the insulating base 11 to the proximal end side (that is, the left end side in FIG. 2).
 ヒータ部3は、絶縁性基体11の先端側に配置されるヒータ電極31と、ヒータ電極31に接続されて基端側へ延びるリード電極31a、31bとからなる。絶縁性基体11は、例えば、アルミナ等の絶縁性セラミックス材料からなる、複数の絶縁性シートの積層体にて構成される。このとき、絶縁性シートの表面に、ヒータ電極31及びリード電極31a、31bを印刷形成し、他の絶縁性シートを重ねて、所定の直方体形状の成形体とし、焼成する。これにより、ヒータ部3を内蔵するセンサ素子10を形成することができる。 The heater unit 3 includes a heater electrode 31 disposed on the distal end side of the insulating substrate 11 and lead electrodes 31a and 31b connected to the heater electrode 31 and extending to the proximal end side. The insulative base 11 is constituted by a laminated body of a plurality of insulative sheets made of an insulative ceramic material such as alumina, for example. At this time, the heater electrode 31 and the lead electrodes 31a and 31b are printed on the surface of the insulating sheet, and the other insulating sheets are overlapped to form a predetermined rectangular parallelepiped shaped body, which is fired. Thereby, the sensor element 10 which incorporates the heater part 3 can be formed.
 検出部2の電極21、22、リード電極21a、22a、ヒータ部3のヒータ電極31、リード電極31a、31bは、例えば、貴金属等の導電性材料からなり、スクリーン印刷等を用いて所定の電極形状に形成することができる。なお、ヒータ部3を、絶縁性基体11内に埋設せず、絶縁性基体11の表面、例えば、検出部2が形成される一側面と異なる側面にヒータ部3を印刷形成することもできる。ヒータ部3は、検出部2を加熱可能に構成されていればよく、例えば、絶縁性基体11とは別体に設けることもできる。 The electrodes 21 and 22 of the detection unit 2, the lead electrodes 21 a and 22 a, the heater electrode 31 of the heater unit 3, and the lead electrodes 31 a and 31 b are made of a conductive material such as a noble metal, for example, and are predetermined electrodes using screen printing or the like. It can be formed into a shape. In addition, the heater part 3 is not embedded in the insulating base | substrate 11, but the heater part 3 can also be printed and formed on the surface of the insulating base | substrate 11, for example, the side surface different from the one side surface in which the detection part 2 is formed. The heater unit 3 only needs to be configured to be able to heat the detection unit 2, and can be provided separately from the insulating substrate 11, for example.
 検出部2の電極21、22には、それぞれリード電極21a、22aを介して、ECU4から所定の電圧が印加される。すなわち、捕集制御部41の作動時には、一対の電極21、22間に第1電圧が印加され、静電捕集される粒子状物質の量に応じたセンサ出力Vが取得される。また、粒子数算出部42の作動時には、電圧制御部421から第2電圧が印加され、電極間抵抗検出部422により、第2電圧における電極21、22間の抵抗値(以下、適宜、電極間抵抗と称する)Rが測定される。 A predetermined voltage is applied from the ECU 4 to the electrodes 21 and 22 of the detection unit 2 via the lead electrodes 21a and 22a, respectively. That is, when the collection control unit 41 is operated, the first voltage is applied between the pair of electrodes 21 and 22, and the sensor output V corresponding to the amount of particulate matter electrostatically collected is acquired. In addition, when the particle number calculation unit 42 is activated, a second voltage is applied from the voltage control unit 421, and the resistance value between the electrodes 21 and 22 at the second voltage (hereinafter, appropriately between the electrodes) is detected by the interelectrode resistance detection unit 422. R) (referred to as resistance) is measured.
 被測定ガスGは、例えば、図3に示す内燃機関Eから排出される燃焼排ガスであり、粒子状物質(すなわち、PM)は、導電性成分であるSoot(すなわち、煤)と有機成分であるSOF(すなわち、可溶性有機成分)を含む混合物である。粒子状物質の排出量や粒子の状態、例えば、粒子径や化学組成は、内燃機関Eの運転状態により変化する。内燃機関Eは、例えばディーゼルエンジンであり、排ガスが流通する排ガス通路E1には、粒子状物質捕集部となるディーゼルパティキュレートフィルタ(以下、DPFと称する)5が配置される。粒子状物質検出センサ1は、DPF5の下流に配置され、先端側半部が排ガス通路E1内に位置するように、排ガス通路E1壁に取付固定される。粒子状物質検出センサ1は、ECU4に接続されており、DPF5の下流における排ガス中のPM量に対応する検出信号をECU4に出力する。 The gas to be measured G is, for example, combustion exhaust gas discharged from the internal combustion engine E shown in FIG. 3, and the particulate matter (that is, PM) is soot (that is, soot) that is a conductive component and an organic component. A mixture containing SOF (ie, soluble organic components). The discharge amount of particulate matter and the state of particles, for example, the particle size and chemical composition vary depending on the operating state of the internal combustion engine E. The internal combustion engine E is, for example, a diesel engine, and a diesel particulate filter (hereinafter referred to as a DPF) 5 serving as a particulate matter collecting unit is disposed in an exhaust gas passage E1 through which exhaust gas flows. The particulate matter detection sensor 1 is disposed downstream of the DPF 5 and is fixedly attached to the wall of the exhaust gas passage E1 so that the tip half is located in the exhaust gas passage E1. The particulate matter detection sensor 1 is connected to the ECU 4 and outputs a detection signal corresponding to the amount of PM in the exhaust gas downstream of the DPF 5 to the ECU 4.
 ECU4は、粒子状物質検出センサ1の検出部2及びヒータ部3の作動を制御すると共に、内燃機関Eの運転状態を制御する。図3において、粒子状物質検出センサ1の近傍の排ガス通路E1壁には、排ガス温度センサ51が取付固定されて、DPF5の下流の排ガス温度を検出可能であり、内燃機関Eの吸気通路E2にはエアフローメータ52が配設されて、吸気流量を検出するようになっている。また、内燃機関Eの回転数を検出する回転数センサ53、アクセルペダルの動作を検出するアクセルペダルセンサ54、その他の各種検出装置が設けられる。ECU4には、これら各種検出装置からの検出信号が入力される。 The ECU 4 controls the operation of the detection unit 2 and the heater unit 3 of the particulate matter detection sensor 1 and controls the operating state of the internal combustion engine E. In FIG. 3, an exhaust gas temperature sensor 51 is attached and fixed to the wall of the exhaust gas passage E1 in the vicinity of the particulate matter detection sensor 1 so that the exhaust gas temperature downstream of the DPF 5 can be detected. An air flow meter 52 is provided to detect the intake flow rate. Further, a rotation speed sensor 53 for detecting the rotation speed of the internal combustion engine E, an accelerator pedal sensor 54 for detecting the operation of the accelerator pedal, and other various detection devices are provided. Detection signals from these various detection devices are input to the ECU 4.
 ECU4は、マイコン4Aを備える公知の構成で、入出力インターフェイスI/Fを介して、各種検出装置に接続される。マイコン4Aは、演算処理を行うCPUと、プログラム、データ等を記憶するROM、RAMを備えており、周期的にプログラムを実行して、粒子状物質検出センサ1を含む内燃機関Eの各部を制御する。例えば、ECU4は、予め記憶したプログラムに基づく粒子状物質検出処理を実行し、粒子状物質検出センサ1に制御信号を出力して、センサ素子10の検出部2に粒子状物質を堆積させ、センサ素子10から送信される出力信号に基づいて、検出部2に静電捕集される粒子状物質を検出する。 ECU4 is a well-known structure provided with the microcomputer 4A, and is connected to various detection apparatuses via the input / output interface I / F. The microcomputer 4A includes a CPU that performs arithmetic processing, a ROM that stores programs and data, and a RAM. The microcomputer 4A periodically executes the program to control each part of the internal combustion engine E including the particulate matter detection sensor 1. To do. For example, the ECU 4 executes a particulate matter detection process based on a prestored program, outputs a control signal to the particulate matter detection sensor 1, deposits the particulate matter on the detection unit 2 of the sensor element 10, and Based on the output signal transmitted from the element 10, the particulate matter electrostatically collected by the detection unit 2 is detected.
 ここで、内燃機関Eの運転条件により、排ガス通路E1に排出される粒子状物質の粒子径は変化する。排出される粒子状物質の粒子径が変化すると、導電性が変化するため、検出部2に捕集される粒子状物質の抵抗が変化し、同じ化学組成で同じ捕集量であったとしても、センサ出力Vが異なってしまうことが判明している。そこで、本形態では、平均粒径の変化に伴う一対の電極21、22間の抵抗値変化を予め把握しておくことで、粒子状物質の粒子径を推定し、精度よく粒子数を算出する。 Here, depending on the operating conditions of the internal combustion engine E, the particle diameter of the particulate matter discharged into the exhaust gas passage E1 varies. When the particle size of the discharged particulate matter changes, the conductivity changes, so the resistance of the particulate matter collected by the detection unit 2 changes, and even if the collected amount is the same with the same chemical composition It has been found that the sensor output V is different. Therefore, in this embodiment, the change in the resistance value between the pair of electrodes 21 and 22 accompanying the change in the average particle diameter is grasped in advance, so that the particle diameter of the particulate matter is estimated and the number of particles is accurately calculated. .
 具体的には、図1に示すように、ECU4は、検出部2の一対の電極21、22間に第1電圧を印加して静電場を形成し、被測定ガスG中の粒子状物質を静電捕集させる捕集制御部41と、捕集された粒子状物質の粒子数Nを算出する粒子数算出部42と、を備える。粒子数算出部42は、第1電圧におけるセンサ出力Vが閾値に到達した状態で、第1電圧と異なる第2電圧に変更した後に、一対の電極21、22間の抵抗値Rを検出する。そして、検出した抵抗値Rから推定される粒子状物質の平均粒径Dと、センサ出力Vから推定される粒子状物質の質量Mを用いて、粒子数Nを算出する。 Specifically, as shown in FIG. 1, the ECU 4 applies a first voltage between the pair of electrodes 21 and 22 of the detection unit 2 to form an electrostatic field, and generates particulate matter in the gas G to be measured. A collection control unit 41 that electrostatically collects and a particle number calculation unit 42 that calculates the number N of particles of the collected particulate matter are provided. The particle number calculation unit 42 detects the resistance value R between the pair of electrodes 21 and 22 after changing to the second voltage different from the first voltage in a state where the sensor output V at the first voltage reaches the threshold value. Then, the number N of particles is calculated using the average particle diameter D of the particulate matter estimated from the detected resistance value R and the mass M of the particulate matter estimated from the sensor output V.
 より具体的には、粒子数算出部42は、静電捕集のための第1電圧におけるセンサ出力Vが閾値に到達した時点において、一対の電極21、22間への印加電圧を、粒子状物質の捕集状態を変化させるための第2電圧に変更した後に、検出用電圧に制御する電圧制御部421と、検出用電圧における一対の電極21、22間の抵抗値Rを検出する電極間抵抗検出部422と、を備える。検出用電圧は、第2電圧と同じか異なる電圧であって電極間抵抗検出のための電圧である。 More specifically, the particle number calculation unit 42 determines the voltage applied between the pair of electrodes 21 and 22 at the time when the sensor output V at the first voltage for electrostatic collection reaches a threshold value. After changing to the second voltage for changing the collection state of the substance, between the voltage control unit 421 that controls to the detection voltage and the resistance value R between the pair of electrodes 21 and 22 in the detection voltage A resistance detection unit 422. The detection voltage is the same voltage as or different from the second voltage, and is a voltage for detecting the interelectrode resistance.
 図4に一例を示すように、粒子状物質検出センサ1の出力特性(例えば、ここでは電流-時間特性として示す)は、捕集開始後の一定期間はセンサ出力がゼロとなる不感期間であり、その後、捕集された粒子状物質により一対の電極21、22間が電気的に接続されると、センサ出力が上昇を始め、堆積量の増加に応じてセンサ出力が増加する。この出力値が予め設定される閾値に到達した時点(すなわち、図4中の検出時間t)以降において、粒子状物質の検出が可能となる。 As shown in FIG. 4, the output characteristic of the particulate matter detection sensor 1 (for example, shown here as a current-time characteristic) is a dead period in which the sensor output becomes zero for a certain period after the start of collection. Thereafter, when the pair of electrodes 21 and 22 are electrically connected by the collected particulate matter, the sensor output starts to increase, and the sensor output increases as the deposition amount increases. Particulate matter can be detected after this output value reaches a preset threshold value (ie, detection time t in FIG. 4).
 電圧制御部421において、第1電圧は、捕集制御部41による粒子状物質の静電捕集が促進され、センサ出力Vが速やかに立ち上がるように設定される。これにより、粒子状物質が排出されたときに、速やかに閾値に到達し、続いて、粒子数算出部42による粒子数Nの算出へ移行することができる。
 一方、第2電圧は、閾値に到達した時点における粒子状物質の捕集状態、例えば、捕集された粒子状物質の接触抵抗や接触状態が変化するように設定される。第2電圧は、第1電圧と異なる任意の電圧に設定することができ、第1電圧より高くても低くてもよい。印加電圧の変更により、捕集された粒子状物質の捕集状態が粒径に応じて変化することで、電極間抵抗検出部422において、粒径に応じた抵抗値Rの検出が可能になる。
In the voltage control unit 421, the first voltage is set so that electrostatic collection of the particulate matter by the collection control unit 41 is promoted and the sensor output V rises quickly. As a result, when the particulate matter is discharged, the threshold value can be reached quickly, and then the process can proceed to the calculation of the particle number N by the particle number calculation unit 42.
On the other hand, the second voltage is set so that the collection state of the particulate matter at the time when the threshold value is reached, for example, the contact resistance and the contact state of the collected particulate matter are changed. The second voltage can be set to any voltage different from the first voltage, and may be higher or lower than the first voltage. By changing the applied voltage, the collected state of the collected particulate matter changes according to the particle size, so that the resistance value R according to the particle size can be detected in the interelectrode resistance detection unit 422. .
 また、検出用電圧は、粒径に応じた抵抗値Rの変化を判別しやすい電圧に設定される。検出用電圧は、抵抗値Rの検出に適した任意の電圧に設定することができ、第1電圧又は第2電圧と同じ電圧であってもよい。
 好適には、第2電圧は、第1電圧に対して、より電圧差が大きい方がよく、捕集状態の変化がより大きくなる。検出用電圧は、抵抗値Rが感度よく検出可能な範囲で、第1電圧との電圧差がより大きくなるように設定されるとよい。
Further, the detection voltage is set to a voltage that makes it easy to determine the change in the resistance value R according to the particle diameter. The detection voltage can be set to any voltage suitable for detecting the resistance value R, and may be the same voltage as the first voltage or the second voltage.
Preferably, the second voltage has a larger voltage difference with respect to the first voltage, and the change in the collection state becomes larger. The detection voltage may be set so that the voltage difference from the first voltage is larger within a range in which the resistance value R can be detected with high sensitivity.
 一般には、印加電圧を、第1電圧より低い側の電圧へ変更すると、一対の電極21、22間の抵抗値Rが高くなる傾向があり、また、粒子径が大きいほど、その傾向が大きくなる。そこで例えば、第1電圧より低い電圧を第2電圧に設定して、粒子状物質の捕集状態を変化させ、さらに、第2電圧を検出用電圧として、抵抗値Rを検出することができる。そして、第2電圧において検出した抵抗値Rと、予め用意しておいた抵抗値Rと粒子状物質の平均粒径Dとの関係式とから、平均粒径Dを推定することができる。 Generally, when the applied voltage is changed to a voltage lower than the first voltage, the resistance value R between the pair of electrodes 21 and 22 tends to increase, and the tendency increases as the particle diameter increases. . Therefore, for example, the voltage lower than the first voltage can be set as the second voltage to change the collection state of the particulate matter, and further, the resistance value R can be detected using the second voltage as the detection voltage. Then, the average particle diameter D can be estimated from the resistance value R detected at the second voltage and the relational expression between the prepared resistance value R and the average particle diameter D of the particulate matter.
 したがって、第1電圧及び第2電圧(例えば、検出用電圧=第2電圧)を適切に設定することで、抵抗値Rを感度よく検出し、抵抗値Rからの平均粒径Dの精度よい推定が可能になる。そして、センサ出力Vから粒子状物質の質量Mを知り、さらに抵抗値Rから推定される平均粒径Dを用いて、粒子数Nの算出を精度よく行うことができる。 Therefore, by appropriately setting the first voltage and the second voltage (for example, detection voltage = second voltage), the resistance value R is detected with high sensitivity, and the average particle diameter D is accurately estimated from the resistance value R. Is possible. Then, the mass M of the particulate matter can be known from the sensor output V, and the average particle diameter D estimated from the resistance value R can be used to accurately calculate the number N of particles.
 また、ECU4は、ヒータ部3のヒータ電極31へ電力を供給して、検出部2を所定の温度に加熱する加熱制御部43を備えている。加熱制御部43は、例えば、粒子状物質の捕集、検出に先立ってヒータ部3を作動させ、検出部2に堆積した粒子状物質を燃焼除去することができる。これにより、粒子状物質検出センサ1を再生することができる。 Further, the ECU 4 includes a heating control unit 43 that supplies power to the heater electrode 31 of the heater unit 3 to heat the detection unit 2 to a predetermined temperature. The heating control unit 43 can, for example, operate the heater unit 3 prior to the collection and detection of the particulate matter and burn and remove the particulate matter deposited on the detection unit 2. Thereby, the particulate matter detection sensor 1 can be regenerated.
 図5、6に示すように、粒子状物質検出センサ1のセンサ素子10は、絶縁性基体11の先端面に、積層構造の一対の電極21、22からなる検出部2を有する構成であってもよい。センサ素子10は、例えば、絶縁性基体11となる複数の絶縁性シートの間に、電極21又は電極22となる電極膜を交互に配設した積層体を焼成して形成される。このとき、絶縁性基体11の先端面に、電極21、22となる電極膜の端縁部が交互に露出して、極性の異なる線状電極からなる複数の電極対を構成する。電極21又は電極22となる電極膜は、それぞれ図示しないリード電極に接続され、絶縁性基体11の基端側において互いに接続される。 As shown in FIGS. 5 and 6, the sensor element 10 of the particulate matter detection sensor 1 is configured to have a detection unit 2 including a pair of electrodes 21 and 22 having a laminated structure on the distal end surface of an insulating substrate 11. Also good. The sensor element 10 is formed, for example, by firing a laminate in which electrode films to be the electrodes 21 or 22 are alternately arranged between a plurality of insulating sheets to be the insulating base 11. At this time, the edge portions of the electrode films to be the electrodes 21 and 22 are alternately exposed on the front end surface of the insulating substrate 11 to form a plurality of electrode pairs composed of linear electrodes having different polarities. The electrode films to be the electrodes 21 or 22 are connected to lead electrodes (not shown), and are connected to each other on the base end side of the insulating substrate 11.
 保護カバー12内において、積層構造の検出部2を有するセンサ素子10は、検出部2が位置する先端面が、保護カバー12の側面に開口する複数の被測定ガス流通孔13より、やや基端側に位置するように配置されている。保護カバー12の構成は、上記図1に示した例と同様であり、側面の複数の被測定ガス流通孔13から保護カバー12内に被測定ガスGが流入し、先端面の被測定ガス流通孔14へ向かうガス流れとなる。このとき、被測定ガスGの流れは、被測定ガス流通孔13から検出部2に直接向かわず、保護カバー12内に導入された、被測定ガスGの流れがセンサ素子10の先端面の近傍で合流して、先端面の被測定ガス流通孔14へ向かうガス流れとなる。 In the protective cover 12, the sensor element 10 having the detection unit 2 having a laminated structure has a distal end surface slightly located at the distal end surface where the detection unit 2 is located than the plurality of gas flow holes 13 to be measured opened on the side surface of the protective cover 12. It is arranged to be located on the side. The configuration of the protective cover 12 is the same as that of the example shown in FIG. 1, and the measured gas G flows into the protective cover 12 from the plurality of measured gas flow holes 13 on the side surface, and the measured gas flow on the front end surface. The gas flows toward the hole 14. At this time, the flow of the gas to be measured G does not go directly from the gas to be measured flow hole 13 to the detection unit 2, and the flow of the gas to be measured G introduced into the protective cover 12 is in the vicinity of the front end surface of the sensor element 10. The gas flows toward the gas flow hole 14 to be measured on the front end surface.
 このセンサ素子10においても、図示しないヒータ部3が備えられ、ヒータ電極31とそのリード電極31a、31bを絶縁性基体11内に埋設形成し、または、絶縁性基体11の表面に印刷形成することができる。なお、積層構造のセンサ素子10において、検出部2を先端面に形成せず、先端側の一側面に配置してもよい。その場合も、電極21、22となる絶縁膜が、絶縁性基体11となる絶縁性シート間に配置され、絶縁性シートの厚さが電極21、22間の距離となる構成は同様である。 The sensor element 10 is also provided with a heater unit 3 (not shown), and the heater electrode 31 and its lead electrodes 31a and 31b are embedded in the insulating base 11 or printed on the surface of the insulating base 11. Can do. In the sensor element 10 having a laminated structure, the detection unit 2 may be disposed on one side surface of the distal end side without being formed on the distal end surface. Also in this case, the configuration in which the insulating films to be the electrodes 21 and 22 are arranged between the insulating sheets to be the insulating base 11 and the thickness of the insulating sheet is the distance between the electrodes 21 and 22 is the same.
 このような粒子状物質検出装置は、図3において、粒子状物質検出センサ1の上流に配置されるDPF5の故障診断に利用することができる。一般に、DPF5が正常であれば、排出される粒子状物質はDPF5にて捕集され、その下流にはほとんど排出されない。DPF5に何らかの異常が生じて粒子状物質の捕集性能が低下した場合には、下流側の粒子状物質検出センサ1において、排出される粒子状物質の粒子数Nを計測することで、異常の有無を判定することができる。その際に、粒子状物質の粒子径の影響による検出ばらつきを低減することで、粒子状物質検出センサ1の検出精度を高め、異常を速やかに検出可能となる。 Such a particulate matter detection device can be used for failure diagnosis of the DPF 5 arranged upstream of the particulate matter detection sensor 1 in FIG. In general, if the DPF 5 is normal, the discharged particulate matter is collected by the DPF 5 and hardly discharged downstream. When the particulate matter collection performance is reduced due to some abnormality in the DPF 5, the particulate matter detection sensor 1 on the downstream side measures the number N of the particulate matter to be discharged. Presence / absence can be determined. At that time, the detection variation due to the influence of the particle size of the particulate matter is reduced, so that the detection accuracy of the particulate matter detection sensor 1 can be improved and the abnormality can be detected promptly.
 以下に、ECU4によって実行される粒子状物質検出処理の詳細を、フローチャートを用いて説明する。本形態は、図7に示すように、第2電圧と検出用電圧を同じ電圧とした例であり、また、第2電圧は第1電圧より低い電圧となっている。
 図7において、粒子状物質検出処理を開始したら、ステップS1において、粒子状物質検出センサ1の検出部2への粒子状物質の捕集を実施する。なお、捕集の開始時には、別ルーチンで実施される粒子状物質検出センサ1の再生処理により予め粒子状物質が燃焼除去され、検出部2に粒子状物質は堆積していないものとする。再生処理は、センサ素子10に内蔵するヒータ部3に通電して、検出電極部2を加熱することにより実施される。再生時の検出部2の温度は、通常、Sootを燃焼除去可能な600℃以上に設定される。
Below, the detail of the particulate matter detection process performed by ECU4 is demonstrated using a flowchart. As shown in FIG. 7, the present embodiment is an example in which the second voltage and the detection voltage are the same voltage, and the second voltage is lower than the first voltage.
In FIG. 7, when the particulate matter detection process is started, the particulate matter is collected in the detection unit 2 of the particulate matter detection sensor 1 in step S1. At the start of collection, it is assumed that the particulate matter is burned and removed in advance by the regeneration process of the particulate matter detection sensor 1 performed in a separate routine, and the particulate matter is not deposited on the detection unit 2. The regeneration process is performed by energizing the heater unit 3 built in the sensor element 10 and heating the detection electrode unit 2. The temperature of the detection unit 2 at the time of regeneration is normally set to 600 ° C. or higher at which the Soot can be burned and removed.
 ステップS1は、ECU4の捕集制御部41としての処理であり、センサ素子10の一対の電極21、22間へ、予め設定された第1電圧を印加して、保護カバー12内に導入される粒子状物質を検出部2に堆積させる。粒子状物質検出センサ1は、検出部2において、一対の電極21、22間に粒子状物質を捕捉し、粒子状物質の量によって変化する電気的特性を検出する。前述したように、粒子状物質検出センサ1は、センサ出力Vが速やかに閾値に到達するのがよい。 Step S <b> 1 is a process as the collection control unit 41 of the ECU 4, and a preset first voltage is applied between the pair of electrodes 21 and 22 of the sensor element 10 and is introduced into the protective cover 12. Particulate matter is deposited on the detector 2. In the detection unit 2, the particulate matter detection sensor 1 captures the particulate matter between the pair of electrodes 21 and 22, and detects an electrical characteristic that changes depending on the amount of the particulate matter. As described above, the particulate matter detection sensor 1 preferably has the sensor output V quickly reaching the threshold value.
 そのために、捕集制御部41は、一対の電極21、22間に印加する第1電圧を、センサ出力Vの検出時間が最小となるように選定する。閾値は、例えば、DPF5の故障診断のための検出基準となる所定の出力であり、検出可能な最少の粒子状物質の堆積量に対応する出力値V0とすることができる。また、積層型のセンサ素子10において、一対の電極21、22間の距離(すなわち、電極間隔)は、例えば、5μm~100μmの範囲で設定され、一般に、距離が小さくなるほど検出感度が高くなる。 Therefore, the collection control unit 41 selects the first voltage applied between the pair of electrodes 21 and 22 so that the detection time of the sensor output V is minimized. The threshold is, for example, a predetermined output serving as a detection reference for failure diagnosis of the DPF 5, and can be set to an output value V0 corresponding to the minimum amount of particulate matter that can be detected. In the stacked sensor element 10, the distance between the pair of electrodes 21 and 22 (that is, the electrode interval) is set, for example, in the range of 5 μm to 100 μm. In general, the detection sensitivity increases as the distance decreases.
 図8に示すように、排ガスの流速が一定のとき(例えば、11.4m/s)、印加電圧が低い領域では、検出時間が比較的長く、印加電圧の増加に伴い検出時間は減少し、例えば、印加電圧が30V~40Vの近傍で検出時間は最も短くなる。印加電圧がより高くなると、検出時間は再び増加する。したがって、第1電圧を、検出時間が最も短くなる30V~40Vの範囲(例えば、35V)に設定することで、速やかにセンサ出力Vを立ち上げることができる。 As shown in FIG. 8, when the flow rate of the exhaust gas is constant (for example, 11.4 m / s), the detection time is relatively long in the region where the applied voltage is low, and the detection time decreases as the applied voltage increases, For example, the detection time is shortest when the applied voltage is in the vicinity of 30V to 40V. As the applied voltage becomes higher, the detection time increases again. Therefore, the sensor output V can be quickly raised by setting the first voltage within a range of 30 V to 40 V (for example, 35 V) that minimizes the detection time.
 これは、検出部2への粒子状物質の電気的付着力Pが、下記式1で表されるように、クーロン力と反発力に依存するためと考えられる。
 式1:P∝D2(KEIρ1-E2/32)
 ただし、
 D:平均粒径
 K:係数
 E:電界強度
 I:コロナ電流
 ρ1:粒子の電気抵抗率
 上記式1において、括弧内の第1項はクーロン力を表し、第2項は反発力を表す。つまり、低印加電圧の領域では、クーロン力が支配的となって検出時間が減少し、高印加電圧の領域では、反発力が支配的となって検出時間が増加する。このように、クーロン力と反発力のバランスによって電気的付着力Pが決まり、クーロン力が比較的大きく反発力が比較的小さくなることで検出時間が最小となる、印加電圧の最適値が存在すると推察される。
This is considered because the electric adhesion force P of the particulate matter to the detection unit 2 depends on the Coulomb force and the repulsive force as represented by the following formula 1.
Formula 1: PαD 2 (KEIρ1-E 2/32)
However,
D: Average particle diameter K: Coefficient E: Electric field strength I: Corona current ρ1: Particle electrical resistivity In the above equation 1, the first term in parentheses represents the Coulomb force, and the second term represents the repulsive force. That is, in the low applied voltage region, the Coulomb force is dominant and the detection time is reduced, and in the high applied voltage region, the repulsive force is dominant and the detection time is increased. In this way, the electric adhesion force P is determined by the balance between the Coulomb force and the repulsive force, and there is an optimum value of the applied voltage that minimizes the detection time because the Coulomb force is relatively large and the repulsive force is relatively small. Inferred.
 次いで、ステップS2において、センサ素子10からのセンサ出力Vを取り込み、閾値である出力値V0に到達したか否かを判断する。センサ出力Vが出力値V0未満の場合には、ステップS2が否定判定されて、ステップS1に戻り、静電捕集及びセンサ出力Vの取り込みを継続する。 Next, in step S2, the sensor output V from the sensor element 10 is taken in, and it is determined whether or not the output value V0 which is a threshold value has been reached. If the sensor output V is less than the output value V0, a negative determination is made in step S2, and the process returns to step S1 to continue electrostatic collection and sensor output V capture.
 ステップS2において、センサ出力Vが出力値V0に到達すると、粒子状物質の粒子数を算出するタイミングに到達したとして、ステップS3に進み、以降の処理により、粒子状物質の粒子数Nを算出する。この時点において、一対の電極21、22間は、粒子状物質が堆積して電気的に接続された状態となっている。ステップS3~S7は、ECU4の粒子数算出部42としての処理である。そのうちのステップS3は、電圧制御部421としての処理であり、ステップS4は、電極間抵抗検出部422としての処理である。 In step S2, when the sensor output V reaches the output value V0, it is determined that the timing for calculating the number of particles of the particulate matter has been reached, and the process proceeds to step S3. . At this time, the particulate matter is deposited and electrically connected between the pair of electrodes 21 and 22. Steps S3 to S7 are processing as the particle number calculation unit 42 of the ECU 4. Of these, step S3 is processing as the voltage control unit 421, and step S4 is processing as the interelectrode resistance detection unit 422.
 ステップS3では、センサ素子10の一対の電極21、22間に印加される電圧を、第1電圧から、これより低い第2電圧へ変更する。このとき、堆積した粒子状物質が電気的に接続している状態が変化する。さらに、ステップS4では、検出用電圧としての第2電圧における一対の電極21、22間の電極間抵抗Rを測定する。その後、ステップS5に進んで、測定した電極間抵抗Rに基づいて、粒子状物質の平均粒径Dを推定する。 In step S3, the voltage applied between the pair of electrodes 21 and 22 of the sensor element 10 is changed from the first voltage to a lower second voltage. At this time, the state in which the deposited particulate matter is electrically connected changes. Further, in step S4, the interelectrode resistance R between the pair of electrodes 21 and 22 at the second voltage as the detection voltage is measured. Then, it progresses to step S5 and estimates the average particle diameter D of a particulate matter based on the measured resistance R between electrodes.
 前述したように、ステップS3で印加される第2電圧は、第1電圧と異なる電圧であればよく、例えば、第1電圧より低い電圧である。好ましくは、第1電圧と第2電圧との差が大きい方がよく、例えば、図9に示される印加電圧と電極間抵抗Rとの関係を用いて、予め設定される。この関係は、図10に示されるモデル排ガス浄化装置を用いて測定されたものであり、DPF5が設置されたモデル排ガス流路101に、主にSootからなる粒子状物質を発生させるPM発生装置100が接続されている。粒子状物質検出センサ1は、DPF5の上流側に配置されており、粒子状物質検出センサ1の上流側には、市販の粒径分布計測装置(すなわち、EEPS;Engine Exhaust Particle Sizer)102が配置される。 As described above, the second voltage applied in step S3 may be a voltage different from the first voltage, for example, a voltage lower than the first voltage. Preferably, the difference between the first voltage and the second voltage is preferably large. For example, the difference is set in advance using the relationship between the applied voltage and the interelectrode resistance R shown in FIG. This relationship is measured using the model exhaust gas purification apparatus shown in FIG. 10, and the PM generator 100 that generates particulate matter mainly made of soot in the model exhaust gas flow path 101 in which the DPF 5 is installed. Is connected. The particulate matter detection sensor 1 is arranged on the upstream side of the DPF 5, and a commercially available particle size distribution measuring device (that is, EPSS: Engine Exhaust Particle Sizer) 102 is arranged on the upstream side of the particulate matter detection sensor 1. Is done.
 このモデル排ガス浄化装置を用いて、モデル排ガスに含まれる粒子状物質の平均粒径Dを変化させて、粒子状物質検出センサ1によるPM捕集を行った。センサ出力Vが、予め設定した所定の出力値V0(例えば、0.12V)に達した時点で、PM捕集を停止し、PM発生装置100を停止した。その状態で、粒子状物質検出センサ1への印加電圧を変化させて、一対の電極21、22間の電極間抵抗Rを測定した。測定条件は、以下のようにした。
 モデルガス温度:200℃
 モデルガス流量:15m/s
 平均粒径D:74nm、63nm、58nm
 PM捕集時印加電圧:35V
 測定時の印加電圧:1V(測定不可)、5V、10V、20V、30V、35V
 電極間隔:20μm
Using this model exhaust gas purification device, PM collection by the particulate matter detection sensor 1 was performed by changing the average particle diameter D of the particulate matter contained in the model exhaust gas. When the sensor output V reaches a predetermined output value V0 (for example, 0.12 V) set in advance, PM collection is stopped and the PM generator 100 is stopped. In this state, the applied voltage to the particulate matter detection sensor 1 was changed, and the interelectrode resistance R between the pair of electrodes 21 and 22 was measured. Measurement conditions were as follows.
Model gas temperature: 200 ° C
Model gas flow rate: 15m / s
Average particle diameter D: 74 nm, 63 nm, 58 nm
Applied voltage when collecting PM: 35V
Applied voltage at the time of measurement: 1V (not measurable), 5V, 10V, 20V, 30V, 35V
Electrode spacing: 20 μm
 図9に示されるように、PM捕集時の印加電圧(すなわち、第1電圧)に対して、測定時の印加電圧(すなわち、検出用電圧=第2電圧)が低くなるほど、平均粒径Dによる電極間抵抗Rの差異が大きくなる。例えば、第2電圧に変化させず、PM捕集時と測定時の印加電圧が同じまま(すなわち、35V)である場合には、十分大きな差異はない。これに比べて、測定時印加電圧が35Vより低くなるにつれて、電極間抵抗Rが大きくなっており、しかも、平均粒径Dによる電極間抵抗Rの差が大きくなる。このように、より低い第2電圧に変更することで、電極間抵抗Rから平均粒径Dを推定することが可能になる。 As shown in FIG. 9, the average particle diameter D decreases as the applied voltage (that is, detection voltage = second voltage) at the time of measurement becomes lower than the applied voltage (that is, the first voltage) during PM collection. The difference in inter-electrode resistance R due to increases. For example, when the applied voltage at the time of PM collection and measurement remains the same (that is, 35 V) without changing to the second voltage, there is no sufficiently large difference. Compared with this, as the applied voltage at the time of measurement becomes lower than 35 V, the interelectrode resistance R increases, and the difference in the interelectrode resistance R due to the average particle diameter D increases. Thus, it becomes possible to estimate the average particle diameter D from the interelectrode resistance R by changing to a lower second voltage.
 具体的には、図11に示されるように、粒子状物質の平均粒径D(単位:nm)と電極間抵抗R(単位:Ω)とは、比例関係にあり、それらの関係を表す直線の傾き(単位:Ω/nm)は、図12に示されるように、印加電圧が低いほど、大きくなる。特に、測定時印加電圧が20V程度ないしそれより低い領域において、傾きが急激に大きくなっている。したがって、より好ましくは、第2電圧を、第1電圧の60%(例えば、第1電圧が35Vであるとき、第2電圧が20V)程度ないしそれ以下に設定するのがよい。これにより、電極間抵抗Rに基づく平均粒径Dの推定精度をより向上させることができる。 Specifically, as shown in FIG. 11, the average particle diameter D (unit: nm) of the particulate matter and the interelectrode resistance R (unit: Ω) are in a proportional relationship, and a straight line representing these relationships The slope (unit: Ω / nm) increases as the applied voltage decreases, as shown in FIG. In particular, in the region where the applied voltage at the time of measurement is about 20 V or lower, the slope increases rapidly. Therefore, more preferably, the second voltage is set to about 60% of the first voltage (for example, when the first voltage is 35V, the second voltage is 20V) or less. Thereby, the estimation precision of the average particle diameter D based on resistance R between electrodes can be improved more.
 なお、測定時の印加電圧がごく低い領域では(例えば、検出用電圧=1V)、測定ばらつきが大きくなったために、図12中には記載せず、測定不可とした。したがって、検出用電圧としての第2電圧を選定する際には、回路構成等に応じて測定が可能な範囲となるように、例えば、抵抗測定時に一対の電極21、22間を流れる電流が1μA程度となる電圧を下限値として、それより低くならないように設定することが望ましい。これにより、ステップS4における電極間抵抗Rの測定精度を向上させ、回路コストを低減させることができる。 In the region where the applied voltage at the time of measurement was very low (for example, detection voltage = 1V), the measurement variation was large, so it was not shown in FIG. Therefore, when the second voltage as the detection voltage is selected, for example, the current flowing between the pair of electrodes 21 and 22 at the time of resistance measurement is 1 μA so that the measurement can be performed in accordance with the circuit configuration. It is desirable to set a voltage that is about a lower limit value so as not to be lower than that. Thereby, the measurement accuracy of the interelectrode resistance R in step S4 can be improved, and the circuit cost can be reduced.
 ステップS5では、測定した電極間抵抗Rに基づいて、例えば、図13に示される関係を用いて、粒子状物質の平均粒径Dを推定する。図13において、横軸は、平均粒径D(すなわち、メジアン径)の逆数を示しており、平均粒径Dが大きくなるほど、縦軸の電極間抵抗Rは高くなる。また、測定時の印加電圧である第2電圧が低くなるほど、電極間抵抗Rは高くなる。
 これは、図14に示されるように、平均粒径Dが小さい場合と大きい場合とで、印加電圧の高低によって捕集された粒子状物質の配列に変化が生じる際の、変化のしかたが異なるためと考えられる。すなわち、第1電圧において捕集された状態では、比較的印加電圧が高く、一対の電極21、22間の電界強度が高い状態となっている。その場合には、両電極間に配置される粒子状物質(すなわち、図中のPM)が整列して両電極を電気的に接続している状態は、平均粒径Dの大小により大きな差異は生じない。また、第2電圧が比較的高い電圧である場合には、電界強度の変化が小さく、捕集状態の変化も小さい。つまり、粒子状物質の配列は、PM捕集時のセンサ出力Vが所定の出力値V0に到達した状態とほぼ同様となっている。このため、測定される電極間抵抗Rにも大きな差異は生じていない。
In step S5, based on the measured interelectrode resistance R, for example, the average particle diameter D of the particulate matter is estimated using the relationship shown in FIG. In FIG. 13, the horizontal axis represents the reciprocal of the average particle diameter D (that is, the median diameter), and the interelectrode resistance R on the vertical axis increases as the average particle diameter D increases. Further, the interelectrode resistance R increases as the second voltage, which is the applied voltage at the time of measurement, decreases.
As shown in FIG. 14, this is different in the case where the average particle diameter D is small and large, when the arrangement of the particulate matter collected by the applied voltage level is changed. This is probably because of this. That is, in the state collected at the first voltage, the applied voltage is relatively high and the electric field strength between the pair of electrodes 21 and 22 is high. In that case, the state in which the particulate matter (that is, PM in the figure) arranged between both electrodes is aligned and electrically connected to each other is largely different depending on the average particle diameter D. Does not occur. Further, when the second voltage is a relatively high voltage, the change in the electric field strength is small and the change in the collection state is also small. That is, the arrangement of the particulate matter is substantially the same as the state in which the sensor output V at the time of PM collection reaches the predetermined output value V0. For this reason, there is no significant difference in the measured interelectrode resistance R.
 これに対して、印加電圧がより低くなると、一対の電極21、22間の電界強度がさらに低下するために、粒子状物質を拘束する力が弱くなる。すると、図示するように、粒子状物質の整列状態が乱れ、隣接する粒子状物質同士の接触抵抗が高くなると考えられる。また、一対の電極21、22間を接続する粒子状物質の接触状態(例えば、導電パスの形成状態)が変化し、その変化は平均粒径Dが比較的小さい場合よりも、平均粒径Dが比較的大きい場合において顕著となりやすい。
 ここで、粒子状物質は粒径が小さいほど抵抗が高いため、所定のセンサ出力V0に到達した時点では、粒子状物質の粒径が小さいほど多くの粒子状物質が捕集されている。電極間抵抗Rは、粒子状物質の接触抵抗や接触状態による抵抗の合成抵抗となるため、多くの粒子状物質が捕集される、粒径が小さい場合ほど、電極間抵抗Rの変化は小さくなる。
On the other hand, when the applied voltage is further lowered, the electric field strength between the pair of electrodes 21 and 22 is further reduced, so that the force for restraining the particulate matter is weakened. Then, as shown in the drawing, it is considered that the alignment state of the particulate substances is disturbed, and the contact resistance between the adjacent particulate substances is increased. Further, the contact state of the particulate matter connecting the pair of electrodes 21 and 22 (for example, the formation state of the conductive path) is changed, and the change is larger than that in the case where the average particle size D is relatively small. Tends to be prominent when is relatively large.
Here, since the particulate matter has a higher resistance as the particle diameter is smaller, when the predetermined sensor output V0 is reached, more particulate matter is collected as the particle diameter of the particulate matter is smaller. Since the interelectrode resistance R becomes the combined resistance of the contact resistance of the particulate matter and the resistance depending on the contact state, the change in the interelectrode resistance R is smaller as the particle size is smaller. Become.
 このように、捕集されている粒子状物質の粒径により、電極間抵抗Rの変化が変わるので、粒子状物質の捕集時と異なる第2電圧に変更して、捕集状態を変化させた後に、電極間抵抗Rを測定することで、粒子状物質の平均粒径Dを推定できる。
 そこで、これらの関係を運転条件や測定条件ごとに予め調べて、関係式やマップ等としてECU4の記憶領域であるROMに記憶しておき、測定した電極間抵抗Rから平均粒径Dを推定することができる。この処理により得られる平均粒径Dは、ステップS1による静電捕集の開始から、ステップS2の判定タイミングの到達までの捕集期間にDPF5の下流に排出された粒子状物質の平均粒径である。
As described above, since the change in the interelectrode resistance R changes depending on the particle size of the collected particulate matter, the second state is changed to a second voltage different from that at the time of collecting the particulate matter, and the collection state is changed. Thereafter, the average particle diameter D of the particulate matter can be estimated by measuring the interelectrode resistance R.
Therefore, these relationships are examined in advance for each operation condition and measurement condition, stored in a ROM as a storage area of the ECU 4 as a relational expression or a map, and the average particle diameter D is estimated from the measured interelectrode resistance R. be able to. The average particle diameter D obtained by this process is the average particle diameter of the particulate matter discharged downstream of the DPF 5 during the collection period from the start of electrostatic collection in step S1 to the arrival of the determination timing in step S2. is there.
 次いで、ステップS6へ進んで、センサ出力Vから捕集期間に排出された粒子状物質の質量Mを推定する。センサ出力Vは、捕集期間にセンサ素子10の検出部2に捕集された粒子状物質の質量Mと、ほぼ正の相関を有しており、ここでは、ステップS2が肯定判定された時点におけるセンサ出力V、すなわち所定の出力値V0を用いる。ステップS2では、センサ出力Vが出力値V0に到達したか否かを判定しており、肯定判定された時点におけるセンサ出力Vは、閾値である出力値V0と実質的に等しいからである。 Next, the process proceeds to step S6, where the mass M of the particulate matter discharged during the collection period is estimated from the sensor output V. The sensor output V has a substantially positive correlation with the mass M of the particulate matter collected by the detection unit 2 of the sensor element 10 during the collection period. Here, when the determination in step S2 is affirmative Sensor output V, ie, a predetermined output value V0 is used. In step S2, it is determined whether or not the sensor output V has reached the output value V0, and the sensor output V at the time when the determination is affirmative is substantially equal to the output value V0 that is a threshold value.
 さらに、ステップS7へ進んで、推定された粒子状物質の質量Mと、平均粒径Dとを用いて、下記式2、式3により、粒子状物質の粒子数Nを算出する。
式2:粒子数N=質量M/PM平均体積×PM比重
式3:PM平均体積=4π(D/2)3/3
 ここで、粒子状物質の比重(すなわち、PM比重)は、予め定めた一定値(例えば、1g/cm3)とすることができる。粒子状物質の平均体積(すなわち、PM平均体積)は、推定した粒子状物質の平均粒径Dから、粒子状物質を球状とみなして上記式3により算出される。
Furthermore, it progresses to step S7 and calculates the particle number N of a particulate matter by the following formula 2 and formula 3 using the mass M of the estimated particulate matter, and the average particle diameter D.
Equation 2: number of particles N = mass M / PM average volume × PM gravity formula 3: PM Average volume = 4π (D / 2) 3 /3
Here, the specific gravity (that is, PM specific gravity) of the particulate matter can be a predetermined constant value (for example, 1 g / cm 3 ). The average volume of the particulate matter (that is, the PM average volume) is calculated from the estimated average particle diameter D of the particulate matter, by regarding the particulate matter as a sphere, by the above Equation 3.
 これら一連のステップを経て算出された粒子状物質の粒子数Nを、実際に測定された粒子数と比較したところ、図15に示すように、推定PM個数と実測PM個数とがほぼ一致する関係にあることが確認された。このように、粒子状物質の平均粒径Dを考慮することで、粒子状物質の粒子数Nを精度よく推定することができる。 When the particle number N of the particulate matter calculated through the series of steps is compared with the actually measured particle number, as shown in FIG. 15, the relationship between the estimated PM number and the actually measured PM number almost coincides. It was confirmed that Thus, by considering the average particle diameter D of the particulate matter, the number N of particles of the particulate matter can be accurately estimated.
(実施形態2)
 実施形態2の粒子状物質検出装置において、センサ部としての粒子状物質検出センサ1、及びセンサ制御部であるECU4の基本構成は、上記実施形態1と同様である。上記実施形態1では、検出用電圧としての第2電圧における電極間抵抗Rに基づいて、粒子状物質の平均粒径Dを推定したが、検出用電圧として第1電圧より低い複数の電圧を設定し、大きさが異なる複数の電圧においてそれぞれ電極間抵抗Rを測定するようにしてもよい。複数の電圧は、第2電圧と同じ大きさの電圧を含んでもよい。この場合に、ECU4によって実行される粒子状物質検出処理の詳細を、図16を用いて説明する。
 なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
(Embodiment 2)
In the particulate matter detection device of the second embodiment, the basic configuration of the particulate matter detection sensor 1 as a sensor unit and the ECU 4 as a sensor control unit is the same as that of the first embodiment. In the first embodiment, the average particle diameter D of the particulate matter is estimated based on the interelectrode resistance R in the second voltage as the detection voltage, but a plurality of voltages lower than the first voltage are set as the detection voltage. However, the interelectrode resistance R may be measured at a plurality of voltages having different magnitudes. The plurality of voltages may include a voltage having the same magnitude as the second voltage. Details of the particulate matter detection process executed by the ECU 4 in this case will be described with reference to FIG.
Of the reference numerals used in the second and subsequent embodiments, the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
 図16にフローチャートを示すように、本形態において、センサ制御部であるECU4により実行される粒子状物質検出処理は、図7に示される実施形態1の手順の一部を変更したものである。具体的には、ステップS11~S14までは、図7のステップS1~S4と同じ処理であるので説明を簡略にし、相違点となるステップS15以降について、主に説明する。 As shown in the flowchart in FIG. 16, in this embodiment, the particulate matter detection process executed by the ECU 4 that is the sensor control unit is obtained by changing a part of the procedure of the first embodiment shown in FIG. 7. Specifically, since steps S11 to S14 are the same as steps S1 to S4 in FIG. 7, the description will be simplified, and steps S15 and after that will be different will be mainly described.
 ステップS11~S14では、検出部2の一対の電極21、22に第1電圧を印加して静電捕集を行い、センサ出力Vが出力値V0に到達したら、第2電圧に変更して捕集状態を変化させた後、第2電圧において電極間抵抗Rを測定する。次に、ステップS15に進んで、一対の電極21、22への印加電圧を、第2電圧より低い第3電圧に変更し、さらにステップS16に進んで、第3電圧における電極間抵抗R1を測定する。 In steps S11 to S14, electrostatic collection is performed by applying a first voltage to the pair of electrodes 21 and 22 of the detection unit 2, and when the sensor output V reaches the output value V0, it is changed to the second voltage and captured. After changing the collection state, the interelectrode resistance R is measured at the second voltage. Next, proceeding to step S15, the voltage applied to the pair of electrodes 21 and 22 is changed to a third voltage lower than the second voltage, and further proceeding to step S16 to measure the interelectrode resistance R1 at the third voltage. To do.
 ここで、検出用電圧としての第2電圧及び第3電圧は、それぞれ第1電圧より低い電圧であり、かつ互いに大きさが異なる電圧であればよい。好ましくは、第2電圧及び第3電圧のうちの少なくとも一方又は両方が、第1電圧の60%程度ないしそれ以下の電圧であるとよく、印加電圧が低いほど、平均粒径Dの推定精度が高くなる。また、第2電圧と第3電圧の差を比較的大きくすると、より好ましい。 Here, the second voltage and the third voltage as the detection voltages may be voltages that are lower than the first voltage and different in magnitude from each other. Preferably, at least one or both of the second voltage and the third voltage is about 60% or less of the first voltage, and the lower the applied voltage, the more accurate the average particle diameter D is estimated. Get higher. Further, it is more preferable that the difference between the second voltage and the third voltage is relatively large.
 ステップS17においては、検出用電圧となる複数の電圧における抵抗値、すなわち、第2電圧における電極間抵抗Rと、第3電圧における電極間抵抗R1に基づいて、平均粒径Dの推定を行う。例えば、前述した図7のステップS5と同様に、図13に示される関係を用いて、電極間抵抗R、R1のそれぞれについて平均粒径Dを推定し、それらの平均値を算出することができる。好ましくは、平均粒径Dを推定する際に、各電圧に対して重み付けを行うことで、推定精度が高めることできる。具体的には、印加電圧が低い状態で測定された場合ほど、重みを増すように、電極間抵抗R、R1に対して重み付けを行うとよい。 In step S17, the average particle diameter D is estimated based on the resistance values at a plurality of voltages serving as detection voltages, that is, the interelectrode resistance R at the second voltage and the interelectrode resistance R1 at the third voltage. For example, similarly to step S5 of FIG. 7 described above, the average particle diameter D can be estimated for each of the interelectrode resistances R and R1 using the relationship shown in FIG. 13, and the average value thereof can be calculated. . Preferably, when estimating the average particle diameter D, the estimation accuracy can be increased by weighting each voltage. Specifically, it is preferable to weight the interelectrode resistances R and R1 so that the weight is increased as the measured voltage is lower.
 その後のステップS18、ステップS19は、前述した図7のステップS6、ステップS7と同様である。すなわち、ステップS18では、ステップ12が肯定判定された時点におけるセンサ出力Vとしての出力値V0を用いて、粒子状物質の質量Mを推定する。さらに、ステップS19では、推定された粒子状物質の質量Mと、平均粒径Dとを用いて、上記式2、式3により、粒子状物質の粒子数Nを算出する。 The subsequent steps S18 and S19 are the same as steps S6 and S7 in FIG. That is, in step S18, the mass M of the particulate matter is estimated using the output value V0 as the sensor output V when step 12 is positively determined. Further, in step S19, the number N of the particulate matter is calculated by the above formulas 2 and 3 using the estimated mass M of the particulate matter and the average particle diameter D.
 このように、複数の電圧における電極間抵抗R、R1を測定することで、平均粒径Dの推定をより精度よく行うことができる。複数の電圧は、本形態のように、2つの異なる電圧とするだけでなく、3つ以上の異なる電圧を設定し、それぞれについて電極間抵抗Rを測定することもできる。図17に一例を示すように、電極間抵抗Rが測定される印加電圧が1つである印加電圧条件(すなわち、実施形態1による粒子状物質検出処理)では、推定粒径と実測粒径とに生じる差が、最大で16%程度となる。これに対して、図18に示すように、複数の印加電圧条件において、電極間抵抗Rが測定される場合には、推定粒径と実測粒径とに生じる差が、最大で5%程度に縮小することができる。 Thus, by measuring the interelectrode resistances R and R1 at a plurality of voltages, the average particle diameter D can be estimated more accurately. The plurality of voltages are not limited to two different voltages as in the present embodiment, but three or more different voltages can be set and the interelectrode resistance R can be measured for each of them. As shown in an example in FIG. 17, under an applied voltage condition (that is, the particulate matter detection process according to the first embodiment) where the applied voltage at which the interelectrode resistance R is measured is one, the estimated particle diameter and the actually measured particle diameter are The maximum difference between the two is about 16%. On the other hand, as shown in FIG. 18, when the interelectrode resistance R is measured under a plurality of applied voltage conditions, the difference between the estimated particle diameter and the actually measured particle diameter is about 5% at the maximum. Can be reduced.
(実施形態3)
 実施形態3の粒子状物質検出装置において、センサ部としての粒子状物質検出センサ1、及びセンサ制御部であるECU4の基本構成は、上記実施形態2と同様である。本形態においても、検出用電圧として第1電圧より低い複数の電圧を設定し、これら複数の電圧においてそれぞれ電極間抵抗Rを測定している。このとき、上記実施形態2では、測定した電極間抵抗Rからそれぞれ平均粒径Dを推定したが、複数の電圧と測定した電極間抵抗Rとの関係における傾きIを基にして、平均粒径Dを推定するようにしてもよい。
 その場合には、図1に示したECU4の粒子数算出部42は、電圧制御部421及び電極間抵抗検出部422に加えて、複数の電圧と電極間抵抗Rとの関係における傾きを算出する図略の傾き算出部を備える。この場合に、ECU4によって実行される粒子状物質検出処理の詳細を、図19を用いて説明する。
(Embodiment 3)
In the particulate matter detection device of the third embodiment, the basic configuration of the particulate matter detection sensor 1 as a sensor unit and the ECU 4 as a sensor control unit is the same as that of the second embodiment. Also in this embodiment, a plurality of voltages lower than the first voltage are set as detection voltages, and the interelectrode resistance R is measured at each of the plurality of voltages. At this time, in Embodiment 2 above, the average particle diameter D was estimated from the measured interelectrode resistance R, but based on the slope I in the relationship between the plurality of voltages and the measured interelectrode resistance R, the average particle diameter D may be estimated.
In that case, the particle number calculation unit 42 of the ECU 4 shown in FIG. 1 calculates the slope in the relationship between the plurality of voltages and the interelectrode resistance R in addition to the voltage control unit 421 and the interelectrode resistance detection unit 422. An unillustrated inclination calculation unit is provided. Details of the particulate matter detection process executed by the ECU 4 in this case will be described with reference to FIG.
 図19にフローチャートを示すように、本形態において、センサ制御部であるECU4により実行される粒子状物質検出処理は、図16に示される実施形態2の手順の一部を変更したものである。具体的には、平均粒径Dを推定するためのステップS17を、ステップS171、S172の2段階にて行う点のみ相違する。ステップS171は、傾き算出部としての処理であり、ステップS11~S16、S18~S19は、図16と同じ処理であるので同じ符号を付している。 As shown in the flowchart in FIG. 19, in this embodiment, the particulate matter detection process executed by the ECU 4 that is the sensor control unit is obtained by changing a part of the procedure of the second embodiment shown in FIG. 16. Specifically, the only difference is that step S17 for estimating the average particle diameter D is performed in two stages of steps S171 and S172. Step S171 is processing as an inclination calculation unit, and steps S11 to S16 and S18 to S19 are the same processing as in FIG.
 ここで、図20、図21に比較して示すように、測定温度等の外乱の影響により、測定される電極間抵抗Rが変動することがある。図21は、測定温度がいずれも正しい設定温度となっている場合であり、粒子状物質の平均粒径Dが比較的近い範囲にあっても(例えば、65.2nm、54.7nm、52.3nm、48.5nm)、印加電圧と電極間抵抗Rとの関係は、平均粒径Dの大小と良好な相関が見られる。図中には、各印加電圧における電極間抵抗Rのばらつき範囲を示しており、例えば、平均粒径Dの差が小さい54.7nm、52.3nmについても、ばらつき範囲の重なりはほとんどなく、上述した実施形態2の手順による平均粒径Dの推定が可能となる。 Here, as shown in comparison with FIGS. 20 and 21, the measured interelectrode resistance R may fluctuate due to the influence of disturbances such as the measured temperature. FIG. 21 shows a case where the measured temperatures are all set correctly. Even when the average particle diameter D of the particulate matter is in a relatively close range (for example, 65.2 nm, 54.7 nm, 52. 3 nm, 48.5 nm), the relationship between the applied voltage and the interelectrode resistance R shows a good correlation with the average particle size D. In the drawing, the variation range of the inter-electrode resistance R at each applied voltage is shown. For example, even in the case of 54.7 nm and 52.3 nm where the difference in the average particle diameter D is small, there is almost no variation range overlap. The average particle diameter D can be estimated by the procedure of the second embodiment.
 ただし、これら関係は温度依存性を有しており、例えば、測定時のセンサ素子10の温度が設定温度からずれる等の外乱の影響を受けて、電極間抵抗Rが本来の値からずれてしまうことがある。図20は、平均粒径Dが52.3nmの場合のみ、50℃低い測定温度において電極間抵抗Rを測定した結果を示しており、図21に比べて、平均粒径Dが54.7nmにおける電極間抵抗Rの値に接近している。そのため、図22に印加電圧5Vの場合を示すように、平均粒径Dの逆数と電極間抵抗Rは、全体には良い相関を示すものの、温度が低い条件においては(すなわち、図22中に白丸で示す)、外乱がない場合に対して電極間抵抗Rの値が大きくなるために、推定精度が低下するおそれがある。 However, these relationships are temperature-dependent. For example, the interelectrode resistance R deviates from the original value due to the influence of disturbance such as the temperature of the sensor element 10 at the time of measurement deviating from the set temperature. Sometimes. FIG. 20 shows the result of measuring the interelectrode resistance R at a measurement temperature lower by 50 ° C. only when the average particle diameter D is 52.3 nm. Compared to FIG. 21, the average particle diameter D is 54.7 nm. It approaches the value of the interelectrode resistance R. Therefore, as shown in FIG. 22 where the applied voltage is 5 V, the reciprocal of the average particle diameter D and the interelectrode resistance R show a good correlation as a whole, but under conditions where the temperature is low (that is, in FIG. 22). Since the value of the interelectrode resistance R is large when there is no disturbance, the estimation accuracy may be reduced.
 そのような場合でも、印加電圧と電極間抵抗Rとの関係を直線近似した近似式(すなわち、図20中にそれぞれ示す近似直線の式)の傾きIは、一定値となる。これは、外乱の影響により各印加電圧での電極間抵抗Rにおなじだけずれが生じるためであり、図23に平均粒径Dの逆数との関係を示すように、温度が低い条件における近似直線の傾きIは、(すなわち、図23中に白丸で示す)、外乱の影響を受けない。そこで、この傾きIを用いて平均粒径Dを推定することで、推定精度を向上させることができる。 Even in such a case, the slope I of the approximate expression (that is, the approximate straight line expression shown in FIG. 20) that linearly approximates the relationship between the applied voltage and the interelectrode resistance R is a constant value. This is because the same displacement occurs in the interelectrode resistance R at each applied voltage due to the influence of the disturbance. As shown in FIG. Is not affected by disturbance (ie, indicated by white circles in FIG. 23). Therefore, the estimation accuracy can be improved by estimating the average particle diameter D using the slope I.
 図19に示すフローチャートでは、ステップS11~S16に従い、第1電圧にて静電捕集を行い、センサ出力Vが出力値V0に到達にした後、第2電圧に変更し、さらに、第2電圧、第3電圧における電極間抵抗R、R1を測定する。次いで、ステップS171に進んで、これら第2電圧、第3電圧及び電極間抵抗R、R1から、これらの関係を直線近似した近似式の傾きIを算出する。そして、ステップS172において、算出した近似式の傾きIから、図23の関係に基づいて、粒子状物質の平均粒径Dを精度よく推定することができる。 In the flowchart shown in FIG. 19, according to steps S11 to S16, electrostatic collection is performed at the first voltage, and after the sensor output V reaches the output value V0, the second voltage is changed. The interelectrode resistances R and R1 at the third voltage are measured. Next, the process proceeds to step S171, and an inclination I of an approximate expression that linearly approximates these relationships is calculated from the second voltage, the third voltage, and the interelectrode resistances R and R1. In step S172, the average particle diameter D of the particulate matter can be accurately estimated from the calculated slope I of the approximate expression based on the relationship shown in FIG.
 その後、ステップS18~S19に進んで、出力値V0に基づいて粒子状物質の質量Mを推定し、この質量Mと平均粒径Dとを用いて、粒子状物質の粒子数Nを算出することができる。 Thereafter, the process proceeds to steps S18 to S19, where the mass M of the particulate matter is estimated based on the output value V0, and the number N of particulate matter particles is calculated using this mass M and the average particle size D. Can do.
(実施形態4)
 実施形態4の粒子状物質検出装置において、センサ部としての粒子状物質検出センサ1、及びセンサ制御部であるECU4の基本構成は、上記実施形態1と同様である。上記実施形態1、2では、粒子状物質検出センサ1のヒータ部3を、粒子状物質の捕集に先立つ検出部2の再生に用いたが、粒子数Nを検出する際に、検出部2に堆積する粒子状物質を加熱処理するために利用することもできる。その際、ECU4の加熱制御部43は、ヒータ部3に通電して、検出部2を再生時よりも低い温度、例えば、堆積する粒子状物質中のSOFが揮発可能でありSootは燃焼しないような温度に加熱保持する。この場合に、ECU4によって実行される粒子状物質検出処理の詳細を、図24を用いて説明する。
(Embodiment 4)
In the particulate matter detection device of the fourth embodiment, the basic configuration of the particulate matter detection sensor 1 as a sensor unit and the ECU 4 as a sensor control unit is the same as that of the first embodiment. In the first and second embodiments, the heater unit 3 of the particulate matter detection sensor 1 is used for the regeneration of the detection unit 2 prior to the collection of the particulate matter. However, when detecting the number N of particles, the detection unit 2 is used. It can also be used for heat treatment of particulate matter deposited on the substrate. At that time, the heating control unit 43 of the ECU 4 energizes the heater unit 3 so that the temperature of the detection unit 2 is lower than that at the time of regeneration, for example, SOF in the accumulated particulate matter can be volatilized and the soot does not burn. Heat to a suitable temperature. In this case, the details of the particulate matter detection process executed by the ECU 4 will be described with reference to FIG.
 図24にフローチャートを示すように、本形態において、センサ制御部であるECU4により実行される粒子状物質検出処理は、図7に示される実施形態1の手順の一部を変更したものである。具体的には、ステップS21~S22は、図7のステップS1~S2と同じ処理であり、説明を省略する。ステップS23では、センサ素子10のヒータ部3に電力を供給して、検出部2を加熱し、SOFのみが揮発除去されSootは除去されない第1温度まで昇温させる。 As shown in the flowchart in FIG. 24, in this embodiment, the particulate matter detection process executed by the ECU 4 serving as the sensor control unit is obtained by changing a part of the procedure of the first embodiment shown in FIG. Specifically, steps S21 to S22 are the same processing as steps S1 to S2 in FIG. In step S23, electric power is supplied to the heater unit 3 of the sensor element 10 to heat the detection unit 2, and the temperature is raised to a first temperature at which only SOF is volatilized and removed, and soot is not removed.
 図25に加熱処理パターンの一例を示すように、加熱処理温度である第1温度は、200℃以上、400℃以下の範囲で選択される(例えば、350℃)。このとき、加熱制御部43は、出力値V0に到達した時点以降に加熱を開始し、予め定めた第1温度に収束するように、昇温速度を制御する。例えば、第1温度の近傍までは、昇温速度を一定とし、その後、徐々に昇温速度を低減して第1温度に収束させることができる。 25. As shown in FIG. 25 as an example of the heat treatment pattern, the first temperature, which is the heat treatment temperature, is selected in the range of 200 ° C. or higher and 400 ° C. or lower (for example, 350 ° C.). At this time, the heating control unit 43 starts heating after the time point when the output value V0 is reached, and controls the temperature increase rate so as to converge to a predetermined first temperature. For example, the temperature rising rate can be kept constant until the vicinity of the first temperature, and then the temperature rising rate can be gradually reduced to converge to the first temperature.
 このとき、ヒータ部3の作動により検出部2の温度が上昇し、第1温度に収束するのに伴い、センサ出力Vも同様の曲線を描いて、第1温度における第1出力値V1に収束する。その際、検出部2が加熱されてSOFが揮発し、Sootのみとなることにより導電率が向上するために、一般に、第1出力値V1は、出力値V0よりも大きくなる。これには、温度上昇によるSootの抵抗が低下する温特の効果も含まれる。 At this time, as the temperature of the detection unit 2 rises due to the operation of the heater unit 3 and converges to the first temperature, the sensor output V also draws a similar curve and converges to the first output value V1 at the first temperature. To do. At that time, the detection unit 2 is heated and SOF is volatilized, and only the soot is used to improve the conductivity. Therefore, the first output value V1 is generally larger than the output value V0. This also includes a temperature-specific effect that lowers the resistance of the soot due to a temperature rise.
 そこで、ステップS24では、第1温度に到達した後に、第1温度における第1出力値V1を取り込む。第1温度に到達するのに要する時間は、第1温度に到達してSOFが十分に揮発するまで加熱保持するのに必要な時間であり、予め試験等を行って任意に設定できる。 Therefore, in step S24, after reaching the first temperature, the first output value V1 at the first temperature is captured. The time required to reach the first temperature is the time necessary to heat and hold until the first temperature is reached and the SOF is sufficiently volatilized, and can be arbitrarily set by conducting a test or the like in advance.
 続くステップS25~ステップS27は、前述した図7のステップS3~S5と同じ処理である。ステップS25では、検出部2の一対の電極21、22への印加電圧を、第1電圧から第2電圧に変更し、さらにステップS26に進んで、検出用電圧としての第2電圧における電極間抵抗Rを測定する。その後、ステップS27に進んで、測定した電極間抵抗Rに基づいて、粒子状物質の平均粒径Dを推定する。 Subsequent steps S25 to S27 are the same processes as steps S3 to S5 in FIG. In step S25, the voltage applied to the pair of electrodes 21 and 22 of the detection unit 2 is changed from the first voltage to the second voltage, and the process further proceeds to step S26, where the interelectrode resistance in the second voltage as the detection voltage is reached. Measure R. Then, it progresses to step S27 and estimates the average particle diameter D of a particulate matter based on the measured resistance R between electrodes.
 前述したように、粒子状物質の検出に際して、排出される粒子状物質中のSOFの影響は必ずしも大きいものではない。ただし、例えば、排気温度が低い条件ではSOFが揮発しにくいことから、粒子状物質中のSOF割合が高くなりやすい。図26に加熱処理前後に測定された電極間抵抗Rと平均粒径Dの関係を示すように、加熱処理の有無による抵抗値の差が大きくなっており、加熱処理を行って高抵抗なSOFを揮発させることにより、検出誤差を小さくすることがわかる。 As described above, when detecting particulate matter, the influence of SOF in the discharged particulate matter is not necessarily great. However, for example, since the SOF is less likely to volatilize under conditions where the exhaust temperature is low, the SOF ratio in the particulate matter tends to increase. As shown in FIG. 26, the relationship between the resistance R between electrodes measured before and after the heat treatment and the average particle diameter D shows a large difference in resistance value depending on the presence or absence of the heat treatment. It can be seen that the detection error is reduced by volatilizing.
 次に、ステップS28に進んで、第1出力値V1に基づいて、捕集期間にセンサ素子10の検出部2に捕集された粒子状物質の質量Mを推定する。第1出力値V1は、Soot主体の粒子状物質に基づくセンサ出力Vであり、粒子状物質の質量Mと正の相関を有する。この関係を予め調べてECU4の記憶領域であるROMに記憶しておくことで、質量Mを推定することができる。 Next, the process proceeds to step S28, and the mass M of the particulate matter collected by the detection unit 2 of the sensor element 10 during the collection period is estimated based on the first output value V1. The first output value V1 is a sensor output V based on the particulate matter mainly composed of Soot, and has a positive correlation with the mass M of the particulate matter. By examining this relationship in advance and storing it in the ROM, which is the storage area of the ECU 4, the mass M can be estimated.
 その後、ステップS29へ進んで、前述した図7のステップS7と同様の手順で、推定された粒子状物質の質量Mと平均粒径Dとから粒子状物質の粒子数Nを算出する。このように、捕集後に検出部2の加熱処理を行うことで、SOFと排気温度の影響を排除することができる。 Thereafter, the process proceeds to step S29, and the number N of particles of the particulate matter is calculated from the estimated mass M of the particulate matter and the average particle diameter D in the same procedure as in step S7 of FIG. Thus, the influence of SOF and exhaust temperature can be eliminated by performing the heat treatment of the detection unit 2 after collection.
(実施形態5)
 実施形態5の粒子状物質検出装置において、センサ部としての粒子状物質検出センサ1、及びセンサ制御部であるECU4の基本構成は、上記実施形態1と同様である。また、ECU4の加熱制御部43により、捕集後に検出部2の加熱処理を行うことで、SOFの影響を排除する手順は、上記実施形態4と同様であり、粒子状物質の質量Mを推定する手順のみ異なっている。
(Embodiment 5)
In the particulate matter detection device of the fifth embodiment, the basic configuration of the particulate matter detection sensor 1 as a sensor unit and the ECU 4 as a sensor control unit is the same as that of the first embodiment. In addition, the procedure for eliminating the influence of SOF by performing the heat treatment of the detection unit 2 after collection by the heating control unit 43 of the ECU 4 is the same as in the fourth embodiment, and the mass M of the particulate matter is estimated. Only the procedure is different.
 具体的には、図27に示すフローチャートにおいて、ECU4により実行される粒子状物質検出処理のうち、ステップS31~S37までは、図24に示される実施形態4のステップS21~S27と同じ処理であり、加熱処理後に第2電圧に変更し、電極間抵抗Rを測定することで、粒子状物質の平均粒径Dを精度よく推定する。 Specifically, in the flowchart shown in FIG. 27, among the particulate matter detection processing executed by the ECU 4, steps S31 to S37 are the same as steps S21 to S27 of the fourth embodiment shown in FIG. The average particle diameter D of the particulate matter is accurately estimated by changing to the second voltage after the heat treatment and measuring the interelectrode resistance R.
 その後、ステップS38に進んで、ステップ32におけるセンサ出力Vである出力値V0に基づいて、捕集期間にセンサ素子10の検出部2に捕集された粒子状物質の質量Mを推定する。粒子状物質の質量Mに占めるSOF割合は比較的小さいので、上記実施形態1と同様に、出力値V0に基づいて粒子状物質の質量Mを推定することもできる。その後、ステップS39において、推定された粒子状物質の質量Mと、平均粒径Dとを用いて、粒子状物質の粒子数Nを算出することができる。 Thereafter, the process proceeds to step S38, and the mass M of the particulate matter collected by the detection unit 2 of the sensor element 10 during the collection period is estimated based on the output value V0 that is the sensor output V in step 32. Since the SOF ratio in the mass M of the particulate matter is relatively small, the mass M of the particulate matter can be estimated based on the output value V0 as in the first embodiment. Thereafter, in step S39, the number N of particulate matter particles can be calculated using the estimated mass M of the particulate matter and the average particle diameter D.
(実施形態6)
 以上の各実施形態における粒子状物質検出処理では、粒子状物質検出センサ1を、積層構造の検出部2を有する積層型のセンサ素子10とした場合について主に説明したが、図2に示したように、直方体形状の絶縁性基体11の表面に、一対の電極21、22を印刷形成した、印刷型のセンサ素子10とすることもできる。この場合には、一対の電極21、22間の距離、すなわち電極間隔は、積層型のセンサ素子10よりも広くなり、例えば、50μm~500μmの範囲で適宜選択することができる。
(Embodiment 6)
In the particulate matter detection process in each of the embodiments described above, the case where the particulate matter detection sensor 1 is the laminated sensor element 10 having the detection unit 2 having the laminated structure is mainly described. As described above, the print type sensor element 10 in which the pair of electrodes 21 and 22 are formed by printing on the surface of the rectangular parallelepiped insulating base 11 can be provided. In this case, the distance between the pair of electrodes 21, 22, that is, the electrode interval is wider than that of the laminated sensor element 10, and can be appropriately selected within a range of 50 μm to 500 μm, for example.
 また、印刷型のセンサ素子10とした場合において、図28~図29に示すように、基体となる絶縁性基体11の表面に、検出用導電部23を配置することもできる。検出用導電部23は、粒子状物質よりも電気抵抗率が高い導電性材料であり、後述する高抵抗導電材料からなる。
 ECU4により実行される粒子状物質検出処理は、上記各実施形態のように、センサ素子10の一対の電極21、22間が絶縁材料で形成されている構成のみならず、高抵抗導電材料で形成されている構成にも有効であり、以下に説明する。
Further, in the case of the print type sensor element 10, as shown in FIGS. 28 to 29, the detection conductive portion 23 can be disposed on the surface of the insulating base 11 serving as the base. The detection conductive portion 23 is a conductive material having a higher electrical resistivity than the particulate matter, and is made of a high-resistance conductive material described later.
The particulate matter detection process executed by the ECU 4 is formed not only with a configuration in which the pair of electrodes 21 and 22 of the sensor element 10 is formed of an insulating material as in the above embodiments, but also with a high-resistance conductive material. This is also effective for the configuration described above, and will be described below.
 検出用導電部23は、検出部2となる長手方向Xの先端側(すなわち、図28における一端側)の表面に配置される。一対の電極21、22は、検出用導電部23の表面(すなわち、基体11とは反対側の表面)に間隔をおいて、それぞれ長手方向Xに延びるように配置される。一対の電極21、22は、絶縁性基体11の先端側から基端側(すなわち、図28における他端側)へ延びる線状のリード電極21a、22aに、それぞれ接続される。なお、一対の電極21、22は、図2に示したセンサ素子10と同様に、複数組の電極対が、例えば櫛歯型に配設された構成であってもよい。 The conductive portion for detection 23 is arranged on the surface of the distal end side in the longitudinal direction X (that is, one end side in FIG. 28) to be the detection portion 2. The pair of electrodes 21, 22 are arranged so as to extend in the longitudinal direction X with a spacing from the surface of the detection conductive portion 23 (that is, the surface opposite to the base 11). The pair of electrodes 21 and 22 are connected to linear lead electrodes 21a and 22a extending from the distal end side of the insulating base 11 to the proximal end side (that is, the other end side in FIG. 28), respectively. The pair of electrodes 21 and 22 may have a configuration in which a plurality of pairs of electrodes are arranged in, for example, a comb-like shape, similarly to the sensor element 10 shown in FIG.
 ここで、検出用導電部23に用いられる高抵抗導電材料20は、図30中に示すように、100~500℃の温度範囲において、表面電気抵抗率が1.0×107~1.0×1010Ω・cmの範囲にある導電性材料であることが望ましい。表面電気抵抗率が上記数値範囲を満たす導電性材料として、例えば、分子式がABO3で表されるペロブスカイト構造を有するセラミックスを用いることができる。上記分子式において、Aサイトは、La、Sr、Ca、Mgから選択される少なくとも一種であり、Bサイトは、Ti、Al、Zr、Yから選択される少なくとも一種である。好適には、Aサイトは、主成分がSr、副成分がLaであり、Bサイトは、Tiであるペロブスカイト型セラミックス(すなわち、Sr1-XLaXTiO3)が用いられる。 Here, as shown in FIG. 30, the high resistance conductive material 20 used for the detection conductive portion 23 has a surface electrical resistivity of 1.0 × 10 7 to 1.0 in a temperature range of 100 to 500 ° C. A conductive material in the range of × 10 10 Ω · cm is desirable. As a conductive material whose surface electrical resistivity satisfies the above numerical range, for example, ceramics having a perovskite structure whose molecular formula is represented by ABO 3 can be used. In the molecular formula, the A site is at least one selected from La, Sr, Ca, and Mg, and the B site is at least one selected from Ti, Al, Zr, and Y. Preferably, perovskite-type ceramics (ie, Sr 1-X La X TiO 3 ), in which the main component is Sr and the subcomponent is La and the B site is Ti, is used for the A site.
 図30中に、ペロブスカイト型セラミックスの表面電気抵抗率ρと、温度との関係を示すように、(Sr1-XLaXTiO3)におけるxを0.016~0.036の範囲にした場合、表面電気抵抗率ρは、100~500℃の温度範囲において、1.0×107~1.0×1010Ω・cmになる。そのため、このようなセラミックス(例えば、Sr0.984La0.016TiO3、Sr0.98La0.02TiO3、Sr0.964La0.036TiO3)は、検出用導電部23を構成するための材料として、好適に用いることができる。 In FIG. 30, when x in (Sr 1-X La X TiO 3 ) is in the range of 0.016 to 0.036 so as to show the relationship between the surface resistivity ρ of the perovskite ceramic and the temperature. The surface electrical resistivity ρ is 1.0 × 10 7 to 1.0 × 10 10 Ω · cm in the temperature range of 100 to 500 ° C. Therefore, such ceramics (for example, Sr 0.984 La 0.016 TiO 3 , Sr 0.98 La 0.02 TiO 3 , Sr 0.964 La 0.036 TiO 3 ) are preferably used as a material for constituting the detection conductive portion 23. it can.
 ここで、「表面電気抵抗率ρ」は、図31に示すサンプルSを作成し、測定電極101、102間の電気抵抗(すなわち、電極間抵抗)を測定して、下記式4を用いて算出した値を意味する。
 本形態では、以下のようにして、導電性材料の表面電気抵抗率ρを測定している。すなわち、まず、図31に示すサンプルSを作成する。このサンプルSは、導電性材料からなり厚さTが1.4mmの板状基板100と、該板状基板100の主表面に形成され長さがL、間隔がDである一対の測定電極101、102とを有する。このようなサンプルSを形成し、一対の測定電極101、102間の電気抵抗R(単位:Ω)を測定する。表面電気抵抗率ρは、下記式4によって算出される。
式4:ρ=R×L×T/D
Here, the “surface electrical resistivity ρ” is calculated by creating the sample S shown in FIG. 31, measuring the electrical resistance between the measurement electrodes 101 and 102 (that is, the interelectrode resistance), and using the following formula 4. Means the value.
In this embodiment, the surface electrical resistivity ρ of the conductive material is measured as follows. That is, first, a sample S shown in FIG. 31 is created. This sample S is made of a conductive material and has a plate-like substrate 100 having a thickness T of 1.4 mm, and a pair of measuring electrodes 101 formed on the main surface of the plate-like substrate 100 and having a length L and a distance D. , 102. Such a sample S is formed, and the electrical resistance R (unit: Ω) between the pair of measurement electrodes 101 and 102 is measured. The surface electrical resistivity ρ is calculated by the following equation 4.
Formula 4: ρ = R × L × T / D
 なお、本明細書において、単に「電気抵抗率」と記載した場合は、いわゆるバルクの電気抵抗率を意味する。これは、例えば図32に示すごとく、導電性材料からなる基板部200と、この基板部200の側面に形成した一対の測定電極201、202とを備えるバルク用サンプルS1を作成し、上記一対の測定電極201、202間の電気抵抗を測定することによって算出することができる。 In this specification, the simple description of “electrical resistivity” means so-called bulk electrical resistivity. For example, as shown in FIG. 32, a bulk sample S1 including a substrate portion 200 made of a conductive material and a pair of measurement electrodes 201 and 202 formed on the side surface of the substrate portion 200 is prepared. It can be calculated by measuring the electrical resistance between the measurement electrodes 201 and 202.
 図30中に示すように、Laを添加しない場合(SrTiO3)は、100~500℃の温度範囲において、表面電気抵抗率ρが、約1.0×105~1.0×1011Ω・cmになり、低温側及び高温側にて1.0×107~1.0×1010Ω・cmの範囲を外れている。この結果から、上記セラミックスにLaを含有させた方が、温度による表面電気抵抗率ρの変化が少ないことが分かる。 As shown in FIG. 30, when La is not added (SrTiO 3 ), the surface electrical resistivity ρ is about 1.0 × 10 5 to 1.0 × 10 11 Ω in the temperature range of 100 to 500 ° C. It is cm, and is out of the range of 1.0 × 10 7 to 1.0 × 10 10 Ω · cm on the low temperature side and the high temperature side. From this result, it can be seen that when La is added to the ceramic, the change in surface electrical resistivity ρ due to temperature is small.
 なお、図30のグラフを取得するにあたり、表面電気抵抗率ρの測定は、より詳しくは、以下のように行った。すなわち、Sr1-XLaXTiO3におけるxを0、0.016、0.02、0.36にしたセラミックスを作成し、これらのセラミックスを用いてサンプルS(例えば、図31参照)を作成した。各サンプルSは、厚さTが1.4mmの板状基板100と、この板状基板100の主表面に形成した、長さLが16mm、間隔Dが800μmである一対の測定電極101、102とを備える。そして、このサンプルSを大気中にて100~500℃に加熱し、測定電極101、102間に5~1000Vの電圧を加えて、電気抵抗Rを測定した。そして、上記式4を用いて、表面電気抵抗率ρを算出した。 In addition, in acquiring the graph of FIG. 30, the measurement of surface electrical resistivity (rho) was performed as follows in detail. That is, ceramics with x in Sr 1-X La X TiO 3 set to 0, 0.016, 0.02, 0.36 are prepared, and a sample S (for example, see FIG. 31) is prepared using these ceramics. did. Each sample S has a plate-like substrate 100 having a thickness T of 1.4 mm and a pair of measuring electrodes 101 and 102 formed on the main surface of the plate-like substrate 100 and having a length L of 16 mm and a distance D of 800 μm. With. Then, the sample S was heated to 100 to 500 ° C. in the atmosphere, a voltage of 5 to 1000 V was applied between the measuring electrodes 101 and 102, and the electric resistance R was measured. And the surface electrical resistivity (rho) was computed using the said Formula 4.
 本形態において、センサ制御部であるECU4により実行される粒子状物質検出処理は、上記実施形態1~5のいずれを適用してもよい。すなわち、粒子状物質の捕集時に第1電圧を印加して速やかに閾値に到達させ、次いで、例えば、第1電圧より低い第2電圧に変更した後、第2電圧又は複数の電圧において検出した抵抗値によって、平均粒径Dを精度よく推定することができる。さらに、出力値V0又は加熱処理後の第1出力値V1を用いて推定した粒子状物質の質量Mと、既知の定数であるPM比重とから、捕集期間における粒子数Nを、算出することができる。 In the present embodiment, any of the first to fifth embodiments may be applied to the particulate matter detection process executed by the ECU 4 serving as the sensor control unit. That is, when the particulate matter is collected, the first voltage is applied to quickly reach the threshold, and then, for example, the second voltage lower than the first voltage is changed, and then detected at the second voltage or a plurality of voltages. The average particle diameter D can be accurately estimated from the resistance value. Furthermore, the number N of particles in the collection period is calculated from the mass M of the particulate matter estimated using the output value V0 or the first output value V1 after the heat treatment and the PM specific gravity which is a known constant. Can do.
 具体的には、図7に示される実施形態1のステップS1~S7と同じ処理を行うことができる。
 すなわち、ステップS1~S3では、検出部2の一対の電極21、22に第1電圧を印加して静電捕集を行い、センサ出力Vが出力値V0に到達したら、第2電圧に変更して捕集状態を変化させる、その後、ステップS4において、検出用電圧としての第2電圧における電極間抵抗Rを測定し、ステップS5にて、電極間抵抗Rから粒子状物質の平均粒径Dを推定する。そして、ステップS6~S7において、出力値V0に基づいて粒子状物質の質量Mを推定し、粒子状物質の比重と、推定した粒子状物質の質量Mを用いて、粒子状物質の粒子数Nを算出する。
Specifically, the same processing as steps S1 to S7 of the first embodiment shown in FIG. 7 can be performed.
That is, in steps S1 to S3, the first voltage is applied to the pair of electrodes 21 and 22 of the detection unit 2 to perform electrostatic collection, and when the sensor output V reaches the output value V0, the second voltage is changed. Then, in step S4, the interelectrode resistance R at the second voltage as the detection voltage is measured, and in step S5, the average particle diameter D of the particulate matter is calculated from the interelectrode resistance R in step S4. presume. In steps S6 to S7, the mass M of the particulate matter is estimated based on the output value V0, and the number N of particulate matter particles is determined using the specific gravity of the particulate matter and the estimated mass M of the particulate matter. Is calculated.
 図33に示すように、検出用導電部23を用いた検出部2においても、印加電圧と電極間抵抗の関係は、印加電圧が低くなるほど、平均粒径D(例えば、56.9nm、65.4nm、80.0nm)による電極間抵抗Rの差異が大きくなる傾向を示す。
なお、測定条件は、以下の通りとした。
 モデルガス温度:200℃
 モデルガス流量:15m/s
 PM濃度:10mg/m3
 表面電気抵抗率ρ:2.4×108Ω・cm
 平均粒径D:56.9nm、65.4nm、80.0nm
 電極間隔:60μm×5組
 粒子数N:1~2×1014個程度
As shown in FIG. 33, also in the detection unit 2 using the detection conductive unit 23, the relationship between the applied voltage and the interelectrode resistance is such that the average particle diameter D (for example, 56.9 nm, 65. 4 nm, 80.0 nm) shows a tendency that the difference in inter-electrode resistance R increases.
Measurement conditions were as follows.
Model gas temperature: 200 ° C
Model gas flow rate: 15m / s
PM concentration: 10 mg / m 3
Surface electrical resistivity ρ: 2.4 × 10 8 Ω · cm
Average particle diameter D: 56.9 nm, 65.4 nm, 80.0 nm
Electrode spacing: 60 μm x 5 sets Number of particles N: 1 to 2 x 10 14
 したがって、PM捕集時の印加電圧(すなわち、第1電圧:例えば、35V)に対して、より低い第2電圧(例えば、5V)に変化させると、平均粒径Dが大きいほど電極間抵抗Rが大きくなる。図34に示すように、平均粒径Dの逆数と電極間抵抗Rとの関係においては、平均粒径Dの逆数が小さくなるほど、電極間抵抗Rが大きくなる。この関係を用いて、粒子状物質の平均粒径Dを精度よく推定することができる。 Therefore, when the voltage is changed to a lower second voltage (for example, 5 V) with respect to the applied voltage at the time of PM collection (that is, the first voltage: for example, 35 V), the interelectrode resistance R increases as the average particle diameter D increases. Becomes larger. As shown in FIG. 34, in the relationship between the reciprocal of the average particle diameter D and the interelectrode resistance R, the interelectrode resistance R increases as the reciprocal of the average particle diameter D decreases. Using this relationship, the average particle diameter D of the particulate matter can be estimated with high accuracy.
 図35に示すように、本形態の検出部2は、検出用導電部23となる高抵抗導電材料20の表面に一対の電極21、22が配置されるので、粒子状物質(すなわち、図中のPM)が堆積していない初期状態においても、高抵抗導電材料20を介して電極21、22間を微小な電流(例えば、図中に矢印で示す)が流れる。この状態において、図36に示すように、高抵抗導電材料20の表面に、粒子状物質が付着すると、一対の電極21、22間の電極間抵抗Rは、高抵抗導電材料20と粒子状物質の合成抵抗となる。そのため、電極間抵抗Rは、粒子状物質が付着した分だけ変化し、高抵抗導電材料20は粒子状物質よりも電気抵抗率が高いため、図37に示すように、粒子状物質の堆積量に比例してセンサ出力が増加する。 As shown in FIG. 35, the detection unit 2 of the present embodiment has a pair of electrodes 21 and 22 arranged on the surface of the high-resistance conductive material 20 that becomes the detection conductive unit 23. Even in the initial state in which no PM is deposited, a minute current (for example, indicated by an arrow in the drawing) flows between the electrodes 21 and 22 via the high-resistance conductive material 20. In this state, as shown in FIG. 36, when particulate matter adheres to the surface of the high-resistance conductive material 20, the inter-electrode resistance R between the pair of electrodes 21 and 22 becomes high-resistance conductive material 20 and particulate matter. This is the combined resistance. Therefore, the inter-electrode resistance R changes as much as the particulate matter adheres, and the high resistance conductive material 20 has a higher electrical resistivity than the particulate matter. Therefore, as shown in FIG. Sensor output increases in proportion to.
 図38は、これら一連のステップを経て算出された粒子状物質の粒子数Nを、実際に測定された粒子数と比較したものであり、推定PM個数と実測PM個数とが相関を有することが確認された。上記各実施形態のように電極間を絶縁体で形成した場合は、前述した図4のように、電極間を粒子状物質が短絡するまではセンサ出力が得られないが、本形態では、電極間を短絡するよりも僅かな堆積量において粒子状物質を検出できる。そのため、微量の粒子状物質でも粒子数Nを算出することができる。 FIG. 38 shows a comparison of the number of particles N of the particulate matter calculated through these series of steps with the number of particles actually measured, and the estimated number of PMs and the number of measured PMs have a correlation. confirmed. When the electrodes are formed of an insulator as in each of the above embodiments, the sensor output cannot be obtained until the particulate matter is short-circuited between the electrodes as in FIG. 4 described above. Particulate matter can be detected with a smaller amount of deposition than short-circuiting. Therefore, the number N of particles can be calculated even with a small amount of particulate matter.
(実施形態7)
 実施形態7の粒子状物質検出装置において、センサ部としての粒子状物質検出センサ1、及びセンサ制御部であるECU4の基本構成は、上記実施形態1と同様である。上記各実施形態では、いずれも粒子状物質の比重を一定値として粒子状物質の質量Mを算出しているが、PM比重を既知の定数とする代わりに、推定した平均粒径Dを基にPM比重を推定するようにしてもよい。その場合に、ECU4によって実行される粒子状物質検出処理の詳細を、図39を用いて説明する。
(Embodiment 7)
In the particulate matter detection device of the seventh embodiment, the basic configuration of the particulate matter detection sensor 1 as a sensor unit and the ECU 4 as a sensor control unit is the same as that of the first embodiment. In each of the above embodiments, the mass M of the particulate matter is calculated with the specific gravity of the particulate matter as a constant value, but instead of using the PM specific gravity as a known constant, based on the estimated average particle diameter D You may make it estimate PM specific gravity. In this case, the details of the particulate matter detection process executed by the ECU 4 will be described with reference to FIG.
 図39にフローチャートを示すように、本形態において、センサ制御部であるECU4により実行される粒子状物質検出処理は、ステップS41~S45までは、図7に示される実施形態1のステップS1~S5と同じ処理である。すなわち、検出部2の一対の電極21、22に第1電圧を印加して静電捕集を行い、センサ出力Vが出力値V0に到達したら、第2電圧に変更して捕集状態を変化させる。その後、ステップS44に進んで、検出用電圧としての第2電圧における電極間抵抗Rを測定し、ステップS45にて、電極間抵抗Rから粒子状物質の平均粒径Dを推定する。 As shown in the flowchart in FIG. 39, in this embodiment, the particulate matter detection process executed by the ECU 4 serving as the sensor control unit is performed in steps S41 to S45 from steps S1 to S5 in the first embodiment shown in FIG. Is the same process. That is, electrostatic collection is performed by applying a first voltage to the pair of electrodes 21 and 22 of the detection unit 2, and when the sensor output V reaches the output value V0, the collection state is changed by changing to the second voltage. Let Thereafter, the process proceeds to step S44, in which the interelectrode resistance R at the second voltage as the detection voltage is measured. In step S45, the average particle diameter D of the particulate matter is estimated from the interelectrode resistance R.
 その後、ステップS46において、推定された平均粒径Dから、捕集した粒子状物質の比重を推定する。図40に示すように、平均粒径D(単位:nm)と比重(単位:g/cm3)とは相関があり、平均粒径Dが大きくなるほどPM比重が小さくなることが判明している。そこで、この関係を基に、予め用意しておいた平均粒径DとPM比重の関係式から、推定された平均粒径での比重を、精度よく算出することができる。 Thereafter, in step S46, the specific gravity of the collected particulate matter is estimated from the estimated average particle diameter D. As shown in FIG. 40, there is a correlation between the average particle diameter D (unit: nm) and the specific gravity (unit: g / cm 3 ), and it has been found that the PM specific gravity decreases as the average particle diameter D increases. . Therefore, based on this relationship, the specific gravity at the estimated average particle diameter can be accurately calculated from the relational expression of the average particle diameter D and PM specific gravity prepared in advance.
 次いで、ステップS47において、出力値V0に基づいて粒子状物質の質量Mを推定し、さらに、ステップS48において、推定された粒子状物質の比重と、粒子状物質の質量Mを用いて、粒子状物質の粒子数Nを算出することができる。
 なお、比重を算出する基となる粒子状物質の平均粒径Dの推定方法は、ここで示す電極間抵抗Rから推定する方法に限らず、加熱によるセンサ出力の増幅率から推定する方法、高周波インピーダンスから推定する方法等を用いることも可能である。
Next, in step S47, the mass M of the particulate matter is estimated based on the output value V0. Further, in step S48, the particulate matter is estimated using the estimated specific gravity of the particulate matter and the mass M of the particulate matter. The number N of particles of the substance can be calculated.
Note that the method of estimating the average particle diameter D of the particulate matter that is the basis for calculating the specific gravity is not limited to the method of estimating from the interelectrode resistance R shown here, but the method of estimating from the amplification factor of the sensor output due to heating, high frequency It is also possible to use a method of estimating from the impedance.
 図41は、これら一連のステップのうち、ステップS46のPM比重の推定を実施せず、既知のPM比重を用いて算出された粒子状物質の粒子数Nと実測粒子数の関係を示したものであり、推定PM個数は、ほぼ実測PM個数±20%の範囲にある。これに対して、図42に示すように、ステップS46にて推定したPM比重を用いた場合には、推定PM個数と実測PM個数の差がより小さくなっており、粒子数Nの検出精度を向上させることができる。 FIG. 41 shows the relationship between the number N of particulate matter calculated using a known PM specific gravity and the number of measured particles without performing the estimation of the PM specific gravity in step S46 in the series of steps. The estimated number of PMs is in a range of about ± 20% of the actually measured PM number. On the other hand, as shown in FIG. 42, when the PM specific gravity estimated in step S46 is used, the difference between the estimated PM number and the actually measured PM number is smaller, and the detection accuracy of the particle number N is improved. Can be improved.
(実施形態8)
 実施形態8の粒子状物質検出装置において、センサ部としての粒子状物質検出センサ1、及びセンサ制御部であるECU4の基本構成は、上記実施形態6と同様である。センサ素子10には、微量の粒子状物質の検出が可能な検出用導電部23を用いた検出部2を備えている。上記実施形態6では、上記実施形態1と同様に、第1電圧から第2電圧に変更後、検出用電圧としての第2電圧にて電極間抵抗Rを測定したが、本形態では、さらに第2電圧と異なる検出用電圧(例えば、第3電圧)に変更して、電極間抵抗Rを測定する。この場合に、ECU4によって実行される粒子状物質検出処理の詳細を、図43を用いて説明する。
(Embodiment 8)
In the particulate matter detection device of the eighth embodiment, the basic configuration of the particulate matter detection sensor 1 as a sensor unit and the ECU 4 as a sensor control unit is the same as that of the sixth embodiment. The sensor element 10 includes a detection unit 2 using a detection conductive unit 23 capable of detecting a minute amount of particulate matter. In the sixth embodiment, as in the first embodiment, after changing from the first voltage to the second voltage, the interelectrode resistance R was measured with the second voltage as the detection voltage. The voltage is changed to a detection voltage (for example, a third voltage) different from the two voltages, and the interelectrode resistance R is measured. Details of the particulate matter detection process executed by the ECU 4 in this case will be described with reference to FIG.
 図43にフローチャートを示すように、本形態において、センサ制御部であるECU4により実行される粒子状物質検出処理は、図7に示される実施形態1の手順の一部を変更したものである。具体的には、ステップS51~S53までは、図7のステップS1~S3と同じ処理であり、検出部2の一対の電極21、22に第1電圧を印加して静電捕集を行い、センサ出力Vが出力値V0に到達したら、第2電圧に変更して捕集状態を変化させる。次いで、ステップS54に進んで、検出部2の一対の電極21、22への印加電圧を、第2電圧から第3電圧に変更する。 As shown in the flowchart in FIG. 43, in this embodiment, the particulate matter detection process executed by the ECU 4 that is the sensor control unit is obtained by changing a part of the procedure of the first embodiment shown in FIG. Specifically, steps S51 to S53 are the same as steps S1 to S3 in FIG. 7, and electrostatic collection is performed by applying a first voltage to the pair of electrodes 21 and 22 of the detection unit 2, When the sensor output V reaches the output value V0, the collection state is changed by changing to the second voltage. Subsequently, it progresses to step S54 and changes the applied voltage to a pair of electrodes 21 and 22 of the detection part 2 from a 2nd voltage to a 3rd voltage.
 ここで、前述したように、PM捕集時の第1電圧(例えば、35V)に対して、第2電圧が低いほど、粒子状物質の捕集状態が変化して電極間抵抗Rの変化が大きくなる。ただし、検出用電圧が低くなるとセンサ出力も小さくなるため、その場合には、電極間抵抗Rの変化を判別しやすい第3電圧に変更して、電極間抵抗Rを測定するのがよい。図44に示すように、第2電圧(例えば、0V)より高い第3電圧(例えば、20V)を設定した場合には、平均粒径Dと電極間抵抗Rが明確な比例関係を示している。なお、測定条件は、以下の通りとした。
 モデルガス温度:200℃
 モデルガス流量:15m/s
 PM濃度:1mg/m3
 表面電気抵抗率ρ:3.8×108Ω・cm
 電極間隔:60μm×9組
Here, as described above, as the second voltage is lower than the first voltage (for example, 35 V) at the time of PM collection, the collection state of the particulate matter changes and the change in the interelectrode resistance R changes. growing. However, since the sensor output decreases as the detection voltage decreases, in this case, it is preferable to measure the interelectrode resistance R by changing the change in the interelectrode resistance R to a third voltage that can be easily discriminated. As shown in FIG. 44, when a third voltage (for example, 20 V) higher than the second voltage (for example, 0 V) is set, the average particle diameter D and the interelectrode resistance R show a clear proportional relationship. . Measurement conditions were as follows.
Model gas temperature: 200 ° C
Model gas flow rate: 15m / s
PM concentration: 1 mg / m 3
Surface electrical resistivity ρ: 3.8 × 10 8 Ω · cm
Electrode interval: 60 μm x 9 sets
 そこで、図44に示される関係から、ステップS53、S54における第2電圧、第3電圧を、例えば、0V、20Vに設定し、ステップS55に進んで、検出用電圧としての第3電圧における電極間抵抗Rを測定する。さらに、ステップS56に進んで、測定した電極間抵抗Rと図44に示される関係に基づいて、粒子状物質の平均粒径Dを精度よく推定することができる。その後、ステップS57において、出力値V0から粒子状物質の質量Mを推定した後、ステップS58において、粒子状物質の粒子数Nを算出する。
 図45は、これら一連のステップにより算出された粒子状物質の粒子数Nと実測粒子数の関係を示したものであり、推定PM個数と実測PM個数とは良好な相関が見られる。
Therefore, from the relationship shown in FIG. 44, the second voltage and the third voltage in steps S53 and S54 are set to, for example, 0 V and 20 V, and the process proceeds to step S55, where the interelectrodes at the third voltage as the detection voltage are set. Measure resistance R. Further, the process proceeds to step S56, and the average particle diameter D of the particulate matter can be accurately estimated based on the measured interelectrode resistance R and the relationship shown in FIG. Then, after estimating the mass M of the particulate matter from the output value V0 in step S57, the number N of particulate matter particles is calculated in step S58.
FIG. 45 shows the relationship between the number of particles N of the particulate matter calculated by the series of steps and the number of actually measured particles, and there is a good correlation between the estimated number of PMs and the number of actually measured PMs.
 図46~図49は、本形態の変形例であり、極微量の粒子状物質を検出する場合は、センサ出力特性に応じて、例えば、検出用電圧である第3電圧を、PM捕集時の第1電圧(例えば、35V)よりも高い電圧としてもよい。本例における測定条件は、以下の通りとした。
 モデルガス温度:200℃
 モデルガス流量:15m/s
 PM濃度:1mg/m3
 表面電気抵抗率ρ:1.0×1010Ω・cm
 平均粒径D:55nm、61nm、66nm
 電極間隔:80μm×9組
 粒子数N:1×1013個程度
46 to 49 show modifications of this embodiment. When detecting a very small amount of particulate matter, for example, a third voltage, which is a detection voltage, is applied during PM collection according to the sensor output characteristics. It is good also as a voltage higher than the 1st voltage (for example, 35V). The measurement conditions in this example were as follows.
Model gas temperature: 200 ° C
Model gas flow rate: 15m / s
PM concentration: 1 mg / m 3
Surface electrical resistivity ρ: 1.0 × 10 10 Ω · cm
Average particle diameter D: 55 nm, 61 nm, 66 nm
Electrode spacing: 80 μm × 9 sets Number of particles N: about 1 × 10 13
 図46に示すように、粒子数Nが微量である場合においても、印加電圧が低くなると電極間抵抗Rが大きくなる傾向は同様であるが、平均粒径Dの大小による電極間抵抗Rの差が小さくなる。そのため、図47に示すように、PM捕集時点でのセンサ出力(すなわち、測定電流)が小さくなり、検出用電圧を低くすると、測定される電流がさらに小さくなって測定限界となり、平均粒径Dの差が見られなくなる。 As shown in FIG. 46, even when the number N of particles is very small, the tendency that the interelectrode resistance R increases as the applied voltage decreases is the same, but the difference in the interelectrode resistance R due to the average particle size D is large. Becomes smaller. Therefore, as shown in FIG. 47, when the sensor output at the time of PM collection (that is, the measurement current) is reduced and the detection voltage is lowered, the measured current is further reduced and becomes the measurement limit, and the average particle diameter The difference of D cannot be seen.
 その場合には、第2電圧(例えば、0V)に変更した後、図48に示すように、第1電圧(例えば、35V)よりも高い側において、平均粒径Dによる測定電流(すなわち、電極間抵抗変化量)の差が判別可能な任意の電圧を、第3電圧に設定することができる。例えば、図49に示すように、第3電圧を60Vとした場合には、平均粒径Dに対して電極間抵抗Rの変化量の差が十分大きくなる。したがって、この関係を用いて、平均粒径Dを推定することが可能になり、粒子数Nを算出することができる。 In that case, after changing to the second voltage (for example, 0V), as shown in FIG. 48, on the side higher than the first voltage (for example, 35V), the measured current (that is, the electrode) by the average particle diameter D is set. An arbitrary voltage with which the difference in the resistance change amount) can be determined can be set as the third voltage. For example, as shown in FIG. 49, when the third voltage is 60 V, the difference in the amount of change in the interelectrode resistance R with respect to the average particle diameter D is sufficiently large. Therefore, the average particle diameter D can be estimated using this relationship, and the number N of particles can be calculated.
 図50は、本形態の変形例であり、第1電圧(例えば、35V)に対して、第2電圧(例えば、70V)、第3電圧(例えば、70V)を、より高い電圧に設定した場合について、平均粒径Dと電極間抵抗Rの変化量の関係を示している。
 検出用電圧と同様に、第2電圧も、第1電圧よりも高い電圧とすることができ、その差を大きくすることで、捕集状態の変化を大きくすることができる。その場合には、第2電圧と検出用電圧を同じ電圧とすることもでき、印加電圧を変更することなく、電極間抵抗Rを測定することができる。
FIG. 50 shows a modification of the present embodiment, in which the second voltage (for example, 70 V) and the third voltage (for example, 70 V) are set to higher voltages with respect to the first voltage (for example, 35 V). The relationship between the average particle diameter D and the amount of change in the interelectrode resistance R is shown.
Similar to the detection voltage, the second voltage can be higher than the first voltage, and the change in the collection state can be increased by increasing the difference. In this case, the second voltage and the detection voltage can be set to the same voltage, and the interelectrode resistance R can be measured without changing the applied voltage.
 図50に示すように、粒子数Nが微量である場合においても、第2電圧、第3電圧を第1電圧より十分大きく設定することで、平均粒径Dによる電極間抵抗Rの変化量の差が十分判別可能となる。したがって、この関係を用いて、平均粒径Dを推定し、粒子数Nを算出することができる。 As shown in FIG. 50, even when the number N of particles is very small, by setting the second voltage and the third voltage sufficiently higher than the first voltage, the amount of change in the interelectrode resistance R due to the average particle diameter D can be reduced. The difference can be sufficiently discriminated. Therefore, using this relationship, the average particle diameter D can be estimated and the number N of particles can be calculated.
 図51は、本形態の変形例であり、第1電圧(例えば、35V)から、より低い第2電圧(例えば、0V)に変更した後、より高い検出用電圧(すなわち、第3電圧;例えば、35V)にさらに変更した場合について、平均粒径Dと電極間抵抗Rの関係を示している。本例における測定条件は、以下の通りとし、粒子状物質検出センサ1は、検出用導電部23を用いない印刷型の検出部2を備えるセンサ素子10を用いた。
 モデルガス温度:200℃
 モデルガス流量:15m/s
 PM濃度:10mg/m3
FIG. 51 is a modification of the present embodiment, and after changing from a first voltage (for example, 35V) to a lower second voltage (for example, 0V), a higher detection voltage (that is, a third voltage; , 35 V), the relationship between the average particle diameter D and the interelectrode resistance R is shown. The measurement conditions in this example are as follows, and the particulate matter detection sensor 1 uses a sensor element 10 including a print-type detection unit 2 that does not use the detection conductive unit 23.
Model gas temperature: 200 ° C
Model gas flow rate: 15m / s
PM concentration: 10 mg / m 3
 図51に示すように、検出用電圧が第1電圧と同電圧である場合においても、一旦第2電圧に変更して、捕集状態を変化させることで、平均粒径Dによる電極間抵抗Rの差が十分判別可能となる。したがって、この関係を用いて、平均粒径Dを推定し、粒子数Nを算出することができる。 As shown in FIG. 51, even when the detection voltage is the same voltage as the first voltage, the interelectrode resistance R due to the average particle diameter D can be obtained by changing to the second voltage and changing the collection state. It is possible to sufficiently discriminate the difference. Therefore, using this relationship, the average particle diameter D can be estimated and the number N of particles can be calculated.
 このように、粒子状物質の捕集状態を変化させる第2電圧は、第1電圧より高電圧あるいは低電圧であり、より電位差が大きい方がよい。ただし、高電圧にすると粒子状物質を引き寄せる吸引力より反発力が大きくなるので、粒子状物質が剥離したり、放電が発生したりするおそれがあり、これらが発生しない程度の電圧とすることが望ましい。また、低電圧にする場合は、電極間の静電場の強度が弱くなるため接触状態が変化しやすくなり、印加電圧0Vで静電場の強度も0となるため、接触状態を変化させる効果が最も大きくなる。 As described above, the second voltage for changing the collection state of the particulate matter is higher or lower than the first voltage, and it is better that the potential difference is larger. However, if the voltage is high, the repulsive force is larger than the attractive force that attracts the particulate matter, so there is a risk that the particulate matter may peel off or discharge may occur. desirable. In addition, when the voltage is low, the strength of the electrostatic field between the electrodes becomes weak, so that the contact state is likely to change, and since the strength of the electrostatic field becomes zero at an applied voltage of 0 V, the effect of changing the contact state is most effective. growing.
 電極間抵抗Rを測定する検出用電圧は、粒径による電極間抵抗Rの違いが読み取れる電圧であればよく、高電圧の方がより読み取りやすい。特に、微量の粒子状物質での平均粒径Dの推定、粒子数Nの算出の場合は、低電圧では粒径による電極間抵抗の違いが明確にならないので、高電圧の方がよい。ただし、粒子状物質の剥離や放電が発生しない電圧に抑える必要があり、粒径による電極間抵抗Rの違いが読み取れるのであれば、第2電圧と検出用電圧は同じでもよい。また、電極間抵抗Rの変化は不可逆的な変化を含むため、粒子状物質の捕集状態を変化させる第2電圧を挟めば、捕集電圧である第1電圧と電極間抵抗を測定する検出用電圧を同じにしてもよい。 The detection voltage for measuring the interelectrode resistance R may be any voltage that can read the difference in the interelectrode resistance R depending on the particle diameter, and a higher voltage is easier to read. In particular, when estimating the average particle diameter D and calculating the number N of particles with a minute amount of particulate matter, a high voltage is better because the difference in resistance between electrodes due to the particle diameter is not clear at low voltage. However, the second voltage and the detection voltage may be the same as long as the difference between the electrode resistances R due to the particle size can be read because it is necessary to suppress the voltage so that the separation of the particulate matter and the discharge do not occur. In addition, since the change in the interelectrode resistance R includes an irreversible change, if the second voltage that changes the collection state of the particulate matter is sandwiched, the detection is performed by measuring the first voltage that is the collection voltage and the interelectrode resistance. The working voltage may be the same.
 以上の各実施形態に示したように、粒子状物質検出センサ1の検出部2に電圧を印加して粒子状物質を捕集すると共に、印加電圧を変更して電極間抵抗Rを測定し、粒子状物質の粒子数を算出するセンサ制御部を設けることにより、粒子状物質の粒子数を精度よく検出することができる。また、このような粒子状物質検出装置を、内燃機関の排気浄化装置等に利用して、上流に配置したDPF5の故障診断を実施することができる。 As shown in the above embodiments, a voltage is applied to the detection unit 2 of the particulate matter detection sensor 1 to collect the particulate matter, and the applied voltage is changed to measure the interelectrode resistance R. By providing a sensor control unit that calculates the number of particles of the particulate matter, the number of particles of the particulate matter can be accurately detected. Further, such a particulate matter detection device can be used for an exhaust gas purification device of an internal combustion engine or the like to perform a failure diagnosis of the DPF 5 disposed upstream.
 以上の各実施形態においては、電圧を変化させることにより求められる抵抗値から粒子状物質の平均粒径を推定しているが、電流を変化させることにより求められる抵抗値を用いて、粒子状物質の平均粒径Dを推定してもよい。すなわち、粒子状物質検出センサ1の検出部2に第1電流を印加して粒子状物質を捕集すると共に、センサ出力が閾値に到達した状態で、印加電流を第1電流と異なる第2電流に変更して、検出部2における電極間抵抗Rを検出してもよい。 In each of the above embodiments, the average particle diameter of the particulate matter is estimated from the resistance value obtained by changing the voltage. However, the particulate matter is obtained using the resistance value obtained by changing the current. The average particle diameter D may be estimated. That is, the first current is applied to the detection unit 2 of the particulate matter detection sensor 1 to collect the particulate matter, and the applied current is different from the first current in a state where the sensor output reaches the threshold value. Alternatively, the interelectrode resistance R in the detection unit 2 may be detected.
 また、上記実施形態において、閾値は、捕集制御部41において、検出基準となる所定の出力値V0としたが、これに限るものではなく、粒子状物質の検出が可能となるセンサ出力Vに基づいて、任意に設定することができる。
 あるいは、センサ出力Vに限らず、粒子状物質の検出が可能な状態となったことを示す基準となる値であればよい。例えば、捕集制御部41において第1電圧を印加することにより、静電捕集を開始してから、粒子状物質の検出が可能となるまでの経過時間(例えば、図4における検出時間t)に基づいて、閾値を設定することもできる。
 なお、センサ出力は、出力電圧であっても出力電流であってもよい。
Moreover, in the said embodiment, although the threshold value was set to the predetermined output value V0 used as the detection reference in the collection control part 41, it is not restricted to this, The sensor output V which can detect a particulate matter is used. Based on this, it can be set arbitrarily.
Alternatively, the value is not limited to the sensor output V, and may be any value that serves as a reference indicating that particulate matter can be detected. For example, an elapsed time from when electrostatic collection is started by applying a first voltage in the collection control unit 41 until detection of particulate matter is possible (for example, detection time t in FIG. 4). A threshold can also be set based on
The sensor output may be an output voltage or an output current.
 粒子状物質検出センサ1とECU4を備える本開示の粒子状物質検出装置は、上記実施形態に限定されるものではなく、本開示の趣旨を超えない範囲で、種々の変更が可能である。例えば、上記実施形態1においては、粒子状物質検出センサ1のセンサ素子10を覆う保護カバー12を一重筒構造としたが、内筒と外筒からなる二重筒構造とすることもできる。保護カバー12に設ける被測定ガス流通孔13、14の配置や数も任意に設定することができる。その他、粒子状物質検出センサ1を構成するセンサ素子10や保護カバー12の各部形状や材質等は、適宜変更することができる。 The particulate matter detection device of the present disclosure including the particulate matter detection sensor 1 and the ECU 4 is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present disclosure. For example, in the first embodiment, the protective cover 12 that covers the sensor element 10 of the particulate matter detection sensor 1 has a single cylinder structure, but a double cylinder structure including an inner cylinder and an outer cylinder may be used. The arrangement and number of the gas flow holes 13 and 14 to be measured provided in the protective cover 12 can also be set arbitrarily. In addition, the shape and material of each part of the sensor element 10 and the protective cover 12 constituting the particulate matter detection sensor 1 can be appropriately changed.
 また、上記実施形態1においては、内燃機関Eをディーゼルエンジンとし、粒子状物質捕集部となるDPF5を配置したが、内燃機関Eをガソリンエンジンとして、ガソリンパティキュレートフィルタを配置することもできる。また、内燃機関Eの燃焼排ガスに限らず、粒子状物質が含まれる被測定ガスであれば、いずれにも適用することができる。 In the first embodiment, the internal combustion engine E is a diesel engine and the DPF 5 serving as a particulate matter collection unit is disposed. However, a gasoline particulate filter may be disposed using the internal combustion engine E as a gasoline engine. Further, the present invention is not limited to the combustion exhaust gas of the internal combustion engine E, and can be applied to any gas to be measured as long as it includes a particulate matter.
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。 The present disclosure is not limited to the above embodiments, and can be applied to various embodiments without departing from the scope of the disclosure.

Claims (22)

  1.  被測定ガスに含まれる粒子状物質を検出する粒子状物質検出装置であって、
     被測定ガスに晒される基体(11)の表面に互いに離間する一対の電極(21、22)を配置した検出部(2)を有して、上記検出部に静電捕集される粒子状物質の量に応じた信号を出力するセンサ部(1)と、
     上記センサ部から送信されるセンサ出力(V)に基づいて、上記検出部に静電捕集された粒子状物質の粒子数(N)を検出するセンサ制御部(4)と、を備えており、
     上記センサ制御部は、
     上記検出部の上記一対の電極間へ第1電圧を印加して、上記検出部に粒子状物質を静電捕集させる捕集制御部(41)と、
     上記第1電圧における上記センサ出力が閾値に到達した状態で、上記一対の電極間への印加電圧を上記第1電圧と異なる第2電圧に変更した後に、上記一対の電極間の抵抗値(R)を検出し、上記抵抗値から推定される粒子状物質の平均粒径(D)と、上記センサ出力から推定される粒子状物質の質量(M)を用いて、上記粒子数を算出する粒子数算出部(42)と、を有する、粒子状物質検出装置。
    A particulate matter detection device for detecting particulate matter contained in a gas to be measured,
    Particulate matter which is electrostatically collected by the detection unit (2) having a detection unit (2) in which a pair of spaced apart electrodes (21, 22) are arranged on the surface of the substrate (11) exposed to the gas to be measured A sensor unit (1) for outputting a signal corresponding to the amount of
    A sensor control unit (4) for detecting the number (N) of particulate matter electrostatically collected by the detection unit based on a sensor output (V) transmitted from the sensor unit. ,
    The sensor control unit
    A collection control unit (41) that applies a first voltage between the pair of electrodes of the detection unit and electrostatically collects particulate matter in the detection unit;
    The resistance value (R) between the pair of electrodes is changed after changing the applied voltage between the pair of electrodes to a second voltage different from the first voltage in a state where the sensor output at the first voltage has reached a threshold value. ) And the number of particles calculated from the average particle diameter (D) of the particulate matter estimated from the resistance value and the mass (M) of the particulate matter estimated from the sensor output A particulate matter detection device comprising: a number calculation unit (42).
  2.  上記粒子数算出部は、
     静電捕集のための上記第1電圧における上記センサ出力が上記閾値に到達した時点において、上記一対の電極間への印加電圧を、粒子状物質の捕集状態を変化させるための上記第2電圧に変更した後に、上記第2電圧と同じか異なる電圧であって電極間抵抗検出のための検出用電圧に制御する電圧制御部(421)と、
     上記検出用電圧における上記一対の電極間の抵抗値(R)を検出する電極間抵抗検出部(422)と、を備える、請求項1に記載の粒子状物質検出装置。
    The particle number calculation unit
    When the sensor output at the first voltage for electrostatic collection reaches the threshold, the voltage applied between the pair of electrodes is changed to the second for changing the collection state of the particulate matter. A voltage control unit (421) for controlling to a detection voltage for detecting the resistance between the electrodes, which is the same voltage as or different from the second voltage after changing to the voltage;
    The particulate matter detection device according to claim 1, further comprising: an interelectrode resistance detection unit (422) that detects a resistance value (R) between the pair of electrodes in the detection voltage.
  3.  被測定ガスに含まれる粒子状物質を検出する粒子状物質検出装置であって、
     被測定ガスに晒される基体(11)の表面に互いに離間する一対の電極(21、22)を配置した検出部(2)を有して、上記検出部に静電捕集される粒子状物質の量に応じた信号を出力するセンサ部(1)と、
     上記センサ部から送信されるセンサ出力(V)に基づいて、上記検出部に静電捕集された粒子状物質の粒子数(N)を検出するセンサ制御部(4)と、を備えており、
     上記センサ制御部は、
     上記検出部の上記一対の電極間へ第1電圧を印加して、上記検出部に粒子状物質を静電捕集させる捕集制御部(41)と、
     上記第1電圧における上記センサ出力が閾値に到達した状態で、上記一対の電極間への印加電圧を上記第1電圧と異なる第2電圧に変更した後に、大きさが異なる複数の電圧における上記一対の電極間の抵抗値(R、R1)を検出し、上記抵抗値から推定される粒子状物質の平均粒径(D)と、上記センサ出力から推定される粒子状物質の質量(M)を用いて、上記粒子数を算出する粒子数算出部(42)と、を有する、粒子状物質検出装置。
    A particulate matter detection device for detecting particulate matter contained in a gas to be measured,
    Particulate matter which is electrostatically collected by the detection unit (2) having a detection unit (2) in which a pair of spaced apart electrodes (21, 22) are arranged on the surface of the substrate (11) exposed to the gas to be measured A sensor unit (1) for outputting a signal corresponding to the amount of
    A sensor control unit (4) for detecting the number (N) of particulate matter electrostatically collected by the detection unit based on a sensor output (V) transmitted from the sensor unit. ,
    The sensor control unit
    A collection control unit (41) that applies a first voltage between the pair of electrodes of the detection unit and electrostatically collects particulate matter in the detection unit;
    In a state where the sensor output at the first voltage reaches a threshold value, the voltage applied between the pair of electrodes is changed to a second voltage different from the first voltage, and then the pair at a plurality of voltages having different magnitudes. The resistance values (R, R1) between the electrodes are detected, and the average particle diameter (D) of the particulate matter estimated from the resistance value and the mass (M) of the particulate matter estimated from the sensor output are obtained. And a particle number calculation unit (42) for calculating the number of particles.
  4.  上記粒子数算出部は、
     静電捕集のための上記第1電圧における上記センサ出力が上記閾値に到達した時点において、上記一対の電極間への印加電圧を、粒子状物質の捕集状態を変化させるための上記第2電圧に変更した後に、電極間抵抗検出のための検出用電圧となる上記複数の電圧に順次制御する電圧制御部(421)と、
     上記複数の電圧における上記一対の電極間の抵抗値をそれぞれ検出する電極間抵抗検出部(422)と、を備える、請求項3に記載の粒子状物質検出装置。
    The particle number calculation unit
    When the sensor output at the first voltage for electrostatic collection reaches the threshold, the voltage applied between the pair of electrodes is changed to the second for changing the collection state of the particulate matter. A voltage control unit (421) that sequentially controls the plurality of voltages to be detection voltages for detecting the interelectrode resistance after changing to the voltage;
    The particulate matter detection device according to claim 3, further comprising: an inter-electrode resistance detection unit (422) that detects resistance values between the pair of electrodes at the plurality of voltages.
  5.  上記粒子数算出部は、上記複数の電圧において検出される上記抵抗値のそれぞれに対して重み付けを行って、上記平均粒径を推定する、請求項3又は4に記載の粒子状物質検出装置。 The particulate matter detection device according to claim 3 or 4, wherein the particle number calculation unit weights each of the resistance values detected at the plurality of voltages to estimate the average particle diameter.
  6.  被測定ガスに含まれる粒子状物質を検出する粒子状物質検出装置であって、
     被測定ガスに晒される基体(11)の表面に互いに離間する一対の電極(21、22)を配置した検出部(2)を有して、上記検出部に静電捕集される粒子状物質の量に応じた信号を出力するセンサ部(1)と、
     上記センサ部から送信されるセンサ出力(V)に基づいて、上記検出部に静電捕集された粒子状物質の粒子数(N)を検出するセンサ制御部(4)と、を備えており、
     上記センサ制御部は、
     上記検出部の上記一対の電極間へ第1電圧を印加して、上記検出部に粒子状物質を静電捕集させる捕集制御部(41)と、
     上記第1電圧における上記センサ出力が閾値に到達した状態で、上記一対の電極間への印加電圧を上記第1電圧と異なる第2電圧に変更した後に、大きさが異なる複数の電圧における上記一対の電極間の抵抗値(R、R1)を検出し、上記複数の電圧と上記抵抗値との関係における傾きから推定される粒子状物質の平均粒径(D)と、上記センサ出力から推定される粒子状物質の質量(M)を用いて、上記粒子数を算出する粒子数算出部(42)と、を有する、粒子状物質検出装置。
    A particulate matter detection device for detecting particulate matter contained in a gas to be measured,
    Particulate matter which is electrostatically collected by the detection unit (2) having a detection unit (2) in which a pair of spaced apart electrodes (21, 22) are arranged on the surface of the substrate (11) exposed to the gas to be measured A sensor unit (1) for outputting a signal corresponding to the amount of
    A sensor control unit (4) for detecting the number (N) of particulate matter electrostatically collected by the detection unit based on a sensor output (V) transmitted from the sensor unit. ,
    The sensor control unit
    A collection control unit (41) that applies a first voltage between the pair of electrodes of the detection unit and electrostatically collects particulate matter in the detection unit;
    In a state where the sensor output at the first voltage reaches a threshold value, the voltage applied between the pair of electrodes is changed to a second voltage different from the first voltage, and then the pair at a plurality of voltages having different magnitudes. The resistance values (R, R1) between the electrodes are detected and estimated from the average particle diameter (D) of the particulate matter estimated from the slope in the relationship between the plurality of voltages and the resistance value, and the sensor output. A particulate matter detection device comprising: a particle number calculation unit (42) that calculates the number of particles using a mass (M) of the particulate matter.
  7.  上記粒子数算出部は、
     静電捕集のための上記第1電圧における上記センサ出力が上記閾値に到達した時点において、上記一対の電極間への印加電圧を、粒子状物質の捕集状態を変化させるための上記第2電圧に変更した後に、電極間抵抗検出のための検出用電圧となる上記複数の電圧に順次制御する電圧制御部(421)と、
     上記複数の電圧における上記一対の電極間の抵抗値をそれぞれ検出する電極間抵抗検出部(422)と、上記複数の電圧と上記抵抗値との関係における傾きを算出する傾き算出部と、を備える、請求項6に記載の粒子状物質検出装置。
    The particle number calculation unit
    When the sensor output at the first voltage for electrostatic collection reaches the threshold, the voltage applied between the pair of electrodes is changed to the second for changing the collection state of the particulate matter. A voltage control unit (421) that sequentially controls the plurality of voltages to be detection voltages for detecting the interelectrode resistance after changing to the voltage;
    An inter-electrode resistance detection unit (422) that detects a resistance value between the pair of electrodes at the plurality of voltages, and an inclination calculation unit that calculates an inclination in a relationship between the plurality of voltages and the resistance value. The particulate matter detection device according to claim 6.
  8.  上記複数の電圧は、上記第2電圧と同じ大きさの電圧を含む、請求項3~7のいずれか1項に記載の粒子状物質検出装置。 The particulate matter detection device according to any one of claims 3 to 7, wherein the plurality of voltages include a voltage having the same magnitude as the second voltage.
  9.  被測定ガスに含まれる粒子状物質を検出する粒子状物質検出装置であって、
     被測定ガスに晒される基体(11)の表面に互いに離間する一対の電極(21、22)を配置した検出部(2)を有して、上記検出部に静電捕集される粒子状物質の量に応じた信号を出力するセンサ部(1)と、
     上記センサ部から送信されるセンサ出力(V)に基づいて、上記検出部に静電捕集された粒子状物質の粒子数(N)を検出するセンサ制御部(4)と、を備えており、
     上記センサ制御部は、
     上記検出部の上記一対の電極間へ第1電流を印加して、上記検出部に粒子状物質を静電捕集させる捕集制御部(41)と、
     上記第1電流における上記センサ出力が閾値に到達した状態で、上記一対の電極間への印加電流を上記第1電流と異なる第2電流に変更した後に、上記一対の電極間の抵抗値(R)を検出し、上記抵抗値から推定される粒子状物質の平均粒径(D)と、上記センサ出力から推定される粒子状物質の質量(M)を用いて、上記粒子数を算出する粒子数算出部(42)と、を有する、粒子状物質検出装置。
    A particulate matter detection device for detecting particulate matter contained in a gas to be measured,
    Particulate matter which is electrostatically collected by the detection unit (2) having a detection unit (2) in which a pair of spaced apart electrodes (21, 22) are arranged on the surface of the substrate (11) exposed to the gas to be measured A sensor unit (1) for outputting a signal corresponding to the amount of
    A sensor control unit (4) for detecting the number (N) of particulate matter electrostatically collected by the detection unit based on a sensor output (V) transmitted from the sensor unit. ,
    The sensor control unit
    A collection control unit (41) that applies a first current between the pair of electrodes of the detection unit and electrostatically collects particulate matter in the detection unit;
    The resistance value (R) between the pair of electrodes is changed after the applied current between the pair of electrodes is changed to a second current different from the first current in a state where the sensor output at the first current has reached a threshold value. ) And the number of particles calculated from the average particle diameter (D) of the particulate matter estimated from the resistance value and the mass (M) of the particulate matter estimated from the sensor output A particulate matter detection device comprising: a number calculation unit (42).
  10.  上記閾値は、上記捕集制御部において、粒子状物質の検出が可能となる上記センサ出力、又は、静電捕集の開始から粒子状物質の検出が可能となるまでの経過時間に基づいて設定される、請求項1~9のいずれか1項に記載の粒子状物質検出装置。 The threshold is set based on the sensor output at which the particulate matter can be detected in the collection control unit or the elapsed time from the start of electrostatic collection until the particulate matter can be detected. The particulate matter detection device according to any one of claims 1 to 9, wherein:
  11.  上記閾値は、上記捕集制御部において、粒子状物質の検出基準となる出力値(V0)であり、
     上記粒子数算出部は、粒子状物質の上記質量を、上記検出基準となる出力値を用いて算出する、請求項1~10のいずれか1項に記載の粒子状物質検出装置。
    The threshold value is an output value (V0) serving as a particulate matter detection reference in the collection control unit,
    The particulate matter detection device according to any one of claims 1 to 10, wherein the particle number calculation unit calculates the mass of the particulate matter using an output value serving as the detection reference.
  12.  上記センサ部は、上記検出部を加熱するヒータ電極(31)を設けたヒータ部(3)を有し、
     上記センサ制御部は、上記ヒータ部へ電力を供給して、粒子状物質中のSOFが揮発可能であってSootは燃焼しないような温度に加熱保持する加熱制御部(43)を有している、請求項1~11のいずれか1項に記載の粒子状物質検出装置。
    The sensor part has a heater part (3) provided with a heater electrode (31) for heating the detection part,
    The sensor control unit includes a heating control unit (43) that supplies electric power to the heater unit and heats and maintains the SOF in the particulate matter at a temperature at which the SOF can volatilize and the soot does not burn. The particulate matter detection device according to any one of claims 1 to 11.
  13.  上記温度は、200℃以上、400℃以下の温度である、請求項12に記載の粒子状物質検出装置。 The particulate matter detection device according to claim 12, wherein the temperature is 200 ° C or higher and 400 ° C or lower.
  14.  上記閾値は、上記捕集制御部において、粒子状物質の検出基準となる出力値(V0)であり、
     上記粒子数算出部は、粒子状物質の上記質量を、上記検出基準となる出力値、又は、上記加熱制御部による加熱保持時の上記センサ出力である第1出力値(V1)を用いて算出する、請求項12又は13に記載の粒子状物質検出装置。
    The threshold value is an output value (V0) serving as a particulate matter detection reference in the collection control unit,
    The particle number calculation unit calculates the mass of the particulate matter using an output value serving as the detection reference or a first output value (V1) that is the sensor output during heating holding by the heating control unit. The particulate matter detection device according to claim 12 or 13.
  15.  上記粒子数算出部は、粒子状物質の上記質量と、粒子状物質の上記平均粒径と、粒子状物質の比重とから、上記粒子数を算出する、請求項1~14のいずれか1項に記載の粒子状物質検出装置。 The particle number calculation unit calculates the number of particles from the mass of the particulate matter, the average particle diameter of the particulate matter, and the specific gravity of the particulate matter. The particulate matter detection device according to 1.
  16.  上記粒子状物質の比重は、一定値であるか、又は、上記粒子数算出部にて推定される粒子状物質の平均粒径を基に推定した値である、請求項15に記載の粒子状物質検出装置。 The particulate matter according to claim 15, wherein the specific gravity of the particulate matter is a constant value or a value estimated based on an average particle diameter of the particulate matter estimated by the particle number calculation unit. Substance detection device.
  17.  上記基体が絶縁性材料からなる請求項1~16のいずれか1項に記載の粒子状物質検出装置。 The particulate matter detection device according to any one of claims 1 to 16, wherein the substrate is made of an insulating material.
  18.  上記検出部は、上記基体の表面に検出用導電部(23)を配置し、該検出用導電部の上記基体と反対側の表面に、互いに離間する上記一対の電極を有する、請求項1~17のいずれか1項に記載の粒子状物質検出装置。 The detection unit has a pair of electrodes spaced from each other on the surface of the detection conductive part opposite to the base, the detection conductive part (23) being disposed on the surface of the base. The particulate matter detection device according to any one of 17.
  19.  上記検出用導電部は、上記粒子状物質よりも電気抵抗率が高い導電性材料からなる請求項18に記載の粒子状物質検出装置。 The particulate matter detection device according to claim 18, wherein the detection conductive part is made of a conductive material having an electrical resistivity higher than that of the particulate matter.
  20.  上記検出用導電部は、表面電気抵抗率ρが、100~500℃の温度範囲において1.0×107~1.0×1010Ω・cmである導電性材料からなる、請求項18又は19に記載の粒子状物質検出装置。 The detection conductive part is made of a conductive material having a surface electrical resistivity ρ of 1.0 × 10 7 to 1.0 × 10 10 Ω · cm in a temperature range of 100 to 500 ° C. 19. The particulate matter detection device according to 19.
  21.  上記導電性材料は、分子式がABO3で表されるペロブスカイト構造を有するセラミックスであり、上記分子式におけるAサイトは、La、Sr、Ca、Mgから選択される少なくとも一種であり、Bサイトは、Ti、Al、Zr、Yから選択される少なくとも一種である請求項20に記載の粒子状物質検出装置。 The conductive material is a ceramic having a perovskite structure whose molecular formula is represented by ABO 3 , the A site in the molecular formula is at least one selected from La, Sr, Ca, and Mg, and the B site is Ti 21. The particulate matter detection device according to claim 20, wherein the particulate matter detection device is at least one selected from Al, Zr, and Y.
  22.  上記Aサイトは、主成分がSr、副成分がLaであり、上記Bサイトは、Tiである請求項21に記載の粒子状物質検出装置。 22. The particulate matter detection device according to claim 21, wherein the A site has Sr as a main component and La as a subcomponent, and the B site is Ti.
PCT/JP2017/044959 2016-12-15 2017-12-14 Particulate matter detection apparatus WO2018110660A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017006342.6T DE112017006342T5 (en) 2016-12-15 2017-12-14 Device for the detection of fine dust
CN201780077511.5A CN110114660A (en) 2016-12-15 2017-12-14 Granular substance quality detecting device
US16/439,983 US20190293541A1 (en) 2016-12-15 2019-06-13 Particulate matter detection apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016243417 2016-12-15
JP2016-243417 2016-12-15
JP2017238902A JP6596482B2 (en) 2016-12-15 2017-12-13 Particulate matter detector
JP2017-238902 2017-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/439,983 Continuation US20190293541A1 (en) 2016-12-15 2019-06-13 Particulate matter detection apparatus

Publications (1)

Publication Number Publication Date
WO2018110660A1 true WO2018110660A1 (en) 2018-06-21

Family

ID=62558865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044959 WO2018110660A1 (en) 2016-12-15 2017-12-14 Particulate matter detection apparatus

Country Status (1)

Country Link
WO (1) WO2018110660A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095395A (en) * 2019-06-03 2019-08-06 深圳市森世泰科技有限公司 Chip, sensor and measurement method for gas particles object measurement of concetration

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083581A1 (en) * 2010-01-08 2011-07-14 トヨタ自動車株式会社 Particle detection device
JP2012047722A (en) * 2010-07-26 2012-03-08 Denso Corp Particulate matter detection sensor and method for determining abnormality of the sensor
US20120186227A1 (en) * 2011-01-20 2012-07-26 Ford Global Technologies, Llc Particle sensor, exhaust system and method for determining particles in the exhaust gas
JP2015225022A (en) * 2014-05-29 2015-12-14 株式会社日本自動車部品総合研究所 Particulate matter detector and particulate matter detection method
JP2016075668A (en) * 2014-10-02 2016-05-12 株式会社日本自動車部品総合研究所 Failure detection device of filter and particulate substance detection device
JP2016138449A (en) * 2015-01-26 2016-08-04 株式会社日本自動車部品総合研究所 Particulate matter detection sensor and particulate matter detection device
WO2017034583A1 (en) * 2015-08-27 2017-03-02 Cummins Emission Solutions Inc. Particulate matter sensor with engineered particle size cut-point
WO2017163650A1 (en) * 2016-03-22 2017-09-28 株式会社デンソー Particulate matter detecting device
JP2018021889A (en) * 2016-07-25 2018-02-08 株式会社Soken Particulate substance detection sensor and particulate substance detector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083581A1 (en) * 2010-01-08 2011-07-14 トヨタ自動車株式会社 Particle detection device
JP2012047722A (en) * 2010-07-26 2012-03-08 Denso Corp Particulate matter detection sensor and method for determining abnormality of the sensor
US20120186227A1 (en) * 2011-01-20 2012-07-26 Ford Global Technologies, Llc Particle sensor, exhaust system and method for determining particles in the exhaust gas
JP2015225022A (en) * 2014-05-29 2015-12-14 株式会社日本自動車部品総合研究所 Particulate matter detector and particulate matter detection method
JP2016075668A (en) * 2014-10-02 2016-05-12 株式会社日本自動車部品総合研究所 Failure detection device of filter and particulate substance detection device
JP2016138449A (en) * 2015-01-26 2016-08-04 株式会社日本自動車部品総合研究所 Particulate matter detection sensor and particulate matter detection device
WO2017034583A1 (en) * 2015-08-27 2017-03-02 Cummins Emission Solutions Inc. Particulate matter sensor with engineered particle size cut-point
WO2017163650A1 (en) * 2016-03-22 2017-09-28 株式会社デンソー Particulate matter detecting device
JP2018021889A (en) * 2016-07-25 2018-02-08 株式会社Soken Particulate substance detection sensor and particulate substance detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095395A (en) * 2019-06-03 2019-08-06 深圳市森世泰科技有限公司 Chip, sensor and measurement method for gas particles object measurement of concetration

Similar Documents

Publication Publication Date Title
JP6596482B2 (en) Particulate matter detector
US8925370B2 (en) Particulate matter detecting apparatus for internal combustion engine
US8845798B2 (en) Particulate matter detecting apparatus for internal combustion engine
JP5989240B2 (en) Function monitoring method of particle detection sensor and particle detection sensor
JP5531849B2 (en) Sensor control device
JP4020019B2 (en) Gas sensor abnormality detection device
US20160223432A1 (en) Method and system for exhaust particulate matter sensing
JP6426072B2 (en) Filter failure detection device, particulate matter detection device
JP5734418B2 (en) Method and particle sensor for detecting particles in an exhaust gas stream
DE102006041478A1 (en) Method for determining a soot concentration in the exhaust gas of an internal combustion engine
WO2017163650A1 (en) Particulate matter detecting device
US10539493B2 (en) Particulate matter detection sensor and particulate matter detection apparatus
JP6421617B2 (en) Particulate matter detection sensor and particulate matter detection device
WO2018110660A1 (en) Particulate matter detection apparatus
JP2017536534A (en) Method for functional control of a sensor detecting particles
JP6552444B2 (en) Particulate matter detection device and exhaust gas purification device for internal combustion engine
JP6739363B2 (en) Particulate matter detection sensor and particulate matter detection device
JP2016118510A (en) Particulate substance detection element
WO2016052734A1 (en) Filter failure detection device, and particulate matter detection device
CN112005106A (en) Granular substance detection device
CN108885163B (en) Granular substance detection device
JP6481967B2 (en) Control device
US20200080953A1 (en) Particulate matter detection system
JPWO2019049570A1 (en) Particle count detector
JP6358851B2 (en) Particulate matter detection device and particulate matter detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880699

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17880699

Country of ref document: EP

Kind code of ref document: A1