WO2018110401A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2018110401A1
WO2018110401A1 PCT/JP2017/043933 JP2017043933W WO2018110401A1 WO 2018110401 A1 WO2018110401 A1 WO 2018110401A1 JP 2017043933 W JP2017043933 W JP 2017043933W WO 2018110401 A1 WO2018110401 A1 WO 2018110401A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
inter
host
reception intensity
unit
Prior art date
Application number
PCT/JP2017/043933
Other languages
French (fr)
Japanese (ja)
Inventor
秀昭 田中
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2018556617A priority Critical patent/JP6818046B2/en
Publication of WO2018110401A1 publication Critical patent/WO2018110401A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]

Definitions

  • the present invention relates to a vehicle control device that controls a vehicle.
  • a patent Document 1 Japanese Unexamined Patent Application Publication No. 2009-199267 discloses a travel control device that controls the travel state of a host vehicle based on the relative positional relationship between the host vehicle and a preceding vehicle, and is provided in the host vehicle.
  • Running control apparatus includes a positional relationship acquisition device.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a vehicle control device that can further improve the stability of communication-type follow-up traveling.
  • the present invention relates to an other vehicle information acquisition unit for acquiring vehicle information of another vehicle traveling around the own vehicle by wireless communication, and wireless communication between the other vehicle and the own vehicle.
  • a reception intensity measurement unit that measures reception intensity
  • a control unit that controls the relative position of the host vehicle with respect to the other vehicle based on the reception intensity measured by the reception intensity measurement unit.
  • FIG. 1 is a functional block diagram schematically showing the overall configuration of the vehicle control apparatus according to the present embodiment.
  • 2 to 4 are diagrams schematically showing the state of the inter-vehicle control process of the vehicle equipped with the vehicle control device according to the present invention.
  • the vehicle control device 1 is roughly composed of an inter-vehicle communication unit 2, an external environment recognition unit 3, an own vehicle behavior recognition unit 4, an inter-vehicle time setting unit 5, and an inter-vehicle control unit 6.
  • the inter-vehicle communication unit 2 acquires vehicle information of other vehicles (for example, the other vehicle 101) around the host vehicle 102 by the inter-vehicle communication 7.
  • Vehicle-to-vehicle communication 7 is information on surrounding vehicles (vehicle information: vehicle information: position, speed, acceleration, yaw rate, wireless communication between vehicles equipped with a dedicated vehicle-mounted device (wireless device) necessary for vehicle-to-vehicle communication 7. Vehicle control information, etc.), and the obtained information is used for driving support as necessary.
  • the inter-vehicle communication unit 2 acquires the vehicle information of the other vehicle 101 by the inter-vehicle communication 7.
  • the inter-vehicle communication unit 2 includes a reception intensity measurement unit 2 a that measures the reception intensity of a signal transmitted from the other vehicle 101 in the inter-vehicle communication 7.
  • the vehicle information of the other vehicle 101 obtained by the inter-vehicle communication unit 2 by the inter-vehicle communication 7 and the reception intensity (measurement result) obtained by the reception intensity measuring unit 2 a are sent to the inter-vehicle control unit 6.
  • the external recognition unit 3 analyzes information obtained from a sensor such as a radar or a camera (hereinafter referred to as a radar camera 8) mounted on the host vehicle 102, and detects other images detected and captured by the radar camera 8. It recognizes and discriminates vehicles, obstacles, road signs, etc., and acquires information such as the relative position and relative speed between them and the host vehicle 102. Further, based on these pieces of information, it is possible to acquire the inter-vehicle time between the other vehicle (preceding vehicle) 101 traveling in front of the host vehicle 102 and the host vehicle 102. Information obtained by the external recognition unit 3 is sent to the inter-vehicle distance control unit 6.
  • the own vehicle behavior recognition unit 4 is a yaw rate that represents the behavior of the own vehicle 102 based on information obtained by the own vehicle sensor 9 such as a gyro sensor, a wheel speed sensor, a rudder angle sensor, and an acceleration sensor mounted on the own vehicle 102. Information such as wheel speed, rudder angle, and acceleration is acquired, and the obtained information is sent to the inter-vehicle distance controller 6.
  • the own vehicle sensor 9 such as a gyro sensor, a wheel speed sensor, a rudder angle sensor, and an acceleration sensor mounted on the own vehicle 102.
  • Information such as wheel speed, rudder angle, and acceleration is acquired, and the obtained information is sent to the inter-vehicle distance controller 6.
  • the inter-vehicle time setting unit 5 is based on an input value input by an inter-vehicle time input unit 10 (for example, a driver input switch installed in the vicinity of the driver's seat) provided in the host vehicle 102.
  • the target value of the inter-vehicle time between the other vehicle 101 (preceding vehicle) traveling in front of the host vehicle 102 and the host vehicle 102 is set, and the set value (target value) is output to the inter-vehicle control unit 6. .
  • the input value input by the inter-vehicle time input unit 10 in addition to inputting the inter-vehicle distance by a specific numerical value, for example, “large” that makes the inter-vehicle distance larger, “small” that makes the inter-vehicle distance smaller, It is possible to input in a stepwise manner such as “medium” as the intermediate distance between them.
  • the inter-vehicle control unit 6 performs inter-vehicle control processing based on information from the inter-vehicle communication unit 2, the reception intensity measurement unit 2 a, the external environment recognition unit 3, the own vehicle behavior recognition unit 4, and the inter-vehicle time setting unit 5.
  • the inter-vehicle distance control process determines the inter-vehicle distance (inter-vehicle time) between another vehicle 101 (preceding vehicle) traveling in front of the own vehicle 102 and the own vehicle 102 based on the set value (target value) of the inter-vehicle time.
  • the inter-vehicle distance control unit 6 outputs a control signal for controlling the traveling state of the host vehicle 102 as a result of the inter-vehicle distance control process.
  • FIG. 2 to 4 schematically show the state of the inter-vehicle control processing of the own vehicle 102 on which the vehicle control device 1 according to the present invention is mounted.
  • a road 100 such as an automobile-only road is connected to another vehicle 101 and The case where the host vehicle 102 is traveling forward (leftward in the figure) at a certain interval is shown.
  • 2 is a diagram illustrating a state after the inter-vehicle time is adjusted by the inter-vehicle control process
  • FIG. 3 is a diagram illustrating a case where the host vehicle 102 is behind the inter-vehicle time adjustment range.
  • 4 is a diagram illustrating a case where the own vehicle 102 is within the inter-vehicle time adjustment range and the inter-vehicle time is not adjusted.
  • inter-vehicle control process processing is performed so that the inter-vehicle time between the preceding vehicle 101 and the host vehicle 102 is kept within the inter-vehicle time adjustment range that is set to include the set value (target value).
  • An inter-vehicle time adjustment process for adjusting the inter-vehicle time is performed.
  • the inter-vehicle time adjustment range may be variously set depending on the use and environment of the vehicle that performs the inter-vehicle control process, and is not limited to one.
  • the inter-vehicle time setting value (target value) is 5 seconds.
  • the inter-vehicle time adjustment range is determined so as to straddle the set value (target value) such as 2.5 to 3.5 seconds in the inter-vehicle time. Note that the inter-vehicle time adjustment range does not need to be uniform in the front and rear (up and down) with respect to the set value (target value), and is also a specification that is changed based on the traveling state of the host vehicle 102 and the surrounding environment. Also good.
  • the inter-vehicle time is, for example, the time it takes for the host vehicle 102 to pass through a certain position on the road after the preceding vehicle (the other vehicle 101) passes through the vehicle, and this inter-vehicle time is controlled.
  • the distance from the preceding vehicle is controlled to be a desired distance (target distance between the vehicles).
  • the inter-vehicle time adjustment process the inter-vehicle time between the preceding vehicle 101 and the host vehicle 102 so that the reception intensity of the signal related to the inter-vehicle communication 7 is in the maximum state (the state shown in FIG. 2) within the inter-vehicle time adjustment range.
  • Process to adjust Needless to say, when the reception intensity is maximized at the end of the inter-vehicle time adjustment range (maximum or minimum inter-vehicle time), the preceding vehicle 101 and the host vehicle are also set so that the reception intensity is maximized.
  • the process which adjusts the time between vehicles between 102 is performed.
  • the traveling state of the own vehicle 102 is controlled and the inter-vehicle time is within the inter-vehicle time adjustment range. Further, the inter-vehicle time between the preceding vehicle 101 and the host vehicle 102 is adjusted so that the reception intensity of the signal related to the inter-vehicle communication 7 is maximized (the state shown in FIG. 2). .
  • the traveling of the own vehicle 102 is acquired while acquiring the current value of the reception intensity of the signal related to the inter-vehicle communication 7.
  • the preceding vehicle 101 and the host vehicle are controlled so as to change the inter-vehicle time by controlling the state, acquire the change in the reception intensity in the inter-vehicle time adjustment range, and finally reach the maximum reception intensity (the state of FIG. 2).
  • the inter-vehicle time with 102 is adjusted.
  • FIGS. 2 to 4 the case where the inter-vehicle control process is performed so as to maximize the reception intensity of the signal related to the inter-vehicle communication 7 within the inter-vehicle time adjustment range is illustrated.
  • reception intensity information for example, when the inter-vehicle time adjustment range is wide or within the inter-vehicle time adjustment range, the reception intensity falls below the reception sensitivity
  • FIG. 5 is a flowchart showing the inter-vehicle distance control process.
  • the inter-vehicle control unit 6 determines whether there is another vehicle (preceding vehicle) 101 capable of inter-vehicle communication in front of the own vehicle 102 based on information obtained from the inter-vehicle communication unit 2 or the external world recognition unit 3. It is determined whether or not (step S100). If the determination result is NO, the process ends. In step S100, if the determination result is YES, that is, if it is determined that there is another vehicle 101 capable of inter-vehicle communication, notifications (not shown) such as monitors, lamps, and speakers provided near the driver's seat are provided. The driver is notified by the means that inter-vehicle distance control is possible (step S110).
  • the setting value (target value) of the inter-vehicle time set by the inter-vehicle time setting unit 5 is acquired based on the input value obtained by operating the inter-vehicle time input unit 10 of the driver (step S120), and the obtained set value is obtained.
  • an inter-vehicle time adjustment range is set (step S130).
  • the traveling state of the host vehicle 102 is controlled (step S141).
  • step S140 determines whether or not the reception intensity of the signal related to inter-vehicle communication is maximized within the inter-vehicle time adjustment range (step S160). If the determination result in step S160 is NO, the inter-vehicle time adjustment in step S150 is performed. repeat. If the determination result in step S160 is YES, that is, if the reception intensity reaches the maximum value, the process ends.
  • FIG. 6 is a diagram schematically illustrating an example of a simulation result regarding the relationship between the distance between transmission and reception and the received power assuming vehicle-to-vehicle communication.
  • the vertical axis represents the reception power of the signal on the reception side
  • the horizontal axis represents the distance between the transmission side and the reception side (distance between transmission and reception).
  • the received power (corresponding to the received intensity) changes depending on the distance between transmission and reception.
  • a composite wave of a direct wave that propagates linearly between target vehicles and a reflected wave such as ground reflection is received, so it depends on the propagation distance of the direct wave and the reflected wave.
  • the synthesized wave becomes larger or smaller depending on the phase difference on the receiving side.
  • the inter-vehicle communication unit 2 that acquires the vehicle information of the other vehicle 101 traveling around the own vehicle 102 by wireless communication, and the wireless communication between the other vehicle 101 and the own vehicle 102.
  • this invention is not limited to each above-mentioned embodiment, Various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • vehicle control device 1 vehicle control device, 2 vehicle-to-vehicle communication unit, 2a reception intensity measurement unit, 3 external environment recognition unit, 4 own vehicle behavior recognition unit, 5 vehicle time setting unit, 6 vehicle control unit, 7 vehicle communication, 8 radar camera, 9 own vehicle sensor, 10 inter-vehicle time input unit, 100 road, 101 other vehicle (preceding vehicle), 102 own vehicle

Abstract

The present invention provides a vehicle control device which is capable of further enhancing the stability of communication-based cruise control. The present invention is equipped with: a vehicle-to-vehicle communication unit 2 that acquires, via wireless communication, vehicle information pertaining to an other vehicle 101 traveling in the periphery of a host vehicle 102; a reception strength measurement unit 2a that measures the reception strength of the wireless communication between the other vehicle 101 and the host vehicle 102; and an inter-vehicle spacing control unit 6 that controls the relative position, such as the inter-vehicle spacing time, of the host vehicle 102 relative to the other vehicle 101 on the basis of the reception strength measured by the reception strength measurement unit 2a.

Description

車両制御装置Vehicle control device
 本発明は、車両を制御する車両制御装置に関する。 The present invention relates to a vehicle control device that controls a vehicle.
 自車両と先行車両との間の距離(車間距離)を目標車間距離で決まる設定範囲内に保つように自車両の走行状態を制御するクルーズコントロール(いわゆる、追従制御)に関する技術として、例えば、特許文献1(特開2009-199267号公報)には、自車両と先行車両との間の相対位置関係に基づいて自車両の走行状態を制御する走行制御装置であって、前記自車両に設けられた送信装置と、前記自車両の、前記送信装置と間隔を隔てて設けられた受信装置と、その受信装置において受信された前記送信装置から送信された信号の受信強度に基づいて、その信号の実際の減衰状態を取得し、その取得した減衰状態と、前記受信装置において受信された前記先行車両からの信号の受信強度とに基づいて前記相対位置関係を取得する相対位置関係取得装置とを備えた走行制御装置が開示されている。 As a technology related to cruise control (so-called follow-up control) for controlling the running state of the host vehicle so as to keep the distance between the host vehicle and the preceding vehicle (inter-vehicle distance) within a set range determined by the target inter-vehicle distance, for example, a patent Document 1 (Japanese Unexamined Patent Application Publication No. 2009-199267) discloses a travel control device that controls the travel state of a host vehicle based on the relative positional relationship between the host vehicle and a preceding vehicle, and is provided in the host vehicle. Based on the received intensity of the signal transmitted from the transmitting device received by the receiving device, the receiving device provided at a distance from the transmitting device of the own vehicle, A phase of acquiring an actual attenuation state, and acquiring the relative positional relationship based on the acquired attenuation state and a reception intensity of a signal from the preceding vehicle received by the reception device. Running control apparatus is disclosed that includes a positional relationship acquisition device.
特開2009-199267号公報JP 2009-199267 A
 ところで、近年では上記従来技術のような追従走行(適応走行制御、ACC: Adaptive Cruise Control)に加え、車車間通信を用いて先行車の車速・加速度などの車両情報を取得し、得られた車両情報に基づいてより正確な追従走行を行う協調型追従走行制御(CACC: Cooperative Adaptive Cruise Control)も高度運転支援技術の一つとして実用化が進められており、追従走行の精度向上や、車間時間短縮による道路の収容率の向上などが図られている。 By the way, in recent years, vehicle information such as vehicle speed / acceleration of the preceding vehicle is obtained by using inter-vehicle communication in addition to following driving (adaptive driving control, ACC: ACCAdaptive Cruise Control) as in the above prior art. Cooperative follow-up control (CACC), which performs more accurate follow-up based on information, is also being put into practical use as one of the advanced driving support technologies. Improvements to road capacity are being achieved through shortening.
 しかしながら、車車間通信に用いられる無線通信では、対象車両間を直線的に伝播する直接波と大地反射などの反射波との合成波が受信されるため、対象車両間の距離や周囲環境など種々の条件によって受信状況が大きく異なってくる。このため、場合によっては車車間通信に必要な受信強度が得られなくなってしまい、通信型追従走行が不可能・不安定になってしまうことも考えられる。 However, in wireless communication used for inter-vehicle communication, a composite wave of a direct wave propagating linearly between target vehicles and a reflected wave such as ground reflection is received. Depending on the conditions, the reception status varies greatly. For this reason, in some cases, the reception intensity required for vehicle-to-vehicle communication cannot be obtained, and it is possible that communication-type follow-up traveling becomes impossible or unstable.
 本発明は上記に鑑みてなされたものであり、通信型追従走行の安定性をより向上することができる車両制御装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a vehicle control device that can further improve the stability of communication-type follow-up traveling.
 上記目的を達成するために、本発明は、自車両の周囲を走行する他車両の車両情報を無線通信で取得する他車両情報取得部と、前記他車両と前記自車両の間の無線通信における受信強度を計測する受信強度計測部と、前記受信強度計測部により計測された受信強度に基づいて、前記他車両に対する前記自車両の相対位置を制御する制御部とを備えたものとする。 In order to achieve the above object, the present invention relates to an other vehicle information acquisition unit for acquiring vehicle information of another vehicle traveling around the own vehicle by wireless communication, and wireless communication between the other vehicle and the own vehicle. A reception intensity measurement unit that measures reception intensity and a control unit that controls the relative position of the host vehicle with respect to the other vehicle based on the reception intensity measured by the reception intensity measurement unit.
 本発明によれば、通信型追従走行の安定性をより向上することができる。 According to the present invention, it is possible to further improve the stability of communication type follow-up running.
車両制御装置の全体構成を概略的に示す機能ブロック図である。It is a functional block diagram which shows roughly the whole structure of a vehicle control apparatus. 車両制御装置が搭載された車両の車間制御処理の様子を概略的に示す図であり、車間制御処理によって車間時間が調整された後の状態を例示する図である。It is a figure which shows roughly the mode of the headway control process of the vehicle by which a vehicle control apparatus is mounted, and is a figure which illustrates the state after adjusting the headway time by the headway control process. 車両制御装置が搭載された車両の車間制御処理の様子を概略的に示す図であり、自車両が車間時間調整範囲よりも後方にある場合を例示する図である。It is a figure which shows roughly the mode of the inter-vehicle control process of the vehicle by which a vehicle control apparatus is mounted, and is a figure which illustrates the case where the own vehicle is behind the inter-vehicle time adjustment range. 車両制御装置が搭載された車両の車間制御処理の様子を概略的に示す図であり、自車両が車間時間調整範囲内であって車間時間が未調整である場合を例示する図である。It is a figure which shows roughly the mode of the headway control process of the vehicle by which a vehicle control apparatus is mounted, and is a figure which illustrates the case where the own vehicle is in the headway time adjustment range, and the headway time is unadjusted. 車間制御処理を示すフローチャートである。It is a flowchart which shows a distance control process. 車車間通信を想定した送受信間の距離と受信電力の関係についてのシミュレーション結果の一例を概略的に示す図である。It is a figure which shows roughly an example of the simulation result about the relationship between the distance between transmission / reception supposing vehicle-to-vehicle communication, and received power.
 以下、本発明の実施の形態を図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施の形態に係る車両制御装置の全体構成を概略的に示す機能ブロック図である。また、図2~図4は、本発明に係る車両制御装置が搭載された車両の車間制御処理の様子を概略的に示す図である。 FIG. 1 is a functional block diagram schematically showing the overall configuration of the vehicle control apparatus according to the present embodiment. 2 to 4 are diagrams schematically showing the state of the inter-vehicle control process of the vehicle equipped with the vehicle control device according to the present invention.
 図1~図4において、車両制御装置1は、車車間通信部2、外界認識部3、自車両挙動認識部4、車間時間設定部5、および車間制御部6から概略構成されている。 1 to 4, the vehicle control device 1 is roughly composed of an inter-vehicle communication unit 2, an external environment recognition unit 3, an own vehicle behavior recognition unit 4, an inter-vehicle time setting unit 5, and an inter-vehicle control unit 6.
 車車間通信部2は、自車両102の周囲の他の車両(例えば、他車両101)の車両情報を車車間通信7によって取得するものである。車車間通信7とは、車車間通信7に必要な専用の車載器(無線装置)が搭載されている車両同士の無線通信により周囲の車両の情報(車両情報:位置、速度、加速度、ヨーレート、車両制御情報等)を入手し、得られた情報を必要に応じて運転支援等に用いるシステムであり、車車間通信部2は車車間通信7によって他車両101の車両情報を取得する。また、車車間通信部2は、車車間通信7において他車両101から送信される信号の受信強度を計測する受信強度計測部2aを有している。車車間通信7によって車車間通信部2で得られた他車両101の車両情報、および受信強度計測部2aで得られた受信強度(計測結果)は、車間制御部6に送られる。 The inter-vehicle communication unit 2 acquires vehicle information of other vehicles (for example, the other vehicle 101) around the host vehicle 102 by the inter-vehicle communication 7. Vehicle-to-vehicle communication 7 is information on surrounding vehicles (vehicle information: vehicle information: position, speed, acceleration, yaw rate, wireless communication between vehicles equipped with a dedicated vehicle-mounted device (wireless device) necessary for vehicle-to-vehicle communication 7. Vehicle control information, etc.), and the obtained information is used for driving support as necessary. The inter-vehicle communication unit 2 acquires the vehicle information of the other vehicle 101 by the inter-vehicle communication 7. The inter-vehicle communication unit 2 includes a reception intensity measurement unit 2 a that measures the reception intensity of a signal transmitted from the other vehicle 101 in the inter-vehicle communication 7. The vehicle information of the other vehicle 101 obtained by the inter-vehicle communication unit 2 by the inter-vehicle communication 7 and the reception intensity (measurement result) obtained by the reception intensity measuring unit 2 a are sent to the inter-vehicle control unit 6.
 外界認識部3は、自車両102に搭載されたレーダやカメラなどのセンサ(以降、レーダ・カメラ8と称する)から得られた情報を解析し、レーダ・カメラ8において検知・撮像された他の車両や障害物、道路標識等を認識・判別し、また、それらと自車両102との相対位置や相対速度などの情報を取得する。また、これらの情報に基づいて、自車両102の前方を走行する他車両(先行車両)101と自車両102との車間時間を取得することができる。外界認識部3で得られた情報は、車間制御部6に送られる。 The external recognition unit 3 analyzes information obtained from a sensor such as a radar or a camera (hereinafter referred to as a radar camera 8) mounted on the host vehicle 102, and detects other images detected and captured by the radar camera 8. It recognizes and discriminates vehicles, obstacles, road signs, etc., and acquires information such as the relative position and relative speed between them and the host vehicle 102. Further, based on these pieces of information, it is possible to acquire the inter-vehicle time between the other vehicle (preceding vehicle) 101 traveling in front of the host vehicle 102 and the host vehicle 102. Information obtained by the external recognition unit 3 is sent to the inter-vehicle distance control unit 6.
 自車両挙動認識部4は、自車両102に搭載されたジャイロセンサや車輪速度センサ、舵角センサ、加速度センサなどの自車両センサ9なら得られた情報に基づいて自車両102の挙動を表すヨーレートや車輪速度、舵角、加速度等の情報を取得し、得られた情報を車間制御部6に送る。 The own vehicle behavior recognition unit 4 is a yaw rate that represents the behavior of the own vehicle 102 based on information obtained by the own vehicle sensor 9 such as a gyro sensor, a wheel speed sensor, a rudder angle sensor, and an acceleration sensor mounted on the own vehicle 102. Information such as wheel speed, rudder angle, and acceleration is acquired, and the obtained information is sent to the inter-vehicle distance controller 6.
 車間時間設定部5は、自車両102に設けられた車間時間入力部10(例えば、運転席付近に設置された運転者用入力スイッチ等)により入力された入力値に基づいて、車間制御処理(後述)において自車両102の前方を走行する他車両101(先行車両)と自車両102との間の車間時間の目標値を設定し、その設定値(目標値)を車間制御部6に出力する。車間時間入力部10で入力される入力値としては、車間距離を具体的数値で入力するもののほか、例えは、車間距離を大きめにとる「大」や、車間距離を小さめにとる「小」、それらの中間の車間距離とする「中」などのように段階的に入力するものが考えられる。 The inter-vehicle time setting unit 5 is based on an input value input by an inter-vehicle time input unit 10 (for example, a driver input switch installed in the vicinity of the driver's seat) provided in the host vehicle 102. The target value of the inter-vehicle time between the other vehicle 101 (preceding vehicle) traveling in front of the host vehicle 102 and the host vehicle 102 is set, and the set value (target value) is output to the inter-vehicle control unit 6. . As the input value input by the inter-vehicle time input unit 10, in addition to inputting the inter-vehicle distance by a specific numerical value, for example, “large” that makes the inter-vehicle distance larger, “small” that makes the inter-vehicle distance smaller, It is possible to input in a stepwise manner such as “medium” as the intermediate distance between them.
 車間制御部6は、車車間通信部2、受信強度計測部2a、外界認識部3、自車両挙動認識部4、及び車間時間設定部5からの情報に基づいて車間制御処理を行う。本実施の形態における車間制御処理は、自車両102の前方を走行する他車両101(先行車両)と自車両102との車間(車間時間)を車間時間の設定値(目標値)に基づいて決まる設定範囲(車間時間調整範囲)内に保つように自車両102の走行状態を制御するとともに、車車間通信7を用いて先行車両101の車速・加速度などの車両情報を取得し、得られた車両情報に基づいてより正確な自車両102の走行状態の制御を行うものである。車間制御部6は、車間制御処理の結果として自車両102の走行状態を制御するための制御信号を出力する。 The inter-vehicle control unit 6 performs inter-vehicle control processing based on information from the inter-vehicle communication unit 2, the reception intensity measurement unit 2 a, the external environment recognition unit 3, the own vehicle behavior recognition unit 4, and the inter-vehicle time setting unit 5. The inter-vehicle distance control process according to the present embodiment determines the inter-vehicle distance (inter-vehicle time) between another vehicle 101 (preceding vehicle) traveling in front of the own vehicle 102 and the own vehicle 102 based on the set value (target value) of the inter-vehicle time. The vehicle obtained by controlling the running state of the host vehicle 102 so as to keep it within the set range (inter-vehicle time adjustment range) and acquiring vehicle information such as the vehicle speed and acceleration of the preceding vehicle 101 using the inter-vehicle communication 7 Based on the information, the traveling state of the host vehicle 102 is more accurately controlled. The inter-vehicle distance control unit 6 outputs a control signal for controlling the traveling state of the host vehicle 102 as a result of the inter-vehicle distance control process.
 ここで、本実施の形態における車間制御処理の詳細について説明する。 Here, the details of the inter-vehicle control process in the present embodiment will be described.
 図2~図4は、本発明に係る車両制御装置1が搭載された自車両102の車間制御処理の様子を概略的に示しており、例えば、自動車専用道路などの道路100を他車両101及び自車両102がある間隔をもって前方(図中左方向)に走行している場合を示している。また、図2は車間制御処理によって車間時間が調整された後の状態を例示する図であり、図3は自車両102が車間時間調整範囲よりも後方にある場合を例示する図であり、図4は自車両102が車間時間調整範囲内であって車間時間が未調整である場合を例示する図である。 2 to 4 schematically show the state of the inter-vehicle control processing of the own vehicle 102 on which the vehicle control device 1 according to the present invention is mounted. For example, a road 100 such as an automobile-only road is connected to another vehicle 101 and The case where the host vehicle 102 is traveling forward (leftward in the figure) at a certain interval is shown. 2 is a diagram illustrating a state after the inter-vehicle time is adjusted by the inter-vehicle control process, and FIG. 3 is a diagram illustrating a case where the host vehicle 102 is behind the inter-vehicle time adjustment range. 4 is a diagram illustrating a case where the own vehicle 102 is within the inter-vehicle time adjustment range and the inter-vehicle time is not adjusted.
 車間制御処理では、先行車両101と自車両102との車間時間を設定値(目標値)を含むように定められる車間時間調整範囲内に保つように処理を行い、さらに、車間時間調整範囲内において車間時間を調整する車間時間調整処理を行う。車間時間調整範囲は車間制御処理を行う車両の用途や環境によって種々の設定が考えられ、1つに限定されるものでは無いが、例えば、車間時間の設定値(目標値)が5秒であったとすると、車間時間調整範囲は車間時間で2.5秒~3.5秒のように設定値(目標値)の前後に跨るように定められる。なお、車間時間調整範囲は、設定値(目標値)に対して前後(上下)が均等である必要はなく、また、自車両102の走行状態や周囲環境に基づいて変更されるような仕様としても良い。 In the inter-vehicle control process, processing is performed so that the inter-vehicle time between the preceding vehicle 101 and the host vehicle 102 is kept within the inter-vehicle time adjustment range that is set to include the set value (target value). An inter-vehicle time adjustment process for adjusting the inter-vehicle time is performed. The inter-vehicle time adjustment range may be variously set depending on the use and environment of the vehicle that performs the inter-vehicle control process, and is not limited to one. For example, the inter-vehicle time setting value (target value) is 5 seconds. If this is the case, the inter-vehicle time adjustment range is determined so as to straddle the set value (target value) such as 2.5 to 3.5 seconds in the inter-vehicle time. Note that the inter-vehicle time adjustment range does not need to be uniform in the front and rear (up and down) with respect to the set value (target value), and is also a specification that is changed based on the traveling state of the host vehicle 102 and the surrounding environment. Also good.
 車間時間とは、例えば道路上のある位置を先行車両(他車両101)が通過してから自車両102がそこ(ある位置)を通過するまでにかかる時間であり、この車間時間を制御することにより先行車両との車間を所望の間隔(目標車間距離)となるように制御する。 The inter-vehicle time is, for example, the time it takes for the host vehicle 102 to pass through a certain position on the road after the preceding vehicle (the other vehicle 101) passes through the vehicle, and this inter-vehicle time is controlled. Thus, the distance from the preceding vehicle is controlled to be a desired distance (target distance between the vehicles).
 車間時間調整処理では、車間時間調整範囲内において車車間通信7に係る信号の受信強度が最大の状態(図2の状態)となるように、先行車両101と自車両102との間の車間時間を調整する処理を行う。なお、言うまでもないが、車間時間調整範囲の端部(車間時間最大、或いは最小)で受信強度が最大となる場合も同様に、受信強度が最大の状態となるように、先行車両101と自車両102との間の車間時間を調整する処理を行う。 In the inter-vehicle time adjustment process, the inter-vehicle time between the preceding vehicle 101 and the host vehicle 102 so that the reception intensity of the signal related to the inter-vehicle communication 7 is in the maximum state (the state shown in FIG. 2) within the inter-vehicle time adjustment range. Process to adjust. Needless to say, when the reception intensity is maximized at the end of the inter-vehicle time adjustment range (maximum or minimum inter-vehicle time), the preceding vehicle 101 and the host vehicle are also set so that the reception intensity is maximized. The process which adjusts the time between vehicles between 102 is performed.
 例えば、図3のように、自車両102が車間時間調整範囲よりも後方にある場合に車間制御処理が開始されると、自車両102の走行状態を制御して車間時間が車間時間調整範囲内となるように制御し、さらに、車車間通信7に係る信号の受信強度が最大の状態(図2の状態)となるように、先行車両101と自車両102との間の車間時間を調整する。 For example, as shown in FIG. 3, when the own vehicle 102 is behind the inter-vehicle time adjustment range and the inter-vehicle control process is started, the traveling state of the own vehicle 102 is controlled and the inter-vehicle time is within the inter-vehicle time adjustment range. Further, the inter-vehicle time between the preceding vehicle 101 and the host vehicle 102 is adjusted so that the reception intensity of the signal related to the inter-vehicle communication 7 is maximized (the state shown in FIG. 2). .
 また、図4のように、車間制御処理の開始時に自車両102が車間時間調整範囲にある場合においても、車車間通信7に係る信号の受信強度の現在値を取得しつつ自車両102の走行状態を制御して車間時間を変化させ、車間時間調整範囲における受信強度の変化を取得し、最終的に受信強度が最大の状態(図2の状態)となるように、先行車両101と自車両102との間の車間時間を調整する。 Further, as shown in FIG. 4, even when the own vehicle 102 is in the inter-vehicle time adjustment range at the start of the inter-vehicle control process, the traveling of the own vehicle 102 is acquired while acquiring the current value of the reception intensity of the signal related to the inter-vehicle communication 7. The preceding vehicle 101 and the host vehicle are controlled so as to change the inter-vehicle time by controlling the state, acquire the change in the reception intensity in the inter-vehicle time adjustment range, and finally reach the maximum reception intensity (the state of FIG. 2). The inter-vehicle time with 102 is adjusted.
 なお、図2~図4の説明においては、車間時間調整範囲内において車車間通信7に係る信号の受信強度が最大になるように車間制御処理を行う場合を例示して示したが、車間時間調整範囲の全てに亘って車間時間を変化させ、受信強度の情報を取得することが適当でない場合(例えば、車間時間調整範囲が広い場合や、車間時間調整範囲内で受信強度が受信感度を下回る状態が有る場合)には、受信強度が極大値を示す車間時間となるように制御することも考えられる。 In the description of FIGS. 2 to 4, the case where the inter-vehicle control process is performed so as to maximize the reception intensity of the signal related to the inter-vehicle communication 7 within the inter-vehicle time adjustment range is illustrated. When it is not appropriate to change the inter-vehicle time over the entire adjustment range and acquire reception intensity information (for example, when the inter-vehicle time adjustment range is wide or within the inter-vehicle time adjustment range, the reception intensity falls below the reception sensitivity) In the case where there is a state), it may be possible to control so that the reception intensity becomes the inter-vehicle time at which the maximum value is obtained.
 図5は、車間制御処理を示すフローチャートである。 FIG. 5 is a flowchart showing the inter-vehicle distance control process.
 図5において、車間制御部6は、車車間通信部2や外界認識部3から得られる情報に基づいて、自車両102の前方に車車間通信対応可能な他車両(先行車両)101があるかどうかを判定し(ステップS100)、判定結果がNOの場合には処理を終了する。また、ステップS100において、判定結果がYESの場合、すなわち、車車間通信対応可能な他車両101があると判定した場合には、運転席付近に設けられたモニタやランプ、スピーカ等の図示しない通知手段によって運転者に車間制御が可能であることを通知する(ステップS110)。続いて、運転者の車間時間入力部10の操作による入力値に基づいて車間時間設定部5で設定された車間時間の設定値(目標値)を取得し(ステップS120)、得られた設定値に基づいて車間時間調整範囲を設定する(ステップS130)。続いて、先行車両101と自車両102との車間時間は車間時間調整範囲内かどうかを判定し(ステップS140)、判定結果がNOの場合には、車間時間が車間時間調整範囲内となるように自車両102の走行状態を制御する(ステップS141)。ステップS140での判定結果がYESの場合、又は、ステップS141の処理が終了すると、車間時間調整処理(ステップS150~S160)として、車間時間の調整(ステップS150)と、車間時間調整範囲内において車車間通信に係る信号の受信強度が車間時間調整範囲内において最大になったかどうかの判定(ステップS160)とを行い、ステップS160での判定結果がNOの場合は、ステップS150の車間時間の調整を繰り返す。また、ステップS160での判定結果がYESの場合、すなわち、受信強度が最大値となった場合には処理を終了する。 In FIG. 5, the inter-vehicle control unit 6 determines whether there is another vehicle (preceding vehicle) 101 capable of inter-vehicle communication in front of the own vehicle 102 based on information obtained from the inter-vehicle communication unit 2 or the external world recognition unit 3. It is determined whether or not (step S100). If the determination result is NO, the process ends. In step S100, if the determination result is YES, that is, if it is determined that there is another vehicle 101 capable of inter-vehicle communication, notifications (not shown) such as monitors, lamps, and speakers provided near the driver's seat are provided. The driver is notified by the means that inter-vehicle distance control is possible (step S110). Subsequently, the setting value (target value) of the inter-vehicle time set by the inter-vehicle time setting unit 5 is acquired based on the input value obtained by operating the inter-vehicle time input unit 10 of the driver (step S120), and the obtained set value is obtained. Based on the above, an inter-vehicle time adjustment range is set (step S130). Subsequently, it is determined whether the inter-vehicle time between the preceding vehicle 101 and the host vehicle 102 is within the inter-vehicle time adjustment range (step S140). If the determination result is NO, the inter-vehicle time is within the inter-vehicle time adjustment range. Next, the traveling state of the host vehicle 102 is controlled (step S141). When the determination result in step S140 is YES, or when the process of step S141 is completed, an inter-vehicle time adjustment process (steps S150 to S160) is performed. It is determined whether or not the reception intensity of the signal related to inter-vehicle communication is maximized within the inter-vehicle time adjustment range (step S160). If the determination result in step S160 is NO, the inter-vehicle time adjustment in step S150 is performed. repeat. If the determination result in step S160 is YES, that is, if the reception intensity reaches the maximum value, the process ends.
 以上のように構成した本実施の形態の効果を説明する。 The effect of the present embodiment configured as described above will be described.
 近年、追従走行(適応走行制御、ACC: Adaptive Cruise Control)に加え、車車間通信を用いて先行車の車速・加速度などの車両情報を取得し、得られた車両情報に基づいてより正確な追従走行を行う協調型追従走行制御(CACC: Cooperative Adaptive Cruise Control)も高度運転支援技術の一つとして実用化が進められており、追従走行の精度向上や、車間時間短縮による道路の収容率の向上などが図られている。しかしながら、車車間通信に用いられる無線通信では、対象車両間を直線的に伝播する直接波と大地反射などの反射波との合成波が受信されるため、対象車両間の距離や周囲環境など種々の条件によって受信状況が大きく異なってくる。 In recent years, in addition to following driving (adaptive driving control, ACC: Adaptive Cruise Control), vehicle information such as vehicle speed and acceleration of the preceding vehicle is acquired using inter-vehicle communication, and more accurate following is performed based on the obtained vehicle information. Cooperative tracking control (CACC: Cooperative Adaptive Cruise Control) is also being put into practical use as one of the advanced driving support technologies, improving the accuracy of following driving and improving road coverage by shortening the time between vehicles. Etc. are planned. However, in wireless communication used for inter-vehicle communication, a composite wave of a direct wave propagating linearly between target vehicles and a reflected wave such as ground reflection is received. Depending on the conditions, the reception status varies greatly.
 図6は、車車間通信を想定した送受信間の距離と受信電力の関係についてのシミュレーション結果の一例を概略的に示す図である。図6において、縦軸には受信側での信号の受信電力を、横軸には送信側と受信側の距離(送受信間の距離)をそれぞれ示している。 FIG. 6 is a diagram schematically illustrating an example of a simulation result regarding the relationship between the distance between transmission and reception and the received power assuming vehicle-to-vehicle communication. In FIG. 6, the vertical axis represents the reception power of the signal on the reception side, and the horizontal axis represents the distance between the transmission side and the reception side (distance between transmission and reception).
 図6に示すように、送受信間の距離によって受信電力(受信強度に対応)が変化することがわかる。これは、車車間通信に用いられる無線通信では、対象車両間を直線的に伝播する直接波と大地反射などの反射波との合成波が受信されるため、直接波や反射波の伝播距離による受信側での位相の違いによって合成波が大きく、或いは、小さくなってしまうためである。例えば、図6のA部やB部においては、車車間通信の受信側で想定される(最低)受信感度を下回ると考えられるため、車車間通信を行う先行車両と自車両との距離(車間時間)がこのような範囲に入った場合には、車車間通信に必要な受信強度が得られなくなってしまい、通信型追従走行が不可能・不安定になってしまうことも考えられる。 As shown in FIG. 6, it can be seen that the received power (corresponding to the received intensity) changes depending on the distance between transmission and reception. This is because, in wireless communication used for vehicle-to-vehicle communication, a composite wave of a direct wave that propagates linearly between target vehicles and a reflected wave such as ground reflection is received, so it depends on the propagation distance of the direct wave and the reflected wave. This is because the synthesized wave becomes larger or smaller depending on the phase difference on the receiving side. For example, in part A and part B of FIG. 6, since it is considered that the receiver sensitivity of the inter-vehicle communication is assumed to be lower than the (minimum) reception sensitivity, the distance between the preceding vehicle and inter-vehicle communication (vehicle-to-vehicle communication) If the (time) falls within such a range, it is possible that the reception intensity required for vehicle-to-vehicle communication cannot be obtained, and communication-type follow-up traveling becomes impossible or unstable.
 これに対して本実施の形態においては、自車両102の周囲を走行する他車両101の車両情報を無線通信で取得する車車間通信部2と、他車両101と自車両102の間の無線通信における受信強度を計測する受信強度計測部2aと、受信強度計測部2aにより計測された受信強度に基づいて、他車両101に対する自車両102の車間時間等の相対位置を制御する車間制御部6とを備えたので、通信型追従走行の安定性をより向上することができる。 On the other hand, in the present embodiment, the inter-vehicle communication unit 2 that acquires the vehicle information of the other vehicle 101 traveling around the own vehicle 102 by wireless communication, and the wireless communication between the other vehicle 101 and the own vehicle 102. A reception intensity measurement unit 2a for measuring the reception intensity in the vehicle, and an inter-vehicle control unit 6 for controlling a relative position such as an inter-vehicle time of the own vehicle 102 with respect to the other vehicle 101 based on the reception intensity measured by the reception intensity measurement unit 2a. Therefore, the stability of the communication type follow-up traveling can be further improved.
 なお、本発明は上記した各実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本願発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等により実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
In addition, this invention is not limited to each above-mentioned embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
Moreover, you may implement | achieve part or all of said each structure, function, etc., for example by designing with an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
1 車両制御装置、2 車車間通信部、2a 受信強度計測部、3 外界認識部、4 自車両挙動認識部、5 車間時間設定部、6 車間制御部、7 車車間通信、8 レーダ・カメラ、9 自車両センサ、10 車間時間入力部、100 道路、101 他車両(先行車両)、102 自車両 1 vehicle control device, 2 vehicle-to-vehicle communication unit, 2a reception intensity measurement unit, 3 external environment recognition unit, 4 own vehicle behavior recognition unit, 5 vehicle time setting unit, 6 vehicle control unit, 7 vehicle communication, 8 radar camera, 9 own vehicle sensor, 10 inter-vehicle time input unit, 100 road, 101 other vehicle (preceding vehicle), 102 own vehicle

Claims (3)

  1.  自車両の周囲を走行する他車両の車両情報を無線通信で取得する他車両情報取得部と、
     前記他車両と前記自車両の間の無線通信における受信強度を計測する受信強度計測部と、
     前記受信強度計測部により計測された受信強度に基づいて、前記他車両に対する前記自車両の相対位置を制御する制御部と
    を備えたことを特徴とする車両制御装置。
    An other vehicle information acquisition unit for acquiring vehicle information of other vehicles traveling around the host vehicle by wireless communication;
    A reception intensity measurement unit for measuring reception intensity in wireless communication between the other vehicle and the host vehicle;
    A vehicle control apparatus comprising: a control unit that controls a relative position of the host vehicle with respect to the other vehicle based on the reception intensity measured by the reception intensity measurement unit.
  2.  請求項1記載の車両制御装置において、
     前記自車両の前方を走行する前記他車両と前記自車両との間の車間時間を設定する車間時間設定部を備え、
     前記制御部は、前記受信強度計測部により計測された受信強度に基づいて、前記車間時間設定部で設定された車間時間を含むように定められる車間時間調整範囲内において、前記他車両と前記自車両との間の車間時間を制御する
    ことを特徴とする車両制御装置。
    The vehicle control device according to claim 1,
    An inter-vehicle time setting unit that sets an inter-vehicle time between the host vehicle and the other vehicle traveling in front of the host vehicle;
    The control unit is connected to the other vehicle and the vehicle within an inter-vehicle time adjustment range determined to include the inter-vehicle time set by the inter-vehicle time setting unit based on the reception intensity measured by the reception intensity measurement unit. A vehicle control apparatus for controlling an inter-vehicle time with a vehicle.
  3.  請求項1記載の車両制御装置において、
     前記自車両の前方を走行する前記他車両と前記自車両との間の車間時間を設定する車間時間設定部を備え、
     前記他車両情報取得部は、自車両の前方を走行する先行車両の車両情報を先行車両との無線通信により取得し、
     前記制御部は、前記他車両情報取得部で取得された車両情報に基づいて、前記車間時間設定部で設定された車間時間を含むように定められる車間時間調整範囲内において、前記受信強度が最大となるように、前記他車両と自車両との間の車間時間を制御する
    ことを特徴とする車両制御装置。
    The vehicle control device according to claim 1,
    An inter-vehicle time setting unit that sets an inter-vehicle time between the host vehicle and the other vehicle traveling in front of the host vehicle;
    The other vehicle information acquisition unit acquires vehicle information of a preceding vehicle traveling ahead of the host vehicle by wireless communication with the preceding vehicle,
    The control unit, based on the vehicle information acquired by the other vehicle information acquisition unit, within the inter-vehicle time adjustment range determined to include the inter-vehicle time set by the inter-vehicle time setting unit, the reception intensity is the maximum A vehicle control device that controls an inter-vehicle time between the other vehicle and the host vehicle.
PCT/JP2017/043933 2016-12-15 2017-12-07 Vehicle control device WO2018110401A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018556617A JP6818046B2 (en) 2016-12-15 2017-12-07 Vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016243112 2016-12-15
JP2016-243112 2016-12-15

Publications (1)

Publication Number Publication Date
WO2018110401A1 true WO2018110401A1 (en) 2018-06-21

Family

ID=62558532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043933 WO2018110401A1 (en) 2016-12-15 2017-12-07 Vehicle control device

Country Status (2)

Country Link
JP (1) JP6818046B2 (en)
WO (1) WO2018110401A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199267A (en) * 2008-02-20 2009-09-03 Toyota Motor Corp Travelling control device
JP2012035820A (en) * 2010-08-11 2012-02-23 Toyota Motor Corp Vehicle control device
JP2012038258A (en) * 2010-08-11 2012-02-23 Toyota Motor Corp Vehicle control device
JP2012035819A (en) * 2010-08-11 2012-02-23 Toyota Motor Corp Vehicle control device
JP2015022423A (en) * 2013-07-17 2015-02-02 日産自動車株式会社 Vehicular travel control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199267A (en) * 2008-02-20 2009-09-03 Toyota Motor Corp Travelling control device
JP2012035820A (en) * 2010-08-11 2012-02-23 Toyota Motor Corp Vehicle control device
JP2012038258A (en) * 2010-08-11 2012-02-23 Toyota Motor Corp Vehicle control device
JP2012035819A (en) * 2010-08-11 2012-02-23 Toyota Motor Corp Vehicle control device
JP2015022423A (en) * 2013-07-17 2015-02-02 日産自動車株式会社 Vehicular travel control device

Also Published As

Publication number Publication date
JP6818046B2 (en) 2021-01-20
JPWO2018110401A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
US10870435B2 (en) Notice management apparatus and notice management method
US10538244B2 (en) Driving assistance apparatus
JP6668510B2 (en) Vehicle control system, vehicle control method, and vehicle control program
KR102560700B1 (en) Apparatus and Method for vehicle driving assistance
JP5533810B2 (en) Follow-up control device
US8977420B2 (en) Vehicle procession control through a traffic intersection
WO2010097943A1 (en) Vehicle relative position estimation apparatus and vehicle relative position estimation method
JP2017026417A (en) Information providing system
US9564053B2 (en) Synchronized driving assist apparatus and synchronized driving assist system
CN112327819A (en) Operation selection device, operation selection method, and non-transitory storage medium
KR20190017789A (en) Rear monitoring for car cruise control system
US20220146664A1 (en) Signal processing device, signal processing method, program, and information processing device
JP2015153165A (en) preceding vehicle selection device
US11840227B2 (en) Vehicle control device, vehicle control method, and storage medium
JP2008008679A (en) Object detecting apparatus, collision predicting apparatus and vehicle controlling apparatus
JP2017052411A (en) Driving support device, and driving support method
KR20160037544A (en) System and method for controlling group driving based on v2v and das sensor
US10399592B2 (en) Drive assist device
KR102627478B1 (en) Vehicle control system, non-image sensor module and sensing data processing method
US20210289329A1 (en) Method and device for receiving, processing and transmitting data
JP2009197673A (en) Vehicular running control device
WO2018110401A1 (en) Vehicle control device
JP7448624B2 (en) Driving support devices, driving support methods, and programs
JP6542533B2 (en) Vehicle travel control system
US20220388533A1 (en) Display method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556617

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880306

Country of ref document: EP

Kind code of ref document: A1