WO2018110395A1 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
WO2018110395A1
WO2018110395A1 PCT/JP2017/043900 JP2017043900W WO2018110395A1 WO 2018110395 A1 WO2018110395 A1 WO 2018110395A1 JP 2017043900 W JP2017043900 W JP 2017043900W WO 2018110395 A1 WO2018110395 A1 WO 2018110395A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal case
pair
type secondary
secondary cells
assembled battery
Prior art date
Application number
PCT/JP2017/043900
Other languages
French (fr)
Japanese (ja)
Inventor
幸田 秀夫
中村 仁
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to CN201780077528.0A priority Critical patent/CN110073516A/en
Priority to KR1020197016842A priority patent/KR20190077537A/en
Priority to TW106144113A priority patent/TWI672848B/en
Publication of WO2018110395A1 publication Critical patent/WO2018110395A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/278Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an assembled battery including a plurality of secondary cells.
  • An electric vehicle using a motor as a drive source includes an assembled battery for supplying electric power to the motor.
  • Such an assembled battery is required to be capable of being charged and discharged with a large current.
  • a battery module described in Japanese Patent Application Laid-Open No. 2008-243526 includes a plurality of submodules and an outer case that houses the plurality of submodules.
  • Each submodule includes a plurality of secondary cells (single cells) and a submodule holder that holds the plurality of secondary cells.
  • Each secondary cell has a positive electrode sheet and a negative electrode sheet that are wound together with a separator, and a metal case that houses them.
  • the assembled battery (battery module) described in the above publication includes a honeycomb structure on one surface of an outer case that houses a plurality of submodules.
  • the secondary cells can be cooled by sending cooling air from the cavities of the honeycomb structure into the outer case.
  • An object of the present invention is to suppress an increase in temperature caused by charging / discharging with a large current in an assembled battery including a plurality of secondary cells.
  • the inventors of the present application studied the heat dissipation state of the secondary cell when the assembled battery was charged and discharged with a large current.
  • the inventors of the present application paid attention to the arrangement of the positive electrode sheet and the negative electrode sheet that the secondary cell has.
  • the positive electrode sheet and the negative electrode sheet are accommodated in a metal case in a rolled state. Therefore, the outer peripheral part of the wound positive electrode sheet and negative electrode sheet is likely to radiate heat from the metal case.
  • the central part of the wound positive electrode sheet and negative electrode sheet was likely to accumulate heat.
  • the inventor of this application has come up with the idea that the positive electrode sheet and the negative electrode sheet are accommodated in the metal case in a flat state, rather than being accommodated in the metal case in a state where the positive electrode sheet and the negative electrode sheet are wound.
  • the entire surface of the positive electrode sheet and the negative electrode sheet laminated in a flat state is close to a metal case. Thereby, even if the assembled battery is charged and discharged with a large current, the secondary cell easily dissipates heat.
  • the electrolyte is an electrolytic solution
  • the positive electrode sheet and the negative electrode sheet are used in a state of being immersed in the electrolytic solution.
  • the metal case is required to have a sealing property for enclosing the electrolytic solution.
  • the length of the portion to be welded or bonded to seal is longer than that of a metal case that accommodates a rolled positive electrode sheet and negative electrode sheet. Lengthens. Therefore, it is difficult to ensure sealing performance. Therefore, it is difficult for the metal case that accommodates the flat positive electrode sheet and the negative electrode sheet to ensure hermeticity as compared to the metal case that accommodates the positive electrode sheet and the negative electrode sheet that are wound.
  • the inventors of the present application have intensively studied a structure for ensuring the sealing performance of the secondary cell.
  • the case of the secondary cell has a double structure, and a flexible case that is easier to secure the sealing than the metal case is provided inside the metal case. Accordingly, it has been found that the heat dissipation of the secondary cell can be secured by the outer metal case while the sealing property of the secondary cell is secured by the flexible inner case.
  • the present invention has been completed based on the above findings.
  • An assembled battery according to the present invention includes a pair of electrode sheets composed of one positive electrode sheet and one negative electrode sheet, a metal case made of metal that accommodates the pair of electrode sheets, and an insulating material An insulating cap portion formed in the opening of the metal case and electrically connected to the pair of electrode sheets, each part of which is installed in the insulating cap portion and external to the metal case And a pair of cell terminals having a pair of connection surfaces exposed to the battery.
  • Each of the plurality of metal case-type secondary cells includes the pair of electrode sheets disposed inside the metal case, formed of a flexible synthetic resin film, and laminated in a flat state.
  • An inner case is accommodated and sealed with an electrolyte so as to be in contact with the pair of flat electrode sheets, and is in surface contact with the first inner surface of the metal case in the stacking direction of the pair of flat electrode sheets.
  • Each of the plurality of metal case-type secondary cells has a flat board shape in which a length of the pair of flat electrode sheets in the stacking direction is smaller than a minimum length in a direction perpendicular to the stacking direction.
  • the plurality of metal case type secondary cells are stacked in the stacking direction of the pair of flat electrode sheets.
  • the assembled battery of the present invention includes a plurality of metal case type secondary cells.
  • Each of the plurality of metal case-type secondary cells includes a pair of electrode sheets, a metal metal case, an inner case, an insulating cap portion, and a pair of cell terminals.
  • the pair of electrode sheets is composed of one positive electrode sheet and one negative electrode sheet.
  • the metal case accommodates a pair of electrode sheets.
  • the insulating cap part is formed of an insulating material and is installed in the opening of the metal case.
  • the pair of cell terminals are electrically connected to the pair of electrode sheets.
  • a part of each of the pair of cell terminals is installed in the insulating cap part. Thereby, the pair of cell terminals are electrically insulated from the metal case.
  • the pair of cell terminals has a pair of connection surfaces exposed to the outside of the metal case.
  • the plurality of metal case type secondary cells are connected in series or in parallel using a pair of connection surfaces of each of the plurality of metal case type secondary cells.
  • the pair of electrode sheets are laminated in a flat state. Therefore, each of the plurality of metal case-type secondary cells has a flat length in the stacking direction of the pair of flat electrode sheets that is smaller than the minimum length in the direction perpendicular to the stacking direction of the pair of flat electrode sheets. Board shape.
  • the plurality of metal case type secondary cells are stacked in the stacking direction of a pair of flat electrode sheets. Therefore, although the shape of the metal case type secondary cell is a flat board shape, the shape of the assembled battery can be a box shape like the assembled battery including the positive electrode sheet and the negative electrode sheet in a wound state. .
  • the positive electrode sheet and the negative electrode sheet are laminated in a flat state.
  • the pair of flat electrode sheets are arranged substantially parallel to the inner surface of the metal case. That is, the flat positive electrode sheet has a substantially constant shortest distance to the inner surface of the metal case.
  • a flat negative electrode sheet has a substantially constant shortest distance to the inner surface of the metal case. Therefore, the heat dissipation of the pair of electrode sheets can be made uniform as compared with the case where the pair of electrode sheets are arranged in a wound state. Therefore, when the assembled battery is charged / discharged with a large current, the metal case-type secondary cell easily radiates heat.
  • the metal case has a shape that accommodates a pair of electrode sheets in a flat state, it is difficult to ensure the sealing property necessary for enclosing the liquid electrolyte with the metal case. Therefore, the pair of electrode sheets is accommodated in an inner sheet disposed inside the metal sheet. In the inner case, the electrolyte is sealed so as to come into contact with the pair of electrode sheets.
  • the inner case is formed of a flexible synthetic resin film. For this reason, the inner case easily secures a sealing property necessary for enclosing the liquid electrolyte, despite accommodating a pair of electrode sheets laminated in a flat state.
  • the heat dissipation of the metal case type secondary cell can be ensured by the metal case while the inner case ensures the sealing property of the metal case type secondary cell.
  • the inner case is in surface contact with the first inner surface of the metal case in the stacking direction of the pair of flat electrode sheets. Therefore, the heat generated when the metal case type secondary cell is charged and discharged can be released from the first inner surface of the metal case. As a result, in each of the plurality of metal case-type secondary cells, temperature rise due to charging / discharging of the assembled battery with a large current can be suppressed.
  • the assembled battery of the present invention preferably has the following configuration.
  • the inner case is in contact with the first inner surface of the metal case in a state where the inner case is in surface contact with the first inner surface of the metal case. It is away from the second inner surface facing each other.
  • the inner case can be allowed to expand due to charging / discharging of the metal case type secondary cell.
  • the assembled battery of the present invention preferably has the following configuration.
  • the plurality of metal case-type secondary cells so that the metal case of one of the two metal case-type secondary cells adjacent in the stacking direction is separated from the metal case of the other in the stacking direction. are stacked.
  • the assembled battery of the present invention preferably has the following configuration.
  • the plurality of metal case molds so that the insulating cap part of one of the two metal case type secondary cells adjacent in the stacking direction is in contact with the insulating cap part of the other in the stacking direction. Secondary cells are stacked.
  • the assembled battery of the present invention preferably has the following configuration in addition to the above-described configuration (4).
  • the insulating cap portion of each of the plurality of metal case type secondary cells has at least one convex portion on one surface in the stacking direction and at least one concave portion on the other surface in the stacking direction.
  • the at least one convex portion of one of the two insulating cap portions adjacent to each other in the stacking direction is fitted into the at least one concave portion of the other.
  • This configuration can prevent a plurality of metal case type secondary cells from being displaced in a direction perpendicular to the stacking direction of the pair of electrode sheets. Therefore, a plurality of metal case type secondary cells can be easily stacked in the stacking direction of the pair of electrode sheets. Moreover, the structure which ensures a clearance gap between metal cases can be implement
  • the assembled battery of the present invention preferably has the following configuration.
  • the pair of cell terminals included in each of the plurality of metal case type secondary cells is disposed on both sides of the pair of flat electrode sheets in a direction perpendicular to the stacking direction.
  • the structure of connecting parts for connecting a plurality of metal case type secondary cells in series or in parallel is simplified. It can. Since the structure of the connecting part is simple, the connecting part can have a structure that does not hinder heat dissipation of the plurality of metal case type secondary cells as much as possible. As a result, temperature rise due to charging / discharging the assembled battery with a large current can be further suppressed.
  • the assembled battery of the present invention preferably has the following configuration.
  • the pair of connection surfaces of each of the plurality of metal case-type secondary cells is oriented in a direction perpendicular to the stacking direction.
  • connection components face the stacking direction of a pair of electrode sheets, that is, the stacking direction of a plurality of metal case type secondary cells, the plurality of metal case type secondary cells are connected in series. Therefore, it is possible to simplify the structure of the connecting parts.
  • the structure of the connection component for connecting a plurality of metal case type secondary cells in parallel is complicated. Therefore, even if a plurality of metal case-type secondary cells are connected in series or in parallel because the pair of connection surfaces are oriented in the direction perpendicular to the stacking direction of the pair of electrode sheets.
  • the structure of the connection component for connecting the metal case type secondary cell can be simplified.
  • the connecting part Since the structure of the connecting part is simple, the connecting part can have a structure that does not hinder heat dissipation of the plurality of metal case type secondary cells as much as possible. As a result, temperature rise due to charging / discharging of the assembled battery with a large current can be further suppressed.
  • the assembled battery of the present invention preferably has the following configuration.
  • a pair of cell terminals has a pair of lead tabs, a pair of lead tabs, and a pair of external terminals that are separate members. Therefore, the degree of freedom in designing a pair of cell terminals can be improved. Therefore, the metal case type secondary cell can have a structure in which heat generated by charging and discharging is more easily released. As a result, temperature rise due to charging / discharging the assembled battery with a large current can be further suppressed.
  • a secondary cell is a battery that includes only one positive electrode and one negative electrode and can be repeatedly charged and discharged.
  • the fact that the electrode sheet is flat is not limited to the case where the electrode sheet is parallel to a single plane. If the electrode sheet is disposed along a single plane, a part or the whole of the electrode sheet may be gently bent. When the electrode sheet is wound more than once, the electrode sheet is not flat. When the entire shape of the wound electrode sheet is a rectangular parallelepiped, the electrode sheet is not flat even if the thickness of the rectangular parallelepiped is thin.
  • the flat board shape is the shape of the secondary cell when the secondary cell has a pair of flat electrode sheets.
  • a secondary cell having a pair of wound electrode sheets is a box type (also called a square type) or a cylindrical type.
  • storing is not limited to storing in a closed space. It includes the case where it is accommodated in at least a unidirectional space. That is, when a part with a case is accommodated, the space for accommodating the part, which is formed only by the case, may or may not be a closed space.
  • the metal case in the present invention accommodates a pair of electrode sheets, but the metal case has an opening.
  • a contacts with B in the X direction means that the portions where A and B contact each other are in contact with each other in the X direction.
  • the end portion of a part means a portion obtained by combining the end of the part and its vicinity.
  • a and B being arranged in the X direction indicates the following state. Even when A and B are viewed from any direction orthogonal to the X direction, an arbitrary straight line or curve indicating the X direction passes through both A and B. Also, the fact that the whole A is aligned in the B and X directions means that the whole A faces the B and X directions. That is, the whole A overlaps with B when viewed in the X direction. You may paraphrase the whole in part.
  • a and B being arranged in the X direction when viewed from the Y direction indicates the following state. When A and B are viewed from the Y direction, an arbitrary straight line or curve indicating the X direction passes through both A and B.
  • a and B When A and B are viewed from the W direction different from the Y direction, A and B may not be aligned in the X direction.
  • the entire A lined up in the B and X directions means that the entire A appears to face the B and X directions when viewed from the Y direction. You may paraphrase the whole in part.
  • a and B may be in contact with each other.
  • a and B may be separated from each other.
  • C may exist between A and B.
  • a being arranged between B and C refers to the following states unless otherwise specified.
  • An arbitrary straight line passes through B, A, and C in this order. That is, B, A, and C are arranged in this order in an arbitrary straight line direction.
  • the terms mounted, connected, coupled, and supported are used in a broad sense. Specifically, it includes not only direct attachment, connection, coupling and support, but also indirect attachment, connection, coupling and support. Further, connected and coupled are not limited to physical or mechanical connections / couplings. They also include direct or indirect electrical connections / couplings.
  • the term “preferred” is non-exclusive. “Preferred” means “preferably but not limited to”. In the present specification, the configuration described as “preferable” has at least the above-described effect obtained by the configuration of claim 1. Further, in this specification, the term “may” is non-exclusive. “May” means “may be, but is not limited to”. In the present specification, a configuration described as “may” at least exhibits the above-described effect obtained by the configuration of claim 1.
  • the assembled battery including a plurality of metal case type secondary cells of the present invention can suppress temperature rise due to charging / discharging with a large current.
  • FIG. 3 is a side view of a plurality of metal case type secondary cells provided in the assembled battery shown in FIG. 2 when viewed in the Y-direction.
  • FIG. 3 is a perspective view of one of a plurality of metal case type secondary cells provided in the assembled battery shown in FIG. 2.
  • FIG. 7 is an exploded perspective view of the metal case type secondary cell shown in FIG.
  • FIG. 7 is a sectional view taken along line IX-IX in FIG. 6. It is a perspective view of the metal case component which the metal case type secondary cell shown in FIG. 6 has. It is a perspective view of other metal case components which have a metal case type secondary cell shown in FIG. It is a perspective view of the insulation cap main body which the metal case type secondary cell shown in FIG. 6 has. It is the top view which looked at the insulation cap main body shown in FIG. 12 in the X + direction. It is a perspective view of the insulating cover which the metal case type secondary cell shown in FIG. 6 has. It is a perspective view of the external terminal which the metal case type secondary cell shown in FIG. 6 has. It is sectional drawing of the contact part of the insulation cap parts of two adjacent metal case type secondary cells. It is a side view of the some metal case type secondary cell with which the assembled battery of the example of a change of embodiment of this invention is provided.
  • the assembled battery 10 includes a plurality of metal case type secondary cells 14.
  • Each of the plurality of metal case type secondary cells 14 includes a pair of electrode sheets 146 and 147, a metal case 141 made of metal, an inner case 142, an insulating cap portion 143, and a pair of cell terminals 144 and 145. And have.
  • the pair of electrode sheets 146 and 147 includes one negative electrode sheet 146 and one positive electrode sheet 147.
  • the metal case 141 accommodates a pair of electrode sheets 146 and 147.
  • the insulating cap part 143 is formed of an insulating material and is installed in the opening of the metal case 141.
  • the pair of cell terminals 144 and 145 are electrically connected to the pair of electrode sheets 146 and 147.
  • a part of each of the pair of cell terminals 144 and 145 is installed in the insulating cap part 143. Thereby, the pair of cell terminals 144 and 145 are electrically insulated from the metal case 141.
  • the pair of cell terminals 144 and 145 have a pair of connection surfaces 144a and 145a exposed to the outside of the metal case 141.
  • the plurality of metal case type secondary cells 14 are connected in series or in parallel using a pair of connection surfaces 144a and 145a which each of the plurality of metal case type secondary cells 14 has.
  • FIG. 1 shows a case where a plurality of metal case type secondary cells 14 are connected in series.
  • the inner case 142 is disposed inside the metal case 141.
  • the inner case 142 is formed of a flexible synthetic resin film.
  • the inner case 142 accommodates a pair of electrode sheets 146 and 147 that are laminated in a flat state.
  • An electrolyte is sealed in the inner case 142 so as to contact the pair of flat electrode sheets 146 and 147.
  • the inner case 142 is in surface contact with the first inner surface 141a of the metal case 141 in the stacking direction of the pair of flat electrode sheets 146, 147.
  • each of the plurality of metal case-type secondary cells 14 has a length in the stacking direction of the pair of flat electrode sheets 146 and 147 that is perpendicular to the stacking direction of the pair of flat electrode sheets 146 and 147. It is a flat board shape smaller than the minimum length in.
  • the plurality of metal case type secondary cells 14 are stacked in the stacking direction of a pair of flat electrode sheets 146 and 147. Therefore, although the shape of the metal case type secondary cell 14 is a flat board shape, the shape of the assembled battery 10 is a box shape as in the assembled battery including the positive electrode sheet and the negative electrode sheet in a wound state. Can do.
  • the negative electrode sheet 146 and the positive electrode sheet 147 are laminated in a flat state. Therefore, the pair of flat electrode sheets 146 and 147 are disposed substantially parallel to the inner surface of the metal case 141. That is, the flat negative electrode sheet 146 has a substantially constant shortest distance to the inner surface of the metal case 141.
  • the flat positive electrode sheet 147 has a substantially constant shortest distance to the inner surface of the metal case 141. Therefore, the heat dissipation of the pair of electrode sheets 146 and 147 can be made uniform as compared with the case where the pair of electrode sheets 146 and 147 are arranged in a wound state. Therefore, when the assembled battery 10 is charged / discharged with a large current, the metal case-type secondary cell 14 easily radiates heat.
  • the metal case 141 has a shape that accommodates the pair of electrode sheets 146 and 147 in a flat state, it is difficult to ensure the sealing performance necessary for enclosing the liquid electrolyte by the metal case 141. . Therefore, the pair of electrode sheets 146 and 147 are accommodated in the inner sheet disposed inside the metal sheet.
  • the inner case 142 is sealed so that the electrolyte contacts the pair of electrode sheets 146 and 147.
  • the inner case 142 is formed of a flexible synthetic resin film. Therefore, the inner case 142 is easy to ensure the sealing performance necessary to enclose the liquid electrolyte in spite of accommodating the pair of electrode sheets 146 and 147 laminated in a flat state.
  • the heat dissipation of the metal case type secondary cell 14 can be secured by the metal case 141 while the inner case 142 ensures the sealing property of the metal case type secondary cell 14. Further, the inner case 142 is in surface contact with the first inner surface 141a of the metal case 141 in the stacking direction of the pair of flat electrode sheets 146 and 147. Therefore, the heat generated when the metal case type secondary cell 14 is charged / discharged can be released from the first inner surface 141a of the metal case 141. As a result, in each of the plurality of metal case type secondary cells 14, it is possible to suppress an increase in temperature caused by charging / discharging the assembled battery 10 with a large current.
  • a direction including both the Y + direction and the Y ⁇ direction is referred to as a Y direction.
  • a direction including both the Z + direction and the Z ⁇ direction is referred to as a Z direction.
  • the X direction is a direction perpendicular to the Y direction and the Z direction
  • the Y direction is a direction perpendicular to the Z direction.
  • a symbol with a small black circle displayed in a circle shown in FIG. 3 or the like indicates a direction from the back to the front of the page.
  • the assembly battery 10 includes a housing 11.
  • the housing 11 has a substantially rectangular parallelepiped box shape.
  • the housing 11 is made of an insulating material.
  • the insulating material is, for example, a synthetic resin.
  • the housing 11 has a pair of assembled battery terminals 12 and 13 on its outer surface.
  • the assembled battery 10 is connected to a power supply device (not shown) via a pair of assembled battery terminals 12 and 13.
  • the power supply device supplies power to the assembled battery 10.
  • the assembled battery 10 is connected to a power consuming device (not shown) that consumes power via a pair of assembled battery terminals 12 and 13.
  • the assembled battery 10 supplies power to the power consuming device.
  • the power consumption device is not specifically limited.
  • the X + direction is the upward direction on the page.
  • the direction when the assembled battery 10 is used is not limited to the direction in which the upward direction in the drawing of FIG.
  • the assembled battery 10 may be used so that the upper direction in FIG. 2 is the lower direction.
  • the assembled battery 10 may be used so that the upper direction in FIG. 2 is the horizontal direction.
  • the assembled battery 10 may be used so that the upward direction in FIG. 2 is the other direction.
  • the housing 11 accommodates a plurality of metal case type secondary cells 14 shown in FIGS. 3, 4 and 5.
  • the plurality of metal case type secondary cells 14 are accommodated in the housing 11 in a state of being stacked in the X direction.
  • the metal case type secondary cell 14 is, for example, a lithium ion battery (lithium ion cell).
  • the type of the metal case type secondary cell 14 is not limited to this.
  • the housing 11 houses a battery management device (BMS: Battery Management System) that manages the plurality of metal case type secondary cells 14.
  • BMS Battery Management System
  • the battery management device is disposed on the X + direction side of the plurality of metal case type secondary cells 14.
  • the housing 11 that accommodates the plurality of metal case-type secondary cells 14 has a plurality of vent holes 11a on both sides in the Z direction. Therefore, the heat generated by charging / discharging of the metal case type secondary cell 14 is easily released to the outside of the housing 11.
  • the plurality of metal case type secondary cells 14 have the same shape and size.
  • the plurality of metal case type secondary cells 14 have the same internal structure. However, the directions of the two metal case-type secondary cells 14 adjacent in the X direction differ by 180 ° around the axis in the X direction.
  • the metal case type secondary cell 14 has a rectangular flat plate shape (flat board shape) as a whole.
  • the length of the metal case type secondary cell 14 in the Y direction is larger than the length of the metal case type secondary cell 14 in the Z direction.
  • the length of the metal case type secondary cell 14 in the X direction is smaller than the length of the metal case type secondary cell 14 in the Z direction.
  • the thickness direction of the metal case type secondary cell 14 is the X direction.
  • the metal case type secondary cell 14 includes a metal case 141, an inner case 142, an insulating cap portion 143, and a pair of electrode sheets 146, 147 (FIGS. 8 and 9). 9) and a pair of cell terminals 144 and 145.
  • the insulating cap part 143 has a pair of insulating caps 143A and 143B.
  • the cell terminal 144 includes a lead tab 1441 and an external terminal 1442.
  • the cell terminal 145 has a lead tab 1451 and an external terminal 1452.
  • the display of the metal case component 1412, the half of the insulating cap 143, and the half of the pair of external terminals 1442 and 1452 is omitted.
  • the metal case 141 constitutes most of the outer shape of the metal case type secondary cell 14.
  • the metal case 141 has openings at both ends in the Y direction.
  • the metal case 141 has a rectangular cylindrical shape.
  • the length of the metal case 141 in the Y direction is larger than the length of the metal case 141 in the Z direction.
  • the length (thickness) of the metal case 141 in the X direction is smaller than the length of the metal case 141 in the Z direction.
  • the metal case 141 has plane symmetry with respect to a plane perpendicular to the Y direction.
  • the end of the metal case 141 in the Y + direction is plane-symmetric with the end of the metal case 141 in the Y ⁇ direction with respect to a plane perpendicular to the Y direction. Further, the metal case 141 has plane symmetry with respect to a plane perpendicular to the Z direction.
  • the metal case 141 is made of a metal material.
  • the metal material is not particularly limited.
  • the metal material is, for example, an aluminum alloy.
  • the metal case 141 has a metal case component 1411 and a metal case component 1412.
  • the metal case component 1412 is attached to the metal case component 1411 so as to be laminated with the metal case component 1411 in the X direction.
  • the metal case component 1411 includes a main plate portion 14111 and a pair of side plate portions 14112 and 14112.
  • the metal case part 1411 is composed of one part. That is, the main plate portion 14111 and the pair of side plate portions 14112 and 14112 are integrally formed.
  • the main plate portion 14111 has a rectangular flat plate shape.
  • the main plate portion 14111 is disposed along a direction perpendicular to the X direction.
  • the thickness direction of the main plate portion 14111 is the X direction. That is, the length (thickness) of the main plate portion 14111 in the X direction is smaller than the length of the main plate portion 14111 in the Y direction and the length in the Z direction.
  • the length (thickness) in the X direction of the main plate portion 14111 is smaller than the length in the Y direction and the length in the Z direction of the main plate portion 14111.
  • the main plate portion 14111 has a surface 14111a facing the X + direction.
  • the surface 14111a is perpendicular to the X direction.
  • the surface 14111a constitutes a part of the inner surface of the metal case 141.
  • the surface 14111a is referred to as an inner surface 14111a.
  • the inner surface 14111a is an example of the first inner surface 141a according to the embodiment of the present invention.
  • the pair of side plate portions 14112 and 14112 are connected to both ends of the main plate portion 14111 in the Z direction. That is, one side plate portion 14112 and the other side plate portion 14112 are separated in the Z direction.
  • the pair of side plate portions 14112 and 14112 protrudes from the main plate portion 14111 in the X + direction.
  • Each side plate portion 14112 has a rectangular flat plate shape that is long in the Y direction.
  • Each side plate portion 14112 is disposed along a direction perpendicular to the Z direction.
  • the thickness direction of each side plate portion 14112 is the Z direction.
  • each side plate portion 14112 is smaller than the length in the X direction and the length in the Y direction of the side plate portion 14112.
  • the pair of side plate portions 14112 and 14112 are arranged in parallel to each other.
  • the metal case component 1412 includes a main plate portion 14121 and a pair of side plate portions 14122 and 14122.
  • the metal case part 1412 is composed of one part. That is, the main plate portion 14121 and the pair of side plate portions 14122 and 14122 are integrally formed.
  • the main plate portion 14121 has a rectangular flat plate shape as a whole.
  • the main plate portion 14121 is disposed along a direction perpendicular to the X direction.
  • the thickness direction of the main plate portion 14121 is the X direction. That is, the length (thickness) of the main plate portion 14121 in the X direction is smaller than the length of the main plate portion 14121 in the Y direction and the length in the Z direction.
  • the main plate portion 14121 has a surface 14121a facing the X-direction.
  • the surface 14121a is perpendicular to the X direction.
  • the surface 14121a constitutes a part of the inner surface of the metal case 141.
  • the surface 14121a is referred to as an inner surface 14121a.
  • the inner surface 14121a faces the inner surface 14111a of the main plate portion 14111 in the X direction.
  • the inner surface 14121a corresponds to the second inner surface of the present invention.
  • the main plate portion 14121 has notches 14121b at both ends in the Y direction.
  • Each notch 14121b has a rectangular shape.
  • Each notch 14121b is formed at the center of the main plate portion 14121 in the X direction.
  • the pair of side plate portions 14122 and 14122 are connected to both ends of the main plate portion 14121 in the Z direction. That is, one side plate portion 14122 and the other side plate portion 14122 are separated in the Z direction.
  • the pair of side plate portions 14122 and 14122 protrudes from the main plate portion 14121 in the X-direction. In other words, the pair of side plate portions 14122 and 14122 protrudes toward the main plate portion 14111 of the metal case component 1411 (see FIG. 7).
  • Each side plate portion 14122 has a rectangular plate shape elongated in the Z direction.
  • Each side plate portion 14122 is arranged along a direction perpendicular to the Z direction.
  • the thickness direction of each side plate portion 14122 is the Z direction.
  • each side plate portion 14122 is smaller than the length in the X direction and the length in the Y direction of the side plate portion 14122.
  • the pair of side plate portions 14122 and 14122 are arranged in parallel to each other.
  • the length in the X direction of each side plate portion 14122 is smaller than the length in the X direction of each side plate portion 14112 of the metal case component 1411.
  • one side plate portion 14122 of the metal case component 1412 is laminated with a part of one side plate portion 14112 of the metal case component 1411 in the Z direction.
  • the other side plate portion 14122 of the metal case component 1412 is laminated with a part of the other side plate portion 14112 of the metal case component 1411 in the Z direction.
  • the pair of side plate portions 14122 and 14122 are disposed outside the pair of side plate portions 14112 and 14112.
  • the pair of insulating caps 143A and 143B are installed at openings at both ends of the metal case 141 in the Y direction.
  • the insulating cap 143A and the insulating cap 143B have the same shape and size.
  • the insulating cap 143A is plane-symmetric with the insulating cap 143B with respect to a plane perpendicular to the Y direction.
  • the insulating cap 143A and the insulating cap 143B each have a plane symmetry with respect to a plane perpendicular to the Z direction.
  • the maximum length of the insulating cap 143A in the Z direction is larger than the maximum length of the insulating cap 143A in the Y direction.
  • the maximum length of the insulating cap 143A in the X direction is smaller than the maximum length of the insulating cap 143A in the Y direction.
  • the maximum length of the insulating cap 143A in the Z direction is substantially the same as the length of the metal case 141 in the Z direction.
  • the maximum length of the insulating cap 143 ⁇ / b> A in the X direction is substantially the same as the length (thickness) of the metal case 141 in the X direction.
  • the length of the insulating cap 143 ⁇ / b> A in the Y direction is significantly smaller than the length of the metal case 141 in the Y direction.
  • the insulating cap 143A has an insulating cap body 1431A and an insulating cover 1432A.
  • the insulating cap 143B includes an insulating cap main body 1431B and an insulating cover 1432B.
  • the insulating cap body 1431A, the insulating cap body 1431B, the insulating cover 1432A, and the insulating cover 1432B are made of an insulating material.
  • the insulating material is, for example, a synthetic resin.
  • the insulating cap body 1431A and the insulating cap body 1431B are formed of the same insulating material.
  • the insulating cover 1432A and the insulating cover 1432B are formed of the same insulating material.
  • the insulating material forming the insulating cap main body 1431A and the insulating cap main body 1431B may be the same as or different from the insulating material forming the insulating cover 1432A and the insulating cover 1432B.
  • the maximum length in the Z direction of the insulating cap body 1431A is larger than the maximum length in the Y direction of the insulating cap body 1431A.
  • the maximum length in the X direction of the insulating cap body 1431A is smaller than the maximum length in the Y direction of the insulating cap body 1431A.
  • the maximum length in the Z direction of the insulating cap body 1431 ⁇ / b> A is substantially the same as the length of the metal case 141 in the Z direction.
  • the maximum length in the X direction of the insulating cap main body 1431A is substantially the same as the length (thickness) of the metal case 141 in the X direction.
  • the length of the insulating cap 143 ⁇ / b> A in the Y direction is significantly smaller than the length of the metal case 141 in the Y direction.
  • the insulating cap main body 1431A has a thin portion 14311 and a pair of thick portions 14312 and 14312.
  • the insulating cap body 1431A is composed of one component. That is, the thin portion 14311 and the pair of thick portions 14312 and 14312 are integrally formed.
  • the thin portion 14311 has a substantially rectangular plate shape.
  • the thin portion 14311 is disposed along a direction perpendicular to the X direction.
  • the thickness direction of the thin portion 14311 is the X direction. That is, the length (thickness) in the X direction of the thin portion 14311 is smaller than the length in the Y direction and the length in the Z direction of the thin portion 14311.
  • the thin portion 14311 has a surface 14311a facing the X + direction.
  • the surface 14311a is perpendicular to the X direction.
  • the pair of thick portions 14312 and 14312 are connected to both ends of the thin portion 14311 in the Z direction.
  • the length (thickness) in the X direction of the thick portion 14312 is larger than the length (thickness) in the X direction of the thin portion 14311.
  • Each thick portion 14312 has a surface 14312a facing the X + direction.
  • Each surface 14312a is not one flat surface.
  • Each surface 14312a includes a plurality of surfaces.
  • Each surface 14312a is separated from the surface 14311a of the thin portion 14311 in the X + direction.
  • the boundary between the pair of surfaces 14312a and 14312a included in the pair of thick portions 14312 and 14312 and the surface 14311a of the thin portion 14311 is stepped. As shown in FIG. 13, the boundary between the surface facing the X-direction of the pair of thick portions 14312 and 14312 and the surface facing the X-direction of the thin portion 14311 is not stepped.
  • each thick portion 14312 has a convex portion 14312c on the surface 14312a. That is, the insulating cap part 143 has a pair of convex parts 14312c on the insulating cap main body 1431A. Each convex portion 14312c protrudes in the X + direction. Each convex part 14312c is cylindrical.
  • the thick portion 14312 has a recess 14312d on the surface facing the X-direction.
  • the recess 14312d has a circular shape when viewed from the X-direction.
  • the concave portion 14312d is at a position overlapping the convex portion 14312c when viewed in the X direction.
  • the size of the concave portion 14312d is substantially the same as or slightly larger than the size of the convex portion 14312c.
  • the length (depth) of the concave portion 14312d in the X direction is smaller than the length of the convex portion 14312c in the X direction.
  • each thick portion 14312 has a through-hole 14312e that penetrates the thick portion 14312 in the X direction. That is, the insulating cap part 143 has a pair of through holes 14312e in the insulating cap main body 1431A. Each through hole 14312e passes through the center of the convex portion 14312c and the concave portion 14312d.
  • each thick part 14312 has a locking part 14312b. That is, the insulating cap body 1431A has a pair of locking portions 14312b and 14312b.
  • the pair of locking portions 14312b and 14312b are formed on the surfaces of the pair of thick portions 14312 and 14312 facing in the Z direction.
  • One locking portion 14312b protrudes in the Z direction toward the other locking portion 14312b.
  • Each locking portion 14312b is formed at the end of each thick portion 14312 in the X + direction.
  • the insulating cap body 1431A is attached to the metal case part 1411 and the metal case part 1412.
  • the insulating cap body 1431A is screwed to the metal case component 1411 using the screws 24 shown in FIG.
  • the specific procedure for screwing is as follows.
  • a part of the insulating cap main body 1431A is overlapped in the X direction with respect to the Y-direction end portion of the main plate portion 14111 of the metal case component 1411 (see FIG. 9).
  • a part of the thin part 14311 of the insulating cap body 1431A and a part of the pair of thick parts 14312 and 14312 are in contact with the end part in the Y-direction of the inner surface 14111a of the metal case component 1411.
  • the pair of thick portions 14312 and 14312 of the insulating cap body 1431A are screwed to the main plate portion 14111 of the metal case component 1411 using the screws 24 shown in FIG.
  • the insulating cap main body 1431A is screwed to the metal case component 1412 using the screws 25 shown in FIG.
  • the specific procedure for screwing is as follows.
  • a part of the insulating cap body 1431A is overlapped in the X direction with respect to one end portion in the Y-direction of the main plate portion 14121 of the metal case component 1412 (see FIG. 9).
  • a part of the pair of thick portions 14312 and 14312 of the insulating cap body 1431A comes into contact with the Y-direction end of the inner surface 14121a of the metal case component 1412.
  • the thin portion 14311 of the insulating cap body 1431A does not contact the metal case component 1412.
  • the pair of thick portions 14312 and 14312 of the insulating cap main body 1431A are screwed to the main plate portion 14121 of the metal case component 1412 using the screws 25 shown in FIG.
  • the insulating cap body 1431B is also attached to the metal case part 1411 and the metal case part 1412. Similar to the insulating cap main body 1431A, the insulating cap main body 1431B is screwed to the metal case component 1411 and the metal case component 1412 using the screw 24 and the screw 25 shown in FIG.
  • the maximum length of the insulating cover 1432A in the Z direction is larger than the maximum length of the insulating cover 1432A in the Y direction.
  • the maximum length in the X direction of the insulating cover 1432A is smaller than the maximum length in the Y direction of the insulating cover 1432A.
  • the maximum length of the insulating cover 1432A in the Z direction is smaller than the maximum length of the insulating cap body 1431A in the Z direction.
  • the maximum length in the X direction of the insulating cover 1432A is slightly smaller than the maximum length in the X direction of the insulating cap main body 1431A.
  • the maximum length in the Y direction of the insulating cover 1432A is larger than the maximum length in the Y direction of the insulating cap body 1431A.
  • the maximum length of the insulating cover 1432A in the Y direction is significantly smaller than the length of the metal case 141 in the Y direction.
  • the insulating cover 1432A has a main plate portion 14321 and a pair of side plate portions 14322 and 14322.
  • the insulating cover 1432A is composed of one component. That is, the main plate portion 14321 and the pair of side plate portions 14322 and 14322 are integrally formed.
  • the main plate portion 14321 has a rectangular flat plate shape.
  • the main plate portion 14321 is disposed along a direction perpendicular to the X direction.
  • the thickness direction of the main plate portion 14321 is the X direction. That is, the length (thickness) in the X direction of the main plate portion 14321 is smaller than the length in the Y direction and the length X direction in the Z direction of the main plate portion 14321.
  • the length of the main plate portion 14321 in the Z direction is larger than the length of the main plate portion 14321 in the Y direction. As shown in FIGS.
  • the length in the Z direction of the main plate portion 14321 is the same as or substantially the same as the length in the Z direction of the notch 14121b of the metal case component 1412.
  • the length in the Y direction of the main plate portion 14321 is larger than the length in the Y direction of the notch 14121b of the metal case component 1412.
  • the pair of side plate portions 14322 and 14322 are connected to both ends of the main plate portion 14321 in the Z direction. That is, one side plate portion 14322 and the other side plate portion 14322 are separated in the Z direction.
  • the pair of side plate portions 14322 and 14322 protrudes from the main plate portion 14321 in the X-direction. In other words, the pair of side plate portions 14322 and 14322 protrudes toward the thin portion 14311 of the insulating cap main body 1431A (see FIG. 7).
  • Each side plate portion 14322 has a locking piece 14322a. That is, the insulating cover 1432A has a pair of locking pieces 14322a and 14322a.
  • Each locking piece 14322a is at the center of the side plate portion 14322 in the Y direction.
  • Each locking piece 14322a is formed so as to be elastically deformable by a force in the Z direction.
  • Each side plate portion 14322 has a locking claw 14322b at the tip of the locking piece 14322a in the protruding direction (X-direction). That is, the insulating cover 1432A has a pair of locking claws 14322b and 14322b.
  • a part of the insulating cover 1432A is disposed between the pair of thick portions 14312 and 14312 of the insulating cap body 1431A.
  • the insulating cover 1432A is attached to the insulating cap body 1431A.
  • the insulating cover 1432A is attached to the insulating cap body 1431A without using a fixing component such as a screw. Specifically, the insulating cover 1432A is pressed in the X direction and is fitted between the pair of thick portions 14312 and 14312 of the insulating cap body 1431A. When fitted, the pair of locking pieces 14322a and 14322a of the insulating cover 1432A is elastically deformed.
  • the pair of locking claws 14322b and 14322b of the insulating cover 1432A are hooked on the pair of locking portions 14312b and 14312b of the insulating cap body 1431A.
  • the insulating cover 1432A is not easily detached from the insulating cap body 1431A.
  • a part of the insulating cover 1432A is disposed inside a notch 14121b formed at the end of the main plate portion 14121 of the metal case component 1412 in the Y-direction.
  • a part of the insulating cover 1432B is disposed between the pair of thick portions 14312 and 14312 of the insulating cap body 1431B. Similar to the insulating cover 1432A, the insulating cover 1432B is attached to the insulating cap body 1431B. Similar to the insulating cover 1432A, a part of the insulating cover 1432B is disposed inside a notch 14121b formed at the end of the main plate portion 14121 of the metal case component 1412 in the Y + direction.
  • the inner case 142 is disposed inside the metal case 141.
  • the inner case 142 is formed of a flexible film.
  • the film is made of a synthetic resin.
  • the film has a property of not allowing liquid to permeate. Since the inner case 142 is formed of a flexible film, the volume can be changed according to the pressure from the inner side.
  • the inner case 142 is less rigid than the metal case 141.
  • the inner case 142 accommodates a pair of electrode sheets 146 and 147 and three separators 148A, 148B and 148C. Further, the inner case 142 accommodates a part of the pair of lead tabs 1441 and 1451. The pair of lead tabs 1441 and 1451 are connected to the pair of electrode sheets 146 and 147. A part of the pair of lead tabs 1441 and 1451 is disposed outside the inner case 142.
  • the inner case 142 has a sealing property with a pair of lead tabs 1441 and 1451 penetrating therethrough. An electrolyte 149 is sealed in the inner case 142.
  • the inner case 142 is in surface contact with the inner surface 14111a of the metal case component 1411 in the X direction. In a state where the inner case 142 is in surface contact with the inner surface 14111a, the inner case 142 is separated from the inner surface 14121a of the metal case component 1412 in the X direction (X + direction).
  • the negative electrode sheet 146 and the positive electrode sheet 147 each have a rectangular sheet shape.
  • the negative electrode sheet 146 and the positive electrode sheet 147 are accommodated in the inner case 142 in a state of being laminated while being spread.
  • the negative electrode sheet 146 and the positive electrode sheet 147 are laminated in the X direction.
  • the negative electrode sheet 146 and the positive electrode sheet 147 are each along a direction perpendicular to the X direction. That is, the negative electrode sheet 146 and the positive electrode sheet 147 are arranged in parallel or substantially parallel to each other.
  • the length of the negative electrode sheet 146 in the Y direction is larger than the length of the negative electrode sheet 146 in the Z direction.
  • the length (thickness) of the negative electrode sheet 146 in the X direction is smaller than the length of the negative electrode sheet 146 in the Z direction.
  • the size of the positive electrode sheet 147 may be the same as or different from the size of the negative electrode sheet 146.
  • the length of the positive electrode sheet 147 in the Y direction is larger than the length of the positive electrode sheet 147 in the Z direction.
  • the length (thickness) of the positive electrode sheet 147 in the X direction is smaller than the length of the positive electrode sheet 147 in the Z direction.
  • the positive electrode sheet 147 includes a current collector and a positive electrode film covering the current collector.
  • the current collector is formed of a metal material containing aluminum.
  • the positive electrode film includes a positive electrode active material and a binder.
  • the binder is, for example, polyvinylidene fluoride.
  • the positive electrode active material includes a composite oxide of lithium and a transition metal.
  • the positive electrode active material includes lithium cobalt oxide, lithium manganate, lithium iron phosphate, an oxide containing lithium, nickel, manganese, and cobalt, and an oxide containing lithium, nickel, cobalt, and aluminum. Any one of them may be included.
  • the positive electrode sheet 147 may have a configuration other than the above as long as it can be used for the secondary cell.
  • the negative electrode sheet 146 includes a current collector and a negative electrode film that covers the current collector.
  • the current collector is made of a metal material containing copper.
  • the negative electrode film includes a negative electrode active material and a binder.
  • the binder is, for example, polyvinylidene fluoride.
  • the negative electrode active material includes, for example, carbon.
  • the negative electrode active material may include at least one of graphite, soft carbon, and hard carbon.
  • the negative electrode active material may not contain carbon. In this case, the negative electrode active material may contain, for example, lithium titanate.
  • the negative electrode sheet 146 may have a configuration other than the above as long as it can be used for the secondary cell.
  • the electrolyte 149 is an electrolytic solution.
  • the electrolytic solution is, for example, an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent.
  • the organic solvent is, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate.
  • the lithium salt include lithium hexafluorophosphate, lithium borofluoride, and lithium perchlorate.
  • the electrolyte 149 may be gelled by adding a polymer to the organic electrolytic solution. Examples of the polymer include polyethylene oxide, polypropylene oxide, and polyvinylidene fluoride.
  • Each of the separators 148A, 148B, 148C has a rectangular sheet shape.
  • Separator 148A, 148B, 148C has the same shape and size.
  • the separators 148A, 148B, and 148C are along the direction perpendicular to the X direction.
  • the separators 148A, 148B, 148C and the pair of electrode sheets 146, 147 are arranged in parallel or substantially in parallel.
  • the separator 148 ⁇ / b> A is disposed between the negative electrode sheet 146 and the metal case component 1412.
  • the separator 148 ⁇ / b> B is disposed between the negative electrode sheet 146 and the positive electrode sheet 147.
  • the separator 148 ⁇ / b> C is disposed between the positive electrode sheet 147 and the metal case component 1411.
  • the separators 148A, 148B, and 148C overlap the entire negative electrode sheet 146, respectively.
  • the separators 148A, 148B, and 148C overlap the entire positive electrode sheet 147, respectively.
  • Separator 148A and separator 148C may be omitted.
  • the separators 148A, 148B, 148C are formed of the same material.
  • the separators 148A, 148B, 148C are made of, for example, polypropylene.
  • the structures of the separators 148A, 148B, and 148C are structures that can hold a liquid.
  • the structure of the separators 148A, 148B, and 148C is, for example, a porous structure having a plurality of fine holes.
  • the liquid electrolyte 149 is immersed in the separators 148A, 148B, and 148C.
  • the negative electrode sheet 146 may be in contact with the electrolyte 149 by being in contact with the separator 148B or / and the separator 148C.
  • the negative electrode sheet 146 may be in contact with the electrolyte 149 present in the gap between the separator 148B and the negative electrode sheet 146 and / or the gap between the separator 148C and the negative electrode sheet 146.
  • the positive electrode sheet 147 may be in contact with the electrolyte 149 by being in contact with the separator 148A or / and the separator 148B.
  • the positive electrode sheet 147 may be in contact with the electrolyte 149 present in the gap between the separator 148A and the positive electrode sheet 147 or / and the gap between the separator 148B and the positive electrode sheet 147.
  • the pair of electrode sheets 146 and 147 are in contact with the electrolyte 149.
  • the pair of cell terminals 144 and 145 are disposed on both sides of the pair of electrode sheets 146 and 147 in the Y direction.
  • the cell terminal 144 is electrically connected to the negative electrode sheet 146
  • the cell terminal 145 is electrically connected to the positive electrode sheet 147.
  • the cell terminal 144 has the lead tab 1441 and the external terminal 1442
  • the cell terminal 145 has the lead tab 1451 and the external terminal 1452.
  • the pair of lead tabs 1441, 1451 are connected to both ends of the pair of electrode sheets 146, 147 in the Y direction.
  • the lead tabs 1441 and 1451 have a rectangular sheet shape.
  • the pair of lead tabs 1441 and 1451 are connected to the center portion in the Z direction of the pair of electrode sheets 146 and 147 (see FIG. 8).
  • the lead tab 1441 is connected to the current collector of the negative electrode sheet 146.
  • the lead tab 1441 is formed integrally with the current collector of the negative electrode sheet 146.
  • the lead tab 1441 is formed of a metal material containing copper.
  • the lead tab 1451 is connected to the current collector of the positive electrode sheet 147.
  • the lead tab 1451 is formed integrally with the current collector of the positive electrode sheet 147.
  • the lead tab 1451 is formed of a metal material containing aluminum.
  • a part of the lead tab 1441 protrudes from the inner case 142 in the Y-direction.
  • a part of the lead tab 1441 is disposed between the pair of thick portions 14312 and 14312 of the insulating cap body 1431A.
  • a part of the lead tab 1441 overlaps the thin portion 14311 of the insulating cap body 1431A.
  • a part of the lead tab 1451 protrudes from the inner case 142 in the Y + direction. That is, a part of the lead tab 1451 protrudes in a direction opposite to the direction in which a part of the lead tab 1441 protrudes from the inner case 142.
  • a part of the lead tab 1451 is disposed between the pair of thick portions 14312 and 14312 of the insulating cap body 1431B. When viewed in the X direction, a part of the lead tab 1451 overlaps the thin portion 14311 of the insulating cap body 1431B.
  • the pair of external terminals 1442 and 1452 is disposed outside the inner case 142.
  • the pair of external terminals 1442 and 1452 are installed on the insulating cap portion 143. More specifically, the pair of external terminals 1442 and 1452 are installed on the pair of insulating cap bodies 1431A and 1431B.
  • the external terminal 1442 constitutes a part of the end surface in the Y-direction of the metal case type secondary cell 14, and the external terminal 1452 constitutes a part of the end face in the Y + direction of the metal case type secondary cell 14.
  • Openings at both ends in the Y direction of the metal case 141 are closed by a pair of insulating caps 143A and 143B and a pair of external terminals 1442 and 1452.
  • the metal case 141 may not be able to ensure as high a sealing property as the inner case 142.
  • the space inside the metal case 141 and outside the inner case 142 may allow air to communicate with the space outside the metal case 141.
  • External terminal 1442 is connected to lead tab 1441.
  • the external terminal 1442 is a separate member from the lead tab 1441.
  • the external terminal 1452 is connected to the lead tab 1451.
  • the external terminal 1452 is a separate member from the lead tab 1451.
  • External terminal 1442 and external terminal 1452 are each formed of a metal material.
  • External terminal 1442 is formed of a metal material containing copper.
  • the external terminal 1452 is formed of a metal material containing aluminum.
  • External terminal 1442 and external terminal 1452 have the same shape and size. Hereinafter, the external terminal 1442 will be described, and the description of the external terminal 1452 will be omitted.
  • the external terminal 1442 is L-shaped when viewed in the Z + direction.
  • the external terminal 1442 includes an intermediate connection portion 14421 and an external connection portion 14422.
  • the external terminal 1442 is composed of one component. That is, the intermediate connection portion 14421 and the external connection portion 14422 are integrally formed.
  • the intermediate connection portion 14421 has a rectangular flat plate shape.
  • the intermediate connection portion 14421 is disposed along a direction perpendicular to the X direction.
  • the thickness direction of the intermediate connection portion 14421 is the X direction. That is, the length (thickness) of the intermediate connection portion 14421 in the X direction is smaller than the length of the intermediate connection portion 14421 in the Y direction and the length in the Z direction.
  • the external connection portion 14422 is connected to the Y-direction end of the intermediate connection portion 14421.
  • the length of the external connection portion 14422 in the Z direction is larger than the length of the intermediate connection portion 14421 in the Z direction.
  • the intermediate connection portion 14421 is connected to the center portion in the Z direction of the external connection portion 14422.
  • the intermediate connection portion 14421 is connected to the X-direction end of the external connection portion 14422.
  • the external connection portion 14422 has a rectangular flat plate shape.
  • the external connection portion 14422 is disposed along a direction perpendicular to the Y direction.
  • the thickness direction of the external connection portion 14422 is the Y direction. That is, the length (thickness) of the external connection portion 14422 in the Y direction is smaller than the length of the external connection portion 14422 in the X direction and the length in the Z direction.
  • the external connection portion 14422 has a surface 14422a facing the Y-direction. That is, the surface 14422a faces a direction perpendicular to the stacking direction (X direction) of the pair of electrode sheets 146 and 147.
  • the surface 14422a is referred to as a connection surface 14422a.
  • the connection surface 14422a is perpendicular to the Y direction.
  • the connection surface 14422a is an example of the connection surface 144a according to the embodiment of the present invention.
  • the length of the intermediate connecting portion 14421 in the Z direction is the same as or substantially the same as the length of the lead tab 1441 in the Z direction.
  • the length of the external connection portion 14422 in the Z direction is smaller than the maximum length of the insulating cap body 1431A in the Z direction.
  • the length of the external connection portion 14422 in the X direction is smaller than the maximum length of the insulating cap body 1431A in the X direction.
  • the external terminal 1442 is installed on the insulating cap body 1431A.
  • the intermediate connection portion 14421 is disposed between the pair of thick portions 14312 and 14312 of the insulating cap main body 1431 ⁇ / b> A and contacts the surface 14311 a of the thin portion 14311.
  • the external connection portion 14422 contacts the surface of the pair of thick portions 14312 and 14312 of the insulating cap main body 1431A facing in the Y-direction.
  • a connection surface 14422 a of the external connection portion 14422 is exposed to the outside of the metal case 141.
  • the connection surface 14422a of the external connection portion 14422 is disposed at the end of the metal case type secondary cell 14 in the Y direction (Y-direction).
  • External terminal 1442 is attached to insulating cap body 1431A.
  • the external terminal 1442 is screwed to the insulating cap body 1431A using the screw 26 shown in FIG.
  • the specific procedure for screwing is as follows.
  • the intermediate connection portion 14421 of the external terminal 1442 is inserted in the Y direction between the pair of thick portions 14312 and 14312 of the insulating cap body 1431A (see FIG. 9).
  • the external terminal 1442 is inserted until the external connection portion 14422 contacts the pair of thick portions 14312 and 14312. Then, the external connection portion 14422 of the external connection portion 14422 is screwed to the pair of thick portions 14312 and 14312 of the insulating cap body 1431A using the screw 26 shown in FIG.
  • the intermediate connection portion 14421 of the external terminal 1442 is in surface contact with a part of the lead tab 1441 in the X direction.
  • An intermediate connection portion 14421 of the external terminal 1442 is connected to the lead tab 1441. Specifically, it is bonded by welding.
  • the external terminal 1452 has an intermediate connection portion 14521 and an external connection portion 14522. Similar to the external connection portion 14422, the external connection portion 14522 has a connection surface 14522a. Similar to the connection surface 14422a, the connection surface 14522a is exposed to the outside of the metal case 141. The connection surface 14522a is disposed at the end of the metal case type secondary cell 14 in the Y direction (Y + direction). The connection surface 14522a is an example of the connection surface 145a according to the embodiment of the present invention.
  • the external terminal 1452 is screwed to the insulating cap body 1431B using the screw 26 shown in FIG. Similar to the external terminal 1442, the intermediate connection portion 14521 of the external terminal 1452 is connected to the lead tab 1451.
  • the insulating cap part 143 included in one of the two metal case type secondary cells 14 adjacent in the X direction is in contact with the insulating cap part 143 included in the other in the X direction.
  • the insulating cap 143A included in one of the two metal case-type secondary cells 14 adjacent in the X direction is in contact with the insulating cap 143B included in the other in the X direction. This applies to any two metal case type secondary cells 14 adjacent in the X direction among the plurality of metal case type secondary cells 14.
  • At least one convex portion 14312c included in one of two insulating cap portions 143 adjacent in the X direction is fitted into at least one concave portion 14312d included in the other.
  • Four convex portions 14312c included in one of the two insulating cap portions 143 adjacent in the X direction are fitted into four concave portions 14312d included in the other insulating cap portion 143.
  • the pair of convex portions 14312c and 14312c included in the insulating cap 143A is fitted into the pair of concave portions 14312d and 14312d included in the insulating cap 143B adjacent to the insulating cap 143A in the X direction.
  • the plurality of metal case-type secondary cells 14 is displaced in the Y direction and the Z direction.
  • the length (depth) of the concave portion 14312d in the X direction is smaller than the length of the convex portion 14312c in the X direction. Therefore, the contact portions of the two insulating cap portions 143 adjacent in the X direction are only the four convex portions 14312c and the four concave portions 14312d.
  • a bolt 16 (shaft member) is inserted into at least one through-hole 14312e formed in the insulating cap portion 143 included in each of the plurality of metal case type secondary cells 14.
  • the through hole 14312e is formed at a position passing through the convex portion 14312c and the concave portion 14312d.
  • bolts 16 are respectively inserted into four through holes 14312 e formed in the insulating cap portion 143 included in each of the plurality of metal case type secondary cells 14. .
  • a nut 18 is attached to the tip of each bolt 16.
  • the plurality of metal case type secondary cells 14 are fixed. Therefore, a plurality of metal case type secondary cells 14 can be handled integrally.
  • the metal case 141 included in one of the two metal case-type secondary cells 14 adjacent in the X direction is separated from the metal case 141 included in the other in the X direction. Yes.
  • the multiple metal case type secondary cells 14 are electrically connected in series. Details will be described below. As shown in FIG. 3, among the plurality of metal case type secondary cells 14, the insulating cap main body 1431A of the metal case type secondary cell 14 disposed at the end in the X + direction is on the Y-direction side. Accordingly, among the plurality of metal case type secondary cells 14, the cell terminal 144 of the metal case type secondary cell 14 disposed at the end in the X + direction is also on the Y-direction side. Among the plurality of metal case type secondary cells 14, the cell terminals 144 of the metal case type secondary cells 14 arranged at the end in the X + direction are electrically connected to the bus bar 19.
  • the bus bar 19 is in contact with the connection surface 14422a of the cell terminal 144.
  • the connection surface 14422a faces the Y-direction.
  • the bus bar 19 is attached to the external terminal 1442 using a screw 26 that attaches the external terminal 1442 to the insulating cap body 1431A.
  • the bus bar 19 is formed of a metal material containing copper.
  • the bus bar 19 has an L-shaped plate shape when viewed in the Z direction.
  • the bus bar 19 has a busbar connection portion 19a protruding in the Y-direction.
  • the bus connection part 19 a is connected to the negative electrode bus 22.
  • the bus bar connecting portion 19a is bonded to the negative electrode bus bar 22 by welding, for example.
  • the negative electrode bus 22 is electrically connected to the assembled battery terminal 12.
  • the insulating cap body 1431B of the metal case type secondary cell 14 disposed at the end in the X-direction is on the Y + direction side. Therefore, among the plurality of metal case type secondary cells 14, the cell terminal 145 of the metal case type secondary cell 14 disposed at the end in the X-direction is also on the Y + direction side.
  • the cell terminals 145 of the metal case type secondary cells 14 arranged at the end in the X-direction are electrically connected to the bus bar 21.
  • the bus bar 21 is in contact with the connection surface 14522a of the cell terminal 145.
  • the connection surface 14522a faces the Y + direction.
  • the bus bar 21 is attached to the external terminal 1452 using a screw 26 that attaches the external terminal 1452 to the insulating cap body 1431B.
  • Bus bar 21 is formed of a metal material containing aluminum.
  • the bus bar 21 has an L-shaped plate shape when viewed in the Z direction.
  • the bus bar 21 has a busbar connection portion 21a protruding in the Y + direction.
  • the bus connection part 21 a is connected to the positive electrode bus 23.
  • the bus bar connecting portion 21a is bonded to the positive electrode bus bar 23 by welding, for example.
  • the positive electrode bus 23 is electrically connected to the assembled battery terminal 13.
  • the cell terminals 144 other than the cell terminals 144 connected to the bus bar 19 are respectively It is electrically connected to the bus bar 20.
  • the cell terminals 145 other than the cell terminals 145 connected to the bus bar 21 are electrically connected to the bus bar 20.
  • Each bus bar 20 is connected to a cell terminal 144 included in one of the two metal case-type secondary cells 14 adjacent in the X direction and a cell terminal 145 included in the other.
  • Each bus bar 20 is in contact with the connection surface 14422a of the cell terminal 144 included in one of the two metal case-type secondary cells 14 adjacent in the X direction and the connection surface 14522a of the cell terminal 145 included in the other.
  • the plurality of metal case type secondary cells 14 are electrically connected in series by a bus bar 20.
  • the plurality of bus bars 20 have the same shape and size. Each bus bar 20 has a rectangular flat plate shape. Each bus bar 20 is attached to the external terminal 1442 using a screw 26 for attaching the external terminal 1442 to the insulating cap main body 1431A. Each bus bar 20 is attached to the external terminal 1452 using a screw 26 for attaching the external terminal 1452 to the insulating cap body 1431B.
  • the plurality of bus bars 20 are formed of the same material.
  • the material of each bus bar 20 is different between a portion connected to the connection surface 14422 a of the external terminal 1442 and a portion connected to the connection surface 14522 a of the external terminal 1452.
  • a portion of the bus bar 20 that is connected to the connection surface 14422a of the external terminal 1442 is formed of a metal material containing copper.
  • a portion of the bus bar 20 that is connected to the connection surface 14522a of the external terminal 1452 is formed of a metal material containing aluminum.
  • the inner case 142 is in surface contact with the inner surface 14111a of the metal case 141. On the other hand, the inner case 142 is separated from the inner surface 14121a facing the inner surface 14121a of the metal case 141. Since there is a gap between the inner case 142 and the inner surface 14121a of the metal case 141, expansion of the inner case 142 due to charging / discharging of the metal case type secondary cell 14 can be allowed. Expansion of the inner case 142 is allowed, for example, up to about 10% of the volume of the initial inner case 142.
  • the metal case 141 included in one of the two metal case type secondary cells 14 adjacent in the X direction is separated from the metal case 141 included in the other in the X direction.
  • the charging / discharging of the metal case-type secondary cell 14 is performed. This makes it easier to release the heat generated by. As a result, the temperature rise caused by charging / discharging the assembled battery 10 with a large current can be further suppressed.
  • the insulating cap part 143 included in one of the two metal case-type secondary cells 14 adjacent in the X direction is in contact with the insulating cap part 143 included in the other in the X direction.
  • At least one convex portion 14312c included in one of the two insulating cap portions 143 adjacent in the X direction is fitted into at least one concave portion 14312d included in the other.
  • the plurality of metal case type secondary cells 14 can be prevented from being displaced in a direction perpendicular to the stacking direction (X direction) of the pair of electrode sheets 146 and 147. Therefore, the plurality of metal case type secondary cells 14 can be easily stacked in the X direction.
  • the structure which ensures a clearance gap between metal cases 141 can be implement
  • the pair of cell terminals 144 and 145 included in each of the plurality of metal case type secondary cells 14 is a pair of flat electrode sheets in a direction perpendicular to the stacking direction (X direction) of the pair of electrode sheets 146 and 147. 146 and 147 are arranged on both sides. With this configuration, the pair of cell terminals 144 and 145 is disposed on one side of the pair of flat electrode sheets 146 and 147 in the direction perpendicular to the X direction, or the pair of cell terminals 144 and 145. However, as compared with a case where a pair of electrode sheets 146 and 147 are arranged side by side in the X direction, connection parts (19 to 23) for connecting a plurality of metal case type secondary cells 14 in series or in parallel.
  • the connecting part can have a structure that does not disturb the heat dissipation of the plurality of metal case type secondary cells 14 as much as possible. As a result, the temperature rise caused by charging / discharging the assembled battery 10 with a large current can be further suppressed.
  • a pair of connection surfaces 14422a and 14522a of a pair of cell terminals 144 and 145 included in each of the plurality of metal case type secondary cells 14 is perpendicular to the stacking direction (X direction) of the pair of electrode sheets 146 and 147. Facing the direction. If the pair of connection surfaces 14422a and 14522a face the X direction, a connection component for connecting the plurality of metal case type secondary cells 14 in series is unnecessary, or the structure of this connection component is Can be simple. However, the structure of the connection component for connecting the plurality of metal case type secondary cells 14 in parallel becomes complicated.
  • connection parts 14422a and 14522a are oriented in the direction perpendicular to the X direction, a plurality of metal case-type secondary cells 14 can be connected in series or in parallel.
  • the structure of the connection parts (19 to 23) for connecting the case type secondary cell 14 can be simplified. Since the structure of the connecting part is simple, the connecting part can have a structure that does not disturb the heat dissipation of the plurality of metal case type secondary cells 14 as much as possible. As a result, the temperature rise caused by charging / discharging the assembled battery 10 with a large current can be further suppressed.
  • the pair of cell terminals 144 and 145 include a pair of lead tabs 1441 and 1451, a pair of lead tabs 1441 and 1451, and a pair of external terminals 1442 and 1452 which are separate members. Therefore, the design freedom of the pair of cell terminals 144 and 145 can be improved. Therefore, the metal case type secondary cell 14 can have a structure in which heat generated by charging and discharging is more easily released. As a result, the temperature rise caused by charging / discharging the assembled battery 10 with a large current can be further suppressed.
  • the metal case type secondary cell 14 corresponds to the flat can battery 14 of the basic application (Japanese Patent Application No. 2016-243010) of the present application.
  • the metal case 141 corresponds to a portion of the outer case 141 of the basic application excluding the insulating case portions 1413A and 1413B, the terminals 1414A and 1414B, and the covers 1415A and 1415B.
  • the metal case parts 1411 and 1412 correspond to the metal case parts 1411 and 1412 of the basic application.
  • the main plate portion 14111 and the side plate portion 14112 correspond to the flat plate 14111 and the side plate 14112 of the basic application, respectively.
  • the main plate portion 14121 and the side plate portion 14122 correspond to the flat plate 14121 and the side plate 14122 of the basic application, respectively.
  • the insulating cap bodies 1431A and 1431B correspond to the insulating case portions 1413A and 1413B of the basic application, respectively.
  • the thin portion 14311 and the thick portion 14312 correspond to the flat plate 14131 and the side portion 14132 of the basic application, respectively.
  • the insulating covers 1432A and 1432B correspond to the covers 1415A and 1415B of the basic application, respectively.
  • the main plate portion 14321 and the side plate portion 14322 correspond to the flat plate 14151 and the side portion 14152 of the basic application, respectively.
  • the external terminals 1442 and 1452 correspond to the terminals 1414A and 1414B of the basic application, respectively.
  • the intermediate connection parts 14421 and 14521 all correspond to the flat plate 14141 of the basic application, and the external connection parts 14422 and 14522 all correspond to the side wall 14142 of the basic application.
  • the electrode sheet 146 corresponds to the electrode 1421 of the basic application
  • the electrode sheet 147 corresponds to the electrode 1422 of the basic application.
  • the electrode sheet 146 is a negative electrode
  • the electrode 1421 of the basic application is a positive electrode.
  • Part of the description of the material of the negative electrode sheet 146 is described as the material of the negative electrode 1422 in the basic application
  • part of the description of the material of the positive electrode sheet 147 is described as the material of the positive electrode 1421 in the basic application.
  • FIG. 7 of the basic application is a schematic cross-sectional view of the flat can battery 14 and corresponds to FIG. 9 of the present application.
  • the cover 1415A of FIG. 7 of the basic application is displayed with a shorter length in the left-right direction on the paper surface than the insulating cover 1432A of FIG. 9 of the present application.
  • FIG. 7 of the basic application is a diagram schematically displayed, and the length of the insulating cover 1432A of the present application is not different from the length of the cover 1415A of the basic application.
  • FIG. 17 is an example in which a plurality of metal case type secondary cells 14 of a specific example of the above-described embodiment are connected in parallel.
  • the plurality of insulating caps 143 ⁇ / b> A included in the plurality of metal case type secondary cells 14 are stacked in the stacking direction of the metal case type secondary cells 14.
  • the plurality of insulating caps 143 ⁇ / b> B included in the plurality of metal case type secondary cells 14 are also stacked in the stacking direction of the metal case type secondary cells 14.
  • the insulating caps 143A of the two adjacent metal case type secondary cells 14 are in contact with each other.
  • the insulating caps 143B of the two adjacent metal case type secondary cells 14 are also in contact with each other.
  • the plurality of cell terminals 144 included in the plurality of metal case type secondary cells 14 are arranged in the stacking direction of the metal case type secondary cells 14.
  • the plurality of cell terminals 145 included in the plurality of metal case type secondary cells 14 are also arranged in the stacking direction of the metal case type secondary cells 14.
  • a plurality of cell terminals 144 included in the plurality of metal case type secondary cells 14 are connected to one bus bar 201.
  • a plurality of cell terminals 145 included in the plurality of metal case type secondary cells 14 are connected to one bus bar 202.
  • the bus bar 201 is in contact with the connection surfaces 14422a of the plurality of cell terminals 144, and the bus bar 202 is in contact with the connection surfaces 14522a of the plurality of cell terminals 145.
  • Bus bar 201 is connected to a negative bus (not shown), and bus bar 202 is connected to a positive bus (not shown).
  • the bus bars 19, 20, 21 of the specific example of the above-described embodiment and the bus bars 201, 202 shown in FIG. 17 may be protected by a protective member formed of an insulating material.
  • the protective member may be in the form of a film or plate.
  • the multiple metal case type secondary cells 14 are fixed by bolts 16 and nuts 18.
  • the means for fixing the plurality of metal case type secondary cells in a stacked state is not limited to bolts and nuts.
  • a rubber band or a shrink pack may be used.
  • the metal case included in one of the two metal case type secondary cells adjacent in the stacking direction of the pair of electrode sheets may be in contact with the metal case included in the other in the stacking direction.
  • the number of recesses of the insulating cap part included in each of the plurality of metal case type secondary cells of the present invention is not limited to four.
  • the number of recesses in each insulating cap may be 1 or more and 3 or less, or 5 or more. Note that the number of convex portions of each insulating cap is the same as the number of concave portions.
  • the insulating cap portions of two adjacent metal case-type secondary cells may be in contact with each other in addition to the concave portion and the convex portion.
  • the insulating cap part included in each of the plurality of metal case type secondary cells of the present invention may not have a concave part and a convex part.
  • the insulating cap parts of two adjacent metal case type secondary cells may be in contact with each other at a place that is not a concave part and a convex part.
  • the insulating cap parts of two adjacent metal case type secondary cells are a pair of electrodes. You may leave
  • the two insulating cap portions adjacent to each other in the stacking direction of the pair of electrode sheets may be in contact with each other via another member.
  • two metal cases adjacent in the stacking direction of the pair of electrode sheets may be in contact with each other through another member.
  • the metal case 141 includes two metal case parts 1411 and 1412.
  • the number of parts constituting the metal case of the present invention is not limited to two.
  • the number of parts constituting the metal case of the present invention may be one or three or more.
  • the parts constituting the metal case here do not include fixing parts such as screws.
  • a porous material may be disposed.
  • the porous material can be obtained, for example, by foaming a synthetic resin such as polyurethane.
  • both surfaces of the inner case may be in contact with the inner surface of the metal case in the stacking direction of the pair of electrode sheets. Both surfaces of the inner case may be in surface contact with the inner surface of the metal case.
  • the electrolyte 149 is an electrolytic solution.
  • the electrolyte in the present invention may be a solid electrolyte.
  • a separator having a solid electrolyte layer formed on both sides may be disposed between a pair of electrode sheets. Further, for example, one or both of the facing surfaces of the pair of electrode sheets may be covered with a solid electrolyte layer.
  • the lead tab 1441 is integrated with the current collector of the negative electrode sheet 146.
  • the lead tab connected to the negative electrode sheet may be a separate member from the current collector of the positive electrode sheet. This lead tab is connected to the current collector of the negative electrode sheet.
  • the lead tab 1451 is integrated with the current collector of the positive electrode sheet 147.
  • the lead tab connected to the positive electrode sheet may be a separate member from the current collector of the negative electrode sheet.
  • the lead tab is connected to the current collector of the positive electrode sheet.
  • the pair of lead tabs 1441 and 1451 are connected to the pair of external terminals 1442 and 1452 by welding.
  • the pair of lead tabs of the present invention may be connected to the pair of external terminals by mechanical connection means such as screws.
  • the cell terminal 144 is composed of two members, the lead tab 1441 and the external terminal 1442, and the cell terminal 145 is composed of two members, the lead tab 1451 and the external terminal 1452.
  • each cell terminal may be composed of one member.
  • Each cell terminal may be composed of three or more members.
  • the pair of connection surfaces included in each of the plurality of metal case type secondary cells may not face the direction perpendicular to the stacking direction of the pair of electrode sheets.
  • the pair of connection surfaces may face the stacking direction of the pair of electrode sheets.
  • a connection part for connecting a plurality of metal case type secondary cells in series is not required, or the structure of the connection part can be simplified.
  • the pair of cell terminals 144 and 145 included in each of the plurality of metal case-type secondary cells 14 is in a direction perpendicular to the stacking direction of the pair of electrode sheets 146 and 147.
  • a pair of flat electrode sheets 146 and 147 are arranged on both sides.
  • the pair of cell terminals included in each of the plurality of metal case-type secondary cells is only on one side of the pair of flat electrode sheets in the direction perpendicular to the stacking direction of the pair of electrode sheets. It may be arranged. In this case, the lead tab connected to the positive electrode sheet and the lead tab connected to the negative electrode sheet protrude from the inner case in the same direction.
  • a pair of cell terminals included in each of the plurality of metal case-type secondary cells is When disposed only on one side of the pair of flat electrode sheets, the insulating cap portion is also disposed only on one side of the pair of flat electrode sheets in a direction perpendicular to the stacking direction of the pair of electrode sheets.
  • the insulating cap part may be composed of one component or a plurality of components that are in contact with each other.
  • One pair of cell terminals included in each of the plurality of metal case type secondary cells is one pair in a direction perpendicular to the stacking direction of the pair of electrode sheets.
  • the metal case When the metal case is disposed only on one side of the flat electrode sheet, the metal case may have an opening only at one end in a direction perpendicular to the stacking direction of the pair of electrode sheets. You may have an opening part in the both ends in the direction perpendicular
  • the insulating cap portion is installed only in one of the openings at both ends of the metal case. The other of the openings at both ends of the metal case is closed by a member formed of a material other than metal.
  • the assembled battery 10 includes a battery management device.
  • the assembled battery of the present invention may not include a battery management device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

This battery pack, which comprises a plurality of secondary cells, is suppressed in temperature increase that is caused by charge/discharge with a large current. Each one of a plurality of metal case-type secondary cells (14) in this battery pack (10) comprises an inner case (142) which is arranged within a metal case (141) and is formed of a flexible synthetic resin film. This inner case (142) contains a pair of electrode sheets (146, 147) that are laminated in a flat state; and an electrolyte (149) is sealed in this inner case (142). A first inner surface (141a) of the metal case (141) and the inner case (142) are in area contact with each other in the lamination direction of the pair of flat electrode sheets (146, 147).

Description

組電池Assembled battery
 本発明は、複数の二次セルを備える組電池(assembled battery)に関する。 The present invention relates to an assembled battery including a plurality of secondary cells.
 モータを駆動源とする電動車両は、モータに電力を供給するための組電池を備える。このような組電池には、大電流で充放電可能な能力が求められる。大電流で充放電する組電池の一例として、特開2008-243526号公報に記載の電池モジュールがある。この公報に記載の電池モジュールは、複数のサブモジュールと、複数のサブモジュールを収容する外装ケースを備える。各サブモジュールは、複数の二次セル(単電池)と、複数の二次セルを保持するサブモジュールホルダーを備える。各二次セルは、セパレータと共に巻き回された正極シートおよび負極シートと、これらを収容する金属ケースとを有する。 An electric vehicle using a motor as a drive source includes an assembled battery for supplying electric power to the motor. Such an assembled battery is required to be capable of being charged and discharged with a large current. As an example of an assembled battery that is charged and discharged with a large current, there is a battery module described in Japanese Patent Application Laid-Open No. 2008-243526. The battery module described in this publication includes a plurality of submodules and an outer case that houses the plurality of submodules. Each submodule includes a plurality of secondary cells (single cells) and a submodule holder that holds the plurality of secondary cells. Each secondary cell has a positive electrode sheet and a negative electrode sheet that are wound together with a separator, and a metal case that houses them.
特開2008-243526号公報JP 2008-243526 A
 上記公報に記載の組電池(電池モジュール)は、複数のサブモジュールを収容する外装ケースの一面に、ハニカム構造体を備える。このハニカム構造体の空洞から外装ケース内に冷却風を送り込むことにより、二次セルを冷却できるようになっている。しかしながら、冷却風により二次セルを冷却しても、上記公報に記載の組電池において、大電流での充放電によって発熱した二次セルを十分に冷却することは難しい。 The assembled battery (battery module) described in the above publication includes a honeycomb structure on one surface of an outer case that houses a plurality of submodules. The secondary cells can be cooled by sending cooling air from the cavities of the honeycomb structure into the outer case. However, even if the secondary cell is cooled by cooling air, it is difficult to sufficiently cool the secondary cell that generates heat due to charging / discharging with a large current in the assembled battery described in the above publication.
 本発明の目的は、複数の二次セルを備える組電池において、大電流で充放電することによる温度上昇を抑制することである。 An object of the present invention is to suppress an increase in temperature caused by charging / discharging with a large current in an assembled battery including a plurality of secondary cells.
 本願発明者らは、組電池が大電流で充放電したときの二次セルの放熱状況について研究した。本願発明者らは、二次セルが有する正極シートおよび負極シートの配置に着目した。上記公報の二次セルにおいて、正極シートおよび負極シートは、巻かれた状態で金属ケースに収容されている。そのため、巻かれた状態の正極シートおよび負極シートの外周部分は、金属ケースから放熱しやすい。一方、巻かれた状態の正極シートおよび負極シートの巻きの中央部は、熱がこもりやすいことに気付いた。 The inventors of the present application studied the heat dissipation state of the secondary cell when the assembled battery was charged and discharged with a large current. The inventors of the present application paid attention to the arrangement of the positive electrode sheet and the negative electrode sheet that the secondary cell has. In the secondary cell of the above publication, the positive electrode sheet and the negative electrode sheet are accommodated in a metal case in a rolled state. Therefore, the outer peripheral part of the wound positive electrode sheet and negative electrode sheet is likely to radiate heat from the metal case. On the other hand, it was noticed that the central part of the wound positive electrode sheet and negative electrode sheet was likely to accumulate heat.
 本願発明者は、この知見から、正極シートおよび負極シートを巻かれた状態で金属ケースに収容するのではなく、正極シートおよび負極シートを平坦な状態で金属ケースに収容することを思い付いた。平坦な状態で積層された正極シートおよび負極シートは、全面が金属ケースに近くなる。それにより、組電池が大電流で充放電しても二次セルが放熱しやすい。 The inventor of this application has come up with the idea that the positive electrode sheet and the negative electrode sheet are accommodated in the metal case in a flat state, rather than being accommodated in the metal case in a state where the positive electrode sheet and the negative electrode sheet are wound. The entire surface of the positive electrode sheet and the negative electrode sheet laminated in a flat state is close to a metal case. Thereby, even if the assembled battery is charged and discharged with a large current, the secondary cell easily dissipates heat.
 ここで、電解質が電解液の場合、正極シートおよび負極シートは、電解液に浸漬された状態で使用される。上記公報のように、正極シートおよび負極シートを収容する金属ケース内に電解液が直接入れられる場合、金属ケースは電解液を封入するための密封性が要求される。しかしながら、平坦な正極シートおよび負極シートを収容する金属ケースをシールする場合、巻かれた状態の正極シートおよび負極シートを収容する金属ケースに比べて、シールするために溶接や接着など施す箇所の長さが長くなる。そのため、密封性を確保しにくい。そのため、巻かれた状態の正極シートおよび負極シートを収容する金属ケースに比べて、平坦な正極シートおよび負極シートを収容する金属ケースは、密封性を確保することが難しい。 Here, when the electrolyte is an electrolytic solution, the positive electrode sheet and the negative electrode sheet are used in a state of being immersed in the electrolytic solution. As in the above publication, when the electrolytic solution is directly put into the metal case that accommodates the positive electrode sheet and the negative electrode sheet, the metal case is required to have a sealing property for enclosing the electrolytic solution. However, when sealing a metal case that accommodates a flat positive electrode sheet and a negative electrode sheet, the length of the portion to be welded or bonded to seal is longer than that of a metal case that accommodates a rolled positive electrode sheet and negative electrode sheet. Lengthens. Therefore, it is difficult to ensure sealing performance. Therefore, it is difficult for the metal case that accommodates the flat positive electrode sheet and the negative electrode sheet to ensure hermeticity as compared to the metal case that accommodates the positive electrode sheet and the negative electrode sheet that are wound.
 そこで、本願発明者らは、二次セルの密封性を確保するための構造について、鋭意検討した。その結果、二次セルのケースを二重構造にして、金属ケースの内側に、金属ケースよりも密閉性を確保しやすい可撓性を有するケースを設けることを思い付いた。それにより、可撓性を有する内側のケースによって、二次セルの密封性を確保しつつ、外側の金属ケースによって、二次セルの放熱性を確保できることに気付いた。本発明は、以上の知見に基づいて完成されたものである。 Therefore, the inventors of the present application have intensively studied a structure for ensuring the sealing performance of the secondary cell. As a result, the inventors have come up with the idea that the case of the secondary cell has a double structure, and a flexible case that is easier to secure the sealing than the metal case is provided inside the metal case. Accordingly, it has been found that the heat dissipation of the secondary cell can be secured by the outer metal case while the sealing property of the secondary cell is secured by the flexible inner case. The present invention has been completed based on the above findings.
 (1)本発明の組電池は、1枚の正極シートと1枚の負極シートで構成される1対の電極シートと、前記1対の電極シートを収容する金属製の金属ケースと、絶縁材料で形成され、前記金属ケースの開口部に設置される絶縁キャップ部と、前記1対の電極シートに電気的に接続され、それぞれの一部が前記絶縁キャップ部に設置され、前記金属ケースの外部に露出する1対の接続面を有する1対のセル端子と、を有する金属ケース型二次セルを複数備える組電池である。前記複数の金属ケース型二次セルの各々は、前記金属ケースの内側に配置され、可撓性を有する合成樹脂製のフィルムで形成され、平坦な状態で積層された前記1対の電極シートを収容し、前記1対の平坦な電極シートと接触するように電解質が封入され、前記1対の平坦な電極シートの積層方向において前記金属ケースの第1の内面と面接触する内側ケースを有し、前記複数の金属ケース型二次セルの各々は、前記1対の平坦な電極シートの前記積層方向における長さが、前記積層方向に垂直な方向における最小長さよりも小さいフラットボード形状であって、前記複数の金属ケース型二次セルが、前記1対の平坦な電極シートの前記積層方向に積層されている。 (1) An assembled battery according to the present invention includes a pair of electrode sheets composed of one positive electrode sheet and one negative electrode sheet, a metal case made of metal that accommodates the pair of electrode sheets, and an insulating material An insulating cap portion formed in the opening of the metal case and electrically connected to the pair of electrode sheets, each part of which is installed in the insulating cap portion and external to the metal case And a pair of cell terminals having a pair of connection surfaces exposed to the battery. Each of the plurality of metal case-type secondary cells includes the pair of electrode sheets disposed inside the metal case, formed of a flexible synthetic resin film, and laminated in a flat state. An inner case is accommodated and sealed with an electrolyte so as to be in contact with the pair of flat electrode sheets, and is in surface contact with the first inner surface of the metal case in the stacking direction of the pair of flat electrode sheets. Each of the plurality of metal case-type secondary cells has a flat board shape in which a length of the pair of flat electrode sheets in the stacking direction is smaller than a minimum length in a direction perpendicular to the stacking direction. The plurality of metal case type secondary cells are stacked in the stacking direction of the pair of flat electrode sheets.
 この構成により、本発明の組電池は、複数の金属ケース型二次セルを備える。複数の金属ケース型二次セルの各々は、1対の電極シートと、金属製の金属ケースと、内側ケースと、絶縁キャップ部と、1対のセル端子とを有する。1対の電極シートは、1枚の正極シートと1枚の負極シートで構成される。金属ケースは、1対の電極シートを収容する。絶縁キャップ部は、絶縁材料で形成され、金属ケースの開口部に設置される。1対のセル端子は、1対の電極シートに電気的に接続される。1対のセル端子は、それぞれの一部が絶縁キャップ部に設置される。それにより、1対のセル端子は、金属ケースに電気的に絶縁される。1対のセル端子は、金属ケースの外部に露出する1対の接続面を有する。複数の金属ケース型二次セルの各々が有する1対の接続面を用いて、複数の金属ケース型二次セルは直列または並列に接続される。1対の電極シートは、平坦な状態で積層されている。そのため、複数の金属ケース型二次セルの各々は、1対の平坦な電極シートの積層方向における長さが、1対の平坦な電極シートの積層方向に垂直な方向における最小長さよりも小さいフラットボード形状である。複数の金属ケース型二次セルは、1対の平坦な電極シートの積層方向に積層されている。そのため、金属ケース型二次セルの形状が、フラットボード形状であるものの、組電池の形状は、巻かれた状態の正極シートおよび負極シートを備える組電池と同様に、箱型にすることができる。 With this configuration, the assembled battery of the present invention includes a plurality of metal case type secondary cells. Each of the plurality of metal case-type secondary cells includes a pair of electrode sheets, a metal metal case, an inner case, an insulating cap portion, and a pair of cell terminals. The pair of electrode sheets is composed of one positive electrode sheet and one negative electrode sheet. The metal case accommodates a pair of electrode sheets. The insulating cap part is formed of an insulating material and is installed in the opening of the metal case. The pair of cell terminals are electrically connected to the pair of electrode sheets. A part of each of the pair of cell terminals is installed in the insulating cap part. Thereby, the pair of cell terminals are electrically insulated from the metal case. The pair of cell terminals has a pair of connection surfaces exposed to the outside of the metal case. The plurality of metal case type secondary cells are connected in series or in parallel using a pair of connection surfaces of each of the plurality of metal case type secondary cells. The pair of electrode sheets are laminated in a flat state. Therefore, each of the plurality of metal case-type secondary cells has a flat length in the stacking direction of the pair of flat electrode sheets that is smaller than the minimum length in the direction perpendicular to the stacking direction of the pair of flat electrode sheets. Board shape. The plurality of metal case type secondary cells are stacked in the stacking direction of a pair of flat electrode sheets. Therefore, although the shape of the metal case type secondary cell is a flat board shape, the shape of the assembled battery can be a box shape like the assembled battery including the positive electrode sheet and the negative electrode sheet in a wound state. .
 正極シートおよび負極シートは、平坦な状態で積層される。そのため、1対の平坦な電極シートは、金属ケースの内面とほぼ平行に配置される。つまり、平坦な正極シートは、金属ケースの内面までの最短距離がほぼ一定になる。平坦な負極シートは、金属ケースの内面までの最短距離がほぼ一定になる。そのため、1対の電極シートが巻かれた状態で配置される場合に比べて、1対の電極シートの放熱性を均一化できる。よって、組電池を大電流で充放電したときに金属ケース型二次セルが放熱しやすい。 The positive electrode sheet and the negative electrode sheet are laminated in a flat state. For this reason, the pair of flat electrode sheets are arranged substantially parallel to the inner surface of the metal case. That is, the flat positive electrode sheet has a substantially constant shortest distance to the inner surface of the metal case. A flat negative electrode sheet has a substantially constant shortest distance to the inner surface of the metal case. Therefore, the heat dissipation of the pair of electrode sheets can be made uniform as compared with the case where the pair of electrode sheets are arranged in a wound state. Therefore, when the assembled battery is charged / discharged with a large current, the metal case-type secondary cell easily radiates heat.
 しかし、金属ケースは、1対の電極シートを平坦な状態で収容する形状であるため、金属ケースによって、液体の電解質を封入するのに必要な密封性を確保することは難しい。そこで、1対の電極シートは、金属シートの内側に配置された内側シートに収容される。この内側ケースに、電解質が1対の電極シートと接触するように封入される。内側ケースは、可撓性を有する合成樹脂製のフィルムで形成される。そのため、内側ケースは、平坦な状態で積層された1対の電極シートを収容するにも関わらず、液体の電解質を封入するのに必要な密封性を確保しやすい。したがって、内側ケースによって金属ケース型二次セルの密封性を確保しつつ、金属ケースによって金属ケース型二次セルの放熱性を確保できる。さらに、内側ケースは、1対の平坦な電極シートの積層方向において金属ケースの第1の内面と面接触する。そのため、金属ケース型二次セルが充放電したときに発生する熱を、金属ケースの第1の内面から逃がすことができる。その結果、複数の金属ケース型二次セルの各々において、組電池を大電流で充放電することによる温度上昇を抑制することができる。 However, since the metal case has a shape that accommodates a pair of electrode sheets in a flat state, it is difficult to ensure the sealing property necessary for enclosing the liquid electrolyte with the metal case. Therefore, the pair of electrode sheets is accommodated in an inner sheet disposed inside the metal sheet. In the inner case, the electrolyte is sealed so as to come into contact with the pair of electrode sheets. The inner case is formed of a flexible synthetic resin film. For this reason, the inner case easily secures a sealing property necessary for enclosing the liquid electrolyte, despite accommodating a pair of electrode sheets laminated in a flat state. Therefore, the heat dissipation of the metal case type secondary cell can be ensured by the metal case while the inner case ensures the sealing property of the metal case type secondary cell. Further, the inner case is in surface contact with the first inner surface of the metal case in the stacking direction of the pair of flat electrode sheets. Therefore, the heat generated when the metal case type secondary cell is charged and discharged can be released from the first inner surface of the metal case. As a result, in each of the plurality of metal case-type secondary cells, temperature rise due to charging / discharging of the assembled battery with a large current can be suppressed.
 (2)他の観点によれば、本発明の組電池は、以下の構成を有することが好ましい。前記複数の金属ケース型二次セルの各々において、前記内側ケースが前記金属ケースの前記第1の内面と面接触している状態において、前記内側ケースが、前記金属ケースの前記第1の内面と向かい合う第2の内面から離れている。 (2) According to another aspect, the assembled battery of the present invention preferably has the following configuration. In each of the plurality of metal case type secondary cells, the inner case is in contact with the first inner surface of the metal case in a state where the inner case is in surface contact with the first inner surface of the metal case. It is away from the second inner surface facing each other.
 この構成により、内側ケースと金属ケースの第2の内面との間に隙間があることによって、金属ケース型二次セルの充放電に起因する内側ケースの膨張を許容できる。 With this configuration, since there is a gap between the inner case and the second inner surface of the metal case, the inner case can be allowed to expand due to charging / discharging of the metal case type secondary cell.
 (3)他の観点によれば、本発明の組電池は、以下の構成を有することが好ましい。前記積層方向に隣り合う2つの前記金属ケース型二次セルの一方が有する前記金属ケースが、他方が有する前記金属ケースに対して前記積層方向に離れるように、前記複数の金属ケース型二次セルが積層されている。 (3) According to another aspect, the assembled battery of the present invention preferably has the following configuration. The plurality of metal case-type secondary cells so that the metal case of one of the two metal case-type secondary cells adjacent in the stacking direction is separated from the metal case of the other in the stacking direction. Are stacked.
 この構成により、隣り合う2つの金属ケース型二次セルの一方が有する金属ケースが、他方が有する金属ケースに接触している場合と比べて、金属ケース型二次セルの充放電によって発生する熱をさらに逃がし易くなる。その結果、組電池を大電流で充放電することによる温度上昇をより抑制することができる。 With this configuration, heat generated by charging / discharging of the metal case type secondary cell is compared to the case where the metal case of one of the two adjacent metal case type secondary cells is in contact with the metal case of the other. Will be easier to escape. As a result, temperature rise due to charging / discharging of the assembled battery with a large current can be further suppressed.
 (4)他の観点によれば、本発明の組電池は、以下の構成を有することが好ましい。前記積層方向に隣り合う2つの前記金属ケース型二次セルの一方が有する前記絶縁キャップ部が、他方が有する前記絶縁キャップ部に対して前記積層方向に接触するように、前記複数の金属ケース型二次セルが積層されている。 (4) According to another aspect, the assembled battery of the present invention preferably has the following configuration. The plurality of metal case molds so that the insulating cap part of one of the two metal case type secondary cells adjacent in the stacking direction is in contact with the insulating cap part of the other in the stacking direction. Secondary cells are stacked.
 この構成により、金属ケース同士の間に隙間を確保しつつ、複数の金属ケース型二次セルを、1対の電極シートの積層方向に積層しやすい。金属ケース同士の間に隙間を確保することによって、金属ケース同士が接触している場合に比べて、金属ケース型二次セルの充放電によって発生する熱をさらに逃がし易くなる。その結果、組電池を大電流で充放電することによる温度上昇をより抑制することができる。 With this configuration, it is easy to stack a plurality of metal case type secondary cells in the stacking direction of a pair of electrode sheets while securing a gap between the metal cases. By securing a gap between the metal cases, heat generated by charging and discharging of the metal case type secondary cell can be more easily released than when the metal cases are in contact with each other. As a result, temperature rise due to charging / discharging of the assembled battery with a large current can be further suppressed.
 (5)他の観点によれば、本発明の組電池は、上述の(4)の構成に加えて、以下の構成を有することが好ましい。前記複数の金属ケース型二次セルの各々の前記絶縁キャップ部は、前記積層方向の一方の面に少なくとも1つの凸部を有し、前記積層方向の他方の面に少なくとも1つの凹部を有する。前記積層方向に隣り合う2つの前記絶縁キャップ部の一方が有する前記少なくとも1つの凸部が、他方が有する前記少なくとも1つの凹部に嵌め込まれている。 (5) According to another aspect, the assembled battery of the present invention preferably has the following configuration in addition to the above-described configuration (4). The insulating cap portion of each of the plurality of metal case type secondary cells has at least one convex portion on one surface in the stacking direction and at least one concave portion on the other surface in the stacking direction. The at least one convex portion of one of the two insulating cap portions adjacent to each other in the stacking direction is fitted into the at least one concave portion of the other.
 この構成により、複数の金属ケース型二次セルが、1対の電極シートの積層方向に垂直な方向に位置ずれするのを防止できる。よって、複数の金属ケース型二次セルを、1対の電極シートの積層方向により容易に積層できる。また、金属ケース同士の間に隙間を確保する構成をより容易に実現できる。 This configuration can prevent a plurality of metal case type secondary cells from being displaced in a direction perpendicular to the stacking direction of the pair of electrode sheets. Therefore, a plurality of metal case type secondary cells can be easily stacked in the stacking direction of the pair of electrode sheets. Moreover, the structure which ensures a clearance gap between metal cases can be implement | achieved more easily.
 (6)他の観点によれば、本発明の組電池は、以下の構成を有することが好ましい。前記複数の金属ケース型二次セルの各々が有する前記1対のセル端子が、前記積層方向に垂直な方向において前記1対の平坦な電極シートの両側に配置されている。 (6) According to another aspect, the assembled battery of the present invention preferably has the following configuration. The pair of cell terminals included in each of the plurality of metal case type secondary cells is disposed on both sides of the pair of flat electrode sheets in a direction perpendicular to the stacking direction.
 この構成により、1対のセル端子が、1対の電極シートの積層方向に垂直な方向において1対の平坦な電極シートの片側に配置されている場合、もしくは、1対のセル端子が、1対の電極シートと、1対の電極シートの積層方向に並んで配置されている場合に比べて、複数の金属ケース型二次セルを直列または並列に接続するための接続部品の構造を簡易化できる。接続部品の構造がシンプルであることにより、接続部品は、複数の金属ケース型二次セルの放熱をできるだけ妨げない構造にできる。その結果、組電池を大電流で充放電することによる温度上昇をより抑制することができる。 With this configuration, when the pair of cell terminals are arranged on one side of the pair of flat electrode sheets in the direction perpendicular to the stacking direction of the pair of electrode sheets, or when the pair of cell terminals is 1 Compared to the case where a pair of electrode sheets and a pair of electrode sheets are arranged side by side in the stacking direction, the structure of connecting parts for connecting a plurality of metal case type secondary cells in series or in parallel is simplified. it can. Since the structure of the connecting part is simple, the connecting part can have a structure that does not hinder heat dissipation of the plurality of metal case type secondary cells as much as possible. As a result, temperature rise due to charging / discharging the assembled battery with a large current can be further suppressed.
 (7)他の観点によれば、本発明の組電池は、以下の構成を有することが好ましい。前記複数の金属ケース型二次セルの各々が有する前記1対の接続面が、前記積層方向に垂直な方向を向いている。 (7) According to another aspect, the assembled battery of the present invention preferably has the following configuration. The pair of connection surfaces of each of the plurality of metal case-type secondary cells is oriented in a direction perpendicular to the stacking direction.
 仮に、1対の接続面が、1対の電極シートの積層方向、即ち、複数の金属ケース型二次セルの積層方向を向いている場合、複数の金属ケース型二次セルを直列に接続するための接続部品が不要になるか、この接続部品の構造をシンプルにできる。しかし、複数の金属ケース型二次セルを並列に接続するための接続部品の構造が複雑になる。したがって、1対の接続面が、1対の電極シートの積層方向に垂直な方向を向いていることにより、複数の金属ケース型二次セルが直列と並列のいずれに接続される場合でも、複数の金属ケース型二次セルを接続するための接続部品の構造を簡易化できる。接続部品の構造がシンプルであることにより、接続部品は、複数の金属ケース型二次セルの放熱をできるだけ妨げない構造にできる。その結果、組電池を大電流で充放電することによる温度上昇をより抑制することができる。 If a pair of connection surfaces face the stacking direction of a pair of electrode sheets, that is, the stacking direction of a plurality of metal case type secondary cells, the plurality of metal case type secondary cells are connected in series. Therefore, it is possible to simplify the structure of the connecting parts. However, the structure of the connection component for connecting a plurality of metal case type secondary cells in parallel is complicated. Therefore, even if a plurality of metal case-type secondary cells are connected in series or in parallel because the pair of connection surfaces are oriented in the direction perpendicular to the stacking direction of the pair of electrode sheets. The structure of the connection component for connecting the metal case type secondary cell can be simplified. Since the structure of the connecting part is simple, the connecting part can have a structure that does not hinder heat dissipation of the plurality of metal case type secondary cells as much as possible. As a result, temperature rise due to charging / discharging of the assembled battery with a large current can be further suppressed.
 (8)他の観点によれば、本発明の組電池は、以下の構成を有することが好ましい。前記複数の金属ケース型二次セルの各々が有する前記1対のセル端子が、それぞれの少なくとも一部が前記内側ケースの内側に配置され、前記1対の電極シートに接続された1対のリードタブと、前記1対のリードタブと別部材であって、前記1対のリードタブに接続され、前記絶縁キャップ部に設置され、前記1対の接続面を有する1対の外部端子と、を有する。 (8) According to another aspect, the assembled battery of the present invention preferably has the following configuration. The pair of cell terminals included in each of the plurality of metal case type secondary cells, a pair of lead tabs each of which is disposed at least partially inside the inner case and connected to the pair of electrode sheets And a pair of external terminals that are separate members from the pair of lead tabs, are connected to the pair of lead tabs, are installed on the insulating cap portion, and have the pair of connection surfaces.
 この構成により、1対のセル端子は、1対のリードタブと、1対のリードタブと別部材である1対の外部端子とを有する。そのため、1対のセル端子の設計自由度を向上できる。よって、金属ケース型二次セルは、充放電によって発生する熱をさらに逃がし易い構造にできる。その結果、組電池を大電流で充放電することによる温度上昇をより抑制することができる。 With this configuration, a pair of cell terminals has a pair of lead tabs, a pair of lead tabs, and a pair of external terminals that are separate members. Therefore, the degree of freedom in designing a pair of cell terminals can be improved. Therefore, the metal case type secondary cell can have a structure in which heat generated by charging and discharging is more easily released. As a result, temperature rise due to charging / discharging the assembled battery with a large current can be further suppressed.
 <用語の定義>
 一般的に、二次セルとは、正極と負極を1つずつしか備えておらず、充電と放電を繰り返すことができる電池のことである。
<Definition of terms>
Generally, a secondary cell is a battery that includes only one positive electrode and one negative electrode and can be repeatedly charged and discharged.
 本発明において、電極シートが平坦であるとは、電極シートが、単一の平面と平行な場合に限らない。電極シートが、単一の平面に沿って配置されていれば、一部または全体が緩やかに曲がっていてもよい。電極シートが1周以上巻かれている場合、電極シートは平坦ではない。巻かれた電極シートの全体の形状が直方体状の場合、たとえ直方体の厚みが薄くても、電極シートは平坦でない。 In the present invention, the fact that the electrode sheet is flat is not limited to the case where the electrode sheet is parallel to a single plane. If the electrode sheet is disposed along a single plane, a part or the whole of the electrode sheet may be gently bent. When the electrode sheet is wound more than once, the electrode sheet is not flat. When the entire shape of the wound electrode sheet is a rectangular parallelepiped, the electrode sheet is not flat even if the thickness of the rectangular parallelepiped is thin.
 本発明において、フラットボード形状とは、二次セルが1対の平坦な電極シートを有する場合の二次セルの形状である。巻かれた状態の1対の電極シートを有する二次セルは、ボックス型(角型ともいう)または円筒型である。 In the present invention, the flat board shape is the shape of the secondary cell when the secondary cell has a pair of flat electrode sheets. A secondary cell having a pair of wound electrode sheets is a box type (also called a square type) or a cylindrical type.
 本発明において、収容するとは、閉鎖空間に収容する場合に限らない。少なくとも一方向された空間に収容する場合を含む。つまり、ケースがある部品を収容する場合、ケースによってのみ形成される、部品を収容する空間は、閉鎖空間であってもなくてもよい。例えば、本発明における金属ケースは、1対の電極シートを収容するが、金属ケースは開口部を有する。 In the present invention, storing is not limited to storing in a closed space. It includes the case where it is accommodated in at least a unidirectional space. That is, when a part with a case is accommodated, the space for accommodating the part, which is formed only by the case, may or may not be a closed space. For example, the metal case in the present invention accommodates a pair of electrode sheets, but the metal case has an opening.
 本明細書において、AがX方向にBと接触するとは、AとBの接触する箇所同士がX方向に並んだ状態で接触することをいう。 In this specification, “A contacts with B in the X direction” means that the portions where A and B contact each other are in contact with each other in the X direction.
 本明細書において、AとBがX方向に積層されるとは、AとBがX方向に並んで配置されていることをいう。AとBは接触していてもよく、接触していなくてもよい。AとBの間に、別の部品が配置されていてもよい。 In this specification, “A and B are laminated in the X direction” means that A and B are arranged side by side in the X direction. A and B may be in contact or may not be in contact. Another part may be arranged between A and B.
 本明細書において、ある部品の端部とは、部品の端とその近傍部とを合わせた部分を意味する。 In this specification, the end portion of a part means a portion obtained by combining the end of the part and its vicinity.
 本明細書において、AとBがX方向に並ぶとは、以下の状態を指す。X方向と直交するいずれの方向からAとBを見た場合であっても、X方向を示す任意の直線または曲線がAとBの両方を通る。また、A全体がBとX方向に並ぶとは、A全体がBとX方向に向かい合っていることを指す。つまり、X方向に見て、A全体がBと重なる状態を指す。全体を一部に言い換えてもよい。
 本明細書において、Y方向から見てAとBがX方向に並ぶとは、以下の状態を指す。Y方向からAとBを見たときに、X方向を示す任意の直線または曲線がAとBの両方を通る。Y方向とは異なるW方向からAとBを見たとき、AとBがX方向に並んでいなくてもよい。Y方向から見て、A全体がBとX方向に並ぶとは、Y方向から見て、A全体がBとX方向に向かい合っているように見えることをいう。全体を一部に言い換えてもよい。
 なお、上述の2つの定義において、AとBは、接触していてもよい。また、AとBは、離れていてもよい。AとBの間に、Cが存在していてもよい。
In this specification, A and B being arranged in the X direction indicates the following state. Even when A and B are viewed from any direction orthogonal to the X direction, an arbitrary straight line or curve indicating the X direction passes through both A and B. Also, the fact that the whole A is aligned in the B and X directions means that the whole A faces the B and X directions. That is, the whole A overlaps with B when viewed in the X direction. You may paraphrase the whole in part.
In this specification, A and B being arranged in the X direction when viewed from the Y direction indicates the following state. When A and B are viewed from the Y direction, an arbitrary straight line or curve indicating the X direction passes through both A and B. When A and B are viewed from the W direction different from the Y direction, A and B may not be aligned in the X direction. When viewed from the Y direction, the entire A lined up in the B and X directions means that the entire A appears to face the B and X directions when viewed from the Y direction. You may paraphrase the whole in part.
In the above two definitions, A and B may be in contact with each other. A and B may be separated from each other. C may exist between A and B.
 本明細書において、Aが、BとCとの間に配置されるとは、特に限定しない限り、以下の状態を指す。任意の直線が、BとAとCをこの順で通る。つまり、BとAとCが、任意の直線の方向にこの順で並んでいる。 In this specification, A being arranged between B and C refers to the following states unless otherwise specified. An arbitrary straight line passes through B, A, and C in this order. That is, B, A, and C are arranged in this order in an arbitrary straight line direction.
 本発明において、含む(including)、有する(comprising)、備える(having)およびこれらの派生語は、列挙されたアイテム及びその等価物に加えて追加的アイテムをも包含することが意図されて用いられている。
 本発明において、取り付けられた(mounted)、接続された(connected)、結合された(coupled)、支持された(supported)という用語は、広義に用いられている。具体的には、直接的な取付、接続、結合、支持だけでなく、間接的な取付、接続、結合および支持も含む。さらに、接続された(connected)および結合された(coupled)は、物理的又は機械的な接続/結合に限られない。それらは、直接的なまたは間接的な電気的接続/結合も含む。
In the present invention, including, comprising, having, and their derivatives are intended to include additional items in addition to the listed items and their equivalents. ing.
In the present invention, the terms mounted, connected, coupled, and supported are used in a broad sense. Specifically, it includes not only direct attachment, connection, coupling and support, but also indirect attachment, connection, coupling and support. Further, connected and coupled are not limited to physical or mechanical connections / couplings. They also include direct or indirect electrical connections / couplings.
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、理想化されたまたは過度に形式的な意味で解釈されることはない。 Unless defined otherwise, all terms used herein (including technical and scientific terms) have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries should be construed as having a meaning consistent with the meaning in the context of the related art and this disclosure, and are idealized or overly formal It is not interpreted in a sense.
 本明細書において、「好ましい」という用語は非排他的なものである。「好ましい」は、「好ましいがこれに限定されるものではない」ということを意味する。本明細書において、「好ましい」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。また、本明細書において、「してもよい」という用語は非排他的なものである。「してもよい」は、「してもよいがこれに限定されるものではない」という意味である。本明細書において、「してもよい」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。 In this specification, the term “preferred” is non-exclusive. “Preferred” means “preferably but not limited to”. In the present specification, the configuration described as “preferable” has at least the above-described effect obtained by the configuration of claim 1. Further, in this specification, the term “may” is non-exclusive. “May” means “may be, but is not limited to”. In the present specification, a configuration described as “may” at least exhibits the above-described effect obtained by the configuration of claim 1.
 本発明では、上述した好ましい構成を互いに組み合わせることを制限しない。本発明の実施形態を詳細に説明する前に、本発明は、以下の説明に記載されたまたは図面に図示された構成要素の構成および配置の詳細に制限されないことが理解されるべきである。本発明は、後述する実施形態以外の実施形態でも可能である。本発明は、後述する実施形態に様々な変更を加えた実施形態でも可能である。また、本発明は、後述する変更例を適宜組み合わせて実施することができる。 In the present invention, it is not limited to combine the above-described preferable configurations. Before describing in detail embodiments of the present invention, it is to be understood that the present invention is not limited to the details of the arrangement and arrangement of components set forth in the following description or illustrated in the drawings. The present invention is also possible in embodiments other than those described below. The present invention is also possible in embodiments in which various modifications are made to the embodiments described later. In addition, the present invention can be implemented by appropriately combining the modifications described later.
 本発明の複数の金属ケース型二次セルを備える組電池は、大電流で充放電することによる温度上昇を抑制できる。 The assembled battery including a plurality of metal case type secondary cells of the present invention can suppress temperature rise due to charging / discharging with a large current.
本発明の実施形態の組電池の模式的な断面図である。It is typical sectional drawing of the assembled battery of embodiment of this invention. 本発明の実施形態の具体例の組電池の斜視図である。It is a perspective view of the assembled battery of the specific example of embodiment of this invention. 図2に示す組電池が備える複数の金属ケース型二次セルの正面図である。It is a front view of the some metal case type | mold secondary cell with which the assembled battery shown in FIG. 2 is provided. 図2に示す組電池が備える複数の金属ケース型二次セルをY+方向に見た側面図である。It is the side view which looked at the several metal case type | mold secondary cell with which the assembled battery shown in FIG. 2 is provided in the Y + direction. 図2に示す組電池が備える複数の金属ケース型二次セルをY-方向に見た側面図である。FIG. 3 is a side view of a plurality of metal case type secondary cells provided in the assembled battery shown in FIG. 2 when viewed in the Y-direction. 図2に示す組電池が備える複数の金属ケース型二次セルのうちの1つの斜視図である。FIG. 3 is a perspective view of one of a plurality of metal case type secondary cells provided in the assembled battery shown in FIG. 2. 図6に示す金属ケース型二次セルの分解斜視図である。FIG. 7 is an exploded perspective view of the metal case type secondary cell shown in FIG. 6. 図6に示す金属ケース型二次セルの平面図である。It is a top view of the metal case type secondary cell shown in FIG. 図6におけるIX-IX断面図である。FIG. 7 is a sectional view taken along line IX-IX in FIG. 6. 図6に示す金属ケース型二次セルが有する金属ケース部品の斜視図である。It is a perspective view of the metal case component which the metal case type secondary cell shown in FIG. 6 has. 図6に示す金属ケース型二次セルを有する他の金属ケース部品の斜視図である。It is a perspective view of other metal case components which have a metal case type secondary cell shown in FIG. 図6に示す金属ケース型二次セルが有する絶縁キャップ本体の斜視図である。It is a perspective view of the insulation cap main body which the metal case type secondary cell shown in FIG. 6 has. 図12に示す絶縁キャップ本体を、X+方向に見た平面図である。It is the top view which looked at the insulation cap main body shown in FIG. 12 in the X + direction. 図6に示す金属ケース型二次セルが有する絶縁カバーの斜視図である。It is a perspective view of the insulating cover which the metal case type secondary cell shown in FIG. 6 has. 図6に示す金属ケース型二次セルが有する外部端子の斜視図である。It is a perspective view of the external terminal which the metal case type secondary cell shown in FIG. 6 has. 隣り合う2つの金属ケース型二次セルの絶縁キャップ部同士の接触部分の断面図である。It is sectional drawing of the contact part of the insulation cap parts of two adjacent metal case type secondary cells. 本発明の実施形態の変更例の組電池が備える複数の金属ケース型二次セルの側面図である。It is a side view of the some metal case type secondary cell with which the assembled battery of the example of a change of embodiment of this invention is provided.
 <本発明の実施形態>
 以下、図1を参照しながら、本発明の実施形態の組電池10について説明する。組電池10は、複数の金属ケース型二次セル14を備える。複数の金属ケース型二次セル14の各々は、1対の電極シート146、147と、金属製の金属ケース141と、内側ケース142と、絶縁キャップ部143と、1対のセル端子144、145とを有する。
<Embodiment of the present invention>
Hereinafter, an assembled battery 10 according to an embodiment of the present invention will be described with reference to FIG. The assembled battery 10 includes a plurality of metal case type secondary cells 14. Each of the plurality of metal case type secondary cells 14 includes a pair of electrode sheets 146 and 147, a metal case 141 made of metal, an inner case 142, an insulating cap portion 143, and a pair of cell terminals 144 and 145. And have.
 1対の電極シート146、147は、1枚の負極シート146と1枚の正極シート147で構成される。金属ケース141は、1対の電極シート146、147を収容する。絶縁キャップ部143は、絶縁材料で形成され、金属ケース141の開口部に設置される。1対のセル端子144、145は、1対の電極シート146、147に電気的に接続される。1対のセル端子144、145は、それぞれの一部が絶縁キャップ部143に設置される。それにより、1対のセル端子144、145は、金属ケース141に電気的に絶縁される。1対のセル端子144、145は、金属ケース141の外部に露出する1対の接続面144a、145aを有する。複数の金属ケース型二次セル14の各々が有する1対の接続面144a、145aを用いて、複数の金属ケース型二次セル14は直列または並列に接続される。なお、図1は、複数の金属ケース型二次セル14を直列に接続する場合を表示している。 The pair of electrode sheets 146 and 147 includes one negative electrode sheet 146 and one positive electrode sheet 147. The metal case 141 accommodates a pair of electrode sheets 146 and 147. The insulating cap part 143 is formed of an insulating material and is installed in the opening of the metal case 141. The pair of cell terminals 144 and 145 are electrically connected to the pair of electrode sheets 146 and 147. A part of each of the pair of cell terminals 144 and 145 is installed in the insulating cap part 143. Thereby, the pair of cell terminals 144 and 145 are electrically insulated from the metal case 141. The pair of cell terminals 144 and 145 have a pair of connection surfaces 144a and 145a exposed to the outside of the metal case 141. The plurality of metal case type secondary cells 14 are connected in series or in parallel using a pair of connection surfaces 144a and 145a which each of the plurality of metal case type secondary cells 14 has. FIG. 1 shows a case where a plurality of metal case type secondary cells 14 are connected in series.
 内側ケース142は、金属ケース141の内側に配置される。内側ケース142は、可撓性を有する合成樹脂製のフィルムで形成される。内側ケース142は、平坦な状態で積層された1対の電極シート146、147を収容する。内側ケース142に、1対の平坦な電極シート146、147と接触するように電解質が封入される。内側ケース142は、1対の平坦な電極シート146、147の積層方向において金属ケース141の第1の内面141aと面接触する。 The inner case 142 is disposed inside the metal case 141. The inner case 142 is formed of a flexible synthetic resin film. The inner case 142 accommodates a pair of electrode sheets 146 and 147 that are laminated in a flat state. An electrolyte is sealed in the inner case 142 so as to contact the pair of flat electrode sheets 146 and 147. The inner case 142 is in surface contact with the first inner surface 141a of the metal case 141 in the stacking direction of the pair of flat electrode sheets 146, 147.
 1対の電極シート146、147は、平坦な状態で積層されている。そのため、複数の金属ケース型二次セル14の各々は、1対の平坦な電極シート146、147の積層方向における長さが、1対の平坦な電極シート146、147の積層方向に垂直な方向における最小長さよりも小さいフラットボード形状である。複数の金属ケース型二次セル14は、1対の平坦な電極シート146、147の積層方向に積層されている。そのため、金属ケース型二次セル14の形状が、フラットボード形状であるものの、組電池10の形状は、巻かれた状態の正極シートおよび負極シートを備える組電池と同様に、箱型にすることができる。 The pair of electrode sheets 146 and 147 are laminated in a flat state. Therefore, each of the plurality of metal case-type secondary cells 14 has a length in the stacking direction of the pair of flat electrode sheets 146 and 147 that is perpendicular to the stacking direction of the pair of flat electrode sheets 146 and 147. It is a flat board shape smaller than the minimum length in. The plurality of metal case type secondary cells 14 are stacked in the stacking direction of a pair of flat electrode sheets 146 and 147. Therefore, although the shape of the metal case type secondary cell 14 is a flat board shape, the shape of the assembled battery 10 is a box shape as in the assembled battery including the positive electrode sheet and the negative electrode sheet in a wound state. Can do.
 負極シート146および正極シート147は、平坦な状態で積層される。そのため、1対の平坦な電極シート146、147は、金属ケース141の内面とほぼ平行に配置される。つまり、平坦な負極シート146は、金属ケース141の内面までの最短距離がほぼ一定になる。平坦な正極シート147は、金属ケース141の内面までの最短距離がほぼ一定になる。そのため、1対の電極シート146、147が巻かれた状態で配置される場合に比べて、1対の電極シート146、147の放熱性を均一化できる。よって、組電池10を大電流で充放電したときに金属ケース型二次セル14が放熱しやすい。 The negative electrode sheet 146 and the positive electrode sheet 147 are laminated in a flat state. Therefore, the pair of flat electrode sheets 146 and 147 are disposed substantially parallel to the inner surface of the metal case 141. That is, the flat negative electrode sheet 146 has a substantially constant shortest distance to the inner surface of the metal case 141. The flat positive electrode sheet 147 has a substantially constant shortest distance to the inner surface of the metal case 141. Therefore, the heat dissipation of the pair of electrode sheets 146 and 147 can be made uniform as compared with the case where the pair of electrode sheets 146 and 147 are arranged in a wound state. Therefore, when the assembled battery 10 is charged / discharged with a large current, the metal case-type secondary cell 14 easily radiates heat.
 しかし、金属ケース141は、1対の電極シート146、147を平坦な状態で収容する形状であるため、金属ケース141によって、液体の電解質を封入するのに必要な密封性を確保することは難しい。そこで、1対の電極シート146、147は、金属シートの内側に配置された内側シートに収容される。この内側ケース142に、電解質が1対の電極シート146、147と接触するように封入される。内側ケース142は、可撓性を有する合成樹脂製のフィルムで形成される。そのため、内側ケース142は、平坦な状態で積層された1対の電極シート146、147を収容するにも関わらず、液体の電解質を封入するのに必要な密封性を確保しやすい。したがって、内側ケース142によって金属ケース型二次セル14の密封性を確保しつつ、金属ケース141によって金属ケース型二次セル14の放熱性を確保できる。さらに、内側ケース142は、1対の平坦な電極シート146、147の積層方向において金属ケース141の第1の内面141aと面接触する。そのため、金属ケース型二次セル14が充放電したときに発生する熱を、金属ケース141の第1の内面141aから逃がすことができる。その結果、複数の金属ケース型二次セル14の各々において、組電池10を大電流で充放電することによる温度上昇を抑制することができる。 However, since the metal case 141 has a shape that accommodates the pair of electrode sheets 146 and 147 in a flat state, it is difficult to ensure the sealing performance necessary for enclosing the liquid electrolyte by the metal case 141. . Therefore, the pair of electrode sheets 146 and 147 are accommodated in the inner sheet disposed inside the metal sheet. The inner case 142 is sealed so that the electrolyte contacts the pair of electrode sheets 146 and 147. The inner case 142 is formed of a flexible synthetic resin film. Therefore, the inner case 142 is easy to ensure the sealing performance necessary to enclose the liquid electrolyte in spite of accommodating the pair of electrode sheets 146 and 147 laminated in a flat state. Therefore, the heat dissipation of the metal case type secondary cell 14 can be secured by the metal case 141 while the inner case 142 ensures the sealing property of the metal case type secondary cell 14. Further, the inner case 142 is in surface contact with the first inner surface 141a of the metal case 141 in the stacking direction of the pair of flat electrode sheets 146 and 147. Therefore, the heat generated when the metal case type secondary cell 14 is charged / discharged can be released from the first inner surface 141a of the metal case 141. As a result, in each of the plurality of metal case type secondary cells 14, it is possible to suppress an increase in temperature caused by charging / discharging the assembled battery 10 with a large current.
 <本発明の実施形態の具体例>
 次に、図2~図16を参照しながら、本発明の実施形態の具体例の組電池について説明する。基本的に、本発明の実施形態の具体例は、上述した本発明の実施形態の特徴を全て有している。上述した本発明の実施形態と同じ部位についての説明は省略する。以下、上述した本発明の実施形態と異なる構成について説明する。以下の説明には、図2等に示すX+方向、X-方向、Y+方向、Y-方向、Z+方向、Z-方向を使用する。以下の説明において、X+方向とX-方向の両方を含む方向を、X方向という。同様に、Y+方向とY-方向の両方を含む方向を、Y方向という。Z+方向とZ-方向の両方を含む方向を、Z方向という。X方向は、Y方向とZ方向に垂直な方向であり、Y方向は、Z方向に垂直な方向である。図3等に示す、丸の中に小さい黒丸が表示された記号は、紙面の奥から手前に向かう方向を示している。
<Specific Examples of Embodiments of the Present Invention>
Next, a specific example of the assembled battery according to the embodiment of the present invention will be described with reference to FIGS. Basically, specific examples of embodiments of the present invention have all the features of the embodiments of the present invention described above. A description of the same parts as those of the above-described embodiment of the present invention will be omitted. Hereinafter, a configuration different from the above-described embodiment of the present invention will be described. In the following description, the X + direction, the X− direction, the Y + direction, the Y− direction, the Z + direction, and the Z− direction shown in FIG. In the following description, a direction including both the X + direction and the X− direction is referred to as an X direction. Similarly, a direction including both the Y + direction and the Y− direction is referred to as a Y direction. A direction including both the Z + direction and the Z− direction is referred to as a Z direction. The X direction is a direction perpendicular to the Y direction and the Z direction, and the Y direction is a direction perpendicular to the Z direction. A symbol with a small black circle displayed in a circle shown in FIG. 3 or the like indicates a direction from the back to the front of the page.
 (1)組電池10の全体構成
 図2に示すように、組電池10は、ハウジング11を有する。ハウジング11は、略直方体の箱形状である。ハウジング11は、絶縁材料で形成されている。絶縁材料は、例えば、合成樹脂である。ハウジング11は、その外面に1対の組電池端子12、13を有する。組電池10は、1対の組電池端子12、13を介して、電力供給装置(図示せず)に接続される。電力供給装置は、組電池10に電力を供給する。組電池10は、1対の組電池端子12、13を介して、電力を消費する電力消費装置(図示せず)に接続される。組電池10は、電力消費装置に電力を供給する。電力消費装置は、具体的には特に限定されない。
(1) Overall Configuration of the Assembly Battery 10 As shown in FIG. 2, the assembly battery 10 includes a housing 11. The housing 11 has a substantially rectangular parallelepiped box shape. The housing 11 is made of an insulating material. The insulating material is, for example, a synthetic resin. The housing 11 has a pair of assembled battery terminals 12 and 13 on its outer surface. The assembled battery 10 is connected to a power supply device (not shown) via a pair of assembled battery terminals 12 and 13. The power supply device supplies power to the assembled battery 10. The assembled battery 10 is connected to a power consuming device (not shown) that consumes power via a pair of assembled battery terminals 12 and 13. The assembled battery 10 supplies power to the power consuming device. The power consumption device is not specifically limited.
 図2では、X+方向が紙面上方向となっている。しかし、組電池10の使用時の向きは、図2の紙面上方向が上方向となる向きに限定されない。組電池10は、図2の紙面上方向が下方向となるように使用されてもよい。組電池10は、図2の紙面上方向が水平方向となるように使用されてもよい。組電池10は、図2の紙面上方向がそれ以外の方向となるように使用されてもよい。 In FIG. 2, the X + direction is the upward direction on the page. However, the direction when the assembled battery 10 is used is not limited to the direction in which the upward direction in the drawing of FIG. The assembled battery 10 may be used so that the upper direction in FIG. 2 is the lower direction. The assembled battery 10 may be used so that the upper direction in FIG. 2 is the horizontal direction. The assembled battery 10 may be used so that the upward direction in FIG. 2 is the other direction.
 ハウジング11は、図3、図4および図5に示す複数の金属ケース型二次セル14を収容する。複数の金属ケース型二次セル14は、X方向に積層された状態で、ハウジング11に収容されている。金属ケース型二次セル14は、例えば、リチウムイオン電池(リチウムイオンセル)である。金属ケース型二次セル14の種類は、これに限らない。ハウジング11は、複数の金属ケース型二次セル14に加えて、複数の金属ケース型二次セル14を管理する電池管理装置(BMS:Battery Management System)等を収容する。電池管理装置は、複数の金属ケース型二次セル14のX+方向側に配置されている。 The housing 11 accommodates a plurality of metal case type secondary cells 14 shown in FIGS. 3, 4 and 5. The plurality of metal case type secondary cells 14 are accommodated in the housing 11 in a state of being stacked in the X direction. The metal case type secondary cell 14 is, for example, a lithium ion battery (lithium ion cell). The type of the metal case type secondary cell 14 is not limited to this. In addition to the plurality of metal case type secondary cells 14, the housing 11 houses a battery management device (BMS: Battery Management System) that manages the plurality of metal case type secondary cells 14. The battery management device is disposed on the X + direction side of the plurality of metal case type secondary cells 14.
 図2に示すように、複数の金属ケース型二次セル14を収容するハウジング11は、Z方向の両面に、複数の通気孔11aを有する。そのため、金属ケース型二次セル14の充放電によって発生する熱をハウジング11の外部に逃がし易い。 As shown in FIG. 2, the housing 11 that accommodates the plurality of metal case-type secondary cells 14 has a plurality of vent holes 11a on both sides in the Z direction. Therefore, the heat generated by charging / discharging of the metal case type secondary cell 14 is easily released to the outside of the housing 11.
 図3、図4および図5に示すように、複数の金属ケース型二次セル14は、互いに同じ形状および大きさを有する。複数の金属ケース型二次セル14は、互いに同じ内部構造を有する。但し、X方向に隣り合う2つの金属ケース型二次セル14の向きは、X方向の軸回りに180°異なる。 As shown in FIG. 3, FIG. 4, and FIG. 5, the plurality of metal case type secondary cells 14 have the same shape and size. The plurality of metal case type secondary cells 14 have the same internal structure. However, the directions of the two metal case-type secondary cells 14 adjacent in the X direction differ by 180 ° around the axis in the X direction.
 (2)金属ケース型二次セル14の全体構成
 以下、複数の金属ケース型二次セル14のうち、X+方向の端に配置された金属ケース型二次セル14について、図6~図15を参照しつつ説明する。この金属ケース型二次セル14とX方向の軸回りに180°異なる向きに配置された金属ケース型二次セル14についての説明は省略する。
(2) Overall Configuration of Metal Case Secondary Cell 14 Hereinafter, the metal case secondary cell 14 arranged at the end in the X + direction among the plurality of metal case secondary cells 14 will be described with reference to FIGS. This will be described with reference to FIG. A description of the metal case type secondary cell 14 and the metal case type secondary cell 14 arranged in a direction different by 180 ° around the axis in the X direction will be omitted.
 図6に示すように、金属ケース型二次セル14は、全体として、矩形の平坦な板形状(フラットボード形状)である。金属ケース型二次セル14のY方向の長さは、金属ケース型二次セル14のZ方向の長さよりも大きい。金属ケース型二次セル14のX方向の長さは、金属ケース型二次セル14のZ方向の長さよりも小さい。金属ケース型二次セル14の厚み方向は、X方向である。 As shown in FIG. 6, the metal case type secondary cell 14 has a rectangular flat plate shape (flat board shape) as a whole. The length of the metal case type secondary cell 14 in the Y direction is larger than the length of the metal case type secondary cell 14 in the Z direction. The length of the metal case type secondary cell 14 in the X direction is smaller than the length of the metal case type secondary cell 14 in the Z direction. The thickness direction of the metal case type secondary cell 14 is the X direction.
 図7、図8および図9に示すように、金属ケース型二次セル14は、金属ケース141と、内側ケース142と、絶縁キャップ部143と、1対の電極シート146、147(図8および図9参照)と、1対のセル端子144、145とを有する。絶縁キャップ部143は、1対の絶縁キャップ143A、143Bを有する。セル端子144は、リードタブ1441と、外部端子1442とを有する。セル端子145は、リードタブ1451と、外部端子1452とを有する。なお、図8の紙面の下側半分は、金属ケース部品1412と、絶縁キャップ部143の半分と、1対の外部端子1442、1452の半分の表示を省略している。 As shown in FIGS. 7, 8, and 9, the metal case type secondary cell 14 includes a metal case 141, an inner case 142, an insulating cap portion 143, and a pair of electrode sheets 146, 147 (FIGS. 8 and 9). 9) and a pair of cell terminals 144 and 145. The insulating cap part 143 has a pair of insulating caps 143A and 143B. The cell terminal 144 includes a lead tab 1441 and an external terminal 1442. The cell terminal 145 has a lead tab 1451 and an external terminal 1452. In the lower half of the paper surface of FIG. 8, the display of the metal case component 1412, the half of the insulating cap 143, and the half of the pair of external terminals 1442 and 1452 is omitted.
 (3)金属ケース141の構成
 図6に示すように、金属ケース141は、金属ケース型二次セル14の外形の大部分を構成する。金属ケース141は、Y方向の両端部に開口部を有する。金属ケース141は、矩形の筒状である。金属ケース141のY方向の長さは、金属ケース141のZ方向の長さよりも大きい。金属ケース141のX方向の長さ(厚み)は、金属ケース141のZ方向の長さよりも小さい。金属ケース141は、Y方向に垂直な平面に対して面対称性を有する。つまり、金属ケース141のY+方向の端部は、Y方向に垂直な平面に対して、金属ケース141のY-方向の端部と面対称である。また、金属ケース141は、Z方向に垂直な平面に対して面対称性を有する。金属ケース141は、金属材料で形成されている。金属材料は、特に限定されない。金属材料は、例えば、アルミニウム合金である。
(3) Configuration of Metal Case 141 As shown in FIG. 6, the metal case 141 constitutes most of the outer shape of the metal case type secondary cell 14. The metal case 141 has openings at both ends in the Y direction. The metal case 141 has a rectangular cylindrical shape. The length of the metal case 141 in the Y direction is larger than the length of the metal case 141 in the Z direction. The length (thickness) of the metal case 141 in the X direction is smaller than the length of the metal case 141 in the Z direction. The metal case 141 has plane symmetry with respect to a plane perpendicular to the Y direction. That is, the end of the metal case 141 in the Y + direction is plane-symmetric with the end of the metal case 141 in the Y− direction with respect to a plane perpendicular to the Y direction. Further, the metal case 141 has plane symmetry with respect to a plane perpendicular to the Z direction. The metal case 141 is made of a metal material. The metal material is not particularly limited. The metal material is, for example, an aluminum alloy.
 図7および図9に示すように、金属ケース141は、金属ケース部品1411と、金属ケース部品1412とを有する。金属ケース部品1412は、金属ケース部品1411とX方向に積層されるように、金属ケース部品1411に取り付けられる。 7 and 9, the metal case 141 has a metal case component 1411 and a metal case component 1412. The metal case component 1412 is attached to the metal case component 1411 so as to be laminated with the metal case component 1411 in the X direction.
 図10に示すように、金属ケース部品1411は、主板部14111と、1対の側板部14112、14112とを有する。金属ケース部品1411は、1つの部品で構成される。つまり、主板部14111と、1対の側板部14112、14112は、一体的に形成されている。 As shown in FIG. 10, the metal case component 1411 includes a main plate portion 14111 and a pair of side plate portions 14112 and 14112. The metal case part 1411 is composed of one part. That is, the main plate portion 14111 and the pair of side plate portions 14112 and 14112 are integrally formed.
 主板部14111は、矩形の平坦な板形状である。主板部14111は、X方向に垂直な方向に沿って配置されている。主板部14111の厚み方向は、X方向である。つまり、主板部14111のX方向の長さ(厚み)は、主板部14111のY方向の長さおよびZ方向の長さよりも小さい。主板部14111のX方向の長さ(厚み)は、主板部14111のY方向の長さおよびZ方向の長さよりも小さい。主板部14111は、X+方向を向いた面14111aを有する。面14111aは、X方向に垂直である。面14111aは、金属ケース141の内面の一部を構成する。以下、面14111aを、内面14111aという。内面14111aは、本発明の実施形態の第1の内面141aの一例である。 The main plate portion 14111 has a rectangular flat plate shape. The main plate portion 14111 is disposed along a direction perpendicular to the X direction. The thickness direction of the main plate portion 14111 is the X direction. That is, the length (thickness) of the main plate portion 14111 in the X direction is smaller than the length of the main plate portion 14111 in the Y direction and the length in the Z direction. The length (thickness) in the X direction of the main plate portion 14111 is smaller than the length in the Y direction and the length in the Z direction of the main plate portion 14111. The main plate portion 14111 has a surface 14111a facing the X + direction. The surface 14111a is perpendicular to the X direction. The surface 14111a constitutes a part of the inner surface of the metal case 141. Hereinafter, the surface 14111a is referred to as an inner surface 14111a. The inner surface 14111a is an example of the first inner surface 141a according to the embodiment of the present invention.
 1対の側板部14112、14112は、主板部14111のZ方向の両端に接続されている。つまり、一方の側板部14112と他方の側板部14112は、Z方向に離れている。1対の側板部14112、14112は、主板部14111からX+方向に突出している。各側板部14112は、Y方向に長い矩形の平坦な板形状である。各側板部14112は、Z方向に垂直な方向に沿って配置されている。各側板部14112の厚み方向は、Z方向である。つまり、各側板部14112のZ方向の長さ(厚み)は、側板部14112のX方向の長さおよびY方向の長さよりも小さい。1対の側板部14112、14112は、互いに平行に配置されている。 The pair of side plate portions 14112 and 14112 are connected to both ends of the main plate portion 14111 in the Z direction. That is, one side plate portion 14112 and the other side plate portion 14112 are separated in the Z direction. The pair of side plate portions 14112 and 14112 protrudes from the main plate portion 14111 in the X + direction. Each side plate portion 14112 has a rectangular flat plate shape that is long in the Y direction. Each side plate portion 14112 is disposed along a direction perpendicular to the Z direction. The thickness direction of each side plate portion 14112 is the Z direction. That is, the length (thickness) in the Z direction of each side plate portion 14112 is smaller than the length in the X direction and the length in the Y direction of the side plate portion 14112. The pair of side plate portions 14112 and 14112 are arranged in parallel to each other.
 図11に示すように、金属ケース部品1412は、主板部14121と、1対の側板部14122、14122とを有する。金属ケース部品1412は、1つの部品で構成される。つまり、主板部14121と、1対の側板部14122、14122は、一体的に形成されている。 As shown in FIG. 11, the metal case component 1412 includes a main plate portion 14121 and a pair of side plate portions 14122 and 14122. The metal case part 1412 is composed of one part. That is, the main plate portion 14121 and the pair of side plate portions 14122 and 14122 are integrally formed.
 主板部14121は、全体として矩形の平坦な板形状である。主板部14121は、X方向に垂直な方向に沿って配置されている。主板部14121の厚み方向は、X方向である。つまり、主板部14121のX方向の長さ(厚み)は、主板部14121のY方向の長さおよびZ方向の長さよりも小さい。図9に示すように、主板部14121は、X-方向を向いた面14121aを有する。面14121aは、X方向に垂直である。面14121aは、金属ケース141の内面の一部を構成する。以下、面14121aを、内面14121aという。内面14121aは、主板部14111の内面14111aとX方向に向かい合う。内面14121aは、本発明の第2の内面に相当する。 The main plate portion 14121 has a rectangular flat plate shape as a whole. The main plate portion 14121 is disposed along a direction perpendicular to the X direction. The thickness direction of the main plate portion 14121 is the X direction. That is, the length (thickness) of the main plate portion 14121 in the X direction is smaller than the length of the main plate portion 14121 in the Y direction and the length in the Z direction. As shown in FIG. 9, the main plate portion 14121 has a surface 14121a facing the X-direction. The surface 14121a is perpendicular to the X direction. The surface 14121a constitutes a part of the inner surface of the metal case 141. Hereinafter, the surface 14121a is referred to as an inner surface 14121a. The inner surface 14121a faces the inner surface 14111a of the main plate portion 14111 in the X direction. The inner surface 14121a corresponds to the second inner surface of the present invention.
 図11に示すように、主板部14121は、Y方向の両端部に、切欠14121bを有する。各切欠14121bは、矩形状である。各切欠14121bは、主板部14121のX方向の中央部に形成されている。 As shown in FIG. 11, the main plate portion 14121 has notches 14121b at both ends in the Y direction. Each notch 14121b has a rectangular shape. Each notch 14121b is formed at the center of the main plate portion 14121 in the X direction.
 1対の側板部14122、14122は、主板部14121のZ方向の両端に接続されている。つまり、一方の側板部14122と他方の側板部14122は、Z方向に離れている。1対の側板部14122、14122は、主板部14121からX-方向に突出している。言い換えると、1対の側板部14122、14122は、金属ケース部品1411の主板部14111に向かって突出している(図7参照)。各側板部14122は、Z方向に細長い矩形の板形状である。各側板部14122は、Z方向に垂直な方向に沿って配置されている。各側板部14122の厚み方向は、Z方向である。つまり、各側板部14122のZ方向の長さ(厚み)は、側板部14122のX方向の長さおよびY方向の長さよりも小さい。1対の側板部14122、14122は、互いに平行に配置されている。各側板部14122のX方向の長さは、金属ケース部品1411の各側板部14112のX方向の長さよりも小さい。 The pair of side plate portions 14122 and 14122 are connected to both ends of the main plate portion 14121 in the Z direction. That is, one side plate portion 14122 and the other side plate portion 14122 are separated in the Z direction. The pair of side plate portions 14122 and 14122 protrudes from the main plate portion 14121 in the X-direction. In other words, the pair of side plate portions 14122 and 14122 protrudes toward the main plate portion 14111 of the metal case component 1411 (see FIG. 7). Each side plate portion 14122 has a rectangular plate shape elongated in the Z direction. Each side plate portion 14122 is arranged along a direction perpendicular to the Z direction. The thickness direction of each side plate portion 14122 is the Z direction. That is, the length (thickness) in the Z direction of each side plate portion 14122 is smaller than the length in the X direction and the length in the Y direction of the side plate portion 14122. The pair of side plate portions 14122 and 14122 are arranged in parallel to each other. The length in the X direction of each side plate portion 14122 is smaller than the length in the X direction of each side plate portion 14112 of the metal case component 1411.
 図6に示すように、金属ケース部品1412の一方の側板部14122は、金属ケース部品1411の一方の側板部14112の一部とZ方向に積層される。金属ケース部品1412の他方の側板部14122は、金属ケース部品1411の他方の側板部14112の一部とZ方向に積層される。1対の側板部14122、14122は、1対の側板部14112、14112の外側に配置される。 As shown in FIG. 6, one side plate portion 14122 of the metal case component 1412 is laminated with a part of one side plate portion 14112 of the metal case component 1411 in the Z direction. The other side plate portion 14122 of the metal case component 1412 is laminated with a part of the other side plate portion 14112 of the metal case component 1411 in the Z direction. The pair of side plate portions 14122 and 14122 are disposed outside the pair of side plate portions 14112 and 14112.
 (4)1対の絶縁キャップ143A、143Bの構成
 図6および図7に示すように、1対の絶縁キャップ143A、143Bは、金属ケース141のY方向の両端の開口部に設置される。絶縁キャップ143Aと絶縁キャップ143Bは、互いに同じ形状および大きさを有する。絶縁キャップ143Aは、Y方向に垂直な面に対して絶縁キャップ143Bと面対称である。絶縁キャップ143Aおよび絶縁キャップ143Bは、それぞれ、Z方向に垂直な面に対して面対称性を有する。絶縁キャップ143AのZ方向の最大長さは、絶縁キャップ143AのY方向の最大長さよりも大きい。絶縁キャップ143AのX方向の最大長さは、絶縁キャップ143AのY方向の最大長さよりも小さい。絶縁キャップ143AのZ方向の最大長さは、金属ケース141のZ方向の長さとほぼ同じである。絶縁キャップ143AのX方向の最大長さは、金属ケース141のX方向の長さ(厚み)とほぼ同じである。絶縁キャップ143AのY方向の長さは、金属ケース141のY方向の長さよりも大幅に小さい。
(4) Configuration of a pair of insulating caps 143A and 143B As shown in FIGS. 6 and 7, the pair of insulating caps 143A and 143B are installed at openings at both ends of the metal case 141 in the Y direction. The insulating cap 143A and the insulating cap 143B have the same shape and size. The insulating cap 143A is plane-symmetric with the insulating cap 143B with respect to a plane perpendicular to the Y direction. The insulating cap 143A and the insulating cap 143B each have a plane symmetry with respect to a plane perpendicular to the Z direction. The maximum length of the insulating cap 143A in the Z direction is larger than the maximum length of the insulating cap 143A in the Y direction. The maximum length of the insulating cap 143A in the X direction is smaller than the maximum length of the insulating cap 143A in the Y direction. The maximum length of the insulating cap 143A in the Z direction is substantially the same as the length of the metal case 141 in the Z direction. The maximum length of the insulating cap 143 </ b> A in the X direction is substantially the same as the length (thickness) of the metal case 141 in the X direction. The length of the insulating cap 143 </ b> A in the Y direction is significantly smaller than the length of the metal case 141 in the Y direction.
 絶縁キャップ143Aは、絶縁キャップ本体1431Aと、絶縁カバー1432Aとを有する。絶縁キャップ143Bは、絶縁キャップ本体1431Bと、絶縁カバー1432Bとを有する。絶縁キャップ本体1431A、絶縁キャップ本体1431B、絶縁カバー1432A、および絶縁カバー1432Bは、絶縁材料で形成されている。絶縁材料は、例えば、合成樹脂である。絶縁キャップ本体1431Aと絶縁キャップ本体1431Bは、同じ絶縁材料で形成されている。絶縁カバー1432Aと絶縁カバー1432Bは、同じ絶縁材料で形成されている。絶縁キャップ本体1431Aおよび絶縁キャップ本体1431Bを形成する絶縁材料は、絶縁カバー1432Aおよび絶縁カバー1432Bを形成する絶縁材料と同じであっても異なっていてもよい。 The insulating cap 143A has an insulating cap body 1431A and an insulating cover 1432A. The insulating cap 143B includes an insulating cap main body 1431B and an insulating cover 1432B. The insulating cap body 1431A, the insulating cap body 1431B, the insulating cover 1432A, and the insulating cover 1432B are made of an insulating material. The insulating material is, for example, a synthetic resin. The insulating cap body 1431A and the insulating cap body 1431B are formed of the same insulating material. The insulating cover 1432A and the insulating cover 1432B are formed of the same insulating material. The insulating material forming the insulating cap main body 1431A and the insulating cap main body 1431B may be the same as or different from the insulating material forming the insulating cover 1432A and the insulating cover 1432B.
 (4-1)絶縁キャップ本体1431Aおよび絶縁キャップ本体1431Bの構成
 絶縁キャップ本体1431Aと絶縁キャップ本体1431Bは、互いに同じ形状および大きさを有する。以下、絶縁キャップ本体1431Aについて説明し、絶縁キャップ本体1431Bについての説明は省略する。
(4-1) Configuration of Insulating Cap Body 1431A and Insulating Cap Body 1431B The insulating cap body 1431A and the insulating cap body 1431B have the same shape and size. Hereinafter, the insulating cap body 1431A will be described, and the description of the insulating cap body 1431B will be omitted.
 図12に示すように、絶縁キャップ本体1431AのZ方向の最大長さは、絶縁キャップ本体1431AのY方向の最大長さよりも大きい。絶縁キャップ本体1431AのX方向の最大長さは、絶縁キャップ本体1431AのY方向の最大長さよりも小さい。図6および図7に示すように、絶縁キャップ本体1431AのZ方向の最大長さは、金属ケース141のZ方向の長さとほぼ同じである。絶縁キャップ本体1431AのX方向の最大長さは、金属ケース141のX方向の長さ(厚み)とほぼ同じである。絶縁キャップ143AのY方向の長さは、金属ケース141のY方向の長さよりも大幅に小さい。 As shown in FIG. 12, the maximum length in the Z direction of the insulating cap body 1431A is larger than the maximum length in the Y direction of the insulating cap body 1431A. The maximum length in the X direction of the insulating cap body 1431A is smaller than the maximum length in the Y direction of the insulating cap body 1431A. As shown in FIGS. 6 and 7, the maximum length in the Z direction of the insulating cap body 1431 </ b> A is substantially the same as the length of the metal case 141 in the Z direction. The maximum length in the X direction of the insulating cap main body 1431A is substantially the same as the length (thickness) of the metal case 141 in the X direction. The length of the insulating cap 143 </ b> A in the Y direction is significantly smaller than the length of the metal case 141 in the Y direction.
 図12に示すように、絶縁キャップ本体1431Aは、薄肉部14311と、1対の厚肉部14312、14312とを有する。絶縁キャップ本体1431Aは、1つの部品で構成される。つまり、薄肉部14311と、1対の厚肉部14312、14312は、一体的に形成されている。 As shown in FIG. 12, the insulating cap main body 1431A has a thin portion 14311 and a pair of thick portions 14312 and 14312. The insulating cap body 1431A is composed of one component. That is, the thin portion 14311 and the pair of thick portions 14312 and 14312 are integrally formed.
 薄肉部14311は、略矩形の板形状である。薄肉部14311は、X方向に垂直な方向に沿って配置されている。薄肉部14311の厚み方向は、X方向である。つまり、薄肉部14311のX方向の長さ(厚み)は、薄肉部14311のY方向の長さおよびZ方向の長さよりも小さい。薄肉部14311は、X+方向を向いた面14311aを有する。面14311aは、X方向に垂直である。 The thin portion 14311 has a substantially rectangular plate shape. The thin portion 14311 is disposed along a direction perpendicular to the X direction. The thickness direction of the thin portion 14311 is the X direction. That is, the length (thickness) in the X direction of the thin portion 14311 is smaller than the length in the Y direction and the length in the Z direction of the thin portion 14311. The thin portion 14311 has a surface 14311a facing the X + direction. The surface 14311a is perpendicular to the X direction.
 1対の厚肉部14312、14312は、薄肉部14311のZ方向の両端に接続されている。厚肉部14312のX方向の長さ(厚み)は、薄肉部14311のX方向の長さ(厚み)よりも大きい。各厚肉部14312は、X+方向を向いた面14312aを有する。各面14312aは、平坦な1つの面ではない。各面14312aは、複数の面で構成される。各面14312aは、薄肉部14311の面14311aからX+方向に離れている。つまり、1対の厚肉部14312、14312が有する1対の面14312a、14312aと薄肉部14311の面14311aとの境界は、段差状である。図13に示すように、1対の厚肉部14312、14312におけるX-方向を向いた面と薄肉部14311のX-方向を向いた面との境界は、段差状でない。 The pair of thick portions 14312 and 14312 are connected to both ends of the thin portion 14311 in the Z direction. The length (thickness) in the X direction of the thick portion 14312 is larger than the length (thickness) in the X direction of the thin portion 14311. Each thick portion 14312 has a surface 14312a facing the X + direction. Each surface 14312a is not one flat surface. Each surface 14312a includes a plurality of surfaces. Each surface 14312a is separated from the surface 14311a of the thin portion 14311 in the X + direction. That is, the boundary between the pair of surfaces 14312a and 14312a included in the pair of thick portions 14312 and 14312 and the surface 14311a of the thin portion 14311 is stepped. As shown in FIG. 13, the boundary between the surface facing the X-direction of the pair of thick portions 14312 and 14312 and the surface facing the X-direction of the thin portion 14311 is not stepped.
 図12に示すように、各厚肉部14312は、面14312aに、凸部14312cを有する。つまり、絶縁キャップ部143は、絶縁キャップ本体1431Aに、1対の凸部14312cを有する。各凸部14312cは、X+方向に突出している。各凸部14312cは、円筒状である。 As shown in FIG. 12, each thick portion 14312 has a convex portion 14312c on the surface 14312a. That is, the insulating cap part 143 has a pair of convex parts 14312c on the insulating cap main body 1431A. Each convex portion 14312c protrudes in the X + direction. Each convex part 14312c is cylindrical.
 図13に示すように、厚肉部14312は、X-方向を向いた面に、凹部14312dを有する。凹部14312dは、X-方向から見て円形状である。凹部14312dは、X方向に見て、凸部14312cに重なる位置にある。X方向に見て、凹部14312dの大きさは、凸部14312cの大きさとほぼ同じかそれよりも若干大きい。凹部14312dのX方向の長さ(深さ)は、凸部14312cのX方向の長さよりも小さい。 As shown in FIG. 13, the thick portion 14312 has a recess 14312d on the surface facing the X-direction. The recess 14312d has a circular shape when viewed from the X-direction. The concave portion 14312d is at a position overlapping the convex portion 14312c when viewed in the X direction. When viewed in the X direction, the size of the concave portion 14312d is substantially the same as or slightly larger than the size of the convex portion 14312c. The length (depth) of the concave portion 14312d in the X direction is smaller than the length of the convex portion 14312c in the X direction.
 図12および図13に示すように、各厚肉部14312は、厚肉部14312をX方向に貫通する貫通孔14312eを有する。つまり、絶縁キャップ部143は、絶縁キャップ本体1431Aに、1対の貫通孔14312eを有する。各貫通孔14312eは、凸部14312cおよび凹部14312dの中央を通る。 As shown in FIGS. 12 and 13, each thick portion 14312 has a through-hole 14312e that penetrates the thick portion 14312 in the X direction. That is, the insulating cap part 143 has a pair of through holes 14312e in the insulating cap main body 1431A. Each through hole 14312e passes through the center of the convex portion 14312c and the concave portion 14312d.
 図12に示すように、各厚肉部14312は、係止部14312bを有する。つまり、絶縁キャップ本体1431Aは、1対の係止部14312b、14312bを有する。1対の係止部14312b、14312bは、1対の厚肉部14312、14312のZ方向に向かい合う面に形成されている。一方の係止部14312bは、他方の係止部14312bに向かってZ方向に突出している。各係止部14312bは、各厚肉部14312におけるX+方向の端部に形成されている。 As shown in FIG. 12, each thick part 14312 has a locking part 14312b. That is, the insulating cap body 1431A has a pair of locking portions 14312b and 14312b. The pair of locking portions 14312b and 14312b are formed on the surfaces of the pair of thick portions 14312 and 14312 facing in the Z direction. One locking portion 14312b protrudes in the Z direction toward the other locking portion 14312b. Each locking portion 14312b is formed at the end of each thick portion 14312 in the X + direction.
 絶縁キャップ本体1431Aは、金属ケース部品1411および金属ケース部品1412に取り付けられる。絶縁キャップ本体1431Aは、図7に示すネジ24を用いて、金属ケース部品1411にねじ止めされる。ねじ止めの具体的な手順は、以下のとおりである。 The insulating cap body 1431A is attached to the metal case part 1411 and the metal case part 1412. The insulating cap body 1431A is screwed to the metal case component 1411 using the screws 24 shown in FIG. The specific procedure for screwing is as follows.
 まず、絶縁キャップ本体1431Aの一部が、金属ケース部品1411の主板部14111のY-方向の端部に対して、X方向に重ねられる(図9参照)。このとき、絶縁キャップ本体1431Aの薄肉部14311の一部と1対の厚肉部14312、14312の一部が、金属ケース部品1411の内面14111aのY-方向の端部に接触する。この状態で、絶縁キャップ本体1431Aの1対の厚肉部14312、14312が、図7に示すネジ24を用いて、金属ケース部品1411の主板部14111にねじ止めされる。 First, a part of the insulating cap main body 1431A is overlapped in the X direction with respect to the Y-direction end portion of the main plate portion 14111 of the metal case component 1411 (see FIG. 9). At this time, a part of the thin part 14311 of the insulating cap body 1431A and a part of the pair of thick parts 14312 and 14312 are in contact with the end part in the Y-direction of the inner surface 14111a of the metal case component 1411. In this state, the pair of thick portions 14312 and 14312 of the insulating cap body 1431A are screwed to the main plate portion 14111 of the metal case component 1411 using the screws 24 shown in FIG.
 絶縁キャップ本体1431Aは、図7に示すネジ25を用いて、金属ケース部品1412にねじ止めされる。ねじ止めの具体的な手順は、以下のとおりである。 The insulating cap main body 1431A is screwed to the metal case component 1412 using the screws 25 shown in FIG. The specific procedure for screwing is as follows.
 まず、絶縁キャップ本体1431Aの一部が、金属ケース部品1412の主板部14121のY-方向の一端部に対して、X方向に重ねられる(図9参照)。このとき、絶縁キャップ本体1431Aの1対の厚肉部14312、14312の一部が、金属ケース部品1412の内面14121aのY-方向の端部に接触する。絶縁キャップ本体1431Aの薄肉部14311は、金属ケース部品1412に接触しない。この状態で、絶縁キャップ本体1431Aの1対の厚肉部14312、14312が、図7に示すネジ25を用いて、金属ケース部品1412の主板部14121にねじ止めされる。 First, a part of the insulating cap body 1431A is overlapped in the X direction with respect to one end portion in the Y-direction of the main plate portion 14121 of the metal case component 1412 (see FIG. 9). At this time, a part of the pair of thick portions 14312 and 14312 of the insulating cap body 1431A comes into contact with the Y-direction end of the inner surface 14121a of the metal case component 1412. The thin portion 14311 of the insulating cap body 1431A does not contact the metal case component 1412. In this state, the pair of thick portions 14312 and 14312 of the insulating cap main body 1431A are screwed to the main plate portion 14121 of the metal case component 1412 using the screws 25 shown in FIG.
 絶縁キャップ本体1431Aと同様に、絶縁キャップ本体1431Bも、金属ケース部品1411および金属ケース部品1412に取り付けられる。絶縁キャップ本体1431Aと同様に、絶縁キャップ本体1431Bは、図7に示すネジ24およびネジ25を用いて、金属ケース部品1411および金属ケース部品1412にねじ止めされる。 Similarly to the insulating cap body 1431A, the insulating cap body 1431B is also attached to the metal case part 1411 and the metal case part 1412. Similar to the insulating cap main body 1431A, the insulating cap main body 1431B is screwed to the metal case component 1411 and the metal case component 1412 using the screw 24 and the screw 25 shown in FIG.
 (4-2)絶縁カバー1432Aおよび絶縁カバー1432Bの構成
 絶縁カバー1432Aと絶縁カバー1432Bは、互いに同じ形状および大きさを有する。以下、絶縁カバー1432Aについて説明し、絶縁カバー1432Bについての説明は省略する。
(4-2) Configuration of Insulating Cover 1432A and Insulating Cover 1432B The insulating cover 1432A and the insulating cover 1432B have the same shape and size. Hereinafter, the insulating cover 1432A will be described, and the description of the insulating cover 1432B will be omitted.
 図14に示すように、絶縁カバー1432AのZ方向の最大長さは、絶縁カバー1432AのY方向の最大長さよりも大きい。絶縁カバー1432AのX方向の最大長さは、絶縁カバー1432AのY方向の最大長さよりも小さい。図6および図7に示すように、絶縁カバー1432AのZ方向の最大長さは、絶縁キャップ本体1431AのZ方向の最大長さよりも小さい。絶縁カバー1432AのX方向の最大長さは、絶縁キャップ本体1431AのX方向の最大長さよりも若干小さい。絶縁カバー1432AのY方向の最大長さは、絶縁キャップ本体1431AのY方向の最大長さよりも大きい。絶縁カバー1432AのY方向の最大長さは、金属ケース141のY方向の長さよりも大幅に小さい。 As shown in FIG. 14, the maximum length of the insulating cover 1432A in the Z direction is larger than the maximum length of the insulating cover 1432A in the Y direction. The maximum length in the X direction of the insulating cover 1432A is smaller than the maximum length in the Y direction of the insulating cover 1432A. As shown in FIGS. 6 and 7, the maximum length of the insulating cover 1432A in the Z direction is smaller than the maximum length of the insulating cap body 1431A in the Z direction. The maximum length in the X direction of the insulating cover 1432A is slightly smaller than the maximum length in the X direction of the insulating cap main body 1431A. The maximum length in the Y direction of the insulating cover 1432A is larger than the maximum length in the Y direction of the insulating cap body 1431A. The maximum length of the insulating cover 1432A in the Y direction is significantly smaller than the length of the metal case 141 in the Y direction.
 図14に示すように、絶縁カバー1432Aは、主板部14321と、1対の側板部14322、14322とを有する。絶縁カバー1432Aは、1つの部品で構成される。つまり、主板部14321と、1対の側板部14322、14322は、一体的に形成されている。 As shown in FIG. 14, the insulating cover 1432A has a main plate portion 14321 and a pair of side plate portions 14322 and 14322. The insulating cover 1432A is composed of one component. That is, the main plate portion 14321 and the pair of side plate portions 14322 and 14322 are integrally formed.
 主板部14321は、矩形の平坦な板形状である。主板部14321は、X方向に垂直な方向に沿って配置されている。主板部14321の厚み方向は、X方向である。つまり、主板部14321のX方向の長さ(厚み)は、主板部14321のY方向の長さおよびZ方向の長さX方向よりも小さい。主板部14321のZ方向の長さは、主板部14321のY方向の長さよりも大きい。図6および図7に示すように、主板部14321のZ方向の長さは、金属ケース部品1412の切欠14121bのZ方向の長さと同じかほぼ同じである。主板部14321のY方向の長さは、金属ケース部品1412の切欠14121bのY方向の長さよりも大きい。 The main plate portion 14321 has a rectangular flat plate shape. The main plate portion 14321 is disposed along a direction perpendicular to the X direction. The thickness direction of the main plate portion 14321 is the X direction. That is, the length (thickness) in the X direction of the main plate portion 14321 is smaller than the length in the Y direction and the length X direction in the Z direction of the main plate portion 14321. The length of the main plate portion 14321 in the Z direction is larger than the length of the main plate portion 14321 in the Y direction. As shown in FIGS. 6 and 7, the length in the Z direction of the main plate portion 14321 is the same as or substantially the same as the length in the Z direction of the notch 14121b of the metal case component 1412. The length in the Y direction of the main plate portion 14321 is larger than the length in the Y direction of the notch 14121b of the metal case component 1412.
 1対の側板部14322、14322は、主板部14321のZ方向の両端に接続されている。つまり、一方の側板部14322と他方の側板部14322は、Z方向に離れている。1対の側板部14322、14322は、主板部14321からX-方向に突出している。言い換えると、1対の側板部14322、14322は、絶縁キャップ本体1431Aの薄肉部14311に向かって突出している(図7参照)。各側板部14322は、係止片14322aを有する。つまり、絶縁カバー1432Aは、1対の係止片14322a、14322aを有する。各係止片14322aは、側板部14322のY方向の中央部にある。各係止片14322aは、Z方向の力によって弾性変形できるように形成されている。各側板部14322は、係止片14322aの突出方向(X-方向)の先端部に、係止爪14322bを有する。つまり、絶縁カバー1432Aは、1対の係止爪14322b、14322bを有する。 The pair of side plate portions 14322 and 14322 are connected to both ends of the main plate portion 14321 in the Z direction. That is, one side plate portion 14322 and the other side plate portion 14322 are separated in the Z direction. The pair of side plate portions 14322 and 14322 protrudes from the main plate portion 14321 in the X-direction. In other words, the pair of side plate portions 14322 and 14322 protrudes toward the thin portion 14311 of the insulating cap main body 1431A (see FIG. 7). Each side plate portion 14322 has a locking piece 14322a. That is, the insulating cover 1432A has a pair of locking pieces 14322a and 14322a. Each locking piece 14322a is at the center of the side plate portion 14322 in the Y direction. Each locking piece 14322a is formed so as to be elastically deformable by a force in the Z direction. Each side plate portion 14322 has a locking claw 14322b at the tip of the locking piece 14322a in the protruding direction (X-direction). That is, the insulating cover 1432A has a pair of locking claws 14322b and 14322b.
 図6および図7に示すように、絶縁カバー1432Aの一部は、絶縁キャップ本体1431Aの1対の厚肉部14312、14312の間に配置される。絶縁カバー1432Aは、絶縁キャップ本体1431Aに取り付けられる。絶縁カバー1432Aは、ネジ等の固定部品を使用することなく、絶縁キャップ本体1431Aに取り付けられる。具体的には、絶縁カバー1432Aは、X方向に押圧されて、絶縁キャップ本体1431Aの1対の厚肉部14312、14312の間に嵌め込まれる。嵌め込み時、絶縁カバー1432Aの1対の係止片14322a、14322aは弾性変形する。嵌め込まれた状態において、絶縁カバー1432Aの1対の係止爪14322b、14322bは、絶縁キャップ本体1431Aの1対の係止部14312b、14312bに引っ掛かっている。これにより、絶縁カバー1432Aは、絶縁キャップ本体1431Aから外れにくくなっている。 6 and 7, a part of the insulating cover 1432A is disposed between the pair of thick portions 14312 and 14312 of the insulating cap body 1431A. The insulating cover 1432A is attached to the insulating cap body 1431A. The insulating cover 1432A is attached to the insulating cap body 1431A without using a fixing component such as a screw. Specifically, the insulating cover 1432A is pressed in the X direction and is fitted between the pair of thick portions 14312 and 14312 of the insulating cap body 1431A. When fitted, the pair of locking pieces 14322a and 14322a of the insulating cover 1432A is elastically deformed. In the fitted state, the pair of locking claws 14322b and 14322b of the insulating cover 1432A are hooked on the pair of locking portions 14312b and 14312b of the insulating cap body 1431A. As a result, the insulating cover 1432A is not easily detached from the insulating cap body 1431A.
 図6に示すように、絶縁カバー1432Aの一部は、金属ケース部品1412の主板部14121のY-方向の端部に形成された切欠14121bの内側に配置される。 As shown in FIG. 6, a part of the insulating cover 1432A is disposed inside a notch 14121b formed at the end of the main plate portion 14121 of the metal case component 1412 in the Y-direction.
 絶縁カバー1432Aと同様に、絶縁カバー1432Bの一部は、絶縁キャップ本体1431Bの1対の厚肉部14312、14312の間に配置される。絶縁カバー1432Aと同様に、絶縁カバー1432Bは、絶縁キャップ本体1431Bに取り付けられる。絶縁カバー1432Aと同様に、絶縁カバー1432Bの一部は、金属ケース部品1412の主板部14121のY+方向の端部に形成された切欠14121bの内側に配置される。 Similarly to the insulating cover 1432A, a part of the insulating cover 1432B is disposed between the pair of thick portions 14312 and 14312 of the insulating cap body 1431B. Similar to the insulating cover 1432A, the insulating cover 1432B is attached to the insulating cap body 1431B. Similar to the insulating cover 1432A, a part of the insulating cover 1432B is disposed inside a notch 14121b formed at the end of the main plate portion 14121 of the metal case component 1412 in the Y + direction.
 (5)内側ケース142の構成
 図9に示すように、内側ケース142は、金属ケース141の内側に配置される。内側ケース142は、可撓性を有するフィルムで形成されている。フィルムは、合成樹脂で形成されている。フィルムは、液体を透過させない性質を有する。内側ケース142は、可撓性を有するフィルムで形成されていることにより、内側からの圧力に応じて容積を変化させることができる。内側ケース142は、金属ケース141よりも剛性が低い。
(5) Configuration of Inner Case 142 As shown in FIG. 9, the inner case 142 is disposed inside the metal case 141. The inner case 142 is formed of a flexible film. The film is made of a synthetic resin. The film has a property of not allowing liquid to permeate. Since the inner case 142 is formed of a flexible film, the volume can be changed according to the pressure from the inner side. The inner case 142 is less rigid than the metal case 141.
 内側ケース142は、1対の電極シート146、147と、3つのセパレータ148A、148B、148Cを収容する。さらに、内側ケース142は、1対のリードタブ1441、1451の一部を収容する。1対のリードタブ1441、1451は、1対の電極シート146、147に接続されている。1対のリードタブ1441、1451の一部は、内側ケース142の外部に配置される。内側ケース142は、1対のリードタブ1441、1451が貫通した状態で、密閉性を有する。内側ケース142には、電解質149が封入されている。 The inner case 142 accommodates a pair of electrode sheets 146 and 147 and three separators 148A, 148B and 148C. Further, the inner case 142 accommodates a part of the pair of lead tabs 1441 and 1451. The pair of lead tabs 1441 and 1451 are connected to the pair of electrode sheets 146 and 147. A part of the pair of lead tabs 1441 and 1451 is disposed outside the inner case 142. The inner case 142 has a sealing property with a pair of lead tabs 1441 and 1451 penetrating therethrough. An electrolyte 149 is sealed in the inner case 142.
 内側ケース142は、X方向において、金属ケース部品1411の内面14111aと面接触する。内側ケース142が内面14111aと面接触している状態において、内側ケース142は、金属ケース部品1412の内面14121aからX方向(X+方向)に離れている。 The inner case 142 is in surface contact with the inner surface 14111a of the metal case component 1411 in the X direction. In a state where the inner case 142 is in surface contact with the inner surface 14111a, the inner case 142 is separated from the inner surface 14121a of the metal case component 1412 in the X direction (X + direction).
 (6)1対の電極シート146、147の構成
 負極シート146および正極シート147は、それぞれ、矩形のシート状である。負極シート146および正極シート147は、広げられつつ積層された状態で、内側ケース142に収容されている。負極シート146と正極シート147は、X方向に積層されている。負極シート146および正極シート147は、それぞれ、X方向に垂直な方向に沿っている。つまり、負極シート146と正極シート147は、互いに平行またはほぼ平行に配置されている。
(6) Configuration of a pair of electrode sheets 146 and 147 The negative electrode sheet 146 and the positive electrode sheet 147 each have a rectangular sheet shape. The negative electrode sheet 146 and the positive electrode sheet 147 are accommodated in the inner case 142 in a state of being laminated while being spread. The negative electrode sheet 146 and the positive electrode sheet 147 are laminated in the X direction. The negative electrode sheet 146 and the positive electrode sheet 147 are each along a direction perpendicular to the X direction. That is, the negative electrode sheet 146 and the positive electrode sheet 147 are arranged in parallel or substantially parallel to each other.
 負極シート146のY方向の長さは、負極シート146のZ方向の長さよりも大きい。負極シート146のX方向の長さ(厚み)は、負極シート146のZ方向の長さよりも小さい。X方向に見て、正極シート147の大きさは、負極シート146の大きさと同じであってもよく、異なっていてもよい。正極シート147のY方向の長さは、正極シート147のZ方向の長さよりも大きい。正極シート147のX方向の長さ(厚み)は、正極シート147のZ方向の長さよりも小さい。 The length of the negative electrode sheet 146 in the Y direction is larger than the length of the negative electrode sheet 146 in the Z direction. The length (thickness) of the negative electrode sheet 146 in the X direction is smaller than the length of the negative electrode sheet 146 in the Z direction. When viewed in the X direction, the size of the positive electrode sheet 147 may be the same as or different from the size of the negative electrode sheet 146. The length of the positive electrode sheet 147 in the Y direction is larger than the length of the positive electrode sheet 147 in the Z direction. The length (thickness) of the positive electrode sheet 147 in the X direction is smaller than the length of the positive electrode sheet 147 in the Z direction.
 正極シート147は、集電体と、集電体を覆う正極膜とを含む。集電体は、アルミニウムを含む金属材料で形成されている。正極膜は、正極活物質と、バインダとを含む。バインダは、例えば、ポリフッ化ビニリデンである。金属ケース型二次セル14がリチウムイオンセルの場合、正極活物質は、リチウムと遷移金属の複合酸化物を含む。具体的には、例えば、正極活物質は、コバルト酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、リチウムとニッケルとマンガンとコバルトとを含む酸化物、リチウムとニッケルとコバルトとアルミニウムとを含む酸化物のうち、いずれか少なくとも1つを含んでもよい。なお、正極シート147は、二次セルに使用できる構成であれば、上記以外の構成であってもよい。 The positive electrode sheet 147 includes a current collector and a positive electrode film covering the current collector. The current collector is formed of a metal material containing aluminum. The positive electrode film includes a positive electrode active material and a binder. The binder is, for example, polyvinylidene fluoride. When the metal case type secondary cell 14 is a lithium ion cell, the positive electrode active material includes a composite oxide of lithium and a transition metal. Specifically, for example, the positive electrode active material includes lithium cobalt oxide, lithium manganate, lithium iron phosphate, an oxide containing lithium, nickel, manganese, and cobalt, and an oxide containing lithium, nickel, cobalt, and aluminum. Any one of them may be included. Note that the positive electrode sheet 147 may have a configuration other than the above as long as it can be used for the secondary cell.
 負極シート146は、集電体と、集電体を覆う負極膜とを含む。集電体は、銅を含む金属材料で形成されている。負極膜は、負極活物質と、バインダとを含む。バインダは、例えば、ポリフッ化ビニリデンである。負極活物質は、例えば、炭素を含む。具体的には、例えば、負極活物質は、黒鉛、ソフトカーボン、ハードカーボンのうち、いずれか少なくとも1つを含んでいてもよい。負極活物質は、炭素を含まなくてもよい。この場合、負極活物質は、例えば、チタン酸リチウムを含んでいてもよい。なお、負極シート146は、二次セルに使用できる構成であれば、上記以外の構成であってもよい。 The negative electrode sheet 146 includes a current collector and a negative electrode film that covers the current collector. The current collector is made of a metal material containing copper. The negative electrode film includes a negative electrode active material and a binder. The binder is, for example, polyvinylidene fluoride. The negative electrode active material includes, for example, carbon. Specifically, for example, the negative electrode active material may include at least one of graphite, soft carbon, and hard carbon. The negative electrode active material may not contain carbon. In this case, the negative electrode active material may contain, for example, lithium titanate. Note that the negative electrode sheet 146 may have a configuration other than the above as long as it can be used for the secondary cell.
 (7)電解質の構成
 電解質149は、電解液である。金属ケース型二次セル14がリチウムイオンセルの場合、電解液は、例えば、有機溶媒にリチウム塩を溶解させた有機電解液である。有機溶媒は、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。リチウム塩は、例えば、ヘキサフルオロリン酸リチウム、ホウフッ化リチウム、過塩素酸リチウムである。電解質149は、上記の有機電解液に対して、ポリマーを加えることにより、ゲル化したものであってもよい。ポリマーは、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリフッ化ビニリデンである。
(7) Structure of electrolyte The electrolyte 149 is an electrolytic solution. When the metal case type secondary cell 14 is a lithium ion cell, the electrolytic solution is, for example, an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent. The organic solvent is, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate. Examples of the lithium salt include lithium hexafluorophosphate, lithium borofluoride, and lithium perchlorate. The electrolyte 149 may be gelled by adding a polymer to the organic electrolytic solution. Examples of the polymer include polyethylene oxide, polypropylene oxide, and polyvinylidene fluoride.
 (8)セパレータ148A、148B、148Cの構成
 セパレータ148A、148B、148Cは、それぞれ、矩形のシート状である。セパレータ148A、148B、148Cは、同じ形状および大きさを有する。セパレータ148A、148B、148Cは、それぞれ、X方向に垂直な方向に沿っている。セパレータ148A、148B、148Cと、1対の電極シート146、147は、平行またはほぼ平行に配置されている。
(8) Configuration of Separator 148A, 148B, 148C Each of the separators 148A, 148B, 148C has a rectangular sheet shape. Separator 148A, 148B, 148C has the same shape and size. The separators 148A, 148B, and 148C are along the direction perpendicular to the X direction. The separators 148A, 148B, 148C and the pair of electrode sheets 146, 147 are arranged in parallel or substantially in parallel.
 セパレータ148Aは、負極シート146と金属ケース部品1412との間に配置されている。セパレータ148Bは、負極シート146と正極シート147の間に配置されている。セパレータ148Cは、正極シート147と金属ケース部品1411との間に配置されている。X方向に見て、セパレータ148A、148B、148Cは、それぞれ、負極シート146の全体に重なる。X方向に見て、セパレータ148A、148B、148Cは、それぞれ、正極シート147の全体に重なる。セパレータ148Aとセパレータ148Cは無くてもよい。 The separator 148 </ b> A is disposed between the negative electrode sheet 146 and the metal case component 1412. The separator 148 </ b> B is disposed between the negative electrode sheet 146 and the positive electrode sheet 147. The separator 148 </ b> C is disposed between the positive electrode sheet 147 and the metal case component 1411. When viewed in the X direction, the separators 148A, 148B, and 148C overlap the entire negative electrode sheet 146, respectively. When viewed in the X direction, the separators 148A, 148B, and 148C overlap the entire positive electrode sheet 147, respectively. Separator 148A and separator 148C may be omitted.
 セパレータ148A、148B、148Cは、同じ材料で形成されている。セパレータ148A、148B、148Cは、例えば、ポリプロピレンで形成されている。セパレータ148A、148B、148Cの構造は、液体を保持可能な構造である。セパレータ148A、148B、148Cの構造は、例えば、複数の微細孔を有する多孔構造である。 The separators 148A, 148B, 148C are formed of the same material. The separators 148A, 148B, 148C are made of, for example, polypropylene. The structures of the separators 148A, 148B, and 148C are structures that can hold a liquid. The structure of the separators 148A, 148B, and 148C is, for example, a porous structure having a plurality of fine holes.
 液状の電解質149は、セパレータ148A、148B、148Cの内部に浸み込んでいる。負極シート146は、セパレータ148Bまたは/およびセパレータ148Cと接することで電解質149に接触していてもよい。負極シート146は、セパレータ148Bと負極シート146との隙間または/およびセパレータ148Cと負極シート146との隙間に存在する電解質149に接触していてもよい。正極シート147は、セパレータ148Aまたは/およびセパレータ148Bと接することで電解質149に接触していてもよい。正極シート147は、セパレータ148Aと正極シート147との隙間または/およびセパレータ148Bと正極シート147との隙間に存在する電解質149に接触していてもよい。このように、内側ケース142内において、1対の電極シート146、147は、電解質149に接触している。 The liquid electrolyte 149 is immersed in the separators 148A, 148B, and 148C. The negative electrode sheet 146 may be in contact with the electrolyte 149 by being in contact with the separator 148B or / and the separator 148C. The negative electrode sheet 146 may be in contact with the electrolyte 149 present in the gap between the separator 148B and the negative electrode sheet 146 and / or the gap between the separator 148C and the negative electrode sheet 146. The positive electrode sheet 147 may be in contact with the electrolyte 149 by being in contact with the separator 148A or / and the separator 148B. The positive electrode sheet 147 may be in contact with the electrolyte 149 present in the gap between the separator 148A and the positive electrode sheet 147 or / and the gap between the separator 148B and the positive electrode sheet 147. Thus, in the inner case 142, the pair of electrode sheets 146 and 147 are in contact with the electrolyte 149.
 (9)1対のセル端子144、145の構成
 1対のセル端子144、145は、1対の電極シート146、147のY方向の両側に配置される。セル端子144は、負極シート146に電気的に接続され、セル端子145は、正極シート147に電気的に接続される。上述したように、セル端子144は、リードタブ1441と、外部端子1442とを有し、セル端子145は、リードタブ1451と、外部端子1452とを有する。
(9) Configuration of a pair of cell terminals 144 and 145 The pair of cell terminals 144 and 145 are disposed on both sides of the pair of electrode sheets 146 and 147 in the Y direction. The cell terminal 144 is electrically connected to the negative electrode sheet 146, and the cell terminal 145 is electrically connected to the positive electrode sheet 147. As described above, the cell terminal 144 has the lead tab 1441 and the external terminal 1442, and the cell terminal 145 has the lead tab 1451 and the external terminal 1452.
 (9-1)1対のリードタブ1441、1451の構成
 1対のリードタブ1441、1451は、1対の電極シート146、147のY方向の両端部に接続されている。リードタブ1441、1451は、矩形のシート状である。1対のリードタブ1441、1451は、1対の電極シート146、147のZ方向の中央部に接続されている(図8参照)。
(9-1) Configuration of a pair of lead tabs 1441, 1451 The pair of lead tabs 1441, 1451 are connected to both ends of the pair of electrode sheets 146, 147 in the Y direction. The lead tabs 1441 and 1451 have a rectangular sheet shape. The pair of lead tabs 1441 and 1451 are connected to the center portion in the Z direction of the pair of electrode sheets 146 and 147 (see FIG. 8).
 リードタブ1441は、負極シート146の集電体に接続されている。本発明の実施形態の具体例では、リードタブ1441は、負極シート146の集電体と一体的に形成されている。リードタブ1441は、銅を含む金属材料で形成されている。 The lead tab 1441 is connected to the current collector of the negative electrode sheet 146. In the specific example of the embodiment of the present invention, the lead tab 1441 is formed integrally with the current collector of the negative electrode sheet 146. The lead tab 1441 is formed of a metal material containing copper.
 リードタブ1451は、正極シート147の集電体に接続されている。本発明の実施形態の具体例では、リードタブ1451は、正極シート147の集電体と一体的に形成されている。リードタブ1451は、アルミニウムを含む金属材料で形成されている。 The lead tab 1451 is connected to the current collector of the positive electrode sheet 147. In the specific example of the embodiment of the present invention, the lead tab 1451 is formed integrally with the current collector of the positive electrode sheet 147. The lead tab 1451 is formed of a metal material containing aluminum.
 図7、図8および図9に示すように、リードタブ1441の一部は、内側ケース142からY-方向に突出している。リードタブ1441の一部は、絶縁キャップ本体1431Aの1対の厚肉部14312、14312の間に配置される。X方向に見た場合、リードタブ1441の一部は、絶縁キャップ本体1431Aの薄肉部14311に重なる。 As shown in FIG. 7, FIG. 8, and FIG. 9, a part of the lead tab 1441 protrudes from the inner case 142 in the Y-direction. A part of the lead tab 1441 is disposed between the pair of thick portions 14312 and 14312 of the insulating cap body 1431A. When viewed in the X direction, a part of the lead tab 1441 overlaps the thin portion 14311 of the insulating cap body 1431A.
 リードタブ1451の一部は、内側ケース142からY+方向に突出している。つまり、リードタブ1451の一部は、リードタブ1441の一部が内側ケース142から突出する方向と逆方向に突出している。リードタブ1451の一部は、絶縁キャップ本体1431Bの1対の厚肉部14312、14312の間に配置される。X方向に見た場合、リードタブ1451の一部は、絶縁キャップ本体1431Bの薄肉部14311に重なる。 A part of the lead tab 1451 protrudes from the inner case 142 in the Y + direction. That is, a part of the lead tab 1451 protrudes in a direction opposite to the direction in which a part of the lead tab 1441 protrudes from the inner case 142. A part of the lead tab 1451 is disposed between the pair of thick portions 14312 and 14312 of the insulating cap body 1431B. When viewed in the X direction, a part of the lead tab 1451 overlaps the thin portion 14311 of the insulating cap body 1431B.
 (9-2)1対の外部端子1442、1452の構成
 図8および図9に示すように、1対の外部端子1442、1452は、内側ケース142の外部に配置される。1対の外部端子1442、1452は、絶縁キャップ部143に設置される。より詳細には、1対の外部端子1442、1452は、1対の絶縁キャップ本体1431A、1431Bに設置される。外部端子1442は、金属ケース型二次セル14のY-方向の端面の一部を構成し、外部端子1452は、金属ケース型二次セル14のY+方向の端面の一部を構成する。金属ケース141のY方向の両端の開口部は、1対の絶縁キャップ143A、143Bと1対の外部端子1442、1452によって塞がれている。但し、金属ケース141は、内側ケース142ほどの高い密閉性を確保できなくてよい。金属ケース141の内部で且つ内側ケース142の外部の空間は、金属ケース141の外部の空間と、空気が連通可能であってもよい。
(9-2) Configuration of a Pair of External Terminals 1442 and 1452 As shown in FIGS. 8 and 9, the pair of external terminals 1442 and 1452 is disposed outside the inner case 142. The pair of external terminals 1442 and 1452 are installed on the insulating cap portion 143. More specifically, the pair of external terminals 1442 and 1452 are installed on the pair of insulating cap bodies 1431A and 1431B. The external terminal 1442 constitutes a part of the end surface in the Y-direction of the metal case type secondary cell 14, and the external terminal 1452 constitutes a part of the end face in the Y + direction of the metal case type secondary cell 14. Openings at both ends in the Y direction of the metal case 141 are closed by a pair of insulating caps 143A and 143B and a pair of external terminals 1442 and 1452. However, the metal case 141 may not be able to ensure as high a sealing property as the inner case 142. The space inside the metal case 141 and outside the inner case 142 may allow air to communicate with the space outside the metal case 141.
 外部端子1442は、リードタブ1441に接続される。外部端子1442は、リードタブ1441と別部材である。外部端子1452は、リードタブ1451に接続される。外部端子1452は、リードタブ1451と別部材である。外部端子1442および外部端子1452は、それぞれ、金属材料で形成されている。外部端子1442は、銅を含む金属材料で形成されている。一方、外部端子1452は、アルミニウムを含む金属材料で形成されている。 External terminal 1442 is connected to lead tab 1441. The external terminal 1442 is a separate member from the lead tab 1441. The external terminal 1452 is connected to the lead tab 1451. The external terminal 1452 is a separate member from the lead tab 1451. External terminal 1442 and external terminal 1452 are each formed of a metal material. External terminal 1442 is formed of a metal material containing copper. On the other hand, the external terminal 1452 is formed of a metal material containing aluminum.
 外部端子1442および外部端子1452は、互いに同じ形状および大きさを有している。以下では、外部端子1442について説明し、外部端子1452についての説明は省略する。 External terminal 1442 and external terminal 1452 have the same shape and size. Hereinafter, the external terminal 1442 will be described, and the description of the external terminal 1452 will be omitted.
 図15に示すように、外部端子1442は、Z+方向に見てL字状である。外部端子1442は、中間接続部14421と、外部接続部14422とを有する。外部端子1442は、1つの部品で構成される。つまり、中間接続部14421と外部接続部14422は、一体的に形成されている。 As shown in FIG. 15, the external terminal 1442 is L-shaped when viewed in the Z + direction. The external terminal 1442 includes an intermediate connection portion 14421 and an external connection portion 14422. The external terminal 1442 is composed of one component. That is, the intermediate connection portion 14421 and the external connection portion 14422 are integrally formed.
 中間接続部14421は、矩形の平坦な板形状である。中間接続部14421は、X方向に垂直な方向に沿って配置されている。中間接続部14421の厚み方向は、X方向である。つまり、中間接続部14421のX方向の長さ(厚み)は、中間接続部14421のY方向の長さおよびZ方向の長さよりも小さい。 The intermediate connection portion 14421 has a rectangular flat plate shape. The intermediate connection portion 14421 is disposed along a direction perpendicular to the X direction. The thickness direction of the intermediate connection portion 14421 is the X direction. That is, the length (thickness) of the intermediate connection portion 14421 in the X direction is smaller than the length of the intermediate connection portion 14421 in the Y direction and the length in the Z direction.
 外部接続部14422は、中間接続部14421のY-方向の端に接続されている。外部接続部14422のZ方向の長さは、中間接続部14421のZ方向の長さよりも大きい。中間接続部14421は、外部接続部14422のZ方向の中央部に接続されている。中間接続部14421は、外部接続部14422のX-方向の端に接続されている。 The external connection portion 14422 is connected to the Y-direction end of the intermediate connection portion 14421. The length of the external connection portion 14422 in the Z direction is larger than the length of the intermediate connection portion 14421 in the Z direction. The intermediate connection portion 14421 is connected to the center portion in the Z direction of the external connection portion 14422. The intermediate connection portion 14421 is connected to the X-direction end of the external connection portion 14422.
 外部接続部14422は、矩形の平坦な板形状である。外部接続部14422は、Y方向に垂直な方向に沿って配置されている。外部接続部14422の厚み方向は、Y方向である。つまり、外部接続部14422のY方向の長さ(厚み)は、外部接続部14422のX方向の長さおよびZ方向の長さよりも小さい。外部接続部14422は、Y-方向を向いた面14422aを有する。つまり、面14422aは、1対の電極シート146、147の積層方向(X方向)に垂直な方向を向いている。以下、面14422aを、接続面14422aという。接続面14422aは、Y方向に垂直である。接続面14422aは、本発明の実施形態の接続面144aの一例である。 The external connection portion 14422 has a rectangular flat plate shape. The external connection portion 14422 is disposed along a direction perpendicular to the Y direction. The thickness direction of the external connection portion 14422 is the Y direction. That is, the length (thickness) of the external connection portion 14422 in the Y direction is smaller than the length of the external connection portion 14422 in the X direction and the length in the Z direction. The external connection portion 14422 has a surface 14422a facing the Y-direction. That is, the surface 14422a faces a direction perpendicular to the stacking direction (X direction) of the pair of electrode sheets 146 and 147. Hereinafter, the surface 14422a is referred to as a connection surface 14422a. The connection surface 14422a is perpendicular to the Y direction. The connection surface 14422a is an example of the connection surface 144a according to the embodiment of the present invention.
 図7および図8に示すように、中間接続部14421のZ方向の長さは、リードタブ1441のZ方向の長さと同じかほぼ同じである。外部接続部14422のZ方向の長さは、絶縁キャップ本体1431AのZ方向の最大長さよりも小さい。外部接続部14422のX方向の長さは、絶縁キャップ本体1431AのX方向の最大長さよりも小さい。 7 and 8, the length of the intermediate connecting portion 14421 in the Z direction is the same as or substantially the same as the length of the lead tab 1441 in the Z direction. The length of the external connection portion 14422 in the Z direction is smaller than the maximum length of the insulating cap body 1431A in the Z direction. The length of the external connection portion 14422 in the X direction is smaller than the maximum length of the insulating cap body 1431A in the X direction.
 図6、図8および図9に示すように、外部端子1442は、絶縁キャップ本体1431Aに設置される。図9に示すように、中間接続部14421は、絶縁キャップ本体1431Aの1対の厚肉部14312、14312の間に配置されて、薄肉部14311の面14311aと接触する。外部接続部14422は、絶縁キャップ本体1431Aの1対の厚肉部14312、14312のY-方向を向いた面と接触する。外部接続部14422の接続面14422aは、金属ケース141の外部に露出する。外部接続部14422の接続面14422aは、金属ケース型二次セル14のY方向(Y-方向)の端部に配置される。 As shown in FIGS. 6, 8, and 9, the external terminal 1442 is installed on the insulating cap body 1431A. As shown in FIG. 9, the intermediate connection portion 14421 is disposed between the pair of thick portions 14312 and 14312 of the insulating cap main body 1431 </ b> A and contacts the surface 14311 a of the thin portion 14311. The external connection portion 14422 contacts the surface of the pair of thick portions 14312 and 14312 of the insulating cap main body 1431A facing in the Y-direction. A connection surface 14422 a of the external connection portion 14422 is exposed to the outside of the metal case 141. The connection surface 14422a of the external connection portion 14422 is disposed at the end of the metal case type secondary cell 14 in the Y direction (Y-direction).
 外部端子1442は、絶縁キャップ本体1431Aに取り付けられる。外部端子1442は、図7に示すネジ26を用いて、絶縁キャップ本体1431Aにねじ止めされる。ねじ止めの具体的な手順は、以下のとおりである。 External terminal 1442 is attached to insulating cap body 1431A. The external terminal 1442 is screwed to the insulating cap body 1431A using the screw 26 shown in FIG. The specific procedure for screwing is as follows.
 外部端子1442の中間接続部14421が、絶縁キャップ本体1431Aの1対の厚肉部14312、14312の間に、Y方向に挿し込まれる(図9参照)。外部端子1442の外部接続部14422が1対の厚肉部14312、14312に接触するまで、挿し込まれる。そして、外部接続部14422の外部接続部14422が、図7に示すネジ26を用いて、絶縁キャップ本体1431Aの1対の厚肉部14312、14312にねじ止めされる。 The intermediate connection portion 14421 of the external terminal 1442 is inserted in the Y direction between the pair of thick portions 14312 and 14312 of the insulating cap body 1431A (see FIG. 9). The external terminal 1442 is inserted until the external connection portion 14422 contacts the pair of thick portions 14312 and 14312. Then, the external connection portion 14422 of the external connection portion 14422 is screwed to the pair of thick portions 14312 and 14312 of the insulating cap body 1431A using the screw 26 shown in FIG.
 図9に示すように、外部端子1442の中間接続部14421は、リードタブ1441の一部に対して、X方向に面接触する。外部端子1442の中間接続部14421は、リードタブ1441に接続されている。具体的には、溶接によって接着されている。 As shown in FIG. 9, the intermediate connection portion 14421 of the external terminal 1442 is in surface contact with a part of the lead tab 1441 in the X direction. An intermediate connection portion 14421 of the external terminal 1442 is connected to the lead tab 1441. Specifically, it is bonded by welding.
 外部端子1442と同様に、外部端子1452は、中間接続部14521と、外部接続部14522とを有する。外部接続部14422と同様に、外部接続部14522は、接続面14522aを有する。接続面14422aと同様に、接続面14522aは、金属ケース141の外部に露出する。接続面14522aは、金属ケース型二次セル14のY方向(Y+方向)の端部に配置される。接続面14522aは、本発明の実施形態の接続面145aの一例である。外部端子1452は、図7に示すネジ26を用いて、絶縁キャップ本体1431Bにねじ止めされる。外部端子1442と同様に、外部端子1452の中間接続部14521は、リードタブ1451に接続されている。 Similarly to the external terminal 1442, the external terminal 1452 has an intermediate connection portion 14521 and an external connection portion 14522. Similar to the external connection portion 14422, the external connection portion 14522 has a connection surface 14522a. Similar to the connection surface 14422a, the connection surface 14522a is exposed to the outside of the metal case 141. The connection surface 14522a is disposed at the end of the metal case type secondary cell 14 in the Y direction (Y + direction). The connection surface 14522a is an example of the connection surface 145a according to the embodiment of the present invention. The external terminal 1452 is screwed to the insulating cap body 1431B using the screw 26 shown in FIG. Similar to the external terminal 1442, the intermediate connection portion 14521 of the external terminal 1452 is connected to the lead tab 1451.
 (10)複数の金属ケース型二次セル14の積層構造
 上述したように、複数の金属ケース型二次セル14は、X方向に積層されている。上述したように、X方向に隣り合う2つの金属ケース型二次セル14の向きは、X方向の軸回りに180°異なる。したがって、X方向に隣り合う2つの金属ケース型二次セル14の一方が有するセル端子144は、他方が有するセル端子145とX方向に隣り合う。これは、複数の金属ケース型二次セル14のうち、X方向に隣り合ういずれの2つの金属ケース型二次セル14にも当てはまる。
(10) Laminated structure of the plurality of metal case type secondary cells 14 As described above, the plurality of metal case type secondary cells 14 are laminated in the X direction. As described above, the directions of the two metal case type secondary cells 14 adjacent to each other in the X direction are different by 180 ° around the axis in the X direction. Therefore, the cell terminal 144 included in one of the two metal case-type secondary cells 14 adjacent in the X direction is adjacent to the cell terminal 145 included in the other in the X direction. This applies to any two metal case type secondary cells 14 adjacent in the X direction among the plurality of metal case type secondary cells 14.
 X方向に隣り合う2つの金属ケース型二次セル14の一方が有する絶縁キャップ部143は、他方が有する絶縁キャップ部143に対してX方向に接触する。X方向に隣り合う2つの金属ケース型二次セル14の一方が有する絶縁キャップ143Aは、他方が有する絶縁キャップ143Bに対してX方向に接触する。これは、複数の金属ケース型二次セル14のうち、X方向に隣り合ういずれの2つの金属ケース型二次セル14にも当てはまる。 The insulating cap part 143 included in one of the two metal case type secondary cells 14 adjacent in the X direction is in contact with the insulating cap part 143 included in the other in the X direction. The insulating cap 143A included in one of the two metal case-type secondary cells 14 adjacent in the X direction is in contact with the insulating cap 143B included in the other in the X direction. This applies to any two metal case type secondary cells 14 adjacent in the X direction among the plurality of metal case type secondary cells 14.
 図16に示すように、X方向に隣り合う2つの絶縁キャップ部143の一方が有する少なくとも1つの凸部14312cは、他方が有する少なくとも1つの凹部14312dに嵌め込まれる。これは、複数の金属ケース型二次セル14が有する複数の絶縁キャップ部143のうち、X方向に隣り合ういずれの2つの絶縁キャップ部143にも当てはまる。X方向に隣り合う2つの絶縁キャップ部143の一方が有する4つの凸部14312cは、他方の絶縁キャップ部143が有する4つの凹部14312dに嵌め込まれている。つまり、絶縁キャップ143Aが有する1対の凸部14312c、14312cは、絶縁キャップ143AとX方向に隣り合う絶縁キャップ143Bが有する1対の凹部14312d、14312dに嵌め込まれている。それにより、複数の金属ケース型二次セル14がY方向およびZ方向に位置ずれするのを防止できる。 As shown in FIG. 16, at least one convex portion 14312c included in one of two insulating cap portions 143 adjacent in the X direction is fitted into at least one concave portion 14312d included in the other. This applies to any two insulating cap portions 143 adjacent in the X direction among the plurality of insulating cap portions 143 included in the plurality of metal case type secondary cells 14. Four convex portions 14312c included in one of the two insulating cap portions 143 adjacent in the X direction are fitted into four concave portions 14312d included in the other insulating cap portion 143. That is, the pair of convex portions 14312c and 14312c included in the insulating cap 143A is fitted into the pair of concave portions 14312d and 14312d included in the insulating cap 143B adjacent to the insulating cap 143A in the X direction. Thereby, it is possible to prevent the plurality of metal case-type secondary cells 14 from being displaced in the Y direction and the Z direction.
 上述したように、凹部14312dのX方向の長さ(深さ)は、凸部14312cのX方向の長さよりも小さい。そのため、X方向に隣り合う2つの絶縁キャップ部143の接触箇所は、4つの凸部14312cと4つの凹部14312dだけである。 As described above, the length (depth) of the concave portion 14312d in the X direction is smaller than the length of the convex portion 14312c in the X direction. Therefore, the contact portions of the two insulating cap portions 143 adjacent in the X direction are only the four convex portions 14312c and the four concave portions 14312d.
 図16に示すように、複数の金属ケース型二次セル14の各々が有する絶縁キャップ部143に形成された少なくとも1つの貫通孔14312eに、ボルト16(軸部材)が挿入されている。貫通孔14312eは、凸部14312cと凹部14312dを通る位置に形成されている。図3、図4および図5に示すように、複数の金属ケース型二次セル14の各々が有する絶縁キャップ部143に形成された4つの貫通孔14312eに、それぞれ、ボルト16が挿入されている。それにより、複数の金属ケース型二次セル14がY方向およびZ方向に位置ずれするのを防止できる。各ボルト16の先端には、ナット18が取り付けられている。それにより、複数の金属ケース型二次セル14は固定される。よって、複数の金属ケース型二次セル14を一体的に取り扱うことができる。 As shown in FIG. 16, a bolt 16 (shaft member) is inserted into at least one through-hole 14312e formed in the insulating cap portion 143 included in each of the plurality of metal case type secondary cells 14. The through hole 14312e is formed at a position passing through the convex portion 14312c and the concave portion 14312d. As shown in FIGS. 3, 4, and 5, bolts 16 are respectively inserted into four through holes 14312 e formed in the insulating cap portion 143 included in each of the plurality of metal case type secondary cells 14. . Thereby, it is possible to prevent the plurality of metal case-type secondary cells 14 from being displaced in the Y direction and the Z direction. A nut 18 is attached to the tip of each bolt 16. Thereby, the plurality of metal case type secondary cells 14 are fixed. Therefore, a plurality of metal case type secondary cells 14 can be handled integrally.
 図3、図4および図5に示すように、X方向に隣り合う2つの金属ケース型二次セル14の一方が有する金属ケース141は、他方が有する金属ケース141に対してX方向に離れている。これは、複数の金属ケース型二次セル14が有する複数の金属ケース141のうち、X方向に隣り合ういずれの2つの金属ケース141にも当てはまる。組電池10を使用する際、X方向に隣り合う2つの金属ケース型二次セル14の隙間が鉛直方向に延びるように、組電池10を配置することが好ましい。これにより、複数の金属ケース型二次セル14の各々の放熱性が向上する。 As shown in FIGS. 3, 4, and 5, the metal case 141 included in one of the two metal case-type secondary cells 14 adjacent in the X direction is separated from the metal case 141 included in the other in the X direction. Yes. This applies to any two metal cases 141 adjacent to each other in the X direction among the plurality of metal cases 141 included in the plurality of metal case type secondary cells 14. When using the assembled battery 10, it is preferable to arrange the assembled battery 10 so that a gap between two metal case-type secondary cells 14 adjacent in the X direction extends in the vertical direction. Thereby, the heat dissipation of each of the plurality of metal case type secondary cells 14 is improved.
 (11)複数の金属ケース型二次セル14の電気的接続構造
 複数の金属ケース型二次セル14は、電気的に直列に接続されている。以下、詳細に説明する。図3に示すように、複数の金属ケース型二次セル14のうち、X+方向の端に配置された金属ケース型二次セル14が有する絶縁キャップ本体1431Aは、Y-方向側にある。したがって、複数の金属ケース型二次セル14のうち、X+方向の端に配置された金属ケース型二次セル14が有するセル端子144も、Y-方向側にある。複数の金属ケース型二次セル14のうち、X+方向の端に配置された金属ケース型二次セル14が有するセル端子144は、バスバー19に電気的に接続されている。バスバー19は、セル端子144の接続面14422aに接触している。この接続面14422aは、Y-方向を向いている。バスバー19は、外部端子1442を絶縁キャップ本体1431Aに取り付けるネジ26を利用して、外部端子1442に取り付けられる。バスバー19は、銅を含む金属材料で形成されている。
(11) Electrical connection structure of multiple metal case type secondary cells 14 The multiple metal case type secondary cells 14 are electrically connected in series. Details will be described below. As shown in FIG. 3, among the plurality of metal case type secondary cells 14, the insulating cap main body 1431A of the metal case type secondary cell 14 disposed at the end in the X + direction is on the Y-direction side. Accordingly, among the plurality of metal case type secondary cells 14, the cell terminal 144 of the metal case type secondary cell 14 disposed at the end in the X + direction is also on the Y-direction side. Among the plurality of metal case type secondary cells 14, the cell terminals 144 of the metal case type secondary cells 14 arranged at the end in the X + direction are electrically connected to the bus bar 19. The bus bar 19 is in contact with the connection surface 14422a of the cell terminal 144. The connection surface 14422a faces the Y-direction. The bus bar 19 is attached to the external terminal 1442 using a screw 26 that attaches the external terminal 1442 to the insulating cap body 1431A. The bus bar 19 is formed of a metal material containing copper.
 図4に示すように、バスバー19は、Z方向に見てL字状の板形状である。バスバー19は、Y-方向に突出する母線接続部19aを有する。母線接続部19aは、負極母線22に接続されている。母線接続部19aは、例えば溶接によって負極母線22に接着されている。負極母線22は、組電池端子12に電気的に接続されている。 As shown in FIG. 4, the bus bar 19 has an L-shaped plate shape when viewed in the Z direction. The bus bar 19 has a busbar connection portion 19a protruding in the Y-direction. The bus connection part 19 a is connected to the negative electrode bus 22. The bus bar connecting portion 19a is bonded to the negative electrode bus bar 22 by welding, for example. The negative electrode bus 22 is electrically connected to the assembled battery terminal 12.
 図3に示すように、複数の金属ケース型二次セル14のうち、X-方向の端に配置された金属ケース型二次セル14が有する絶縁キャップ本体1431Bは、Y+方向側にある。したがって、複数の金属ケース型二次セル14のうち、X-方向の端に配置された金属ケース型二次セル14が有するセル端子145も、Y+方向側にある。複数の金属ケース型二次セル14のうち、X―方向の端に配置された金属ケース型二次セル14が有するセル端子145は、バスバー21に電気的に接続されている。バスバー21は、セル端子145の接続面14522aに接触している。この接続面14522aは、Y+方向を向いている。バスバー21は、外部端子1452を絶縁キャップ本体1431Bに取り付けるネジ26を利用して、外部端子1452に取り付けられる。バスバー21は、アルミニウムを含む金属材料で形成されている。 As shown in FIG. 3, among the plurality of metal case type secondary cells 14, the insulating cap body 1431B of the metal case type secondary cell 14 disposed at the end in the X-direction is on the Y + direction side. Therefore, among the plurality of metal case type secondary cells 14, the cell terminal 145 of the metal case type secondary cell 14 disposed at the end in the X-direction is also on the Y + direction side. Among the plurality of metal case type secondary cells 14, the cell terminals 145 of the metal case type secondary cells 14 arranged at the end in the X-direction are electrically connected to the bus bar 21. The bus bar 21 is in contact with the connection surface 14522a of the cell terminal 145. The connection surface 14522a faces the Y + direction. The bus bar 21 is attached to the external terminal 1452 using a screw 26 that attaches the external terminal 1452 to the insulating cap body 1431B. Bus bar 21 is formed of a metal material containing aluminum.
 図5に示すように、バスバー21は、Z方向に見てL字状の板形状である。バスバー21は、Y+方向に突出する母線接続部21aを有する。母線接続部21aは、正極母線23に接続されている。母線接続部21aは、例えば溶接によって正極母線23に接着されている。正極母線23は、組電池端子13に電気的に接続されている。 As shown in FIG. 5, the bus bar 21 has an L-shaped plate shape when viewed in the Z direction. The bus bar 21 has a busbar connection portion 21a protruding in the Y + direction. The bus connection part 21 a is connected to the positive electrode bus 23. The bus bar connecting portion 21a is bonded to the positive electrode bus bar 23 by welding, for example. The positive electrode bus 23 is electrically connected to the assembled battery terminal 13.
 図3、図4および図5に示すように、複数の金属ケース型二次セル14が有する複数のセル端子144のうち、バスバー19に接続されたセル端子144以外のセル端子144は、それぞれ、バスバー20に電気的に接続されている。複数の金属ケース型二次セル14が有する複数のセル端子145のうち、バスバー21に接続されたセル端子145以外のセル端子145は、それぞれ、バスバー20に電気的に接続されている。各バスバー20は、X方向に隣り合う2つの金属ケース型二次セル14の一方が有するセル端子144と、他方が有するセル端子145に接続される。各バスバー20は、X方向に隣り合う2つの金属ケース型二次セル14の一方が有するセル端子144の接続面14422aと、他方が有するセル端子145の接続面14522aに接触している。複数の金属ケース型二次セル14は、バスバー20によって電気的に直列に接続されている。 As shown in FIGS. 3, 4, and 5, among the plurality of cell terminals 144 included in the plurality of metal case-type secondary cells 14, the cell terminals 144 other than the cell terminals 144 connected to the bus bar 19 are respectively It is electrically connected to the bus bar 20. Among the plurality of cell terminals 145 included in the plurality of metal case-type secondary cells 14, the cell terminals 145 other than the cell terminals 145 connected to the bus bar 21 are electrically connected to the bus bar 20. Each bus bar 20 is connected to a cell terminal 144 included in one of the two metal case-type secondary cells 14 adjacent in the X direction and a cell terminal 145 included in the other. Each bus bar 20 is in contact with the connection surface 14422a of the cell terminal 144 included in one of the two metal case-type secondary cells 14 adjacent in the X direction and the connection surface 14522a of the cell terminal 145 included in the other. The plurality of metal case type secondary cells 14 are electrically connected in series by a bus bar 20.
 複数のバスバー20は、同じ形状および大きさを有する。各バスバー20は、矩形の平坦な板形状である。各バスバー20は、外部端子1442を絶縁キャップ本体1431Aに取り付けるネジ26を利用して、外部端子1442に取り付けられる。各バスバー20は、外部端子1452を絶縁キャップ本体1431Bに取り付けるネジ26を利用して、外部端子1452に取り付けられる。 The plurality of bus bars 20 have the same shape and size. Each bus bar 20 has a rectangular flat plate shape. Each bus bar 20 is attached to the external terminal 1442 using a screw 26 for attaching the external terminal 1442 to the insulating cap main body 1431A. Each bus bar 20 is attached to the external terminal 1452 using a screw 26 for attaching the external terminal 1452 to the insulating cap body 1431B.
 複数のバスバー20は、互いに同じ材質で形成されている。各バスバー20の材質は、外部端子1442の接続面14422aに接続される部分と、外部端子1452の接続面14522aに接続される部分とで、異なっている。バスバー20のうち、外部端子1442の接続面14422aに接続される部分は、銅を含む金属材料で形成されている。バスバー20のうち、外部端子1452の接続面14522aに接続される部分は、アルミニウムを含む金属材料で形成されている。 The plurality of bus bars 20 are formed of the same material. The material of each bus bar 20 is different between a portion connected to the connection surface 14422 a of the external terminal 1442 and a portion connected to the connection surface 14522 a of the external terminal 1452. A portion of the bus bar 20 that is connected to the connection surface 14422a of the external terminal 1442 is formed of a metal material containing copper. A portion of the bus bar 20 that is connected to the connection surface 14522a of the external terminal 1452 is formed of a metal material containing aluminum.
 本発明の実施形態の具体例は、上述した本発明の実施形態の効果に加えて、以下の効果を奏する。 The specific example of the embodiment of the present invention has the following effect in addition to the effect of the embodiment of the present invention described above.
 内側ケース142は、金属ケース141の内面14111aと面接触している。その一方、内側ケース142は、金属ケース141の内面14121aと向かい合う内面14121aから離れている。内側ケース142と金属ケース141の内面14121aとの間に隙間があることによって、金属ケース型二次セル14の充放電に起因する内側ケース142の膨張を許容できる。内側ケース142の膨張は、例えば、初期の内側ケース142の容積の10%程度までは許容される。 The inner case 142 is in surface contact with the inner surface 14111a of the metal case 141. On the other hand, the inner case 142 is separated from the inner surface 14121a facing the inner surface 14121a of the metal case 141. Since there is a gap between the inner case 142 and the inner surface 14121a of the metal case 141, expansion of the inner case 142 due to charging / discharging of the metal case type secondary cell 14 can be allowed. Expansion of the inner case 142 is allowed, for example, up to about 10% of the volume of the initial inner case 142.
 X方向に隣り合う2つの金属ケース型二次セル14の一方が有する金属ケース141は、他方が有する金属ケース141に対してX方向に離れている。この構成により、隣り合う2つの金属ケース型二次セル14の一方が有する金属ケース141が、他方が有する金属ケース141に接触している場合と比べて、金属ケース型二次セル14の充放電によって発生する熱をさらに逃がし易くなる。その結果、組電池10を大電流で充放電することによる温度上昇をより抑制することができる。 The metal case 141 included in one of the two metal case type secondary cells 14 adjacent in the X direction is separated from the metal case 141 included in the other in the X direction. With this configuration, compared to the case where the metal case 141 included in one of the two adjacent metal case-type secondary cells 14 is in contact with the metal case 141 included in the other, the charging / discharging of the metal case-type secondary cell 14 is performed. This makes it easier to release the heat generated by. As a result, the temperature rise caused by charging / discharging the assembled battery 10 with a large current can be further suppressed.
 X方向に隣り合う2つの金属ケース型二次セル14の一方が有する絶縁キャップ部143は、他方が有する絶縁キャップ部143に対してX方向に接触している。この構成により、金属ケース141同士の間に隙間を確保しつつ、複数の金属ケース型二次セル14を、1対の電極シート146、147の積層方向(X方向)に積層しやすい。金属ケース141同士の間に隙間を確保することによって、金属ケース141同士が接触している場合に比べて、金属ケース型二次セル14の充放電によって発生する熱をさらに逃がし易くなる。その結果、組電池10を大電流で充放電することによる温度上昇をより抑制することができる。 The insulating cap part 143 included in one of the two metal case-type secondary cells 14 adjacent in the X direction is in contact with the insulating cap part 143 included in the other in the X direction. With this configuration, it is easy to stack the plurality of metal case type secondary cells 14 in the stacking direction (X direction) of the pair of electrode sheets 146 and 147 while securing a gap between the metal cases 141. By securing a gap between the metal cases 141, heat generated by charging and discharging of the metal case secondary cells 14 can be more easily released as compared to the case where the metal cases 141 are in contact with each other. As a result, the temperature rise caused by charging / discharging the assembled battery 10 with a large current can be further suppressed.
 X方向に隣り合う2つの絶縁キャップ部143の一方が有する少なくとも1つの凸部14312cが、他方が有する少なくとも1つの凹部14312dに嵌め込まれている。この構成により、複数の金属ケース型二次セル14が、1対の電極シート146、147の積層方向(X方向)に垂直な方向に位置ずれするのを防止できる。よって、複数の金属ケース型二次セル14を、X方向により容易に積層できる。また、金属ケース141同士の間に隙間を確保する構成をより容易に実現できる。 At least one convex portion 14312c included in one of the two insulating cap portions 143 adjacent in the X direction is fitted into at least one concave portion 14312d included in the other. With this configuration, the plurality of metal case type secondary cells 14 can be prevented from being displaced in a direction perpendicular to the stacking direction (X direction) of the pair of electrode sheets 146 and 147. Therefore, the plurality of metal case type secondary cells 14 can be easily stacked in the X direction. Moreover, the structure which ensures a clearance gap between metal cases 141 can be implement | achieved more easily.
 複数の金属ケース型二次セル14の各々が有する1対のセル端子144、145は、1対の電極シート146、147の積層方向(X方向)に垂直な方向において1対の平坦な電極シート146、147の両側に配置されている。この構成により、1対のセル端子144、145が、X方向に垂直な方向において1対の平坦な電極シート146、147の片側に配置されている場合、もしくは、1対のセル端子144、145が、1対の電極シート146、147と、X方向に並んで配置されている場合に比べて、複数の金属ケース型二次セル14を直列または並列に接続するための接続部品(19~23)の構造を簡易化できる。接続部品の構造がシンプルであることにより、接続部品は、複数の金属ケース型二次セル14の放熱をできるだけ妨げない構造にできる。その結果、組電池10を大電流で充放電することによる温度上昇をより抑制することができる。 The pair of cell terminals 144 and 145 included in each of the plurality of metal case type secondary cells 14 is a pair of flat electrode sheets in a direction perpendicular to the stacking direction (X direction) of the pair of electrode sheets 146 and 147. 146 and 147 are arranged on both sides. With this configuration, the pair of cell terminals 144 and 145 is disposed on one side of the pair of flat electrode sheets 146 and 147 in the direction perpendicular to the X direction, or the pair of cell terminals 144 and 145. However, as compared with a case where a pair of electrode sheets 146 and 147 are arranged side by side in the X direction, connection parts (19 to 23) for connecting a plurality of metal case type secondary cells 14 in series or in parallel. ) Can be simplified. Since the structure of the connecting part is simple, the connecting part can have a structure that does not disturb the heat dissipation of the plurality of metal case type secondary cells 14 as much as possible. As a result, the temperature rise caused by charging / discharging the assembled battery 10 with a large current can be further suppressed.
 複数の金属ケース型二次セル14の各々が有する1対のセル端子144、145の1対の接続面14422a、14522aは、1対の電極シート146、147の積層方向(X方向)に垂直な方向を向いている。仮に、1対の接続面14422a、14522aが、X方向を向いている場合、複数の金属ケース型二次セル14を直列に接続するための接続部品が不要になるか、この接続部品の構造をシンプルにできる。しかし、複数の金属ケース型二次セル14を並列に接続するための接続部品の構造が複雑になる。したがって、1対の接続面14422a、14522aが、X方向に垂直な方向を向いていることにより、複数の金属ケース型二次セル14が直列と並列のいずれに接続される場合でも、複数の金属ケース型二次セル14を接続するための接続部品(19~23)の構造を簡易化できる。接続部品の構造がシンプルであることにより、接続部品は、複数の金属ケース型二次セル14の放熱をできるだけ妨げない構造にできる。その結果、組電池10を大電流で充放電することによる温度上昇をより抑制することができる。 A pair of connection surfaces 14422a and 14522a of a pair of cell terminals 144 and 145 included in each of the plurality of metal case type secondary cells 14 is perpendicular to the stacking direction (X direction) of the pair of electrode sheets 146 and 147. Facing the direction. If the pair of connection surfaces 14422a and 14522a face the X direction, a connection component for connecting the plurality of metal case type secondary cells 14 in series is unnecessary, or the structure of this connection component is Can be simple. However, the structure of the connection component for connecting the plurality of metal case type secondary cells 14 in parallel becomes complicated. Therefore, since the pair of connection surfaces 14422a and 14522a are oriented in the direction perpendicular to the X direction, a plurality of metal case-type secondary cells 14 can be connected in series or in parallel. The structure of the connection parts (19 to 23) for connecting the case type secondary cell 14 can be simplified. Since the structure of the connecting part is simple, the connecting part can have a structure that does not disturb the heat dissipation of the plurality of metal case type secondary cells 14 as much as possible. As a result, the temperature rise caused by charging / discharging the assembled battery 10 with a large current can be further suppressed.
 1対のセル端子144、145は、1対のリードタブ1441、1451と、1対のリードタブ1441、1451と別部材である1対の外部端子1442、1452とを有する。そのため、1対のセル端子144、145の設計自由度を向上できる。よって、金属ケース型二次セル14は、充放電によって発生する熱をさらに逃がし易い構造にできる。その結果、組電池10を大電流で充放電することによる温度上昇をより抑制することができる。 The pair of cell terminals 144 and 145 include a pair of lead tabs 1441 and 1451, a pair of lead tabs 1441 and 1451, and a pair of external terminals 1442 and 1452 which are separate members. Therefore, the design freedom of the pair of cell terminals 144 and 145 can be improved. Therefore, the metal case type secondary cell 14 can have a structure in which heat generated by charging and discharging is more easily released. As a result, the temperature rise caused by charging / discharging the assembled battery 10 with a large current can be further suppressed.
 金属ケース型二次セル14は、本願の基礎出願(特願2016-243010)の扁平缶電池14に相当する。金属ケース141は、基礎出願の外側ケース141のうち、絶縁ケース部1413A、1413Bと、ターミナル1414A、1414Bと、カバー1415A、1415Bを除く部分に相当する。金属ケース部品1411、1412は、基礎出願の金属ケース部1411、1412に相当する。主板部14111と側板部14112は、基礎出願の平板14111と側板14112にそれぞれ相当する。主板部14121と側板部14122は、基礎出願の平板14121と側板14122にそれぞれ相当する。絶縁キャップ本体1431A、1431Bは、基礎出願の絶縁ケース部1413A、1413Bにそれぞれ相当する。薄肉部14311と厚肉部14312は、基礎出願の平板14131と側部14132にそれぞれ相当する。絶縁カバー1432A、1432Bは、基礎出願のカバー1415A、1415Bにそれぞれ相当する。主板部14321と側板部14322は、基礎出願の平板14151と側部14152にそれぞれ相当する。外部端子1442、1452は、基礎出願のターミナル1414A、1414Bにそれぞれ相当する。中間接続部14421、14521は、いずれも基礎出願の平板14141に相当し、外部接続部14422、14522は、いずれも基礎出願の側壁14142に相当する。レイアウト上、電極シート146は基礎出願の電極1421に相当し、電極シート147は、基礎出願の電極1422に相当する。但し、本願では、電極シート146が負極であるのに対して、基礎出願の電極1421は正極である。負極シート146の材質の説明の一部は、基礎出願に負極1422の材質として記載されており、正極シート147の材質の説明の一部は、基礎出願に正極1421の材質として記載されている。レイアウト上、リードタブ1441は、基礎出願の正極端子14211に相当し、リードタブ1451は、基礎出願の負極端子14221に相当する。セパレータ148C、148B、148Aは、基礎出願のセパレータ1423、1424、1425にそれぞれ相当する。電解質149は、基礎出願の電解液1426に相当する。基礎出願の図7は、扁平缶電池14の模式的な断面図であって、本願の図9に相当する。基礎出願の図7のカバー1415Aは、本願の図9の絶縁カバー1432Aよりも、紙面左右方向長さが短く表示されている。しかし、基礎出願の図7は、模式的に表示された図面であって、本願の絶縁カバー1432Aの長さが、基礎出願のカバー1415Aと長さが違うわけではない。 The metal case type secondary cell 14 corresponds to the flat can battery 14 of the basic application (Japanese Patent Application No. 2016-243010) of the present application. The metal case 141 corresponds to a portion of the outer case 141 of the basic application excluding the insulating case portions 1413A and 1413B, the terminals 1414A and 1414B, and the covers 1415A and 1415B. The metal case parts 1411 and 1412 correspond to the metal case parts 1411 and 1412 of the basic application. The main plate portion 14111 and the side plate portion 14112 correspond to the flat plate 14111 and the side plate 14112 of the basic application, respectively. The main plate portion 14121 and the side plate portion 14122 correspond to the flat plate 14121 and the side plate 14122 of the basic application, respectively. The insulating cap bodies 1431A and 1431B correspond to the insulating case portions 1413A and 1413B of the basic application, respectively. The thin portion 14311 and the thick portion 14312 correspond to the flat plate 14131 and the side portion 14132 of the basic application, respectively. The insulating covers 1432A and 1432B correspond to the covers 1415A and 1415B of the basic application, respectively. The main plate portion 14321 and the side plate portion 14322 correspond to the flat plate 14151 and the side portion 14152 of the basic application, respectively. The external terminals 1442 and 1452 correspond to the terminals 1414A and 1414B of the basic application, respectively. The intermediate connection parts 14421 and 14521 all correspond to the flat plate 14141 of the basic application, and the external connection parts 14422 and 14522 all correspond to the side wall 14142 of the basic application. In terms of layout, the electrode sheet 146 corresponds to the electrode 1421 of the basic application, and the electrode sheet 147 corresponds to the electrode 1422 of the basic application. However, in the present application, the electrode sheet 146 is a negative electrode, whereas the electrode 1421 of the basic application is a positive electrode. Part of the description of the material of the negative electrode sheet 146 is described as the material of the negative electrode 1422 in the basic application, and part of the description of the material of the positive electrode sheet 147 is described as the material of the positive electrode 1421 in the basic application. In the layout, the lead tab 1441 corresponds to the positive terminal 14211 of the basic application, and the lead tab 1451 corresponds to the negative terminal 14221 of the basic application. The separators 148C, 148B, and 148A correspond to the separators 1423, 1424, and 1425 of the basic application, respectively. The electrolyte 149 corresponds to the electrolyte solution 1426 of the basic application. FIG. 7 of the basic application is a schematic cross-sectional view of the flat can battery 14 and corresponds to FIG. 9 of the present application. The cover 1415A of FIG. 7 of the basic application is displayed with a shorter length in the left-right direction on the paper surface than the insulating cover 1432A of FIG. 9 of the present application. However, FIG. 7 of the basic application is a diagram schematically displayed, and the length of the insulating cover 1432A of the present application is not different from the length of the cover 1415A of the basic application.
 <本発明の実施形態の変更例>
 以上、本発明の実施の形態について詳述してきたが、これらはあくまでも例示であって、本発明は、上述の実施の形態によって何ら限定されない。本発明は、特許請求の範囲に記載した限りにおいて様々な変更が可能である。以下、本発明の実施形態の変更例について説明する。なお、上述した構成と同じ構成を有するものについては、同じ符号を用いて適宜その説明を省略する。後述する変更例は、適宜組み合わせて実施可能である。
<Modification of Embodiment of the Present Invention>
As mentioned above, although embodiment of this invention has been explained in full detail, these are illustrations to the last and this invention is not limited at all by the above-mentioned embodiment. The present invention can be variously modified as long as it is described in the claims. Hereinafter, a modified example of the embodiment of the present invention will be described. In addition, about what has the same structure as the structure mentioned above, the description is abbreviate | omitted suitably using the same code | symbol. Modification examples to be described later can be implemented in combination as appropriate.
 (1)複数の金属ケース型二次セルの電気的接続構造についての変更例
 上述の実施形態の具体例において、複数の金属ケース型二次セル14は、電気的に直列に接続されている。しかし、本発明において、複数の金属ケース型二次セルは、電気的に並列に接続されてもよい。
(1) Modified example of electrical connection structure of a plurality of metal case type secondary cells In the specific example of the above-described embodiment, the plurality of metal case type secondary cells 14 are electrically connected in series. However, in the present invention, the plurality of metal case type secondary cells may be electrically connected in parallel.
 図17は、上述の実施形態の具体例の複数の金属ケース型二次セル14を、並列に接続した一例である。図17において、複数の金属ケース型二次セル14が有する複数の絶縁キャップ143Aは、金属ケース型二次セル14の積層方向に積層される。複数の金属ケース型二次セル14が有する複数の絶縁キャップ143Bも、金属ケース型二次セル14の積層方向に積層される。隣り合う2つの金属ケース型二次セル14の絶縁キャップ143A同士は、接触している。隣り合う2つの金属ケース型二次セル14の絶縁キャップ143B同士も、接触している。複数の金属ケース型二次セル14が有する複数のセル端子144は、金属ケース型二次セル14の積層方向に並んでいる。複数の金属ケース型二次セル14が有する複数のセル端子145も、金属ケース型二次セル14の積層方向に並んでいる。複数の金属ケース型二次セル14が有する複数のセル端子144は、1つのバスバー201に接続されている。複数の金属ケース型二次セル14が有する複数のセル端子145は、1つのバスバー202に接続されている。バスバー201は、複数のセル端子144の接続面14422aに接触しており、バスバー202は、複数のセル端子145の接続面14522aに接触している。バスバー201は、図示しない負極母線に接続され、バスバー202は、図示しない正極母線に接続される。 FIG. 17 is an example in which a plurality of metal case type secondary cells 14 of a specific example of the above-described embodiment are connected in parallel. In FIG. 17, the plurality of insulating caps 143 </ b> A included in the plurality of metal case type secondary cells 14 are stacked in the stacking direction of the metal case type secondary cells 14. The plurality of insulating caps 143 </ b> B included in the plurality of metal case type secondary cells 14 are also stacked in the stacking direction of the metal case type secondary cells 14. The insulating caps 143A of the two adjacent metal case type secondary cells 14 are in contact with each other. The insulating caps 143B of the two adjacent metal case type secondary cells 14 are also in contact with each other. The plurality of cell terminals 144 included in the plurality of metal case type secondary cells 14 are arranged in the stacking direction of the metal case type secondary cells 14. The plurality of cell terminals 145 included in the plurality of metal case type secondary cells 14 are also arranged in the stacking direction of the metal case type secondary cells 14. A plurality of cell terminals 144 included in the plurality of metal case type secondary cells 14 are connected to one bus bar 201. A plurality of cell terminals 145 included in the plurality of metal case type secondary cells 14 are connected to one bus bar 202. The bus bar 201 is in contact with the connection surfaces 14422a of the plurality of cell terminals 144, and the bus bar 202 is in contact with the connection surfaces 14522a of the plurality of cell terminals 145. Bus bar 201 is connected to a negative bus (not shown), and bus bar 202 is connected to a positive bus (not shown).
 上述の実施形態の具体例のバスバー19、20、21および図17に示すバスバー201、202は、絶縁材料で形成された保護部材で保護されていてもよい。保護部材は、フィルム状であってもよいし、板状であってもよい。 The bus bars 19, 20, 21 of the specific example of the above-described embodiment and the bus bars 201, 202 shown in FIG. 17 may be protected by a protective member formed of an insulating material. The protective member may be in the form of a film or plate.
 (2)複数の金属ケース型二次セルの積層構造についての変更例
 上述の実施形態の具体例において、複数の金属ケース型二次セル14は、ボルト16およびナット18によって固定されている。しかし、複数の金属ケース型二次セルを積層状態で固定する手段は、ボルトとナットに限定されない。例えば、ゴムバンドでもよく、シュリンクパックでもよい。
(2) Modification Example of Laminated Structure of Multiple Metal Case Type Secondary Cells In the specific example of the above-described embodiment, the multiple metal case type secondary cells 14 are fixed by bolts 16 and nuts 18. However, the means for fixing the plurality of metal case type secondary cells in a stacked state is not limited to bolts and nuts. For example, a rubber band or a shrink pack may be used.
 本発明において、1対の電極シートの積層方向に隣り合う2つの金属ケース型二次セルの一方が有する金属ケースは、他方が有する金属ケースに対して前記積層方向に接触していてもよい。 In the present invention, the metal case included in one of the two metal case type secondary cells adjacent in the stacking direction of the pair of electrode sheets may be in contact with the metal case included in the other in the stacking direction.
 本発明の複数の金属ケース型二次セルの各々が有する絶縁キャップ部の凹部の数は、4つに限らない。各絶縁キャップの凹部の数は、1つ以上3つ以下であってもよく、5つ以上であってもよい。なお、各絶縁キャップの凸部の数は、凹部の数と同じである。 The number of recesses of the insulating cap part included in each of the plurality of metal case type secondary cells of the present invention is not limited to four. The number of recesses in each insulating cap may be 1 or more and 3 or less, or 5 or more. Note that the number of convex portions of each insulating cap is the same as the number of concave portions.
 隣り合う2つの金属ケース型二次セルの絶縁キャップ部同士は、凹部と凸部に加えて、それ以外の箇所でも、接触していてもよい。 The insulating cap portions of two adjacent metal case-type secondary cells may be in contact with each other in addition to the concave portion and the convex portion.
 本発明の複数の金属ケース型二次セルの各々が有する絶縁キャップ部は、凹部と凸部を有さなくてもよい。この場合、隣り合う2つの金属ケース型二次セルの絶縁キャップ部同士は、凹部と凸部ではない箇所で、接触していてもよい。 The insulating cap part included in each of the plurality of metal case type secondary cells of the present invention may not have a concave part and a convex part. In this case, the insulating cap parts of two adjacent metal case type secondary cells may be in contact with each other at a place that is not a concave part and a convex part.
 本発明の複数の金属ケース型二次セルの各々の絶縁キャップ部が、凹部と凸部を有さない場合、隣り合う2つの金属ケース型二次セルの絶縁キャップ部同士は、1対の電極シートの積層方向に積層されつつ離れていてもよい。この場合、1対の電極シートの積層方向に隣り合う2つの絶縁キャップ部は、他の部材を介して接触していてもよい。もしくは、1対の電極シートの積層方向に隣り合う2つの金属ケースが、他の部材を介して接触していてもよい。 When each insulating cap part of the plurality of metal case type secondary cells of the present invention does not have a concave part and a convex part, the insulating cap parts of two adjacent metal case type secondary cells are a pair of electrodes. You may leave | separate, laminating | stacking on the lamination direction of a sheet | seat. In this case, the two insulating cap portions adjacent to each other in the stacking direction of the pair of electrode sheets may be in contact with each other via another member. Alternatively, two metal cases adjacent in the stacking direction of the pair of electrode sheets may be in contact with each other through another member.
 (3)金属ケースの変更例
 上述の実施形態の具体例において、金属ケース141は、2つの金属ケース部品1411、1412で構成される。しかし、本発明の金属ケースを構成する部品の数は、2つに限らない。本発明の金属ケースを構成する部品の数は、1つであっても、3つ以上であってもよい。なお、ここでの金属ケースを構成する部品とは、ねじ等の固定部品は含まない。
(3) Modification Example of Metal Case In the specific example of the above-described embodiment, the metal case 141 includes two metal case parts 1411 and 1412. However, the number of parts constituting the metal case of the present invention is not limited to two. The number of parts constituting the metal case of the present invention may be one or three or more. The parts constituting the metal case here do not include fixing parts such as screws.
 (4)金属ケースと内側ケースとの関係についての変更例
 本発明において、内側ケースが金属ケースの第2の内面から離れている場合、内側ケースと金属ケースの第2の内面との間に、多孔質材が配置されてもよい。多孔質材は、例えば、ポリウレタン等の合成樹脂を発砲成形することで得られる。
(4) Modification Example Regarding Relationship Between Metal Case and Inner Case In the present invention, when the inner case is separated from the second inner surface of the metal case, between the inner case and the second inner surface of the metal case, A porous material may be disposed. The porous material can be obtained, for example, by foaming a synthetic resin such as polyurethane.
 本発明において、1対の電極シートの積層方向において、内側ケースの両面が、金属ケースの内面と接触してもよい。内側ケースの両面は、金属ケースの内面と面接触してもよい。 In the present invention, both surfaces of the inner case may be in contact with the inner surface of the metal case in the stacking direction of the pair of electrode sheets. Both surfaces of the inner case may be in surface contact with the inner surface of the metal case.
 (5)電解質の変更例
 上述の実施形態の具体例において、電解質149は、電解液である。しかし、本発明における電解質は、固体電解質でもよい。例えば、両面に固体電解質層が形成されたセパレータが、1対の電極シートの間に配置されてもよい。また、例えば、1対の電極シートの向かい合う面の一方または両方が、固体電解質層で覆われていてもよい。
(5) Modification Example of Electrolyte In the specific example of the above-described embodiment, the electrolyte 149 is an electrolytic solution. However, the electrolyte in the present invention may be a solid electrolyte. For example, a separator having a solid electrolyte layer formed on both sides may be disposed between a pair of electrode sheets. Further, for example, one or both of the facing surfaces of the pair of electrode sheets may be covered with a solid electrolyte layer.
 (6)1対のセル端子の変更例
 上述の実施形態の具体例において、リードタブ1441は、負極シート146の集電体と一体化されている。しかし、本発明において、負極シートに接続されるリードタブは、正極シートの集電体と別部材であってもよい。このリードタブは、負極シートの集電体に接続される。
(6) Modification Example of One Pair of Cell Terminals In the specific example of the above-described embodiment, the lead tab 1441 is integrated with the current collector of the negative electrode sheet 146. However, in the present invention, the lead tab connected to the negative electrode sheet may be a separate member from the current collector of the positive electrode sheet. This lead tab is connected to the current collector of the negative electrode sheet.
 上述の実施形態の具体例において、リードタブ1451は、正極シート147の集電体と一体化されている。しかし、本発明において、正極シートに接続されるリードタブは、負極シートの集電体と別部材であってもよい。このリードタブは、正極シートの集電体に接続される。 In the specific example of the above-described embodiment, the lead tab 1451 is integrated with the current collector of the positive electrode sheet 147. However, in the present invention, the lead tab connected to the positive electrode sheet may be a separate member from the current collector of the negative electrode sheet. The lead tab is connected to the current collector of the positive electrode sheet.
 上述の実施形態の具体例において、1対のリードタブ1441、1451は、溶接によって1対の外部端子1442、1452に接続されている。しかし、本発明の1対のリードタブは、例えばネジ等の機械的な接続手段により、1対の外部端子に接続されてもよい。 In the specific example of the above-described embodiment, the pair of lead tabs 1441 and 1451 are connected to the pair of external terminals 1442 and 1452 by welding. However, the pair of lead tabs of the present invention may be connected to the pair of external terminals by mechanical connection means such as screws.
 上述の実施形態の具体例において、セル端子144は、リードタブ1441と外部端子1442の2つの部材で構成され、セル端子145は、リードタブ1451と外部端子1452の2つの部材で構成される。しかし、本発明において、各セル端子は、1つの部材で構成されてもよい。また、各セル端子は、3つ以上の部材で構成されてもよい。 In the specific example of the above-described embodiment, the cell terminal 144 is composed of two members, the lead tab 1441 and the external terminal 1442, and the cell terminal 145 is composed of two members, the lead tab 1451 and the external terminal 1452. However, in the present invention, each cell terminal may be composed of one member. Each cell terminal may be composed of three or more members.
 本発明において、複数の金属ケース型二次セルの各々が有する1対の接続面は、1対の電極シートの積層方向に垂直な方向を向いていなくてもよい。1対の接続面は、1対の電極シートの積層方向を向いていてもよい。この場合、複数の金属ケース型二次セルを直列に接続するための接続部品が不要になるか、この接続部品の構造をシンプルにできる。 In the present invention, the pair of connection surfaces included in each of the plurality of metal case type secondary cells may not face the direction perpendicular to the stacking direction of the pair of electrode sheets. The pair of connection surfaces may face the stacking direction of the pair of electrode sheets. In this case, a connection part for connecting a plurality of metal case type secondary cells in series is not required, or the structure of the connection part can be simplified.
 上述の実施形態およびその具体例において、複数の金属ケース型二次セル14の各々が有する1対のセル端子144、145は、1対の電極シート146、147の積層方向に垂直な方向において、1対の平坦な電極シート146、147の両側に配置されている。しかし、本発明において、複数の金属ケース型二次セルの各々が有する1対のセル端子は、1対の電極シートの積層方向に垂直な方向において、1対の平坦な電極シートの片側にのみ配置されてもよい。この場合、正極シートに接続されるリードタブと、負極シートに接続されるリードタブは、内側ケースから同じ方向に突出する。 In the above-described embodiments and specific examples thereof, the pair of cell terminals 144 and 145 included in each of the plurality of metal case-type secondary cells 14 is in a direction perpendicular to the stacking direction of the pair of electrode sheets 146 and 147. A pair of flat electrode sheets 146 and 147 are arranged on both sides. However, in the present invention, the pair of cell terminals included in each of the plurality of metal case-type secondary cells is only on one side of the pair of flat electrode sheets in the direction perpendicular to the stacking direction of the pair of electrode sheets. It may be arranged. In this case, the lead tab connected to the positive electrode sheet and the lead tab connected to the negative electrode sheet protrude from the inner case in the same direction.
 (7)1対のセル端子と絶縁キャップ部についての変更例
 複数の金属ケース型二次セルの各々が有する1対のセル端子が、1対の電極シートの積層方向に垂直な方向において、1対の平坦な電極シートの片側にのみ配置される場合、絶縁キャップ部も、1対の電極シートの積層方向に垂直な方向において、1対の平坦な電極シートの片側にのみ配置される。この場合、絶縁キャップ部は、1つの部品、または、互いに接触する複数の部品で構成されてもよい。
(7) Modification Example for a Pair of Cell Terminals and Insulating Cap Part A pair of cell terminals included in each of the plurality of metal case-type secondary cells is When disposed only on one side of the pair of flat electrode sheets, the insulating cap portion is also disposed only on one side of the pair of flat electrode sheets in a direction perpendicular to the stacking direction of the pair of electrode sheets. In this case, the insulating cap part may be composed of one component or a plurality of components that are in contact with each other.
 (8)1対のセル端子と金属ケースについての変更例
 複数の金属ケース型二次セルの各々が有する1対のセル端子が、1対の電極シートの積層方向に垂直な方向において、1対の平坦な電極シートの片側にのみ配置される場合、金属ケースは、1対の電極シートの積層方向に垂直な方向における一端にのみ開口部を有してもよく、1対の電極シートの積層方向に垂直な方向における両端に開口部を有してもよい。後者の場合、絶縁キャップ部は、金属ケースの両端の開口部の一方にのみ設置される。金属ケースの両端の開口部の他方は、金属以外の材料で形成された部材によって閉塞される。
(8) Modification Example for One Pair of Cell Terminals and Metal Case One pair of cell terminals included in each of the plurality of metal case type secondary cells is one pair in a direction perpendicular to the stacking direction of the pair of electrode sheets. When the metal case is disposed only on one side of the flat electrode sheet, the metal case may have an opening only at one end in a direction perpendicular to the stacking direction of the pair of electrode sheets. You may have an opening part in the both ends in the direction perpendicular | vertical to a direction. In the latter case, the insulating cap portion is installed only in one of the openings at both ends of the metal case. The other of the openings at both ends of the metal case is closed by a member formed of a material other than metal.
 (9)その他の変更例
 上述の実施形態の具体例において、組電池10は、電池管理装置を備える。しかし、本発明の組電池は、電池管理装置を備えなくてもよい。
(9) Other Modifications In the specific example of the above-described embodiment, the assembled battery 10 includes a battery management device. However, the assembled battery of the present invention may not include a battery management device.
 10 組電池
 14 金属ケース型二次セル
 141 金属ケース
 1411、1412 金属ケース部品
 14111a 内面(第1の内面)
 14121a 内面(第2の内面)
 142 内側ケース
 143 絶縁キャップ部
 143A、143B 絶縁キャップ
 1431A、1431B 絶縁キャップ本体
 1432A、1432B 絶縁カバー
 146 負極シート(電極シート)
 147 正極シート(電極シート)
 149 電解質
 144、145 セル端子
 1441、1451 リードタブ
 1442、1452 外部端子
 14422a、14522a 接続面
10 assembled battery 14 metal case type secondary cell 141 metal case 1411, 1412 metal case component 14111a inner surface (first inner surface)
14121a inner surface (second inner surface)
142 Inner case 143 Insulation cap part 143A, 143B Insulation cap 1431A, 1431B Insulation cap body 1432A, 1432B Insulation cover 146 Negative electrode sheet (electrode sheet)
147 Positive electrode sheet (electrode sheet)
149 Electrolyte 144, 145 Cell terminal 1441, 1451 Lead tab 1442, 1452 External terminal 14422a, 14522a Connection surface

Claims (8)

  1.  1枚の正極シートと1枚の負極シートで構成される1対の電極シートと、
     前記1対の電極シートを収容する金属製の金属ケースと、
     絶縁材料で形成され、前記金属ケースの開口部に設置される絶縁キャップ部と、
     前記1対の電極シートに電気的に接続され、それぞれの一部が前記絶縁キャップ部に設置され、前記金属ケースの外部に露出する1対の接続面を有する1対のセル端子と、
     を有する金属ケース型二次セルを複数備える組電池であって、
     前記複数の金属ケース型二次セルの各々は、
     前記金属ケースの内側に配置され、可撓性を有する合成樹脂製のフィルムで形成され、平坦な状態で積層された前記1対の電極シートを収容し、前記1対の平坦な電極シートと接触するように電解質が封入され、前記1対の平坦な電極シートの積層方向において前記金属ケースの第1の内面と面接触する内側ケースを有し、
     前記複数の金属ケース型二次セルの各々は、前記1対の平坦な電極シートの前記積層方向における長さが、前記積層方向に垂直な方向における最小長さよりも小さいフラットボード形状であって、
     前記複数の金属ケース型二次セルが、前記1対の平坦な電極シートの前記積層方向に積層されている、組電池。
    A pair of electrode sheets composed of one positive electrode sheet and one negative electrode sheet;
    A metal case made of metal for housing the pair of electrode sheets;
    An insulating cap formed of an insulating material and installed in the opening of the metal case;
    A pair of cell terminals electrically connected to the pair of electrode sheets, each part of which is installed in the insulating cap portion and having a pair of connection surfaces exposed to the outside of the metal case;
    An assembled battery comprising a plurality of metal case type secondary cells having
    Each of the plurality of metal case type secondary cells is
    The pair of electrode sheets, which are disposed inside the metal case, are formed of a flexible synthetic resin film, and are laminated in a flat state, are in contact with the pair of flat electrode sheets. An inner case in which the electrolyte is sealed, and in surface contact with the first inner surface of the metal case in the stacking direction of the pair of flat electrode sheets,
    Each of the plurality of metal case-type secondary cells has a flat board shape in which a length in the stacking direction of the pair of flat electrode sheets is smaller than a minimum length in a direction perpendicular to the stacking direction,
    The assembled battery in which the plurality of metal case type secondary cells are stacked in the stacking direction of the pair of flat electrode sheets.
  2.  請求項1に記載の組電池であって、
     前記複数の金属ケース型二次セルの各々において、
     前記内側ケースが前記金属ケースの前記第1の内面と面接触している状態において、前記内側ケースが、前記金属ケースの前記第1の内面と向かい合う第2の内面から離れている、組電池。
    The assembled battery according to claim 1,
    In each of the plurality of metal case type secondary cells,
    The assembled battery, wherein the inner case is separated from a second inner surface facing the first inner surface of the metal case in a state where the inner case is in surface contact with the first inner surface of the metal case.
  3.  請求項1または2に記載の組電池であって、
     前記積層方向に隣り合う2つの前記金属ケース型二次セルの一方が有する前記金属ケースが、他方が有する前記金属ケースに対して前記積層方向に離れるように、前記複数の金属ケース型二次セルが積層されている、組電池。
    The assembled battery according to claim 1 or 2,
    The plurality of metal case-type secondary cells so that the metal case of one of the two metal case-type secondary cells adjacent in the stacking direction is separated from the metal case of the other in the stacking direction. An assembled battery in which are stacked.
  4.  請求項1~3の何れか1項に記載の組電池であって、
     前記積層方向に隣り合う2つの前記金属ケース型二次セルの一方が有する前記絶縁キャップ部が、他方が有する前記絶縁キャップ部に対して前記積層方向に接触するように、前記複数の金属ケース型二次セルが積層されている、組電池。
    The assembled battery according to any one of claims 1 to 3,
    The plurality of metal case molds so that the insulating cap part of one of the two metal case type secondary cells adjacent in the stacking direction is in contact with the insulating cap part of the other in the stacking direction. An assembled battery in which secondary cells are stacked.
  5.  請求項4に記載の組電池であって、
     前記複数の金属ケース型二次セルの各々の前記絶縁キャップ部は、前記積層方向の一方の面に少なくとも1つの凸部を有し、前記積層方向の他方の面に少なくとも1つの凹部を有し、
     前記積層方向に隣り合う2つの前記絶縁キャップ部の一方が有する前記少なくとも1つの凸部が、他方が有する前記少なくとも1つの凹部に嵌め込まれている、組電池。
    The assembled battery according to claim 4,
    The insulating cap portion of each of the plurality of metal case type secondary cells has at least one convex portion on one surface in the stacking direction and at least one concave portion on the other surface in the stacking direction. ,
    The assembled battery, wherein the at least one convex portion of one of the two insulating cap portions adjacent to each other in the stacking direction is fitted into the at least one concave portion of the other.
  6.  請求項1~5の何れか1項に記載の組電池であって、
     前記複数の金属ケース型二次セルの各々が有する前記1対のセル端子が、前記積層方向に垂直な方向において前記1対の平坦な電極シートの両側に配置されている、組電池。
    The assembled battery according to any one of claims 1 to 5,
    The assembled battery, wherein the pair of cell terminals included in each of the plurality of metal case type secondary cells is disposed on both sides of the pair of flat electrode sheets in a direction perpendicular to the stacking direction.
  7.  請求項1~6の何れか1項に記載の組電池であって、
     前記複数の金属ケース型二次セルの各々が有する前記1対の接続面が、前記積層方向に垂直な方向を向いている、組電池。
    The assembled battery according to any one of claims 1 to 6,
    The assembled battery, wherein the pair of connection surfaces of each of the plurality of metal case type secondary cells is oriented in a direction perpendicular to the stacking direction.
  8.  請求項1~7の何れか1項に記載の組電池であって、
     前記複数の金属ケース型二次セルの各々が有する前記1対のセル端子が、
     それぞれの少なくとも一部が前記内側ケースの内側に配置され、前記1対の電極シートに接続された1対のリードタブと、
     前記1対のリードタブと別部材であって、前記1対のリードタブに接続され、前記絶縁キャップ部に設置され、前記1対の接続面を有する1対の外部端子と、を有する、組電池。
    The assembled battery according to any one of claims 1 to 7,
    The pair of cell terminals that each of the plurality of metal case type secondary cells has,
    A pair of lead tabs, at least a portion of each being disposed inside the inner case and connected to the pair of electrode sheets;
    An assembled battery comprising: a pair of lead tabs and a separate member connected to the pair of lead tabs, installed on the insulating cap portion, and having a pair of external terminals.
PCT/JP2017/043900 2016-12-15 2017-12-07 Battery pack WO2018110395A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780077528.0A CN110073516A (en) 2016-12-15 2017-12-07 Battery pack
KR1020197016842A KR20190077537A (en) 2016-12-15 2017-12-07 Battery
TW106144113A TWI672848B (en) 2016-12-15 2017-12-15 Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-243010 2016-12-15
JP2016243010A JP2020030883A (en) 2016-12-15 2016-12-15 Assembled battery

Publications (1)

Publication Number Publication Date
WO2018110395A1 true WO2018110395A1 (en) 2018-06-21

Family

ID=62558420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043900 WO2018110395A1 (en) 2016-12-15 2017-12-07 Battery pack

Country Status (5)

Country Link
JP (1) JP2020030883A (en)
KR (1) KR20190077537A (en)
CN (1) CN110073516A (en)
TW (1) TWI672848B (en)
WO (1) WO2018110395A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891857U (en) * 1981-12-16 1983-06-21 古河電池株式会社 storage battery
JPH0785847A (en) * 1993-09-17 1995-03-31 Matsushita Electric Ind Co Ltd Unit cell and battery system of sealed type alkaline storage battery
JPH07235326A (en) * 1994-02-23 1995-09-05 Matsushita Electric Ind Co Ltd Unit cell and unit battery for sealed type alkaline storage battery
JP2004213922A (en) * 2002-12-27 2004-07-29 Matsushita Electric Ind Co Ltd Square-shaped sealed type secondary battery, battery module and battery pack
JP2005347156A (en) * 2004-06-04 2005-12-15 Sanyo Electric Co Ltd Thin battery pack
JP2006179212A (en) * 2004-12-21 2006-07-06 Sony Corp Battery
JP2011076953A (en) * 2009-09-30 2011-04-14 Murata Mfg Co Ltd Method of manufacturing external lead terminal, external lead terminal and laminated battery
JP2013179094A (en) * 2013-06-25 2013-09-09 Sanyo Electric Co Ltd Battery system
WO2014141753A1 (en) * 2013-03-12 2014-09-18 Necエナジーデバイス株式会社 Power cell module
JP2015018644A (en) * 2013-07-09 2015-01-29 株式会社デンソー Battery pack
JP2015191755A (en) * 2014-03-28 2015-11-02 オートモーティブエナジーサプライ株式会社 Negative electrode terminal and manufacturing method therefor
WO2016152037A1 (en) * 2015-03-24 2016-09-29 株式会社デンソー Secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3729164B2 (en) * 2002-08-05 2005-12-21 日産自動車株式会社 Automotive battery
JP5060809B2 (en) 2007-03-27 2012-10-31 日立ビークルエナジー株式会社 Battery module

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891857U (en) * 1981-12-16 1983-06-21 古河電池株式会社 storage battery
JPH0785847A (en) * 1993-09-17 1995-03-31 Matsushita Electric Ind Co Ltd Unit cell and battery system of sealed type alkaline storage battery
JPH07235326A (en) * 1994-02-23 1995-09-05 Matsushita Electric Ind Co Ltd Unit cell and unit battery for sealed type alkaline storage battery
JP2004213922A (en) * 2002-12-27 2004-07-29 Matsushita Electric Ind Co Ltd Square-shaped sealed type secondary battery, battery module and battery pack
JP2005347156A (en) * 2004-06-04 2005-12-15 Sanyo Electric Co Ltd Thin battery pack
JP2006179212A (en) * 2004-12-21 2006-07-06 Sony Corp Battery
JP2011076953A (en) * 2009-09-30 2011-04-14 Murata Mfg Co Ltd Method of manufacturing external lead terminal, external lead terminal and laminated battery
WO2014141753A1 (en) * 2013-03-12 2014-09-18 Necエナジーデバイス株式会社 Power cell module
JP2013179094A (en) * 2013-06-25 2013-09-09 Sanyo Electric Co Ltd Battery system
JP2015018644A (en) * 2013-07-09 2015-01-29 株式会社デンソー Battery pack
JP2015191755A (en) * 2014-03-28 2015-11-02 オートモーティブエナジーサプライ株式会社 Negative electrode terminal and manufacturing method therefor
WO2016152037A1 (en) * 2015-03-24 2016-09-29 株式会社デンソー Secondary battery

Also Published As

Publication number Publication date
TWI672848B (en) 2019-09-21
CN110073516A (en) 2019-07-30
JP2020030883A (en) 2020-02-27
KR20190077537A (en) 2019-07-03
TW201826589A (en) 2018-07-16

Similar Documents

Publication Publication Date Title
US11594776B2 (en) Battery module including heat shrinkable tube
CN107431163B (en) Battery pack and method for manufacturing same
KR101792675B1 (en) Battery module
US12062802B2 (en) Battery cell assembly for secondary battery and a method of manufacturing the same
KR102050025B1 (en) Battery Pack of coolant direct contact cooling type
KR101792751B1 (en) Battery module
EP3358668B1 (en) Battery module, battery pack and vehicle having same
US10916795B2 (en) Battery module assembly and manufacturing method therefor
KR101983391B1 (en) Cooling Device for Battery Module and Battery Module Assembly having the same
KR20150140120A (en) Battery pack
EP4181293A1 (en) Battery module and battery pack including same
KR20210065268A (en) Busbar Frame Assembly and Battery module including the same
KR20180023699A (en) Battery module
JP6472539B2 (en) Electrode lead and secondary battery including the same
EP4195365A1 (en) Battery module and battery pack including same
EP4181292A1 (en) Battery module and battery pack including same
WO2018062226A1 (en) Battery module, and battery pack
JP5344237B2 (en) Assembled battery
WO2018110395A1 (en) Battery pack
WO2017119106A1 (en) Power storage module
EP4181278A1 (en) Battery module and battery pack including same
US20240113357A1 (en) Battery pack and device including the same
JP2024529335A (en) Battery cell, battery module, battery pack and automobile including same
JP2022552154A (en) Battery pack with improved vibration resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197016842

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP