JP5060809B2 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP5060809B2
JP5060809B2 JP2007081063A JP2007081063A JP5060809B2 JP 5060809 B2 JP5060809 B2 JP 5060809B2 JP 2007081063 A JP2007081063 A JP 2007081063A JP 2007081063 A JP2007081063 A JP 2007081063A JP 5060809 B2 JP5060809 B2 JP 5060809B2
Authority
JP
Japan
Prior art keywords
battery
module
polygonal structure
battery module
submodule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007081063A
Other languages
Japanese (ja)
Other versions
JP2008243526A (en
Inventor
竹規 石津
亮 小島
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2007081063A priority Critical patent/JP5060809B2/en
Publication of JP2008243526A publication Critical patent/JP2008243526A/en
Application granted granted Critical
Publication of JP5060809B2 publication Critical patent/JP5060809B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は電池モジュールに係り、特に、電池蓋と電池缶とが異極を呈する複数個の単電池を電池蓋および電池缶の底面が側面方向において交互となるように単電池を一列に配列し枠体で固定するとともに電気的に接続したサブモジュールを、複数個、外装ケース内に収容、配設し電気的に接続した電池モジュールに関する。   The present invention relates to a battery module, and in particular, a plurality of single cells in which the battery lid and the battery can have different polarities are arranged in a row so that the bottom surfaces of the battery lid and the battery can alternate in the lateral direction. The present invention relates to a battery module in which a plurality of sub-modules fixed and electrically connected with a frame are housed, arranged and electrically connected in an outer case.

従来、例えば、エンジンおよびモータで駆動するハイブリッド電気自動車(HEV)やモータのみで駆動する純正電気自動車(PEV)等の電気自動車の大電流充放電用電源には、ニッケル水素二次電池、リチウム二次電池等の単電池を複数個直列ないし並列に接続した電池モジュールが使用されている。   Conventionally, for example, a nickel-hydrogen secondary battery, a lithium-ion battery, and the like are used for a large current charging / discharging power source of an electric vehicle such as a hybrid electric vehicle (HEV) driven by an engine and a motor or a genuine electric vehicle (PEV) driven only by a motor. A battery module in which a plurality of cells such as secondary batteries are connected in series or in parallel is used.

このような電池モジュールの一例として、断面形状が長軸と短軸を有する長円筒形(扁平状)の単電池を複数個用い、これらの単電池を長円形の断面に平行な面内で長軸を傾けて配置する技術が開示されている(例えば、特許文献1参照)。   As an example of such a battery module, a plurality of long cylindrical (flat) cells having a long axis and a short axis are used, and these single cells are long in a plane parallel to an oval cross section. A technique for disposing the shaft at an inclination is disclosed (for example, see Patent Document 1).

特開2001−035461号公報JP 2001-035461 A

例えば、EV用やHEV用の電池モジュールとしては、駆動するモータが高出力のため、大電流放電することが多いが、冷却性能を考慮していない電池モジュールでは、大電流放電によるジュール発熱を放熱できずに電池温度が上昇する、という問題があった。一方、冷却性能の向上を図るために開口面積を多く取るように電池モジュールの外装ケースを作製すると、強度不足で外装ケースが変形するなどの問題が生じる。   For example, a battery module for EV or HEV often discharges a large current because the motor to be driven has a high output, but a battery module that does not consider cooling performance dissipates the Joule heat generated by the large current discharge. There was a problem that the battery temperature would rise without being able to. On the other hand, when the battery module outer case is manufactured so as to have a large opening area in order to improve the cooling performance, problems such as deformation of the outer case due to insufficient strength arise.

本発明は上記事案に鑑み、大電流充放電しても温度上昇を抑制でき、かつ、高強度の電池モジュールを提供することを課題とする。   An object of the present invention is to provide a high-strength battery module that can suppress an increase in temperature even when a large current is charged and discharged.

上記課題を解決するために、本発明は、電池蓋と電池缶とが異極を呈する複数個の単電池を前記電池蓋および前記電池缶の底面が側面方向において交互となるように前記単電池を一列に配列し枠体で固定するとともに電気的に接続したサブモジュールを、複数個、外装ケース内に収容、配設し電気的に接続した電池モジュールであって、前記外装ケースの少なくとも一面に多角形構造体を配し、前記多角形構造体の電池側の面または前記多角形構造体の両面に、通風口が形成された絶縁板を備えたことを特徴とする。 In order to solve the above-mentioned problems, the present invention provides a plurality of unit cells in which a battery lid and a battery can have different polarities, and the unit cells are arranged such that the bottom surfaces of the battery lid and the battery can alternate in a side surface direction. A plurality of sub-modules arranged in a row and fixed by a frame and electrically connected, and a plurality of sub-modules housed in, arranged in, and electrically connected to, at least one surface of the outer case A polygonal structure is provided, and an insulating plate having a ventilation hole is provided on a battery-side surface of the polygonal structure or on both surfaces of the polygonal structure .

本発明では、外装ケースの少なくとも一面に多角形構造体が配されているため、多角形構造体の多角網目状空洞から冷却風を送風することにより、大電流充放電で発熱した単電池を冷却することができるとともに、多角形構造体は荷重に対して高強度のため、耐久性に優れており、冷却性能を向上しつつ、高強度の電池モジュールが得られ、また、多角形構造体の電池側の面または多角形構造体の両面に、通風口が形成された絶縁板を備えているため、単電池と多角形構造体との絶縁を確保するとともに、サブモジュールの荷重あるいは衝突時の衝撃を多角形構造体の一部が部分的に支えるのではなく、面で支えるため、サブモジュールの荷重あるいは衝突時の衝撃を多角形構造体に対して、より均等に分散することができ耐荷重が増加する。このような多角形構造体として、例えば、ハニカム構造体を用いることができ、材質としては、例えば、アルミニウムまたはアルミニウム合金を用いることができる。 In the present invention, since the polygonal structure is arranged on at least one surface of the outer case, the cooling cell is blown from the polygonal mesh-like cavity of the polygonal structure, thereby cooling the unit cell that has generated heat due to the large current charge / discharge. In addition, since the polygonal structure has high strength against the load, it has excellent durability, and a high-strength battery module can be obtained while improving the cooling performance . Insulation plates with vents are formed on both the battery-side surface and the polygonal structure, ensuring insulation between the cells and the polygonal structure, Since the impact is supported by the surface rather than partially by the polygonal structure, the load of the submodule or the impact at the time of collision can be more evenly distributed to the polygonal structure. you increase load As such a polygonal structure, for example, a honeycomb structure can be used, and as a material, for example, aluminum or an aluminum alloy can be used.

本発明において、多角形構造体と絶縁板とを一体化するようにしてもよい。このような態様および本発明のその他の効果については、後述する発明の実施の形態の欄で詳述する。 In the present invention, the polygonal structure and the insulating plate may be integrated. Such an aspect and other effects of the present invention will be described in detail in the section of the embodiment of the invention described later.

本発明によれば、外装ケースの少なくとも一面に多角形構造体が配されているため、多角形構造体の多角網目状空洞から冷却風を送風することにより、大電流充放電で発熱した単電池を冷却することができるとともに、多角形構造体は荷重に対して高強度のため、耐久性に優れており、冷却性能を向上しつつ、高強度の電池モジュールが得られ、また、多角形構造体の電池側の面または多角形構造体の両面に、通風口が形成された絶縁板を備えているため、単電池と多角形構造体との絶縁を確保するとともに、サブモジュールの荷重あるいは衝突時の衝撃を多角形構造体の一部が部分的に支えるのではなく、面で支えるため、サブモジュールの荷重あるいは衝突時の衝撃を多角形構造体に対して、より均等に分散することができ耐荷重が増加する、という効果を得ることができる。 According to the present invention, since the polygonal structure is arranged on at least one surface of the exterior case, the unit cell that generates heat by charging / discharging the large current by blowing cooling air from the polygonal mesh cavity of the polygonal structure. it is possible to cool the order of the polygon structure high strength against a load, is excellent in durability, while improving the cooling performance, the battery module of high strength can be obtained and, polygonal structure Insulation plates with ventilation holes are formed on the battery side of the body or on both sides of the polygonal structure, ensuring insulation between the cells and the polygonal structure, and the load or collision of the submodule. Since a part of the polygonal structure is not partially supported by the polygonal structure, the load of the submodule or the impact at the time of collision can be more evenly distributed to the polygonal structure. Can withstand load increase That, effect it is possible to obtain that.

以下、図面を参照して、本発明を、多数個の単電池を収容した電池モジュール(以下、モジュールと略称する。)に適用した最良の実施の形態について説明する。なお、本実施形態の電池モジュールは、単体で、または複数個を直列ないし直並列に接続して、HEV用電源等として用いられる。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an exemplary embodiment in which the present invention is applied to a battery module (hereinafter abbreviated as a module) containing a large number of single cells will be described with reference to the drawings. In addition, the battery module of this embodiment is used as a power source for HEV or the like by itself or by connecting a plurality of battery modules in series or series-parallel.

(全体概要)
図8および図9に示すように、本実施形態の電池モジュール60(以下、モジュール60と略称する。)は、外装ケース内に複数個のサブモジュール40が収容、配設されている。図4および図5に示すように、サブモジュール40は、組電池30を組電池ホルダ36と組電池カバー34、35とで構成される枠体に収容したものである。図2および図3に示すように、組電池30は4個の扁平状の単電池20が直列接続された集合体(集合電池)として構成されている。以下、最小単位の単電池20から、組電池30、サブモジュール40、モジュール60のアセンブリ(ユニット)順に、モジュール60の構成について組立手順を含めて説明する。
(Overview)
As shown in FIGS. 8 and 9, the battery module 60 of the present embodiment (hereinafter abbreviated as “module 60”) includes a plurality of submodules 40 housed and disposed in an outer case. As shown in FIG. 4 and FIG. 5, the submodule 40 is obtained by housing the assembled battery 30 in a frame configured by the assembled battery holder 36 and the assembled battery covers 34 and 35. As shown in FIGS. 2 and 3, the assembled battery 30 is configured as an assembly (an assembled battery) in which four flat unit cells 20 are connected in series. Hereinafter, the configuration of the module 60 including the assembly procedure will be described in the order of the assembly (unit) of the assembled battery 30, the sub module 40, and the module 60 from the unit cell 20 of the minimum unit.

(単電池20)
<正極板>
正極活物質としてリチウムマンガン複酸化物粉末と、導電材として鱗片状黒鉛と、結着剤としてポリフッ化ビニリデン(PVDF)とを重量比85:10:5で混合し、これに分散溶媒のN−メチルピロリドン(NMP)を添加、混練したスラリを、厚さ20μmのアルミニウム箔の両面に塗布した。その後、乾燥、プレス、裁断することにより幅80mm、厚さ170μmの正極を得た。なお、アルミニウム箔の長手方向一側を矩形状に切り欠き、切り欠き残部を正極リード片とした。
(Single cell 20)
<Positive electrode plate>
Lithium manganese complex oxide powder as a positive electrode active material, scaly graphite as a conductive material, and polyvinylidene fluoride (PVDF) as a binder were mixed at a weight ratio of 85: 10: 5, and this was mixed with N- A slurry in which methylpyrrolidone (NMP) was added and kneaded was applied to both surfaces of an aluminum foil having a thickness of 20 μm. Then, the positive electrode of width 80mm and thickness 170micrometer was obtained by drying, pressing, and cutting. Note that one side in the longitudinal direction of the aluminum foil was cut out in a rectangular shape, and the remainder of the cutout was used as a positive electrode lead piece.

<負極板>
負極活物質として非晶質炭素粉末90質量部に対し、結着剤としてポリフッ化ビニリデンを負極活物質に対し10質量部添加し、これに分散溶媒のNMPを添加、混練したスラリを、厚さ10μmの圧延銅箔の両面に塗布した。その後乾燥、プレス、裁断することにより幅85mm、厚さ130μmの負極を得た。なお、圧延銅箔の長手方向一側を矩形状に切り欠き、切り欠き残部を負極リード片とした。
<Negative electrode plate>
10 parts by mass of polyvinylidene fluoride as a binder is added to 90 parts by mass of the amorphous carbon powder as the negative electrode active material, and NMP as a dispersion solvent is added and kneaded to the slurry. It apply | coated to both surfaces of 10 micrometers rolled copper foil. Thereafter, drying, pressing, and cutting were performed to obtain a negative electrode having a width of 85 mm and a thickness of 130 μm. Note that one side in the longitudinal direction of the rolled copper foil was cut out in a rectangular shape, and the remainder of the cutout was used as a negative electrode lead piece.

<単電池20の作製>
図1に示すように、作製した正負極を、これら両極板が直接接触しないように、幅90mm、厚さ40μmのポリエチレン製セパレータと共に捲回して捲回群6を作製した。捲回の中心には、ポリプロピレン製の中空扁平状の軸芯1を用いた。このとき、正極リード片2と負極リード片3とが、それぞれ捲回群6の互いに反対側の両端面に位置するようにした。
<Preparation of the unit cell 20>
As shown in FIG. 1, the produced positive and negative electrodes were wound together with a polyethylene separator having a width of 90 mm and a thickness of 40 μm so that these bipolar plates were not in direct contact with each other, thereby producing a wound group 6. At the center of winding, a hollow flat shaft core 1 made of polypropylene was used. At this time, the positive electrode lead piece 2 and the negative electrode lead piece 3 were respectively positioned on opposite end surfaces of the wound group 6.

正極リード片2を変形させ、その全てを正極集電リング4の周囲から一体に張り出した鍔部周面付近に集合、接触させた後、正極リード片2と鍔部周面とを超音波溶接して正極リード片2を鍔部周面に接続した。一方、負極集電リング5と負極リード片3との接続操作も、正極集電リング4と正極リード片2との接続操作と同様に実施した。その後、正極集電リング4の鍔部周面全周に絶縁被覆を施し、捲回群6をニッケルメッキが施されたスチール製の電池缶7内に挿入した。   The positive electrode lead piece 2 is deformed, and all of the positive electrode lead piece 2 is gathered and brought into contact with the vicinity of the buttocks circumferential surface integrally projecting from the periphery of the positive electrode current collecting ring 4, and then the positive electrode lead piece 2 and the buttocks circumferential surface are ultrasonically welded Then, the positive electrode lead piece 2 was connected to the collar surface. On the other hand, the connection operation between the negative electrode current collection ring 5 and the negative electrode lead piece 3 was performed in the same manner as the connection operation between the positive electrode current collection ring 4 and the positive electrode lead piece 2. Thereafter, an insulating coating was applied to the entire circumference of the collar surface of the positive electrode current collecting ring 4, and the wound group 6 was inserted into a nickel-plated steel battery can 7.

負極集電リング5には、予め電気的導通のための負極リード板8が溶接されており、電池缶7に捲回群6を挿入後、電池缶7の底部と負極リード板8とを溶接した。電池缶開口部には、電池缶壁を内側方向に屈曲突出させた段付け部を形成した。   A negative electrode lead plate 8 for electrical conduction is welded to the negative electrode current collecting ring 5 in advance. After inserting the wound group 6 into the battery can 7, the bottom of the battery can 7 and the negative electrode lead plate 8 are welded. did. A stepped portion in which the battery can wall is bent and protruded inward is formed in the battery can opening.

一方、正極集電リング4には、予め複数枚のアルミニウム製のリボンを重ね合わせて構成した正極リード9を溶接しておき、正極リード9の他端を、電池缶7を封口するための電池蓋10の下面に溶接した。電池蓋10は、蓋ケース12と、蓋キャップ13と、蓋ケース12に溶接されたステンレス製のガス排出弁11とで構成されており、これらが積層されて蓋ケース12の周縁をカシメることによって組立てられている。   On the other hand, the positive electrode current collector ring 4 is preliminarily welded with a positive electrode lead 9 composed of a plurality of aluminum ribbons, and the other end of the positive electrode lead 9 is sealed with a battery for sealing the battery can 7. Welded to the lower surface of the lid 10. The battery lid 10 includes a lid case 12, a lid cap 13, and a stainless steel gas discharge valve 11 welded to the lid case 12, and these are laminated to crimp the periphery of the lid case 12. It is assembled by.

捲回群6全体を浸潤可能な所定量の非水電解液を電池缶7内に注入し、その後、正極リード9を折りたたむようにして電池蓋10で電池缶7に蓋をし、EPDM樹脂製ガスケットを介してカシメ封口し、寸法は長さ108mm、幅34mm、高さ117mm、容量10.0Ahの扁平状のリチウムイオン二次電池(単電池)20を完成させた。   A predetermined amount of non-aqueous electrolyte that can infiltrate the entire wound group 6 is injected into the battery can 7, and then the battery can 7 is covered with the battery cover 10 so that the positive electrode lead 9 is folded, and made of EPDM resin. A flat lithium ion secondary battery (unit cell) 20 having a length of 108 mm, a width of 34 mm, a height of 117 mm, and a capacity of 10.0 Ah was completed by crimping with a gasket.

非水電解液には、エチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した混合溶液中へ六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解したものを用いた。 In the non-aqueous electrolyte, lithium hexafluorophosphate (LiPF 6 ) is dissolved at a concentration of 1 mol / liter in a mixed solution in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 2. Was used.

<組電池30の作製>
図2および図3に示すように、4個の単電池20を用いて、ガス排出弁11が配置された単電池上面が組電池30の側面方向を向き、前記上面と底面が交互になるように一列に配置した。その後、隣接する単電池間を電気的に直列に接続するためにブスバA31、ブスバB32を配置し、各ブスバと単電池20とを仮接続した。またブスバC33を配置し、単電池と仮接続することにより組電池間を電気的に直列接続可能に組電池30を作製した。
<Production of assembled battery 30>
As shown in FIGS. 2 and 3, using the four unit cells 20, the upper surface of the unit cell on which the gas discharge valve 11 is arranged faces the side surface of the assembled battery 30, and the upper surface and the bottom surface are alternated. Arranged in a row. Thereafter, the bus bars A31 and B32 were arranged to electrically connect adjacent unit cells in series, and each bus bar and the unit cells 20 were temporarily connected. In addition, the battery pack 30 was prepared by arranging the bus bar C33 and temporarily connecting the battery packs to the battery cells.

<サブモジュール40の作製>
図4および図5に示すように、サブモジュール40は、組電池30を両側面から覆う組電池カバーA34と組電池カバーB35と同じく両側面から覆う組電池ホルダ36で支持(固定)した。組電池カバーA34と組電池カバーB35には、ガス排出弁用の穴37と溶接用の穴38が開いており、ガス排出弁用の穴37は、単電池20が過充電や圧壊など異常状態となったときに単電池内部で発生し噴出するガスをサブモジュール40の外へ放出しやすくするために設けた。また溶接用の穴38は、ブスバA31、ブスバB32、ブスバC33それぞれと単電池20とを抵抗溶接するために設けており、この溶接用の穴38を通して、抵抗溶接用の溶接電極をブスバに当接して単電池20と各ブスバを抵抗溶接により本溶接して、サブモジュール40を作製した。
<Preparation of submodule 40>
As shown in FIGS. 4 and 5, the submodule 40 was supported (fixed) by the assembled battery holder 36 that covers the assembled battery 30 from both sides as well as the assembled battery cover A34 and the assembled battery cover B35 that cover the assembled battery 30 from both sides. The assembled battery cover A34 and the assembled battery cover B35 are provided with a gas exhaust valve hole 37 and a welding hole 38. The gas exhaust valve hole 37 is in an abnormal state such as when the unit cell 20 is overcharged or collapsed. In order to make it easier to discharge the gas generated and ejected inside the unit cell to the outside of the submodule 40. The welding hole 38 is provided for resistance welding of each of the bus bar A31, bus bar B32, bus bar C33 and the unit cell 20, and the welding electrode for resistance welding is applied to the bus bar through the hole 38 for welding. The unit cell 20 and each bus bar were in contact with each other and subjected to main welding by resistance welding, so that the submodule 40 was produced.

<モジュール60の作製>
図6および図7に示すように、矩形状の通風口が複数形成された絶縁板41と枠体42を一体化させ、その中に厚さ20μmのアルミニウム合金箔で作製した長さ1000mm、幅100mm、高さ10mmのハニカム構造体43を配置し、さらにハニカム構造体43の電池側である上面に同様に矩形状の通風口が複数形成された絶縁板44を配置し、絶縁体41と枠体42とハニカム構造体43と絶縁板44を一体化して下ケース45を作製した。
<Production of module 60>
As shown in FIGS. 6 and 7, the insulating plate 41 having a plurality of rectangular ventilation holes and the frame body 42 are integrated, and a length of 1000 mm and a width made of an aluminum alloy foil having a thickness of 20 μm are integrated therein. A honeycomb structure 43 having a height of 100 mm and a height of 10 mm is disposed, and an insulating plate 44 in which a plurality of rectangular ventilation holes are similarly formed is disposed on the upper surface of the honeycomb structure 43 on the battery side. The body 42, the honeycomb structure 43, and the insulating plate 44 were integrated to produce a lower case 45.

その後、図8および図9に示すように、下ケース45に、サブモジュール40を7個ずつ2列に対称となるように配列して配置した。2列に対称配置したサブモジュール40の裏面側同士の間には隔離板46を設けてサブモジュール裏面側での電気的接触による短絡を防止した。また、上ケース47を、サブモジュール40の上面に配置した。隣接するサブモジュール40間を電気的に接続するために、隣接する各サブモジュール40の各ブスバC33をネジ締結した。2列に対象配置したサブモジュール40間を電気的に接続するために、ブスバD48を配置し、ブスバD48を配置した側のサブモジュール40のブスバC33とネジ締結した。これにより、14個のサブモジュール40を電気的に直列に接続した。横ケースA49、横ケースB50、横ケースC51をそれぞれ下ケース45と上ケース47にネジ固定してモジュール60の作製を完了した。なお、本実施形態のモジュール60は、56個の単電池20が直列接続されている。   After that, as shown in FIGS. 8 and 9, the submodules 40 are arranged in the lower case 45 so as to be symmetrical in two rows by seven. A separator 46 is provided between the back surfaces of the submodules 40 arranged symmetrically in two rows to prevent a short circuit due to electrical contact on the back surface of the submodule. Further, the upper case 47 is disposed on the upper surface of the submodule 40. In order to electrically connect adjacent submodules 40, each bus bar C33 of each adjacent submodule 40 was screwed. In order to electrically connect the sub-modules 40 arranged in two rows, the bus bar D48 was arranged and screwed to the bus bar C33 of the sub-module 40 on the side where the bus bar D48 was arranged. Thereby, 14 submodules 40 were electrically connected in series. The horizontal case A49, the horizontal case B50, and the horizontal case C51 were screwed to the lower case 45 and the upper case 47, respectively, to complete the manufacture of the module 60. In the module 60 of this embodiment, 56 unit cells 20 are connected in series.

次に、本実施形態のモジュール60の効果等について説明する。   Next, effects and the like of the module 60 of the present embodiment will be described.

本実施形態のモジュール60は、電池蓋10と電池缶7とが異極を呈する4個の単電池20を電池蓋10および電池缶7の底面が側面方向において交互となるように単電池20を一列に配列して組電池30を構成し、組電池30を組電池ホルダ36および組電池カバー34、35からなる枠体で固定するとともに電気的に接続してサブモジュール40を構成し、サブモジュール40を14個、下ケース45、上ケース47、横ケース49、50、51からなる6面体の外装ケース内に収容、配設し電気的に接続することで構成されており、外装ケースの一面を構成する下ケース45にはハニカム構造体43が配されている。モジュール60によれば、下ケース45にハニカム構造体43が配されているため、ハニカム構造体43の六角網目状空洞から冷却風を送風することにより大電流充放電により発熱した単電池20を冷却することができる。また、ハニカム構造体43は荷重に対して高強度であるため、樹脂単体で作製した外装ケースよりも耐久性に優れており、冷却性能を向上しつつ、高強度な電池モジュールを得ることができる。   The module 60 of the present embodiment includes four unit cells 20 in which the battery lid 10 and the battery can 7 have different polarities, and the unit cells 20 are arranged so that the bottom surfaces of the battery lid 10 and the battery can 7 are alternated in the side surface direction. The assembled battery 30 is arranged in a line, and the assembled battery 30 is fixed by a frame body including the assembled battery holder 36 and the assembled battery covers 34 and 35 and electrically connected to form the submodule 40. It is configured by housing, arranging and electrically connecting in a hexahedron outer case made up of 14 pieces, a lower case 45, an upper case 47, and lateral cases 49, 50, 51. A honeycomb structure 43 is disposed in the lower case 45 constituting the. According to the module 60, since the honeycomb structure 43 is arranged in the lower case 45, the unit cell 20 that has generated heat due to large current charging / discharging is cooled by blowing cooling air from the hexagonal mesh-shaped cavity of the honeycomb structure 43. can do. In addition, since the honeycomb structure 43 has high strength with respect to the load, it is superior in durability to an exterior case made of a resin alone, and a high-strength battery module can be obtained while improving cooling performance. .

また、モジュール60は、ハニカム構造体43の電池側の面に絶縁板44を備え、絶縁板44に通風口が形成されていることにより、単電池20とハニカム構造体43との絶縁を確保するとともに、サブモジュール40の荷重あるいは衝突時の衝撃をハニカム構造体43の一部が部分的に支えるのではなく、面で支えるため、サブモジュール40の荷重あるいは衝突時の衝撃をハニカム構造体43に対して、より均等に分散することができるため耐荷重が増加する。   In addition, the module 60 includes an insulating plate 44 on the surface of the honeycomb structure 43 on the battery side, and a ventilation hole is formed in the insulating plate 44, thereby ensuring insulation between the unit cell 20 and the honeycomb structure 43. At the same time, the load of the submodule 40 or the impact at the time of collision is not partially supported by a part of the honeycomb structure 43 but is supported by the surface, so the load of the submodule 40 or the impact at the time of collision is applied to the honeycomb structure 43. On the other hand, since the load can be more evenly distributed, the load resistance increases.

さらに、モジュール60は、ハニカム構造体43の両面に絶縁板41、44を備えていることにより、電池側のみならず電池側と反対面の絶縁を確保とともにハニカム構造体43の電池側と反対側の面の荷重あるいは衝撃に対してハニカム構造体43の一部が部分的に支えるのではなく、面で支えるため、サブモジュールの荷重あるいは衝突時の衝撃をハニカム構造体に対して、より均等に分散することができる。   Further, the module 60 includes the insulating plates 41 and 44 on both surfaces of the honeycomb structure 43, thereby ensuring insulation not only on the battery side but also on the surface opposite to the battery side, and on the side opposite to the battery side of the honeycomb structure 43. Because a part of the honeycomb structure 43 is not partially supported by the load or impact of the surface, but is supported by the surface, the load of the submodule or impact at the time of collision is more evenly applied to the honeycomb structure. Can be dispersed.

また、モジュール60は、ハニカム構造体43と絶縁板41、44が一体化されていることにより組立工程での作業性が向上する。   Further, the module 60 is improved in workability in the assembly process because the honeycomb structure 43 and the insulating plates 41 and 44 are integrated.

さらに、モジュール60は、ハニカム構造体43がアルミニウム製またはアルミニウム合金製であることにより、アルミニウムは金属の中で密度が小さく、また汎用品であり、箔製品も作製しやすい。このため、薄膜のハニカム構造体を容易に作製することができ、軽量・安価かつ金属の特性を活かし高強度の電池モジュールを作製することができる。   Furthermore, in the module 60, since the honeycomb structure 43 is made of aluminum or aluminum alloy, aluminum has a low density among metals, is a general-purpose product, and a foil product can be easily manufactured. For this reason, a thin-film honeycomb structure can be easily manufactured, and a high-strength battery module can be manufactured by taking advantage of the characteristics of a metal with light weight and low cost.

一方、組電池30を構成する単電池20は、捲回群6の下端面部から導出され電池缶7の内底面に接続されており、捲回群6の上端面部から導出され電池蓋10の底面に接続さている。このため、負極導電部材(負極リード片3、負極集電リング5、負極リード板8)および正極導電部材(正極リード片2、正極集電リング4、正極リード9)の各長さを短くでき、単電池20の内部抵抗を小さく抑えることができる。また、組電池30は、4個の扁平状の単電池20の電池蓋10と電池缶7の底面とが交互に一列に配列されているので、ブスバA31、B32の長さを短くすることができ、組電池30を構成する際の単電池間接続抵抗を小さくすることができる。従って、組電池30は全体として抵抗が小さいため、入出力特性に優れ、大電流充放電が可能であり、HEVの電源等として好適に用いることができる。さらに、組電池30は、単電池20の電池蓋10にはガス排出弁11が配置されており、単電池20の電池蓋10が組電池30の側面を向き、単電池20の電池蓋10と電池缶7の底面とが交互に一列に配列されている。このため、ガス排出弁11を閉塞するなどの不具合を発生することなく、電池異常時に電池内部で発生したガスを速やかに排出することができる。従って、安全性を確保しつつ、体積密度が高く、入出力特性に優れたモジュール60を得ることができる。   On the other hand, the unit cell 20 constituting the assembled battery 30 is led out from the lower end surface portion of the wound group 6 and connected to the inner bottom surface of the battery can 7, and is led out from the upper end surface portion of the wound group 6 to the bottom surface of the battery lid 10. Is connected to. Therefore, the lengths of the negative electrode conductive member (negative electrode lead piece 3, negative electrode current collecting ring 5, negative electrode lead plate 8) and positive electrode conductive member (positive electrode lead piece 2, positive electrode current collecting ring 4, positive electrode lead 9) can be shortened. The internal resistance of the unit cell 20 can be kept small. Moreover, since the battery pack 10 of the four flat cell 20 and the bottom face of the battery can 7 are alternately arranged in a line, the assembled battery 30 can shorten the length of the bus bars A31 and B32. In addition, the inter-cell connection resistance when the assembled battery 30 is configured can be reduced. Therefore, since the assembled battery 30 has a small resistance as a whole, it has excellent input / output characteristics, can be charged / discharged with a large current, and can be suitably used as a power source for HEVs. Further, in the assembled battery 30, the gas discharge valve 11 is arranged on the battery cover 10 of the unit cell 20, the battery cover 10 of the unit cell 20 faces the side surface of the assembled battery 30, and the battery cover 10 of the unit cell 20. The bottom surfaces of the battery cans 7 are alternately arranged in a line. For this reason, the gas generated inside the battery at the time of battery abnormality can be quickly discharged without causing problems such as closing the gas discharge valve 11. Therefore, it is possible to obtain a module 60 having a high volume density and excellent input / output characteristics while ensuring safety.

またさらに、組電池30では、単電池20の電池缶7と電池蓋10とが異極であり、単電池20の上面が組電池30の側面を向き、単電池20の上面と底面とが交互に一列に配列されており、単電池20の個数は4個(偶数個)である。このため、組電池30のうち最高電位側の単電池20の正極端子に接続されたブスバC33と最低電位側の単電池20の負極端子に接続されたブスバC33とが組電池30の同じ側面に位置し、複数個の組電池30を配列する際に一方の側面に組電池30のブスバC33を揃えることができるため、組電池30間の接続が容易となり、接続用の空間も小さくすることができる。   Furthermore, in the assembled battery 30, the battery can 7 and the battery lid 10 of the unit cell 20 have different polarities, the upper surface of the unit cell 20 faces the side surface of the assembled battery 30, and the upper surface and the bottom surface of the unit cell 20 alternate. The number of unit cells 20 is four (even number). Therefore, the bus bar C33 connected to the positive electrode terminal of the unit cell 20 on the highest potential side of the battery pack 30 and the bus bar C33 connected to the negative electrode terminal of the unit cell 20 on the lowest potential side are on the same side of the battery pack 30. When the plurality of assembled batteries 30 are arranged, the bus bars C33 of the assembled batteries 30 can be aligned on one side surface, which facilitates the connection between the assembled batteries 30 and reduces the space for connection. it can.

また、サブモジュール40は、組電池30を覆う組電池ホルダ36、組電池カバー34、35からなる枠体を備えており、単電池20は枠体で強固に固定される。また、単電池20間はブスバ31、32で溶接されているので、モジュール60が車両に搭載され振動の影響を受けても、単電池20は遊動が生じない。   The submodule 40 includes a frame body including an assembled battery holder 36 and assembled battery covers 34 and 35 that cover the assembled battery 30, and the unit cell 20 is firmly fixed by the frame body. Further, since the single cells 20 are welded by the bus bars 31 and 32, even if the module 60 is mounted on the vehicle and affected by vibration, the single cells 20 do not move.

さらに、サブモジュール40の組電池カバー34、35には、ガス排出弁11のガス排出用の穴37と単電池20を接続するための溶接用の丸穴38とが形成されている。ガス排出弁11のガス排出用の穴38が形成されているので、組電池20を枠体で支持し、単電池20と各ブスバとの位置を固定した状態で溶接することができるため、単電池20とブスバとの溶接位置の再現性が高く、溶接不良を起こさず生産性を向上させることができる。   Furthermore, the assembled battery covers 34 and 35 of the submodule 40 are formed with a gas discharge hole 37 of the gas discharge valve 11 and a welding round hole 38 for connecting the unit cell 20. Since the gas discharge hole 38 of the gas discharge valve 11 is formed, the assembled battery 20 can be supported by the frame and welded in a state where the position of the single battery 20 and each bus bar is fixed. The reproducibility of the welding position between the battery 20 and the bus bar is high, and productivity can be improved without causing poor welding.

また、モジュール60は、14個のサブモジュール40が2列に対称配置されて外装ケース内に収容され、サブモジュール40間が電気的に接続されている。このため、サブモジュール1個分の空間が開くなどモジュール60内にムダな空間を生じさせることなく体積密度を高めることができる。   In the module 60, 14 submodules 40 are symmetrically arranged in two rows and accommodated in an outer case, and the submodules 40 are electrically connected. For this reason, it is possible to increase the volume density without creating a wasteful space in the module 60 such as opening a space for one submodule.

さらに、モジュール60では、外装ケースが、上ケース47、下ケース45、略平板状の横ケース49、50、51で構成されおり、各ケースが分離可能なため、各サブモジュール40を電気的に接続した後、一部のケースを取り付けることができるため、作業性を高めることができる。   Further, in the module 60, the outer case is composed of an upper case 47, a lower case 45, and substantially flat horizontal cases 49, 50, 51, and each case is separable. Since some cases can be attached after the connection, workability can be improved.

なお、本実施形態では、多角形構造体としてハニカム構造体43を例示したが、本発明はこれに制約されることなく、三角形、四角形、五角形、七角形、八角形等の多角形構造体を用いるようにしてもよい。また、本実施形態では、ハニカム構造体43の両面に絶縁板41、44を備えた下ケース45を例示したが、軽量化および小型化を図るために、ハニカム構造体43の電池側の面に絶縁板44のみ備えるようにしてもよい。   In the present embodiment, the honeycomb structure 43 is exemplified as the polygonal structure. However, the present invention is not limited to this, and a polygonal structure such as a triangle, a quadrangle, a pentagon, a heptagon, an octagon, or the like is used. You may make it use. In the present embodiment, the lower case 45 provided with the insulating plates 41 and 44 on both surfaces of the honeycomb structure 43 is illustrated. However, in order to reduce weight and size, the honeycomb structure 43 is provided on the battery side surface. Only the insulating plate 44 may be provided.

また、本実施形態では、単電池20としてリチウムイオン二次電池を例示したが、本発明はこれに限定されず、例えば、ニッケル水素二次電池等の他の二次電池に適用可能なことは云うまでもない。また、本実施形態では、HEV電源用のモジュール60を例示したが、本発明はこれに限らず、据え置き用電源等他の用途にも適用可能である。   Moreover, in this embodiment, although the lithium ion secondary battery was illustrated as the single battery 20, this invention is not limited to this, For example, it is applicable to other secondary batteries, such as a nickel-hydrogen secondary battery. Needless to say. Further, in the present embodiment, the HEV power supply module 60 is illustrated, but the present invention is not limited to this, and can be applied to other uses such as a stationary power supply.

本発明は大電流充放電しても温度上昇を抑制でき、かつ、高強度の電池モジュールを提供するものであるため、電池モジュールの製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a high-strength battery module that can suppress an increase in temperature even when charged and discharged with a large current and contributes to the manufacture and sale of battery modules, it has industrial applicability. .

本発明が適用可能な実施形態の電池モジュールを構成する単電池の断面図である。It is sectional drawing of the cell which comprises the battery module of embodiment which can apply this invention. 単電池を集合した組電池の正面側外観斜視図である。It is a front external appearance perspective view of the assembled battery which assembled the cell. 組電池の裏面側外観斜視図である。It is a back side external appearance perspective view of an assembled battery. 組電池を構成する単電池を枠体で固定するとともに電気的に直列に接続したサブモジュールの組立状態を示す外観斜視図である。It is an external appearance perspective view which shows the assembly state of the submodule which fixed the cell which comprises an assembled battery with the frame, and was electrically connected in series. サブモジュールの外観斜視図である。It is an external appearance perspective view of a submodule. 電池モジュールの下ケースの組立状態を示す外観斜視図である。It is an external appearance perspective view which shows the assembly state of the lower case of a battery module. 下ケースの外観斜視図である。It is an external appearance perspective view of a lower case. 電池モジュールの組立状態を示す外観斜視図である。It is an external appearance perspective view which shows the assembly state of a battery module. 電池モジュールの外観斜視図である。It is an external appearance perspective view of a battery module.

符号の説明Explanation of symbols

7 電池缶
10 電池蓋
20 単電池
34、35 組電池カバー(枠体の一部)
36 組電池ホルダ(枠体の一部)
40 サブモジュール
41 絶縁板
43 ハニカム構造体(多角形構造体)
44 絶縁板
45 下ケース(外装ケースの一部)
47 上ケース(外装ケースの一部)
49、50、51 横ケース(外装ケースの一部)
7 Battery can 10 Battery lid 20 Cell 34, 35 Battery cover (part of the frame)
36 Battery pack holder (part of the frame)
40 Submodule 41 Insulating plate 43 Honeycomb structure (polygonal structure)
44 Insulating plate 45 Lower case (part of exterior case)
47 Upper case (part of outer case)
49, 50, 51 Horizontal case (part of exterior case)

Claims (4)

電池蓋と電池缶とが異極を呈する複数個の単電池を前記電池蓋および前記電池缶の底面が側面方向において交互となるように前記単電池を一列に配列し枠体で固定するとともに電気的に接続したサブモジュールを、複数個、外装ケース内に収容、配設し電気的に接続した電池モジュールであって、前記外装ケースの少なくとも一面に多角形構造体を配し、前記多角形構造体の電池側の面または前記多角形構造体の両面に、通風口が形成された絶縁板を備えたことを特徴とする電池モジュール。 A plurality of single cells having different polarities between the battery lid and the battery can are arranged in a row so that the bottom surfaces of the battery lid and the battery can alternate in the side surface direction, and are fixed by a frame. A battery module in which a plurality of connected sub-modules are housed, arranged and electrically connected in an outer case, wherein a polygonal structure is arranged on at least one surface of the outer case , and the polygonal structure A battery module comprising an insulating plate having ventilation holes formed on a battery side surface of the body or on both surfaces of the polygonal structure . 前記多角形構造体がハニカム構造体であることを特徴とする請求項1に記載の電池モジュール。   The battery module according to claim 1, wherein the polygonal structure is a honeycomb structure. 前記多角形構造体と前記絶縁板とが一体化されていることを特徴とする請求項に記載の電池モジュール。 The battery module according to claim 1 , wherein the polygonal structure and the insulating plate are integrated. 前記多角形構造体がアルミニウム製またはアルミニウム合金製であることを特徴とする請求項1ないし請求項のいずれか1項に記載の電池モジュール。 The battery module according to any one of claims 1 to 3 , wherein the polygonal structure is made of aluminum or an aluminum alloy.
JP2007081063A 2007-03-27 2007-03-27 Battery module Expired - Fee Related JP5060809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081063A JP5060809B2 (en) 2007-03-27 2007-03-27 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081063A JP5060809B2 (en) 2007-03-27 2007-03-27 Battery module

Publications (2)

Publication Number Publication Date
JP2008243526A JP2008243526A (en) 2008-10-09
JP5060809B2 true JP5060809B2 (en) 2012-10-31

Family

ID=39914623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081063A Expired - Fee Related JP5060809B2 (en) 2007-03-27 2007-03-27 Battery module

Country Status (1)

Country Link
JP (1) JP5060809B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208548B2 (en) * 2008-03-24 2013-06-12 株式会社東芝 Battery pack, battery pack packaging method and assembly method
KR101456735B1 (en) * 2010-03-26 2014-10-31 주식회사 엘지화학 Middle or large sized battery pack and packaging method thereof
KR101472613B1 (en) * 2010-03-26 2014-12-15 주식회사 엘지화학 Middle or large sized battery pack and packaging method thereof
KR101464796B1 (en) * 2010-03-26 2014-11-24 주식회사 엘지화학 Middle or large sized battery pack and packaging method thereof
KR101516449B1 (en) * 2010-03-26 2015-05-04 주식회사 엘지화학 Middle or large sized battery pack and packaging method thereof
KR101305215B1 (en) * 2011-01-06 2013-09-12 주식회사 엘지화학 Battery Pack Having Insert Type Battery Module
CN103427062A (en) * 2012-05-17 2013-12-04 凹凸电子(武汉)有限公司 Battery pack and electric equipment
KR101709562B1 (en) * 2013-07-31 2017-03-08 주식회사 엘지화학 Battery Module Assembly
KR101586668B1 (en) * 2013-12-27 2016-01-19 주식회사 엘지화학 Battery Module Assembly Including Sub-Modules Inside
JP6355956B2 (en) * 2014-04-16 2018-07-11 矢崎エナジーシステム株式会社 Battery pack and power supply
CN106450574B (en) * 2016-11-25 2019-02-19 安徽江淮汽车集团股份有限公司 The power battery assembly of High Efficiency Thermal management function
JP2020030883A (en) 2016-12-15 2020-02-27 ヤマハ発動機株式会社 Assembled battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3458239B2 (en) * 1993-06-17 2003-10-20 三菱アルミニウム株式会社 In-vehicle battery case
JP2002157984A (en) * 2000-11-21 2002-05-31 Shin Kobe Electric Mach Co Ltd Battery pack and battery module

Also Published As

Publication number Publication date
JP2008243526A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5060809B2 (en) Battery module
JP6582489B2 (en) Square secondary battery and battery pack using the same
KR100973173B1 (en) Assembled battery
JP5082256B2 (en) Sealed storage battery
JP4630855B2 (en) Battery pack and manufacturing method thereof
KR100637443B1 (en) Secondary battery and terminal assembly using the same
JP7162706B2 (en) Storage element
JP4918242B2 (en) Secondary battery
JP5242364B2 (en) Flat secondary battery
JP5889333B2 (en) Assembled battery
KR100599795B1 (en) Secondary battery
JP6891930B2 (en) Square secondary battery and assembled battery using it
KR100786871B1 (en) Secondary battery
JP2016189248A (en) Square secondary battery and battery pack using the same
JP2009515304A (en) Lithium ion battery
JP6697685B2 (en) Sealed batteries and assembled batteries
JP2008140773A (en) Battery module
KR100599598B1 (en) Secondary battery, electrodes assembly and plate using the same
KR20050121914A (en) Secondary battery and electrodes assembly
KR100658614B1 (en) secondary battery
JP5344237B2 (en) Assembled battery
CN108242512B (en) Battery pack
KR100599713B1 (en) Secondary battery and electrodes assembly
JP7453307B2 (en) Prismatic secondary battery and assembled battery using the same
KR20060130529A (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees