WO2018110342A1 - Emulsion - Google Patents

Emulsion Download PDF

Info

Publication number
WO2018110342A1
WO2018110342A1 PCT/JP2017/043435 JP2017043435W WO2018110342A1 WO 2018110342 A1 WO2018110342 A1 WO 2018110342A1 JP 2017043435 W JP2017043435 W JP 2017043435W WO 2018110342 A1 WO2018110342 A1 WO 2018110342A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer particles
emulsion
polymer
meth
zeta potential
Prior art date
Application number
PCT/JP2017/043435
Other languages
French (fr)
Japanese (ja)
Inventor
康司 壹岐
田中 陽子
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2018556584A priority Critical patent/JP6723379B2/en
Publication of WO2018110342A1 publication Critical patent/WO2018110342A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to an emulsion.
  • Water-based emulsions obtained by emulsion polymerization are often used as resins for water-based paints because a film formed by drying at room temperature or under heating exhibits relatively good durability.
  • the initial coating film formed from an emulsion forms particle interfaces and inter-particle spots due to filling and fusion of particles, so there is an absorption path for water molecules from the outside and resistance. This is a factor that reduces the water absorption whitening property. Further, depending on the degree of fusion at the particle interface, the coating film stress is reduced. Due to structural factors during the formation of these coating films, it has been a problem that weather resistance performance cannot be expressed.
  • Patent Documents 1 and 2 disclose coating compositions in which the particle size ratio and glass transition temperature are different and a plurality of emulsion particles having a controlled molecular weight are mixed to reduce the amount of film-forming aid.
  • Patent Document 3 discloses an emulsion composition for a vibration damping material in which two types of emulsion particles having different glass transition temperatures and molecular weights are mixed to improve sagging resistance under conditions where the film thickness is large. ing.
  • an object of the present invention is to provide an emulsion capable of forming a coating film excellent in weather resistance, particularly gloss retention.
  • the present inventor has dispersed polymer particles that are the main component of the coating film and polymer particles that reinforce the interface in an aqueous medium so that the main component when forming the coating film is dispersed.
  • polymer particles that reinforce the interface By unevenly distributing polymer particles that reinforce the interface on the outer periphery of the coalesced particles, it is possible to increase the durability of the particle interface in the coating film, which allows water molecules to enter the particle interface and interparticle voids. It was found that an emulsion capable of forming a coating film with excellent weather resistance, particularly gloss retention, was obtained, and the present invention was completed.
  • the present invention is as follows. [1]. Water, polymer particles (A) having a glass transition temperature of 10 ° C. to 70 ° C., and polymer particles (B) having a glass transition temperature of ⁇ 20 ° C. to 40 ° C., the polymer particles (A) being The polymer particles (A) and the polymer particles (B) are contained in the range of 3% by mass to 20% by mass with respect to the total mass of the polymer particles (A) and the polymer particles (B).
  • the zeta potential of the polymer particles (A) is 3 mV or more and 25 mV or less higher than the zeta potential of the polymer particles (B).
  • the zeta potential of the polymer particles (B) is greater than ⁇ 60 mV, preferably greater than ⁇ 54 mV.
  • the polymer particle (A) has a structural unit derived from a hydrolytic condensate of an organosilane compound, and the polymer particle (B) has a structural unit derived from an ethylenically unsaturated monomer.
  • the polymer particle (A) and the polymer particle (B) both have a structural unit derived from an ethylenically unsaturated monomer and a structural unit derived from a hydrolysis condensate of an organosilane compound.
  • the ratio of the structural unit derived from the hydrolysis condensate of the organosilane compound to the structural unit derived from the ethylenically unsaturated monomer of the polymer particle (A) is equal to or higher than the ratio of the polymer particle (B).
  • the polymer particles (A) cover the polymer particles (B). Emulsion. [8].
  • the polymer particles (A) are The emulsion according to any one of items [1] to [6], which coats the coalesced particles (B).
  • the emulsion of the present invention it is possible to form a coating film excellent in weather resistance, particularly gloss retention.
  • the emulsion according to the present invention comprises water, polymer particles (A) having a glass transition temperature of 10 ° C. to 70 ° C., and polymer particles having a glass transition temperature of ⁇ 20 ° C. to 40 ° C.
  • volume average particle size ratio between the polymer particles (A) and the polymer particles (B) (the volume average particle size of the polymer particles (A) with respect to the volume average particle size of the polymer particles (B)) Ratio) is in the range of 1/30 to 5/6, and the zeta potential of the polymer particles (A) is 3 mV to 25 mV higher than the zeta potential of the polymer particles (B), and the weight
  • the zeta potential of the coalesced particles (B) is greater than ⁇ 60 mV, preferably ⁇ 54 mV.
  • Ri is a large emulsion.
  • the polymer particles (B) have a function as polymer particles that are the main component of the coating film, and the polymer particles (A) have a function as polymer particles that reinforce the interface.
  • Each particle of the emulsion in which the polymer particles (A) and the polymer particles (B) are blended can be separated by adjusting the conditions using a centrifuge.
  • the polymer particles (A) and (B) are not particularly limited as long as the glass transition temperature, mass ratio, volume average particle size ratio, and zeta potential satisfy the requirements of the above ranges, and the same type and different types of resins. It may be configured with either.
  • the polymer particles (A) and / or the polymer particles (B) ie, at least one of the polymer particles (A) and the polymer particles (B)) is an ethylenically unsaturated monomer. It has a structural unit derived from a monomer. Although an ethylenically unsaturated monomer is not specifically limited, What is mentioned later regarding manufacture of a polymer particle can be used.
  • a high weather resistance (meth) acrylate resin and a general-purpose (meth) acrylate resin using a hydrophobic monomer a polysiloxane-containing aqueous (meth) acrylate resin and a general-purpose resin (Meth) acrylate resins, polysiloxane-containing aqueous (meth) acrylate resins and highly weather-resistant (meth) acrylate resins, (meth) acrylic composite fluororesins and general-purpose (meth) acrylate resins, polysiloxane-containing aqueous solutions ( Various combinations such as a (meth) acrylate resin and a urethane resin are possible.
  • the combination of the polymer particles (A) and the polymer particles (B) is a (meth) acrylate obtained by an addition polymerization reaction of an ethylenically unsaturated monomer.
  • a polysiloxane-containing aqueous (meth) acrylate resin obtained by addition polymerization reaction of an ethylenic unsaturated monomer and a hydrolytic condensation reaction of an organic silane compound, or each of them It is preferable that the resin is one kind or a combination of plural kinds.
  • the polymer particles (A) may be one kind or a mixture of plural kinds.
  • the polymer particles (B) may be one kind or a mixture of plural kinds.
  • the emulsion polymerization method of the polymer particles (A) and the polymer particles (B) is not particularly limited, and examples thereof include a method of polymerizing a pre-emulsion liquid containing an ethylenically unsaturated monomer and an emulsifier in an aqueous medium. Moreover, after mixing the pre-emulsion liquid containing an ethylenically unsaturated monomer and an emulsifier and an organosilane compound, polymerization of the ethylenically unsaturated monomer and hydrolysis and condensation reaction of the organosilane compound in an aqueous medium Can be performed simultaneously.
  • the pH of the reaction system during polymerization it is preferable to adjust the pH of the reaction system during polymerization to 4.0 or less.
  • the pH of the polymerization reaction system may be more preferably 3.0 or less, and / or more preferably 1.5 or more.
  • the means for adjusting the pH of the polymerization reaction system is not particularly limited.
  • Examples include a mode in which the pre-emulsion solution is adjusted to pH 4.0 or lower, a mode in which the pre-emulsion solution is kept neutral, and a pH is set to 4.0 or lower (for example, about pH 2) by adding other components to the polymerization system. It is done.
  • High weather resistance (meth) acrylic resins and general purpose (meth) acrylic resins have structural units derived from ethylenically unsaturated monomers.
  • the high weather resistance (meth) acrylic resin has a structural unit derived from a hydrophobic monomer such as cyclohexyl methacrylate, butyl methacrylate, butyl acrylate, etc., and the ratio of the structural unit derived from the hydrophobic monomer is 30% by mass or more.
  • the hydrophobic monomer here refers to a monomer having a solubility in water at 20 ° C. of 1% by mass or less.
  • the polysiloxane-containing aqueous (meth) acrylate-based resin has a structure derived from an ethylenically unsaturated monomer and a structure derived from a hydrolysis condensate of an organosilane compound.
  • Examples of the general-purpose (meth) acrylate resin include (meth) acrylic acid ester (co) polymers and copolymers containing structural units derived from (meth) acrylic acid esters.
  • (meth) acryl refers to acryl or methacryl
  • (co) polymer refers to a polymer or copolymer.
  • Examples of (meth) acrylic acid ester (co) polymers include poly (meth) methyl acrylate, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, methyl (meth) acrylate / (meth) Examples thereof include butyl acrylate copolymers, ethyl (meth) acrylate / butyl (meth) acrylate copolymers (excluding the above-mentioned high weather resistance (meth) acrylic resins).
  • Examples of the copolymer containing a structural unit derived from a (meth) acrylate ester include ethylene / methyl (meth) acrylate copolymer and maleic anhydride / methyl (meth) acrylate copolymer ( (Excluding the above-mentioned high weather resistance (meth) acrylic resin).
  • the polymer particles (A) that coat the outer periphery of the polymer particles (B) when forming a coating film.
  • the polymer particles (A) it is possible to use a highly weather-resistant (meth) acrylate resin, a polysiloxane-containing aqueous (meth) acrylate resin, and a (meth) acrylic composite fluororesin. From the viewpoint of further improving the properties, the water absorption whitening performance of the coating film, and the strength.
  • a highly weather-resistant (meth) acrylate resin using a hydrophobic monomer and a general-purpose (meth) acrylate-based resin a polysiloxane-containing aqueous (meth) acrylate-based resin and a general-purpose resin
  • a combination of a (meth) acrylate resin and a polysiloxane-containing water-based (meth) acrylate resin and a highly weather-resistant (meth) acrylate resin is used, the compatibility between the polymer particles increases and the weather resistance is improved. In addition, the water absorption whitening performance tends to be improved.
  • the polymer particles (A) have a structure derived from a hydrolytic condensate of an organosilane compound and the polymer particles (B) have a structural unit derived from an ethylenically unsaturated monomer. It is done. More preferably, the polymer particles (A) and the polymer particles (B) are both polymer particles having a structure derived from an ethylenically unsaturated monomer and a structure derived from a hydrolysis condensate of an organosilane compound. An embodiment is mentioned.
  • the polymer particles (A) and the polymer particles (B) both have a structure derived from an ethylenically unsaturated monomer and a structure derived from a hydrolysis condensate of an organosilane compound.
  • the ratio of the structural unit derived from the hydrolytic condensate of the organosilane compound to the structural unit derived from the ethylenically unsaturated monomer of the polymer particle (A) is the ratio of the polymer particle (B).
  • the emulsion contains the polymer particles (A) in the range of 3 to 20% by mass with respect to the total mass of the polymer particles (A) and the polymer particles (B).
  • this ratio is 3% by mass or more, the particle interface of the polymer particles (B) is sufficiently covered with the polymer particles (A), and a coating film having excellent weather resistance can be formed.
  • a polymer particle (A) and polymeric particle (B) form sea island structure because this ratio is 20 mass% or less, and the weather resistance and intensity
  • the emulsion contains the polymer particles (A) in the range of 3 to 20% by mass with respect to the total mass of the polymer particles (A) and the polymer particles (B). ) Around the polymer particles (A) effectively, and the polymer particles (B) maintain a proper sense of distance between them so that the formed coating film has high weather resistance and the like. Conceivable. More preferably, the emulsion contains the polymer particles (A) in a range of 4 to 10% by mass with respect to the total mass of the polymer particles (A) and the polymer particles (B). In other embodiments, the emulsion comprises 3-10% by weight, or 4-20% by weight of polymer particles (A), based on the total weight of polymer particles (A) and polymer particles (B). May be included in the range.
  • the emulsion has a volume average particle size ratio of the polymer particles (A) and the polymer particles (B) in the range of 1/30 to 5/6.
  • the particle size ratio is 1/30 or more, the particle size of the polymer particles (A) does not become too small, the amount of surfactant used for production can be reduced, and a coating film excellent in weather resistance can be formed.
  • the particle interface of the polymer particles (B) is sufficiently covered with the polymer particles (A), and a coating film having excellent weather resistance can be formed.
  • the volume average particle size ratio of the polymer particles (A) and the polymer particles (B) is in the range of 1/30 to 5/6, the amount of the surfactant can be reduced, and the polymer Since the polymer particles (A) can sufficiently surround the periphery of the particles (B), it is considered that the formed coating film has high weather resistance and the like. More preferably, the average particle size ratio is in the range of 1/25 to 2/3. In another embodiment, the emulsion has a volume average particle size ratio of the polymer particles (A) and the polymer particles (B) in the range of 1/30 to 2/3, or 1/25 to 5/6. It's okay.
  • the emulsion has a glass transition temperature (Tg) of the polymer particles (A) in the range of 10 to 70 ° C. and a Tg of the polymer particles (B) of ⁇ 20 to 40 ° C. Range.
  • Tg glass transition temperature
  • the Tg of the polymer particles (A) is 10 ° C. or higher, the stress at the particle interface is increased, and a coating film having excellent weather resistance can be formed.
  • the Tg of the polymer particles (A) is 10 ° C. or more, the particle interface of the coating film formed from the emulsion is strengthened, the hardness of the coating film is increased, and consequently the weather resistance of the coating film is increased.
  • Tg glass transition temperature
  • the Tg of the polymer particles (A) is 70 ° C. or less, the fusion between particles at the particle interface between the particles (A) and (B) easily proceeds during the formation of the coating film, and a tough coating film is formed. Is done.
  • the Tg of the polymer particles (A) is more preferably 20 to 70 ° C.
  • the Tg of the polymer particles (B) is ⁇ 20 ° C. or more, the coating film itself is prevented from being softened, and a coating film having excellent weather resistance can be formed by a synergistic effect with the polymer particles (A).
  • the Tg of the polymer particles (B) is 40 ° C.
  • Tg of the polymer particles (B) may be ⁇ 20 to 30 ° C., ⁇ 10 to 40 ° C., or ⁇ 10 to 30 ° C.
  • the emulsion has a zeta potential of the polymer particles (A) of 3 mV or more, more preferably 4 mV or more higher than the zeta potential of the polymer particles (B).
  • the zeta potential difference between the polymer particles (A) and the polymer particles (B) is 3 mV or more, the coating of the polymer particles (A) onto the polymer particles (B) becomes sufficient.
  • the weather resistance can be improved by a dense film structure.
  • the zeta potential difference is 25 mV or less, and preferably 20 mV or less, from the viewpoint of particle stability.
  • the zeta potential of the polymer particles (A) is usually 3 mV to 25 mV higher, preferably 3 mV to 20 mV higher, 4 mV to 25 mV higher, or 4 mV than the zeta potential of the polymer particles (B). More than 20 mV.
  • the zeta potential of the polymer particles (B) is greater than ⁇ 60 mV, preferably greater than ⁇ 54 mV.
  • the zeta potential of the polymer particles (B) is larger than ⁇ 60 mV, the uneven distribution effect of the polymer particles (A) can be obtained, and the polymer particles (B) are appropriately dispersed.
  • the durability of the particle interface between A) and (B) is enhanced.
  • the zeta potential of the polymer particles (B) is greater than ⁇ 54 mV, the polymer particles (A) can be more unevenly distributed, and the polymer particles (B) are more appropriately dispersed.
  • the durability of the particle interface between the particles (A) and (B) is further enhanced.
  • a first method is to control the amount of surfactant that is adsorbed and coated on the particle surface.
  • the zeta potential can be increased by increasing the amount of the surfactant to be coated.
  • the surfactant here include those exemplified as the surfactant used in the emulsion polymerization described below.
  • the zeta potential can be increased by reducing the particle diameter, that is, increasing the surface area.
  • sucking the nonionic surfactant which does not have an electric charge on the surface is mentioned.
  • nonionic surfactant As nonionic surfactant here, what was illustrated as a nonionic surfactant used for the below-mentioned emulsion polymerization can be mentioned.
  • the zeta potential can be increased by adsorbing the nonionic surfactant to the surface.
  • the zeta potential difference can be adjusted by performing any of these three approaches.
  • the high weather resistance (meth) acrylic resin and the general-purpose (meth) acrylic resin used as polymer particles are obtained by an addition polymerization reaction of an ethylenically unsaturated monomer.
  • the polysiloxane-containing aqueous (meth) acrylate resin is obtained by an addition polymerization reaction of an ethylenically unsaturated monomer and a hydrolytic condensation reaction of an organosilane compound.
  • the ratio of the organosilane compound after condensation with respect to 100 parts by weight of the ethylenically unsaturated monomer is not particularly limited, but from the viewpoint of achieving both fusion between particles and toughness of the coating film, 1 to 60 It is preferable that it is a mass part. From the viewpoint of cost and system stability, the ratio of the organosilane compound is more preferably 3 to 30 parts by mass. In another embodiment, the ratio of the organosilane compound after condensation to 100 parts by weight of the ethylenically unsaturated monomer in this case may be 1 to 30 parts by weight, or 3 to 60 parts by weight.
  • the polymerization method of polymer particles includes emulsion polymerization, suspension polymerization, bulk polymerization, and miniemulsion polymerization.
  • emulsion polymerization As a method for stably producing an emulsion having a volume average particle size of about 10 nm to 1 ⁇ m and excellent dispersion stability, it is preferable to use emulsion polymerization.
  • the ethylenically unsaturated monomer used in the production of the polymer particles includes (meth) acrylic acid ester (in this application, acrylic acid and methacrylic acid are combined and expressed as (meth) acrylic acid.
  • unsaturated carboxylic acid ester monomers represented by Examples of unsaturated carboxylic acid ester monomers include (meth) acrylic acid alkyl esters having an alkyl moiety of 1 to 18 carbon atoms. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, (meth) acrylic acid.
  • Examples include 2-ethylhexyl, dodecyl (meth) acrylate, and cycloalkyl ester (meth) acrylate.
  • cyclohexyl methacrylate, butyl methacrylate, butyl acrylate, and the like are used as a highly weatherable (meth) acrylic resin raw material as a hydrophobic monomer.
  • ethylenically unsaturated monomers include (meth) acrylic acid hydroxyalkyl ester (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2-hydroxypropyl, and the like.
  • At least one comonomer selected from unsaturated carboxylic acid monomers copolymerizable therewith can be used.
  • unsaturated carboxylic acid monomer examples include acrylic acid, methacrylic acid, itaconic acid and its monoester, fumaric acid and its monoester, and maleic acid and its monoester. It is particularly preferable to include at least one selected from these groups. These unsaturated carboxylic acid monomers contribute to the mechanical stability of the emulsion particles because the final form of the emulsion is made alkaline with a pH of 7.5 to 9 to form an electric double layer based on carboxyl groups. Tend.
  • ethylenically unsaturated monomers include acrylamide monomers and methacrylamide monomers. Examples thereof include an unsaturated carboxylic acid ester monomer and at least one comonomer copolymerizable with the unsaturated carboxylic acid monomer.
  • acrylamide monomer or the methacrylamide monomer examples include (meth) acrylamide, diacetone (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide and the like.
  • ethylenically unsaturated monomers include aromatic monomers such as vinyltoluene, styrene and ⁇ -methylstyrene.
  • the organosilane compound used for the production of polymer particles is not particularly limited, but includes an organosilane compound represented by the following formula (1).
  • R 1 is a phenyl group or a cyclohexyl group
  • R 2 is a hydrogen atom or an aliphatic hydrocarbon group having 1 to 8 carbon atoms
  • R 3 is independently an alkoxy group having 1 to 3 carbon atoms.
  • An acetoxy group or a hydroxyl group, and (n, m) is at least one selected from the group consisting of (0,1), (0,2), (1,0) and (2,0).
  • organosilane compound examples include methyltrimethoxysilane, methyltriethoxysilane, and the like when (n, m) is (0,1).
  • organosilane compounds By using these organosilane compounds, it is possible to impart a crosslink density of polysiloxane and to increase the coating film hardness.
  • organosilane compounds examples include organosilane compounds having an ethylenically unsaturated group. Specific examples thereof include ⁇ -acryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, and ⁇ -methacryloxypropylmethyldimethoxysilane. Is mentioned.
  • An organosilane compound having an ethylenically unsaturated group is added as a graft point in a polymer formed from an ethylenically unsaturated monomer, and is used to incorporate the organosilane compound as a side chain.
  • the organic silane compound constituting the polymer particle (A) a (meth) acrylate-based compound formed by using together an organic silane compound having no ethylenically unsaturated group and an organic silane compound having an ethylenically unsaturated group It is preferable to improve the durability of the particle interface between the particles (A) and the particles (B) using a resin.
  • the surfactant used for emulsion polymerization is at least one of an ethylenically unsaturated monomer having a sulfonic acid group or a sulfonate group and an ethylenically unsaturated monomer having a sulfate group.
  • the inclusion is preferable in order to achieve high water resistance of the coating film.
  • the ethylenically unsaturated monomer having a sulfonic acid group or a sulfonate group mentioned here has a radically polymerizable double bond and is a free sulfonic acid group, or an ammonium salt or an alkali metal salt thereof.
  • An anionic surfactant having (ammonium sulfonate group or alkali metal sulfonate group) is preferable.
  • anionic surfactant include Eleminol JS-2, JS-5 (product name, manufactured by Sanyo Chemical Co., Ltd.) Latemu S-120, S-180A, S-180 (product name, Kao Corporation) ) Made).
  • a compound having an alkyl ether group having 2 to 4 carbon atoms or a polyalkyl ether group having 2 to 4 carbon atoms which is an ammonium salt, sodium salt or potassium salt of a sulfonic acid group
  • Aqualon HS-10 product
  • Adeka Soap SE-1025A, SR-10N, SR-20N Product Name, ADEKA Co., Ltd.
  • Aqualon KH-10 Product Name, Daiichi Kogyo Seiyaku Co., Ltd.
  • Etc. for example, Aqualon HS-10 (product) Name, Daiichi Kogyo Seiyaku Co., Ltd.), Adeka Soap SE-1025A, SR-10N, SR-20N (Product Name, ADEKA Co., Ltd.), Aqualon KH-10 (Product Name, Daiichi Kogyo Seiyaku Co., Ltd.) Etc.).
  • nonionic surfactants and nonionic surfactants that are copolymerizable with ethylenically unsaturated monomers, which are called reactive nonionic surfactants, can be used in combination.
  • nonionic surfactants include latemul PD-420, latemul PD-430, latemul PD-450 (product name, manufactured by Kao Corporation).
  • an ultraviolet absorber and / or a light stabilizer may be contained in the emulsion in order to impart high weather resistance to the coating film.
  • a commercially available ultraviolet absorber or light stabilizer may be added to the polymer particles (A).
  • addition polymerization of an ethylenically unsaturated monomer can be performed by radical polymerization using heat or a reducing substance as a radical polymerization catalyst.
  • a radical polymerization catalyst for example, water-soluble or oil-soluble persulfates, peroxides, azobis compounds and the like can be advantageously used.
  • radical polymerization catalyst examples include potassium persulfate, sodium persulfate, ammonium persulfate, hydrogen peroxide, dodecylbenzene sulfonic acid, t-butyl hydroperoxide, t-butyl peroxybenzoate, 2,2-azo.
  • examples thereof include bisisobutyronitrile, 2,2-azobis (2-diaminopropane) hydrochloride, and 2,2-azobis (2,4-dimethylvaleronitrile).
  • radical polymerization catalyst it is preferable to use potassium persulfate, sodium persulfate, or ammonium persulfate that is also effective as a catalyst for promoting the hydrolysis reaction and condensation reaction of the organic silane compound.
  • the emulsion polymerization method used to provide the emulsion is not particularly limited, and may be a one-stage polymerization method that forms a uniform structure, a multi-stage polymerization method that can form a core-shell structure, or the like.
  • a polymerization method suitable for the purpose can be selected.
  • the glass transition temperatures (Tg) calculated for the (meth) acrylate resins used are listed in Table 1-2.
  • volume average particle diameter The volume average particle diameter of the obtained emulsion was measured with a Microtrac particle size distribution meter manufactured by Leeds & Northrup.
  • zeta potential of the obtained emulsion was measured by diluting with a 10 mM aqueous KCl solution.
  • the measurement conditions for the zeta potential are as follows. ⁇ Device name: ELSZ-1000 manufactured by Otsuka Electronics Co., Ltd. ⁇ Measurement temperature: 25 °C
  • the calculation of the zeta potential from the electrophoretic mobility was performed by a method using the Smoluchowski equation.
  • a clear coating was prepared for each of the polymer particle (B) single emulsion and the emulsion obtained by blending the polymer particles (A) with the polymer particles (B).
  • the clear paint was prepared by blending 10% ethylene glycol monobutyl ether (diluted to 50% with water at the time of use) and 20% texanol as a film-forming aid with respect to the total solid content in the emulsion.
  • a blending example is shown below.
  • Emulsion: 100 parts (in case of solid content of 40% by mass) -Ethylene glycol monobutyl ether / water 1/1: 8 parts-Texanol: 8 parts
  • ⁇ Water absorption whitening evaluation> Apply clear paint to a glass plate with a 0.1 mm applicator, dry at 23 ° C overnight, then immerse in 23 ° C water for 24 hours, change rate of haze value before immersion Were manufactured by Nippon Denshoku Industries Co., Ltd .: Comparative measurement was performed with a haze meter NDH5000. The haze after the above-described treatment for the coating film of the emulsion in which the polymer particles (A) are blended with respect to the change rate of the haze value after the above-mentioned treatment for the coating film of the emulsion consisting solely of the polymer particles (B). The rate of change of values was compared.
  • the water absorption whitening of the coating film of the emulsion blended with the polymer particles (A) was evaluated according to the following criteria by increasing or decreasing the change rate of the haze value of both.
  • a (sufficient improvement) The change rate of haze value decreased by 2% or more, and water absorption whitening was improved.
  • ⁇ (Improved) The rate of change in haze value decreased by less than 0.3-2%, and water absorption whitening was improved.
  • -(No improvement) The change in the change rate of the haze value was less than ⁇ 0.3%.
  • ⁇ (slightly worsening) The rate of change in haze value increased by less than 0.3 to 2%, and water absorption whitening worsened.
  • ⁇ Weather resistance evaluation> The self-made black enamel paint is applied on an aluminum plate and dried at 100 ° C. for 10 minutes. The resulting clear paint is then applied with a 0.25 mm applicator and dried at 100 ° C. for 10 minutes.
  • a sample for an accelerated weather resistance test was prepared. The sample was processed by a die plastic company: metal weather tester under the following acceleration conditions, and the initial gloss value and the gloss value at every predetermined time were measured.
  • the weather resistance of the coating film of the emulsion blended with the polymer particles (A) was evaluated according to the following criteria based on the length of the 80% arrival time.
  • methyltrimethoxysilane Z6366 product name, manufactured by Toray Dow Corning Co., Ltd. 13.5 parts
  • dimethyldimethoxysilane Z6329 product name, manufactured by Toray Dow Corning Co., Ltd.
  • ⁇ -methacryloxypropyltrimethoxysilane SZ6030 product name, manufactured by Toray Dow Corning Co., Ltd.
  • the resulting pre-emulsified liquid were added to a Y-shaped tube (100 mesh at the outlet of the Y-shaped tube).
  • the obtained emulsion had a solid content of 22.7%, a volume average particle size of 27 nm, and a zeta potential of -44 mV.
  • the respective raw materials and the blending ratio (parts by mass) are shown in Table 1-1.
  • the results of these physical properties are shown in Table 1-2.
  • the parts by mass shown in Table 2-1 were weighed to prepare a mixed solution, and the mixed solution was emulsified with a homomixer for 5 minutes.
  • 1-stage and 2-stage pre-emulsified liquids were obtained.
  • the pre-emulsified liquid in the first stage in the table was flown in 100 minutes, and after curing for 30 minutes, the pre-emulsified liquid in the second stage in the table was flown in in 100 minutes, and a curing treatment was performed for 90 minutes.
  • the solid content, pH after adjustment, volume average particle diameter, zeta potential, and the like of the obtained emulsion are shown in Table 2-2.
  • Example 1 8.8 parts of polymer particles (A) -1 emulsion (solid content 22.7%) and 86.4 parts of polymer particles (B) -1 emulsion (solid content 44.0%) were blended, Next, 4.8 parts of water was added so that the total solid content was 40%, and stirring was performed. While stirring this emulsion, 8 parts of ethylene glycol monobutyl ether diluted with 50% of water and 8 parts of texanol were added dropwise as a film-forming aid to prepare a clear paint. Next, for comparison, 90.9 parts of polymer particle (B) -1 alone emulsion (solid content 44.0%) is weighed, and 9.1 parts of water is added so that the solid content is 40%.
  • the haze value change rate after the water absorption whitening test of the coating obtained from the clear coating of polymer particle (B) -1 alone was measured and found to be 85.3%.
  • the haze value change rate after the water absorption whitening test of the coating obtained from the clear coating containing the polymer particles (A) -1 and the polymer particles (B) -1 decreased to 63.2%.
  • the time required to reach a gloss retention of 80% in a weathering accelerated test of the coating obtained from the clear coating of polymer particle (B) -1 alone was 500 hr.
  • Example 2 As in Example 1, the emulsions of polymer particles (A) -4 and polymer particles (B) -1 were blended at the blending solid content ratio shown in Table 3 so that the total solid content was 40%. Adjusted. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1.
  • Table 3 the calculated Tg values, volume average particle diameters, and zeta potentials of the polymer particles (A) and (B) of this example are described, and further, the haze value change rate in the water absorption whitening test and the weather resistance acceleration test. The gloss retention time of 80% was described, and the evaluation of the improvement effect compared with Reference Example 1 was described.
  • Example 1 Each emulsion of polymer particles (A) -5 and polymer particles (B) -1 was blended at a blended solid content ratio shown in Table 3, and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. As shown in Table 3, the effect of improving the gloss retention of 80% in the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particle (B) -1 alone (Reference Example 1). There wasn't. It was assumed that the Tg of the polymer particles (A) -1 was low and the water resistance was not improved.
  • Example 2 Each emulsion of polymer particles (A) -6 and polymer particles (B) -1 was blended at a blended solid content ratio shown in Table 3 and adjusted so as to have a total solid content of 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. As shown in Table 3, the effect of improving the gloss retention of 80% in the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particle (B) -1 alone (Reference Example 1). There wasn't. The polymer particles (A) -1 had a high Tg, and it was presumed that the weather resistance was not improved due to a decrease in the elongation of the film.
  • Examples 3 to 4 In the same manner as in Example 1, the emulsions of the polymer particles (A) and the polymer particles (B) were blended at the blending solid content ratio shown in Table 4 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. Table 4 shows the calculated Tg values, volume average particle diameters, and zeta potentials of the polymer particles (A) and (B) of each Example, and further, the haze value change rate in the water absorption whitening test, and the weather resistance acceleration test. The gloss retention time of 80% was described, and the evaluation of the improvement effect compared with Reference Example 1 was described.
  • Example 4 the following operation was performed about Example 4 and the emulsion particle
  • Example 5 Each emulsion of polymer particles (A) -1 and polymer particles (B) -1 was blended at a blended solid content ratio shown in Table 4 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. As shown in Table 4, the effect of improving the gloss retention time of 80% in the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particle (B) -1 alone (Reference Example 1). There wasn't. It was presumed that the amount ratio of the polymer particles (A) -1 was low, the blending effect was not exhibited, and the weather resistance was not improved.
  • Examples 5 to 7 In the same manner as in Example 1, the emulsions of the polymer particles (A) and the polymer particles (B) were blended at the blending solid content ratio shown in Table 5 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. Table 5 shows the calculated Tg values, volume average particle diameters, and zeta potentials of the polymer particles (A) and (B) of each example, and further, the haze value change rate in the water absorption whitening test, and the weather resistance acceleration test. The gloss retention 80% arrival time was described, and the evaluation of the improvement effect was described.
  • Example 7 Each emulsion of polymer particles (A) -2 and polymer particles (B) -5 was blended at the blending solid content ratio shown in Table 5 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. As shown in Table 5, the effect of improving the retention time of 80% gloss retention by the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particle (B) -5 alone (Reference Example 5). There wasn't. Since the volume average particle size ratio of the polymer particles (A) to the polymer particles (B) is low (the difference between the volume average particle sizes is large), the blending effect is not expressed and the weather resistance is not improved. I guessed.
  • Example 8 Each emulsion of polymer particles (A) -3 and polymer particles (B) -4 was blended at a blended solid content ratio shown in Table 5 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. As shown in Table 5, the effect of improving the gloss retention time of 80% according to the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particles (B) -4 alone (Reference Example 4). There wasn't. Since the volume average particle diameter ratio of the polymer particles (A) to the polymer particles (B) is high (the difference between the volume average particle diameters is small), the blending effect is not expressed and the weather resistance is not improved. I guessed.
  • Examples 1, 5, and 7 In the same manner as in Example 1, the emulsions of polymer particles (A) and polymer particles (B) were blended at the blending solid content ratio shown in Table 6 and adjusted so as to have a total solid content of 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1.
  • Table 6 the calculated Tg values, volume average particle diameters, and zeta potentials of the polymer particles (A) and (B) of each Example are described, and further, the haze value change rate in the water absorption whitening test and the weather resistance acceleration test. The gloss retention 80% arrival time was described, and the evaluation of the improvement effect was described.
  • Example 9 Each emulsion of polymer particles (A) -7 and polymer particles (B) -1 was blended at a blended solid content ratio shown in Table 6 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. As shown in Table 6, the effect of improving the retention time of gloss retention of 80% in the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particles (B) -1 alone (Reference Example 1). There wasn't. If the zeta potential difference was small, the blending effect was not expressed, and it was assumed that the weather resistance was not improved.
  • Examples 1 and 6 ⁇ Confirmation of zeta potential of polymer (B)> [Examples 1 and 6]
  • the emulsions of the polymer particles (A) and the polymer particles (B) were blended at the blending solid content ratio shown in Table 7 and adjusted so as to have a total solid content of 40%.
  • Table 7 shows the calculated Tg values, volume average particle diameters, and zeta potentials of the polymer particles (A) and (B) of each example, and further, the haze value change rate in the water absorption whitening test, and the weather resistance acceleration test.
  • the gloss retention 80% arrival time was described, and the evaluation of the improvement effect was described.
  • Example 10 As in Example 1, the emulsions of polymer particles (A) -3 and polymer particles (B) -5 were blended at the blending solid content ratio shown in Table 7 so that the total solid content was 40%. Adjusted. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. Table 7 shows the calculated Tg values, volume average particle diameters, and zeta potentials of the polymer particles (A) and (B) of each example, and further, the haze value change rate in the water absorption whitening test, and the weather resistance acceleration test. The gloss retention 80% arrival time was described, and the evaluation of the improvement effect was described.
  • the haze value change rate in the water absorption whitening test was slightly improved compared to the clear coating film of the polymer particle (B) -5 alone (Reference Example 5). It was not big.
  • the gloss retention 80% time achieved by the accelerated weathering test was improved compared to the clear coating film of the polymer particle (B) -5 alone (Reference Example 5). It was half of the improvement in Example 1 (the zeta potential of the polymer (B) was -53 mV).
  • Comparative Example 10 when the zeta potential of the polymer (B) was 3 mV below ⁇ 54 mV, it was presumed that although the blending effect was exhibited to some extent, the effect was not great.
  • Example 11 Each emulsion of polymer particles (A) -3 and polymer particles (B) -7 was blended at a blended solid content ratio shown in Table 7 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. As shown in Table 7, the effect of improving the retention time of gloss retention of 80% in the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particles (B) -7 alone (Reference Example 6). There wasn't. When the zeta potential of the polymer (B) was 6 mV below -54 mV, it was presumed that the blending effect was not expressed and the weather resistance was not improved.
  • Example 2 The clear paint blended in Example 2 was applied on a polypropylene plate with a 0.25 mm applicator, dried at 100 ° C. for 10 minutes, then embedded in an epoxy resin, and an ultramicrotome was used. A thin film slice was prepared, and a dark field image in a cross-sectional form was shown in FIG. For the dark field image, the black part indicates a (meth) acrylate resin obtained by addition polymerization reaction of an ethylenically unsaturated monomer, and the white part indicates a resin containing an organic silane compound which is a heavier element. ing.
  • the emulsion of the present invention is useful as a coating material, a base treatment material or finishing material for building materials, an adhesive, a paper processing agent, or a finishing material for woven or non-woven fabrics.
  • this emulsion is particularly used as a paint or a building finishing material for various foundations such as inorganic building materials such as concrete, cement mortar, extruded plate, foamable concrete, building materials based on woven or non-woven fabrics, and metal building materials.
  • it is useful as a main material for a multi-layer finish coating material and a synthetic resin emulsion paint such as a top coat.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention pertains to an emulsion with which it is possible to form a coating film having exceptional weather resistance, especially gloss retentivity. The present invention is an emulsion that contains water, polymer particles (A) having a glass transition temperature of 10 to 70°C, and polymer particles (B) having a glass transition temperature of -20 to 40°C. The polymer particles (A) are contained within a range of 3-20% by mass relative to the total mass of the polymer particles (A) and polymer particles (B), the volume-average particle diameter ratio of the polymer particles (A) and polymer particles (B) is within the range of 1/30 to 5/6, the zeta potential of the polymer particles (A) is 3 to 25 mV higher than the zeta potential of the polymer particles (B), and the zeta potential of the polymer particles (B) is greater than -54 mV. The polymer particles (A) and/or the polymer particles (B) may have structural units derived from an ethylenic unsaturated monomer.

Description

エマルジョンEmulsion
 本発明は、エマルジョンに関する。 The present invention relates to an emulsion.
 乳化重合により得られる水性エマルジョンは、常温あるいは加熱下で乾燥形成された皮膜が比較的良好な耐久性を示すことから、水性塗料用の樹脂として多く用いられている。しかしながら、溶剤系塗料と比較してエマルジョンから形成される初期塗膜は、粒子同士の充填融着による粒子界面や粒子間スポットを形成するため、外部からの水分子の吸収経路が存在し、耐吸水白化性を低下させる要因となっている。また粒子界面での融着の度合いによっては、塗膜応力の低下を引き起こす。これらの塗膜形成時の構造的な要因によって、耐候性能を発現できないことが課題となっていた。 Water-based emulsions obtained by emulsion polymerization are often used as resins for water-based paints because a film formed by drying at room temperature or under heating exhibits relatively good durability. However, compared to solvent-based paints, the initial coating film formed from an emulsion forms particle interfaces and inter-particle spots due to filling and fusion of particles, so there is an absorption path for water molecules from the outside and resistance. This is a factor that reduces the water absorption whitening property. Further, depending on the degree of fusion at the particle interface, the coating film stress is reduced. Due to structural factors during the formation of these coating films, it has been a problem that weather resistance performance cannot be expressed.
 この課題を解決するための技術として、従来から複数のエマルジョンを混合する方法が提案されてきた。特許文献1及び2には粒子径比とガラス転移温度が異なり、さらに分子量を制御した複数のエマルジョン粒子を混合し、造膜助剤量を低減させる塗料組成物が開示されている。また特許文献3には、ガラス転移温度が異なり、分子量を制御した2種類のエマルジョン粒子を混合し、膜厚が大きい条件下での耐タレ性を改良した制振材用エマルジョン組成物が開示されている。 As a technique for solving this problem, a method of mixing a plurality of emulsions has been proposed. Patent Documents 1 and 2 disclose coating compositions in which the particle size ratio and glass transition temperature are different and a plurality of emulsion particles having a controlled molecular weight are mixed to reduce the amount of film-forming aid. Patent Document 3 discloses an emulsion composition for a vibration damping material in which two types of emulsion particles having different glass transition temperatures and molecular weights are mixed to improve sagging resistance under conditions where the film thickness is large. ing.
特開2001-200181号公報Japanese Patent Laid-Open No. 2001-200181 特開2006-283029号公報JP 2006-283029 A 特開2010-53210号公報JP 2010-53210 A
 しかし、従来提案されてきた同種又は異種のエマルジョンを配合する手法では、其々の性能が相殺されることが多く、特許文献1~3に示されたような技術においても、耐候性が十分とは言えなかった。従って、更に改善された耐候性を有するエマルジョンが必要とされている。
 そこで、本発明においては、耐候性、特に光沢保持性に優れた塗膜を形成できるエマルジョンの提供を課題とする。
However, the methods of blending the same type or different types of emulsions that have been proposed in the past often cancel each other's performance, and even with the techniques shown in Patent Documents 1 to 3, the weather resistance is sufficient. I could not say. Accordingly, there is a need for emulsions with further improved weather resistance.
Accordingly, an object of the present invention is to provide an emulsion capable of forming a coating film excellent in weather resistance, particularly gloss retention.
 本発明者は、上記事情に鑑み鋭意研究を重ねた結果、塗膜の主体となる重合体粒子と界面を強化させる重合体粒子とを水性媒体中に分散させ、塗膜形成時に主体となる重合体粒子の外周に界面を強化させる重合体粒子を偏在させることで、塗膜内の粒子界面部の耐久性を高めることができ、このことで、粒子界面や粒子間空隙への水分子の侵入を防止し、耐候性、特に光沢保持性に優れた塗膜を形成できるエマルジョンが得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies in view of the above circumstances, the present inventor has dispersed polymer particles that are the main component of the coating film and polymer particles that reinforce the interface in an aqueous medium so that the main component when forming the coating film is dispersed. By unevenly distributing polymer particles that reinforce the interface on the outer periphery of the coalesced particles, it is possible to increase the durability of the particle interface in the coating film, which allows water molecules to enter the particle interface and interparticle voids. It was found that an emulsion capable of forming a coating film with excellent weather resistance, particularly gloss retention, was obtained, and the present invention was completed.
 すなわち、本発明は、以下のとおりである。
[1].
 水と、ガラス転移温度が10℃~70℃の重合体粒子(A)と、ガラス転移温度が-20℃~40℃の重合体粒子(B)とを含み、前記重合体粒子(A)を、前記重合体粒子(A)と前記重合体粒子(B)との合計質量に対して3質量%~20質量%の範囲で含み、前記重合体粒子(A)と前記重合体粒子(B)との体積平均粒子径比が、1/30~5/6の範囲であり、前記重合体粒子(A)のゼータ電位が、前記重合体粒子(B)のゼータ電位よりも3mV以上25mV以下高く、かつ前記重合体粒子(B)のゼータ電位は-60mVより大きく、好ましくは-54mVより大きいエマルジョン。
[2].
 前記重合体粒子(A)及び/又は前記重合体粒子(B)が、エチレン性不飽和単量体由来の構造単位を有する、上記[1]項に記載のエマルジョン。
[3].
 前記重合体粒子(A)及び/又は前記重合体粒子(B)が、有機シラン化合物の加水分解縮合物由来の構造単位を有する、上記[1]又は[2]項に記載のエマルジョン。
[4].
 前記重合体粒子(A)が、有機シラン化合物の加水分解縮合物由来の構造単位を有し、前記重合体粒子(B)が、エチレン性不飽和単量体由来の構造単位を有する、上記[3]項に記載のエマルジョン。
[5].
 前記重合体粒子(A)及び前記重合体粒子(B)が、共に、エチレン性不飽和単量体由来の構造単位及び有機シラン化合物の加水分解縮合物由来の構造単位を有する、上記[4]項に記載のエマルジョン。
[6].
 重合体粒子(A)のエチレン性不飽和単量体由来の構造単位に対する有機シラン化合物の加水分解縮合物由来の構造単位の比率が、重合体粒子(B)の当該比率以上である、上記[5]項に記載のエマルジョン。
[7].
 水と、重合体粒子(A)と、前記重合体粒子(A)よりも大きな体積平均粒子径を有する重合体粒子(B)とを含むエマルジョンであって、エマルジョンの固形分の総計に対しエチレングリコールモノブチルエーテル10質量%、及びテキサノール20質量%が配合されたクリア塗料から形成された塗膜のSTEM暗視野像において、前記重合体粒子(A)が前記重合体粒子(B)を被覆する、エマルジョン。
[8].
 エマルジョンの固形分の総計に対しエチレングリコールモノブチルエーテル10質量%、及びテキサノール20質量%が配合されたクリア塗料から形成された塗膜のSTEM暗視野像において、前記重合体粒子(A)が前記重合体粒子(B)を被覆する、上記[1]~[6]項のいずれか1項に記載のエマルジョン。
That is, the present invention is as follows.
[1].
Water, polymer particles (A) having a glass transition temperature of 10 ° C. to 70 ° C., and polymer particles (B) having a glass transition temperature of −20 ° C. to 40 ° C., the polymer particles (A) being The polymer particles (A) and the polymer particles (B) are contained in the range of 3% by mass to 20% by mass with respect to the total mass of the polymer particles (A) and the polymer particles (B). The zeta potential of the polymer particles (A) is 3 mV or more and 25 mV or less higher than the zeta potential of the polymer particles (B). And the zeta potential of the polymer particles (B) is greater than −60 mV, preferably greater than −54 mV.
[2].
The emulsion according to [1] above, wherein the polymer particles (A) and / or the polymer particles (B) have a structural unit derived from an ethylenically unsaturated monomer.
[3].
The emulsion according to [1] or [2] above, wherein the polymer particles (A) and / or the polymer particles (B) have a structural unit derived from a hydrolytic condensate of an organosilane compound.
[4].
The polymer particle (A) has a structural unit derived from a hydrolytic condensate of an organosilane compound, and the polymer particle (B) has a structural unit derived from an ethylenically unsaturated monomer. The emulsion according to item 3].
[5].
[4] The polymer particle (A) and the polymer particle (B) both have a structural unit derived from an ethylenically unsaturated monomer and a structural unit derived from a hydrolysis condensate of an organosilane compound. The emulsion according to item.
[6].
The ratio of the structural unit derived from the hydrolysis condensate of the organosilane compound to the structural unit derived from the ethylenically unsaturated monomer of the polymer particle (A) is equal to or higher than the ratio of the polymer particle (B). The emulsion according to item 5].
[7].
An emulsion comprising water, polymer particles (A), and polymer particles (B) having a volume average particle size larger than that of the polymer particles (A), wherein ethylene is added to the total solid content of the emulsion. In a STEM dark field image of a coating film formed from a clear paint blended with 10% by mass of glycol monobutyl ether and 20% by mass of texanol, the polymer particles (A) cover the polymer particles (B). Emulsion.
[8].
In a STEM dark field image of a coating film formed from a clear paint in which 10% by mass of ethylene glycol monobutyl ether and 20% by mass of texanol are blended with respect to the total solid content of the emulsion, the polymer particles (A) are The emulsion according to any one of items [1] to [6], which coats the coalesced particles (B).
 本発明のエマルジョンによれば、耐候性能、特に光沢保持性に優れた塗膜を形成することが可能となる。 According to the emulsion of the present invention, it is possible to form a coating film excellent in weather resistance, particularly gloss retention.
実施例2の塗膜断面のSTEM暗視野像を示す。The STEM dark field image of the coating-film cross section of Example 2 is shown.
 以下、本発明を実施するための実施形態について、詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、特許請求の範囲によって規定されるその要旨の範囲内で適宜変形して実施できる。 Hereinafter, embodiments for carrying out the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be appropriately modified and implemented within the scope of the gist defined by the claims.
 典型的な一実施形態において、本発明に係るエマルジョンは、水と、ガラス転移温度が10℃~70℃の重合体粒子(A)と、ガラス転移温度が-20℃~40℃の重合体粒子(B)とを含み、前記重合体粒子(A)を、前記重合体粒子(A)と前記重合体粒子(B)との合計質量に対して3質量%~20質量%の範囲で含み、前記重合体粒子(A)と前記重合体粒子(B)との体積平均粒子径比(前記重合体粒子(A)の体積平均粒子径の、前記重合体粒子(B)の体積平均粒子径に対する比率)が、1/30~5/6の範囲であり、前記重合体粒子(A)のゼータ電位が、前記重合体粒子(B)のゼータ電位に対して3mV以上25mV以下高く、かつ前記重合体粒子(B)のゼータ電位は-60mVより大きく、好ましくは-54mVより大きいエマルジョンである。
 後に詳述されるとおり、重合体粒子(B)は塗膜の主体となる重合体粒子としての機能を有し、重合体粒子(A)は界面を強化させる重合体粒子としての機能を有する。
In an exemplary embodiment, the emulsion according to the present invention comprises water, polymer particles (A) having a glass transition temperature of 10 ° C. to 70 ° C., and polymer particles having a glass transition temperature of −20 ° C. to 40 ° C. (B), and the polymer particles (A) in a range of 3% by mass to 20% by mass with respect to the total mass of the polymer particles (A) and the polymer particles (B), Volume average particle size ratio between the polymer particles (A) and the polymer particles (B) (the volume average particle size of the polymer particles (A) with respect to the volume average particle size of the polymer particles (B)) Ratio) is in the range of 1/30 to 5/6, and the zeta potential of the polymer particles (A) is 3 mV to 25 mV higher than the zeta potential of the polymer particles (B), and the weight The zeta potential of the coalesced particles (B) is greater than −60 mV, preferably −54 mV. Ri is a large emulsion.
As will be described in detail later, the polymer particles (B) have a function as polymer particles that are the main component of the coating film, and the polymer particles (A) have a function as polymer particles that reinforce the interface.
 重合体粒子(A)と重合体粒子(B)が配合されたエマルジョンの各粒子は、遠心分離機により、条件を調整して処理することで分離することができる。 Each particle of the emulsion in which the polymer particles (A) and the polymer particles (B) are blended can be separated by adjusting the conditions using a centrifuge.
 重合体粒子(A)及び(B)は、それらのガラス転移温度、質量割合、体積平均粒子径比及びゼータ電位についての上記範囲の要件を満たす限り、特に限定されず、同種及び異種の樹脂のいずれで構成されてもよい。
 典型的な一実施形態において、重合体粒子(A)及び/又は重合体粒子(B)(すなわち、重合体粒子(A)及び重合体粒子(B)の少なくとも一方)は、エチレン性不飽和単量体由来の構造単位を有する。エチレン性不飽和単量体は、特に限定されないが、重合体粒子の製造に関して後述されるものを用いることができる。
 例えば、重合体粒子(A)及び(B)として、疎水性モノマーを使用した高耐候性(メタ)アクリレート系樹脂と汎用(メタ)アクリレート系樹脂、ポリシロキサン含有水性(メタ)アクリレート系樹脂と汎用(メタ)アクリレート系樹脂、ポリシロキサン含有水性(メタ)アクリレート系樹脂と高耐候性(メタ)アクリレート系樹脂、(メタ)アクリル複合したフッ素樹脂と汎用(メタ)アクリレート系樹脂、ポリシロキサン含有水性(メタ)アクリレート系樹脂とウレタン樹脂、等の様々な組み合わせが可能である。より具体的には、樹脂相互の相溶性の観点から、重合体粒子(A)と重合体粒子(B)の組み合わせは、エチレン性不飽和単量体の付加重合反応により得られる(メタ)アクリレート系樹脂、及びエチレン性不飽和単量体の付加重合反応と有機シラン化合物を加水分解縮合反応により得られるポリシロキサン含有水性(メタ)アクリレート系樹脂のいずれか一方の複数種、または、それらの各樹脂の一種もしくは複数種の組み合わせであることが好ましい。重合体粒子(A)は、1種単独または複数種の混合物であってもよい。また、重合体粒子(B)は、1種単独または複数種の混合物であってもよい。
The polymer particles (A) and (B) are not particularly limited as long as the glass transition temperature, mass ratio, volume average particle size ratio, and zeta potential satisfy the requirements of the above ranges, and the same type and different types of resins. It may be configured with either.
In an exemplary embodiment, the polymer particles (A) and / or the polymer particles (B) (ie, at least one of the polymer particles (A) and the polymer particles (B)) is an ethylenically unsaturated monomer. It has a structural unit derived from a monomer. Although an ethylenically unsaturated monomer is not specifically limited, What is mentioned later regarding manufacture of a polymer particle can be used.
For example, as polymer particles (A) and (B), a high weather resistance (meth) acrylate resin and a general-purpose (meth) acrylate resin using a hydrophobic monomer, a polysiloxane-containing aqueous (meth) acrylate resin and a general-purpose resin (Meth) acrylate resins, polysiloxane-containing aqueous (meth) acrylate resins and highly weather-resistant (meth) acrylate resins, (meth) acrylic composite fluororesins and general-purpose (meth) acrylate resins, polysiloxane-containing aqueous solutions ( Various combinations such as a (meth) acrylate resin and a urethane resin are possible. More specifically, from the viewpoint of compatibility between resins, the combination of the polymer particles (A) and the polymer particles (B) is a (meth) acrylate obtained by an addition polymerization reaction of an ethylenically unsaturated monomer. A polysiloxane-containing aqueous (meth) acrylate resin obtained by addition polymerization reaction of an ethylenic unsaturated monomer and a hydrolytic condensation reaction of an organic silane compound, or each of them It is preferable that the resin is one kind or a combination of plural kinds. The polymer particles (A) may be one kind or a mixture of plural kinds. Further, the polymer particles (B) may be one kind or a mixture of plural kinds.
 重合体粒子(A)、重合体粒子(B)の乳化重合法は、特に限定されないが、エチレン性不飽和単量体及び乳化剤を含むプレ乳化液を水性媒体中において重合する方法が挙げられる。また、エチレン性不飽和単量体及び乳化剤を含むプレ乳化液と、有機シラン化合物とを混合した後、水性媒体中においてエチレン性不飽和単量体の重合と有機シラン化合物の加水分解、縮合反応を同時に行うことができる。乳化重合において、重合中の反応系のpHを4.0以下に調整することが好ましい。重合反応系のpHを4.0以下にすることによって、有機シランの縮合反応が速やかに起こり、乳化重合後に縮合反応が進むことを抑制できるため、製品としての貯蔵安定性が良好になる。重合反応系のpHは、より好ましくは3.0以下であってよく、及び/又は、より好ましくは1.5以上であってよい。重合反応系のpHを調整する手段は特に限定されない。プレ乳化液をpH4.0以下にする態様や、プレ乳化液を中性に保ち、別途重合系に他成分を投入することによってpHを4.0以下(例えばpH2程度)にする態様などが挙げられる。 The emulsion polymerization method of the polymer particles (A) and the polymer particles (B) is not particularly limited, and examples thereof include a method of polymerizing a pre-emulsion liquid containing an ethylenically unsaturated monomer and an emulsifier in an aqueous medium. Moreover, after mixing the pre-emulsion liquid containing an ethylenically unsaturated monomer and an emulsifier and an organosilane compound, polymerization of the ethylenically unsaturated monomer and hydrolysis and condensation reaction of the organosilane compound in an aqueous medium Can be performed simultaneously. In emulsion polymerization, it is preferable to adjust the pH of the reaction system during polymerization to 4.0 or less. By setting the pH of the polymerization reaction system to 4.0 or less, the condensation reaction of the organic silane occurs promptly and the progress of the condensation reaction after the emulsion polymerization can be suppressed, so that the storage stability as a product is improved. The pH of the polymerization reaction system may be more preferably 3.0 or less, and / or more preferably 1.5 or more. The means for adjusting the pH of the polymerization reaction system is not particularly limited. Examples include a mode in which the pre-emulsion solution is adjusted to pH 4.0 or lower, a mode in which the pre-emulsion solution is kept neutral, and a pH is set to 4.0 or lower (for example, about pH 2) by adding other components to the polymerization system. It is done.
 高耐候性(メタ)アクリル樹脂及び汎用(メタ)アクリル樹脂は、エチレン性不飽和単量体由来の構造単位を有する。高耐候性(メタ)アクリル樹脂は、メタクリル酸シクロヘキシル、メタクリル酸ブチル、アクリル酸ブチル等の疎水性モノマー由来の構造単位を有し、疎水性モノマー由来の構造単位の比率が30質量%以上であるものを指す。ここでの疎水性モノマーとは、20℃における水への溶解度が1質量%以下のものを指す。ポリシロキサン含有水性(メタ)アクリレート系樹脂は、エチレン性不飽和単量体由来の構造及び有機シラン化合物の加水分解縮合物由来の構造を有する。 High weather resistance (meth) acrylic resins and general purpose (meth) acrylic resins have structural units derived from ethylenically unsaturated monomers. The high weather resistance (meth) acrylic resin has a structural unit derived from a hydrophobic monomer such as cyclohexyl methacrylate, butyl methacrylate, butyl acrylate, etc., and the ratio of the structural unit derived from the hydrophobic monomer is 30% by mass or more. Refers to things. The hydrophobic monomer here refers to a monomer having a solubility in water at 20 ° C. of 1% by mass or less. The polysiloxane-containing aqueous (meth) acrylate-based resin has a structure derived from an ethylenically unsaturated monomer and a structure derived from a hydrolysis condensate of an organosilane compound.
 汎用(メタ)アクリレート系樹脂の例としては、(メタ)アクリル酸エステル(共)重合体及び(メタ)アクリル酸エステルに由来する構造単位を含む共重合体などが挙げられる。ここで、(メタ)アクリルとは、アクリル又はメタクリルを指し、(共)重合体とは、重合体又は共重合体を指す。
 (メタ)アクリル酸エステル(共)重合体の例としては、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、ポリ(メタ)アクリル酸プロピル、(メタ)アクリル酸メチル・(メタ)アクリル酸ブチル共重合体、(メタ)アクリル酸エチル・(メタ)アクリル酸ブチル共重合体などが挙げられる(上述の高耐候性(メタ)アクリル樹脂を除く)。
 (メタ)アクリル酸エステルに由来する構造単位を含む共重合体の例としては、エチレン・(メタ)アクリル酸メチル共重合体及び無水マレイン酸・(メタ)アクリル酸メチル共重合などが挙げられる(上述の高耐候性(メタ)アクリル樹脂を除く)。
Examples of the general-purpose (meth) acrylate resin include (meth) acrylic acid ester (co) polymers and copolymers containing structural units derived from (meth) acrylic acid esters. Here, (meth) acryl refers to acryl or methacryl, and (co) polymer refers to a polymer or copolymer.
Examples of (meth) acrylic acid ester (co) polymers include poly (meth) methyl acrylate, poly (meth) ethyl acrylate, poly (meth) acrylate propyl, methyl (meth) acrylate / (meth) Examples thereof include butyl acrylate copolymers, ethyl (meth) acrylate / butyl (meth) acrylate copolymers (excluding the above-mentioned high weather resistance (meth) acrylic resins).
Examples of the copolymer containing a structural unit derived from a (meth) acrylate ester include ethylene / methyl (meth) acrylate copolymer and maleic anhydride / methyl (meth) acrylate copolymer ( (Excluding the above-mentioned high weather resistance (meth) acrylic resin).
 その中でも、塗膜を形成する際に重合体粒子(B)の外周を被覆する重合体粒子(A)として耐久性が高い粒子を用いることが好ましい。具体的に、重合体粒子(A)として、高耐候性(メタ)アクリレート系樹脂、ポリシロキサン含有水性(メタ)アクリレート系樹脂、(メタ)アクリル複合したフッ素樹脂を用いることが、塗膜の耐候性をより高める観点、及び塗膜の吸水白化性能、強度を向上させる観点から好ましい。 Among them, it is preferable to use highly durable particles as the polymer particles (A) that coat the outer periphery of the polymer particles (B) when forming a coating film. Specifically, as the polymer particles (A), it is possible to use a highly weather-resistant (meth) acrylate resin, a polysiloxane-containing aqueous (meth) acrylate resin, and a (meth) acrylic composite fluororesin. From the viewpoint of further improving the properties, the water absorption whitening performance of the coating film, and the strength.
 特に、重合体粒子(A)及び(B)として、疎水性モノマーを使用した高耐候性(メタ)アクリレート系樹脂と汎用(メタ)アクリレート系樹脂、ポリシロキサン含有水性(メタ)アクリレート系樹脂と汎用(メタ)アクリレート系樹脂、及びポリシロキサン含有水性(メタ)アクリレート系樹脂と高耐候性(メタ)アクリレート系樹脂の組み合わせを用いた場合、重合体粒子同士の相溶性が高くなり、耐候性の向上のみでなく、吸水白化性能の向上も可能となる傾向がある。 In particular, as the polymer particles (A) and (B), a highly weather-resistant (meth) acrylate resin using a hydrophobic monomer and a general-purpose (meth) acrylate-based resin, a polysiloxane-containing aqueous (meth) acrylate-based resin and a general-purpose resin When a combination of a (meth) acrylate resin and a polysiloxane-containing water-based (meth) acrylate resin and a highly weather-resistant (meth) acrylate resin is used, the compatibility between the polymer particles increases and the weather resistance is improved. In addition, the water absorption whitening performance tends to be improved.
 好ましくは、重合体粒子(A)が、有機シラン化合物の加水分解縮合物由来の構造を有し、重合体粒子(B)が、エチレン性不飽和単量体由来の構造単位を有する態様が挙げられる。さらに好ましくは、重合体粒子(A)及び重合体粒子(B)は、共に、エチレン性不飽和単量体由来の構造及び有機シラン化合物の加水分解縮合物由来の構造を有する重合体粒子である態様が挙げられる。さらに他の好ましい例として、重合体粒子(A)及び重合体粒子(B)が、共に、エチレン性不飽和単量体由来の構造及び有機シラン化合物の加水分解縮合物由来の構造を有する重合体粒子であり、かつ、重合体粒子(A)のエチレン性不飽和単量体由来の構造単位に対する有機シラン化合物の加水分解縮合物由来の構造単位の比率が、重合体粒子(B)の当該比率以上である態様が挙げられる。 Preferably, an embodiment in which the polymer particles (A) have a structure derived from a hydrolytic condensate of an organosilane compound and the polymer particles (B) have a structural unit derived from an ethylenically unsaturated monomer. It is done. More preferably, the polymer particles (A) and the polymer particles (B) are both polymer particles having a structure derived from an ethylenically unsaturated monomer and a structure derived from a hydrolysis condensate of an organosilane compound. An embodiment is mentioned. As still another preferred example, the polymer particles (A) and the polymer particles (B) both have a structure derived from an ethylenically unsaturated monomer and a structure derived from a hydrolysis condensate of an organosilane compound. The ratio of the structural unit derived from the hydrolytic condensate of the organosilane compound to the structural unit derived from the ethylenically unsaturated monomer of the polymer particle (A) is the ratio of the polymer particle (B). The aspect which is the above is mentioned.
 典型的な一実施形態において、エマルジョンは、重合体粒子(A)を、重合体粒子(A)と重合体粒子(B)との合計質量に対して3~20質量%の範囲で含む。この割合が3質量%以上であることで、重合体粒子(B)の粒子界面が、重合体粒子(A)により十分に被覆され、耐候性に優れた塗膜を形成できる。また、この割合が20質量%以下であることで、重合体粒子(A)と重合性粒子(B)が海島構造を形成することを防止し、塗膜の耐候性及び強度が良好となる。換言すれば、エマルジョンが重合体粒子(A)を重合体粒子(A)と重合体粒子(B)との合計質量に対して3~20質量%の範囲で含むことによって、重合体粒子(B)の周囲を重合体粒子(A)が効果的に取り囲み、かつ、重合体粒子(B)同士が適度な距離感を保つことで、形成される塗膜が高い耐候性等を有することになると考えられる。より好ましくは、エマルジョンは、重合体粒子(A)を、重合体粒子(A)と重合体粒子(B)との合計質量に対して4~10質量%の範囲で含む。他の実施形態において、エマルジョンは、重合体粒子(A)を、重合体粒子(A)と重合体粒子(B)との合計質量に対して、3~10質量%、または4~20質量%の範囲で含んでよい。 In an exemplary embodiment, the emulsion contains the polymer particles (A) in the range of 3 to 20% by mass with respect to the total mass of the polymer particles (A) and the polymer particles (B). When this ratio is 3% by mass or more, the particle interface of the polymer particles (B) is sufficiently covered with the polymer particles (A), and a coating film having excellent weather resistance can be formed. Moreover, it is prevented that a polymer particle (A) and polymeric particle (B) form sea island structure because this ratio is 20 mass% or less, and the weather resistance and intensity | strength of a coating film become favorable. In other words, the emulsion contains the polymer particles (A) in the range of 3 to 20% by mass with respect to the total mass of the polymer particles (A) and the polymer particles (B). ) Around the polymer particles (A) effectively, and the polymer particles (B) maintain a proper sense of distance between them so that the formed coating film has high weather resistance and the like. Conceivable. More preferably, the emulsion contains the polymer particles (A) in a range of 4 to 10% by mass with respect to the total mass of the polymer particles (A) and the polymer particles (B). In other embodiments, the emulsion comprises 3-10% by weight, or 4-20% by weight of polymer particles (A), based on the total weight of polymer particles (A) and polymer particles (B). May be included in the range.
 典型的な一実施形態において、エマルジョンは、重合体粒子(A)及び重合体粒子(B)の体積平均粒子径比が、1/30~5/6の範囲である。粒子径比が1/30以上であることで、重合体粒子(A)の粒子径が小さくなりすぎず、製造に用いる界面活性剤量を少なくでき、耐候性に優れた塗膜を形成できる。5/6以下であることで、重合体粒子(B)の粒子界面が、重合体粒子(A)により十分に被覆され、耐候性に優れた塗膜を形成できる。換言すれば、重合体粒子(A)及び重合体粒子(B)の体積平均粒子径比が1/30~5/6の範囲であることによって、界面活性剤量を低減でき、かつ、重合体粒子(B)の周囲を重合体粒子(A)が十分に取り囲むことができるので、形成される塗膜が高い耐候性等を有することになると考えられる。より好ましくは、当該平均粒子径比が1/25~2/3の範囲である。他の実施形態において、エマルジョンは、重合体粒子(A)及び重合体粒子(B)の体積平均粒子径比が、1/30~2/3、または1/25~5/6の範囲であってよい。 In a typical embodiment, the emulsion has a volume average particle size ratio of the polymer particles (A) and the polymer particles (B) in the range of 1/30 to 5/6. When the particle size ratio is 1/30 or more, the particle size of the polymer particles (A) does not become too small, the amount of surfactant used for production can be reduced, and a coating film excellent in weather resistance can be formed. By being 5/6 or less, the particle interface of the polymer particles (B) is sufficiently covered with the polymer particles (A), and a coating film having excellent weather resistance can be formed. In other words, when the volume average particle size ratio of the polymer particles (A) and the polymer particles (B) is in the range of 1/30 to 5/6, the amount of the surfactant can be reduced, and the polymer Since the polymer particles (A) can sufficiently surround the periphery of the particles (B), it is considered that the formed coating film has high weather resistance and the like. More preferably, the average particle size ratio is in the range of 1/25 to 2/3. In another embodiment, the emulsion has a volume average particle size ratio of the polymer particles (A) and the polymer particles (B) in the range of 1/30 to 2/3, or 1/25 to 5/6. It's okay.
 典型的な一実施形態において、エマルジョンは、重合体粒子(A)のガラス転移温度(Tg)が、10~70℃の範囲であり、重合体粒子(B)のTgが、-20~40℃の範囲である。
 重合体粒子(A)のTgが10℃以上であることで、粒子界面の応力が高くなり、耐候性に優れた塗膜を形成できる。換言すれば、重合体粒子(A)のTgが10℃以上であることで、エマルジョンから形成される塗膜の粒子界面が強化され、塗膜の硬度が大きくなり、ひいては塗膜の耐候性が高められる。重合体粒子(A)のTgが70℃以下であることで、塗膜形成時に粒子(A)及び(B)間の粒子界面での粒子間融着が進行しやすく、強靭な塗膜が形成される。より好ましい重合体粒子(A)のTgは、20~70℃である。
 重合体粒子(B)のTgが-20℃以上であることで、塗膜自体の軟化が防止され、重合体粒子(A)との相乗効果により耐候性に優れた塗膜を形成できる。重合体粒子(B)のTgが40℃以下であることで、塗膜の柔軟性が高められ、重合体粒子(A)との相乗効果により耐候性に優れた塗膜を形成できる。より好ましい重合体粒子(B)のTgは、-20~30℃、-10~40℃、または-10~30℃であってよい。
In an exemplary embodiment, the emulsion has a glass transition temperature (Tg) of the polymer particles (A) in the range of 10 to 70 ° C. and a Tg of the polymer particles (B) of −20 to 40 ° C. Range.
When the Tg of the polymer particles (A) is 10 ° C. or higher, the stress at the particle interface is increased, and a coating film having excellent weather resistance can be formed. In other words, when the Tg of the polymer particles (A) is 10 ° C. or more, the particle interface of the coating film formed from the emulsion is strengthened, the hardness of the coating film is increased, and consequently the weather resistance of the coating film is increased. Enhanced. When the Tg of the polymer particles (A) is 70 ° C. or less, the fusion between particles at the particle interface between the particles (A) and (B) easily proceeds during the formation of the coating film, and a tough coating film is formed. Is done. The Tg of the polymer particles (A) is more preferably 20 to 70 ° C.
When the Tg of the polymer particles (B) is −20 ° C. or more, the coating film itself is prevented from being softened, and a coating film having excellent weather resistance can be formed by a synergistic effect with the polymer particles (A). When the Tg of the polymer particles (B) is 40 ° C. or less, the flexibility of the coating film is enhanced, and a coating film having excellent weather resistance can be formed by a synergistic effect with the polymer particles (A). More preferable Tg of the polymer particles (B) may be −20 to 30 ° C., −10 to 40 ° C., or −10 to 30 ° C.
 典型的な一実施形態において、エマルジョンは、重合体粒子(A)のゼータ電位が、重合体粒子(B)のゼータ電位よりも3mV以上、より好ましくは、4mV以上高い。重合体粒子(A)と重合体粒子(B)のゼータ電位差が3mV以上であることで、重合体粒子(A)の重合体粒子(B)への被覆が十分になる。被覆が十分となることにより、緻密な膜構造によって、耐候性を向上させることができる。前記ゼータ電位差は、粒子の安定性の観点から25mV以下であり、20mV以下であることが好ましい。エマルジョンは、重合体粒子(A)のゼータ電位が、重合体粒子(B)のゼータ電位よりも、通常3mV以上25mV以下高く、好ましくは、3mV以上20mV以下高く、4mV以上25mV以下高く、または4mV以上20mV以下高い。 In a typical embodiment, the emulsion has a zeta potential of the polymer particles (A) of 3 mV or more, more preferably 4 mV or more higher than the zeta potential of the polymer particles (B). When the zeta potential difference between the polymer particles (A) and the polymer particles (B) is 3 mV or more, the coating of the polymer particles (A) onto the polymer particles (B) becomes sufficient. When the coating is sufficient, the weather resistance can be improved by a dense film structure. The zeta potential difference is 25 mV or less, and preferably 20 mV or less, from the viewpoint of particle stability. In the emulsion, the zeta potential of the polymer particles (A) is usually 3 mV to 25 mV higher, preferably 3 mV to 20 mV higher, 4 mV to 25 mV higher, or 4 mV than the zeta potential of the polymer particles (B). More than 20 mV.
 典型的な一実施形態において、重合体粒子(B)のゼータ電位は-60mVより大きく、好ましくは-54mVより大きい。重合体粒子(B)のゼータ電位が-60mVより大きいことで、重合体粒子(A)の偏在効果を得ることができ、また、重合体粒子(B)が適度に分散されるので、粒子(A)及び(B)間の粒子界面の耐久性が高められる。重合体粒子(B)のゼータ電位が-54mVより大きいことで、重合体粒子(A)をより十分に偏在させることができ、また、重合体粒子(B)がより適度に分散されるので、粒子(A)及び(B)間の粒子界面の耐久性が更に高められる。 In one exemplary embodiment, the zeta potential of the polymer particles (B) is greater than −60 mV, preferably greater than −54 mV. When the zeta potential of the polymer particles (B) is larger than −60 mV, the uneven distribution effect of the polymer particles (A) can be obtained, and the polymer particles (B) are appropriately dispersed. The durability of the particle interface between A) and (B) is enhanced. When the zeta potential of the polymer particles (B) is greater than −54 mV, the polymer particles (A) can be more unevenly distributed, and the polymer particles (B) are more appropriately dispersed. The durability of the particle interface between the particles (A) and (B) is further enhanced.
 重合体粒子のゼータ電位を制御するには、1つ目に、粒子表面に吸着、被覆する界面活性剤の量を制御する手法が挙げられる。被覆する界面活性剤の量を多くすることでゼータ電位を高くすることができる。ここでの界面活性剤としては、後述の乳化重合に用いる界面活性剤として例示されたものを挙げることができる。2つ目に、重合反応の進行度を調節し、粒子径を調整することによって重合体粒子の表面積を制御する手法が挙げられる。粒子径を小さくする、すなわち表面積を大きくすることでゼータ電位を高くすることができる。さらに電荷を有しないノニオン性界面活性剤を表面に吸着させることで制御する手法が挙げられる。ここでのノニオン性界面活性剤としては、後述の乳化重合に用いるノニオン性界面活性剤として例示されたものを挙げることができる。ノニオン性界面活性剤を表面に吸着させることでゼータ電位を高くすることができる。一実施態様として、これらの3つの手法のいずれかを行うことによって、ゼータ電位差を調整することができる。好ましい一実施態様として、エマルジョンに含まれる重合体粒子(A)と重合体粒子(B)に対し上述の手法を複数組み合わせて、ゼータ電位差を調整することが好ましい。 In order to control the zeta potential of polymer particles, a first method is to control the amount of surfactant that is adsorbed and coated on the particle surface. The zeta potential can be increased by increasing the amount of the surfactant to be coated. Examples of the surfactant here include those exemplified as the surfactant used in the emulsion polymerization described below. Secondly, there is a method of controlling the surface area of the polymer particles by adjusting the degree of progress of the polymerization reaction and adjusting the particle diameter. The zeta potential can be increased by reducing the particle diameter, that is, increasing the surface area. Furthermore, the method of controlling by adsorb | sucking the nonionic surfactant which does not have an electric charge on the surface is mentioned. As nonionic surfactant here, what was illustrated as a nonionic surfactant used for the below-mentioned emulsion polymerization can be mentioned. The zeta potential can be increased by adsorbing the nonionic surfactant to the surface. In one embodiment, the zeta potential difference can be adjusted by performing any of these three approaches. As a preferred embodiment, it is preferable to adjust the zeta potential difference by combining a plurality of the above-described methods for the polymer particles (A) and the polymer particles (B) contained in the emulsion.
 一実施形態において、重合体粒子として用いられる、高耐候性(メタ)アクリル樹脂及び汎用(メタ)アクリル樹脂は、エチレン性不飽和単量体の付加重合反応により得られる。
 一実施形態において、ポリシロキサン含有水性(メタ)アクリレート系樹脂は、エチレン性不飽和単量体の付加重合反応と有機シラン化合物を加水分解縮合反応により得られる。この場合のエチレン性不飽和単量体100重量部に対する縮合後の有機シラン化合物の割合は、特に限定されないが、粒子間の融着性と塗膜の強靭性の両立の観点から、1~60質量部であることが好ましい。また、コストと系の安定性の観点から、有機シラン化合物の割合が3~30質量部であることがより好ましい。他の実施形態において、この場合のエチレン性不飽和単量体100重量部に対する縮合後の有機シラン化合物の割合は、1~30質量部、または3~60質量部であってよい。
In one embodiment, the high weather resistance (meth) acrylic resin and the general-purpose (meth) acrylic resin used as polymer particles are obtained by an addition polymerization reaction of an ethylenically unsaturated monomer.
In one embodiment, the polysiloxane-containing aqueous (meth) acrylate resin is obtained by an addition polymerization reaction of an ethylenically unsaturated monomer and a hydrolytic condensation reaction of an organosilane compound. In this case, the ratio of the organosilane compound after condensation with respect to 100 parts by weight of the ethylenically unsaturated monomer is not particularly limited, but from the viewpoint of achieving both fusion between particles and toughness of the coating film, 1 to 60 It is preferable that it is a mass part. From the viewpoint of cost and system stability, the ratio of the organosilane compound is more preferably 3 to 30 parts by mass. In another embodiment, the ratio of the organosilane compound after condensation to 100 parts by weight of the ethylenically unsaturated monomer in this case may be 1 to 30 parts by weight, or 3 to 60 parts by weight.
 一実施形態において、重合体粒子の重合方法としては、乳化重合、懸濁重合、塊状重合、ミニエマルション重合が挙げられる。体積平均粒子径が10nm~1μm程度の分散安定性の良好なエマルジョンを安定的に製造する方法としては、乳化重合を用いることが好ましい。 In one embodiment, the polymerization method of polymer particles includes emulsion polymerization, suspension polymerization, bulk polymerization, and miniemulsion polymerization. As a method for stably producing an emulsion having a volume average particle size of about 10 nm to 1 μm and excellent dispersion stability, it is preferable to use emulsion polymerization.
 一実施形態において、重合体粒子の製造に用いられるエチレン性不飽和単量体としては、(メタ)アクリル酸エステル(本願において、アクリル酸およびメタアクリル酸を合わせて(メタ)アクリル酸と表記する)に代表される不飽和カルボン酸エステル単量体が挙げられる。不飽和カルボン酸エステル単量体の例としては、アルキル部の炭素数が1~18の(メタ)アクリル酸アルキルエステルが挙げられる。その具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸シクロアルキルエステルなどが挙げられる。これらの中で、メタクリル酸シクロヘキシル、メタクリル酸ブチル、アクリル酸ブチル等は疎水性モノマーとして、高耐候性(メタ)アクリル樹脂原料として用いられる。 In one embodiment, the ethylenically unsaturated monomer used in the production of the polymer particles includes (meth) acrylic acid ester (in this application, acrylic acid and methacrylic acid are combined and expressed as (meth) acrylic acid. And unsaturated carboxylic acid ester monomers represented by Examples of unsaturated carboxylic acid ester monomers include (meth) acrylic acid alkyl esters having an alkyl moiety of 1 to 18 carbon atoms. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, (meth) acrylic acid. Examples include 2-ethylhexyl, dodecyl (meth) acrylate, and cycloalkyl ester (meth) acrylate. Among these, cyclohexyl methacrylate, butyl methacrylate, butyl acrylate, and the like are used as a highly weatherable (meth) acrylic resin raw material as a hydrophobic monomer.
 他のエチレン性不飽和単量体の具体例として、(メタ)アクリル酸ヒドロキシアルキルエステルの(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピルなどが挙げられる。 Specific examples of other ethylenically unsaturated monomers include (meth) acrylic acid hydroxyalkyl ester (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2-hydroxypropyl, and the like.
 エチレン性不飽和単量体としては、上記不飽和カルボン酸エステル単量体以外に、それらと共重合可能な不飽和カルボン酸単量体から選ばれる少なくとも1種のコモノマーが使用できる。 As the ethylenically unsaturated monomer, in addition to the unsaturated carboxylic acid ester monomer, at least one comonomer selected from unsaturated carboxylic acid monomers copolymerizable therewith can be used.
 不飽和カルボン酸単量体の具体的な例としては、アクリル酸、メタクリル酸、イタコン酸およびそのモノエステル、フマル酸およびそのモノエステル、並びにマレイン酸およびそのモノエステル等が挙げられる。これらの群から選ばれる少なくとも1種を含むことが特に好ましい。これらの不飽和カルボン酸単量体は、エマルジョンの最終形態として、pH7.5~9程度のアルカリ性とすることでカルボシキル基による電気二重層を形成するため、エマルジョン粒子の機械的安定性に寄与する傾向がある。 Specific examples of the unsaturated carboxylic acid monomer include acrylic acid, methacrylic acid, itaconic acid and its monoester, fumaric acid and its monoester, and maleic acid and its monoester. It is particularly preferable to include at least one selected from these groups. These unsaturated carboxylic acid monomers contribute to the mechanical stability of the emulsion particles because the final form of the emulsion is made alkaline with a pH of 7.5 to 9 to form an electric double layer based on carboxyl groups. Tend.
 他のエチレン性不飽和単量体は、アクリルアミド単量体、メタクリルアミド単量体を含む。その例として、不飽和カルボン酸エステル単量体及び不飽和カルボン酸単量体と共重合可能な少なくとも1種のコモノマーが挙げられる。 Other ethylenically unsaturated monomers include acrylamide monomers and methacrylamide monomers. Examples thereof include an unsaturated carboxylic acid ester monomer and at least one comonomer copolymerizable with the unsaturated carboxylic acid monomer.
 アクリルアミド単量体又はメタクリルアミド単量体の具体例としては、(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミドなどが挙げられる。 Specific examples of the acrylamide monomer or the methacrylamide monomer include (meth) acrylamide, diacetone (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide and the like.
 さらに、他のエチレン性不飽和単量体として、ビニルトルエン、スチレン、α-メチルスチレンなどの芳香族単量体なども挙げられる。 Furthermore, other ethylenically unsaturated monomers include aromatic monomers such as vinyltoluene, styrene and α-methylstyrene.
 一実施形態において、重合体粒子の製造に用いられる有機シラン化合物は、特に限定されないが、下記式(1)で表される有機シラン化合物を含む。 In one embodiment, the organosilane compound used for the production of polymer particles is not particularly limited, but includes an organosilane compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001

(式(1)中、Rはフェニル基又はシクロヘキシル基、Rは水素原子又は炭素数1~8の脂肪族炭化水素基、R はそれぞれ独立して、炭素数1~3のアルコキシ基、アセトキシ基又は水酸基を示し、(n,m)は(0,1)、(0,2)、(1,0)及び(2,0)の組群より選ばれる少なくとも一種である。)
Figure JPOXMLDOC01-appb-C000001

(In the formula (1), R 1 is a phenyl group or a cyclohexyl group, R 2 is a hydrogen atom or an aliphatic hydrocarbon group having 1 to 8 carbon atoms, and R 3 is independently an alkoxy group having 1 to 3 carbon atoms. An acetoxy group or a hydroxyl group, and (n, m) is at least one selected from the group consisting of (0,1), (0,2), (1,0) and (2,0).
 上記有機シラン化合物の好ましい具体例としては、(n,m)が(0,1)の組では、メチルトリメトシキシシラン、メチルトリエトキシシラン等が挙げられる。これらの有機シラン化合物を用いることによって、ポリシロキサンの架橋密度を付与し、塗膜硬度を上げることが可能となる。 Preferred examples of the organosilane compound include methyltrimethoxysilane, methyltriethoxysilane, and the like when (n, m) is (0,1). By using these organosilane compounds, it is possible to impart a crosslink density of polysiloxane and to increase the coating film hardness.
 (n,m)が(0,2)の組では、ジメチルジメトキシシラン、ジメチルジエトキシシラン等が挙げられる。これらの有機シラン化合物を用いることによって、ポリシロキサンの架橋密度を低下させ、塗膜に可撓性を付与することが可能となる。 In the group where (n, m) is (0, 2), dimethyldimethoxysilane, dimethyldiethoxysilane and the like can be mentioned. By using these organosilane compounds, it is possible to reduce the crosslinking density of the polysiloxane and impart flexibility to the coating film.
 (n,m)が(1,0)の組では、フェニルトリメトシキシシラン、フェニルトリエトキシシラン、シクロヘキシルトリメトシキシシラン、シクロヘキシルトリエトキシシラン等が挙げられる。これらの有機シラン化合物を用いることによって、ポリシロキサンの架橋密度を付与し、また(A)及び(B)のエチレン性不飽和単量体からなるポリマーとの相溶性を付与することが可能となる。 In the group where (n, m) is (1, 0), phenyltrimethoxysilane, phenyltriethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane and the like can be mentioned. By using these organosilane compounds, it is possible to impart a crosslink density of polysiloxane and compatibility with a polymer composed of ethylenically unsaturated monomers (A) and (B). .
 (n,m)が(2,0)の組では、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジシクロヘキシルジメトキシシラン、ジシクロヘキシルジエトキシシラン等が挙げられる。これらの有機シラン化合物を用いることによって、ポリシロキサンの架橋密度を低下させ、塗膜に可撓性を付与することができる。 In the group where (n, m) is (2, 0), diphenyldimethoxysilane, diphenyldiethoxysilane, dicyclohexyldimethoxysilane, dicyclohexyldiethoxysilane and the like can be mentioned. By using these organosilane compounds, the crosslinking density of the polysiloxane can be reduced, and flexibility can be imparted to the coating film.
 その他の有機シラン化合物の例として、エチレン性不飽和基を有する有機シラン化合物が挙げられる。その具体例としては、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシランが挙げられる。エチレン性不飽和基を有する有機シラン化合物は、エチレン性不飽和単量体から形成されるポリマー中にグラフト点として付加され、有機シラン化合物を側鎖として取り込むために用いられる。特に、重合体粒子(A)を構成する有機シラン化合物として、エチレン性不飽和基を有しない有機シラン化合物及びエチレン性不飽和基を有する有機シラン化合物を併用して形成された(メタ)アクリレート系樹脂を用いて、粒子(A)及び粒子(B)間の粒子界面の耐久性を向上させることが好ましい。 Examples of other organosilane compounds include organosilane compounds having an ethylenically unsaturated group. Specific examples thereof include γ-acryloxypropyltrimethoxysilane, γ-acryloxypropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, and γ-methacryloxypropylmethyldimethoxysilane. Is mentioned. An organosilane compound having an ethylenically unsaturated group is added as a graft point in a polymer formed from an ethylenically unsaturated monomer, and is used to incorporate the organosilane compound as a side chain. In particular, as the organic silane compound constituting the polymer particle (A), a (meth) acrylate-based compound formed by using together an organic silane compound having no ethylenically unsaturated group and an organic silane compound having an ethylenically unsaturated group It is preferable to improve the durability of the particle interface between the particles (A) and the particles (B) using a resin.
 一実施形態において、乳化重合に用いる界面活性剤には、スルホン酸基又はスルホネート基を有するエチレン性不飽和単量体、硫酸エステル基を有するエチレン性不飽和単量体のうち、少なくともいずれかを含むことが、塗膜の高度な耐水性を達成するために好ましい。ここにいうスルホン酸基又はスルホネート基を有するエチレン性不飽和単量体としては、ラジカル重合性の二重結合を有し、かつフリーのスルホン酸基、又はそのアンモニウム塩かアルカリ金属塩である基(アンモニウムスルホネート基、又はアルカリ金属スルホネート基)を有するアニオン性界面活性剤であることが好ましい。
 このようなアニオン性界面活性剤として、例えば、エレミノールJS-2、JS-5(製品名、三洋化成(株)製)ラテムルS-120、S-180A、S-180(製品名、花王(株)製)がある。
In one embodiment, the surfactant used for emulsion polymerization is at least one of an ethylenically unsaturated monomer having a sulfonic acid group or a sulfonate group and an ethylenically unsaturated monomer having a sulfate group. The inclusion is preferable in order to achieve high water resistance of the coating film. The ethylenically unsaturated monomer having a sulfonic acid group or a sulfonate group mentioned here has a radically polymerizable double bond and is a free sulfonic acid group, or an ammonium salt or an alkali metal salt thereof. An anionic surfactant having (ammonium sulfonate group or alkali metal sulfonate group) is preferable.
Examples of such anionic surfactant include Eleminol JS-2, JS-5 (product name, manufactured by Sanyo Chemical Co., Ltd.) Latemu S-120, S-180A, S-180 (product name, Kao Corporation) ) Made).
 また、スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である炭素数2~4のアルキルエーテル基又は炭素数2~4のポリアルキルエーテル基を有する化合物の例として、例えばアクアロンHS-10(製品名、第一工業製薬(株)製)、アデカリアソープSE-1025A、SR-10N、SR-20N(製品名、(株)ADEKA製)、アクアロンKH-10(製品名、第一工業製薬(株)製)等が挙げられる。 Further, as an example of a compound having an alkyl ether group having 2 to 4 carbon atoms or a polyalkyl ether group having 2 to 4 carbon atoms, which is an ammonium salt, sodium salt or potassium salt of a sulfonic acid group, for example, Aqualon HS-10 (product) Name, Daiichi Kogyo Seiyaku Co., Ltd.), Adeka Soap SE-1025A, SR-10N, SR-20N (Product Name, ADEKA Co., Ltd.), Aqualon KH-10 (Product Name, Daiichi Kogyo Seiyaku Co., Ltd.) Etc.).
 さらに汎用のノニオン性界面活性剤、反応性ノニオン型界面活性剤といわれる、エチレン性不飽和単量体と共重合可能なノニオン性界面活性剤などを併用することができる。このようなノニオン性界面活性剤として、例えばラテムルPD-420、ラテムルPD-430、ラテムルPD-450(製品名、花王(株)製)が挙げられる。 Further, general-purpose nonionic surfactants and nonionic surfactants that are copolymerizable with ethylenically unsaturated monomers, which are called reactive nonionic surfactants, can be used in combination. Examples of such nonionic surfactants include latemul PD-420, latemul PD-430, latemul PD-450 (product name, manufactured by Kao Corporation).
 一実施形態において、塗膜の高耐候性を付与する上で、紫外線吸収剤及び/又は光安定剤をエマルジョン中に含有させることも可能である。特に粒子界面の耐久性を向上させるために、重合体粒子(A)に市販の紫外線吸収剤、光安定剤を添加してもよい。特に反応性を有する紫外線吸収剤、光安定剤を用いて重合体粒子(A)内に固定化することが好ましい。 In one embodiment, an ultraviolet absorber and / or a light stabilizer may be contained in the emulsion in order to impart high weather resistance to the coating film. In particular, in order to improve the durability of the particle interface, a commercially available ultraviolet absorber or light stabilizer may be added to the polymer particles (A). In particular, it is preferable to immobilize the polymer particles (A) using a reactive ultraviolet absorber or light stabilizer.
 一実施形態による乳化重合では、ラジカル重合触媒として熱又は還元性物質などを用いたラジカル重合によって、エチレン性不飽和単量体の付加重合を行うことができる。このような乳化重合では、水溶性又は油溶性の過硫酸塩、過酸化物、アゾビス化合物などを有利に使用することができる。 In emulsion polymerization according to an embodiment, addition polymerization of an ethylenically unsaturated monomer can be performed by radical polymerization using heat or a reducing substance as a radical polymerization catalyst. In such emulsion polymerization, water-soluble or oil-soluble persulfates, peroxides, azobis compounds and the like can be advantageously used.
 ラジカル重合触媒の具体的な例としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過酸化水素、ドデシルベンゼンスルホン酸、t-ブチルハイドロパーオキサイド、t-ブチルパーオキシベンゾエート、2,2-アゾビスイソブチロニトリル、2,2-アゾビス(2-ジアミノプロパン)ハイドロクロライド、2,2 -アゾビス(2,4-ジメチルバレロニトリル)などを挙げることができる。 Specific examples of the radical polymerization catalyst include potassium persulfate, sodium persulfate, ammonium persulfate, hydrogen peroxide, dodecylbenzene sulfonic acid, t-butyl hydroperoxide, t-butyl peroxybenzoate, 2,2-azo. Examples thereof include bisisobutyronitrile, 2,2-azobis (2-diaminopropane) hydrochloride, and 2,2-azobis (2,4-dimethylvaleronitrile).
 これらのラジカル重合触媒の具体例の中でも、有機シラン化合物の加水分解反応および縮合反応を促進させるための触媒としても効果のある過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムを用いることが好ましい。 Among these specific examples of the radical polymerization catalyst, it is preferable to use potassium persulfate, sodium persulfate, or ammonium persulfate that is also effective as a catalyst for promoting the hydrolysis reaction and condensation reaction of the organic silane compound.
 エマルジョンを提供するために使用する乳化重合方法は特に限定されるものではなく、ユニフォーム構造を形成する一段重合方法、及びコアシェル構造を形成しうる多段重合方法等でもよい。目的に沿った重合方法を選択可能である。 The emulsion polymerization method used to provide the emulsion is not particularly limited, and may be a one-stage polymerization method that forms a uniform structure, a multi-stage polymerization method that can form a core-shell structure, or the like. A polymerization method suitable for the purpose can be selected.
 以下、実施例及び比較例により本発明を詳細に例証するが、本発明はこれらの例によって何ら限定されるものでない。尚、実施例及び比較例中の部はそれぞれ質量部を表す。 Hereinafter, the present invention will be illustrated in detail by examples and comparative examples, but the present invention is not limited to these examples. In addition, the part in an Example and a comparative example represents a mass part, respectively.
<重合体粒子のガラス転移温度>
 (メタ)アクリレート系樹脂のガラス転移温度(Tg)は、
 重合体中の各構成単量体a,b・・・の構成質量分率をWa,Wb・・・とし、各構成単量体a,b・・・の単独重合体のガラス転移温度をTga,Tgb・・・としたとき、下記に示すFOXの式で、重合体のTgの値を求めた。
 1/Tg=Wa/Tga+Wb/Tgb+・・・
 使用した(メタ)アクリレート系樹脂について計算されたガラス転移温度(Tg)は、表1-2に記載した。
<Glass transition temperature of polymer particles>
The glass transition temperature (Tg) of the (meth) acrylate resin is
The constituent mass fractions of the constituent monomers a, b... In the polymer are Wa, Wb..., And the glass transition temperature of the homopolymer of the constituent monomers a, b. , Tgb..., The Tg value of the polymer was determined by the FOX equation shown below.
1 / Tg = Wa / Tga + Wb / Tgb + ...
The glass transition temperatures (Tg) calculated for the (meth) acrylate resins used are listed in Table 1-2.
 また得られたエマルジョンの物性試験及び塗膜性能評価については、下記に示す評価及び試験方法に従って実施した。
<体積平均粒子径の測定>
 得られたエマルジョンの体積平均粒子径を、リーズ&ノースラップ社製のマイクロトラック粒度分布計にて測定した。
Moreover, about the physical property test and coating-film performance evaluation of the obtained emulsion, it implemented according to the evaluation and test method which are shown below.
<Measurement of volume average particle diameter>
The volume average particle diameter of the obtained emulsion was measured with a Microtrac particle size distribution meter manufactured by Leeds & Northrup.
<ゼータ電位の測定>
 得られたエマルジョンのゼータ電位は、10mMのKCl水溶液で希釈して測定した。
 ゼータ電位の測定条件は以下のとおりである。
 ・装置名:大塚電子株式会社製 ELSZ―1000
 ・測定温度:25℃
 電気泳動移動度からのゼータ電位の演算は、Smoluchowskiの式を用いた方法により行った。
<Measurement of zeta potential>
The zeta potential of the obtained emulsion was measured by diluting with a 10 mM aqueous KCl solution.
The measurement conditions for the zeta potential are as follows.
・ Device name: ELSZ-1000 manufactured by Otsuka Electronics Co., Ltd.
・ Measurement temperature: 25 ℃
The calculation of the zeta potential from the electrophoretic mobility was performed by a method using the Smoluchowski equation.
<クリヤ塗料の作製>
 塗膜性能は、配合による効果を確認するため、重合体粒子(B)単独エマルジョンと、重合体粒子(A)を重合体粒子(B)に配合したエマルジョンについて、其々クリヤ塗料を作製した。クリヤ塗料は、エマルジョン中の総固形分に対し、造膜助剤として、エチレングリコールモノブチルエーテルを10%(使用時水により50%に希釈)、テキサノールを20%配合し作製した。配合例を下記に示す。
 ・エマルジョン:100部(固形分40質量%の場合)
 ・エチレングリコールモノブチルエーテル/水=1/1:8部
 ・テキサノール:8部
<Preparation of clear paint>
In order to confirm the effect of blending on the coating film performance, a clear coating was prepared for each of the polymer particle (B) single emulsion and the emulsion obtained by blending the polymer particles (A) with the polymer particles (B). The clear paint was prepared by blending 10% ethylene glycol monobutyl ether (diluted to 50% with water at the time of use) and 20% texanol as a film-forming aid with respect to the total solid content in the emulsion. A blending example is shown below.
Emulsion: 100 parts (in case of solid content of 40% by mass)
-Ethylene glycol monobutyl ether / water = 1/1: 8 parts-Texanol: 8 parts
<吸水白化評価>
 ガラス板にクリヤ塗料を、0.1mmのアプリケータにて塗工し、23℃にて1晩乾燥を行った後、23℃の水中に24時間浸漬し、浸漬前とのヘイズ値の変化率を日本電色工業社製:ヘイズメーターNDH5000にて比較測定した。
 主体となる重合体粒子(B)単独のエマルジョンの塗膜についての上記処理後のヘイズ値の変化率に対して、重合体粒子(A)を配合したエマルジョンの塗膜についての上記処理後のヘイズ値の変化率を比較した。これら両者のヘイズ値の変化率の増減により、重合体粒子(A)を配合したエマルジョンの塗膜の吸水白化を以下の基準で評価した。
 ◎(十分に改善):ヘイズ値の変化率が2%以上減少し、吸水白化が改善した。
 ○(改善):ヘイズ値の変化率が0.3~2%未満減少し、吸水白化が改善した。
 -(改善なし):ヘイズ値の変化率の変化が±0.3%未満であった。
 △(やや悪化):ヘイズ値の変化率が0.3~2%未満増加し、吸水白化が悪化した。
 ×(悪化):ヘイズ値の変化率が2%以上増加し、吸水白化が悪化した。
<Water absorption whitening evaluation>
Apply clear paint to a glass plate with a 0.1 mm applicator, dry at 23 ° C overnight, then immerse in 23 ° C water for 24 hours, change rate of haze value before immersion Were manufactured by Nippon Denshoku Industries Co., Ltd .: Comparative measurement was performed with a haze meter NDH5000.
The haze after the above-described treatment for the coating film of the emulsion in which the polymer particles (A) are blended with respect to the change rate of the haze value after the above-mentioned treatment for the coating film of the emulsion consisting solely of the polymer particles (B). The rate of change of values was compared. The water absorption whitening of the coating film of the emulsion blended with the polymer particles (A) was evaluated according to the following criteria by increasing or decreasing the change rate of the haze value of both.
A (sufficient improvement): The change rate of haze value decreased by 2% or more, and water absorption whitening was improved.
○ (Improved): The rate of change in haze value decreased by less than 0.3-2%, and water absorption whitening was improved.
-(No improvement): The change in the change rate of the haze value was less than ± 0.3%.
Δ (slightly worsening): The rate of change in haze value increased by less than 0.3 to 2%, and water absorption whitening worsened.
X (Deterioration): The rate of change in haze value increased by 2% or more, and water absorption whitening deteriorated.
<耐候性評価>
 自製の黒色エナメル塗料をアルミ板上に塗工し、100℃、10分で乾燥させた後に、得られたクリヤ塗料を、0.25mmのアプリケータにて塗工し、100℃、10分乾燥を行い、促進耐候性試験用サンプルを作製した。サンプルをダイプラ社製:メタルウェザー試験機にて、下記促進条件で処理し、初期光沢値及び所定時間経過毎の光沢値を測定した。
 ・照射   :81mW/cm 63℃、50RH%、4hr
 ・シャワー :30sec
 ・暗黒・湿潤:30℃、98RH%、4hr
 ・乾燥   :40℃、20RH%、20min
 ・光沢値測定:15サイクル(125hr)毎に測定
 主体となる重合体粒子(B)単独のエマルジョンの塗膜について光沢値が初期光沢値の80%に到達したサイクル時間に対して、重合体粒子(A)を配合したエマルジョンの塗膜について光沢値が初期光沢値の80%に到達したサイクル時間を比較した。これらの80%到達時間の長短により、重合体粒子(A)を配合したエマルジョンの塗膜の耐候性を以下の基準で評価した。
 ◎(十分に改善):80%到達時間が250hr以上延長した。
 ○(改善):80%到達時間が125hr延長した。
 -(改善なし):80%到達時間に変化が無かった。
 ×(悪化):80%到達時間が短縮した。
<Weather resistance evaluation>
The self-made black enamel paint is applied on an aluminum plate and dried at 100 ° C. for 10 minutes. The resulting clear paint is then applied with a 0.25 mm applicator and dried at 100 ° C. for 10 minutes. A sample for an accelerated weather resistance test was prepared. The sample was processed by a die plastic company: metal weather tester under the following acceleration conditions, and the initial gloss value and the gloss value at every predetermined time were measured.
Irradiation: 81 mW / cm 2 63 ° C., 50 RH%, 4 hr
・ Shower: 30 sec
Dark / wet: 30 ° C, 98RH%, 4hr
・ Drying: 40 ° C, 20RH%, 20min
Gloss value measurement: measured every 15 cycles (125 hr) Polymer particles for the cycle time at which the gloss value reached 80% of the initial gloss value for the coating film of the polymer particle (B) alone as the main polymer particle The cycle time when the gloss value reached 80% of the initial gloss value for the coating film of the emulsion blended with (A) was compared. The weather resistance of the coating film of the emulsion blended with the polymer particles (A) was evaluated according to the following criteria based on the length of the 80% arrival time.
A (sufficiently improved): 80% arrival time was extended by 250 hours or more.
○ (improved): 80% arrival time was extended by 125 hours.
-(No improvement): 80% arrival time was not changed.
X (deteriorated): 80% of the arrival time was shortened.
[重合体粒子(A)の製造例(A)-1]
 撹拌機、還流冷却器、滴下槽 および温度計を取りつけた内容量2.2リットルのSUS製セパラブルフラスコに、水931.1部、界面活性剤としてネオペレックスG15(製品名、花王(株)製、16%水溶液)を75.0部入れ、温度を80℃に上げてから5分後に、過硫酸アンモニウムの2%水溶液を6.0部添加した。次に、メタクリル酸メチル8.0部、メタクリル酸シクロヘキシル100.0部、メタクリル酸ブチル192.0部、アクリル酸ブチル74.8部、メタクリル酸2-ヒドロキシエチル20.0部、メタクリル酸4.0部、アクリル酸0.8部、アクリルアミド0.4部と、アクアロンKH-10(製品名、第一工業製薬(株)製)の25%水溶液16.0部、スチレンスルホン酸ナトリウムの10%水溶液0.4部、エマルゲン120(製品名、 花王(株)製、20%水溶液)8.0部、過硫酸アンモニウムの2%水溶液18.0部、水443.6部の混合液を作製し、該混合液をホモミキサーにより5分間乳化し、プレ乳化液を得た。
 次に、有機シラン化合物成分として、メチルトリメトキシシランZ6366(製品名、東レダウコーニング(株)製)13.5部、ジメチルジメトキシシランZ6329(製品名、東レダウコーニング(株)製)21.6部、γ-メタクリロキシプロピルトリメトキシシランSZ6030(製品名、東レダウコーニング(株)製)2部の混合液と得られたプレ乳化液をY字管〔Y字管の出口には100メッシュの金網を詰め2つ滴下槽の液が混じり合うところまで、モレキュラシーブス3A(製品名:和光純薬(株)製)を充填し、有機シラン化合物成分とプレ乳化液との緩やかな混合ができるように調整した。〕を介して反応容器中へ滴下槽より2時間かけて流入させた。流入中は反応容器中の温度を80℃に保った。流入が終了してから反応容器中の温度を80℃で30分保った。
 その後、室温まで冷却し、100メッシュでエマルジョンを濾過し、水素イオン濃度を測定したところpH2.8であった。ついで25%アンモニア水を添加し、pHを8.3に調整した。
 得られたエマルジョンの固形分は22.7%、体積平均粒子径は27nm、ゼータ電位は-44mVであった。上記の各原料及び配合割合(質量部)は表1-1に記載した。また、これらの物性の結果は表1-2に記載した。
[Production Example of Polymer Particle (A) (A) -1]
In a 2.2-liter SUS separable flask equipped with a stirrer, reflux condenser, dropping tank and thermometer, 931.1 parts of water and Neoperex G15 as a surfactant (product name, Kao Corporation) 55.0 minutes after the temperature was raised to 80 ° C., 6.0 parts of a 2% aqueous solution of ammonium persulfate was added. Next, 8.0 parts of methyl methacrylate, 100.0 parts of cyclohexyl methacrylate, 192.0 parts of butyl methacrylate, 74.8 parts of butyl acrylate, 20.0 parts of 2-hydroxyethyl methacrylate, 4. 0 part, 0.8 part of acrylic acid, 0.4 part of acrylamide, 16.0 parts of 25% aqueous solution of Aqualon KH-10 (product name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), 10% of sodium styrenesulfonate Prepare a mixed solution of 0.4 part aqueous solution, 8.0 parts Emulgen 120 (product name, manufactured by Kao Corporation, 20% aqueous solution), 18.0 parts 2% aqueous solution of ammonium persulfate, and 443.6 parts water. The mixture was emulsified with a homomixer for 5 minutes to obtain a pre-emulsion.
Next, as an organic silane compound component, methyltrimethoxysilane Z6366 (product name, manufactured by Toray Dow Corning Co., Ltd.) 13.5 parts, dimethyldimethoxysilane Z6329 (product name, manufactured by Toray Dow Corning Co., Ltd.) 21.6 2 parts of γ-methacryloxypropyltrimethoxysilane SZ6030 (product name, manufactured by Toray Dow Corning Co., Ltd.) and the resulting pre-emulsified liquid were added to a Y-shaped tube (100 mesh at the outlet of the Y-shaped tube). Filled with a wire mesh and filled with molecular sieves 3A (product name: Wako Pure Chemical Industries, Ltd.) until the two dripping tanks are mixed together, so that the organosilane compound component and the pre-emulsified liquid can be mixed gently. Adjusted. ] Was allowed to flow from the dropping tank into the reaction vessel over 2 hours. During the inflow, the temperature in the reaction vessel was kept at 80 ° C. After the inflow was completed, the temperature in the reaction vessel was kept at 80 ° C. for 30 minutes.
Then, it cooled to room temperature, filtered the emulsion with 100 mesh, and when hydrogen ion concentration was measured, it was pH 2.8. Next, 25% aqueous ammonia was added to adjust the pH to 8.3.
The obtained emulsion had a solid content of 22.7%, a volume average particle size of 27 nm, and a zeta potential of -44 mV. The respective raw materials and the blending ratio (parts by mass) are shown in Table 1-1. The results of these physical properties are shown in Table 1-2.
[重合体粒子(A)の製造例(A)-2~(A)-7]
 表1-1に記載のエチレン性不飽和単量体、有機シラン化合物等の原料及び配合割合(質量部)に変更した以外は、製造例(A)-1と同一の処理を行って、エマルジョンを製造した。得られたエマルジョンの固形分、調整後のpH、体積平均粒子径およびゼータ電位等は表1-2に記載した。
[Production Examples of Polymer Particles (A) (A) -2 to (A) -7]
The emulsion was subjected to the same treatment as in Production Example (A) -1, except that the raw materials and blending ratio (parts by mass) of ethylenically unsaturated monomers and organosilane compounds listed in Table 1-1 were used. Manufactured. The solid content, pH after adjustment, volume average particle diameter, zeta potential and the like of the obtained emulsion are shown in Table 1-2.
[重合体粒子(B)の製造例(B)-1]
 撹拌機、還流冷却器、滴下槽 および温度計を取りつけた内容量2.2リットルのSUS製セパラブルフラスコに、水430.0部、界面活性剤としてアクアロンKH-10の25%水溶液を7.2部入れ、温度を80℃に上げてから5分後に、過硫酸アンモニウムの2%水溶液を15.0部添加した。続いて、エチレン性不飽和単量体、有機シラン化合物等の原料について表2-1に記載の質量部を計量し、混合液を作製、該混合液をホモミキサーにより5分間乳化し、表中の1段及び2段のプレ乳化液を得た。次に、表中1段のプレ乳化液を100分で流入し、30分間養生後、表中2段のプレ乳化液を100分で流入し、90分間養生処理を行った。得られたエマルジョンの固形分、調整後のpH、体積平均粒子径およびゼータ電位等は表2-2に記載した。
[Production Example of Polymer Particle (B) (B) -1]
6. In a 2.2-liter SUS separable flask equipped with a stirrer, reflux condenser, dropping tank and thermometer, 430.0 parts of water and 25% aqueous solution of Aqualon KH-10 as a surfactant were added. Two parts were added, and 5 minutes after raising the temperature to 80 ° C., 15.0 parts of a 2% aqueous solution of ammonium persulfate was added. Subsequently, for the raw materials such as the ethylenically unsaturated monomer and the organosilane compound, the parts by mass shown in Table 2-1 were weighed to prepare a mixed solution, and the mixed solution was emulsified with a homomixer for 5 minutes. 1-stage and 2-stage pre-emulsified liquids were obtained. Next, the pre-emulsified liquid in the first stage in the table was flown in 100 minutes, and after curing for 30 minutes, the pre-emulsified liquid in the second stage in the table was flown in in 100 minutes, and a curing treatment was performed for 90 minutes. The solid content, pH after adjustment, volume average particle diameter, zeta potential, and the like of the obtained emulsion are shown in Table 2-2.
[重合体粒子(B)の製造例(B)-2~5、(B)-7]
 表2-1に記載のエチレン性不飽和単量体、有機シラン化合物等の原料及び配合割合(質量部)に変更した以外は、製造例(B)―1と同一の処理を行って、エマルジョンを製造した。得られたエマルジョンの固形分、調整後のpH、体積平均粒子径およびゼータ電位等は表2-2に記載した。
[Production Examples of Polymer Particles (B) (B) -2 to 5, (B) -7]
The emulsion was subjected to the same treatment as in Production Example (B) -1, except that the ethylenically unsaturated monomers and organic silane compounds shown in Table 2-1 were changed to raw materials and blending ratios (parts by mass). Manufactured. The solid content, pH after adjustment, volume average particle diameter, zeta potential, and the like of the obtained emulsion are shown in Table 2-2.
 表中の各略号は、以下のとおりである。
 ・MMA:メタクリル酸メチル:ガラス転移温度105℃
 ・CHMA:メタクリル酸シクロヘキシル:ガラス転移温度83℃
 ・BMA:メタクリル酸ブチル:ガラス転移温度22℃
 ・BA:アクリル酸ブチル:ガラス転移温度-45℃
 ・EHA:アクリル酸2-エチルヘキシル:ガラス転移温度-55℃
 ・2HEMA:メタクリル酸2-ヒドロキシエチル:ガラス転移温度55℃
 ・MAA:メタクリル酸:ガラス転移温度144℃
 ・AA:アクリル酸:ガラス転移温度87℃
 ・AAm:アクリルアミド:ガラス転移温度153℃
 ・KH10:(製品名)アクアロンKH10:重合濃度25%
 ・Nass:スチレンスルホン酸Na:重合濃度10%
 ・G15:(製品名)ネオペレックスG15:重合濃度16%
 ・D3D:(製品名)エマールD3D:重合濃度26%
 ・Em120:(製品名)エマルゲン120:重合濃度20%
 ・APS:ペルオキソ硫酸アンモニウム:重合濃度2%
 ・Z6366:(製品名)メチルトリメトキシシラン
 ・Z6329:(製品名)ジメチルジメトキシシラン
 ・KBM103:(製品名)フェニルトリメトキシシラン
 ・KBM202SS:(製品名)ジフェニルジメトキシシラン
 ・SZ6030:(製品名)γ-メタクリロキシプロピルトリメトキシシラン
Each abbreviation in the table is as follows.
MMA: methyl methacrylate: glass transition temperature 105 ° C.
CHMA: cyclohexyl methacrylate: glass transition temperature 83 ° C
BMA: butyl methacrylate: glass transition temperature 22 ° C
-BA: Butyl acrylate: Glass transition temperature -45 ° C
EHA: 2-ethylhexyl acrylate: glass transition temperature -55 ° C
2HEMA: 2-hydroxyethyl methacrylate: glass transition temperature 55 ° C
MAA: methacrylic acid: glass transition temperature 144 ° C
AA: Acrylic acid: Glass transition temperature 87 ° C
AAm: Acrylamide: Glass transition temperature 153 ° C
・ KH10: (Product name) Aqualon KH10: Polymerization concentration 25%
Nass: styrene sulfonic acid Na: polymerization concentration 10%
G15: (Product name) Neoperex G15: Polymerization concentration 16%
D3D: (Product name) Emar D3D: Polymerization concentration 26%
Em120: (Product name) Emulgen 120: Polymerization concentration 20%
APS: ammonium peroxosulfate: polymerization concentration 2%
-Z6366: (Product name) Methyltrimethoxysilane-Z6329: (Product name) Dimethyldimethoxysilane-KBM103: (Product name) Phenyltrimethoxysilane-KBM202SS: (Product name) Diphenyldimethoxysilane-SZ6030: (Product name) γ -Methacryloxypropyltrimethoxysilane
<Tg因子の確認>
[実施例1]
 重合体粒子(A)-1エマルジョン(固形分22.7%)を8.8部と、重合体粒子(B)-1エマルジョン(固形分44.0%)86.4部とを配合し、次に総固形分が40%となるように水4.8部を添加し、撹拌を行った。このエマルジョンを撹拌しながら、造膜助剤として、水により50%に希釈したエチレングリコールモノブチルエーテルを8部、テキサノールを8部滴下し、クリヤ塗料を作製した。
 次に比較用として、重合体粒子(B)-1単独のエマルジョン(固形分44.0%)を90.9部計量し、固形分が40%となるように水9.1部を添加し、撹拌を行った。同様にこのエマルジョンを撹拌しながら、造膜助剤として、水により50%に希釈したエチレングリコールモノブチルエーテルを8部、テキサノールを8部滴下し、クリヤ塗料を作製した(参考例1)。
<Confirmation of Tg factor>
[Example 1]
8.8 parts of polymer particles (A) -1 emulsion (solid content 22.7%) and 86.4 parts of polymer particles (B) -1 emulsion (solid content 44.0%) were blended, Next, 4.8 parts of water was added so that the total solid content was 40%, and stirring was performed. While stirring this emulsion, 8 parts of ethylene glycol monobutyl ether diluted with 50% of water and 8 parts of texanol were added dropwise as a film-forming aid to prepare a clear paint.
Next, for comparison, 90.9 parts of polymer particle (B) -1 alone emulsion (solid content 44.0%) is weighed, and 9.1 parts of water is added so that the solid content is 40%. Stirring was performed. Similarly, 8 parts of ethylene glycol monobutyl ether diluted to 50% with water and 8 parts of texanol were added dropwise as a film-forming aid while stirring this emulsion to prepare a clear paint (Reference Example 1).
 重合体粒子(B)-1単独のクリヤ塗料から得た塗膜の吸水白化試験後のヘイズ値変化率を測定したところ、85.3%であった。次に重合体粒子(A)-1と重合体粒子(B)-1を配合したクリヤ塗料から得た塗膜の吸水白化試験後のヘイズ値変化率は、63.2%と減少した。
 重合体粒子(B)-1単独のクリヤ塗料から得た塗膜の耐候促進試験による光沢保持率80%到達時間は、500hrであった。次に重合体粒子(A)-1と重合体粒子(B)-1を配合したクリヤ塗料から得た塗膜の耐候促進試験による光沢保持率80%到達時間は、750hrに向上した。
 表3に重合体粒子(A)及び(B)の配合固形分比率、計算Tg値、体積平均粒子径、ゼータ電位を表記し、さらに、吸水白化試験でのヘイズ値変化率、耐候促進試験による光沢保持率80%到達時間を記載し、参考例1と比較した改善効果の評価を表記した。
The haze value change rate after the water absorption whitening test of the coating obtained from the clear coating of polymer particle (B) -1 alone was measured and found to be 85.3%. Next, the haze value change rate after the water absorption whitening test of the coating obtained from the clear coating containing the polymer particles (A) -1 and the polymer particles (B) -1 decreased to 63.2%.
The time required to reach a gloss retention of 80% in a weathering accelerated test of the coating obtained from the clear coating of polymer particle (B) -1 alone was 500 hr. Next, the gloss retention time of 80% achieved by the accelerated weathering test of the coating obtained from the clear coating material containing the polymer particles (A) -1 and the polymer particles (B) -1 was improved to 750 hr.
Table 3 shows the blended solid content ratio of the polymer particles (A) and (B), the calculated Tg value, the volume average particle diameter, and the zeta potential. Further, the haze value change rate in the water absorption whitening test and the weather resistance acceleration test The gloss retention time of 80% was described, and the evaluation of the improvement effect compared with Reference Example 1 was described.
[実施例2]
 実施例1と同様に、表3に記載の配合固形分比率で、重合体粒子(A)-4と重合体粒子(B)-1の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。表3に、本実施例の重合体粒子(A)及び(B)の計算Tg値、体積平均粒子径、ゼータ電位を表記し、さらに、吸水白化試験でのヘイズ値変化率、耐候促進試験による光沢保持率80%到達時間を記載し、参考例1と比較した改善効果の評価を表記した。
[Example 2]
As in Example 1, the emulsions of polymer particles (A) -4 and polymer particles (B) -1 were blended at the blending solid content ratio shown in Table 3 so that the total solid content was 40%. Adjusted. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. In Table 3, the calculated Tg values, volume average particle diameters, and zeta potentials of the polymer particles (A) and (B) of this example are described, and further, the haze value change rate in the water absorption whitening test and the weather resistance acceleration test. The gloss retention time of 80% was described, and the evaluation of the improvement effect compared with Reference Example 1 was described.
[比較例1]
 表3に記載の配合固形分比率で、重合体粒子(A)-5と重合体粒子(B)-1の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。
 表3に記載しているように、耐候促進試験による光沢保持率80%到達時間は、重合体粒子(B)-1単独のクリヤ塗膜(参考例1)に比べて、改善効果は確認できなかった。重合体粒子(A)-1のTgが低く耐水性が改善しなかったためと推察した。
[Comparative Example 1]
Each emulsion of polymer particles (A) -5 and polymer particles (B) -1 was blended at a blended solid content ratio shown in Table 3, and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1.
As shown in Table 3, the effect of improving the gloss retention of 80% in the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particle (B) -1 alone (Reference Example 1). There wasn't. It was assumed that the Tg of the polymer particles (A) -1 was low and the water resistance was not improved.
[比較例2]
 表3に記載の配合固形分比率で、重合体粒子(A)-6と重合体粒子(B)-1の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。
 表3に記載しているように、耐候促進試験による光沢保持率80%到達時間は、重合体粒子(B)-1単独のクリヤ塗膜(参考例1)に比べて、改善効果は確認できなかった。重合体粒子(A)-1のTgが高く、膜の伸度低下により耐候性が改善しなかったと推察した。
[Comparative Example 2]
Each emulsion of polymer particles (A) -6 and polymer particles (B) -1 was blended at a blended solid content ratio shown in Table 3 and adjusted so as to have a total solid content of 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1.
As shown in Table 3, the effect of improving the gloss retention of 80% in the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particle (B) -1 alone (Reference Example 1). There wasn't. The polymer particles (A) -1 had a high Tg, and it was presumed that the weather resistance was not improved due to a decrease in the elongation of the film.
[比較例3]
 表3に記載の配合固形分比率で、重合体粒子(A)-1と重合体粒子(B)-2の各エマルジョンを配合し、総固形分40%になるように調整した以外は、実施例1と同様にクリヤ塗料を得、各物性の評価を行った。
 表3に記載しているように、耐候促進試験による光沢保持率80%到達時間は、重合体粒子(B)-2単独のクリヤ塗膜(参考例2)に比べて、改善効果は確認できなかった。重合体粒子(B)-2のTgが低く、耐水性の低下により耐候性が改善しなかったものと推察した。
[Comparative Example 3]
Except that the emulsions of the polymer particles (A) -1 and polymer particles (B) -2 were blended at the blending solid content ratios shown in Table 3 and adjusted so that the total solid content was 40%. A clear paint was obtained in the same manner as in Example 1, and each physical property was evaluated.
As shown in Table 3, the effect of improving the gloss retention time of 80% in the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particle (B) -2 alone (Reference Example 2). There wasn't. It was presumed that the polymer particles (B) -2 had a low Tg, and the weather resistance was not improved due to a decrease in water resistance.
[比較例4]
 表3に記載の配合固形分比率で、重合体粒子(A)-1と重合体粒子(B)-3の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いて実施例1と同様にクリヤ塗料を得、各物性の評価を行った。
 表3に記載しているように、吸水白化試験でのヘイズ値変化率は重合体粒子(B)-3単独のクリヤ塗膜(参考例3)に比べて性能が低下した。また、耐候促進試験による光沢保持率80%到達時間は改善しなかった。重合体粒子(B)-3のTgが高いとブレンドの効果がなく改善しないものと推定した。
[Comparative Example 4]
Each emulsion of polymer particles (A) -1 and polymer particles (B) -3 was blended at a blended solid content ratio shown in Table 3 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained in the same manner as in Example 1, and each physical property was evaluated.
As shown in Table 3, the haze value change rate in the water absorption whitening test was lower than that of the clear coating film of the polymer particles (B) -3 alone (Reference Example 3). Further, the gloss retention time of 80% in the accelerated weathering test was not improved. When the Tg of the polymer particles (B) -3 was high, it was presumed that the blending effect was not achieved and the improvement was not achieved.
<量比因子の確認>
[実施例3~4]
 実施例1と同様に、表4に記載の配合固形分比率で、重合体粒子(A)と重合体粒子(B)の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。
 表4に、各実施例の重合体粒子(A)及び(B)の計算Tg値、体積平均粒子径、ゼータ電位を表記し、さらに、吸水白化試験でのヘイズ値変化率、耐候促進試験による光沢保持率80%到達時間を記載し、参考例1と比較した改善効果の評価を表記した。
<Confirmation of quantitative ratio factor>
[Examples 3 to 4]
In the same manner as in Example 1, the emulsions of the polymer particles (A) and the polymer particles (B) were blended at the blending solid content ratio shown in Table 4 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1.
Table 4 shows the calculated Tg values, volume average particle diameters, and zeta potentials of the polymer particles (A) and (B) of each Example, and further, the haze value change rate in the water absorption whitening test, and the weather resistance acceleration test. The gloss retention time of 80% was described, and the evaluation of the improvement effect compared with Reference Example 1 was described.
 なお、実施例4について以下の操作を行い、エマルジョン粒子の分離を行った。
<操作方法>
 重合体粒子(A-1)と重合体粒子(B-1)を配合したエマルジョン25gを遠沈管に採取し、塩化ナトリウム水溶液(0.1M、0.8g)添加後、ベックマンコールター社製:OPTIMA L-90にて20,000回転、15℃、1時間遠心分離を行った。上澄みを採取後、採取重量分の蒸留水と塩化ナトリウム水溶液(0.1M、0.8g)を添加し同様の操作を計5回繰り返した。採取した上澄みの固形分濃度から分取量を計算すると1.1gであり、体積平均粒子径は40nmであった。また、沈殿物の体積平均粒子径は139nmであった。
In addition, the following operation was performed about Example 4 and the emulsion particle | grains were isolate | separated.
<Operation method>
25 g of an emulsion containing polymer particles (A-1) and polymer particles (B-1) was collected in a centrifuge tube, added with an aqueous sodium chloride solution (0.1 M, 0.8 g), and then manufactured by Beckman Coulter, Inc .: OPTIMA Centrifugation was performed at 20,000 rpm, 15 ° C. for 1 hour in L-90. After collecting the supernatant, distilled water and sodium chloride aqueous solution (0.1 M, 0.8 g) of the collected weight were added, and the same operation was repeated 5 times in total. When the amount collected was calculated from the solid content concentration of the collected supernatant, it was 1.1 g, and the volume average particle diameter was 40 nm. The volume average particle size of the precipitate was 139 nm.
[比較例5]
 表4に記載の配合固形分比率で、重合体粒子(A)-1と重合体粒子(B)-1の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。
 表4に記載しているように、耐候促進試験による光沢保持率80%到達時間は、重合体粒子(B)-1単独のクリヤ塗膜(参考例1)に比べて、改善効果は確認できなかった。重合体粒子(A)-1の量比が低く、ブレンド効果が発現せず、耐候性が改善しなかったものと推察した。
[Comparative Example 5]
Each emulsion of polymer particles (A) -1 and polymer particles (B) -1 was blended at a blended solid content ratio shown in Table 4 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1.
As shown in Table 4, the effect of improving the gloss retention time of 80% in the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particle (B) -1 alone (Reference Example 1). There wasn't. It was presumed that the amount ratio of the polymer particles (A) -1 was low, the blending effect was not exhibited, and the weather resistance was not improved.
[比較例6]
 表4に記載の配合固形分比率で、重合体粒子(A)-1と重合体粒子(B)-1の各エマルジョンを配合し、総固形分37%のエマルジョンを得た。このエマルジョンを撹拌しながら、造膜助剤として、水により50%に希釈したエチレングリコールモノブチルエーテルを7.3部、テキサノールを7.3部滴下し、クリヤ塗料を作製し、実施例1と同様に各物性の評価を行った。
 次に比較用として、重合体粒子(B)-1単独のエマルジョン(固形分44.0%)を84.1部計量し、固形分が37%となるように水15.9部を添加し、撹拌を行った。同様にこのエマルジョンを撹拌しながら、造膜助剤として、水により50%に希釈したエチレングリコールモノブチルエーテルを7.3部、テキサノールを7.3部滴下し、クリヤ塗料を作製し、実施例1と同様に各物性の評価を行った(参考例1’)。
 表4に記載しているように、耐候促進試験による光沢保持率80%到達時間は、固形分37%に調整した重合体粒子(B)-1単独のクリヤ塗膜(参考例1’)に比べて、性能が低下した。重合体粒子(A)-1の量比が高く、ブレンド効果が発現せず、耐候性が改善しなかったものと推察した。
[Comparative Example 6]
Each emulsion of polymer particles (A) -1 and polymer particles (B) -1 was blended at the blending solid content ratio shown in Table 4 to obtain an emulsion having a total solid content of 37%. While stirring this emulsion, 7.3 parts of ethylene glycol monobutyl ether diluted to 50% with water and 7.3 parts of texanol were added dropwise as a film-forming aid to produce a clear paint. Each physical property was evaluated.
Next, for comparison, 84.1 parts of polymer particle (B) -1 single emulsion (solid content 44.0%) is weighed, and 15.9 parts of water is added so that the solid content is 37%. Stirring was performed. Similarly, while stirring this emulsion, 7.3 parts of ethylene glycol monobutyl ether diluted to 50% with water and 7.3 parts of texanol were added dropwise as a film forming aid to produce a clear paint. Each physical property was evaluated in the same manner as described above (Reference Example 1 ′).
As described in Table 4, the time to reach a gloss retention of 80% according to the accelerated weathering test was determined for the polymer film (B) -1 alone clear coating (Reference Example 1 ′) adjusted to a solid content of 37%. Compared to performance. It was presumed that the amount ratio of the polymer particles (A) -1 was high, the blending effect was not exhibited, and the weather resistance was not improved.
<体積平均粒子比因子の確認>
[実施例5~7]
 実施例1と同様に、表5に記載の配合固形分比率で、重合体粒子(A)と重合体粒子(B)の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。表5に、各実施例の重合体粒子(A)及び(B)の計算Tg値、体積平均粒子径、ゼータ電位を表記し、さらに、吸水白化試験でのヘイズ値変化率、耐候促進試験による光沢保持率80%到達時間を記載し、改善効果の評価を表記した。
<Confirmation of volume average particle ratio factor>
[Examples 5 to 7]
In the same manner as in Example 1, the emulsions of the polymer particles (A) and the polymer particles (B) were blended at the blending solid content ratio shown in Table 5 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. Table 5 shows the calculated Tg values, volume average particle diameters, and zeta potentials of the polymer particles (A) and (B) of each example, and further, the haze value change rate in the water absorption whitening test, and the weather resistance acceleration test. The gloss retention 80% arrival time was described, and the evaluation of the improvement effect was described.
[比較例7]
 表5に記載の配合固形分比率で、重合体粒子(A)-2と重合体粒子(B)-5の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。
 表5に記載しているように、耐候促進試験による光沢保持率80%到達時間は、重合体粒子(B)-5単独のクリヤ塗膜(参考例5)に比べて、改善効果は確認できなかった。重合体粒子(A)の重合体粒子(B)に対する体積平均粒子径比が低く(両者の体積平均粒子径差が大きい)ため、ブレンド効果が発現せず、耐候性が改善しなかったものと推察した。
[Comparative Example 7]
Each emulsion of polymer particles (A) -2 and polymer particles (B) -5 was blended at the blending solid content ratio shown in Table 5 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1.
As shown in Table 5, the effect of improving the retention time of 80% gloss retention by the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particle (B) -5 alone (Reference Example 5). There wasn't. Since the volume average particle size ratio of the polymer particles (A) to the polymer particles (B) is low (the difference between the volume average particle sizes is large), the blending effect is not expressed and the weather resistance is not improved. I guessed.
[比較例8]
 表5に記載の配合固形分比率で、重合体粒子(A)-3と重合体粒子(B)-4の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。
 表5に記載しているように、耐候促進試験による光沢保持率80%到達時間は、重合体粒子(B)-4単独のクリヤ塗膜(参考例4)に比べて、改善効果は確認できなかった。重合体粒子(A)の重合体粒子(B)に対する体積平均粒子径比が高く(両者の体積平均粒子径差が小さい)ため、ブレンド効果が発現せず、耐候性が改善しなかったものと推察した。
[Comparative Example 8]
Each emulsion of polymer particles (A) -3 and polymer particles (B) -4 was blended at a blended solid content ratio shown in Table 5 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1.
As shown in Table 5, the effect of improving the gloss retention time of 80% according to the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particles (B) -4 alone (Reference Example 4). There wasn't. Since the volume average particle diameter ratio of the polymer particles (A) to the polymer particles (B) is high (the difference between the volume average particle diameters is small), the blending effect is not expressed and the weather resistance is not improved. I guessed.
<ゼータ電位差の確認>
[実施例1、5、7]
 実施例1と同様に、表6に記載の配合固形分比率で、重合体粒子(A)と重合体粒子(B)の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。表6に、各実施例の重合体粒子(A)及び(B)の計算Tg値、体積平均粒子径、ゼータ電位を表記し、さらに、吸水白化試験でのヘイズ値変化率、耐候促進試験による光沢保持率80%到達時間を記載し、改善効果の評価を表記した。
<Confirmation of zeta potential difference>
[Examples 1, 5, and 7]
In the same manner as in Example 1, the emulsions of polymer particles (A) and polymer particles (B) were blended at the blending solid content ratio shown in Table 6 and adjusted so as to have a total solid content of 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. In Table 6, the calculated Tg values, volume average particle diameters, and zeta potentials of the polymer particles (A) and (B) of each Example are described, and further, the haze value change rate in the water absorption whitening test and the weather resistance acceleration test. The gloss retention 80% arrival time was described, and the evaluation of the improvement effect was described.
[比較例9]
 表6に記載の配合固形分比率で、重合体粒子(A)-7と重合体粒子(B)-1の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。
 表6に記載しているように、耐候促進試験による光沢保持率80%到達時間は、重合体粒子(B)-1単独のクリヤ塗膜(参考例1)に比べて、改善効果は確認できなかった。ゼータ電位差が小さいとブレンド効果が発現せず、耐候性が改善しなかったものと推察した。
[Comparative Example 9]
Each emulsion of polymer particles (A) -7 and polymer particles (B) -1 was blended at a blended solid content ratio shown in Table 6 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1.
As shown in Table 6, the effect of improving the retention time of gloss retention of 80% in the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particles (B) -1 alone (Reference Example 1). There wasn't. If the zeta potential difference was small, the blending effect was not expressed, and it was assumed that the weather resistance was not improved.
<重合体(B)ゼータ電位の確認>
[実施例1、6]
 実施例1と同様に、表7に記載の配合固形分比率で、重合体粒子(A)と重合体粒子(B)の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。表7に、各実施例の重合体粒子(A)及び(B)の計算Tg値、体積平均粒子径、ゼータ電位を表記し、さらに、吸水白化試験でのヘイズ値変化率、耐候促進試験による光沢保持率80%到達時間を記載し、改善効果の評価を表記した。
<Confirmation of zeta potential of polymer (B)>
[Examples 1 and 6]
In the same manner as in Example 1, the emulsions of the polymer particles (A) and the polymer particles (B) were blended at the blending solid content ratio shown in Table 7 and adjusted so as to have a total solid content of 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. Table 7 shows the calculated Tg values, volume average particle diameters, and zeta potentials of the polymer particles (A) and (B) of each example, and further, the haze value change rate in the water absorption whitening test, and the weather resistance acceleration test. The gloss retention 80% arrival time was described, and the evaluation of the improvement effect was described.
[比較例10]
 実施例1と同様に、表7に記載の配合固形分比率で、重合体粒子(A)-3と重合体粒子(B)-5の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。表7に、各実施例の重合体粒子(A)及び(B)の計算Tg値、体積平均粒子径、ゼータ電位を表記し、さらに、吸水白化試験でのヘイズ値変化率、耐候促進試験による光沢保持率80%到達時間を記載し、改善効果の評価を表記した。
 表7に記載しているように、吸水白化試験でのヘイズ値変化率は、重合体粒子(B)-5単独のクリヤ塗膜(参考例5)に比べてやや改善したが、改善幅は大きくなかった。また、耐候促進試験による光沢保持率80%到達時間は、重合体粒子(B)-5単独のクリヤ塗膜(参考例5)に比べて改善したが、その改善幅は、参考例1に対する実施例1(重合体(B)のゼータ電位が-53mV)の改善幅の半分であった。この比較例10において、重合体(B)のゼータ電位が-54mVを3mV下回るとき、ブレンド効果がある程度発現したものの、その効果は大きくなかったものと推察した。
[Comparative Example 10]
As in Example 1, the emulsions of polymer particles (A) -3 and polymer particles (B) -5 were blended at the blending solid content ratio shown in Table 7 so that the total solid content was 40%. Adjusted. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1. Table 7 shows the calculated Tg values, volume average particle diameters, and zeta potentials of the polymer particles (A) and (B) of each example, and further, the haze value change rate in the water absorption whitening test, and the weather resistance acceleration test. The gloss retention 80% arrival time was described, and the evaluation of the improvement effect was described.
As shown in Table 7, the haze value change rate in the water absorption whitening test was slightly improved compared to the clear coating film of the polymer particle (B) -5 alone (Reference Example 5). It was not big. In addition, the gloss retention 80% time achieved by the accelerated weathering test was improved compared to the clear coating film of the polymer particle (B) -5 alone (Reference Example 5). It was half of the improvement in Example 1 (the zeta potential of the polymer (B) was -53 mV). In Comparative Example 10, when the zeta potential of the polymer (B) was 3 mV below −54 mV, it was presumed that although the blending effect was exhibited to some extent, the effect was not great.
[比較例11]
 表7に記載の配合固形分比率で、重合体粒子(A)-3と重合体粒子(B)-7の各エマルジョンを配合し、総固形分40%になるように調整した。これを用いてクリヤ塗料を得、実施例1と同様に各物性の評価を行った。
 表7に記載しているように、耐候促進試験による光沢保持率80%到達時間は、重合体粒子(B)-7単独のクリヤ塗膜(参考例6)に比べて、改善効果は確認できなかった。重合体(B)のゼータ電位が-54mVを6mV下回るときブレンド効果が発現せず、耐候性が改善しなかったものと推察した。
[Comparative Example 11]
Each emulsion of polymer particles (A) -3 and polymer particles (B) -7 was blended at a blended solid content ratio shown in Table 7 and adjusted so that the total solid content was 40%. Using this, a clear paint was obtained, and each physical property was evaluated in the same manner as in Example 1.
As shown in Table 7, the effect of improving the retention time of gloss retention of 80% in the accelerated weathering test can be confirmed as compared with the clear coating of the polymer particles (B) -7 alone (Reference Example 6). There wasn't. When the zeta potential of the polymer (B) was 6 mV below -54 mV, it was presumed that the blending effect was not expressed and the weather resistance was not improved.
<塗膜断面形態の評価>
 実施例2で配合したクリヤ塗料を、ポリプロピレン板上に、0.25mmのアプリケータにて塗工し、100℃、10分乾燥を行った後、エポキシ樹脂にて包埋し、ウルトラミクロトームを用いて薄膜切片を作製し、STEMにて断面形態の暗視野像を図1に示した。暗視野像のため、黒色部は、エチレン性不飽和単量体の付加重合反応により得られる(メタ)アクリレート系樹脂を示し、白色部はより重い元素である有機シラン化合物を含んだ樹脂を示している。黒い粒子の外周に白色部の薄い被膜が形成され、且つ粒子界面を形成していることが画像から確認できた。
 一方、重合体粒子(B)単独のエマルジョンからなる塗膜の暗視野画像では、外周部の白色部は観察されなかった。
<Evaluation of coating cross-sectional form>
The clear paint blended in Example 2 was applied on a polypropylene plate with a 0.25 mm applicator, dried at 100 ° C. for 10 minutes, then embedded in an epoxy resin, and an ultramicrotome was used. A thin film slice was prepared, and a dark field image in a cross-sectional form was shown in FIG. For the dark field image, the black part indicates a (meth) acrylate resin obtained by addition polymerization reaction of an ethylenically unsaturated monomer, and the white part indicates a resin containing an organic silane compound which is a heavier element. ing. It was confirmed from the image that a thin coating of a white portion was formed on the outer periphery of the black particles and a particle interface was formed.
On the other hand, in the dark field image of the coating film composed of the emulsion of the polymer particles (B) alone, no white portion on the outer peripheral portion was observed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本発明のエマルジョンは、塗料、建材の下地処理材又は仕上げ材、接着剤、紙加工剤、又は織布、不織布の仕上げ材として有用である。また、このエマルジョンは、特に、コンクリート、セメントモルタル、押し出し成形板、発泡性コンクリートなどの無機建材、織布あるいは不織布を基材とした建材、金属建材などの各種下地に対する塗料又は建築仕上げ材として、さらには、複層仕上げ塗材用の主材およびトップコートなどの合成樹脂エマルジョンペイントとして有用である。
 
The emulsion of the present invention is useful as a coating material, a base treatment material or finishing material for building materials, an adhesive, a paper processing agent, or a finishing material for woven or non-woven fabrics. In addition, this emulsion is particularly used as a paint or a building finishing material for various foundations such as inorganic building materials such as concrete, cement mortar, extruded plate, foamable concrete, building materials based on woven or non-woven fabrics, and metal building materials. Furthermore, it is useful as a main material for a multi-layer finish coating material and a synthetic resin emulsion paint such as a top coat.

Claims (7)

  1.  水と、ガラス転移温度が10℃~70℃の重合体粒子(A)と、ガラス転移温度が-20℃~40℃の重合体粒子(B)とを含み、前記重合体粒子(A)を、前記重合体粒子(A)と前記重合体粒子(B)との合計質量に対して3質量%~20質量%の範囲で含み、前記重合体粒子(A)と前記重合体粒子(B)との体積平均粒子径比が、1/30~5/6の範囲であり、前記重合体粒子(A)のゼータ電位が、前記重合体粒子(B)のゼータ電位よりも3mV以上25mV以下高く、かつ前記重合体粒子(B)のゼータ電位は-54mVより大きいエマルジョン。 Water, polymer particles (A) having a glass transition temperature of 10 ° C. to 70 ° C., and polymer particles (B) having a glass transition temperature of −20 ° C. to 40 ° C., the polymer particles (A) being The polymer particles (A) and the polymer particles (B) are contained in the range of 3% by mass to 20% by mass with respect to the total mass of the polymer particles (A) and the polymer particles (B). The zeta potential of the polymer particles (A) is 3 mV or more and 25 mV or less higher than the zeta potential of the polymer particles (B). And the zeta potential of the polymer particles (B) is greater than -54 mV.
  2.  前記重合体粒子(A)及び/又は前記重合体粒子(B)が、エチレン性不飽和単量体由来の構造単位を有する、請求項1に記載のエマルジョン。 The emulsion according to claim 1, wherein the polymer particles (A) and / or the polymer particles (B) have a structural unit derived from an ethylenically unsaturated monomer.
  3.  前記重合体粒子(A)及び/又は前記重合体粒子(B)が、有機シラン化合物の加水分解縮合物由来の構造単位を有する、請求項1又は2に記載のエマルジョン。 The emulsion according to claim 1 or 2, wherein the polymer particles (A) and / or the polymer particles (B) have a structural unit derived from a hydrolytic condensate of an organosilane compound.
  4.  前記重合体粒子(A)が、有機シラン化合物の加水分解縮合物由来の構造単位を有し、前記重合体粒子(B)が、エチレン性不飽和単量体由来の構造単位を有する、請求項3に記載のエマルジョン。 The polymer particle (A) has a structural unit derived from a hydrolysis condensate of an organosilane compound, and the polymer particle (B) has a structural unit derived from an ethylenically unsaturated monomer. 3. The emulsion according to 3.
  5.  前記重合体粒子(A)及び前記重合体粒子(B)が、共に、エチレン性不飽和単量体由来の構造単位及び有機シラン化合物の加水分解縮合物由来の構造単位を有する、請求項4に記載のエマルジョン。 The polymer particles (A) and the polymer particles (B) both have a structural unit derived from an ethylenically unsaturated monomer and a structural unit derived from a hydrolysis condensate of an organosilane compound. The emulsion as described.
  6.  重合体粒子(A)のエチレン性不飽和単量体由来の構造単位に対する有機シラン化合物の加水分解縮合物由来の構造単位の比率が、重合体粒子(B)の当該比率以上である、請求項5に記載のエマルジョン。 The ratio of the structural unit derived from the hydrolysis condensate of the organosilane compound to the structural unit derived from the ethylenically unsaturated monomer of the polymer particle (A) is equal to or higher than the ratio of the polymer particle (B). 5. The emulsion according to 5.
  7.  水と、重合体粒子(A)と、前記重合体粒子(A)よりも大きな体積平均粒子径を有する重合体粒子(B)とを含むエマルジョンであって、エマルジョンの固形分の総計に対しエチレングリコールモノブチルエーテル10質量%、及びテキサノール20質量%が配合されたクリア塗料から形成された塗膜のSTEM暗視野像において、前記重合体粒子(A)が前記重合体粒子(B)を被覆する、エマルジョン。
     
    An emulsion comprising water, polymer particles (A), and polymer particles (B) having a volume average particle size larger than that of the polymer particles (A), wherein ethylene is added to the total solid content of the emulsion. In a STEM dark field image of a coating film formed from a clear paint blended with 10% by mass of glycol monobutyl ether and 20% by mass of texanol, the polymer particles (A) cover the polymer particles (B). Emulsion.
PCT/JP2017/043435 2016-12-13 2017-12-04 Emulsion WO2018110342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018556584A JP6723379B2 (en) 2016-12-13 2017-12-04 Emulsion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-240908 2016-12-13
JP2016240908 2016-12-13

Publications (1)

Publication Number Publication Date
WO2018110342A1 true WO2018110342A1 (en) 2018-06-21

Family

ID=62558345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043435 WO2018110342A1 (en) 2016-12-13 2017-12-04 Emulsion

Country Status (2)

Country Link
JP (1) JP6723379B2 (en)
WO (1) WO2018110342A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021235539A1 (en) * 2020-05-22 2021-11-25
JP2022119251A (en) * 2021-02-04 2022-08-17 日信化学工業株式会社 Coating composition, coating film and article having the coating film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502058A (en) * 1991-12-03 1995-03-02 ローム アンド ハース カンパニー Method for producing aqueous dispersion
JP2004292564A (en) * 2003-03-26 2004-10-21 Dainippon Toryo Co Ltd Aqueous resin dispersion and method for producing the same
JP2005350580A (en) * 2004-06-11 2005-12-22 Asahi Kasei Chemicals Corp Aqueous acrylic emulsion composition
JP2006283029A (en) * 2005-04-04 2006-10-19 Rohm & Haas Co Aqueous polymer dispersion
JP2016008298A (en) * 2014-06-26 2016-01-18 株式会社日本触媒 Coating modifier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241965A (en) * 1986-04-14 1987-10-22 Kao Corp Emulsion composition
JP2606701B2 (en) * 1987-06-15 1997-05-07 ライオン株式会社 Paint composition
JP2004162021A (en) * 2002-07-26 2004-06-10 Sanyo Chem Ind Ltd Powder coating and slurry coating
JP4498756B2 (en) * 2003-04-25 2010-07-07 日本ペイント株式会社 Emulsion paint composition
JP5277512B2 (en) * 2005-03-31 2013-08-28 日清紡ホールディングス株式会社 Method for producing crosslinked spherical polymer fine particles
JP2007023260A (en) * 2005-06-14 2007-02-01 Sanyo Chem Ind Ltd Aggregation-preventive aqueous-dispersion slurry coating material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502058A (en) * 1991-12-03 1995-03-02 ローム アンド ハース カンパニー Method for producing aqueous dispersion
JP2004292564A (en) * 2003-03-26 2004-10-21 Dainippon Toryo Co Ltd Aqueous resin dispersion and method for producing the same
JP2005350580A (en) * 2004-06-11 2005-12-22 Asahi Kasei Chemicals Corp Aqueous acrylic emulsion composition
JP2006283029A (en) * 2005-04-04 2006-10-19 Rohm & Haas Co Aqueous polymer dispersion
JP2016008298A (en) * 2014-06-26 2016-01-18 株式会社日本触媒 Coating modifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021235539A1 (en) * 2020-05-22 2021-11-25
WO2021235539A1 (en) * 2020-05-22 2021-11-25 東レ株式会社 Polymer particles
JP2022119251A (en) * 2021-02-04 2022-08-17 日信化学工業株式会社 Coating composition, coating film and article having the coating film
JP7409331B2 (en) 2021-02-04 2024-01-09 日信化学工業株式会社 Coating composition, coating film, and article having the film

Also Published As

Publication number Publication date
JP6723379B2 (en) 2020-07-15
JPWO2018110342A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
KR102014858B1 (en) Water-based polymer emulsions for opaque films and coatings applications on flexible substrates
KR101465430B1 (en) Clear matte coating
JP5030780B2 (en) Damping emulsion
JP5485503B2 (en) Damping emulsion
JPWO2007023819A1 (en) Damping emulsion
JP2019537641A (en) Aqueous matte coating composition
WO2018110342A1 (en) Emulsion
JP2008038116A (en) Emulsion having high endurance
JP2010229167A (en) Aqueous paint composition and paint for topcoat
JP5620138B2 (en) Water-based coating composition and method for producing the same
JP2006160880A (en) Aqueous dispersion, its manufacturing process and water-based stain-resistant coating using the aqueous dispersion
JP5815233B2 (en) Emulsion resin composition for damping material and damping material
JP5283322B2 (en) High durability coating composition
JP5284914B2 (en) Resin composition for damping material
JP2009270064A (en) Emulsion composition for damping materials
JP2003301139A (en) Aqueous coating material composition for inorganic building material and board coated therewith
JP2662352B2 (en) Polymer latex composition containing silicone
JP2006273919A (en) High durability emulsion
JP5048941B2 (en) Emulsion production method and paint using the same
JP2005225956A (en) Highly durable emulsion and method for producing the same
JP5828216B2 (en) Water-based coating material
JP2007270017A (en) Emulsion, process for its production and water-based paint composition using the emulsion
JP2015218232A (en) Synthetic resin emulsion for aqueous coating composition
JP2020097708A (en) Aqueous coating composition
JP6542070B2 (en) Emulsion and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556584

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882032

Country of ref document: EP

Kind code of ref document: A1