WO2018110067A1 - Secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic device - Google Patents

Secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic device Download PDF

Info

Publication number
WO2018110067A1
WO2018110067A1 PCT/JP2017/037361 JP2017037361W WO2018110067A1 WO 2018110067 A1 WO2018110067 A1 WO 2018110067A1 JP 2017037361 W JP2017037361 W JP 2017037361W WO 2018110067 A1 WO2018110067 A1 WO 2018110067A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
window
film
exterior member
negative electrode
Prior art date
Application number
PCT/JP2017/037361
Other languages
French (fr)
Japanese (ja)
Inventor
貴正 小野
宮木 幸夫
真樹 倉塚
崇弘 白井
隆尚 石松
翔 高橋
田中 俊
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018556218A priority Critical patent/JP6801722B2/en
Publication of WO2018110067A1 publication Critical patent/WO2018110067A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present technology relates to a secondary battery using a film-shaped exterior member, and a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device using the secondary battery.
  • Secondary batteries are not limited to the electronic devices described above, but are also being considered for other uses.
  • a battery pack detachably mounted on an electronic device, an electric vehicle such as an electric vehicle, an electric power storage system such as a household electric power server, and an electric tool such as an electric drill.
  • the laminated film type secondary battery is a secondary battery using a film-shaped exterior member.
  • a battery element is housed inside a film-shaped exterior member, and the battery element includes a positive electrode, a negative electrode, an electrolytic solution, and the like.
  • the film-shaped exterior member Since the film-shaped exterior member has flexibility, it has a property of being easily deformed according to an external force. For this reason, in a laminated film type secondary battery, when gas is generated inside the secondary battery, the secondary battery tends to swell due to deformation of the film-shaped exterior member.
  • a secondary battery includes a battery element including a positive electrode, a negative electrode, and an electrolyte, and a film-shaped exterior member that houses the battery element and includes a window portion that includes a non-porous molten fluororesin. It is equipped with.
  • Each of the battery pack, the electric vehicle, the power storage system, the electric tool, and the electronic device according to the embodiment of the present technology includes a secondary battery, and the secondary battery includes the secondary battery according to the embodiment of the present technology described above. It has the same configuration.
  • the “window” is a part of the film-shaped exterior member, and is exposed to each of the internal environment in which the battery element is accommodated and the external environment in which the battery element is not accommodated.
  • the internal environment is an environment inside the film-shaped exterior member
  • the external environment is an environment outside the film-shaped exterior member.
  • the battery element is housed in the film-shaped exterior member, and the window portion including the non-porous molten fluororesin is provided in the exterior member.
  • Excellent battery characteristics can be obtained.
  • the same effect can also be obtained in the battery pack, the electric vehicle, the power storage system, the electric tool, or the electronic device according to the embodiment of the present technology.
  • effect described here is not necessarily limited, and may be any effect described in the present technology.
  • FIG. 2 is a cross-sectional view illustrating a configuration of an exterior member along line AA illustrated in FIG. 1.
  • FIG. 2 is a cross-sectional view illustrating a configuration of a wound electrode body taken along line BB illustrated in FIG. 1.
  • FIG. 9 is a cross-sectional view illustrating a configuration of an exterior member along the line CC illustrated in FIG. 8.
  • FIG. 9 is a cross-sectional view illustrating a configuration of an exterior member along the line DD illustrated in FIG. 8.
  • It is a block diagram showing the structure of the battery pack shown in FIG. It is a block diagram showing the structure of the application example (battery pack: assembled battery) of a secondary battery.
  • It is a block diagram showing the structure of the application example (electric vehicle) of a secondary battery.
  • It is a block diagram showing the structure of the application example (electric power storage system) of a secondary battery.
  • Secondary battery 1-1.
  • Lithium ion secondary battery 1-2.
  • Modification 2 Secondary battery (second embodiment) 2-1.
  • Modified example 3 Applications of secondary batteries 3-1.
  • Battery pack (single cell) 3-2.
  • Battery pack (assembled battery) 3-3.
  • Lithium ion secondary battery The secondary battery described here is, for example, a lithium ion secondary battery in which the capacity of the negative electrode is obtained by occlusion and release of lithium, which is an electrode reactant.
  • FIG. 1 and FIG. 2 each show a perspective configuration of the secondary battery of the present embodiment.
  • FIG. 1 shows a state before the exterior member 40 is bonded, and the wound electrode body 30 and the exterior member 40 are separated from each other.
  • FIG. 2 shows a state after the exterior member 40 is bonded.
  • FIG. 3 shows a cross-sectional configuration of the exterior member 40 along the line AA shown in FIG.
  • FIG. 4 shows a cross-sectional configuration of the spirally wound electrode body 30 along the line BB shown in FIG.
  • This secondary battery is a laminated film type secondary battery using a film-like exterior member 40.
  • a wound electrode body 30 as a battery element is housed inside an exterior member 40 having a window portion 42. Details of the window 42 will be described later.
  • the wound electrode body 30 for example, as shown in FIG. 4, after the positive electrode 33 and the negative electrode 34 are laminated via the separator 35 and the electrolyte layer 36, the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36 are stacked. Is wound. That is, the spirally wound electrode body 30 housed inside the exterior member 40 includes a positive electrode 33, a negative electrode 34, and an electrolyte layer 36, and the electrolyte layer 36 includes an electrolyte solution described later. The outermost peripheral part of the wound electrode body 30 is protected by a protective tape 37, for example.
  • the positive electrode lead 31 is attached to the positive electrode 33, and the positive electrode lead 31 is led out from the inside of the exterior member 40 to the outside.
  • the positive electrode lead 31 includes, for example, any one type or two or more types of conductive materials such as aluminum (Al).
  • the shape of the conductive material is not particularly limited, and is, for example, a thin plate shape or a mesh shape.
  • the negative electrode lead 32 is attached to the negative electrode 34, and the negative electrode lead 32 is led out from the inside of the exterior member 40 to the outside.
  • the negative electrode lead 32 includes any one type or two or more types of conductive materials such as copper (Cu), nickel (Ni), and stainless steel.
  • the shape of the conductive material is the same as that described for the positive electrode lead 31, for example.
  • the positive electrode lead 31 and the negative electrode lead 32 are not shown. Each of the positive electrode lead 31 and the negative electrode lead 32 is led out in the same direction from the inside of the exterior member 40 to the outside, as is apparent from FIG. 1, for example.
  • the exterior member 40 houses the wound electrode body 30 as described above. Since the exterior member 40 is in the form of a film, it has flexibility.
  • the exterior member 40 includes an exterior body 41 provided with the window portion 42 as described above, for example, as shown in FIGS.
  • the exterior body 41 is a body of the exterior member 40 and is a film-like member.
  • the configuration of the exterior body 41 is not particularly limited, but the exterior body 41 is, for example, a multilayer film (laminate film) including an adhesive layer.
  • the exterior body 41 is, for example, a laminate film in which an adhesive layer, a metal layer, and a surface protective layer are laminated in this order from the inside.
  • the wound electrode body 30 is accommodated in the exterior member 40 by bonding the adhesive layers of the exterior body 41 to each other via the wound electrode body 30.
  • the adhesion layer is, for example, a fusion layer.
  • This fusion layer is, for example, a film containing one or more of polymer compounds such as polyethylene and polypropylene.
  • a metal layer is metal foil containing any 1 type or 2 types or more of metal materials, such as aluminum, for example.
  • the surface protective layer is, for example, a film containing any one or more of polymer compounds such as nylon and polyethylene terephthalate.
  • the exterior body 41 is an aluminum laminated film in which, for example, a polyethylene film, an aluminum foil, and a nylon film are laminated in this order from the inside. This is because sufficient adhesiveness and sufficient airtightness can be obtained.
  • the exterior body 41 includes an exterior portion 41A that is a first exterior member that covers the wound electrode body 30 from one side (here, the upper side), and the wound electrode body.
  • the exterior part 41B which is the 2nd exterior member which coat
  • the forming material of the exterior portion 41A and the forming material of the exterior portion 41B may be the same as each other or different from each other.
  • the wound electrode body 30 is housed inside the exterior member 40.
  • a part of the exterior part 41A is, for example, an outer edge part of the exterior part 41A
  • a part of the exterior part 41B is, for example, an outer edge part of the exterior part 41B.
  • the exterior body 41 seals the exterior member 40 and the non-adhesive region 41X where the exterior portions 41A and 41B are not bonded to each other in order to accommodate the wound electrode body 30 inside the exterior member 40.
  • the exterior portions 41A and 41B include an adhesion region 41Y where the exterior portions 41A and 41B are adhered to each other.
  • the adhesion region 41Y is an outer edge region of each of the exterior portions 41A and 41B
  • the non-adhesion region 41X is one of the exterior portions 41A and 41B. It is an area other than the outer edge area (a central area surrounded by the outer edge area).
  • the exterior parts 41A and 41B may be separated from each other or may be connected (integrated) to each other.
  • the exterior body 41 when the exterior portions 41A and 41B are separated from each other is, for example, two films.
  • the exterior body 41 when the exterior portions 41A and 41B are connected to each other is, for example, a single film.
  • the exterior body 41 is a single film.
  • the single film may be originally a single film or a composite film in which two films are connected. Accordingly, the exterior body 41 can be folded, for example, in the direction of the arrow R shown in FIG. In this case, since the exterior body 41 is folded, as described above, the exterior portion 41A covers the wound electrode body 30 from above and the exterior portion 41B covers the wound electrode body 30 from below.
  • the wound electrode body 30 is housed inside the exterior member 40.
  • the exterior portion 41A is provided with, for example, a recessed portion 41P for accommodating the wound electrode body 30. Accordingly, the exterior portion 41A partially protrudes outward, for example, at a location where the recessed portion 41P is provided.
  • the recess 41P is provided in the exterior part 41A, so that the wound electrode body 30 can be easily positioned with respect to the exterior body 41 and the wound electrode body 30 can be easily housed inside the exterior member 40. Because.
  • an adhesive film 50 is used to seal the exterior member 40.
  • the adhesion film 50 is inserted between the exterior body 41 (the exterior portions 41A and 41B) and the positive electrode lead 31, and the adhesion film is similarly disposed between the exterior body 41 and the negative electrode lead 32. 50 is inserted.
  • the adhesive film 50 includes one or more of the adhesive materials in order to prevent outside air from entering the exterior member 40.
  • the adhesive material is a material having adhesiveness to each of the positive electrode lead 31 and the negative electrode lead 32, and is, for example, a polyolefin resin.
  • the type of polyolefin resin is not particularly limited, and examples thereof include polyethylene, polypropylene, modified polyethylene, and modified polypropylene.
  • the window portion 42 mainly functions to prevent water from entering the inside of the exterior member 40 from the outside (waterproof function) and also releases the gas generated inside the exterior member 40 to the outside ( Exhaust function).
  • the water described here is, for example, water and water vapor existing outside the secondary battery.
  • the gas is, for example, carbon dioxide gas (carbon dioxide) generated due to a side reaction such as a decomposition reaction of the electrolytic solution.
  • the window portion 42 is a part of the exterior member 40 and is exposed to each of the internal environment E1 and the external environment E2 as shown in FIG.
  • the internal environment E1 is an environment in which the wound electrode body 30 is housed (an environment inside the exterior member 40). For this reason, the internal environment E ⁇ b> 1 is formed by housing the wound electrode body 30 inside the exterior member 40.
  • the external environment E2 is an environment in which the wound electrode body 30 is not housed (an environment outside the exterior member 40). That is, the window 42 releases gas from the internal environment E1 to the external environment E2 while suppressing water from entering the internal environment E1 from the external environment E2.
  • the exterior member 40 (exterior body 41) has the window portion 42 by using the waterproof function of the window portion 42 and suppressing deterioration of cycle characteristics and the like caused by water while the window portion 42 This is to suppress the swelling of the secondary battery by utilizing the exhaust function of the secondary battery.
  • a machine such as a safety valve, an instrument, and an apparatus, it is possible to easily suppress the deterioration of the cycle characteristics and the like, and it is also possible to easily suppress the swelling of the secondary battery.
  • the number, position, and configuration of the window 42 are not particularly limited.
  • the number of window portions 42 may be only one, or two or more.
  • the number of the window parts 42 is one, for example.
  • the position of the window 42 may be arbitrary.
  • the window part 42 is provided in the hollow part 41P of the exterior main body 41 (exterior part 41A), for example. More specifically, for example, in the case where the depression 41P has one upper surface 41PT and four side surfaces 41PS, the window 42 is provided on the upper surface 41PT.
  • the window part 42 is provided in the non-adhesion area
  • an opening 41K is provided in the exterior body 41, and the window 42 is formed by covering (closing) the opening 41K with a window film 43 that is a film-like window member. That is, the window part 42 contains the window film 43 which obstruct
  • the window 43 is shaded to make it easy to identify the window film 43.
  • the opening 41K is a through hole that allows the internal environment E1 and the external environment E2 to communicate with each other.
  • the opening shape of the opening 41K is not particularly limited, and may be, for example, a circle, an ellipse, a rectangle, or other shapes.
  • the opening shape of the opening 41K is, for example, an ellipse.
  • the size (area) of the opening 41K is not particularly limited and can be arbitrarily set.
  • the window film 43 is a film having the above waterproof function and exhaust function. Accordingly, the window film 43 includes a window functional material.
  • the “window functional material” is a material that can suppress the intrusion of water from the outside of the exterior member 40 to the inside and can release gas from the interior of the exterior member 40 to the outside. More specifically, the window functional material is a material that functions as a barrier film that does not allow water to sufficiently permeate in order to ensure a waterproof function, and sufficient gas such as carbon dioxide is sufficient to ensure an exhaust function. It is a gas-permeable material that can be permeated through the glass. That is, the window functional material is a material having selective permeability with respect to water and gas.
  • This window functional material contains any one kind or two or more kinds of non-porous molten fluororesins.
  • This non-porous molten fluororesin is a general term for fluororesins that do not have one or two or more pores and that have a meltability enough to be melt processed and melt molded. .
  • the kind of the non-porous molten fluororesin is not particularly limited.
  • non-porous tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) non-porous tetrafluoroethylene / hexafluoropropylene copolymer (FEP) and non-porous tetrafluoroethylene / ethylene copolymer (ETFE).
  • PFA non-porous tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • FEP non-porous tetrafluoroethylene / hexafluoropropylene copolymer
  • ETFE non-porous tetrafluoroethylene / ethylene copolymer
  • non-fluorine polymer compounds such as polyethylene terephthalate (PET) and polypropylene (PP) have too low permselectivity with respect to water and gas as described above compared to molten fluororesin, so that the non-fluorine-based high molecular compound.
  • PET polyethylene terephthalate
  • PP polypropylene
  • Molecular compounds cannot exhibit both the waterproof function and the exhaust function described above.
  • porous PFA, porous FEP, porous ETFE, etc. correspond to a molten fluororesin, they are porous and thus cannot exhibit both the waterproof function and the exhaust function described above.
  • the polymer compound forming the film is porous. Since the state of the pore is not particularly limited, for example, it may be a substantially circular gap or a tubular path extending in a predetermined direction. On the other hand, when one or more pores are not observed inside the film, the polymer compound forming the film is non-porous.
  • the planar shape of the window film 43 is not particularly limited, and may be, for example, a circle, an ellipse, a rectangle, or other shapes. That is, the planar shape of the window film 43 may be the same as the opening shape of the opening 41K, or may be a shape different from the opening shape of the opening 41K. Here, the planar shape of the window film 43 is the same as the opening shape of the opening 41K, for example. For this reason, the planar shape of the window film 43 is an ellipse, for example.
  • the size (area) of the window film 43 is not particularly limited. That is, the area of the window film 43 may be the same as the opening area of the opening 41K or may be larger than the opening area of the opening 41K.
  • the area of the window film 43 is larger than the area of the opening 41K because the window film 43 contains the window functional material (non-porous molten fluororesin). This is because the window film 43 can be attached to the exterior body 41 using an adhesive in order to fix the window film 43 to the exterior body 41.
  • the window film 43 is adhesive so as to close the opening 41K. 44 is affixed to the exterior body 41 via 44.
  • the window film 43 containing a non-porous molten fluororesin generally has another object (here, the exterior main body 41) due to the adhesion resistance unique to the non-porous molten fluororesin. It has a property that it is difficult to adhere to.
  • the adhesive 44 excellent in compatibility (adhesiveness) with the non-porous molten fluororesin, the window film 43 can be sufficiently adhered to the exterior body 41 using the adhesive 44. .
  • the installation position of the window film 43 is not particularly limited.
  • the window film 43 may be disposed inside the exterior body 41 (internal environment E1), or may be disposed outside the exterior body 41 (external environment E2).
  • the window film 43 is preferably disposed inside the exterior body 41. This is because, even if gas is generated inside the secondary battery, the window film 43 is prevented from unintentionally peeling and dropping.
  • the window film 43 is bonded to the inner surface of the exterior body 41 through an adhesive 44, for example.
  • the window film 43 when gas is generated inside the secondary battery, the window film 43 is pushed from the internal environment E1 toward the external environment E2 due to an increase in internal pressure.
  • the window film 43 when the window film 43 is disposed outside the exterior body 41 (see FIG. 6), the window film 43 is positioned in the external environment E2 from the beginning, and the window There is nothing on the outside of the film 43. Therefore, depending on how the internal pressure increases, when the adhesive 44 peels from one or both of the exterior body 41 and the window film 43, the window film 43 may peel from the exterior body 41. Moreover, if the window film 43 peels from the exterior body 41, the window film 43 may fall off from the secondary battery.
  • the window film 43 when the window film 43 is disposed inside the exterior body 41 (see FIG. 3), the window film 43 is located in the internal environment E1, and the exterior body 41 is located outside the window film 43. Existing. In this case, the window film 43 is pressed by the exterior body 41 so as to remain in the internal environment E ⁇ b> 1 at a place where the window film 43 and the exterior body 41 overlap each other. Therefore, the adhesive 44 is difficult to peel from each of the exterior body 41 and the window film 43, and thus the window film 43 is difficult to peel from the exterior body 41. In addition, even if the window film 43 is peeled off from the exterior body 41 due to an increase in internal pressure, the window film 43 still tends to be present in the internal environment E1, and thus the window film 43 is difficult to drop off from the secondary battery. Become.
  • the thickness of the window film 43 is not particularly limited, but is, for example, 10 ⁇ m to 500 ⁇ m, and preferably 10 ⁇ m to 200 ⁇ m.
  • the window film 43 is smaller than 10 ⁇ m, the window film 43 is too thin, so that the window film 43 tends to release the gas when the gas is generated.
  • the window film 43 may be easily deformed, broken, and peeled when the internal pressure is increased.
  • the thickness of the window film 43 is larger than 500 ⁇ m, the window film 43 is too thick, so that the window film 43 is difficult to be deformed, broken and peeled even when the internal pressure is increased. While it is difficult for water to pass through, the window film 43 may be difficult to release gas.
  • the adhesive 44 contains any one kind or two or more kinds of polymer compounds (adhesive material) such as polyolefin resin, epoxy resin, urethane resin, cyanoacrylate and styrene butadiene rubber, for example.
  • polymer compounds such as polyolefin resin, epoxy resin, urethane resin, cyanoacrylate and styrene butadiene rubber, for example.
  • the polyolefin resin is, for example, polypropylene (PP).
  • the state of the adhesive 44 before bonding is not particularly limited, it may be powder, liquid, film, or a mixture of two or more of them. However, in order to make the thickness of the adhesive 44 uniform and to suppress the occurrence of pinholes in the adhesive 44, the state of the adhesive 44 before bonding is liquid or film-like. One or both are preferred.
  • any one kind or two or more kinds of the pre-treatment is applied to the surface of the window film 43. May be given.
  • the kind of this pre-processing is not specifically limited, For example, they are a chemical
  • any one type or two or more types of pretreatments may be applied to the surface of the exterior body 41. Details regarding the preprocessing are as described above, for example.
  • the positive electrode 33 includes a positive electrode current collector 33A and positive electrode active material layers 33B provided on both surfaces of the positive electrode current collector 33A.
  • the positive electrode active material layer 33B may be provided only on one surface of the positive electrode current collector 33A.
  • the positive electrode current collector 33A includes, for example, any one type or two or more types of conductive materials. Although the kind of conductive material is not specifically limited, For example, they are metal materials, such as aluminum, nickel, and stainless steel.
  • the positive electrode current collector 33A may be a single layer or a multilayer.
  • the positive electrode active material layer 33B contains any one or more of positive electrode materials capable of occluding and releasing lithium as a positive electrode active material.
  • the positive electrode active material layer 33B may further include any one type or two or more types of other materials such as a positive electrode binder and a positive electrode conductive agent.
  • the positive electrode material is preferably a lithium-containing compound, and more specifically, preferably one or both of a lithium-containing composite oxide and a lithium-containing phosphate compound. This is because a high energy density can be obtained.
  • the lithium-containing composite oxide is an oxide containing lithium and one or more kinds of other elements (elements other than lithium) as constituent elements.
  • elements elements other than lithium
  • any one of a layered rock salt type and a spinel type It has a crystal structure.
  • the lithium-containing phosphate compound is a phosphate compound containing lithium and one or more other elements as constituent elements, and has, for example, an olivine type crystal structure.
  • the type of other element is not particularly limited as long as it is any one or more of arbitrary elements.
  • the other elements are preferably any one or more of elements belonging to Groups 2 to 15 in the long-period periodic table. More specifically, it is more preferable that the other elements include one or more metal elements of nickel (Ni), cobalt (Co), manganese (Mn), and iron (Fe). preferable. This is because a high voltage can be obtained.
  • lithium-containing composite oxide having a layered rock salt type crystal structure examples include compounds represented by the following formulas (21) to (23).
  • M11 is cobalt (Co), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), zirconium (Zr), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), a to e being 0.8 ⁇ a ⁇ 1.2, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.5, (b + c) ⁇ 1, ⁇ 0.1 ⁇ d ⁇ 0.2 and 0 ⁇ e ⁇ 0.1 are satisfied.
  • the composition of lithium varies depending on the charge / discharge state, and a is the value of the fully discharged state.
  • M12 is cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8.
  • composition of lithium depends on the charge / discharge state Unlikely, a is the value of the fully discharged state.
  • M13 is nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8.
  • the lithium-containing composite oxide having a layered rock salt type crystal structure may be, for example, a compound represented by the following formula (24). This compound is a lithium nickel-containing composite oxide containing nickel as a constituent element and having a relatively high nickel content.
  • M is boron (B), magnesium (Mg), aluminum (Al), titanium (Ti), chromium (Cr), manganese (Mn), gallium (Ga), yttrium (Y), zirconium (Zr), molybdenum (Mo), strontium (Sr), cesium (Cs), barium (Ba), indium (In), and antimony (Sb), and
  • X is a halogen element
  • x, y, z , A and b are 0.8 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 1.0, 0.5 ⁇ z ⁇ 1.0, 0 ⁇ a ⁇ 1.0, 1.8 ⁇ b ⁇ 2. 2 and y ⁇ z are satisfied.
  • lithium-containing composite oxide having a layered rock salt type crystal structure LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2.
  • LiNi 0.33 Co 0.33 Mn 0.33 O 2 Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
  • the lithium-containing composite oxide having a layered rock salt type crystal structure contains nickel, cobalt, manganese, and aluminum as constituent elements
  • the atomic ratio of nickel is preferably 50 atomic% or more. This is because a high energy density can be obtained.
  • the lithium-containing composite oxide having a spinel crystal structure is, for example, a compound represented by the following formula (25).
  • M14 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper At least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), wherein a to d are 0.9.
  • composition of lithium differs depending on the charge / discharge state, and a Is the value of the fully discharged state.
  • lithium-containing composite oxide having a spinel crystal structure examples include LiMn 2 O 4 .
  • lithium-containing phosphate compound having an olivine type crystal structure examples include a compound represented by the following formula (26).
  • Li a M15PO 4 (26) (M15 is cobalt (Co), manganese (Mn), iron (Fe), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium It is at least one of (Nb), copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr). 0.9 ⁇ a ⁇ 1.1, where the composition of lithium varies depending on the charge / discharge state, and a is the value of the complete discharge state.)
  • lithium-containing phosphate compound having an olivine type crystal structure examples include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
  • the lithium-containing composite oxide may be a compound represented by the following formula (27).
  • the positive electrode material may be any one kind or two or more kinds of oxides, disulfides, chalcogenides, conductive polymers, and the like.
  • oxide include titanium oxide, vanadium oxide, and manganese dioxide.
  • disulfide include titanium disulfide and molybdenum sulfide.
  • chalcogenide is niobium selenide.
  • conductive polymer include sulfur, polyaniline, and polythiophene.
  • the positive electrode material may be a material other than the above.
  • the positive electrode binder contains, for example, any one or more of synthetic rubber and polymer compound.
  • synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene.
  • polymer compound include polyvinylidene fluoride and polyimide.
  • the positive electrode conductive agent includes, for example, one or more of carbon materials.
  • the carbon material include graphite, carbon black, acetylene black, and ketjen black.
  • the positive electrode conductive agent may be a metal material or a conductive polymer as long as it is a conductive material.
  • the negative electrode 22 includes a negative electrode current collector 34A and negative electrode active material layers 34B provided on both surfaces of the negative electrode current collector 34A.
  • the negative electrode active material layer 34B may be provided only on one surface of the negative electrode current collector 34A.
  • the negative electrode current collector 34A includes, for example, any one type or two or more types of conductive materials. Although the kind of electrically conductive material is not specifically limited, For example, they are metal materials, such as copper, aluminum, nickel, and stainless steel.
  • the negative electrode current collector 34A may be a single layer or a multilayer.
  • the surface of the negative electrode current collector 34A is preferably roughened. This is because the adhesion of the negative electrode active material layer 34B to the negative electrode current collector 34A is improved by a so-called anchor effect. In this case, the surface of the negative electrode current collector 34A only needs to be roughened at least in a region facing the negative electrode active material layer 34B.
  • the roughening method is, for example, a method of forming fine particles using electrolytic treatment. In the electrolytic treatment, fine particles are formed on the surface of the negative electrode current collector 34A by an electrolysis method in an electrolytic bath, so that the surface of the negative electrode current collector 34A is provided with irregularities.
  • a copper foil produced by an electrolytic method is generally called an electrolytic copper foil.
  • the negative electrode active material layer 34B contains any one or more of negative electrode materials capable of occluding and releasing lithium as a negative electrode active material.
  • the negative electrode active material layer 34B may further include any one kind or two or more kinds of other materials such as a negative electrode binder and a negative electrode conductive agent.
  • the chargeable capacity of the negative electrode material is preferably larger than the discharge capacity of the positive electrode 33. That is, the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium is preferably larger than the electrochemical equivalent of the positive electrode 33.
  • the negative electrode material is, for example, one or more of carbon materials. This is because the change in crystal structure at the time of occlusion and release of lithium is very small, so that a high energy density can be obtained stably. Moreover, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 34B is improved.
  • Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, and graphite.
  • the interplanar spacing of the (002) plane in non-graphitizable carbon is preferably 0.37 nm or more, and the interplanar spacing of the (002) plane in graphite is preferably 0.34 nm or less.
  • examples of the carbon material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, and carbon blacks.
  • the cokes include pitch coke, needle coke, petroleum coke and the like.
  • the organic polymer compound fired body is obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an appropriate temperature.
  • the carbon material may be low crystalline carbon heat-treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon.
  • the shape of the carbon material may be any of a fibrous shape, a spherical shape, a granular shape, and a scale shape.
  • the negative electrode material is, for example, a material (metal material) containing any one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
  • the metal-based material may be any of a simple substance, an alloy, and a compound, or may be two or more of them, or may be a material having at least a part of one or two or more of them.
  • the alloy includes a material including one or more metal elements and one or more metalloid elements in addition to a material composed of two or more metal elements.
  • the alloy may contain a nonmetallic element.
  • the structure of the metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and two or more kinds of coexisting materials.
  • the metal element and metalloid element described above are, for example, any one or more metal elements and metalloid elements capable of forming an alloy with lithium. Specifically, for example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin (Sn), lead (Pb) ), Bismuth (Bi), cadmium (Cd), silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd) and platinum (Pt).
  • silicon and tin is preferable. This is because the ability to occlude and release lithium is excellent, so that a significantly high energy density can be obtained.
  • the material containing one or both of silicon and tin as a constituent element may be any of a simple substance, an alloy, and a compound of silicon, or any of a simple substance, an alloy, and a compound of tin. These may be two or more types, or may be a material having at least a part of one or two or more of them.
  • the simple substance described here means a simple substance (which may contain a small amount of impurities) in a general sense, and does not necessarily mean 100% purity.
  • the alloy of silicon is, for example, any one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as a constituent element other than silicon or Includes two or more.
  • the compound of silicon contains, for example, one or more of carbon and oxygen as constituent elements other than silicon.
  • the compound of silicon may contain any 1 type or 2 types or more of the series of elements demonstrated regarding the alloy of silicon as structural elements other than silicon, for example.
  • silicon alloys and silicon compounds are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), and LiSiO.
  • v in SiO v may be 0.2 ⁇ v ⁇ 1.4.
  • the alloy of tin for example, as a constituent element other than tin, any one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium, etc. Includes two or more.
  • the tin compound contains, for example, one or more of carbon and oxygen as constituent elements other than tin.
  • the compound of tin may contain any 1 type in the series of elements demonstrated regarding the alloy of tin, or 2 or more types as structural elements other than tin, for example.
  • tin alloy and the tin compound include SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO, and Mg 2 Sn.
  • the material containing tin as a constituent element is preferably, for example, a material (Sn-containing material) containing a second constituent element and a third constituent element together with tin which is the first constituent element.
  • the second constituent element is, for example, cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, silver, indium, cesium (Ce), hafnium (Hf), Any one or more of tantalum, tungsten, bismuth, silicon and the like are included.
  • the third constituent element includes, for example, one or more of boron, carbon, aluminum, phosphorus, and the like. This is because, when the Sn-containing material contains the second and third constituent elements, a high battery capacity and excellent cycle characteristics can be obtained.
  • the Sn-containing material is preferably a material (SnCoC-containing material) containing tin, cobalt, and carbon as constituent elements.
  • the carbon content is 9.9 mass% to 29.7 mass%, and the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20 mass% to 70 mass%. . This is because a high energy density can be obtained.
  • the SnCoC-containing material has a phase containing tin, cobalt, and carbon, and the phase is preferably low crystalline or amorphous. Since this phase is a reaction phase capable of reacting with lithium, excellent characteristics can be obtained based on the presence of the reaction phase.
  • the half-width (diffraction angle 2 ⁇ ) of the diffraction peak obtained by X-ray diffraction of this reaction phase is 1 ° or more when CuK ⁇ ray is used as the specific X-ray and the insertion speed is 1 ° / min. Is preferred. This is because lithium is occluded and released more smoothly and the reactivity with the electrolytic solution is reduced.
  • the SnCoC-containing material may include a phase containing a simple substance or a part of each constituent element in addition to the low crystalline or amorphous phase.
  • Such a reaction phase contains, for example, each of the above-described constituent elements, and is considered to be low crystallized or amorphous mainly due to the presence of carbon.
  • the SnCoC-containing material it is preferable that at least a part of carbon as a constituent element is bonded to a metal element or a metalloid element as another constituent element. This is because aggregation or crystallization of tin or the like is suppressed.
  • the bonding state of the elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • Al—K ⁇ ray or Mg—K ⁇ ray is used as the soft X-ray.
  • the energy calibration is performed so that the peak of the 4f orbit (Au4f) of the gold atom is obtained at 84.0 eV.
  • the C1s peak of the surface-contaminated carbon is set to 284.8 eV, and the peak is used as an energy reference.
  • the waveform of the C1s peak is obtained in a form including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. For this reason, for example, both peaks are separated by analyzing using commercially available software. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
  • This SnCoC-containing material is not limited to a material (SnCoC) whose constituent elements are only tin, cobalt and carbon.
  • This SnCoC-containing material is, for example, any one of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium, and bismuth in addition to tin, cobalt, and carbon
  • One kind or two or more kinds may be included as constituent elements.
  • SnCoC-containing materials materials containing tin, cobalt, iron and carbon as constituent elements
  • SnCoFeC-containing materials materials containing tin, cobalt, iron and carbon as constituent elements
  • the composition of the SnCoFeC-containing material is arbitrary.
  • the iron content is set to be small, the carbon content is 9.9 mass% to 29.7 mass%, and the iron content is 0.3 mass% to 5.9 mass%.
  • the content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass.
  • the carbon content is 11.9% to 29.7% by mass
  • the ratio of the content of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4% by mass to 48.5% by mass
  • the content ratio of cobalt and iron (Co / (Co + Fe)) is 9.9% by mass to 79.5% by mass.
  • the physical properties (half-value width, etc.) of the SnCoFeC-containing material are the same as the above-described physical properties of the SnCoC-containing material.
  • the negative electrode material may be any one kind or two or more kinds of metal oxides and polymer compounds, for example.
  • the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide.
  • the polymer compound include polyacetylene, polyaniline, and polypyrrole.
  • the negative electrode material preferably contains both a carbon material and a metal-based material for the following reasons.
  • Metal materials in particular, materials containing one or both of silicon and tin as constituent elements have the advantage of high theoretical capacity, but they have a concern that they tend to violently expand and contract during charging and discharging.
  • the carbon material has a concern that the theoretical capacity is low, but has an advantage that it is difficult to expand and contract during charging and discharging. Therefore, by using both a carbon material and a metal-based material, expansion and contraction during charging and discharging are suppressed while obtaining a high theoretical capacity (in other words, battery capacity).
  • the negative electrode active material layer 34B is formed by any one method or two or more methods among, for example, a coating method, a gas phase method, a liquid phase method, a thermal spray method, and a firing method (sintering method).
  • the coating method is, for example, a method in which a particle (powder) negative electrode active material is mixed with a negative electrode binder and the mixture is dispersed in an organic solvent and then applied to the negative electrode current collector 34A.
  • the vapor phase method include a physical deposition method and a chemical deposition method.
  • a vacuum deposition method for example, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, a thermal chemical vapor deposition, a chemical vapor deposition (CVD) method, and a plasma chemical vapor deposition method.
  • the liquid phase method include an electrolytic plating method and an electroless plating method.
  • the thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 34A.
  • the firing method is, for example, a method in which a mixture dispersed in an organic solvent or the like is applied to the negative electrode current collector 34A using a coating method, and then heat-treated at a temperature higher than the melting point of the negative electrode binder or the like.
  • an atmosphere firing method, a reaction firing method, a hot press firing method, or the like can be used.
  • the electrochemical equivalent of the negative electrode material capable of inserting and extracting lithium is , Greater than the electrochemical equivalent of the positive electrode.
  • the open circuit voltage at the time of full charge that is, the battery voltage
  • the same positive electrode active material is used compared to the case where the open circuit voltage at the time of full charge is 4.20 V.
  • the amounts of the positive electrode active material and the negative electrode active material are adjusted accordingly. Thereby, a high energy density is obtained.
  • the open circuit voltage (charge end voltage) at the time of full charge is not particularly limited, but is preferably 4.2 V or more as described above. Especially, it is preferable that it is 4.25V or more at the time of complete charge, and it is more preferable that it is 4.35V or more. This is because even if the open circuit voltage at the time of full charge is remarkably increased, an advantage based on the optimization of the mixing ratio of the electrolyte salt and ethylene carbonate can be obtained, so that excellent battery characteristics can be obtained.
  • the discharge end voltage is not specifically limited, For example, it is 3.0 V or less.
  • the separator 35 is disposed between the positive electrode 33 and the negative electrode 34.
  • the separator 35 mainly separates the positive electrode 33 and the negative electrode 34 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • the separator 35 is, for example, one kind or two or more kinds of porous films such as synthetic resin and ceramic, and may be a laminated film of two or more kinds of porous films.
  • the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
  • the separator 35 may include, for example, the above-described porous film (base material layer) and a polymer compound layer provided on one or both surfaces of the base material layer. This is because the adhesion of the separator 35 to each of the positive electrode 33 and the negative electrode 34 is improved, so that the distortion of the wound electrode body 30 is suppressed. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Swelling is suppressed.
  • the polymer compound layer contains any one kind or two or more kinds of polymer compounds such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable.
  • the polymer compound is not limited to polyvinylidene fluoride.
  • the substrate layer is dried.
  • the base material layer may contain any one kind or two or more kinds of insulating particles such as inorganic particles. Examples of the inorganic particles include aluminum oxide, aluminum nitride, boehmite, and talc.
  • the electrolyte layer 36 contains an electrolytic solution and a polymer compound.
  • the electrolyte layer 36 described here is a so-called gel electrolyte, and an electrolyte solution is held in the electrolyte layer 36 by a polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) is obtained and leakage of the electrolytic solution is prevented.
  • the electrolyte layer 36 may further include any one kind or two or more kinds of other materials such as additives.
  • the electrolytic solution contains a solvent and an electrolyte salt.
  • the electrolytic solution may further include any one or more of other materials such as additives.
  • the solvent contains any one or more of nonaqueous solvents such as organic solvents.
  • the electrolytic solution containing the nonaqueous solvent is a so-called nonaqueous electrolytic solution.
  • non-aqueous solvent examples include cyclic carbonate ester, chain carbonate ester, lactone, chain carboxylate ester, and nitrile (mononitrile). This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • the cyclic carbonate is, for example, ethylene carbonate, propylene carbonate, butylene carbonate, or the like.
  • Examples of the chain ester carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate.
  • Examples of the lactone include ⁇ -butyrolactone and ⁇ -valerolactone.
  • Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, and ethyl trimethyl acetate.
  • Nitriles are, for example, acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
  • non-aqueous solvents include, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1 , 4-dioxane, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N′-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide. This is because similar advantages can be obtained.
  • the solvent preferably contains one or more of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • high battery capacity, excellent cycle characteristics, and excellent storage characteristics can be obtained.
  • high viscosity (high dielectric constant) solvents such as ethylene carbonate and propylene carbonate (for example, dielectric constant ⁇ ⁇ 30) and low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity ⁇ 1 mPas).
  • -A combination with s is more preferred. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
  • the solvent includes unsaturated cyclic carbonates, halogenated carbonates, sulfonate esters, acid anhydrides, dicyano compounds (dinitrile compounds), diisocyanate compounds, phosphate esters, and chain compounds having a carbon-carbon triple bond. Any one kind or two kinds or more may be included. This is because the chemical stability of the electrolytic solution is improved.
  • the unsaturated cyclic carbonate is a cyclic carbonate containing one or more unsaturated bonds (carbon-carbon double bond or carbon-carbon triple bond).
  • examples of the unsaturated cyclic carbonate include vinylene carbonate, vinyl ethylene carbonate, and methylene ethylene carbonate.
  • the content of the unsaturated cyclic carbonate in the solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
  • the halogenated carbonate is a cyclic or chain carbonate containing one or more halogens as a constituent element.
  • the number of the two or more halogens may be only one or two or more.
  • cyclic halogenated carbonates include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
  • chain halogenated carbonate include fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, and difluoromethyl methyl carbonate.
  • the content of the halogenated carbonate in the solvent is not particularly limited, but is, for example, 0.01% by weight to 50% by weight.
  • sulfonate ester examples include a monosulfonate ester and a disulfonate ester.
  • the content of the sulfonic acid ester in the solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
  • the monosulfonic acid ester may be a cyclic monosulfonic acid ester or a chain monosulfonic acid ester.
  • Cyclic monosulfonates are, for example, sultone such as 1,3-propane sultone and 1,3-propene sultone.
  • the chain monosulfonic acid ester is, for example, a compound in which a cyclic monosulfonic acid ester is cleaved on the way.
  • the disulfonic acid ester may be a cyclic disulfonic acid ester or a chain disulfonic acid ester.
  • Examples of the acid anhydride include carboxylic acid anhydride, disulfonic acid anhydride, and carboxylic acid sulfonic acid anhydride.
  • Examples of the carboxylic acid anhydride include succinic anhydride, glutaric anhydride, and maleic anhydride.
  • Examples of the disulfonic anhydride include ethanedisulfonic anhydride and propanedisulfonic anhydride.
  • Examples of the carboxylic acid sulfonic acid anhydride include anhydrous sulfobenzoic acid, anhydrous sulfopropionic acid, and anhydrous sulfobutyric acid.
  • the content of the acid anhydride in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
  • the dinitrile compound is, for example, a compound represented by NC—C m H 2m —CN (m is an integer of 1 or more).
  • This dinitrile compound includes, for example, succinonitrile (NC-C 2 H 4 -CN), glutaronitrile (NC-C 3 H 6 -CN), adiponitrile (NC-C 4 H 8 -CN) and phthalonitrile ( NC-C 6 H 4 -CN).
  • the content of the dinitrile compound in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
  • the diisocyanate compound is, for example, a compound represented by OCN—C n H 2n —NCO (n is an integer of 1 or more).
  • This diisocyanate compound is, for example, hexamethylene diisocyanate (OCN—C 6 H 12 —NCO).
  • the content of the diisocyanate compound in the solvent is not particularly limited and is, for example, 0.5% by weight to 5% by weight.
  • phosphate ester examples include trimethyl phosphate and triethyl phosphate.
  • the content of the phosphate ester in the solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • a chain compound having a carbon-carbon triple bond is a chain compound having one or more carbon-carbon triple bonds (—C ⁇ C—).
  • the content of the chain compound having a carbon-carbon triple bond in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
  • the electrolyte salt includes, for example, any one kind or two or more kinds of salts such as a lithium salt.
  • the electrolyte salt may contain a salt other than the lithium salt, for example.
  • the salt other than lithium include salts of light metals other than lithium.
  • lithium salt examples include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and tetraphenyl.
  • Lithium borate LiB (C 6 H 5 ) 4
  • lithium methanesulfonate LiCH 3 SO 3
  • lithium trifluoromethanesulfonate LiCF 3 SO 3
  • lithium tetrachloroaluminate LiAlCl 4
  • hexafluoride examples include dilithium silicate (Li 2 SiF 6 ), lithium chloride (LiCl), and lithium bromide (LiBr). This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • lithium hexafluorophosphate lithium tetrafluoroborate, lithium perchlorate and lithium hexafluoroarsenate are preferable, and lithium hexafluorophosphate is more preferable. . This is because a higher effect can be obtained because the internal resistance is lowered.
  • the content of the electrolyte salt is not particularly limited, but is preferably 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. This is because high ionic conductivity is obtained.
  • the solvent contained in the electrolytic solution is a wide concept including not only a liquid material but also a material having ion conductivity capable of dissociating the electrolyte salt. . Therefore, when using a polymer compound having ion conductivity, the polymer compound is also included in the non-aqueous solvent.
  • polymer compound examples include polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, polymethacryl. It includes any one or more of methyl acid, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene and polycarbonate. In addition, the polymer compound may be a copolymer.
  • This copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene.
  • a copolymer of vinylidene fluoride and hexafluoropyrene is preferable. This is because it is electrochemically stable.
  • electrolyte layer 36 may replace with the electrolyte layer 36 and electrolyte solution may be used as it is.
  • the wound electrode body 30 is impregnated with the electrolytic solution.
  • This secondary battery operates as follows, for example.
  • lithium ions are released from the positive electrode 33 and the lithium ions are occluded in the negative electrode 34 through the electrolyte layer 36.
  • lithium ions are released from the negative electrode 34 and the lithium ions are occluded in the positive electrode 33 through the electrolyte layer 36.
  • the secondary battery provided with the gel electrolyte layer 36 is manufactured, for example, by the following three types of procedures.
  • a positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conductive agent are mixed to obtain a positive electrode mixture.
  • a positive electrode mixture slurry is obtained by dispersing the positive electrode mixture in an organic solvent or the like.
  • the positive electrode mixture slurry is dried to form the positive electrode active material layer 33B.
  • the positive electrode active material layer 33B is compression molded using a roll press or the like while heating the positive electrode active material layer 33B as necessary. In this case, compression molding may be repeated a plurality of times.
  • the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A by the same procedure as that of the positive electrode 33 described above. Specifically, first, by mixing a negative electrode active material, a negative positive electrode binder, a negative electrode conductive agent, and the like to form a negative electrode mixture, by dispersing the negative electrode mixture in an organic solvent, A paste-like negative electrode mixture slurry is obtained. Subsequently, after applying the negative electrode mixture slurry to both surfaces of the negative electrode current collector 34A, the negative electrode mixture slurry is dried to form the negative electrode active material layer 34B. Finally, the negative electrode active material layer 34B is compression molded using a roll press or the like.
  • a precursor solution is prepared by mixing an electrolyte solution, a polymer compound, an organic solvent, and the like. Then, after apply
  • the positive electrode lead 31 is attached to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is attached to the negative electrode current collector 34A using a welding method or the like.
  • the positive electrode 33 and the negative electrode 34 are laminated via the separator 35, the positive electrode 33, the negative electrode 34 and the separator 35 are wound to form the wound electrode body 30.
  • the protective tape 37 is attached to the outermost peripheral portion of the wound electrode body 30.
  • the exterior member 40 so as to sandwich the wound electrode body 30 using the exterior member 40 provided with the window portion 42, the outer edge portions of the exterior member 40 are bonded to each other using a heat fusion method or the like.
  • the wound electrode body 30 is sealed inside the exterior member 40 by bonding.
  • the adhesion film 50 is inserted between the positive electrode lead 31 and the exterior member 40, and the adhesion film 50 is inserted between the negative electrode lead 32 and the exterior member 40.
  • the positive electrode 33 and the negative electrode 34 are laminated via the separator 35 and then wound to produce a wound body that is a precursor of the wound electrode body 30, and then the outermost periphery of the wound body A protective tape 37 is affixed to the part.
  • the exterior member 40 after folding the exterior member 40 so as to sandwich the wound electrode body 30 using the exterior member 40 provided with the window portion 42, one side of the exterior member 40 using the heat fusion method or the like is used.
  • the wound body is housed inside the bag-shaped exterior member 40 by pasting the remaining outer edge parts excluding the outer edge part.
  • an electrolyte composition is prepared by mixing an electrolytic solution, a monomer that is a raw material of the polymer compound, a polymerization initiator, and other materials such as a polymerization inhibitor as necessary.
  • the electrolyte composition is injected into the bag-shaped exterior member 40, the exterior member 40 is sealed using a heat fusion method or the like.
  • the polymer is formed by thermally polymerizing the monomer. Since the electrolytic solution is held by the polymer compound, the gel electrolyte layer 36 is formed. Therefore, a laminated film type secondary battery is completed.
  • a wound body is produced by the same procedure as the second procedure described above, except that the separator 35 on which the polymer compound layer is formed is used.
  • the wound body is accommodated in the bag-shaped exterior member 40 provided with 42.
  • the exterior member 40 is sealed using a heat fusion method or the like. Subsequently, by heating the exterior member 40 while applying a load, the separator 35 is brought into close contact with the positive electrode 33 through the polymer compound layer, and the separator 35 is brought into close contact with the negative electrode 34 through the polymer compound layer. Thereby, each of the polymer compound layers is impregnated with the electrolytic solution, and each of the polymer compound layers is gelled, so that the electrolyte layer 36 is formed. Therefore, a laminated film type secondary battery is completed.
  • the swollenness of the secondary battery is suppressed as compared with the first procedure.
  • the solvent, the monomer (the raw material of the polymer compound) and the like are less likely to remain in the electrolyte layer 36, and thus the formation process of the polymer compound is well controlled. . For this reason, each of the positive electrode 33, the negative electrode 34, and the separator 35 and the electrolyte layer 36 are easily adhered to each other.
  • the wound electrode body 30 is housed inside the film-shaped exterior member 40, and the window portion includes a window functional material (non-porous molten fluororesin). 42 (window film 43) is provided on the exterior member 40 (exterior body 41). Therefore, excellent battery characteristics can be obtained for the reason described below.
  • the exterior member 40 When the exterior member 40 is not provided with the window 42, when a gas such as carbon dioxide is generated inside the secondary battery due to a side reaction such as a decomposition reaction of the electrolytic solution, there is no escape space for the gas. Therefore, gas is accumulated inside the secondary battery. In this case, as the internal pressure increases, the exterior member 40 is deformed so as to protrude from the internal environment E1 toward the external environment E2, so that the secondary battery swells.
  • the exterior member 40 is provided with the window 42, as described above, even if gas is generated inside the secondary battery, the gas is generated by utilizing the exhaust function of the window 42. Is discharged to the outside, so that the secondary battery is prevented from swelling.
  • the opening 41K is provided in the exterior member (the exterior body 41)
  • the waterproof function of the window 42 is used.
  • the use of the window portion 42 suppresses swelling of the secondary battery and suppresses deterioration of cycle characteristics, etc., and thus excellent battery characteristics. Is obtained.
  • the window functional material contains any one or more of non-porous PFA, non-porous FEP, non-porous ETFE, etc.
  • the window 42 since it becomes easier to suppress the intrusion of water and the window portion 42 more easily releases the gas, a higher effect can be obtained.
  • the opening part 41K is provided in the exterior main body 41 and the window part 42 is formed by the window film 43 containing a window functional material covering the opening part 41K, the opening part 41K (the window film 43). ), The gas is sufficiently released, so that a higher effect can be obtained.
  • the window film 43 has an area larger than the area of the opening 41 ⁇ / b> K and the window film 43 is attached to the exterior body 41 via the adhesive 44, the exterior body 41.
  • the window film 43 is firmly fixed to the screen. Therefore, since the waterproof function and the exhaust function of the window part 42 are stably exhibited, a higher effect can be obtained.
  • the thickness of the window film 43 is 10 ⁇ m to 500 ⁇ m, a sufficient waterproof function and a sufficient exhaust function can be obtained while ensuring the physical durability of the window film 43, so that a higher effect can be obtained. Can do.
  • Lithium metal secondary battery a laminated film type lithium metal secondary battery in which the capacity of the negative electrode 34 is obtained by precipitation and dissolution of lithium metal.
  • This secondary battery has the same configuration as the above-described laminate film type lithium ion secondary battery except that the negative electrode active material layer 34B is formed of lithium metal, and the same procedure is followed. Manufactured.
  • the negative electrode active material layer 34B may already exist from the time of assembly, but does not exist at the time of assembly, and may be formed of lithium metal deposited at the time of charging. Further, the negative electrode current collector 34A may be omitted by using the negative electrode active material layer 34B as a current collector.
  • This secondary battery operates as follows, for example. At the time of charging, lithium ions are released from the positive electrode 33 and the lithium ions are deposited as lithium metal on the surface of the negative electrode current collector 34A through the electrolyte layer 36. On the other hand, at the time of discharge, lithium metal is converted into lithium ions from the negative electrode active material layer 34 ⁇ / b> B and eluted into the electrolyte layer 36, and the lithium ions are occluded in the positive electrode 21 through the electrolyte layer 36.
  • the wound electrode body 30 is housed inside the film-shaped exterior member 40, and the window portion 42 (window film 43) containing the window functional material is the exterior member. 40 (exterior body 41). Therefore, excellent battery characteristics can be obtained for the same reason as the above-described lithium ion secondary battery.
  • Other operations and effects relating to the lithium metal secondary battery are the same as those relating to the lithium ion secondary battery.
  • the window film 43 may be bonded to the exterior body 41 using, for example, any one type or two or more types of methods that do not use the adhesive 44.
  • methods that do not use the adhesive 44 include a heat fusion method and an ultrasonic welding method. Even in this case, since the window film 43 is fixed to the exterior body 41, the same effect can be obtained.
  • a window portion 42 may be provided on the side surface 41PS instead of the upper surface 41PT of the recessed portion 41P.
  • the opening shape and opening area of the opening 41K can be arbitrarily set, and the planar shape and area of the window film 43 can be arbitrarily set.
  • each of the opening shape of the opening 41K and the planar shape of the window film 43 is substantially rectangular (a rectangle with four corners rounded), and the area of the window film 43 is the opening of the opening 41K. It is larger than the area. Even in this case, the same effect can be obtained by the window portion 24 exhibiting a waterproof function and an exhaust function.
  • a window film 43 is arranged on the outside (external environment E2) of the exterior body 41 instead of the inside (internal environment E1) of the exterior body 41. May be.
  • the window film 43 is bonded to the outer surface of the exterior body 41 via an adhesive 44, for example. Even in this case, the same effect can be obtained by the window portion 24 exhibiting a waterproof function and an exhaust function.
  • the window film 43 when the window film 43 is disposed outside the exterior body 41, the window film 43 may be peeled off due to generation of gas (increase in internal pressure), and the window film. 43 may fall out of the secondary battery. Therefore, in order to suppress the window film 43 from peeling and dropping, the window film 43 is preferably disposed inside the exterior body 41 (internal environment E1).
  • a protective layer 46 may be provided on the window film 43.
  • This “on the window film 43” means the outside of the window film 43.
  • the protective layer 46 mainly functions to physically protect the surface of the window film 43.
  • the protective layer 46 includes, for example, any one kind or two or more kinds of materials having air permeability.
  • the type of material having air permeability is not particularly limited, and examples thereof include porous resins, ceramics, and mesh filters.
  • the kind of the porous resin is not particularly limited. For example, porous polytetrafluoroethylene (PTFE), nylon, polypropylene (PP), polyethylene (PE), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC) ) And zeolite.
  • the thickness of the protective layer 46 is not particularly limited and can be arbitrarily set.
  • the size (area) of the protective layer 46 is not particularly limited. That is, the area of the protective layer 46 may be the same as the exposed area of the window film 43 (the area of the window film 43 exposed at the opening 41K) or may be larger than the exposed area of the window film 43.
  • the protective layer 46 has an area larger than the exposed area of the window film 43, for example, and is bonded to the exterior body 41 via the adhesive 45.
  • the adhesive 45 is preferably provided so as not to block the opening 41K in order to ensure air permeability using the window film 43.
  • FIG. 7 for example, a case where the protective layer 46 is prevented from being bonded to the window film 43 via the adhesive 45 is shown.
  • the details regarding the adhesive 45 are the same as the details regarding the adhesive 44, for example.
  • the window film 43 is physically protected by the protective layer 46, the window film 43 is prevented from being deformed, damaged and peeled off due to an external force. Moreover, since the air-permeable material has the property of allowing gas to pass therethrough, even if the protective layer 46 is provided on the window film 43, the gas is released to the outside through the protective layer 46. Is done. Therefore, since the physical durability of the window film 43 is improved while the exhaust function of the window portion 42 is ensured, a higher effect can be obtained.
  • a protective layer 46 is provided on the window film 43. May be.
  • the protective layer 46 is bonded to the exterior body 41 or the like via an adhesive 45, for example. In this case, the same effect can be obtained.
  • Lithium ion secondary battery The secondary battery described here is a lithium ion secondary battery.
  • This secondary battery is the secondary battery according to the first embodiment, except that the exterior body 41 is not provided with the opening 41K and the exterior member 40 has a window 47 instead of the window 42. It has the same configuration as the battery and is manufactured by the same procedure.
  • FIG. 8 illustrates a perspective configuration (a state after bonding) of the secondary battery of the present embodiment, and corresponds to each of FIGS. 1 and 2. However, in FIG. 8, as in FIG. 2, the positive electrode lead 31 and the negative electrode lead 32 are not shown.
  • FIG. 9 shows a cross-sectional configuration of the exterior member 40 along the line CC shown in FIG.
  • FIG. 10 shows a cross-sectional configuration of the exterior member 40 along the line DD shown in FIG.
  • the window portion 47 mainly performs the same functions (waterproof function and exhaust function) as the window portion 42.
  • the window portion 47 is provided in the adhesion region 41 ⁇ / b> Y instead of the non-adhesion region 41 ⁇ / b> X of the exterior body 41, and includes the window film 48 instead of the window film 43. Yes.
  • the window part 47 includes, for example, a window functional material (non-porous molten fluororesin) and a window film 48 interposed between the exterior parts 41A and 41B.
  • a window functional material non-porous molten fluororesin
  • the window 47 is shaded.
  • the window 47 is exposed to each of the internal environment E1 and the external environment E2, as shown in FIGS.
  • the reason why the window portion 47 is provided in the exterior member 40 is the same as the case where the window portion 42 is provided in the exterior member 40. That is, by using the waterproof function and exhaust function of the window 47, deterioration of cycle characteristics and the like are suppressed without using machinery, equipment and devices such as safety valves, and secondary battery swelling is also suppressed. Is done.
  • the number, position, and configuration of the window portion 47 are not particularly limited.
  • the number of window portions 47 may be only one, or two or more.
  • the number of window parts 47 is one, for example.
  • the position of the window 47 may be arbitrary as long as it is any position in the adhesion region 41Y.
  • the window part 47 is provided in a part of the adhesion region 41Y on the side where each of the positive electrode lead 31 and the negative electrode lead 32 is introduced from the inside of the exterior member 40 to the outside, for example.
  • the window film 48 includes, for example, any one type or two or more types of window functional materials in the same manner as the window film 43. Since the planar shape of the window film 48 is not particularly limited, it may be, for example, a circle, an ellipse, a rectangle, or other shapes. Here, the planar shape of the window film 48 is, for example, a rectangle.
  • the window film 48 is adhered to the exterior main body 41 (exterior portion 41A) via an adhesive 49, and is similarly adhered to the exterior main body 41 (exterior portion 41B) via the adhesive 49.
  • the details regarding the adhesive 49 are the same as the details regarding the adhesive 44, for example.
  • the adhesive layer of the exterior part 41A and the adhesive layer of the outer layer part 41B are adhered to each other. Thereby, the exterior member 40 is sealed.
  • the thickness of the window film 48 is not particularly limited, but is, for example, 10 ⁇ m to 500 ⁇ m, preferably 10 ⁇ m to 200 ⁇ m. This is because, as in the case where the thickness of the window film 43 is defined, a sufficient waterproof function and a sufficient exhaust function can be obtained while ensuring the physical durability of the window film 48 and the like.
  • any one kind or two or more kinds of pretreatments may be applied to the surface of the window film 48. Details regarding the preprocessing are as described above, for example.
  • any one type or two or more types of pretreatments may be applied to the surface of the exterior body 41.
  • This secondary battery for example, except that the exterior member 40 provided with the window portion 48 is used by attaching the window film 48 to the exterior body 41 (the exterior portions 41A and 41B) using the adhesive 49. It is manufactured by the same procedure as the secondary battery of the first embodiment.
  • the wound electrode body 30 is housed inside the film-shaped exterior member 40, and the window portion 47 (window film 48) containing the window functional material is the exterior member. 40.
  • the waterproof function of the window film 48 is used to suppress deterioration of cycle characteristics and the like caused by water, and the window film 48 By using the exhaust function, swelling of the secondary battery is suppressed. Therefore, excellent battery characteristics can be obtained.
  • the window part 48 is formed by bonding the exterior parts 41A and 41B to each other via the window film 48 containing a window functional material, the window part 48 can be provided without providing the exterior body 41 with an opening or the like. Therefore, a higher effect can be obtained.
  • the thickness of the window film 48 is 10 ⁇ m to 500 ⁇ m, a sufficient waterproof function and a sufficient exhaust function can be obtained while ensuring the physical durability of the window film 48, so that a higher effect can be obtained. Can do.
  • Lithium metal secondary battery is a laminated film type lithium metal secondary battery.
  • This secondary battery has the same configuration as the above laminated film type lithium ion secondary battery except that lithium metal is used as the negative electrode active material, and is manufactured by the same procedure.
  • the wound electrode body 30 is housed inside the film-like exterior member 40, and the window portion 47 (window film 48) containing the window functional material is the exterior member. 40. Therefore, excellent battery characteristics can be obtained for the same reason as the above-described lithium ion secondary battery.
  • Other operations and effects relating to the lithium metal secondary battery are the same as those relating to the lithium ion secondary battery.
  • the window film 48 may be attached to the exterior body 41 using any one type or two or more types of methods that do not use the adhesive 49, for example, as with the window film 43. Good.
  • the details regarding the method not using the adhesive 49 are as described above, for example. Also in this case, since the window film 48 is fixed to the exterior body 41, the same effect can be obtained.
  • Secondary batteries can be used in machines, equipment, instruments, devices and systems (aggregates of multiple equipment) that can be used as a power source for driving or a power storage source for power storage. If there is, it will not be specifically limited.
  • the secondary battery used as a power source may be a main power source or an auxiliary power source.
  • the main power source is a power source that is preferentially used regardless of the presence or absence of other power sources.
  • the auxiliary power supply may be, for example, a power supply used instead of the main power supply, or a power supply that can be switched from the main power supply as necessary.
  • the type of main power source is not limited to the secondary battery.
  • the usage of the secondary battery is, for example, as follows.
  • Electronic devices including portable electronic devices
  • portable electronic devices such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals.
  • It is a portable living device such as an electric shaver.
  • Storage devices such as backup power supplies and memory cards.
  • Electric tools such as electric drills and electric saws.
  • It is a battery pack that is mounted on a notebook computer as a detachable power source.
  • Medical electronic devices such as pacemakers and hearing aids.
  • An electric vehicle such as an electric vehicle (including a hybrid vehicle).
  • It is an electric power storage system such as a home battery system that stores electric power in case of an emergency.
  • the secondary battery may be used for other purposes.
  • the battery pack is a power source using a secondary battery. As will be described later, this battery pack may use a single battery or an assembled battery.
  • An electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be an automobile (such as a hybrid automobile) that includes a drive source other than the secondary battery as described above.
  • the power storage system is a system that uses a secondary battery as a power storage source.
  • a secondary battery which is a power storage source
  • An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a secondary battery as a driving power source.
  • An electronic device is a device that exhibits various functions using a secondary battery as a driving power source (power supply source).
  • FIG. 11 shows a perspective configuration of a battery pack using single cells.
  • FIG. 12 shows a block configuration of the battery pack shown in FIG. FIG. 11 shows a state where the battery pack is disassembled.
  • the battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery of the present technology, and is mounted on, for example, an electronic device typified by a smartphone.
  • the battery pack includes a power supply 111 that is a laminate film type secondary battery, and a circuit board 116 connected to the power supply 111.
  • a positive electrode lead 112 and a negative electrode lead 113 are attached to the power source 111.
  • a pair of adhesive tapes 118 and 119 are attached to both side surfaces of the power source 111.
  • a protection circuit (PCM: Protection Circuit Circuit Module) is formed on the circuit board 116.
  • the circuit board 116 is connected to the positive electrode 112 through the tab 114 and is connected to the negative electrode lead 113 through the tab 115.
  • the circuit board 116 is connected to a lead wire 117 with a connector for external connection. In the state where the circuit board 116 is connected to the power source 111, the circuit board 116 is protected by the label 120 and the insulating sheet 121. By attaching the label 120, the circuit board 116, the insulating sheet 121, and the like are fixed.
  • the battery pack includes, for example, a power supply 111 and a circuit board 116 as shown in FIG.
  • the circuit board 116 includes, for example, a control unit 121, a switch unit 122, a PTC element 123, and a temperature detection unit 124. Since the power source 111 can be connected to the outside via the positive electrode terminal 125 and the negative electrode terminal 127, the power source 111 is charged / discharged via the positive electrode terminal 125 and the negative electrode terminal 127.
  • the temperature detector 124 detects the temperature using a temperature detection terminal (so-called T terminal) 126.
  • the controller 121 controls the operation of the entire battery pack (including the usage state of the power supply 111).
  • the control unit 121 includes, for example, a central processing unit (CPU) and a memory.
  • the control unit 121 disconnects the switch unit 122 so that the charging current does not flow in the current path of the power supply 111. For example, when a large current flows during charging, the control unit 121 cuts off the charging current by cutting the switch unit 122.
  • the control unit 121 disconnects the switch unit 122 so that no discharge current flows in the current path of the power supply 111.
  • the control unit 121 cuts off the discharge current by cutting the switch unit 122.
  • the overcharge detection voltage is, for example, 4.2V ⁇ 0.05V, and the overdischarge detection voltage is, for example, 2.4V ⁇ 0.1V.
  • the switch unit 122 switches the usage state of the power source 111, that is, whether or not the power source 111 is connected to an external device, in accordance with an instruction from the control unit 121.
  • the switch unit 122 includes, for example, a charge control switch and a discharge control switch.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the temperature detection unit 124 measures the temperature of the power supply 111 and outputs the temperature measurement result to the control unit 121.
  • the temperature detection unit 124 includes a temperature detection element such as a thermistor, for example.
  • the temperature measurement result measured by the temperature detection unit 124 is used when the control unit 121 performs charge / discharge control during abnormal heat generation, or when the control unit 121 performs correction processing when calculating the remaining capacity. .
  • circuit board 116 may not include the PTC element 123. In this case, a PTC element may be attached to the circuit board 116 separately.
  • FIG. 13 shows a block configuration of a battery pack using an assembled battery.
  • This battery pack includes, for example, a control unit 61, a power source 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, a voltage detection unit 66, and a switch control unit 67 inside the housing 60.
  • the housing 60 includes, for example, a plastic material.
  • the control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62).
  • the control unit 61 includes, for example, a CPU.
  • the power source 62 is an assembled battery including two or more types of secondary batteries of the present technology, and the connection type of the two or more types of secondary batteries may be in series, in parallel, or a mixture of both. .
  • the power source 62 includes six secondary batteries connected in two parallel three series.
  • the switch unit 63 switches the usage state of the power source 62, that is, whether or not the power source 62 is connected to an external device, in accordance with an instruction from the control unit 61.
  • the switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the current measurement unit 64 measures the current using the current detection resistor 70 and outputs the measurement result of the current to the control unit 61.
  • the temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the temperature measurement result to the control unit 61. This temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity.
  • the voltage detection unit 66 measures the voltage of the secondary battery in the power source 62 and supplies the control unit 61 with the measurement result of the analog-digital converted voltage.
  • the switch control unit 67 controls the operation of the switch unit 63 according to signals input from the current measurement unit 64 and the voltage detection unit 66, respectively.
  • the switch control unit 67 disconnects the switch unit 63 (charge control switch) so that the charging current does not flow in the current path of the power source 62.
  • the power source 62 can only discharge through the discharging diode.
  • the switch control unit 67 cuts off the charging current.
  • the switch control unit 67 disconnects the switch unit 63 (discharge control switch) so that the discharge current does not flow in the current path of the power source 62.
  • the power source 62 can only be charged via the charging diode.
  • the switch control unit 67 interrupts the discharge current.
  • the overcharge detection voltage is, for example, 4.2V ⁇ 0.05V, and the overdischarge detection voltage is, for example, 2.4V ⁇ 0.1V.
  • the memory 68 includes, for example, an EEPROM which is a nonvolatile memory.
  • the memory 68 stores, for example, numerical values calculated by the control unit 61, information on the secondary battery measured in the manufacturing process stage (for example, internal resistance in an initial state), and the like. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
  • the temperature detection element 69 measures the temperature of the power supply 62 and outputs the temperature measurement result to the control unit 61.
  • the temperature detection element 69 includes, for example, a thermistor.
  • Each of the positive electrode terminal 71 and the negative electrode terminal 72 is used for an external device (eg, a notebook personal computer) that is operated using a battery pack, an external device (eg, a charger) that is used to charge the battery pack, and the like. It is a terminal to be connected.
  • the power source 62 is charged and discharged via the positive terminal 71 and the negative terminal 72.
  • FIG. 14 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle.
  • This electric vehicle includes, for example, a control unit 74, an engine 75, a power source 76, a driving motor 77, a differential device 78, a generator 79, and a transmission 80 inside a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84.
  • the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
  • This electric vehicle can travel using, for example, one of the engine 75 and the motor 77 as a drive source.
  • the engine 75 is a main power source, such as a gasoline engine.
  • the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 and the rear wheels 88 via the differential device 78, the transmission 80, and the clutch 81 which are driving units.
  • the motor 77 serving as the conversion unit is used as a power source
  • the power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82, and therefore the motor is utilized using the AC power.
  • 77 is driven.
  • the driving force (rotational force) converted from the electric power by the motor 77 is transmitted to the front wheels 86 and the rear wheels 88 via, for example, a differential device 78 that is a driving unit, a transmission 80, and a clutch 81.
  • the motor 77 may generate AC power using the rotational force. Good. Since this AC power is converted into DC power via the inverter 82, the DC regenerative power is preferably stored in the power source 76.
  • the control unit 74 controls the operation of the entire electric vehicle.
  • the control unit 74 includes, for example, a CPU.
  • the power source 76 includes one or more types of secondary batteries of the present technology.
  • the power source 76 may be connected to an external power source, and may store power by receiving power supply from the external power source.
  • the various sensors 84 are used, for example, to control the rotational speed of the engine 75 and to control the throttle valve opening (throttle opening).
  • the various sensors 84 include, for example, any one or more of speed sensors, acceleration sensors, engine speed sensors, and the like.
  • the electric vehicle may be a vehicle (electric vehicle) that operates using only the power source 76 and the motor 77 without using the engine 75.
  • FIG. 15 shows a block configuration of the power storage system.
  • This power storage system includes, for example, a control unit 90, a power source 91, a smart meter 92, and a power hub 93 in a house 89 such as a general house or a commercial building.
  • the power source 91 is connected to an electric device 94 installed in the house 89 and can be connected to an electric vehicle 96 stopped outside the house 89.
  • the power source 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93 and also connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. It is possible.
  • the electric device 94 includes, for example, one or more kinds of home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, and a water heater.
  • the private power generator 95 includes, for example, any one type or two or more types among a solar power generator and a wind power generator.
  • the electric vehicle 96 includes, for example, any one or more of an electric vehicle, an electric motorcycle, and a hybrid vehicle.
  • the centralized power system 97 includes, for example, any one or more of a thermal power plant, a nuclear power plant, a hydroelectric power plant, and a wind power plant.
  • the control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91).
  • the control unit 90 includes, for example, a CPU.
  • the power source 91 includes one or more types of secondary batteries of the present technology.
  • the smart meter 92 is, for example, a network-compatible power meter installed in the house 89 on the power demand side, and can communicate with the power supply side. Accordingly, the smart meter 92 enables highly efficient and stable energy supply, for example, by controlling the balance between the demand and supply of power in the house 89 while communicating with the outside.
  • the power storage system for example, power is accumulated in the power source 91 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and from the private power generator 95 that is an independent power source via the power hub 93.
  • electric power is accumulated in the power source 91.
  • the electric power stored in the power supply 91 is supplied to the electric device 94 and the electric vehicle 96 in accordance with an instruction from the control unit 90, so that the electric device 94 can be operated and the electric vehicle 96 can be charged.
  • the power storage system is a system that makes it possible to store and supply power in the house 89 using the power source 91.
  • the power stored in the power source 91 can be used as necessary. For this reason, for example, power is stored in the power source 91 from the centralized power system 97 at midnight when the electricity usage fee is low, and the power stored in the power source 91 is used during the day when the electricity usage fee is high. it can.
  • the power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).
  • FIG. 16 shows a block configuration of the electric power tool.
  • the electric tool described here is, for example, an electric drill.
  • This electric tool includes, for example, a control unit 99 and a power source 100 inside a tool body 98.
  • a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
  • the tool main body 98 includes, for example, a plastic material.
  • the control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100).
  • the control unit 99 includes, for example, a CPU.
  • the power supply 100 includes one or more types of secondary batteries of the present technology.
  • the control unit 99 supplies power from the power supply 100 to the drill unit 101 in accordance with the operation of the operation switch.
  • the positive electrode 33 When producing the positive electrode 33, first, 97 parts by mass of a positive electrode active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ), 2 parts by mass of a positive electrode binder (polyvinylidene fluoride), and a positive electrode conductive agent (carbon black) ) 1 part by mass was mixed to obtain a positive electrode mixture. Subsequently, the positive electrode mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to obtain a paste-like positive electrode mixture slurry.
  • a positive electrode active material LiNi 0.5 Co 0.2 Mn 0.3 O 2
  • a positive electrode binder polyvinylidene fluoride
  • a positive electrode conductive agent carbon black
  • the positive electrode mixture slurry was applied to both surfaces of the positive electrode current collector 33A (12 ⁇ m-thick striped aluminum foil) using a coating apparatus, and then the positive electrode mixture slurry was dried, whereby the positive electrode active material layer 33B was formed. Formed. Finally, the positive electrode active material layer 33B was compression molded using a roll press.
  • a negative electrode binder acrylic modified product of styrene-butadiene rubber copolymer
  • a thickener carboxymethylcellulose
  • the negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector 34A (15 ⁇ m thick strip copper foil) using a coating apparatus, and then the negative electrode mixture slurry was dried, whereby the negative electrode active material layer 34B was formed. Formed. Finally, the negative electrode active material layer 34B was compression molded using a roll press.
  • an electrolyte salt LiPF 6
  • a solvent ethylene carbonate, ethyl methyl carbonate and vinylene carbonate
  • the positive electrode lead 31 made of aluminum was welded to the positive electrode current collector 33A, and the negative electrode lead 32 made of copper was welded to the negative electrode current collector 34A.
  • a polymer compound (polyvinylidene fluoride) is dissolved in an organic solvent (N-methyl-2-pyrrolidone) to obtain a solution in which the polymer compound is dissolved in the organic solvent.
  • the solution was applied on both sides of a (12 ⁇ m thick microporous polyethylene film).
  • the substrate layer was immersed in a water bath to phase-separate the solution, and then the substrate layer was dried with warm air. Thereby, since the high molecular compound layer was formed on both surfaces of the base material layer, the separator 35 was obtained.
  • the positive electrode 33 and the negative electrode 34 were laminated through the separator 35 to obtain a laminate. Then, after winding a laminated body to a longitudinal direction, the wound electrode body 30 was produced by affixing the protective tape 37 on the outermost peripheral part of the laminated body.
  • the exterior member 40 is an aluminum laminated film in which a 25 ⁇ m thick nylon film, a 40 ⁇ m thick aluminum foil, and a 30 ⁇ m thick polypropylene film are laminated in this order from the outside.
  • a window film 43 containing a window functional material is attached to the exterior body 41 via the adhesive 44 so as to cover the opening 41K provided in the non-adhesion region 41X of the exterior body 41.
  • the exterior member 40 provided with the window portion 42 was used.
  • the exterior member 40 provided with the protective layer 46 by sticking the protective layer 46 to the window film 43 via the adhesive 46 was used.
  • an exterior member 40 not provided with a window portion 42 was used.
  • the exterior member 40 in which the window film 43 contains materials other than a window functional material was used for the comparison.
  • the material of the window film 43 is as follows. Non-porous PFA, non-porous FEP and non-porous ETFE were used as the window functional material (non-porous molten fluororesin). As materials other than the window functional material, porous PFA, polypropylene (PP) and polyethylene terephthalate (PET) were used.
  • porous polytetrafluoroethylene PTFE
  • the surface of the window film 43 was pretreated.
  • the surface of the window film 43 is reformed (so-called fluorobonder treatment) by spraying the surface of the window film 43 with a pretreatment agent (a fluororesin surface treatment agent fluorobonder E manufactured by Technos Co., Ltd.). did.
  • a pretreatment agent a fluororesin surface treatment agent fluorobonder E manufactured by Technos Co., Ltd.
  • the surface of the exterior body 41 was pretreated.
  • an undercoat PPX primer manufactured by Cemedine Co., Ltd.
  • the pretreatment surface of the window film 43 and the pretreatment surface of the exterior main body 41 were bonded via an adhesive 44 (PPX manufactured by Cemedine Co., Ltd.).
  • the window film 43 containing a material other than the window functional material is attached to the exterior main body 41 via the adhesive 44
  • the window film 43 containing the window functional material is attached to the exterior main body 41 via the adhesive 44.
  • a similar procedure was used.
  • the scratching state on the outermost surface of the window portion 42 was visually confirmed by performing a scratch test in accordance with JIS K5400-5-4.
  • “A” indicates that no scratch is generated on the outermost surface of the window portion 42
  • “B” indicates that the scratch is generated on the outermost surface of the window portion 42
  • the case where the window portion 42 was damaged was evaluated as “C”.
  • the outermost surface of the window portion 42 is the surface of the window film 43 when the protective layer 46 is not provided, and the surface of the protective layer 46 when the protective layer 46 is provided.
  • the adhesion strength of the window film 43 was confirmed by performing an adhesion test based on JIS K7127: 1999. As a result, the case where the window film 43 did not peel was evaluated as “A”, and the case where the window film 43 peeled was evaluated as “C”.
  • each of the capacity maintenance rate and the thickness change rate varied greatly depending on the material of the window film 43.
  • window functional materials non-porous PFA, non-porous FEP, and non-porous ETFE
  • the rate of change in thickness was significantly reduced while the capacity maintenance rate was substantially maintained.
  • the window portion 42 windshield film 43 including a window functional material
  • the gas generated inside the secondary battery is released to the outside. This indicates that it is difficult for water to enter the inside of the battery, so that the discharge capacity is hardly reduced.
  • Example 2-1 to 2-4 As shown in Table 2, Experimental Examples 1-1 to 1-15 except that a window portion 47 (window film 48) is provided in the adhesion region 41Y instead of the non-adhesion region 41X of the exterior body 41.
  • the laminate film type lithium ion secondary battery shown in FIG. 8 to FIG. 10 was produced by the same procedure as described above, and the battery characteristics of the secondary battery were evaluated.
  • both surfaces of the window film 48 were modified (fluorobonder treatment) by spraying a pretreatment agent (a fluororesin surface treatment agent fluorobonder E manufactured by Technos Co., Ltd.) on both surfaces of the window film 48. . Subsequently, each of the surface of the exterior part 41A and the surface of the exterior part 41B was pretreated.
  • a pretreatment agent a fluororesin surface treatment agent fluorobonder E manufactured by Technos Co., Ltd.
  • an undercoat (PPX primer manufactured by Cemedine Co., Ltd.) was applied to the surface of the exterior portion 41A, and a similar undercoat was applied to the surface of the exterior portion 41B.
  • the pretreatment surface of the window film 48 and the pretreatment surface of the exterior portion 41A are bonded to each other via an adhesive 49 (PPX manufactured by Cemedine Co., Ltd.), and the window film is attached via the same adhesive 49.
  • the 48 pretreatment surfaces and the pretreatment surface of the exterior portion 41B were adhered to each other.
  • the window 47 is provided in the bonded area 41Y (Table 2)
  • the same result as in the case where the window 42 is provided in the non-bonded area 41X (Table 1) was obtained. That is, when the window 47 is provided and a window functional material is used as a material for forming the window film 48 (Experimental Examples 2-1 to 2-41), the window 47 is not provided (Experimental Example 1). ⁇ 12) and a case where a material other than the window functional material is used as a material for forming the window film 48 (Experimental Examples 1-13 to 1-15), a high capacity retention rate is obtained, and a thickness change rate is obtained. Decreased significantly.
  • the wound electrode body is accommodated in the film-shaped exterior member, and the window portion containing the window functional material (non-porous molten fluororesin) is included in the exterior member.
  • the capacity maintenance characteristic and the swollenness characteristic of the secondary battery were improved while ensuring the physical durability characteristic and adhesion characteristic of the exterior member. Therefore, excellent battery characteristics were obtained in the secondary battery.
  • the structure of the battery element in the secondary battery of the present technology is not particularly limited.
  • the battery element may have another structure such as a laminated structure.
  • the secondary battery lithium ion secondary battery in which the capacity of the negative electrode can be obtained by occlusion and release of lithium
  • the secondary battery (lithium metal secondary battery) in which the capacity of the negative electrode can be obtained by precipitation dissolution of lithium have been described.
  • the principle of obtaining the capacity of the negative electrode in the secondary battery of the present technology is not particularly limited. Specifically, for example, by making the capacity of the negative electrode material capable of occluding and releasing lithium smaller than the capacity of the positive electrode, the secondary battery can be obtained by the sum of the capacity due to the occlusion and release of lithium and the capacity due to the precipitation dissolution of lithium.
  • a secondary battery or the like that can obtain the capacity of the negative electrode may be used.
  • the electrode reactant may be another group 1 element in the long-period periodic table such as sodium (Na) and potassium (K), or may be a long-period periodic table such as magnesium (Mg) and calcium (Ca). Group 2 elements may be used, or other light metals such as aluminum (Al) may be used.
  • the electrode reactant may be an alloy containing any one or more of the series of elements described above.
  • this technique can also take the following structures.
  • a battery element comprising a positive electrode, a negative electrode and an electrolyte;
  • a secondary battery comprising the battery element and a film-shaped exterior member having a window portion containing a non-porous molten fluororesin.
  • the non-porous molten fluororesin includes non-porous tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), non-porous tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and non-porous tetrafluoro.
  • the secondary battery as described in said (1).
  • the exterior member has an opening, The window portion is formed by covering at least the opening with a film-like window member containing the non-porous molten fluororesin, The secondary battery according to (1) or (2) above.
  • the window member has an area larger than the area of the opening, and is attached to the exterior member via an adhesive.
  • a protective layer containing a material having air permeability is provided on the window member.
  • the window member has a thickness of 10 ⁇ m or more and 500 ⁇ m or less, The secondary battery according to any one of (3) to (5) above.
  • the exterior member is A first exterior member that covers the battery element from one side; A second exterior member that covers the battery element from the other side, The window portion is formed by bonding a part of the first exterior member and a part of the second exterior member to each other via a film-like window member containing the non-porous molten fluororesin. Being The secondary battery according to (1) or (2) above.
  • the window member is attached to each of the first exterior member and the second exterior member via an adhesive.
  • the secondary battery according to (7) above. (9)
  • the window member has a thickness of 10 ⁇ m or more and 500 ⁇ m or less, The secondary battery according to (7) or (8) above.
  • a lithium ion secondary battery The secondary battery according to any one of (1) to (9).
  • a power tool comprising: a movable part to which electric power is supplied from the secondary battery.
  • An electronic device comprising the secondary battery according to any one of (1) to (10) as a power supply source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

A secondary cell is provided with: a cell element containing a positive electrode, a negative electrode, and an electrolyte; and a film-type exterior member that stores that cell element, and which has a window part containing a non-porous melted fluororesin.

Description

二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
 本技術は、フィルム状の外装部材を用いた二次電池、ならびにその二次電池を用いた電池パック、電動車両、電力貯蔵システム、電動工具および電子機器に関する。 The present technology relates to a secondary battery using a film-shaped exterior member, and a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device using the secondary battery.
 携帯電話機および携帯情報端末機器(PDA)などの多様な電子機器が広く普及しており、その電子機器の小型化、軽量化および長寿命化が要望されている。そこで、電源として、電池、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。 Various electronic devices such as mobile phones and personal digital assistants (PDAs) are widely used, and there is a demand for downsizing, weight reduction, and long life of the electronic devices. Therefore, development of a battery, particularly a secondary battery that is small and lightweight and capable of obtaining a high energy density is underway as a power source.
 二次電池は、上記した電子機器に限らず、他の用途への適用も検討されている。一例を挙げると、電子機器などに着脱可能に搭載される電池パック、電気自動車などの電動車両、家庭用電力サーバなどの電力貯蔵システム、および電動ドリルなどの電動工具である。 Secondary batteries are not limited to the electronic devices described above, but are also being considered for other uses. For example, a battery pack detachably mounted on an electronic device, an electric vehicle such as an electric vehicle, an electric power storage system such as a household electric power server, and an electric tool such as an electric drill.
 ラミネートフィルム型の二次電池は、フィルム状の外装部材を用いた二次電池である。ラミネートフィルム型の二次電池では、フィルム状の外装部材の内部に電池素子が収納されていると共に、その電池素子は、正極、負極および電解液などを含んでいる。 The laminated film type secondary battery is a secondary battery using a film-shaped exterior member. In a laminated film type secondary battery, a battery element is housed inside a film-shaped exterior member, and the battery element includes a positive electrode, a negative electrode, an electrolytic solution, and the like.
 フィルム状の外装部材は、柔軟性を有しているため、外力に応じて変形しやすい性質を有している。このため、ラミネートフィルム型の二次電池では、その二次電池の内部においてガスが発生すると、フィルム状の外装部材の変形に起因して二次電池が膨らみやすい傾向にある。 Since the film-shaped exterior member has flexibility, it has a property of being easily deformed according to an external force. For this reason, in a laminated film type secondary battery, when gas is generated inside the secondary battery, the secondary battery tends to swell due to deformation of the film-shaped exterior member.
 このように二次電池が膨れることを抑制するために、さまざまな検討がなされている。具体的には、二次電池の内部において発生したガスを外部に放出するために、フィルム状の外装部材に安全弁などが設けられている(例えば、特許文献1~4参照。)。 Various studies have been made to prevent the secondary battery from expanding in this way. Specifically, in order to release the gas generated inside the secondary battery to the outside, a safety valve or the like is provided on the film-shaped exterior member (see, for example, Patent Documents 1 to 4).
特開2007-087922号公報JP 2007-087922 A 特開2007-157678号公報JP 2007-157678 A 特開2007-265725号公報JP 2007-265725 A 特開2014-211994号公報JP 2014-211994 A
 電子機器などは、益々、高性能化および多機能化している。このため、電子機器などの使用頻度は増加していると共に、その電子機器などの使用環境は拡大している。よって、二次電池の膨れ特性などを含む電池特性に関しては、未だ改善の余地がある。 Electronic devices are becoming more sophisticated and multifunctional. For this reason, the use frequency of electronic devices and the like is increasing, and the use environment of the electronic devices and the like is expanding. Therefore, there is still room for improvement regarding battery characteristics including the swelling characteristics of the secondary battery.
 したがって、優れた電池特性を得ることが可能な二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器を提供することが望ましい。 Therefore, it is desirable to provide a secondary battery, a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device that can obtain excellent battery characteristics.
 本技術の一実施形態の二次電池は、正極、負極および電解液を含む電池素子と、その電池素子を収納すると共に非多孔質の溶融フッ素樹脂を含む窓部を有するフィルム状の外装部材とを備えたものである。 A secondary battery according to an embodiment of the present technology includes a battery element including a positive electrode, a negative electrode, and an electrolyte, and a film-shaped exterior member that houses the battery element and includes a window portion that includes a non-porous molten fluororesin. It is equipped with.
 本技術の一実施形態の電池パック、電動車両、電力貯蔵システム、電動工具および電子機器のそれぞれは、二次電池を備え、その二次電池が上記した本技術の一実施形態の二次電池と同様の構成を有するものである。 Each of the battery pack, the electric vehicle, the power storage system, the electric tool, and the electronic device according to the embodiment of the present technology includes a secondary battery, and the secondary battery includes the secondary battery according to the embodiment of the present technology described above. It has the same configuration.
 ここで、「窓部」とは、フィルム状の外装部材の一部であり、電池素子が収納されている内部環境および電池素子が収納されていない外部環境のそれぞれに露出している。内部環境は、フィルム状の外装部材の内部の環境であると共に、外部環境は、フィルム状の外装部材の外部の環境である。 Here, the “window” is a part of the film-shaped exterior member, and is exposed to each of the internal environment in which the battery element is accommodated and the external environment in which the battery element is not accommodated. The internal environment is an environment inside the film-shaped exterior member, and the external environment is an environment outside the film-shaped exterior member.
 本技術の一実施形態の二次電池によれば、フィルム状の外装部材の内部に電池素子が収納されており、非多孔質の溶融フッ素樹脂を含む窓部が外装部材に設けられているので、優れた電池特性を得ることができる。また、本技術の一実施形態の電池パック、電動車両、電力貯蔵システム、電動工具または電子機器においても、同様の効果を得ることができる。 According to the secondary battery of one embodiment of the present technology, the battery element is housed in the film-shaped exterior member, and the window portion including the non-porous molten fluororesin is provided in the exterior member. Excellent battery characteristics can be obtained. The same effect can also be obtained in the battery pack, the electric vehicle, the power storage system, the electric tool, or the electronic device according to the embodiment of the present technology.
 なお、ここに記載された効果は、必ずしも限定されるわけではなく、本技術中に記載されたいずれの効果であってもよい。 In addition, the effect described here is not necessarily limited, and may be any effect described in the present technology.
本技術の第1実施形態の二次電池の構成(外装部材の貼り合わせ前の状態)を表す斜視図である。It is a perspective view showing the structure (state before bonding of an exterior member) of the secondary battery of 1st Embodiment of this technique. 図1に示した二次電池の他の構成(外装部材の貼り合わせ後の状態)を表す斜視図である。It is a perspective view showing the other structure (state after bonding of an exterior member) of the secondary battery shown in FIG. 図1に示したA-A線に沿った外装部材の構成を表す断面図である。FIG. 2 is a cross-sectional view illustrating a configuration of an exterior member along line AA illustrated in FIG. 1. 図1に示したB-B線に沿った巻回電極体の構成を表す断面図である。FIG. 2 is a cross-sectional view illustrating a configuration of a wound electrode body taken along line BB illustrated in FIG. 1. 二次電池の構成に関する第1変形例を説明するための斜視図である。It is a perspective view for demonstrating the 1st modification regarding the structure of a secondary battery. 二次電池の構成に関する第2変形例を説明するための斜視図である。It is a perspective view for demonstrating the 2nd modification regarding the structure of a secondary battery. 二次電池の構成に関する第3変形例を説明するための斜視図である。It is a perspective view for demonstrating the 3rd modification regarding the structure of a secondary battery. 本技術の第2実施形態の二次電池の構成(外装部材の貼り合わせ後の状態)を表す斜視図である。It is a perspective view showing the structure (state after bonding of an exterior member) of the secondary battery of 2nd Embodiment of this technique. 図8に示したC-C線に沿った外装部材の構成を表す断面図である。FIG. 9 is a cross-sectional view illustrating a configuration of an exterior member along the line CC illustrated in FIG. 8. 図8に示したD-D線に沿った外装部材の構成を表す断面図である。FIG. 9 is a cross-sectional view illustrating a configuration of an exterior member along the line DD illustrated in FIG. 8. 二次電池の適用例(電池パック:単電池)の構成を表す斜視図である。It is a perspective view showing the structure of the application example (battery pack: single cell) of a secondary battery. 図11に示した電池パックの構成を表すブロック図である。It is a block diagram showing the structure of the battery pack shown in FIG. 二次電池の適用例(電池パック:組電池)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (battery pack: assembled battery) of a secondary battery. 二次電池の適用例(電動車両)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric vehicle) of a secondary battery. 二次電池の適用例(電力貯蔵システム)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric power storage system) of a secondary battery. 二次電池の適用例(電動工具)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric tool) of a secondary battery.
 以下、本技術の一実施形態に関して、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池(第1実施形態)
  1-1.リチウムイオン二次電池
  1-2.リチウム金属二次電池
  1-3.変形例
 2.二次電池(第2実施形態)
  2-1.リチウムイオン二次電池
  2-2.リチウム金属二次電池
  2-3.変形例
 3.二次電池の用途
  3-1.電池パック(単電池)
  3-2.電池パック(組電池)
  3-3.電動車両
  3-4.電力貯蔵システム
  3-5.電動工具
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The order of explanation is as follows.

1. Secondary battery (first embodiment)
1-1. Lithium ion secondary battery 1-2. Lithium metal secondary battery 1-3. Modification 2 Secondary battery (second embodiment)
2-1. Lithium ion secondary battery 2-2. Lithium metal secondary battery 2-3. Modified example 3. Applications of secondary batteries 3-1. Battery pack (single cell)
3-2. Battery pack (assembled battery)
3-3. Electric vehicle 3-4. Electric power storage system 3-5. Electric tool
<1.二次電池(第1実施形態)>
 まず、第1実施形態の二次電池に関して説明する。
<1. Secondary Battery (First Embodiment)>
First, the secondary battery of the first embodiment will be described.
<1-1.リチウムイオン二次電池>
 ここで説明する二次電池は、例えば、電極反応物質であるリチウムの吸蔵放出により負極の容量が得られるリチウムイオン二次電池である。
<1-1. Lithium ion secondary battery>
The secondary battery described here is, for example, a lithium ion secondary battery in which the capacity of the negative electrode is obtained by occlusion and release of lithium, which is an electrode reactant.
 図1および図2のそれぞれは、本実施形態の二次電池の斜視構成を表している。ただし、図1では、外装部材40の貼り合わせ前の状態を示していると共に、巻回電極体30と外装部材40とを互いに離間させている。図2では、外装部材40の貼り合わせ後の状態を示している。 FIG. 1 and FIG. 2 each show a perspective configuration of the secondary battery of the present embodiment. However, FIG. 1 shows a state before the exterior member 40 is bonded, and the wound electrode body 30 and the exterior member 40 are separated from each other. FIG. 2 shows a state after the exterior member 40 is bonded.
 図3は、図1に示したA-A線に沿った外装部材40の断面構成を表している。図4は、図1に示したB-B線に沿った巻回電極体30の断面構成を表している。 FIG. 3 shows a cross-sectional configuration of the exterior member 40 along the line AA shown in FIG. FIG. 4 shows a cross-sectional configuration of the spirally wound electrode body 30 along the line BB shown in FIG.
[全体構成]
 この二次電池は、フィルム状の外装部材40を用いたラミネートフィルム型の二次電池である。ラミネートフィルム型の二次電池では、例えば、図1~図3に示したように、窓部42を有する外装部材40の内部に、電池素子である巻回電極体30が収納されている。窓部42の詳細に関しては、後述する。
[overall structure]
This secondary battery is a laminated film type secondary battery using a film-like exterior member 40. In a laminated film type secondary battery, for example, as shown in FIGS. 1 to 3, a wound electrode body 30 as a battery element is housed inside an exterior member 40 having a window portion 42. Details of the window 42 will be described later.
 巻回電極体30では、例えば、図4に示したように、セパレータ35および電解質層36を介して正極33および負極34が積層されたのち、その正極33、負極34、セパレータ35および電解質層36が巻回されている。すなわち、外装部材40の内部に収納されている巻回電極体30は、正極33、負極34および電解質層36を含んでおり、その電解質層36は、後述する電解液を含んでいる。巻回電極体30の最外周部は、例えば、保護テープ37により保護されている。 In the wound electrode body 30, for example, as shown in FIG. 4, after the positive electrode 33 and the negative electrode 34 are laminated via the separator 35 and the electrolyte layer 36, the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36 are stacked. Is wound. That is, the spirally wound electrode body 30 housed inside the exterior member 40 includes a positive electrode 33, a negative electrode 34, and an electrolyte layer 36, and the electrolyte layer 36 includes an electrolyte solution described later. The outermost peripheral part of the wound electrode body 30 is protected by a protective tape 37, for example.
 正極33には、正極リード31が取り付けられており、その正極リード31は、外装部材40の内部から外部に向かって導出されている。この正極リード31は、例えば、アルミニウム(Al)などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の形状は、特に限定されないが、例えば、薄板状または網目状である。 The positive electrode lead 31 is attached to the positive electrode 33, and the positive electrode lead 31 is led out from the inside of the exterior member 40 to the outside. The positive electrode lead 31 includes, for example, any one type or two or more types of conductive materials such as aluminum (Al). The shape of the conductive material is not particularly limited, and is, for example, a thin plate shape or a mesh shape.
 負極34には、負極リード32が取り付けられており、その負極リード32は、外装部材40の内部から外部に向かって導出されている。負極リード32は、例えば、銅(Cu)、ニッケル(Ni)およびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の形状は、例えば、正極リード31に関して説明した場合と同様である。 The negative electrode lead 32 is attached to the negative electrode 34, and the negative electrode lead 32 is led out from the inside of the exterior member 40 to the outside. The negative electrode lead 32 includes any one type or two or more types of conductive materials such as copper (Cu), nickel (Ni), and stainless steel. The shape of the conductive material is the same as that described for the positive electrode lead 31, for example.
 なお、図2では、正極リード31および負極リード32のそれぞれの図示を省略している。正極リード31および負極リード32のそれぞれは、例えば、図1から明らかなように、外装部材40の内部から外部に向かって同一方向に導出されている。 In FIG. 2, the positive electrode lead 31 and the negative electrode lead 32 are not shown. Each of the positive electrode lead 31 and the negative electrode lead 32 is led out in the same direction from the inside of the exterior member 40 to the outside, as is apparent from FIG. 1, for example.
[外装部材]
 外装部材40は、上記したように、巻回電極体30を収納している。この外装部材40は、フィルム状であるため、柔軟性を有している。
[Exterior material]
The exterior member 40 houses the wound electrode body 30 as described above. Since the exterior member 40 is in the form of a film, it has flexibility.
 特に、外装部材40は、例えば、図1~図3に示したように、上記した窓部42が設けられた外装本体41を含んでいる。 In particular, the exterior member 40 includes an exterior body 41 provided with the window portion 42 as described above, for example, as shown in FIGS.
(外装本体)
 外装本体41は、外装部材40の本体であり、フィルム状の部材である。外装本体41の構成は、特に限定されないが、その外装本体41は、例えば、接着層を含む多層フィルム(ラミネートフィルム)である。
(External body)
The exterior body 41 is a body of the exterior member 40 and is a film-like member. The configuration of the exterior body 41 is not particularly limited, but the exterior body 41 is, for example, a multilayer film (laminate film) including an adhesive layer.
 具体的には、外装本体41は、例えば、内側から順に、接着層と、金属層と、表面保護層とがこの順に積層されたラミネートフィルムである。この場合には、例えば、外装本体41のうちの接着層同士が巻回電極体30を介して互いに接着されることにより、外装部材40の内部に巻回電極体30が収納される。 Specifically, the exterior body 41 is, for example, a laminate film in which an adhesive layer, a metal layer, and a surface protective layer are laminated in this order from the inside. In this case, for example, the wound electrode body 30 is accommodated in the exterior member 40 by bonding the adhesive layers of the exterior body 41 to each other via the wound electrode body 30.
 接着方法として熱融着法が用いられる場合の接着層は、例えば、融着層である。この融着層は、例えば、ポリエチレンおよびポリプロピレンなどの高分子化合物うちのいずれか1種類または2種類以上を含むフィルムである。金属層は、例えば、アルミニウムなどの金属材料のうちのいずれか1種類または2種類以上を含む金属箔である。表面保護層は、例えば、ナイロンおよびポリエチレンテレフタレートなどの高分子化合物のうちのいずれか1種類または2種類以上を含むフィルムである。 When the heat fusion method is used as the adhesion method, the adhesion layer is, for example, a fusion layer. This fusion layer is, for example, a film containing one or more of polymer compounds such as polyethylene and polypropylene. A metal layer is metal foil containing any 1 type or 2 types or more of metal materials, such as aluminum, for example. The surface protective layer is, for example, a film containing any one or more of polymer compounds such as nylon and polyethylene terephthalate.
 中でも、外装本体41は、例えば、内側から順に、ポリエチレンフィルムと、アルミニウム箔と、ナイロンフィルムとがこの順に積層されたアルミラミネートフィルムであることが好ましい。十分な接着性および十分な気密性などが得られるからである。 Especially, it is preferable that the exterior body 41 is an aluminum laminated film in which, for example, a polyethylene film, an aluminum foil, and a nylon film are laminated in this order from the inside. This is because sufficient adhesiveness and sufficient airtightness can be obtained.
 この外装本体41は、例えば、図1~図3に示したように、巻回電極体30を一方(ここでは上方)から被覆する第1外装部材である外装部41Aと、その巻回電極体30を他方(ここでは下方)から被覆する第2外装部材である外装部41Bとを含んでいる。外装部41Aの形成材料と外装部41Bの形成材料とは、互いに同じでもよいし、互いに異なってもよい。 As shown in FIGS. 1 to 3, for example, the exterior body 41 includes an exterior portion 41A that is a first exterior member that covers the wound electrode body 30 from one side (here, the upper side), and the wound electrode body. The exterior part 41B which is the 2nd exterior member which coat | covers 30 from the other (here below) is included. The forming material of the exterior portion 41A and the forming material of the exterior portion 41B may be the same as each other or different from each other.
 この場合には、例えば、外装部41A,41Bの間に巻回電極体30が挟まれた状態において、外装部41Aの一部と外装部41Bの一部とが互いに接着されることにより、その巻回電極体30が外装部材40の内部に収納されている。外装部41Aの一部は、例えば、その外装部41Aの外縁部であると共に、外装部41Bの一部は、例えば、その外装部41Bの外縁部である。 In this case, for example, in a state where the wound electrode body 30 is sandwiched between the exterior parts 41A and 41B, a part of the exterior part 41A and a part of the exterior part 41B are bonded to each other, The wound electrode body 30 is housed inside the exterior member 40. A part of the exterior part 41A is, for example, an outer edge part of the exterior part 41A, and a part of the exterior part 41B is, for example, an outer edge part of the exterior part 41B.
 これに伴い、外装本体41は、外装部材40の内部に巻回電極体30を収納するために外装部41A,41Bが互いに接着されていない非接着領域41Xと、その外装部材40を封止するために外装部41A,41Bが互いに接着されている接着領域41Yとを含んでいる。例えば、図1および図2に示したように、接着領域41Yは、外装部41A,41Bのそれぞれのうちの外縁領域であると共に、非接着領域41Xは、外装部41A,41Bのそれぞれのうちの外縁領域以外の領域(外縁領域により囲まれた中央領域)である。 Accordingly, the exterior body 41 seals the exterior member 40 and the non-adhesive region 41X where the exterior portions 41A and 41B are not bonded to each other in order to accommodate the wound electrode body 30 inside the exterior member 40. For this reason, the exterior portions 41A and 41B include an adhesion region 41Y where the exterior portions 41A and 41B are adhered to each other. For example, as shown in FIG. 1 and FIG. 2, the adhesion region 41Y is an outer edge region of each of the exterior portions 41A and 41B, and the non-adhesion region 41X is one of the exterior portions 41A and 41B. It is an area other than the outer edge area (a central area surrounded by the outer edge area).
 外装部41A,41Bは、例えば、互いに分離されていてもよいし、互いに連結(一体化)されていてもよい。外装部41A,41Bが互いに分離されている場合の外装本体41は、例えば、2枚のフィルムである。一方、外装部41A,41Bが互いに連結されている場合の外装本体41は、例えば、1枚のフィルムである。 The exterior parts 41A and 41B may be separated from each other or may be connected (integrated) to each other. The exterior body 41 when the exterior portions 41A and 41B are separated from each other is, for example, two films. On the other hand, the exterior body 41 when the exterior portions 41A and 41B are connected to each other is, for example, a single film.
 ここでは、例えば、外装部41A,41Bが互いに連結されているため、外装本体41は1枚のフィルムである。この1枚のフィルムは、もともと1枚のフィルムでもよいし、2枚のフィルムが連結された複合フィルムでもよい。これに伴い、外装本体41は、例えば、図1に示した矢印Rの方向に折り畳み可能である。この場合には、外装本体41が折り畳まれることにより、上記したように、外装部41Aが上方から巻回電極体30を被覆すると共に外装部41Bが下方から巻回電極体30を被覆するため、その巻回電極体30が外装部材40の内部に収納される。 Here, for example, since the exterior portions 41A and 41B are connected to each other, the exterior body 41 is a single film. The single film may be originally a single film or a composite film in which two films are connected. Accordingly, the exterior body 41 can be folded, for example, in the direction of the arrow R shown in FIG. In this case, since the exterior body 41 is folded, as described above, the exterior portion 41A covers the wound electrode body 30 from above and the exterior portion 41B covers the wound electrode body 30 from below. The wound electrode body 30 is housed inside the exterior member 40.
 なお、外装部41Aには、例えば、巻回電極体30を収納するための窪み部41Pが設けられている。これに伴い、外装部41Aは、例えば、窪み部41Pが設けられている箇所において、外側に向かって部分的に突出している。外装部41Aに窪み部41Pが設けられているのは、外装本体41に対して巻回電極体30を位置合わせしやすくなると共に、外装部材40の内部に巻回電極体30を収納しやすくなるからである。 Note that the exterior portion 41A is provided with, for example, a recessed portion 41P for accommodating the wound electrode body 30. Accordingly, the exterior portion 41A partially protrudes outward, for example, at a location where the recessed portion 41P is provided. The recess 41P is provided in the exterior part 41A, so that the wound electrode body 30 can be easily positioned with respect to the exterior body 41 and the wound electrode body 30 can be easily housed inside the exterior member 40. Because.
 外装部材40の内部に巻回電極体30が収納された状態において、その外装部材40を封止するために、例えば、密着フィルム50が用いられている。具体的には、例えば、外装本体41(外装部41A,41B)と正極リード31との間に密着フィルム50が挿入されていると共に、同様に外装本体41と負極リード32との間に密着フィルム50が挿入されている。 In the state where the wound electrode body 30 is housed inside the exterior member 40, for example, an adhesive film 50 is used to seal the exterior member 40. Specifically, for example, the adhesion film 50 is inserted between the exterior body 41 (the exterior portions 41A and 41B) and the positive electrode lead 31, and the adhesion film is similarly disposed between the exterior body 41 and the negative electrode lead 32. 50 is inserted.
 この密着フィルム50は、外装部材40の内部に外気が侵入することを防止するために、密着性材料のうちのいずれか1種類または2種類以上を含んでいる。密着性材料は、正極リード31および負極リード32のそれぞれに対して密着性を有する材料であり、例えば、ポリオレフィン樹脂などである。ポリオレフィン樹脂の種類は、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび変性ポリプロピレンなどである。 The adhesive film 50 includes one or more of the adhesive materials in order to prevent outside air from entering the exterior member 40. The adhesive material is a material having adhesiveness to each of the positive electrode lead 31 and the negative electrode lead 32, and is, for example, a polyolefin resin. The type of polyolefin resin is not particularly limited, and examples thereof include polyethylene, polypropylene, modified polyethylene, and modified polypropylene.
(窓部)
 窓部42は、主に、外装部材40の外部から内部に水が侵入することを抑制する機能(防水機能)を果たすと共に、その外装部材40の内部において発生したガスを外部に放出する機能(排気機能)を果たす。ここで説明する水は、例えば、二次電池の外部に存在する水および水蒸気などである。また、ガスは、例えば、電解液の分解反応などの副反応に起因して発生した炭酸ガス(二酸化炭素)などである。
(Window)
The window portion 42 mainly functions to prevent water from entering the inside of the exterior member 40 from the outside (waterproof function) and also releases the gas generated inside the exterior member 40 to the outside ( Exhaust function). The water described here is, for example, water and water vapor existing outside the secondary battery. The gas is, for example, carbon dioxide gas (carbon dioxide) generated due to a side reaction such as a decomposition reaction of the electrolytic solution.
 この窓部42は、上記したように、外装部材40の一部であると共に、図3に示したように、内部環境E1および外部環境E2のそれぞれに露出している。 As described above, the window portion 42 is a part of the exterior member 40 and is exposed to each of the internal environment E1 and the external environment E2 as shown in FIG.
 内部環境E1は、巻回電極体30が収納されている環境(外装部材40の内部の環境)である。このため、内部環境E1は、外装部材40の内部に巻回電極体30が収納されることにより形成される。一方、外部環境E2は、巻回電極体30が収納されていない環境(外装部材40の外部の環境)である。すなわち、窓部42は、外部環境E2から内部環境E1に水が侵入することを抑制しながら、その内部環境E1から外部環境E2にガスを放出する。 The internal environment E1 is an environment in which the wound electrode body 30 is housed (an environment inside the exterior member 40). For this reason, the internal environment E <b> 1 is formed by housing the wound electrode body 30 inside the exterior member 40. On the other hand, the external environment E2 is an environment in which the wound electrode body 30 is not housed (an environment outside the exterior member 40). That is, the window 42 releases gas from the internal environment E1 to the external environment E2 while suppressing water from entering the internal environment E1 from the external environment E2.
 外装部材40(外装本体41)が窓部42を有しているのは、その窓部42の防水機能を利用して、水に起因するサイクル特性などの低下を抑制しながら、その窓部42の排気機能を利用して、二次電池の膨れを抑制するためである。この場合には、安全弁などの機械、器具および装置などを用いる必要がないため、サイクル特性などの低下を容易に抑制することができると共に、二次電池の膨れを容易に抑制することもできる。 The exterior member 40 (exterior body 41) has the window portion 42 by using the waterproof function of the window portion 42 and suppressing deterioration of cycle characteristics and the like caused by water while the window portion 42 This is to suppress the swelling of the secondary battery by utilizing the exhaust function of the secondary battery. In this case, since it is not necessary to use a machine such as a safety valve, an instrument, and an apparatus, it is possible to easily suppress the deterioration of the cycle characteristics and the like, and it is also possible to easily suppress the swelling of the secondary battery.
 上記した防水機能および排気機能を発揮することができれば、窓部42の数、位置および構成は、特に限定されない。 As long as the waterproof function and the exhaust function described above can be exhibited, the number, position, and configuration of the window 42 are not particularly limited.
 具体的には、窓部42の数は、1個だけでもよいし、2個以上でもよい。ここでは、窓部42の数は、例えば、1個である。 Specifically, the number of window portions 42 may be only one, or two or more. Here, the number of the window parts 42 is one, for example.
 また、窓部42の位置は、任意でよい。ここでは、窓部42は、例えば、外装本体41(外装部41A)のうちの窪み部41Pに設けられている。より具体的には、例えば、窪み部41Pが1つの上面41PTおよび4つの側面41PSを有している場合において、窓部42は、その上面41PTに設けられている。 Further, the position of the window 42 may be arbitrary. Here, the window part 42 is provided in the hollow part 41P of the exterior main body 41 (exterior part 41A), for example. More specifically, for example, in the case where the depression 41P has one upper surface 41PT and four side surfaces 41PS, the window 42 is provided on the upper surface 41PT.
 すなわち、窓部42は、例えば、外装本体41のうちの非接着領域41Xに設けられている。 That is, the window part 42 is provided in the non-adhesion area | region 41X of the exterior main body 41, for example.
 また、例えば、外装本体41に開口部41Kが設けられており、フィルム状の窓部材である窓フィルム43が開口部41Kを被覆(閉塞)することにより、窓部42が形成されている。すなわち、窓部42は、例えば、後述する窓機能材料(非多孔質の溶融フッ素樹脂)を含むと共に開口部41Kを閉塞する窓フィルム43を含んでいる。図1および図2のそれぞれでは、窓フィルム43を識別しやすくするために、その窓部43に網掛けを施している。 Further, for example, an opening 41K is provided in the exterior body 41, and the window 42 is formed by covering (closing) the opening 41K with a window film 43 that is a film-like window member. That is, the window part 42 contains the window film 43 which obstruct | occludes the opening part 41K while containing the window functional material (non-porous molten fluororesin) mentioned later, for example. In each of FIG. 1 and FIG. 2, the window 43 is shaded to make it easy to identify the window film 43.
 開口部41Kは、内部環境E1と外部環境E2とを互いに連通させる貫通口である。開口部41Kの開口形状は、特に限定されないため、例えば、円形でもよいし、楕円形でもよいし、矩形でもよいし、それら以外の形状でもよい。ここでは、開口部41Kの開口形状は、例えば、楕円形である。なお、開口部41Kの大きさ(面積)は、特に限定されないため、任意に設定可能である。 The opening 41K is a through hole that allows the internal environment E1 and the external environment E2 to communicate with each other. The opening shape of the opening 41K is not particularly limited, and may be, for example, a circle, an ellipse, a rectangle, or other shapes. Here, the opening shape of the opening 41K is, for example, an ellipse. The size (area) of the opening 41K is not particularly limited and can be arbitrarily set.
 窓フィルム43は、上記した防水機能および排気機能のそれぞれを有するフィルムである。これに伴い、窓フィルム43は、窓機能材料を含んでいる。「窓機能材料」とは、外装部材40の外部から内部に水が侵入することを抑制することができると共に、その外装部材40の内部から外部にガスを放出できる材料である。より具体的には、窓機能材料は、防水機能を担保するために、水を十分に透過させないバリア膜として機能する材料であると共に、排気機能を担保するために、二酸化炭素などのガスを十分に透過させることができる気体透過性を有する材料である。すなわち、窓機能材料は、水およびガスに関して選択透過性を有する材料である。 The window film 43 is a film having the above waterproof function and exhaust function. Accordingly, the window film 43 includes a window functional material. The “window functional material” is a material that can suppress the intrusion of water from the outside of the exterior member 40 to the inside and can release gas from the interior of the exterior member 40 to the outside. More specifically, the window functional material is a material that functions as a barrier film that does not allow water to sufficiently permeate in order to ensure a waterproof function, and sufficient gas such as carbon dioxide is sufficient to ensure an exhaust function. It is a gas-permeable material that can be permeated through the glass. That is, the window functional material is a material having selective permeability with respect to water and gas.
 この窓機能材料は、非多孔質の溶融フッ素樹脂のうちのいずれか1種類または2種類以上を含んでいる。この非多孔質の溶融フッ素樹脂は、主に、1個または2個以上の細孔を有していないと共に、溶融加工および溶融成型することができる程度の溶融性を有するフッ素樹脂の総称である。 This window functional material contains any one kind or two or more kinds of non-porous molten fluororesins. This non-porous molten fluororesin is a general term for fluororesins that do not have one or two or more pores and that have a meltability enough to be melt processed and melt molded. .
 非多孔質の溶融フッ素樹脂の種類は、特に限定されないが、例えば、非多孔質テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、非多孔質テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)および非多孔質テトラフルオロエチレン・エチレン共重合体(ETFE)などのフッ素系高分子化合物である。これらの特定の種類のフッ素系高分子化合物は、上記した防水機能および排気機能のそれぞれを十分に発揮することができるからである。 The kind of the non-porous molten fluororesin is not particularly limited. For example, non-porous tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), non-porous tetrafluoroethylene / hexafluoropropylene copolymer ( FEP) and non-porous tetrafluoroethylene / ethylene copolymer (ETFE). This is because these specific types of fluorine-based polymer compounds can sufficiently exhibit the waterproof function and the exhaust function described above.
 なお、ポリエチレンテレフタレート(PET)およびポリプロピレン(PP)などの非フッ素系の高分子化合物では、溶融フッ素樹脂と比較して上記した水およびガスに関する選択透過性が低すぎるため、その非フッ素系の高分子化合物は、上記した防水機能および排気機能の双方を発揮できない。また、多孔質PFA、多孔質FEPおよび多孔質ETFEなどは、溶融フッ素樹脂に該当しても、多孔質であるため、上記した防水機能および排気機能の双方を発揮できない。 It should be noted that non-fluorine polymer compounds such as polyethylene terephthalate (PET) and polypropylene (PP) have too low permselectivity with respect to water and gas as described above compared to molten fluororesin, so that the non-fluorine-based high molecular compound. Molecular compounds cannot exhibit both the waterproof function and the exhaust function described above. Moreover, even if porous PFA, porous FEP, porous ETFE, etc. correspond to a molten fluororesin, they are porous and thus cannot exhibit both the waterproof function and the exhaust function described above.
 ここで、高分子化合物が非多孔質であるか否かに関しては、例えば、以下の手順により確認可能である。具体的には、高分子化合物のフィルムを入手したのち、電子顕微鏡などを用いてフィルムの断面を観察する。観察時の倍率は、任意に設定可能である。この結果、フィルムの内部に1個または2個以上の細孔が観察される場合、そのフィルムを形成している高分子化合物は多孔質である。この細孔の状態は、特に限定されないため、例えば、略円形状の空隙でもよいし、所定の方向に延在する管状の経路でもよい。これに対して、フィルムの内部に1個または2個以上の細孔が観察されない場合、そのフィルムを形成している高分子化合物は非多孔質である。 Here, whether or not the polymer compound is non-porous can be confirmed, for example, by the following procedure. Specifically, after obtaining a polymer film, the cross section of the film is observed using an electron microscope or the like. The magnification at the time of observation can be set arbitrarily. As a result, when one or more pores are observed inside the film, the polymer compound forming the film is porous. Since the state of the pore is not particularly limited, for example, it may be a substantially circular gap or a tubular path extending in a predetermined direction. On the other hand, when one or more pores are not observed inside the film, the polymer compound forming the film is non-porous.
 窓フィルム43の平面形状は、特に限定されないため、例えば、円形でもよいし、楕円形でもよいし、矩形でもよいし、それら以外の形状でもよい。すなわち、窓フィルム43の平面形状は、開口部41Kの開口形状と同じでもよいし、開口部41Kの開口形状と異なる形状でもよい。ここでは、窓フィルム43の平面形状は、例えば、開口部41Kの開口形状と同じである。このため、窓フィルム43の平面形状は、例えば、楕円形である。 The planar shape of the window film 43 is not particularly limited, and may be, for example, a circle, an ellipse, a rectangle, or other shapes. That is, the planar shape of the window film 43 may be the same as the opening shape of the opening 41K, or may be a shape different from the opening shape of the opening 41K. Here, the planar shape of the window film 43 is the same as the opening shape of the opening 41K, for example. For this reason, the planar shape of the window film 43 is an ellipse, for example.
 窓フィルム43が開口部41Kを閉塞することができれば、その窓フィルム43の大きさ(面積)は、特に限定されない。すなわち、窓フィルム43の面積は、開口部41Kの開口面積と同じでもよいし、開口部41Kの開口面積より大きくてもよい。 As long as the window film 43 can block the opening 41K, the size (area) of the window film 43 is not particularly limited. That is, the area of the window film 43 may be the same as the opening area of the opening 41K or may be larger than the opening area of the opening 41K.
 中でも、窓フィルム43が窓機能材料(非多孔質の溶融フッ素樹脂)を含んでいることに伴い、その窓フィルム43の面積は、開口部41Kの面積より大きいことが好ましい。外装本体41に窓フィルム43を固定するために、接着剤を用いて外装本体41に窓フィルム43を貼り付けることができるからである。 Especially, it is preferable that the area of the window film 43 is larger than the area of the opening 41K because the window film 43 contains the window functional material (non-porous molten fluororesin). This is because the window film 43 can be attached to the exterior body 41 using an adhesive in order to fix the window film 43 to the exterior body 41.
 具体的には、例えば、図3に示したように、窓フィルム43の面積は、開口部41Kの面積より大きくなっているため、その窓フィルム43は、開口部41Kを閉塞するように接着剤44を介して外装本体41に貼り付けられている。非多孔質の溶融フッ素樹脂を含んでいる窓フィルム43は、一般的に、その非多孔質の溶融フッ素樹脂に特有の耐粘着性などに起因して、他の物体(ここでは外装本体41)に接着されにくい性質を有している。しかしながら、非多孔質の溶融フッ素樹脂との相性(接着性)に優れた接着剤44を選択することにより、その接着剤44を用いて窓フィルム43を外装本体41に十分に接着させることができる。 Specifically, for example, as shown in FIG. 3, since the area of the window film 43 is larger than the area of the opening 41K, the window film 43 is adhesive so as to close the opening 41K. 44 is affixed to the exterior body 41 via 44. The window film 43 containing a non-porous molten fluororesin generally has another object (here, the exterior main body 41) due to the adhesion resistance unique to the non-porous molten fluororesin. It has a property that it is difficult to adhere to. However, by selecting the adhesive 44 excellent in compatibility (adhesiveness) with the non-porous molten fluororesin, the window film 43 can be sufficiently adhered to the exterior body 41 using the adhesive 44. .
 窓フィルム43の設置位置は、特に限定されない。このため、窓フィルム43は、外装本体41の内側(内部環境E1)に配置されていてもよいし、外装本体41の外側(外部環境E2)に配置されていてもよい。 The installation position of the window film 43 is not particularly limited. For this reason, the window film 43 may be disposed inside the exterior body 41 (internal environment E1), or may be disposed outside the exterior body 41 (external environment E2).
 中でも、図3に示したように、窓フィルム43は、外装本体41の内側に配置されていることが好ましい。二次電池の内部においてガスが発生しても、窓フィルム43が意図せずに剥離および脱落することは抑制されるからである。この窓フィルム43は、例えば、接着剤44を介して外装本体41の内側面に接着されている。 In particular, as shown in FIG. 3, the window film 43 is preferably disposed inside the exterior body 41. This is because, even if gas is generated inside the secondary battery, the window film 43 is prevented from unintentionally peeling and dropping. The window film 43 is bonded to the inner surface of the exterior body 41 through an adhesive 44, for example.
 詳細には、二次電池の内部においてガスが発生すると、内圧の上昇に起因して内部環境E1から外部環境E2に向かって窓フィルム43が押される。この場合には、例えば、後述するように、窓フィルム43が外装本体41の外側に配置されていると(図6参照)、窓フィルム43が初めから外部環境E2に位置しており、その窓フィルム43の外側に何も存在していない。よって、内圧の上昇具合によっては、接着剤44が外装本体41および窓フィルム43のうちの一方または双方から剥離すると、その窓フィルム43が外装本体41から剥離する可能性がある。また、窓フィルム43が外装本体41から剥離すると、その窓フィルム43が二次電池から脱落する可能性もある。 Specifically, when gas is generated inside the secondary battery, the window film 43 is pushed from the internal environment E1 toward the external environment E2 due to an increase in internal pressure. In this case, for example, as will be described later, when the window film 43 is disposed outside the exterior body 41 (see FIG. 6), the window film 43 is positioned in the external environment E2 from the beginning, and the window There is nothing on the outside of the film 43. Therefore, depending on how the internal pressure increases, when the adhesive 44 peels from one or both of the exterior body 41 and the window film 43, the window film 43 may peel from the exterior body 41. Moreover, if the window film 43 peels from the exterior body 41, the window film 43 may fall off from the secondary battery.
 これに対して、窓フィルム43が外装本体41の内側に配置されていると(図3参照)、窓フィルム43が内部環境E1に位置しており、その窓フィルム43の外側に外装本体41が存在している。この場合には、窓フィルム43と外装本体41とが互いに重なっている場所において、その外装本体41により内部環境E1に留まるように窓フィルム43が押さえられる。よって、接着剤44が外装本体41および窓フィルム43のそれぞれから剥離しにくくなるため、その窓フィルム43が外装本体41から剥離しにくくなる。また、内圧の上昇に起因して窓フィルム43が外装本体41から剥離しても、その窓フィルム43が依然として内部環境E1に存在しやすくなるため、その窓フィルム43が二次電池から脱落しにくくなる。 On the other hand, when the window film 43 is disposed inside the exterior body 41 (see FIG. 3), the window film 43 is located in the internal environment E1, and the exterior body 41 is located outside the window film 43. Existing. In this case, the window film 43 is pressed by the exterior body 41 so as to remain in the internal environment E <b> 1 at a place where the window film 43 and the exterior body 41 overlap each other. Therefore, the adhesive 44 is difficult to peel from each of the exterior body 41 and the window film 43, and thus the window film 43 is difficult to peel from the exterior body 41. In addition, even if the window film 43 is peeled off from the exterior body 41 due to an increase in internal pressure, the window film 43 still tends to be present in the internal environment E1, and thus the window film 43 is difficult to drop off from the secondary battery. Become.
 窓フィルム43の厚さは、特に限定されないが、例えば、10μm~500μmであり、好ましくは10μm~200μmである。窓機能材料(非多孔質の溶融フッ素樹脂)を含む窓フィルム43を用いることにより、その窓フィルム43の物理耐久性などを確保しつつ、十分な防水機能および十分な排気機能が得られるからである。 The thickness of the window film 43 is not particularly limited, but is, for example, 10 μm to 500 μm, and preferably 10 μm to 200 μm. By using the window film 43 containing a window functional material (non-porous molten fluororesin), a sufficient waterproof function and a sufficient exhaust function can be obtained while ensuring the physical durability of the window film 43. is there.
 詳細には、窓フィルム43の厚さが10μmよりも小さいと、その窓フィルム43が薄すぎるため、ガスの発生時において窓フィルム43がガスを放出しやすくなる反面、その窓フィルム43が水を通しやすくなる可能性があると共に、内圧の上昇時などにおいて窓フィルム43が変形、破損および剥離しやすくなる可能性もある。一方、窓フィルム43の厚さが500μmよりも大きいと、その窓フィルム43が厚すぎるため、内圧の上昇時などにおいても窓フィルム43が変形、破損および剥離しにくくなると共に、その窓フィルム43が水を通しにくくなる反面、その窓フィルム43がガスを放出しにくくなる可能性がある。 Specifically, if the thickness of the window film 43 is smaller than 10 μm, the window film 43 is too thin, so that the window film 43 tends to release the gas when the gas is generated. The window film 43 may be easily deformed, broken, and peeled when the internal pressure is increased. On the other hand, if the thickness of the window film 43 is larger than 500 μm, the window film 43 is too thick, so that the window film 43 is difficult to be deformed, broken and peeled even when the internal pressure is increased. While it is difficult for water to pass through, the window film 43 may be difficult to release gas.
 接着剤44は、例えば、ポリオレフィン系樹脂、エポキシ樹脂、ウレタン樹脂、シアノアクリレートおよびスチレンブタジエンゴムなどの高分子化合物(接着性材料)のうちのいずれか1種類または2種類以上を含んでいる。ポリオレフィン樹脂は、例えば、ポリプロピレン(PP)などである。 The adhesive 44 contains any one kind or two or more kinds of polymer compounds (adhesive material) such as polyolefin resin, epoxy resin, urethane resin, cyanoacrylate and styrene butadiene rubber, for example. The polyolefin resin is, for example, polypropylene (PP).
 接着前における接着剤44の状態は、特に限定されないため、粉末状でもよいし、液体状でもよいし、フィルム状でもよいし、それらのうちの2種類以上が混在した状態でもよい。ただし、接着剤44の厚さを均一化すると共に、その接着剤44にピンホールが発生することを抑制するためには、接着前における接着剤44の状態は、液体状およびフィルム状のうちの一方または双方であることが好ましい。 Since the state of the adhesive 44 before bonding is not particularly limited, it may be powder, liquid, film, or a mixture of two or more of them. However, in order to make the thickness of the adhesive 44 uniform and to suppress the occurrence of pinholes in the adhesive 44, the state of the adhesive 44 before bonding is liquid or film-like. One or both are preferred.
 なお、接着剤44と窓フィルム43との接着性が十分でない場合には、例えば、その接着性を向上させるために、窓フィルム43の表面に前処理のうちのいずれか1種類または2種類以上が施されていてもよい。この前処理の種類は、特に限定されないが、例えば、薬剤処理、コロナ処理および紫外線照射(UV)処理などである。中でも、薬剤処理が好ましい。熱源および光源などの設備を用いずに、窓フィルム43と接着剤44との接着性を簡単に向上させることができるからである。 In addition, when the adhesiveness of the adhesive agent 44 and the window film 43 is not enough, in order to improve the adhesiveness, for example, in order to improve the adhesiveness, any one kind or two or more kinds of the pre-treatment is applied to the surface of the window film 43. May be given. Although the kind of this pre-processing is not specifically limited, For example, they are a chemical | medical agent process, a corona treatment, and an ultraviolet irradiation (UV) process. Among these, chemical treatment is preferable. This is because the adhesion between the window film 43 and the adhesive 44 can be easily improved without using equipment such as a heat source and a light source.
 もちろん、接着剤44と外装本体41との接着性が十分でない場合においても、例えば、上記した接着剤44と窓フィルム43との接着性が十分でない場合と同様に、その接着性を向上させるために外装本体41の表面に前処理のうちのいずれか1種類または2種類以上が施されていてもよい。前処理に関する詳細は、例えば、上記した通りである。 Of course, even when the adhesiveness between the adhesive 44 and the exterior body 41 is not sufficient, for example, in order to improve the adhesiveness as in the case where the adhesiveness between the adhesive 44 and the window film 43 is not sufficient. Further, any one type or two or more types of pretreatments may be applied to the surface of the exterior body 41. Details regarding the preprocessing are as described above, for example.
[正極]
 正極33は、例えば、図4に示したように、正極集電体33Aと、その正極集電体33Aの両面に設けられた正極活物質層33Bとを含んでいる。ただし、正極活物質層33Bは、正極集電体33Aの片面だけに設けられていてもよい。
[Positive electrode]
For example, as shown in FIG. 4, the positive electrode 33 includes a positive electrode current collector 33A and positive electrode active material layers 33B provided on both surfaces of the positive electrode current collector 33A. However, the positive electrode active material layer 33B may be provided only on one surface of the positive electrode current collector 33A.
 正極集電体33Aは、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、アルミニウム、ニッケルおよびステンレスなどの金属材料である。この正極集電体33Aは、単層でもよいし、多層でもよい。 The positive electrode current collector 33A includes, for example, any one type or two or more types of conductive materials. Although the kind of conductive material is not specifically limited, For example, they are metal materials, such as aluminum, nickel, and stainless steel. The positive electrode current collector 33A may be a single layer or a multilayer.
 正極活物質層33Bは、正極活物質として、リチウムを吸蔵放出することが可能である正極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層33Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The positive electrode active material layer 33B contains any one or more of positive electrode materials capable of occluding and releasing lithium as a positive electrode active material. However, the positive electrode active material layer 33B may further include any one type or two or more types of other materials such as a positive electrode binder and a positive electrode conductive agent.
 正極材料は、リチウム含有化合物であることが好ましく、より具体的には、リチウム含有複合酸化物およびリチウム含有リン酸化合物のうちのいずれか一方または双方であることが好ましい。高いエネルギー密度が得られるからである。 The positive electrode material is preferably a lithium-containing compound, and more specifically, preferably one or both of a lithium-containing composite oxide and a lithium-containing phosphate compound. This is because a high energy density can be obtained.
 リチウム含有複合酸化物は、リチウムと1種類または2種類以上の他元素(リチウム以外の元素)とを構成元素として含む酸化物であり、例えば、層状岩塩型およびスピネル型などのうちのいずれかの結晶構造を有している。リチウム含有リン酸化合物は、リチウムと1種類または2種類以上の他元素とを構成元素として含むリン酸化合物であり、例えば、オリビン型などの結晶構造を有している。 The lithium-containing composite oxide is an oxide containing lithium and one or more kinds of other elements (elements other than lithium) as constituent elements. For example, any one of a layered rock salt type and a spinel type It has a crystal structure. The lithium-containing phosphate compound is a phosphate compound containing lithium and one or more other elements as constituent elements, and has, for example, an olivine type crystal structure.
 他元素の種類は、任意の元素のうちのいずれか1種類または2種類以上であれば、特に限定されない。中でも、他元素は、長周期型周期表における2族~15族に属する元素のうちのいずれか1種類または2種類以上であることが好ましい。より具体的には、他元素は、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)および鉄(Fe)のうちのいずれか1種類または2種類以上の金属元素を含んでいることがより好ましい。高い電圧が得られるからである。 The type of other element is not particularly limited as long as it is any one or more of arbitrary elements. Among them, the other elements are preferably any one or more of elements belonging to Groups 2 to 15 in the long-period periodic table. More specifically, it is more preferable that the other elements include one or more metal elements of nickel (Ni), cobalt (Co), manganese (Mn), and iron (Fe). preferable. This is because a high voltage can be obtained.
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(21)~式(23)のそれぞれで表される化合物などである。 Examples of the lithium-containing composite oxide having a layered rock salt type crystal structure include compounds represented by the following formulas (21) to (23).
 LiMn(1-b-c) NiM11(2-d)  ・・・(21)
(M11は、コバルト(Co)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~eは、0.8≦a≦1.2、0<b<0.5、0≦c≦0.5、(b+c)<1、-0.1≦d≦0.2および0≦e≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Mn (1-bc) Ni b M11 c O (2-d) F e ··· (21)
(M11 is cobalt (Co), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), zirconium (Zr), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), a to e being 0.8 ≦ a ≦ 1.2, 0 <b <0.5, 0 ≦ c ≦ 0.5, (b + c) <1, −0.1 ≦ d ≦ 0.2 and 0 ≦ e ≦ 0.1 are satisfied. However, the composition of lithium varies depending on the charge / discharge state, and a is the value of the fully discharged state.)
 LiNi(1-b) M12(2-c)  ・・・(22)
(M12は、コバルト(Co)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0.005≦b≦0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Ni (1-b) M12 b O (2-c) F d (22)
(M12 is cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8. ≦ a ≦ 1.2, 0.005 ≦ b ≦ 0.5, −0.1 ≦ c ≦ 0.2 and 0 ≦ d ≦ 0.1, provided that the composition of lithium depends on the charge / discharge state Unlikely, a is the value of the fully discharged state.)
 LiCo(1-b) M13(2-c)  ・・・(23)
(M13は、ニッケル(Ni)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0≦b<0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Co (1-b) M13 b O (2-c) F d (23)
(M13 is nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8. ≦ a ≦ 1.2, 0 ≦ b <0.5, −0.1 ≦ c ≦ 0.2 and 0 ≦ d ≦ 0.1, provided that the composition of lithium varies depending on the charge / discharge state, a is the value of the fully discharged state.)
 なお、層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(24)で表される化合物などでもよい。この化合物は、ニッケルを構成元素として含んでいると共に、そのニッケルの含有割合が相対的に大きいリチウムニッケル含有複合酸化物である。 The lithium-containing composite oxide having a layered rock salt type crystal structure may be, for example, a compound represented by the following formula (24). This compound is a lithium nickel-containing composite oxide containing nickel as a constituent element and having a relatively high nickel content.
 LiCoNi1-y-z b-a  ・・・(24)
(Mは、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、ガリウム(Ga)、イットリウム(Y)、ジルコニウム(Zr)、モリブデン(Mo)、ストロンチウム(Sr)、セシウム(Cs)、バリウム(Ba)、インジウム(In)およびアンチモン(Sb)のうちの少なくとも1種である。Xは、ハロゲン元素である。x、y、z、aおよびbは、0.8<x≦1.2、0≦y≦1.0、0.5≦z≦1.0、0≦a≦1.0、1.8≦b≦2.2およびy<zを満たす。)
Li x Co y Ni z M 1 -yz O ba X e ··· (24)
(M is boron (B), magnesium (Mg), aluminum (Al), titanium (Ti), chromium (Cr), manganese (Mn), gallium (Ga), yttrium (Y), zirconium (Zr), molybdenum (Mo), strontium (Sr), cesium (Cs), barium (Ba), indium (In), and antimony (Sb), and X is a halogen element, x, y, z , A and b are 0.8 <x ≦ 1.2, 0 ≦ y ≦ 1.0, 0.5 ≦ z ≦ 1.0, 0 ≦ a ≦ 1.0, 1.8 ≦ b ≦ 2. 2 and y <z are satisfied.)
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 およびLi1.15(Mn0.65Ni0.22Co0.13)Oなどである。 Specific examples of the lithium-containing composite oxide having a layered rock salt type crystal structure are LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2. LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
 なお、層状岩塩型の結晶構造を有するリチウム含有複合酸化物がニッケル、コバルト、マンガンおよびアルミニウムを構成元素として含む場合には、そのニッケルの原子比率は、50原子%以上であることが好ましい。高いエネルギー密度が得られるからである。 When the lithium-containing composite oxide having a layered rock salt type crystal structure contains nickel, cobalt, manganese, and aluminum as constituent elements, the atomic ratio of nickel is preferably 50 atomic% or more. This is because a high energy density can be obtained.
 スピネル型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(25)で表される化合物などである。 The lithium-containing composite oxide having a spinel crystal structure is, for example, a compound represented by the following formula (25).
 LiMn(2-b) M14 ・・・(25)
(M14は、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.9≦a≦1.1、0≦b≦0.6、3.7≦c≦4.1および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Mn (2-b) M14 b O c F d (25)
(M14 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper At least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), wherein a to d are 0.9. ≦ a ≦ 1.1, 0 ≦ b ≦ 0.6, 3.7 ≦ c ≦ 4.1 and 0 ≦ d ≦ 0.1, provided that the composition of lithium differs depending on the charge / discharge state, and a Is the value of the fully discharged state.)
 スピネル型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiMnなどである。 Specific examples of the lithium-containing composite oxide having a spinel crystal structure include LiMn 2 O 4 .
 オリビン型の結晶構造を有するリチウム含有リン酸化合物は、例えば、下記の式(26)で表される化合物などである。 Examples of the lithium-containing phosphate compound having an olivine type crystal structure include a compound represented by the following formula (26).
 LiM15PO ・・・(26)
(M15は、コバルト(Co)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)のうちの少なくとも1種である。aは、0.9≦a≦1.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a M15PO 4 (26)
(M15 is cobalt (Co), manganese (Mn), iron (Fe), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium It is at least one of (Nb), copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr). 0.9 ≦ a ≦ 1.1, where the composition of lithium varies depending on the charge / discharge state, and a is the value of the complete discharge state.)
 オリビン型の結晶構造を有するリチウム含有リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。 Specific examples of the lithium-containing phosphate compound having an olivine type crystal structure include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
 なお、リチウム含有複合酸化物は、下記の式(27)で表される化合物などでもよい。 The lithium-containing composite oxide may be a compound represented by the following formula (27).
 (LiMnO(LiMnO1-x  ・・・(27)
(xは、0≦x≦1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、xは完全放電状態の値である。)
(Li 2 MnO 3 ) x (LiMnO 2 ) 1-x (27)
(X satisfies 0 ≦ x ≦ 1, where the composition of lithium varies depending on the charge / discharge state, and x is the value of the complete discharge state.)
 この他、正極材料は、例えば、酸化物、二硫化物、カルコゲン化物および導電性高分子などのうちのいずれか1種類または2種類以上でもよい。酸化物は、例えば、酸化チタン、酸化バナジウムおよび二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンおよび硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、硫黄、ポリアニリンおよびポリチオフェンなどである。ただし、正極材料は、上記以外の他の材料でもよい。 In addition, the positive electrode material may be any one kind or two or more kinds of oxides, disulfides, chalcogenides, conductive polymers, and the like. Examples of the oxide include titanium oxide, vanadium oxide, and manganese dioxide. Examples of the disulfide include titanium disulfide and molybdenum sulfide. An example of the chalcogenide is niobium selenide. Examples of the conductive polymer include sulfur, polyaniline, and polythiophene. However, the positive electrode material may be a material other than the above.
 正極結着剤は、例えば、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、例えば、ポリフッ化ビニリデンおよびポリイミドなどである。 The positive electrode binder contains, for example, any one or more of synthetic rubber and polymer compound. Examples of the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene. Examples of the polymer compound include polyvinylidene fluoride and polyimide.
 正極導電剤は、例えば、炭素材料などのうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、正極導電剤は、導電性を有する材料であれば、金属材料および導電性高分子などでもよい。 The positive electrode conductive agent includes, for example, one or more of carbon materials. Examples of the carbon material include graphite, carbon black, acetylene black, and ketjen black. However, the positive electrode conductive agent may be a metal material or a conductive polymer as long as it is a conductive material.
[負極]
 負極22は、例えば、図4に示したように、負極集電体34Aと、その負極集電体34Aの両面に設けられた負極活物質層34Bとを含んでいる。ただし、負極活物質層34Bは、負極集電体34Aの片面だけに設けられていてもよい。
[Negative electrode]
For example, as shown in FIG. 4, the negative electrode 22 includes a negative electrode current collector 34A and negative electrode active material layers 34B provided on both surfaces of the negative electrode current collector 34A. However, the negative electrode active material layer 34B may be provided only on one surface of the negative electrode current collector 34A.
 負極集電体34Aは、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、銅、アルミニウム、ニッケルおよびステンレスなどの金属材料である。この負極集電体34Aは、単層でもよいし、多層でもよい。 The negative electrode current collector 34A includes, for example, any one type or two or more types of conductive materials. Although the kind of electrically conductive material is not specifically limited, For example, they are metal materials, such as copper, aluminum, nickel, and stainless steel. The negative electrode current collector 34A may be a single layer or a multilayer.
 負極集電体34Aの表面は、粗面化されていることが好ましい。いわゆるアンカー効果により、負極集電体34Aに対する負極活物質層34Bの密着性が向上するからである。この場合には、少なくとも負極活物質層34Bと対向する領域において、負極集電体34Aの表面が粗面化されていればよい。粗面化の方法は、例えば、電解処理を利用して微粒子を形成する方法などである。電解処理では、電解槽中において電解法により負極集電体34Aの表面に微粒子が形成されるため、その負極集電体34Aの表面に凹凸が設けられる。電解法により作製された銅箔は、一般的に、電解銅箔と呼ばれている。 The surface of the negative electrode current collector 34A is preferably roughened. This is because the adhesion of the negative electrode active material layer 34B to the negative electrode current collector 34A is improved by a so-called anchor effect. In this case, the surface of the negative electrode current collector 34A only needs to be roughened at least in a region facing the negative electrode active material layer 34B. The roughening method is, for example, a method of forming fine particles using electrolytic treatment. In the electrolytic treatment, fine particles are formed on the surface of the negative electrode current collector 34A by an electrolysis method in an electrolytic bath, so that the surface of the negative electrode current collector 34A is provided with irregularities. A copper foil produced by an electrolytic method is generally called an electrolytic copper foil.
 負極活物質層34Bは、負極活物質として、リチウムを吸蔵放出することが可能である負極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層34Bは、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The negative electrode active material layer 34B contains any one or more of negative electrode materials capable of occluding and releasing lithium as a negative electrode active material. However, the negative electrode active material layer 34B may further include any one kind or two or more kinds of other materials such as a negative electrode binder and a negative electrode conductive agent.
 充電途中において意図せずにリチウム金属が負極34に析出することを防止するために、負極材料の充電可能な容量は、正極33の放電容量よりも大きいことが好ましい。すなわち、リチウムを吸蔵放出可能である負極材料の電気化学当量は、正極33の電気化学当量よりも大きいことが好ましい。 In order to prevent unintentional deposition of lithium metal on the negative electrode 34 during charging, the chargeable capacity of the negative electrode material is preferably larger than the discharge capacity of the positive electrode 33. That is, the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium is preferably larger than the electrochemical equivalent of the positive electrode 33.
 負極材料は、例えば、炭素材料のうちのいずれか1種類または2種類以上である。リチウムの吸蔵放出時における結晶構造の変化が非常に少ないため、高いエネルギー密度が安定して得られるからである。また、炭素材料は負極導電剤としても機能するため、負極活物質層34Bの導電性が向上するからである。 The negative electrode material is, for example, one or more of carbon materials. This is because the change in crystal structure at the time of occlusion and release of lithium is very small, so that a high energy density can be obtained stably. Moreover, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 34B is improved.
 炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。ただし、難黒鉛化性炭素における(002)面の面間隔は、0.37nm以上であることが好ましいと共に、黒鉛における(002)面の面間隔は、0.34nm以下であることが好ましい。より具体的には、炭素材料は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などである。このコークス類には、ピッチコークス、ニードルコークスおよび石油コークスなどが含まれる。有機高分子化合物焼成体は、フェノール樹脂およびフラン樹脂などの高分子化合物が適当な温度で焼成(炭素化)されたものである。この他、炭素材料は、約1000℃以下の温度で熱処理された低結晶性炭素でもよいし、非晶質炭素でもよい。なお、炭素材料の形状は、繊維状、球状、粒状および鱗片状のうちのいずれでもよい。 Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, and graphite. However, the interplanar spacing of the (002) plane in non-graphitizable carbon is preferably 0.37 nm or more, and the interplanar spacing of the (002) plane in graphite is preferably 0.34 nm or less. More specifically, examples of the carbon material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, and carbon blacks. The cokes include pitch coke, needle coke, petroleum coke and the like. The organic polymer compound fired body is obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an appropriate temperature. In addition, the carbon material may be low crystalline carbon heat-treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon. The shape of the carbon material may be any of a fibrous shape, a spherical shape, a granular shape, and a scale shape.
 また、負極材料は、例えば、金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料(金属系材料)である。高いエネルギー密度が得られるからである。 Further, the negative electrode material is, for example, a material (metal material) containing any one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
 金属系材料は、単体、合金および化合物のうちのいずれでもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に有する材料でもよい。ただし、合金には、2種類以上の金属元素からなる材料に加えて、1種類以上の金属元素と1種類以上の半金属元素とを含む材料も含まれる。また、合金は、非金属元素を含んでいてもよい。この金属系材料の組織は、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。 The metal-based material may be any of a simple substance, an alloy, and a compound, or may be two or more of them, or may be a material having at least a part of one or two or more of them. . However, the alloy includes a material including one or more metal elements and one or more metalloid elements in addition to a material composed of two or more metal elements. The alloy may contain a nonmetallic element. The structure of the metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and two or more kinds of coexisting materials.
 上記した金属元素および半金属元素は、例えば、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上である。具体的には、例えば、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム(Y)、パラジウム(Pd)および白金(Pt)などである。 The metal element and metalloid element described above are, for example, any one or more metal elements and metalloid elements capable of forming an alloy with lithium. Specifically, for example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin (Sn), lead (Pb) ), Bismuth (Bi), cadmium (Cd), silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd) and platinum (Pt).
 中でも、ケイ素およびスズのうちの一方または双方が好ましい。リチウムを吸蔵放出する能力が優れているため、著しく高いエネルギー密度が得られるからである。 Among these, one or both of silicon and tin is preferable. This is because the ability to occlude and release lithium is excellent, so that a significantly high energy density can be obtained.
 ケイ素およびスズのうちの一方または双方を構成元素として含む材料は、ケイ素の単体、合金および化合物のうちのいずれでもよいし、スズの単体、合金および化合物のうちのいずれでもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に有する材料でもよい。ここで説明する単体とは、あくまで一般的な意味合いでの単体(微量の不純物を含んでいてもよい)を意味しており、必ずしも純度100%を意味しているわけではない。 The material containing one or both of silicon and tin as a constituent element may be any of a simple substance, an alloy, and a compound of silicon, or any of a simple substance, an alloy, and a compound of tin. These may be two or more types, or may be a material having at least a part of one or two or more of them. The simple substance described here means a simple substance (which may contain a small amount of impurities) in a general sense, and does not necessarily mean 100% purity.
 ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。 The alloy of silicon is, for example, any one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as a constituent element other than silicon or Includes two or more. The compound of silicon contains, for example, one or more of carbon and oxygen as constituent elements other than silicon. In addition, the compound of silicon may contain any 1 type or 2 types or more of the series of elements demonstrated regarding the alloy of silicon as structural elements other than silicon, for example.
 ケイ素の合金およびケイ素の化合物のそれぞれの具体例は、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、およびLiSiOなどである。なお、SiOにおけるvは、0.2<v<1.4でもよい。 Specific examples of silicon alloys and silicon compounds are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 <v ≦ 2), and LiSiO. Note that v in SiO v may be 0.2 <v <1.4.
 スズの合金は、例えば、スズ以外の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。スズの化合物は、例えば、スズ以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、スズの化合物は、例えば、スズ以外の構成元素として、スズの合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。 The alloy of tin, for example, as a constituent element other than tin, any one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium, etc. Includes two or more. The tin compound contains, for example, one or more of carbon and oxygen as constituent elements other than tin. In addition, the compound of tin may contain any 1 type in the series of elements demonstrated regarding the alloy of tin, or 2 or more types as structural elements other than tin, for example.
 スズの合金およびスズの化合物の具体例は、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどである。 Specific examples of the tin alloy and the tin compound include SnO w (0 <w ≦ 2), SnSiO 3 , LiSnO, and Mg 2 Sn.
 特に、スズを構成元素として含む材料は、例えば、第1構成元素であるスズと共に第2構成元素および第3構成元素を含む材料(Sn含有材料)であることが好ましい。第2構成元素は、例えば、コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブデン、銀、インジウム、セシウム(Ce)、ハフニウム(Hf)、タンタル、タングステン、ビスマスおよびケイ素などのうちのいずれか1種類または2種類以上を含んでいる。第3構成元素は、例えば、ホウ素、炭素、アルミニウムおよびリンなどのうちのいずれか1種類または2種類以上を含んでいる。Sn含有材料が第2および第3構成元素を含んでいることで、高い電池容量および優れたサイクル特性などが得られるからである。 Particularly, the material containing tin as a constituent element is preferably, for example, a material (Sn-containing material) containing a second constituent element and a third constituent element together with tin which is the first constituent element. The second constituent element is, for example, cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, silver, indium, cesium (Ce), hafnium (Hf), Any one or more of tantalum, tungsten, bismuth, silicon and the like are included. The third constituent element includes, for example, one or more of boron, carbon, aluminum, phosphorus, and the like. This is because, when the Sn-containing material contains the second and third constituent elements, a high battery capacity and excellent cycle characteristics can be obtained.
 中でも、Sn含有材料は、スズとコバルトと炭素とを構成元素として含む材料(SnCoC含有材料)であることが好ましい。このSnCoC含有材料では、例えば、炭素の含有量が9.9質量%~29.7質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が20質量%~70質量%である。高いエネルギー密度が得られるからである。 In particular, the Sn-containing material is preferably a material (SnCoC-containing material) containing tin, cobalt, and carbon as constituent elements. In this SnCoC-containing material, for example, the carbon content is 9.9 mass% to 29.7 mass%, and the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20 mass% to 70 mass%. . This is because a high energy density can be obtained.
 SnCoC含有材料は、スズとコバルトと炭素とを含む相を有しており、その相は、低結晶性または非晶質であることが好ましい。この相は、リチウムと反応することが可能な反応相であるため、その反応相の存在に基づいて優れた特性が得られる。この反応相のX線回折により得られる回折ピークの半値幅(回折角2θ)は、特定X線としてCuKα線を用いると共に挿引速度を1°/minとした場合において、1°以上であることが好ましい。リチウムがより円滑に吸蔵放出されると共に、電解液との反応性が低減するからである。なお、SnCoC含有材料は、低結晶性または非晶質の相に加えて、各構成元素の単体または一部が含まれている相を含んでいる場合もある。 The SnCoC-containing material has a phase containing tin, cobalt, and carbon, and the phase is preferably low crystalline or amorphous. Since this phase is a reaction phase capable of reacting with lithium, excellent characteristics can be obtained based on the presence of the reaction phase. The half-width (diffraction angle 2θ) of the diffraction peak obtained by X-ray diffraction of this reaction phase is 1 ° or more when CuKα ray is used as the specific X-ray and the insertion speed is 1 ° / min. Is preferred. This is because lithium is occluded and released more smoothly and the reactivity with the electrolytic solution is reduced. In addition, the SnCoC-containing material may include a phase containing a simple substance or a part of each constituent element in addition to the low crystalline or amorphous phase.
 X線回折により得られた回折ピークがリチウムと反応可能な反応相に対応するか否かは、リチウムとの電気化学的反応の前後におけるX線回折チャートを比較すれば容易に判断できる。例えば、リチウムとの電気化学的反応の前後において回折ピークの位置が変化すれば、リチウムと反応可能な反応相に対応するものである。この場合には、例えば、低結晶性または非晶質の反応相の回折ピークが2θ=20°~50°の間に見られる。このような反応相は、例えば、上記した各構成元素を含んでおり、主に、炭素の存在に起因して低結晶化または非晶質化しているものと考えられる。 Whether or not the diffraction peak obtained by X-ray diffraction corresponds to a reaction phase capable of reacting with lithium can be easily determined by comparing X-ray diffraction charts before and after electrochemical reaction with lithium. For example, if the position of the diffraction peak changes before and after the electrochemical reaction with lithium, it corresponds to a reaction phase capable of reacting with lithium. In this case, for example, a diffraction peak of a low crystalline or amorphous reaction phase is observed between 2θ = 20 ° and 50 °. Such a reaction phase contains, for example, each of the above-described constituent elements, and is considered to be low crystallized or amorphous mainly due to the presence of carbon.
 SnCoC含有材料では、構成元素である炭素のうちの少なくとも一部が他の構成元素である金属元素または半金属元素と結合していることが好ましい。スズなどの凝集または結晶化が抑制されるからである。元素の結合状態に関しては、例えば、X線光電子分光法(XPS)を用いて確認可能である。市販の装置では、例えば、軟X線としてAl-Kα線またはMg-Kα線などが用いられる。炭素のうちの少なくとも一部が金属元素または半金属元素などと結合している場合には、炭素の1s軌道(C1s)の合成波のピークが284.5eVよりも低い領域に現れる。なお、金原子の4f軌道(Au4f)のピークは、84.0eVに得られるようにエネルギー較正されているものとする。この際、通常、物質表面に表面汚染炭素が存在しているため、その表面汚染炭素のC1sのピークを284.8eVとして、そのピークをエネルギー基準とする。XPS測定において、C1sのピークの波形は、表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形で得られる。このため、例えば、市販のソフトウエアを用いて解析することで、両者のピークを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。 In the SnCoC-containing material, it is preferable that at least a part of carbon as a constituent element is bonded to a metal element or a metalloid element as another constituent element. This is because aggregation or crystallization of tin or the like is suppressed. The bonding state of the elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS). In a commercially available apparatus, for example, Al—Kα ray or Mg—Kα ray is used as the soft X-ray. When at least a part of carbon is bonded to a metal element, a metalloid element, or the like, the peak of the synthetic wave of carbon 1s orbital (C1s) appears in a region lower than 284.5 eV. It is assumed that the energy calibration is performed so that the peak of the 4f orbit (Au4f) of the gold atom is obtained at 84.0 eV. At this time, since surface-contaminated carbon is usually present on the surface of the substance, the C1s peak of the surface-contaminated carbon is set to 284.8 eV, and the peak is used as an energy reference. In the XPS measurement, the waveform of the C1s peak is obtained in a form including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. For this reason, for example, both peaks are separated by analyzing using commercially available software. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
 このSnCoC含有材料は、構成元素がスズ、コバルトおよび炭素だけである材料(SnCoC)に限られない。このSnCoC含有材料は、例えば、スズ、コバルトおよび炭素に加えて、さらにケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン、ガリウムおよびビスマスなどのうちのいずれか1種類または2種類以上を構成元素として含んでいてもよい。 This SnCoC-containing material is not limited to a material (SnCoC) whose constituent elements are only tin, cobalt and carbon. This SnCoC-containing material is, for example, any one of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium, and bismuth in addition to tin, cobalt, and carbon One kind or two or more kinds may be included as constituent elements.
 SnCoC含有材料の他、スズとコバルトと鉄と炭素とを構成元素として含む材料(SnCoFeC含有材料)も好ましい。このSnCoFeC含有材料の組成は、任意である。一例を挙げると、鉄の含有量を少なめに設定する場合は、炭素の含有量が9.9質量%~29.7質量%、鉄の含有量が0.3質量%~5.9質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が30質量%~70質量%である。また、鉄の含有量を多めに設定する場合は、炭素の含有量が11.9質量%~29.7質量%、スズ、コバルトおよび鉄の含有量の割合((Co+Fe)/(Sn+Co+Fe))が26.4質量%~48.5質量%、コバルトおよび鉄の含有量の割合(Co/(Co+Fe))が9.9質量%~79.5質量%である。このような組成範囲において、高いエネルギー密度が得られるからである。なお、SnCoFeC含有材料の物性(半値幅など)は、上記したSnCoC含有材料の物性と同様である。 In addition to SnCoC-containing materials, materials containing tin, cobalt, iron and carbon as constituent elements (SnCoFeC-containing materials) are also preferable. The composition of the SnCoFeC-containing material is arbitrary. For example, when the iron content is set to be small, the carbon content is 9.9 mass% to 29.7 mass%, and the iron content is 0.3 mass% to 5.9 mass%. The content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass. Further, when the iron content is set to be large, the carbon content is 11.9% to 29.7% by mass, and the ratio of the content of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4% by mass to 48.5% by mass, and the content ratio of cobalt and iron (Co / (Co + Fe)) is 9.9% by mass to 79.5% by mass. This is because a high energy density can be obtained in such a composition range. Note that the physical properties (half-value width, etc.) of the SnCoFeC-containing material are the same as the above-described physical properties of the SnCoC-containing material.
 この他、負極材料は、例えば、金属酸化物および高分子化合物などのうちのいずれか1種類または2種類以上でもよい。金属酸化物は、例えば、酸化鉄、酸化ルテニウムおよび酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンおよびポリピロールなどである。 In addition, the negative electrode material may be any one kind or two or more kinds of metal oxides and polymer compounds, for example. Examples of the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide. Examples of the polymer compound include polyacetylene, polyaniline, and polypyrrole.
 中でも、負極材料は、以下の理由により、炭素材料および金属系材料の双方を含んでいることが好ましい。 Among these, the negative electrode material preferably contains both a carbon material and a metal-based material for the following reasons.
 金属系材料、特に、ケイ素およびスズのうちの一方または双方を構成元素として含む材料は、理論容量が高いという利点を有する反面、充放電時において激しく膨張収縮しやすいという懸念点を有する。一方、炭素材料は、理論容量が低いという懸念点を有する反面、充放電時において膨張収縮しにくいという利点を有する。よって、炭素材料および金属系材料の双方を用いることで、高い理論容量(言い替えれば電池容量)を得つつ、充放電時の膨張収縮が抑制される。 Metal materials, in particular, materials containing one or both of silicon and tin as constituent elements have the advantage of high theoretical capacity, but they have a concern that they tend to violently expand and contract during charging and discharging. On the other hand, the carbon material has a concern that the theoretical capacity is low, but has an advantage that it is difficult to expand and contract during charging and discharging. Therefore, by using both a carbon material and a metal-based material, expansion and contraction during charging and discharging are suppressed while obtaining a high theoretical capacity (in other words, battery capacity).
 負極活物質層34Bは、例えば、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上の方法により形成されている。塗布法とは、例えば、粒子(粉末)状の負極活物質を負極結着剤などと混合したのち、その混合物を有機溶剤などに分散させてから負極集電体34Aに塗布する方法である。気相法は、例えば、物理堆積法および化学堆積法などである。より具体的には、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長(CVD)法およびプラズマ化学気相成長法などである。液相法は、例えば、電解鍍金法および無電解鍍金法などである。溶射法とは、溶融状態または半溶融状態の負極活物質を負極集電体34Aに噴き付ける方法である。焼成法とは、例えば、塗布法を用いて、有機溶剤などに分散された混合物を負極集電体34Aに塗布したのち、負極結着剤などの融点よりも高い温度で熱処理する方法である。この焼成法としては、例えば、雰囲気焼成法、反応焼成法およびホットプレス焼成法などを用いることができる。 The negative electrode active material layer 34B is formed by any one method or two or more methods among, for example, a coating method, a gas phase method, a liquid phase method, a thermal spray method, and a firing method (sintering method). The coating method is, for example, a method in which a particle (powder) negative electrode active material is mixed with a negative electrode binder and the mixture is dispersed in an organic solvent and then applied to the negative electrode current collector 34A. Examples of the vapor phase method include a physical deposition method and a chemical deposition method. More specifically, for example, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, a thermal chemical vapor deposition, a chemical vapor deposition (CVD) method, and a plasma chemical vapor deposition method. Examples of the liquid phase method include an electrolytic plating method and an electroless plating method. The thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 34A. The firing method is, for example, a method in which a mixture dispersed in an organic solvent or the like is applied to the negative electrode current collector 34A using a coating method, and then heat-treated at a temperature higher than the melting point of the negative electrode binder or the like. As the firing method, for example, an atmosphere firing method, a reaction firing method, a hot press firing method, or the like can be used.
 この二次電池では、上記したように、充電途中において負極34にリチウムが意図せずに析出することを防止するために、リチウムを吸蔵および放出することが可能である負極材料の電気化学当量は、正極の電気化学当量よりも大きくなっている。また、完全充電時の開回路電圧(すなわち電池電圧)が4.25V以上であると、その完全充電時の開回路電圧が4.20Vである場合と比較して、同じ正極活物質を用いても単位質量当たりのリチウムの放出量が多くなるため、それに応じて正極活物質と負極活物質との量が調整されている。これにより、高いエネルギー密度が得られる。 In this secondary battery, as described above, in order to prevent unintentional precipitation of lithium on the negative electrode 34 during charging, the electrochemical equivalent of the negative electrode material capable of inserting and extracting lithium is , Greater than the electrochemical equivalent of the positive electrode. In addition, when the open circuit voltage at the time of full charge (that is, the battery voltage) is 4.25 V or higher, the same positive electrode active material is used compared to the case where the open circuit voltage at the time of full charge is 4.20 V. However, since the amount of lithium released per unit mass increases, the amounts of the positive electrode active material and the negative electrode active material are adjusted accordingly. Thereby, a high energy density is obtained.
 完全充電時の開回路電圧(充電終止電圧)は、特に限定されないが、上記したように、4.2V以上であることが好ましい。中でも、完全充電時の開回路電圧は、4.25V以上であることが好ましく、4.35V以上であることがより好ましい。完全充電時の開回路電圧を著しく高くしても、上記した電解質塩と炭酸エチレンとの混合比の適正化に基づく利点が得られるため、優れた電池特性が得られるからである。なお、放電終止電圧は、特に限定されないが、例えば、3.0V以下である。 The open circuit voltage (charge end voltage) at the time of full charge is not particularly limited, but is preferably 4.2 V or more as described above. Especially, it is preferable that it is 4.25V or more at the time of complete charge, and it is more preferable that it is 4.35V or more. This is because even if the open circuit voltage at the time of full charge is remarkably increased, an advantage based on the optimization of the mixing ratio of the electrolyte salt and ethylene carbonate can be obtained, so that excellent battery characteristics can be obtained. In addition, although the discharge end voltage is not specifically limited, For example, it is 3.0 V or less.
[セパレータ]
 セパレータ35は、例えば、図4に示したように、正極33と負極34との間に配置されている。これにより、セパレータ35は、主に、正極33と負極34とを隔離すると共に、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させる。
[Separator]
For example, as illustrated in FIG. 4, the separator 35 is disposed between the positive electrode 33 and the negative electrode 34. Thereby, the separator 35 mainly separates the positive electrode 33 and the negative electrode 34 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
 このセパレータ35は、例えば、合成樹脂およびセラミックなどの多孔質膜のうちのいずれか1種類または2種類以上であり、2種類以上の多孔質膜の積層膜でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンおよびポリエチレンなどである。 The separator 35 is, for example, one kind or two or more kinds of porous films such as synthetic resin and ceramic, and may be a laminated film of two or more kinds of porous films. Examples of the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
 特に、セパレータ35は、例えば、上記した多孔質膜(基材層)と、その基材層の片面または両面に設けられた高分子化合物層とを含んでいてもよい。正極33および負極34のそれぞれに対するセパレータ35の密着性が向上するため、巻回電極体30の歪みが抑制されるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制されるため、充放電を繰り返しても抵抗が上昇しにくくなると共に、二次電池の膨れが抑制される。 In particular, the separator 35 may include, for example, the above-described porous film (base material layer) and a polymer compound layer provided on one or both surfaces of the base material layer. This is because the adhesion of the separator 35 to each of the positive electrode 33 and the negative electrode 34 is improved, so that the distortion of the wound electrode body 30 is suppressed. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Swelling is suppressed.
 高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子化合物のうちのいずれか1種類または2種類以上を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。ただし、高分子化合物は、ポリフッ化ビニリデンに限られない。この高分子化合物層を形成する場合には、例えば、有機溶剤などに高分子化合物が溶解された溶液を基材層に塗布したのち、その基材層を乾燥させる。また、高分子化合物層を形成する場合には、例えば、溶液中に基材層を浸漬させたのち、その基材層を乾燥させてもよい。この高分子化合物層は、例えば、無機粒子などの絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。無機粒子の種類は、例えば、酸化アルミニウム、窒化アルミニウム、ベーマイトおよびタルクなどである。 The polymer compound layer contains any one kind or two or more kinds of polymer compounds such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable. However, the polymer compound is not limited to polyvinylidene fluoride. When forming this polymer compound layer, for example, after applying a solution in which the polymer compound is dissolved in an organic solvent or the like to the substrate layer, the substrate layer is dried. Moreover, when forming a polymeric compound layer, after immersing a base material layer in a solution, you may dry the base material layer, for example. This polymer compound layer may contain any one kind or two or more kinds of insulating particles such as inorganic particles. Examples of the inorganic particles include aluminum oxide, aluminum nitride, boehmite, and talc.
[電解質層]
 電解質層36は、電解液と、高分子化合物とを含んでいる。ここで説明する電解質層36は、いわゆるゲル状の電解質であり、その電解質層36中では、高分子化合物により電解液が保持されている。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。なお、電解質層36は、さらに、添加剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
[Electrolyte layer]
The electrolyte layer 36 contains an electrolytic solution and a polymer compound. The electrolyte layer 36 described here is a so-called gel electrolyte, and an electrolyte solution is held in the electrolyte layer 36 by a polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) is obtained and leakage of the electrolytic solution is prevented. The electrolyte layer 36 may further include any one kind or two or more kinds of other materials such as additives.
 電解液は、溶媒および電解質塩を含んでいる。ただし、電解液は、さらに、添加剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The electrolytic solution contains a solvent and an electrolyte salt. However, the electrolytic solution may further include any one or more of other materials such as additives.
(溶媒)
 溶媒は、有機溶媒などの非水溶媒のうちのいずれか1種類または2種類以上を含んでいる。非水溶媒を含む電解液は、いわゆる非水電解液である。
(solvent)
The solvent contains any one or more of nonaqueous solvents such as organic solvents. The electrolytic solution containing the nonaqueous solvent is a so-called nonaqueous electrolytic solution.
 非水溶媒は、例えば、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステルおよびニトリル(モノニトリル)などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。 Examples of the non-aqueous solvent include cyclic carbonate ester, chain carbonate ester, lactone, chain carboxylate ester, and nitrile (mononitrile). This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
 環状炭酸エステルは、例えば、炭酸エチレン、炭酸プロピレンおよび炭酸ブチレンなどである。鎖状炭酸エステルは、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルおよび炭酸メチルプロピルなどである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。鎖状カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルおよびトリメチル酢酸エチルなどである。ニトリルは、例えば、アセトニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。 The cyclic carbonate is, for example, ethylene carbonate, propylene carbonate, butylene carbonate, or the like. Examples of the chain ester carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate. Examples of the lactone include γ-butyrolactone and γ-valerolactone. Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, and ethyl trimethyl acetate. Nitriles are, for example, acetonitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
 この他、非水溶媒は、例えば、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルおよびジメチルスルホキシドなどでもよい。同様の利点が得られるからである。 Other non-aqueous solvents include, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1 , 4-dioxane, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N′-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide. This is because similar advantages can be obtained.
 中でも、溶媒は、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどのうちのいずれか1種類または2種類以上を含んでいることが好ましい。高い電池容量、優れたサイクル特性および優れた保存特性などが得られるからである。この場合には、炭酸エチレンおよび炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルおよび炭酸ジエチルなどの低粘度溶媒(例えば粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。 Among them, the solvent preferably contains one or more of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. This is because high battery capacity, excellent cycle characteristics, and excellent storage characteristics can be obtained. In this case, high viscosity (high dielectric constant) solvents such as ethylene carbonate and propylene carbonate (for example, dielectric constant ε ≧ 30) and low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity ≦ 1 mPas). -A combination with s) is more preferred. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
 特に、溶媒は、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、ジシアノ化合物(ジニトリル化合物)、ジイソシアネート化合物、リン酸エステルおよび炭素間三重結合を有する鎖状化合物などのうちのいずれか1種類または2種類以上を含んでいてもよい。電解液の化学的安定性が向上するからである。 In particular, the solvent includes unsaturated cyclic carbonates, halogenated carbonates, sulfonate esters, acid anhydrides, dicyano compounds (dinitrile compounds), diisocyanate compounds, phosphate esters, and chain compounds having a carbon-carbon triple bond. Any one kind or two kinds or more may be included. This is because the chemical stability of the electrolytic solution is improved.
 不飽和環状炭酸エステルとは、1個または2個以上の不飽和結合(炭素間二重結合または炭素間三重結合)を含む環状炭酸エステルである。この不飽和環状炭酸エステルは、例えば、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。溶媒中における不飽和環状炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。 The unsaturated cyclic carbonate is a cyclic carbonate containing one or more unsaturated bonds (carbon-carbon double bond or carbon-carbon triple bond). Examples of the unsaturated cyclic carbonate include vinylene carbonate, vinyl ethylene carbonate, and methylene ethylene carbonate. The content of the unsaturated cyclic carbonate in the solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
 ハロゲン化炭酸エステルとは、1個または2個以上のハロゲンを構成元素として含む環状または鎖状の炭酸エステルである。ハロゲン化炭酸エステルが2個以上のハロゲンを構成元素として含む場合、その2個以上のハロゲンの種類は、1種類だけでもよいし、2種類以上でもよい。環状のハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オンおよび4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどである。鎖状のハロゲン化炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルなどである。溶媒中におけるハロゲン化炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~50重量%である。 The halogenated carbonate is a cyclic or chain carbonate containing one or more halogens as a constituent element. When the halogenated carbonate contains two or more halogens as constituent elements, the number of the two or more halogens may be only one or two or more. Examples of cyclic halogenated carbonates include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one. Examples of the chain halogenated carbonate include fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, and difluoromethyl methyl carbonate. The content of the halogenated carbonate in the solvent is not particularly limited, but is, for example, 0.01% by weight to 50% by weight.
 スルホン酸エステルは、例えば、モノスルホン酸エステルおよびジスルホン酸エステルなどである。溶媒中におけるスルホン酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。 Examples of the sulfonate ester include a monosulfonate ester and a disulfonate ester. The content of the sulfonic acid ester in the solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
 モノスルホン酸エステルは、環状モノスルホン酸エステルでもよいし、鎖状モノスルホン酸エステルでもよい。環状モノスルホン酸エステルは、例えば、1,3-プロパンスルトンおよび1,3-プロペンスルトンなどのスルトンである。鎖状モノスルホン酸エステルは、例えば、環状モノスルホン酸エステルが途中で切断された化合物などである。ジスルホン酸エステルは、環状ジスルホン酸エステルでもよいし、鎖状ジスルホン酸エステルでもよい。 The monosulfonic acid ester may be a cyclic monosulfonic acid ester or a chain monosulfonic acid ester. Cyclic monosulfonates are, for example, sultone such as 1,3-propane sultone and 1,3-propene sultone. The chain monosulfonic acid ester is, for example, a compound in which a cyclic monosulfonic acid ester is cleaved on the way. The disulfonic acid ester may be a cyclic disulfonic acid ester or a chain disulfonic acid ester.
 酸無水物は、例えば、カルボン酸無水物、ジスルホン酸無水物およびカルボン酸スルホン酸無水物などである。カルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸および無水マレイン酸などである。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸および無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。溶媒中における酸無水物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 Examples of the acid anhydride include carboxylic acid anhydride, disulfonic acid anhydride, and carboxylic acid sulfonic acid anhydride. Examples of the carboxylic acid anhydride include succinic anhydride, glutaric anhydride, and maleic anhydride. Examples of the disulfonic anhydride include ethanedisulfonic anhydride and propanedisulfonic anhydride. Examples of the carboxylic acid sulfonic acid anhydride include anhydrous sulfobenzoic acid, anhydrous sulfopropionic acid, and anhydrous sulfobutyric acid. The content of the acid anhydride in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
 ジニトリル化合物は、例えば、NC-C2m-CN(mは、1以上の整数である。)で表される化合物である。このジニトリル化合物は、例えば、スクシノニトリル(NC-C-CN)、グルタロニトリル(NC-C-CN)、アジポニトリル(NC-C-CN)およびフタロニトリル(NC-C-CN)などである。溶媒中におけるジニトリル化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 The dinitrile compound is, for example, a compound represented by NC—C m H 2m —CN (m is an integer of 1 or more). This dinitrile compound includes, for example, succinonitrile (NC-C 2 H 4 -CN), glutaronitrile (NC-C 3 H 6 -CN), adiponitrile (NC-C 4 H 8 -CN) and phthalonitrile ( NC-C 6 H 4 -CN). The content of the dinitrile compound in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
 ジイソシアネート化合物は、例えば、OCN-C2n-NCO(nは、1以上の整数である。)で表される化合物である。このジイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネート(OCN-C12-NCO)などである。溶媒中におけるジイソシアネート化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 The diisocyanate compound is, for example, a compound represented by OCN—C n H 2n —NCO (n is an integer of 1 or more). This diisocyanate compound is, for example, hexamethylene diisocyanate (OCN—C 6 H 12 —NCO). The content of the diisocyanate compound in the solvent is not particularly limited and is, for example, 0.5% by weight to 5% by weight.
 リン酸エステルは、例えば、リン酸トリメチルおよびリン酸トリエチルなどである。溶媒中におけるリン酸エステルの含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 Examples of the phosphate ester include trimethyl phosphate and triethyl phosphate. The content of the phosphate ester in the solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
 炭素間三重結合を有する鎖状化合物は、1または2以上の炭素間三重結合(-C≡C-)を有する鎖状の化合物である。この炭素間三重結合を有する鎖状化合物は、例えば、炭酸プロパルギルメチル(CH≡C-CH-O-C(=O)-O-CH)およびメチルスルホン酸プロパルギル(CH≡C-CH-O-S(=O)-CH)などである。溶媒中における炭素間三重結合を有する鎖状化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 A chain compound having a carbon-carbon triple bond is a chain compound having one or more carbon-carbon triple bonds (—C≡C—). Examples of the chain compound having a carbon-carbon triple bond include propargylmethyl carbonate (CH≡C—CH 2 —O—C (═O) —O—CH 3 ) and propargyl methylsulfonate (CH≡C—CH 2). -O-S (= O) 2 -CH 3) , and the like. The content of the chain compound having a carbon-carbon triple bond in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
(電解質塩)
 電解質塩は、例えば、リチウム塩などの塩のうちのいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、例えば、リチウム塩以外の塩を含んでいてもよい。このリチウム以外の塩は、例えば、リチウム以外の軽金属の塩などである。
(Electrolyte salt)
The electrolyte salt includes, for example, any one kind or two or more kinds of salts such as a lithium salt. However, the electrolyte salt may contain a salt other than the lithium salt, for example. Examples of the salt other than lithium include salts of light metals other than lithium.
 リチウム塩は、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、テトラフェニルホウ酸リチウム(LiB(C)、メタンスルホン酸リチウム(LiCHSO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、テトラクロロアルミン酸リチウム(LiAlCl)、六フッ化ケイ酸二リチウム(LiSiF)、塩化リチウム(LiCl)および臭化リチウム(LiBr)などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。 Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and tetraphenyl. Lithium borate (LiB (C 6 H 5 ) 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium tetrachloroaluminate (LiAlCl 4 ), hexafluoride Examples include dilithium silicate (Li 2 SiF 6 ), lithium chloride (LiCl), and lithium bromide (LiBr). This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
 中でも、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウムおよび六フッ化ヒ酸リチウムのうちのいずれか1種類または2種類以上が好ましく、六フッ化リン酸リチウムがより好ましい。内部抵抗が低下するため、より高い効果が得られるからである。 Among them, one or more of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate and lithium hexafluoroarsenate are preferable, and lithium hexafluorophosphate is more preferable. . This is because a higher effect can be obtained because the internal resistance is lowered.
 電解質塩の含有量は、特に限定されないが、中でも、溶媒に対して0.3mol/kg~3.0mol/kgであることが好ましい。高いイオン伝導性が得られるからである。 The content of the electrolyte salt is not particularly limited, but is preferably 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. This is because high ionic conductivity is obtained.
 ただし、ゲル状の電解質である電解質層36において、電解液に含まれる溶媒とは、液状の材料だけでなく、電解質塩を解離させることが可能なイオン伝導性を有する材料まで含む広い概念である。よって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も非水溶媒に含まれる。 However, in the electrolyte layer 36 which is a gel electrolyte, the solvent contained in the electrolytic solution is a wide concept including not only a liquid material but also a material having ion conductivity capable of dissociating the electrolyte salt. . Therefore, when using a polymer compound having ion conductivity, the polymer compound is also included in the non-aqueous solvent.
 高分子化合物は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレンおよびポリカーボネートなどのうちのいずれか1種類または2種類以上を含んでいる。この他、高分子化合物は、共重合体でもよい。この共重合体は、例えば、フッ化ビニリデンとヘキサフルオロピレンとの共重合体などである。中でも、単独重合体としては、ポリフッ化ビニリデンが好ましいと共に、共重合体としては、フッ化ビニリデンとヘキサフルオロピレンとの共重合体が好ましい。電気化学的に安定だからである。 Examples of the polymer compound include polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, polymethacryl. It includes any one or more of methyl acid, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene and polycarbonate. In addition, the polymer compound may be a copolymer. This copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene. Among these, as the homopolymer, polyvinylidene fluoride is preferable, and as the copolymer, a copolymer of vinylidene fluoride and hexafluoropyrene is preferable. This is because it is electrochemically stable.
 なお、電解質層36に代えて、電解液がそのまま用いられてもよい。この場合には、電解液が巻回電極体30に含浸される。 In addition, it may replace with the electrolyte layer 36 and electrolyte solution may be used as it is. In this case, the wound electrode body 30 is impregnated with the electrolytic solution.
[動作]
 この二次電池は、例えば、以下のように動作する。
[Operation]
This secondary battery operates as follows, for example.
 充電時には、正極33からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して負極34に吸蔵される。一方、放電時には、負極34からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して正極33に吸蔵される。 At the time of charging, lithium ions are released from the positive electrode 33 and the lithium ions are occluded in the negative electrode 34 through the electrolyte layer 36. On the other hand, during discharge, lithium ions are released from the negative electrode 34 and the lithium ions are occluded in the positive electrode 33 through the electrolyte layer 36.
[製造方法]
 ゲル状の電解質層36を備えた二次電池は、例えば、以下の3種類の手順により製造される。
[Production method]
The secondary battery provided with the gel electrolyte layer 36 is manufactured, for example, by the following three types of procedures.
(第1手順)
 正極33を作製する場合には、最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などに正極合剤を分散させることにより、ペースト状の正極合剤スラリーとする。続いて、正極集電体33Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層33Bを形成する。最後に、必要に応じて正極活物質層33Bを加熱しながら、ロールプレス機などを用いて正極活物質層33Bを圧縮成型する。この場合には、圧縮成型を複数回繰り返してもよい。
(First procedure)
When the positive electrode 33 is produced, first, a positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conductive agent are mixed to obtain a positive electrode mixture. Subsequently, a positive electrode mixture slurry is obtained by dispersing the positive electrode mixture in an organic solvent or the like. Subsequently, after the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 33A, the positive electrode mixture slurry is dried to form the positive electrode active material layer 33B. Finally, the positive electrode active material layer 33B is compression molded using a roll press or the like while heating the positive electrode active material layer 33B as necessary. In this case, compression molding may be repeated a plurality of times.
 負極34を作製する場合には、上記した正極33と同様の手順により、負極集電体34Aの両面に負極活物質層34Bを形成する。具体的には、最初に、負極活物質と、負正極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤などに負極合剤を分散させることにより、ペースト状の負極合剤スラリーとする。続いて、負極集電体34Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層34Bを形成する。最後に、ロールプレス機などを用いて負極活物質層34Bを圧縮成型する。 When producing the negative electrode 34, the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A by the same procedure as that of the positive electrode 33 described above. Specifically, first, by mixing a negative electrode active material, a negative positive electrode binder, a negative electrode conductive agent, and the like to form a negative electrode mixture, by dispersing the negative electrode mixture in an organic solvent, A paste-like negative electrode mixture slurry is obtained. Subsequently, after applying the negative electrode mixture slurry to both surfaces of the negative electrode current collector 34A, the negative electrode mixture slurry is dried to form the negative electrode active material layer 34B. Finally, the negative electrode active material layer 34B is compression molded using a roll press or the like.
 ゲル状の電解質層36を形成する場合には、最初に、電解液と、高分子化合物と、有機溶剤などとを混合することにより、前駆溶液を調製する。続いて、正極33に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、ゲル状の電解質層36を形成する。また、負極34に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、ゲル状の電解質層36を形成する。 When forming the gel electrolyte layer 36, first, a precursor solution is prepared by mixing an electrolyte solution, a polymer compound, an organic solvent, and the like. Then, after apply | coating a precursor solution to the positive electrode 33, the precursor solution is dried, and the gel electrolyte layer 36 is formed. Moreover, after apply | coating a precursor solution to the negative electrode 34, the precursor solution is dried, and the gel electrolyte layer 36 is formed.
 二次電池を組み立てる場合には、最初に、溶接法などを用いて正極集電体33Aに正極リード31を取り付けると共に、溶接法などを用いて負極集電体34Aに負極リード32を取り付ける。続いて、セパレータ35を介して正極33と負極34とを積層したのち、その正極33、負極34およびセパレータ35を巻回させることにより、巻回電極体30を形成する。続いて、巻回電極体30の最外周部に、保護テープ37を貼り付ける。最後に、窓部42が設けられた外装部材40を用いて、巻回電極体30を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40の外縁部同士を貼り合わせることにより、その外装部材40の内部に巻回電極体30を封入する。この場合には、正極リード31と外装部材40との間に密着フィルム50を挿入すると共に、負極リード32と外装部材40との間に密着フィルム50を挿入する。 When assembling the secondary battery, first, the positive electrode lead 31 is attached to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is attached to the negative electrode current collector 34A using a welding method or the like. Subsequently, after the positive electrode 33 and the negative electrode 34 are laminated via the separator 35, the positive electrode 33, the negative electrode 34 and the separator 35 are wound to form the wound electrode body 30. Subsequently, the protective tape 37 is attached to the outermost peripheral portion of the wound electrode body 30. Finally, after folding the exterior member 40 so as to sandwich the wound electrode body 30 using the exterior member 40 provided with the window portion 42, the outer edge portions of the exterior member 40 are bonded to each other using a heat fusion method or the like. The wound electrode body 30 is sealed inside the exterior member 40 by bonding. In this case, the adhesion film 50 is inserted between the positive electrode lead 31 and the exterior member 40, and the adhesion film 50 is inserted between the negative electrode lead 32 and the exterior member 40.
 これにより、ゲル状の電解質層36を備えたラミネートフィルム型の二次電池が完成する。 Thereby, a laminated film type secondary battery provided with the gel electrolyte layer 36 is completed.
(第2手順)
 第1手順と同様の手順により正極33および負極34のそれぞれを作製したのち、二次電池を組み立てる場合には、最初に、正極33に正極リード31を取り付けると共に、負極34に負極リード32を取り付ける。
(Second procedure)
When each of the positive electrode 33 and the negative electrode 34 is manufactured by the same procedure as the first procedure and then the secondary battery is assembled, first, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34. .
 続いて、セパレータ35を介して正極33と負極34とを積層してから巻回させることにより、巻回電極体30の前駆体である巻回体を作製したのち、その巻回体の最外周部に保護テープ37を貼り付ける。続いて、窓部42が設けられた外装部材40を用いて、巻回電極体30を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40のうちの一辺の外縁部を除いた残りの外縁部同士を貼り合わせることにより、袋状の外装部材40の内部に巻回体を収納する。 Subsequently, the positive electrode 33 and the negative electrode 34 are laminated via the separator 35 and then wound to produce a wound body that is a precursor of the wound electrode body 30, and then the outermost periphery of the wound body A protective tape 37 is affixed to the part. Subsequently, after folding the exterior member 40 so as to sandwich the wound electrode body 30 using the exterior member 40 provided with the window portion 42, one side of the exterior member 40 using the heat fusion method or the like is used. The wound body is housed inside the bag-shaped exterior member 40 by pasting the remaining outer edge parts excluding the outer edge part.
 続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを混合することにより、電解質用組成物を調製する。続いて、袋状の外装部材40の内部に電解質用組成物を注入したのち、熱融着法などを用いて外装部材40を密封する。最後に、モノマーを熱重合させることにより、高分子化合物を形成する。この高分子化合物により電解液が保持されるため、ゲル状の電解質層36が形成される。よって、ラミネートフィルム型の二次電池が完成する。 Subsequently, an electrolyte composition is prepared by mixing an electrolytic solution, a monomer that is a raw material of the polymer compound, a polymerization initiator, and other materials such as a polymerization inhibitor as necessary. Subsequently, after the electrolyte composition is injected into the bag-shaped exterior member 40, the exterior member 40 is sealed using a heat fusion method or the like. Finally, the polymer is formed by thermally polymerizing the monomer. Since the electrolytic solution is held by the polymer compound, the gel electrolyte layer 36 is formed. Therefore, a laminated film type secondary battery is completed.
(第3手順)
 二次電池を組み立てる場合には、最初に、高分子化合物層が形成されたセパレータ35を用いることを除いて、上記した第2手順と同様の手順により、巻回体を作製したのち、窓部42が設けられた袋状の外装部材40の内部に巻回体を収納する。
(Third procedure)
In the case of assembling a secondary battery, first, a wound body is produced by the same procedure as the second procedure described above, except that the separator 35 on which the polymer compound layer is formed is used. The wound body is accommodated in the bag-shaped exterior member 40 provided with 42.
 続いて、外装部材40の内部に電解液を注入したのち、熱融着法などを用いて外装部材40を密封する。続いて、外装部材40に加重をかけながら加熱することにより、高分子化合物層を介してセパレータ35を正極33に密着させると共に、高分子化合物層を介してセパレータ35を負極34に密着させる。これにより、電解液が高分子化合物層のそれぞれに含浸すると共に、その高分子化合物層のそれぞれがゲル化するため、電解質層36が形成される。よって、ラミネートフィルム型の二次電池が完成する。 Subsequently, after injecting an electrolyte into the exterior member 40, the exterior member 40 is sealed using a heat fusion method or the like. Subsequently, by heating the exterior member 40 while applying a load, the separator 35 is brought into close contact with the positive electrode 33 through the polymer compound layer, and the separator 35 is brought into close contact with the negative electrode 34 through the polymer compound layer. Thereby, each of the polymer compound layers is impregnated with the electrolytic solution, and each of the polymer compound layers is gelled, so that the electrolyte layer 36 is formed. Therefore, a laminated film type secondary battery is completed.
 この第3手順では、第1手順と比較して、二次電池の膨れが抑制される。また、第3手順では、第2手順と比較して、溶媒およびモノマー(高分子化合物の原料)などが電解質層36中に残存しにくくなるため、高分子化合物の形成工程が良好に制御される。このため、正極33、負極34およびセパレータ35のそれぞれと電解質層36とが互いに密着しやすくなる。 In the third procedure, the swollenness of the secondary battery is suppressed as compared with the first procedure. Further, in the third procedure, compared with the second procedure, the solvent, the monomer (the raw material of the polymer compound) and the like are less likely to remain in the electrolyte layer 36, and thus the formation process of the polymer compound is well controlled. . For this reason, each of the positive electrode 33, the negative electrode 34, and the separator 35 and the electrolyte layer 36 are easily adhered to each other.
[作用および効果]
 このラミネートフィルム型のリチウムイオン二次電池によれば、フィルム状の外装部材40の内部に巻回電極体30が収納されており、窓機能材料(非多孔質の溶融フッ素樹脂)を含む窓部42(窓フィルム43)が外装部材40(外装本体41)に設けられている。よって、以下で説明する理由により、優れた電池特性を得ることができる。
[Action and effect]
According to this laminated film type lithium ion secondary battery, the wound electrode body 30 is housed inside the film-shaped exterior member 40, and the window portion includes a window functional material (non-porous molten fluororesin). 42 (window film 43) is provided on the exterior member 40 (exterior body 41). Therefore, excellent battery characteristics can be obtained for the reason described below.
 外装部材40に窓部42が設けられていない場合には、二次電池の内部において電解液の分解反応などの副反応に起因して二酸化炭素などのガスが発生すると、そのガスの逃げ場がないため、二次電池の内部においてガスが蓄積される。この場合には、内圧の上昇に応じて、内部環境E1から外部環境E2に向かって突出するように外装部材40が変形するため、二次電池が膨れてしまう。 When the exterior member 40 is not provided with the window 42, when a gas such as carbon dioxide is generated inside the secondary battery due to a side reaction such as a decomposition reaction of the electrolytic solution, there is no escape space for the gas. Therefore, gas is accumulated inside the secondary battery. In this case, as the internal pressure increases, the exterior member 40 is deformed so as to protrude from the internal environment E1 toward the external environment E2, so that the secondary battery swells.
 これに対して、外装部材40に窓部42が設けられている場合には、上記したように、二次電池の内部においてガスが発生しても、窓部42の排気機能を利用してガスが外部に放出されるため、その二次電池の膨れが抑制される。しかも、外装部材(外装本体41)に開口部41Kが設けられていると、その開口部41Kを通じて二次電池の内部に水が侵入することが懸念されるが、窓部42の防水機能を利用して水の侵入が抑制されるため、その水に起因するサイクル特性などの低下も抑制される。よって、安全弁などの機械、器具および装置などの設備を用いずに、窓部42を利用して二次電池の膨れが抑制されると共にサイクル特性などの低下が抑制されるため、優れた電池特性が得られる。 On the other hand, in the case where the exterior member 40 is provided with the window 42, as described above, even if gas is generated inside the secondary battery, the gas is generated by utilizing the exhaust function of the window 42. Is discharged to the outside, so that the secondary battery is prevented from swelling. In addition, when the opening 41K is provided in the exterior member (the exterior body 41), there is a concern that water may enter the inside of the secondary battery through the opening 41K, but the waterproof function of the window 42 is used. Thus, since the intrusion of water is suppressed, the deterioration of cycle characteristics and the like due to the water is also suppressed. Therefore, without using machines such as safety valves, equipment such as equipment and devices, the use of the window portion 42 suppresses swelling of the secondary battery and suppresses deterioration of cycle characteristics, etc., and thus excellent battery characteristics. Is obtained.
 特に、窓機能材料(非多孔質の溶融フッ素樹脂)が非多孔質PFA、非多孔質FEPおよび非多孔質ETFEなどのうちのいずれか1種類または2種類以上を含んでいれば、窓部42が水の侵入をより抑制しやすくなると共に、その窓部42がガスをより放出しやすくなるため、より高い効果を得ることができる。 In particular, if the window functional material (non-porous molten fluororesin) contains any one or more of non-porous PFA, non-porous FEP, non-porous ETFE, etc., the window 42 However, since it becomes easier to suppress the intrusion of water and the window portion 42 more easily releases the gas, a higher effect can be obtained.
 また、外装本体41に開口部41Kが設けられており、窓機能材料を含む窓フィルム43が開口部41Kを被覆することにより窓部42が形成されていれば、その開口部41K(窓フィルム43)を通じてガスが十分に放出されるため、より高い効果を得ることができる。 Moreover, if the opening part 41K is provided in the exterior main body 41 and the window part 42 is formed by the window film 43 containing a window functional material covering the opening part 41K, the opening part 41K (the window film 43). ), The gas is sufficiently released, so that a higher effect can be obtained.
 この場合には、窓フィルム43が開口部41Kの面積よりも大きな面積を有しており、その窓フィルム43が外装本体41に接着剤44を介して貼り付けられていれば、その外装本体41に窓フィルム43が強固に固定される。よって、窓部42の防水機能および排気機能が安定に発揮されるため、さらに高い効果を得ることができる。 In this case, if the window film 43 has an area larger than the area of the opening 41 </ b> K and the window film 43 is attached to the exterior body 41 via the adhesive 44, the exterior body 41. The window film 43 is firmly fixed to the screen. Therefore, since the waterproof function and the exhaust function of the window part 42 are stably exhibited, a higher effect can be obtained.
 また、窓フィルム43の厚さが10μm~500μmであれば、その窓フィルム43の物理耐久性などを確保しつつ、十分な防水機能および十分な排気機能が得られるため、より高い効果を得ることができる。 Further, if the thickness of the window film 43 is 10 μm to 500 μm, a sufficient waterproof function and a sufficient exhaust function can be obtained while ensuring the physical durability of the window film 43, so that a higher effect can be obtained. Can do.
<1-2.リチウム金属二次電池>
 ここで説明する二次電池は、リチウム金属の析出溶解により負極34の容量が得られるラミネートフィルム型のリチウム金属二次電池である。この二次電池は、負極活物質層34Bがリチウム金属により形成されていることを除いて、上記したラミネートフィルム型のリチウムイオン二次電池と同様の構成を有していると共に、同様の手順により製造される。
<1-2. Lithium metal secondary battery>
The secondary battery described here is a laminated film type lithium metal secondary battery in which the capacity of the negative electrode 34 is obtained by precipitation and dissolution of lithium metal. This secondary battery has the same configuration as the above-described laminate film type lithium ion secondary battery except that the negative electrode active material layer 34B is formed of lithium metal, and the same procedure is followed. Manufactured.
 この二次電池では、負極活物質としてリチウム金属が用いられているため、高いエネルギー密度が得られる。負極活物質層34Bは、組み立て時から既に存在してもよいが、組み立て時には存在しておらず、充電時において析出したリチウム金属により形成されてもよい。また、負極活物質層34Bを集電体として利用することにより、負極集電体34Aを省略してもよい。 In this secondary battery, since lithium metal is used as the negative electrode active material, a high energy density can be obtained. The negative electrode active material layer 34B may already exist from the time of assembly, but does not exist at the time of assembly, and may be formed of lithium metal deposited at the time of charging. Further, the negative electrode current collector 34A may be omitted by using the negative electrode active material layer 34B as a current collector.
 この二次電池は、例えば、以下のように動作する。充電時には、正極33からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して負極集電体34Aの表面にリチウム金属となって析出する。一方、放電時には、負極活物質層34Bからリチウム金属がリチウムイオンとなって電解質層36中に溶出すると共に、そのリチウムイオンが電解質層36を介して正極21に吸蔵される。 This secondary battery operates as follows, for example. At the time of charging, lithium ions are released from the positive electrode 33 and the lithium ions are deposited as lithium metal on the surface of the negative electrode current collector 34A through the electrolyte layer 36. On the other hand, at the time of discharge, lithium metal is converted into lithium ions from the negative electrode active material layer 34 </ b> B and eluted into the electrolyte layer 36, and the lithium ions are occluded in the positive electrode 21 through the electrolyte layer 36.
 このラミネートフィルム型のリチウム金属二次電池によれば、フィルム状の外装部材40の内部に巻回電極体30が収納されており、窓機能材料を含む窓部42(窓フィルム43)が外装部材40(外装本体41)に設けられている。よって、上記したリチウムイオン二次電池と同様の理由により、優れた電池特性を得ることができる。リチウム金属二次電池に関する他の作用および効果は、リチウムイオン二次電池に関する作用および効果と同様である。 According to this laminated film type lithium metal secondary battery, the wound electrode body 30 is housed inside the film-shaped exterior member 40, and the window portion 42 (window film 43) containing the window functional material is the exterior member. 40 (exterior body 41). Therefore, excellent battery characteristics can be obtained for the same reason as the above-described lithium ion secondary battery. Other operations and effects relating to the lithium metal secondary battery are the same as those relating to the lithium ion secondary battery.
<1-3.変形例>
 本実施形態の二次電池の構成は、適宜、変更可能である。
<1-3. Modification>
The configuration of the secondary battery of the present embodiment can be changed as appropriate.
(変形例1)
 具体的には、窓フィルム43は、例えば、接着剤44を用いない方法のうちのいずれか1種類または2種類以上を用いて外装本体41に接着されていてもよい。この接着剤44を用いない方法は、例えば、熱融着法および超音波溶接法などである。この場合においても、窓フィルム43が外装本体41に固定されるため、同様の効果を得ることができる。
(Modification 1)
Specifically, the window film 43 may be bonded to the exterior body 41 using, for example, any one type or two or more types of methods that do not use the adhesive 44. Examples of methods that do not use the adhesive 44 include a heat fusion method and an ultrasonic welding method. Even in this case, since the window film 43 is fixed to the exterior body 41, the same effect can be obtained.
(変形例2)
 また、例えば、図2に対応する図5に示したように、窪み部41Pのうちの上面41PTに代えて、側面41PSに窓部42が設けられていてもよい。開口部41Kの開口形状および開口面積などは、任意に設定可能であると共に、窓フィルム43の平面形状および面積などは、任意に設定可能である。ここでは、例えば、開口部41Kの開口形状および窓フィルム43の平面形状のそれぞれが略矩形(4つの角部が丸みを帯びた矩形)であると共に、窓フィルム43の面積が開口部41Kの開口面積よりも大きくなっている。この場合においても、窓部24が防水機能および排気機能を発揮することにより、同様の効果を得ることができる。
(Modification 2)
Further, for example, as shown in FIG. 5 corresponding to FIG. 2, a window portion 42 may be provided on the side surface 41PS instead of the upper surface 41PT of the recessed portion 41P. The opening shape and opening area of the opening 41K can be arbitrarily set, and the planar shape and area of the window film 43 can be arbitrarily set. Here, for example, each of the opening shape of the opening 41K and the planar shape of the window film 43 is substantially rectangular (a rectangle with four corners rounded), and the area of the window film 43 is the opening of the opening 41K. It is larger than the area. Even in this case, the same effect can be obtained by the window portion 24 exhibiting a waterproof function and an exhaust function.
(変形例3)
 また、例えば、図3に対応する図6に示したように、外装本体41の内側(内部環境E1)に代えて、その外装本体41の外側(外部環境E2)に窓フィルム43が配置されていてもよい。この窓フィルム43は、例えば、接着剤44を介して外装本体41の外側面に接着されている。この場合においても、窓部24が防水機能および排気機能を発揮することにより、同様の効果を得ることができる。
(Modification 3)
Further, for example, as shown in FIG. 6 corresponding to FIG. 3, a window film 43 is arranged on the outside (external environment E2) of the exterior body 41 instead of the inside (internal environment E1) of the exterior body 41. May be. The window film 43 is bonded to the outer surface of the exterior body 41 via an adhesive 44, for example. Even in this case, the same effect can be obtained by the window portion 24 exhibiting a waterproof function and an exhaust function.
 ただし、上記したように、窓フィルム43が外装本体41の外側に配置されていると、ガスの発生(内圧の上昇)に起因して窓フィルム43が剥離する可能性があると共に、その窓フィルム43が二次電池から脱落する可能性がある。よって、窓フィルム43が剥離および脱落することを抑制するためには、その窓フィルム43は外装本体41の内側(内部環境E1)に配置されていることが好ましい。 However, as described above, when the window film 43 is disposed outside the exterior body 41, the window film 43 may be peeled off due to generation of gas (increase in internal pressure), and the window film. 43 may fall out of the secondary battery. Therefore, in order to suppress the window film 43 from peeling and dropping, the window film 43 is preferably disposed inside the exterior body 41 (internal environment E1).
(変形例4)
 また、例えば、図3に対応する図7に示したように、窓フィルム43の上に保護層46が設けられていてもよい。この「窓フィルム43の上」とは、窓フィルム43の外側を意味している。
(Modification 4)
Further, for example, as shown in FIG. 7 corresponding to FIG. 3, a protective layer 46 may be provided on the window film 43. This “on the window film 43” means the outside of the window film 43.
 保護層46は、主に、窓フィルム43の表面を物理的に保護する機能を果たす。この保護層46は、例えば、通気性を有する材料のうちのいずれか1種類または2種類以上を含んでいる。通気性を有する材料の種類は、特に限定されないが、例えば、多孔質の樹脂、セラミックおよびメッシュフィルタなどである。多孔質の樹脂の種類は、特に限定されないが、例えば、多孔質ポリテトラフルオロエチレン(PTFE)、ナイロン、ポリプロピレン(PP)、ポリエチレン(PE)、ポリメタクリル酸メチル(PMMA)、ポリ塩化ビニル(PVC)およびゼオライトなどである。保護層46の厚さは、特に限定されないため、任意に設定可能である。 The protective layer 46 mainly functions to physically protect the surface of the window film 43. The protective layer 46 includes, for example, any one kind or two or more kinds of materials having air permeability. The type of material having air permeability is not particularly limited, and examples thereof include porous resins, ceramics, and mesh filters. The kind of the porous resin is not particularly limited. For example, porous polytetrafluoroethylene (PTFE), nylon, polypropylene (PP), polyethylene (PE), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC) ) And zeolite. The thickness of the protective layer 46 is not particularly limited and can be arbitrarily set.
 保護層46が窓フィルム43を保護することができれば、その保護層46の大きさ(面積)は、特に限定されない。すなわち、保護層46の面積は、窓フィルム43の露出面積(開口部41Kに露出している窓フィルム43の面積)と同じでもよいし、窓フィルム43の露出面積より大きくてもよい。 If the protective layer 46 can protect the window film 43, the size (area) of the protective layer 46 is not particularly limited. That is, the area of the protective layer 46 may be the same as the exposed area of the window film 43 (the area of the window film 43 exposed at the opening 41K) or may be larger than the exposed area of the window film 43.
 ここでは、保護層46は、例えば、窓フィルム43の露出面積よりも大きい面積を有しており、接着剤45を介して外装本体41に接着されている。この接着剤45は、例えば、窓フィルム43を利用した通気性を確保するために、開口部41Kを塞がないように設けられていることが好ましい。図7では、例えば、保護層46が接着剤45を介して窓フィルム43に接着されないようにした場合を示している。接着剤45に関する詳細は、例えば、接着剤44に関する詳細と同様である。 Here, the protective layer 46 has an area larger than the exposed area of the window film 43, for example, and is bonded to the exterior body 41 via the adhesive 45. For example, the adhesive 45 is preferably provided so as not to block the opening 41K in order to ensure air permeability using the window film 43. In FIG. 7, for example, a case where the protective layer 46 is prevented from being bonded to the window film 43 via the adhesive 45 is shown. The details regarding the adhesive 45 are the same as the details regarding the adhesive 44, for example.
 この場合には、保護層46により窓フィルム43が物理的に保護されるため、その窓フィルム43が外力に起因して変形、破損および剥離することは抑制される。しかも、通気性を有する材料は、ガスを通しやすい性質を有しているため、窓フィルム43の上に保護層46が設けられていても、その保護層46を経由してガスが外部に放出される。よって、窓部42の排気機能が担保されながら、窓フィルム43の物理耐久性が向上するため、より高い効果を得ることができる。 In this case, since the window film 43 is physically protected by the protective layer 46, the window film 43 is prevented from being deformed, damaged and peeled off due to an external force. Moreover, since the air-permeable material has the property of allowing gas to pass therethrough, even if the protective layer 46 is provided on the window film 43, the gas is released to the outside through the protective layer 46. Is done. Therefore, since the physical durability of the window film 43 is improved while the exhaust function of the window portion 42 is ensured, a higher effect can be obtained.
 ここでは具体的に図示しないが、例えば、図6に示したように、窓フィルム43が外装本体41の外側に配置されている場合において、その窓フィルム43の上に保護層46が設けられていてもよい。この保護層46は、例えば、接着剤45を介して外装本体41などに接着される。この場合においても、同様の効果を得ることができる。 Although not specifically shown here, for example, as shown in FIG. 6, when the window film 43 is disposed outside the exterior body 41, a protective layer 46 is provided on the window film 43. May be. The protective layer 46 is bonded to the exterior body 41 or the like via an adhesive 45, for example. In this case, the same effect can be obtained.
<2.二次電池(第2実施形態)>
 次に、第2実施形態の二次電池に関して説明する。以下では、第1実施形態の二次電池の構成要素を随時引用する。
<2. Secondary Battery (Second Embodiment)>
Next, the secondary battery of the second embodiment will be described. Below, the component of the secondary battery of 1st Embodiment is quoted at any time.
<2-1.リチウムイオン二次電池>
 ここで説明する二次電池は、リチウムイオン二次電池である。この二次電池は、外装本体41に開口部41Kが設けられていないと共に、外装部材40が窓部42に代えて窓部47を有していることを除いて、第1実施形態の二次電池と同様の構成を有していると共に、同様の手順により製造される。
<2-1. Lithium ion secondary battery>
The secondary battery described here is a lithium ion secondary battery. This secondary battery is the secondary battery according to the first embodiment, except that the exterior body 41 is not provided with the opening 41K and the exterior member 40 has a window 47 instead of the window 42. It has the same configuration as the battery and is manufactured by the same procedure.
[構成]
 図8は、本実施形態の二次電池の斜視構成(貼り合わせ後の状態)を表しており、図1および図2のそれぞれに対応している。ただし、図8では、図2と同様に、正極リード31および負極リード32のそれぞれの図示を省略している。
[Constitution]
FIG. 8 illustrates a perspective configuration (a state after bonding) of the secondary battery of the present embodiment, and corresponds to each of FIGS. 1 and 2. However, in FIG. 8, as in FIG. 2, the positive electrode lead 31 and the negative electrode lead 32 are not shown.
 図9は、図8に示したC-C線に沿った外装部材40の断面構成を表している。図10は、図8に示したD-D線に沿った外装部材40の断面構成を表している。 FIG. 9 shows a cross-sectional configuration of the exterior member 40 along the line CC shown in FIG. FIG. 10 shows a cross-sectional configuration of the exterior member 40 along the line DD shown in FIG.
 窓部47は、主に、窓部42と同様の機能(防水機能および排気機能)を果たす。この窓部47は、例えば、図8に示したように、外装本体41のうちの非接着領域41Xに代えて接着領域41Yに設けられており、窓フィルム43に代えて窓フィルム48を含んでいる。 The window portion 47 mainly performs the same functions (waterproof function and exhaust function) as the window portion 42. For example, as shown in FIG. 8, the window portion 47 is provided in the adhesion region 41 </ b> Y instead of the non-adhesion region 41 </ b> X of the exterior body 41, and includes the window film 48 instead of the window film 43. Yes.
 具体的には、例えば、外装部41A,41Bにより窓フィルム48が挟まれた状態において、その外装部41A,41Bが互いに接着されることにより、窓部47が形成されている。すなわち、窓部47は、例えば、窓機能材料(非多孔質の溶融フッ素樹脂)を含むと共に外装部41A,41Bの間に介在する窓フィルム48を含んでいる。図8では、窓部47(窓フィルム48)を識別しやすくするために、その窓部47に網掛けを施している。 Specifically, for example, in a state in which the window film 48 is sandwiched between the exterior portions 41A and 41B, the exterior portions 41A and 41B are bonded to each other, whereby the window portion 47 is formed. That is, the window part 47 includes, for example, a window functional material (non-porous molten fluororesin) and a window film 48 interposed between the exterior parts 41A and 41B. In FIG. 8, in order to make it easy to identify the window 47 (window film 48), the window 47 is shaded.
 この窓部47は、図9および図10に示したように、内部環境E1および外部環境E2のそれぞれに露出している。外装部材40に窓部47が設けられているのは、外装部材40に窓部42が設けられている場合と同様の理由による。すなわち、窓部47の防水機能および排気機能を利用して、安全弁などの機械、器具および装置などの設備を用いずに、サイクル特性などの低下が抑制されると共に、二次電池の膨れが抑制される。 The window 47 is exposed to each of the internal environment E1 and the external environment E2, as shown in FIGS. The reason why the window portion 47 is provided in the exterior member 40 is the same as the case where the window portion 42 is provided in the exterior member 40. That is, by using the waterproof function and exhaust function of the window 47, deterioration of cycle characteristics and the like are suppressed without using machinery, equipment and devices such as safety valves, and secondary battery swelling is also suppressed. Is done.
 上記した防水機能および排気機能を発揮することができれば、窓部47の数、位置および構成は、特に限定されない。 As long as the waterproof function and the exhaust function described above can be exhibited, the number, position, and configuration of the window portion 47 are not particularly limited.
 窓部47の数は、1個だけでもよいし、2個以上でもよい。ここでは、窓部47の数は、例えば、1個である。 The number of window portions 47 may be only one, or two or more. Here, the number of window parts 47 is one, for example.
 また、窓部47の位置は、接着領域41Yのうちのいずれかの位置であれば、任意でよい。ここでは、窓部47は、例えば、外装部材40の内部から外部に正極リード31および負極リード32のそれぞれが導入される側における接着領域41Yの一部に設けられている。 Further, the position of the window 47 may be arbitrary as long as it is any position in the adhesion region 41Y. Here, the window part 47 is provided in a part of the adhesion region 41Y on the side where each of the positive electrode lead 31 and the negative electrode lead 32 is introduced from the inside of the exterior member 40 to the outside, for example.
 窓フィルム48は、例えば、窓フィルム43と同様に、窓機能材料のうちのいずれか1種類または2種類以上を含んでいる。窓フィルム48の平面形状は、特に限定されないため、例えば、円形でもよいし、楕円形でもよいし、矩形でもよいし、それら以外の形状でもよい。ここでは、窓フィルム48の平面形状は、例えば、矩形である。 The window film 48 includes, for example, any one type or two or more types of window functional materials in the same manner as the window film 43. Since the planar shape of the window film 48 is not particularly limited, it may be, for example, a circle, an ellipse, a rectangle, or other shapes. Here, the planar shape of the window film 48 is, for example, a rectangle.
 この窓フィルム48は、例えば、接着剤49を介して外装本体41(外装部41A)に接着されていると共に、同様に接着剤49を介して外装本体41(外装部41B)に接着されている。接着剤49に関する詳細は、例えば、接着剤44に関する詳細と同様である。 For example, the window film 48 is adhered to the exterior main body 41 (exterior portion 41A) via an adhesive 49, and is similarly adhered to the exterior main body 41 (exterior portion 41B) via the adhesive 49. . The details regarding the adhesive 49 are the same as the details regarding the adhesive 44, for example.
 なお、窓フィルム48が存在していない領域では、上記したように、外装部41Aの接着層と外層部41Bの接着層とが互いに接着されている。これにより、外装部材40は封止されている。 In the region where the window film 48 does not exist, as described above, the adhesive layer of the exterior part 41A and the adhesive layer of the outer layer part 41B are adhered to each other. Thereby, the exterior member 40 is sealed.
 窓フィルム48の厚さは、特に限定されないが、例えば、10μm~500μmであり、好ましくは10μm~200μmである。窓フィルム43の厚さを規定した場合と同様に、窓フィルム48の物理耐久性などを確保しつつ、十分な防水機能および十分な排気機能が得られるからである。 The thickness of the window film 48 is not particularly limited, but is, for example, 10 μm to 500 μm, preferably 10 μm to 200 μm. This is because, as in the case where the thickness of the window film 43 is defined, a sufficient waterproof function and a sufficient exhaust function can be obtained while ensuring the physical durability of the window film 48 and the like.
 なお、接着剤49と窓フィルム48との接着性が十分でない場合には、例えば、上記した接着剤44と窓フィルム43との接着性が十分でない場合と同様に、その接着性を向上させるために、窓フィルム48の表面に前処理のうちのいずれか1種類または2種類以上が施されていてもよい。前処理に関する詳細は、例えば、上記した通りである。 In addition, when the adhesiveness between the adhesive 49 and the window film 48 is not sufficient, for example, in order to improve the adhesiveness as in the case where the adhesiveness between the adhesive 44 and the window film 43 is not sufficient. In addition, any one kind or two or more kinds of pretreatments may be applied to the surface of the window film 48. Details regarding the preprocessing are as described above, for example.
 もちろん、接着剤49と外装本体41との接着性が十分でない場合には、例えば、上記した接着剤44と外装本体41との接着性が十分でない場合と同様に、その接着性を向上させるために、外装本体41の表面に前処理のうちのいずれか1種類または2種類以上が施されていてもよい。 Of course, when the adhesiveness between the adhesive 49 and the exterior body 41 is not sufficient, for example, in order to improve the adhesiveness as in the case where the adhesiveness between the adhesive 44 and the exterior body 41 is not sufficient. In addition, any one type or two or more types of pretreatments may be applied to the surface of the exterior body 41.
[製造方法]
 この二次電池は、例えば、接着剤49を用いて外装本体41(外装部41A,41B)に窓フィルム48を貼り付けることにより、窓部48が設けられた外装部材40を用いることを除いて、第1実施形態の二次電池と同様の手順により製造される。
[Production method]
This secondary battery, for example, except that the exterior member 40 provided with the window portion 48 is used by attaching the window film 48 to the exterior body 41 (the exterior portions 41A and 41B) using the adhesive 49. It is manufactured by the same procedure as the secondary battery of the first embodiment.
[作用および効果]
 このラミネートフィルム型のリチウムイオン二次電池によれば、フィルム状の外装部材40の内部に巻回電極体30が収納されており、窓機能材料を含む窓部47(窓フィルム48)が外装部材40に設けられている。この場合には、第1実施形態の二次電池と同様の理由により、窓フィルム48の防水機能を利用して、水に起因するサイクル特性などの低下が抑制されると共に、その窓フィルム48の排気機能を利用して、二次電池の膨れが抑制される。よって、優れた電池特性を得ることができる。
[Action and effect]
According to this laminated film type lithium ion secondary battery, the wound electrode body 30 is housed inside the film-shaped exterior member 40, and the window portion 47 (window film 48) containing the window functional material is the exterior member. 40. In this case, for the same reason as the secondary battery of the first embodiment, the waterproof function of the window film 48 is used to suppress deterioration of cycle characteristics and the like caused by water, and the window film 48 By using the exhaust function, swelling of the secondary battery is suppressed. Therefore, excellent battery characteristics can be obtained.
 特に、窓機能材料を含む窓フィルム48を介して外装部41A,41Bが互いに接着されることにより窓部48が形成されていれば、外装本体41に開口部などを設けなくても窓部48が形成されるため、より高い効果を得ることができる。 In particular, if the window part 48 is formed by bonding the exterior parts 41A and 41B to each other via the window film 48 containing a window functional material, the window part 48 can be provided without providing the exterior body 41 with an opening or the like. Therefore, a higher effect can be obtained.
 また、窓フィルム48の厚さが10μm~500μmであれば、その窓フィルム48の物理耐久性などを確保しつつ、十分な防水機能および十分な排気機能が得られるため、より高い効果を得ることができる。 Further, if the thickness of the window film 48 is 10 μm to 500 μm, a sufficient waterproof function and a sufficient exhaust function can be obtained while ensuring the physical durability of the window film 48, so that a higher effect can be obtained. Can do.
 本実施形態の二次電池に関する他の作用および効果は、第1実施形態の二次電池に関する作用および効果と同様である。 Other actions and effects related to the secondary battery of the present embodiment are the same as the actions and effects related to the secondary battery of the first embodiment.
<2-2.リチウム金属二次電池>
 ここで説明する二次電池は、ラミネートフィルム型のリチウム金属二次電池である。この二次電池は、負極活物質としてリチウム金属が用いられていることを除いて、上記したラミネートフィルム型のリチウムイオン二次電池と同様の構成を有していると共に、同様の手順により製造される。
<2-2. Lithium metal secondary battery>
The secondary battery described here is a laminated film type lithium metal secondary battery. This secondary battery has the same configuration as the above laminated film type lithium ion secondary battery except that lithium metal is used as the negative electrode active material, and is manufactured by the same procedure. The
 このラミネートフィルム型のリチウム金属二次電池によれば、フィルム状の外装部材40の内部に巻回電極体30が収納されており、窓機能材料を含む窓部47(窓フィルム48)が外装部材40に設けられている。よって、上記したリチウムイオン二次電池と同様の理由により、優れた電池特性を得ることができる。リチウム金属二次電池に関する他の作用および効果は、リチウムイオン二次電池に関する作用および効果と同様である。 According to this laminated film type lithium metal secondary battery, the wound electrode body 30 is housed inside the film-like exterior member 40, and the window portion 47 (window film 48) containing the window functional material is the exterior member. 40. Therefore, excellent battery characteristics can be obtained for the same reason as the above-described lithium ion secondary battery. Other operations and effects relating to the lithium metal secondary battery are the same as those relating to the lithium ion secondary battery.
<2-3.変形例>
 本実施形態の二次電池の構成は、適宜、変更可能である。具体的には、窓フィルム48は、例えば、窓フィルム43と同様に、接着剤49を用いない方法のうちのいずれか1種類または2種類以上を用いて外装本体41に貼り付けられていてもよい。この接着剤49を用いない方法に関する詳細は、例えば、上記した通りである。この場合においても、窓フィルム48が外装本体41に固定されるため、同様の効果を得ることができる。
<2-3. Modification>
The configuration of the secondary battery of the present embodiment can be changed as appropriate. Specifically, the window film 48 may be attached to the exterior body 41 using any one type or two or more types of methods that do not use the adhesive 49, for example, as with the window film 43. Good. The details regarding the method not using the adhesive 49 are as described above, for example. Also in this case, since the window film 48 is fixed to the exterior body 41, the same effect can be obtained.
<3.二次電池の用途>
 次に、上記した二次電池の適用例に関して説明する。
<3. Applications of secondary batteries>
Next, application examples of the above-described secondary battery will be described.
 二次電池の用途は、その二次電池を駆動用の電源または電力蓄積用の電力貯蔵源などとして利用可能である機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として用いられる二次電池は、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、例えば、主電源の代わりに用いられる電源でもよいし、必要に応じて主電源から切り替えられる電源でもよい。二次電池を補助電源として用いる場合には、主電源の種類は二次電池に限られない。 Secondary batteries can be used in machines, equipment, instruments, devices and systems (aggregates of multiple equipment) that can be used as a power source for driving or a power storage source for power storage. If there is, it will not be specifically limited. The secondary battery used as a power source may be a main power source or an auxiliary power source. The main power source is a power source that is preferentially used regardless of the presence or absence of other power sources. The auxiliary power supply may be, for example, a power supply used instead of the main power supply, or a power supply that can be switched from the main power supply as necessary. When a secondary battery is used as an auxiliary power source, the type of main power source is not limited to the secondary battery.
 二次電池の用途は、例えば、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、二次電池の用途は、上記以外の用途でもよい。 The usage of the secondary battery is, for example, as follows. Electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals. It is a portable living device such as an electric shaver. Storage devices such as backup power supplies and memory cards. Electric tools such as electric drills and electric saws. It is a battery pack that is mounted on a notebook computer as a detachable power source. Medical electronic devices such as pacemakers and hearing aids. An electric vehicle such as an electric vehicle (including a hybrid vehicle). It is an electric power storage system such as a home battery system that stores electric power in case of an emergency. Of course, the secondary battery may be used for other purposes.
 中でも、二次電池は、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器などに適用されることが有効である。これらの用途では優れた電池特性が要求されるため、本技術の二次電池を用いることにより、有効に性能向上を図ることができるからである。なお、電池パックは、二次電池を用いた電源である。この電池パックは、後述するように、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されているため、その電力を利用して家庭用の電気製品などを使用することが可能である。電動工具は、二次電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、二次電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。 Among them, it is effective that the secondary battery is applied to a battery pack, an electric vehicle, an electric power storage system, an electric tool, an electronic device, and the like. This is because excellent battery characteristics are required for these applications, and therefore the performance can be effectively improved by using the secondary battery of the present technology. The battery pack is a power source using a secondary battery. As will be described later, this battery pack may use a single battery or an assembled battery. An electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be an automobile (such as a hybrid automobile) that includes a drive source other than the secondary battery as described above. The power storage system is a system that uses a secondary battery as a power storage source. For example, in a household power storage system, power is stored in a secondary battery, which is a power storage source, and thus it is possible to use household electrical appliances or the like using the power. An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a secondary battery as a driving power source. An electronic device is a device that exhibits various functions using a secondary battery as a driving power source (power supply source).
 ここで、二次電池のいくつかの適用例に関して具体的に説明する。なお、以下で説明する適用例の構成は、あくまで一例であるため、その適用例の構成は、適宜変更可能である。 Here, some application examples of the secondary battery will be specifically described. In addition, since the structure of the application example demonstrated below is an example to the last, the structure of the application example can be changed suitably.
<3-1.電池パック(単電池)>
 図11は、単電池を用いた電池パックの斜視構成を表している。図12は、図11に示した電池パックのブロック構成を表している。なお、図11では、電池パックが分解された状態を示している。
<3-1. Battery pack (single cell)>
FIG. 11 shows a perspective configuration of a battery pack using single cells. FIG. 12 shows a block configuration of the battery pack shown in FIG. FIG. 11 shows a state where the battery pack is disassembled.
 ここで説明する電池パックは、1つの本技術の二次電池を用いた簡易型の電池パック(いわゆるソフトパック)であり、例えば、スマートフォンに代表される電子機器などに搭載される。この電池パックは、例えば、図11に示したように、ラミネートフィルム型の二次電池である電源111と、その電源111に接続される回路基板116とを備えている。この電源111には、正極リード112および負極リード113が取り付けられている。 The battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery of the present technology, and is mounted on, for example, an electronic device typified by a smartphone. For example, as shown in FIG. 11, the battery pack includes a power supply 111 that is a laminate film type secondary battery, and a circuit board 116 connected to the power supply 111. A positive electrode lead 112 and a negative electrode lead 113 are attached to the power source 111.
 電源111の両側面には、一対の粘着テープ118,119が貼り付けられている。回路基板116には、保護回路(PCM:Protection・Circuit・Module )が形成されている。この回路基板116は、タブ114を介して正極112に接続されていると共に、タブ115を介して負極リード113に接続されている。また、回路基板116は、外部接続用のコネクタ付きリード線117に接続されている。なお、回路基板116が電源111に接続された状態において、その回路基板116は、ラベル120および絶縁シート121により保護されている。このラベル120が貼り付けられることにより、回路基板116および絶縁シート121などは固定されている。 A pair of adhesive tapes 118 and 119 are attached to both side surfaces of the power source 111. A protection circuit (PCM: Protection Circuit Circuit Module) is formed on the circuit board 116. The circuit board 116 is connected to the positive electrode 112 through the tab 114 and is connected to the negative electrode lead 113 through the tab 115. The circuit board 116 is connected to a lead wire 117 with a connector for external connection. In the state where the circuit board 116 is connected to the power source 111, the circuit board 116 is protected by the label 120 and the insulating sheet 121. By attaching the label 120, the circuit board 116, the insulating sheet 121, and the like are fixed.
 また、電池パックは、例えば、図12に示したように、電源111と、回路基板116とを備えている。回路基板116は、例えば、制御部121と、スイッチ部122と、PTC素子123と、温度検出部124とを備えている。電源111は、正極端子125および負極端子127を介して外部と接続されることが可能であるため、その電源111は、正極端子125および負極端子127を介して充放電される。温度検出部124は、温度検出端子(いわゆるT端子)126を用いて温度を検出する。 Further, the battery pack includes, for example, a power supply 111 and a circuit board 116 as shown in FIG. The circuit board 116 includes, for example, a control unit 121, a switch unit 122, a PTC element 123, and a temperature detection unit 124. Since the power source 111 can be connected to the outside via the positive electrode terminal 125 and the negative electrode terminal 127, the power source 111 is charged / discharged via the positive electrode terminal 125 and the negative electrode terminal 127. The temperature detector 124 detects the temperature using a temperature detection terminal (so-called T terminal) 126.
 制御部121は、電池パック全体の動作(電源111の使用状態を含む)を制御する。この制御部121は、例えば、中央演算処理装置(CPU)およびメモリなどを含んでいる。 The controller 121 controls the operation of the entire battery pack (including the usage state of the power supply 111). The control unit 121 includes, for example, a central processing unit (CPU) and a memory.
 この制御部121は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部122を切断させることにより、電源111の電流経路に充電電流が流れないようにする。また、制御部121は、例えば、充電時において大電流が流れると、スイッチ部122を切断させることにより、充電電流を遮断する。 For example, when the battery voltage reaches the overcharge detection voltage, the control unit 121 disconnects the switch unit 122 so that the charging current does not flow in the current path of the power supply 111. For example, when a large current flows during charging, the control unit 121 cuts off the charging current by cutting the switch unit 122.
 一方、制御部121は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部122を切断させることにより、電源111の電流経路に放電電流が流れないようにする。また、制御部121は、例えば、放電時において大電流が流れると、スイッチ部122を切断させることにより、放電電流を遮断する。 On the other hand, for example, when the battery voltage reaches the overdischarge detection voltage, the control unit 121 disconnects the switch unit 122 so that no discharge current flows in the current path of the power supply 111. For example, when a large current flows during discharge, the control unit 121 cuts off the discharge current by cutting the switch unit 122.
 なお、過充電検出電圧は、例えば、4.2V±0.05Vであると共に、過放電検出電圧は、例えば、2.4V±0.1Vである。 The overcharge detection voltage is, for example, 4.2V ± 0.05V, and the overdischarge detection voltage is, for example, 2.4V ± 0.1V.
 スイッチ部122は、制御部121の指示に応じて、電源111の使用状態、すなわち電源111と外部機器との接続の有無を切り換える。このスイッチ部122は、例えば、充電制御スイッチおよび放電制御スイッチなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。なお、充放電電流は、例えば、スイッチ部122のON抵抗に基づいて検出される。 The switch unit 122 switches the usage state of the power source 111, that is, whether or not the power source 111 is connected to an external device, in accordance with an instruction from the control unit 121. The switch unit 122 includes, for example, a charge control switch and a discharge control switch. Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor. The charge / discharge current is detected based on, for example, the ON resistance of the switch unit 122.
 温度検出部124は、電源111の温度を測定すると共に、その温度の測定結果を制御部121に出力する。この温度検出部124は、例えば、サーミスタなどの温度検出素子を含んでいる。なお、温度検出部124により測定される温度の測定結果は、異常発熱時において制御部121が充放電制御を行う場合、残容量の算出時において制御部121が補正処理を行う場合などに用いられる。 The temperature detection unit 124 measures the temperature of the power supply 111 and outputs the temperature measurement result to the control unit 121. The temperature detection unit 124 includes a temperature detection element such as a thermistor, for example. The temperature measurement result measured by the temperature detection unit 124 is used when the control unit 121 performs charge / discharge control during abnormal heat generation, or when the control unit 121 performs correction processing when calculating the remaining capacity. .
 なお、回路基板116は、PTC素子123を備えていなくてもよい。この場合には、別途、回路基板116にPTC素子が付設されていてもよい。 Note that the circuit board 116 may not include the PTC element 123. In this case, a PTC element may be attached to the circuit board 116 separately.
<3-2.電池パック(組電池)>
 図13は、組電池を用いた電池パックのブロック構成を表している。
<3-2. Battery Pack (Battery)>
FIG. 13 shows a block configuration of a battery pack using an assembled battery.
 この電池パックは、例えば、筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。この筐体60は、例えば、プラスチック材料などを含んでいる。 This battery pack includes, for example, a control unit 61, a power source 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, a voltage detection unit 66, and a switch control unit 67 inside the housing 60. A memory 68, a temperature detection element 69, a current detection resistor 70, and a positive terminal 71 and a negative terminal 72. The housing 60 includes, for example, a plastic material.
 制御部61は、電池パック全体の動作(電源62の使用状態を含む)を制御する。この制御部61は、例えば、CPUなどを含んでいる。電源62は、2種類以上の本技術の二次電池を含む組電池であり、その2種類以上の二次電池の接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6つの二次電池を含んでいる。 The control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62). The control unit 61 includes, for example, a CPU. The power source 62 is an assembled battery including two or more types of secondary batteries of the present technology, and the connection type of the two or more types of secondary batteries may be in series, in parallel, or a mixture of both. . For example, the power source 62 includes six secondary batteries connected in two parallel three series.
 スイッチ部63は、制御部61の指示に応じて、電源62の使用状態、すなわち電源62と外部機器との接続の有無を切り換える。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。 The switch unit 63 switches the usage state of the power source 62, that is, whether or not the power source 62 is connected to an external device, in accordance with an instruction from the control unit 61. The switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like. Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
 電流測定部64は、電流検出抵抗70を用いて電流を測定すると共に、その電流の測定結果を制御部61に出力する。温度検出部65は、温度検出素子69を用いて温度を測定すると共に、その温度の測定結果を制御部61に出力する。この温度の測定結果は、例えば、異常発熱時において制御部61が充放電制御を行う場合、残容量の算出時において制御部61が補正処理を行う場合などに用いられる。電圧検出部66は、電源62中における二次電池の電圧を測定すると共に、アナログ-デジタル変換された電圧の測定結果を制御部61に供給する。 The current measurement unit 64 measures the current using the current detection resistor 70 and outputs the measurement result of the current to the control unit 61. The temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the temperature measurement result to the control unit 61. This temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity. The voltage detection unit 66 measures the voltage of the secondary battery in the power source 62 and supplies the control unit 61 with the measurement result of the analog-digital converted voltage.
 スイッチ制御部67は、電流測定部64および電圧検出部66のそれぞれから入力される信号に応じて、スイッチ部63の動作を制御する。 The switch control unit 67 controls the operation of the switch unit 63 according to signals input from the current measurement unit 64 and the voltage detection unit 66, respectively.
 このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部63(充電制御スイッチ)を切断することにより、電源62の電流経路に充電電流が流れないようにする。これにより、電源62では、放電用ダイオードを介して放電だけが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れると、充電電流を遮断する。 For example, when the battery voltage reaches the overcharge detection voltage, the switch control unit 67 disconnects the switch unit 63 (charge control switch) so that the charging current does not flow in the current path of the power source 62. As a result, the power source 62 can only discharge through the discharging diode. For example, when a large current flows during charging, the switch control unit 67 cuts off the charging current.
 また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部63(放電制御スイッチ)を切断することにより、電源62の電流経路に放電電流が流れないようにする。これにより、電源62では、充電用ダイオードを介して充電だけが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れると、放電電流を遮断する。 Further, for example, when the battery voltage reaches the overdischarge detection voltage, the switch control unit 67 disconnects the switch unit 63 (discharge control switch) so that the discharge current does not flow in the current path of the power source 62. As a result, the power source 62 can only be charged via the charging diode. For example, when a large current flows during discharge, the switch control unit 67 interrupts the discharge current.
 なお、過充電検出電圧は、例えば、4.2V±0.05Vであると共に、過放電検出電圧は、例えば、2.4V±0.1Vである。 The overcharge detection voltage is, for example, 4.2V ± 0.05V, and the overdischarge detection voltage is, for example, 2.4V ± 0.1V.
 メモリ68は、例えば、不揮発性メモリであるEEPROMなどを含んでいる。このメモリ68には、例えば、制御部61により演算された数値、製造工程段階において測定された二次電池の情報(例えば、初期状態の内部抵抗など)などが記憶されている。なお、メモリ68に二次電池の満充電容量を記憶させておけば、制御部61が残容量などの情報を把握できる。 The memory 68 includes, for example, an EEPROM which is a nonvolatile memory. The memory 68 stores, for example, numerical values calculated by the control unit 61, information on the secondary battery measured in the manufacturing process stage (for example, internal resistance in an initial state), and the like. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
 温度検出素子69は、電源62の温度を測定すると共に、その温度の測定結果を制御部61に出力する。この温度検出素子69は、例えば、サーミスタなどを含んでいる。 The temperature detection element 69 measures the temperature of the power supply 62 and outputs the temperature measurement result to the control unit 61. The temperature detection element 69 includes, for example, a thermistor.
 正極端子71および負極端子72のそれぞれは、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)、電池パックを充電するために用いられる外部機器(例えば充電器など)などに接続される端子である。電源62は、正極端子71および負極端子72を介して充放電される。 Each of the positive electrode terminal 71 and the negative electrode terminal 72 is used for an external device (eg, a notebook personal computer) that is operated using a battery pack, an external device (eg, a charger) that is used to charge the battery pack, and the like. It is a terminal to be connected. The power source 62 is charged and discharged via the positive terminal 71 and the negative terminal 72.
<3-3.電動車両>
 図14は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。
<3-3. Electric vehicle>
FIG. 14 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle.
 この電動車両は、例えば、金属製の筐体73の内部に、制御部74と、エンジン75と、電源76と、駆動用のモータ77と、差動装置78と、発電機79と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置78およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備えている。 This electric vehicle includes, for example, a control unit 74, an engine 75, a power source 76, a driving motor 77, a differential device 78, a generator 79, and a transmission 80 inside a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84. In addition, the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
 この電動車両は、例えば、エンジン75およびモータ77のうちのいずれか一方を駆動源として用いて走行することが可能である。エンジン75は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン75を動力源とする場合には、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して、エンジン75の駆動力(回転力)が前輪86および後輪88に伝達される。なお、エンジン75の回転力が発電機79に伝達されるため、その回転力を利用して発電機79が交流電力を発生すると共に、その交流電力がインバータ83を介して直流電力に変換されるため、その直流電力が電源76に蓄積される。一方、変換部であるモータ77を動力源とする場合には、電源76から供給された電力(直流電力)がインバータ82を介して交流電力に変換されるため、その交流電力を利用してモータ77が駆動する。このモータ77により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86および後輪88に伝達される。 This electric vehicle can travel using, for example, one of the engine 75 and the motor 77 as a drive source. The engine 75 is a main power source, such as a gasoline engine. When the engine 75 is used as a power source, for example, the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 and the rear wheels 88 via the differential device 78, the transmission 80, and the clutch 81 which are driving units. The Since the rotational force of engine 75 is transmitted to generator 79, generator 79 generates AC power using the rotational force, and the AC power is converted to DC power via inverter 83. Therefore, the DC power is accumulated in the power source 76. On the other hand, in the case where the motor 77 serving as the conversion unit is used as a power source, the power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82, and therefore the motor is utilized using the AC power. 77 is driven. The driving force (rotational force) converted from the electric power by the motor 77 is transmitted to the front wheels 86 and the rear wheels 88 via, for example, a differential device 78 that is a driving unit, a transmission 80, and a clutch 81.
 なお、制動機構を介して電動車両が減速すると、その減速時の抵抗力がモータ77に回転力として伝達されるため、その回転力を利用してモータ77が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換されるため、その直流回生電力は電源76に蓄積されることが好ましい。 When the electric vehicle decelerates via the braking mechanism, the resistance force at the time of deceleration is transmitted as a rotational force to the motor 77. Therefore, the motor 77 may generate AC power using the rotational force. Good. Since this AC power is converted into DC power via the inverter 82, the DC regenerative power is preferably stored in the power source 76.
 制御部74は、電動車両全体の動作を制御する。この制御部74は、例えば、CPUなどを含んでいる。電源76は、1または2種類以上の本技術の二次電池を含んでいる。この電源76は、外部電源と接続されていると共に、その外部電源から電力供給を受けることにより、電力を蓄積させてもよい。各種センサ84は、例えば、エンジン75の回転数を制御すると共に、スロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサおよびエンジン回転数センサなどのうちのいずれか1種類または2種類以上を含んでいる。 The control unit 74 controls the operation of the entire electric vehicle. The control unit 74 includes, for example, a CPU. The power source 76 includes one or more types of secondary batteries of the present technology. The power source 76 may be connected to an external power source, and may store power by receiving power supply from the external power source. The various sensors 84 are used, for example, to control the rotational speed of the engine 75 and to control the throttle valve opening (throttle opening). The various sensors 84 include, for example, any one or more of speed sensors, acceleration sensors, engine speed sensors, and the like.
 なお、電動車両がハイブリッド自動車である場合を例に挙げたが、その電動車両は、エンジン75を用いずに電源76およびモータ77だけを用いて作動する車両(電気自動車)でもよい。 Although the case where the electric vehicle is a hybrid vehicle has been described as an example, the electric vehicle may be a vehicle (electric vehicle) that operates using only the power source 76 and the motor 77 without using the engine 75.
<3-4.電力貯蔵システム>
 図15は、電力貯蔵システムのブロック構成を表している。
<3-4. Power storage system>
FIG. 15 shows a block configuration of the power storage system.
 この電力貯蔵システムは、例えば、一般住宅および商業用ビルなどの家屋89の内部に、制御部90と、電源91と、スマートメータ92と、パワーハブ93とを備えている。 This power storage system includes, for example, a control unit 90, a power source 91, a smart meter 92, and a power hub 93 in a house 89 such as a general house or a commercial building.
 ここでは、電源91は、例えば、家屋89の内部に設置された電気機器94に接続されていると共に、家屋89の外部に停車された電動車両96に接続されることが可能である。また、電源91は、例えば、家屋89に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続されることが可能である。 Here, for example, the power source 91 is connected to an electric device 94 installed in the house 89 and can be connected to an electric vehicle 96 stopped outside the house 89. The power source 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93 and also connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. It is possible.
 なお、電気機器94は、例えば、1または2種類以上の家電製品を含んでおり、その家電製品は、例えば、冷蔵庫、エアコン、テレビおよび給湯器などである。自家発電機95は、例えば、太陽光発電機および風力発電機などのうちのいずれか1種類または2種類以上を含んでいる。電動車両96は、例えば、電気自動車、電気バイクおよびハイブリッド自動車などのうちのいずれか1種類または2種類以上を含んでいる。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所および風力発電所などのうちのいずれか1種類または2種類以上を含んでいる。 Note that the electric device 94 includes, for example, one or more kinds of home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, and a water heater. The private power generator 95 includes, for example, any one type or two or more types among a solar power generator and a wind power generator. The electric vehicle 96 includes, for example, any one or more of an electric vehicle, an electric motorcycle, and a hybrid vehicle. The centralized power system 97 includes, for example, any one or more of a thermal power plant, a nuclear power plant, a hydroelectric power plant, and a wind power plant.
 制御部90は、電力貯蔵システム全体の動作(電源91の使用状態を含む)を制御する。この制御部90は、例えば、CPUなどを含んでいる。電源91は、1または2種類以上の本技術の二次電池を含んでいる。スマートメータ92は、例えば、電力需要側の家屋89に設置されるネットワーク対応型の電力計であり、電力供給側と通信することが可能である。これに伴い、スマートメータ92は、例えば、外部と通信しながら、家屋89における電力の需要と供給とのバランスを制御することにより、高効率で安定したエネルギー供給を可能とする。 The control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91). The control unit 90 includes, for example, a CPU. The power source 91 includes one or more types of secondary batteries of the present technology. The smart meter 92 is, for example, a network-compatible power meter installed in the house 89 on the power demand side, and can communicate with the power supply side. Accordingly, the smart meter 92 enables highly efficient and stable energy supply, for example, by controlling the balance between the demand and supply of power in the house 89 while communicating with the outside.
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電源91に電力が蓄積されると共に、独立電源である自家発電機95からパワーハブ93を介して電源91に電力が蓄積される。この電源91に蓄積された電力は、制御部90の指示に応じて電気機器94および電動車両96に供給されるため、その電気機器94が稼働可能になると共に、その電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電源91を用いて、家屋89内における電力の蓄積および供給を可能にするシステムである。 In this power storage system, for example, power is accumulated in the power source 91 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and from the private power generator 95 that is an independent power source via the power hub 93. Thus, electric power is accumulated in the power source 91. The electric power stored in the power supply 91 is supplied to the electric device 94 and the electric vehicle 96 in accordance with an instruction from the control unit 90, so that the electric device 94 can be operated and the electric vehicle 96 can be charged. Become. In other words, the power storage system is a system that makes it possible to store and supply power in the house 89 using the power source 91.
 電源91に蓄積された電力は、必要に応じて使用することが可能である。このため、例えば、電気使用料が安い深夜において、集中型電力系統97から電源91に電力を蓄積しておき、電気使用料が高い日中において、その電源91に蓄積された電力を用いることができる。 The power stored in the power source 91 can be used as necessary. For this reason, for example, power is stored in the power source 91 from the centralized power system 97 at midnight when the electricity usage fee is low, and the power stored in the power source 91 is used during the day when the electricity usage fee is high. it can.
 なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。 The power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).
<3-5.電動工具>
 図16は、電動工具のブロック構成を表している。
<3-5. Electric tool>
FIG. 16 shows a block configuration of the electric power tool.
 ここで説明する電動工具は、例えば、電動ドリルである。この電動工具は、例えば、工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。 The electric tool described here is, for example, an electric drill. This electric tool includes, for example, a control unit 99 and a power source 100 inside a tool body 98. For example, a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
 工具本体98は、例えば、プラスチック材料などを含んでいる。制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御する。この制御部99は、例えば、CPUなどを含んでいる。電源100は、1または2種類以上の本技術の二次電池を含んでいる。この制御部99は、動作スイッチの操作に応じて、電源100からドリル部101に電力を供給する。 The tool main body 98 includes, for example, a plastic material. The control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100). The control unit 99 includes, for example, a CPU. The power supply 100 includes one or more types of secondary batteries of the present technology. The control unit 99 supplies power from the power supply 100 to the drill unit 101 in accordance with the operation of the operation switch.
 本技術の実施例に関して説明する。 An example of this technology will be described.
(実験例1-1~1-15)
 以下の手順により、外装本体41のうちの非接着領域41Xに窓部42(開口部41Kおよび窓フィルム43)を設けることにより、図1~図5および図7に示したラミネートフィルム型のリチウムイオン二次電池を作製した。
(Experimental Examples 1-1 to 1-15)
By providing the window 42 (opening 41K and window film 43) in the non-adhesive region 41X of the exterior body 41 by the following procedure, the laminated film type lithium ion shown in FIGS. 1 to 5 and FIG. A secondary battery was produced.
 正極33を作製する場合には、最初に、正極活物質(LiNi0.5 Co0.2 Mn0.3 )97質量部と、正極結着剤(ポリフッ化ビニリデン)2質量部と、正極導電剤(カーボンブラック)1質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーとした。続いて、コーティング装置を用いて正極集電体33A(12μm厚の帯状アルミニウム箔)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層33Bを形成した。最後に、ロールプレス機を用いて正極活物質層33Bを圧縮成型した。 When producing the positive electrode 33, first, 97 parts by mass of a positive electrode active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ), 2 parts by mass of a positive electrode binder (polyvinylidene fluoride), and a positive electrode conductive agent (carbon black) ) 1 part by mass was mixed to obtain a positive electrode mixture. Subsequently, the positive electrode mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to obtain a paste-like positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry was applied to both surfaces of the positive electrode current collector 33A (12 μm-thick striped aluminum foil) using a coating apparatus, and then the positive electrode mixture slurry was dried, whereby the positive electrode active material layer 33B was formed. Formed. Finally, the positive electrode active material layer 33B was compression molded using a roll press.
 負極34を作製する場合には、最初に、負極活物質(粒状黒鉛粉末,メジアン径D50=20μm)95質量部と、負極結着剤(スチレンブタジエンゴム共重合体のアクリル変性体)1.5質量部と、負極結着剤(微粒子ポリフッ化ビニリデン,メジアン径D50=0.3μm)2質量部と、増粘剤(カルボキシメチルセルロース)1.5質量部とを混合することにより、負極合剤とした。続いて、純水に負極合剤を投入したのち、その純水を撹拌することにより、ペースト状の負極合剤スラリーとした。続いて、コーティング装置を用いて負極集電体34A(15μm厚の帯状銅箔)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層34Bを形成した。最後に、ロールプレス機を用いて負極活物質層34Bを圧縮成型した。 In preparing the negative electrode 34, first, 95 parts by mass of a negative electrode active material (granular graphite powder, median diameter D50 = 20 μm) and a negative electrode binder (acrylic modified product of styrene-butadiene rubber copolymer) 1.5 By mixing 2 parts by mass of a negative electrode binder (particulate polyvinylidene fluoride, median diameter D50 = 0.3 μm) with 1.5 parts by mass of a thickener (carboxymethylcellulose), did. Subsequently, after putting the negative electrode mixture into pure water, the pure water was stirred to obtain a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector 34A (15 μm thick strip copper foil) using a coating apparatus, and then the negative electrode mixture slurry was dried, whereby the negative electrode active material layer 34B was formed. Formed. Finally, the negative electrode active material layer 34B was compression molded using a roll press.
 電解液を調製する場合には、溶媒(炭酸エチレン、炭酸エチルメチルおよび炭酸ビニレン)に電解質塩(LiPF)を加えたのち、その溶媒を撹拌することにより、その溶媒中において電解質塩を溶解させた。この場合には、溶媒の混合比(質量比)を炭酸エチレン:炭酸エチルメチル:炭酸ビニレン=30:69:1とした。また、電解質塩の含有量を溶媒に対して1mol/dm(=1mol/l)とした。 When preparing an electrolytic solution, an electrolyte salt (LiPF 6 ) is added to a solvent (ethylene carbonate, ethyl methyl carbonate and vinylene carbonate), and then the solvent is stirred to dissolve the electrolyte salt in the solvent. It was. In this case, the mixing ratio (mass ratio) of the solvent was ethylene carbonate: ethyl methyl carbonate: vinylene carbonate = 30: 69: 1. The content of the electrolyte salt was 1 mol / dm 3 (= 1 mol / l) with respect to the solvent.
 二次電池を組み立てる場合には、最初に、正極集電体33Aにアルミニウム製の正極リード31を溶接すると共に、負極集電体34Aに銅製の負極リード32を溶接した。 When assembling the secondary battery, first, the positive electrode lead 31 made of aluminum was welded to the positive electrode current collector 33A, and the negative electrode lead 32 made of copper was welded to the negative electrode current collector 34A.
 続いて、有機溶剤(N-メチル-2-ピロリドン)に高分子化合物(ポリフッ化ビニリデン)を溶解させることにより、その有機溶剤中において高分子化合物が溶解された溶液を得たのち、基材層(12μm厚の微多孔性ポリエチレンフィルム)の両面に溶液を塗布した。続いて、基材層を水浴中に浸漬させることにより、その溶液を相分離させたのち、その基材層を温風乾燥した。これにより、基材層の両面に高分子化合物層が形成されたため、セパレータ35が得られた。 Subsequently, a polymer compound (polyvinylidene fluoride) is dissolved in an organic solvent (N-methyl-2-pyrrolidone) to obtain a solution in which the polymer compound is dissolved in the organic solvent. The solution was applied on both sides of a (12 μm thick microporous polyethylene film). Subsequently, the substrate layer was immersed in a water bath to phase-separate the solution, and then the substrate layer was dried with warm air. Thereby, since the high molecular compound layer was formed on both surfaces of the base material layer, the separator 35 was obtained.
 続いて、セパレータ35を介して正極33および負極34を積層させることにより、積層体とした。続いて、積層体を長手方向に巻回させたのち、その積層体の最外周部に保護テープ37を貼り付けることにより、巻回電極体30を作製した。 Subsequently, the positive electrode 33 and the negative electrode 34 were laminated through the separator 35 to obtain a laminate. Then, after winding a laminated body to a longitudinal direction, the wound electrode body 30 was produced by affixing the protective tape 37 on the outermost peripheral part of the laminated body.
 続いて、巻回電極体30を挟むようにフィルム状の外装部材40を折り畳んだのち、その外装部材40のうちの3辺の外周縁部同士を熱融着した。この外装部材40は、25μm厚のナイロンフィルムと、40μm厚のアルミニウム箔と、30μm厚のポリプロピレンフィルムとが外側からこの順に積層されたアルミラミネートフィルムである。外装部材40を熱融着する場合には、正極リード31と外装部材40との間に密着フィルム50を挿入すると共に、負極リード32と外装部材40との間に密着フィルム50を挿入した。 Subsequently, after the film-shaped exterior member 40 was folded so as to sandwich the wound electrode body 30, the outer peripheral edge portions on three sides of the exterior member 40 were heat-sealed. The exterior member 40 is an aluminum laminated film in which a 25 μm thick nylon film, a 40 μm thick aluminum foil, and a 30 μm thick polypropylene film are laminated in this order from the outside. When heat-sealing the exterior member 40, the adhesion film 50 was inserted between the positive electrode lead 31 and the exterior member 40, and the adhesion film 50 was inserted between the negative electrode lead 32 and the exterior member 40.
 この場合には、外装本体41のうちの非接着領域41Xに設けられた開口部41Kを被覆するように、窓機能材料を含む窓フィルム43を接着剤44を介して外装本体41に貼り付けることにより、窓部42が設けられた外装部材40を用いた。また、窓フィルム43に接着剤46を介して保護層46を貼り付けることにより、その保護層46が設けられた外装部材40を用いた。 In this case, a window film 43 containing a window functional material is attached to the exterior body 41 via the adhesive 44 so as to cover the opening 41K provided in the non-adhesion region 41X of the exterior body 41. Thus, the exterior member 40 provided with the window portion 42 was used. Moreover, the exterior member 40 provided with the protective layer 46 by sticking the protective layer 46 to the window film 43 via the adhesive 46 was used.
 なお、比較のために、窓部42が設けられていない外装部材40を用いた。また、比較のために、窓フィルム43が窓機能材料以外の材料を含んでいる外装部材40を用いた。 For comparison, an exterior member 40 not provided with a window portion 42 was used. Moreover, the exterior member 40 in which the window film 43 contains materials other than a window functional material was used for the comparison.
 窓部42の有無、開口部41Kの構成(位置および寸法(cm×cm))、窓フィルム43の構成(材質および厚さ(μm))および保護層46の構成(有無および材質)は、表1に示した通りである。 The presence / absence of the window 42, the configuration of the opening 41K (position and dimensions (cm × cm)), the configuration of the window film 43 (material and thickness (μm)), and the configuration of the protective layer 46 (presence and material) As shown in FIG.
 窓フィルム43の材質は、以下の通りである。窓機能材料(非多孔質の溶融フッ素樹脂)としては、非多孔質PFA、非多孔質FEPおよび非多孔質ETFEを用いた。窓機能材料以外の材料としては、多孔質PFA、ポリプロピレン(PP)およびポリエチレンテレフタレート(PET)を用いた。 The material of the window film 43 is as follows. Non-porous PFA, non-porous FEP and non-porous ETFE were used as the window functional material (non-porous molten fluororesin). As materials other than the window functional material, porous PFA, polypropylene (PP) and polyethylene terephthalate (PET) were used.
 保護層46の形成材料(多孔質の樹脂)としては、多孔質ポリテトラフルオロエチレン(PTFE)を用いた。 As the forming material (porous resin) of the protective layer 46, porous polytetrafluoroethylene (PTFE) was used.
 窓機能材料を含む窓フィルム43を接着剤44を介して外装本体41に貼り付ける場合には、最初に、窓フィルム43の表面に前処理を施した。この場合には、窓フィルム43の表面に前処理剤(株式会社テクノス製のフッ素樹脂表面処理剤フロロボンダーE)を吹き付けることにより、その窓フィルム43の表面を改質処理(いわゆるフロロボンダー処理)した。続いて、外装本体41の表面に前処理を施した。この場合には、外装本体41の表面に下塗り剤(セメダイン株式会社製のPPXプライマー)を塗布した。最後に、接着剤44(セメダイン株式会社製のPPX)を介して、窓フィルム43の前処理面と外装本体41の前処理面とを接着させた。 When the window film 43 containing the window functional material is attached to the exterior body 41 via the adhesive 44, first, the surface of the window film 43 was pretreated. In this case, the surface of the window film 43 is reformed (so-called fluorobonder treatment) by spraying the surface of the window film 43 with a pretreatment agent (a fluororesin surface treatment agent fluorobonder E manufactured by Technos Co., Ltd.). did. Subsequently, the surface of the exterior body 41 was pretreated. In this case, an undercoat (PPX primer manufactured by Cemedine Co., Ltd.) was applied to the surface of the exterior body 41. Finally, the pretreatment surface of the window film 43 and the pretreatment surface of the exterior main body 41 were bonded via an adhesive 44 (PPX manufactured by Cemedine Co., Ltd.).
 窓機能材料以外の材料を含む窓フィルム43を接着剤44を介して外装本体41に貼り付ける場合には、窓機能材料を含む窓フィルム43を接着剤44を介して外装本体41に貼り付けた場合と同様の手順を用いた。 When the window film 43 containing a material other than the window functional material is attached to the exterior main body 41 via the adhesive 44, the window film 43 containing the window functional material is attached to the exterior main body 41 via the adhesive 44. A similar procedure was used.
 最後に、外装部材40の内部に電解液を注入することにより、その電解液をセパレータ35に含浸させたのち、減圧環境中において外装部材40の残りの1辺の外周縁部同士を熱融着した。これにより、外装部材40の内部に巻回電極体30が封入されたため、ラミネートフィルム型のリチウムイオン二次電池(電池サイズ=80mm×60mm×40mm,電池容量=3000mAh)が完成した。 Finally, by injecting the electrolyte into the exterior member 40 to impregnate the separator 35 with the electrolyte, the outer peripheral edge portions of the remaining one side of the exterior member 40 are heat-sealed in a reduced pressure environment. did. As a result, since the wound electrode body 30 was enclosed in the exterior member 40, a laminated film type lithium ion secondary battery (battery size = 80 mm × 60 mm × 40 mm, battery capacity = 3000 mAh) was completed.
 二次電池の電池特性を評価するために、その二次電池の容量維持特性、膨れ特性、物理耐久特性および接着特性を調べたところ、表1に示した結果が得られた。 In order to evaluate the battery characteristics of the secondary battery, the capacity maintenance characteristics, swelling characteristics, physical durability characteristics and adhesion characteristics of the secondary battery were examined. The results shown in Table 1 were obtained.
 容量維持特性を調べる場合には、最初に、恒温槽を用いて、高温環境中(温度=60℃,湿度=90%)中において二次電池を保存(保存期間=7日間)した。続いて、恒温槽から二次電池を取り出したのち、その二次電池を充放電させることにより、放電容量(mAh)を測定した。最後に、容量維持率(%)=(放電容量/電池容量(=3000mAr))×100を算出した。 When examining the capacity maintenance characteristics, first, the secondary battery was stored (storage period = 7 days) in a high temperature environment (temperature = 60 ° C., humidity = 90%) using a thermostatic chamber. Then, after taking out a secondary battery from a thermostat, the discharge capacity (mAh) was measured by charging / discharging the secondary battery. Finally, capacity retention rate (%) = (discharge capacity / battery capacity (= 3000 mAr)) × 100 was calculated.
 なお、充電時には、0.2Aの電流で電圧が4.2Vに到達するまで定電流充電した。放電時には、0.6Aの電流で電圧が2.5Vに到達するまで定電流放電した。 At the time of charging, constant current charging was performed until the voltage reached 4.2 V at a current of 0.2 A. At the time of discharging, constant current discharging was performed at a current of 0.6 A until the voltage reached 2.5V.
 膨れ特性を調べる場合には、最初に、常温環境中(温度=23℃)において二次電池を充電させたのち、マイクロメータを用いて充電状態の二次電池の厚さ(保存前の厚さ)を測定した。続いて、恒温槽内の高温環境中(温度=60℃,湿度=90%)において充電状態の二次電池を保存(保存期間=7日間)したのち、マイクロメータを用いて充電状態の二次電池の厚さ(保存後の厚さ)を測定した。最後に、厚さ変化率(%)=[(保存後の厚さ-保存前の厚さ)/保存前の厚さ]×100を算出した。 When investigating the swelling characteristics, first, the secondary battery is charged in a normal temperature environment (temperature = 23 ° C.), and then the thickness of the charged secondary battery (thickness before storage) is measured using a micrometer. ) Was measured. Subsequently, after storing the secondary battery in a charged state in a high-temperature environment (temperature = 60 ° C., humidity = 90%) in a thermostatic chamber (storage period = 7 days), the secondary battery in a charged state using a micrometer is stored. The thickness of the battery (thickness after storage) was measured. Finally, thickness change rate (%) = [(thickness after storage−thickness before storage) / thickness before storage] × 100 was calculated.
 なお、充電時には、1Aの電流で電圧が4.2Vに到達するまで定電流充電した。 In addition, at the time of charge, constant current charge was performed until the voltage reached 4.2 V with a current of 1 A.
 物理耐久特性を調べる場合には、JIS K5400-5-4に準拠した引っ掻き試験を行うことにより、窓部42の最表面の擦過状態を目視で確認した。この結果、窓部42の最表面に傷が発生しなかった場合を「A」、窓部42の最表面に傷が発生した場合を「B」、窓部42の最表面に傷が発生しただけでなく、その窓部42が破損した場合を「C」とそれぞれ評価した。なお、窓部42の最表面とは、保護層46が設けられていない場合には窓フィルム43の表面であると共に、保護層46が設けられている場合には保護層46の表面である。 When examining the physical durability characteristics, the scratching state on the outermost surface of the window portion 42 was visually confirmed by performing a scratch test in accordance with JIS K5400-5-4. As a result, “A” indicates that no scratch is generated on the outermost surface of the window portion 42, “B” indicates that the scratch is generated on the outermost surface of the window portion 42, and scratches occur on the outermost surface of the window portion 42. In addition, the case where the window portion 42 was damaged was evaluated as “C”. The outermost surface of the window portion 42 is the surface of the window film 43 when the protective layer 46 is not provided, and the surface of the protective layer 46 when the protective layer 46 is provided.
 接着特性を調べる場合には、JIS K7127:1999に準拠した接着試験を行うことにより、窓フィルム43の接着強度を確認した。この結果、窓フィルム43が剥離しなかった場合を「A」、窓フィルム43が剥離した場合を「C」とそれぞれ評価した。 When examining the adhesion characteristics, the adhesion strength of the window film 43 was confirmed by performing an adhesion test based on JIS K7127: 1999. As a result, the case where the window film 43 did not peel was evaluated as “A”, and the case where the window film 43 peeled was evaluated as “C”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 窓部42を設けなかった場合(実験例1-12)には、高い容量維持率は得られたが、厚さ変化率が増大した。この結果は、二次電池の内部において、電解液の分解反応に起因するガスが発生したため、内圧の上昇に応じて二次電池が膨れたことを表している。以下では、窓部42を設けなかった場合の結果を比較基準とする。 When the window portion 42 was not provided (Experimental Example 1-12), a high capacity retention rate was obtained, but the thickness change rate increased. This result indicates that the secondary battery swelled as the internal pressure increased because gas resulting from the decomposition reaction of the electrolytic solution was generated inside the secondary battery. Below, the result when the window part 42 is not provided is used as a comparison reference.
 これに対して、窓部42を設けた場合には、窓フィルム43の材質に応じて容量維持率および厚さ変化率のそれぞれが大きく変動した。 On the other hand, when the window portion 42 was provided, each of the capacity maintenance rate and the thickness change rate varied greatly depending on the material of the window film 43.
 詳細には、窓フィルム43の形成材料として窓機能材料以外の材料(多孔質PFAおよびPP)を用いた場合(実験例1-13,1-14)には、厚さ変化率は著しく減少したが、容量維持率も大幅に減少した。また、窓機能材料以外の材料(PET)を用いた場合(実験例1-15)には、高い容量維持率は維持されたが、厚さ変化率がほぼ同等であった。 Specifically, when materials other than the window functional material (porous PFA and PP) were used as the material for forming the window film 43 (Experimental Examples 1-13 and 1-14), the thickness change rate was significantly reduced. However, the capacity maintenance rate also decreased significantly. When a material other than the window functional material (PET) was used (Experimental Example 1-15), a high capacity retention rate was maintained, but the thickness change rate was almost the same.
 しかしながら、窓フィルム43の形成材料として窓機能材料(非多孔質PFA、非多孔質FEPおよび非多孔質ETFE)を用いた場合(実験例1-1~1-11)には、開口部41Kの位置、窓機能材料の種類および窓フィルム43の厚さなどに依存せずに、容量維持率がほぼ維持されたまま、厚さ変化率が著しく減少した。この結果は、窓部42(窓機能材料を含む窓フィルム43)を用いると、二次電池の内部において発生したガスが外部に放出されるため、その二次電池が膨れにくくなると共に、二次電池の内部に水が侵入しにくくなるため、放電容量が低下しにくくなることを表している。 However, when window functional materials (non-porous PFA, non-porous FEP, and non-porous ETFE) are used as the material for forming the window film 43 (Experimental Examples 1-1 to 1-11), Regardless of the position, the type of window functional material, the thickness of the window film 43, and the like, the rate of change in thickness was significantly reduced while the capacity maintenance rate was substantially maintained. As a result, when the window portion 42 (window film 43 including a window functional material) is used, the gas generated inside the secondary battery is released to the outside. This indicates that it is difficult for water to enter the inside of the battery, so that the discharge capacity is hardly reduced.
 しかも、窓機能材料を用いた場合(実験例1-1~1-11)には、その窓機能材料以外の材料を用いた場合(実験例1-13~1-15)と同程度の擦過状態が得られると共に、同程度の接着強度が得られた。すなわち、窓フィルム43の形成材料として窓機能材料を用いても、擦過状態および接着強度のそれぞれが悪化することはなかった。 In addition, when window functional materials are used (Experimental Examples 1-1 to 1-11), the same level of abrasion as when materials other than the window functional materials are used (Experimental Examples 1-13 to 1-15). The condition was obtained and the same degree of adhesive strength was obtained. That is, even when a window functional material was used as the forming material of the window film 43, neither the scratched state nor the adhesive strength was deteriorated.
 特に、窓機能材料を用いた場合(実験例1-1~1-11)には、以下の傾向が得られた。第1に、窓フィルム43の厚さが10μm~500μmであると、厚さ変化率が十分に減少した。この場合には、窓フィルム43の厚さが200μm以下であると、厚さ変化率がより減少した。第2に、保護層46を用いると、窓部42の最表面の擦過状態が著しく改善された。 In particular, when window functional materials were used (Experimental Examples 1-1 to 1-11), the following tendencies were obtained. First, when the thickness of the window film 43 is 10 μm to 500 μm, the thickness change rate is sufficiently reduced. In this case, when the thickness of the window film 43 was 200 μm or less, the thickness change rate was further reduced. Second, when the protective layer 46 is used, the rubbing state of the outermost surface of the window portion 42 is remarkably improved.
(実験例2-1~2-4)
 表2に示したように、外装本体41のうちの非接着領域41Xに代えて接着領域41Yに窓部47(窓フィルム48)を設けたことを除いて、実験例1-1~1-15と同様の手順により、図8~図10に示したラミネートフィルム型のリチウムイオン二次電池を作製したと共に、その二次電池の電池特性を評価した。
(Experimental examples 2-1 to 2-4)
As shown in Table 2, Experimental Examples 1-1 to 1-15 except that a window portion 47 (window film 48) is provided in the adhesion region 41Y instead of the non-adhesion region 41X of the exterior body 41. The laminate film type lithium ion secondary battery shown in FIG. 8 to FIG. 10 was produced by the same procedure as described above, and the battery characteristics of the secondary battery were evaluated.
 窓機能材料を含む窓フィルム48を接着剤49を介して外装本体41(外装部41A,41B)に貼り付ける場合には、最初に、窓フィルム48の両面に前処理を施した。この場合には、窓フィルム48の両面に前処理剤(株式会社テクノス製のフッ素樹脂表面処理剤フロロボンダーE)を吹き付けることにより、その窓フィルム48の両面を改質処理(フロロボンダー処理)した。続いて、外装部41Aの表面および外装部41Bの表面のそれぞれに前処理を施した。この場合には、外装部41Aの表面に下塗り剤(セメダイン株式会社製のPPXプライマー)を塗布すると共に、外装部41Bに表面に同様の下塗り剤を塗布した。最後に、接着剤49(セメダイン株式会社製のPPX)を介して、窓フィルム48の前処理面と外装部41Aの前処理面とを互いに接着させると共に、同様の接着剤49を介して窓フィルム48の前処理面と外装部41Bの前処理面とを互いに接着させた。 When the window film 48 including the window functional material is attached to the exterior body 41 (the exterior portions 41A and 41B) via the adhesive 49, first, pretreatment was performed on both surfaces of the window film 48. In this case, both surfaces of the window film 48 were modified (fluorobonder treatment) by spraying a pretreatment agent (a fluororesin surface treatment agent fluorobonder E manufactured by Technos Co., Ltd.) on both surfaces of the window film 48. . Subsequently, each of the surface of the exterior part 41A and the surface of the exterior part 41B was pretreated. In this case, an undercoat (PPX primer manufactured by Cemedine Co., Ltd.) was applied to the surface of the exterior portion 41A, and a similar undercoat was applied to the surface of the exterior portion 41B. Finally, the pretreatment surface of the window film 48 and the pretreatment surface of the exterior portion 41A are bonded to each other via an adhesive 49 (PPX manufactured by Cemedine Co., Ltd.), and the window film is attached via the same adhesive 49. The 48 pretreatment surfaces and the pretreatment surface of the exterior portion 41B were adhered to each other.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 接着領域41Yに窓部47を設けた場合(表2)においても、非接着領域41Xに窓部42を設けた場合(表1)と同様の結果が得られた。すなわち、窓部47を設けたと共に、窓フィルム48の形成材料として窓機能材料を用いた場合(実験例2-1~2-41)には、窓部47を設けなかった場合(実験例1-12)および窓フィルム48の形成材料として窓機能材料以外の材料を用いた場合(実験例1-13~1-15)と比較して、高い容量維持率が得られると共に、厚さ変化率が著しく減少した。もちろん、窓部47を設けたと共に窓機能材料を用いた場合(実験例2-1~2-4)には、窓部47を設けなかった場合(実験例1-12)および窓機能材料以外の材料を用いた場合(実験例1-13~1-15)のそれぞれと同等の擦過状態および接着強度も得られた。 In the case where the window 47 is provided in the bonded area 41Y (Table 2), the same result as in the case where the window 42 is provided in the non-bonded area 41X (Table 1) was obtained. That is, when the window 47 is provided and a window functional material is used as a material for forming the window film 48 (Experimental Examples 2-1 to 2-41), the window 47 is not provided (Experimental Example 1). −12) and a case where a material other than the window functional material is used as a material for forming the window film 48 (Experimental Examples 1-13 to 1-15), a high capacity retention rate is obtained, and a thickness change rate is obtained. Decreased significantly. Of course, when the window portion 47 is provided and the window functional material is used (Experimental Examples 2-1 to 2-4), the case where the window portion 47 is not provided (Experimental Example 1-12) and other than the window functional material The same rubbing state and adhesive strength as in the case of using these materials (Experimental Examples 1-13 to 1-15) were also obtained.
 表1および表2に示した結果から、フィルム状の外装部材の内部に巻回電極体が収納されており、その外装部材に窓機能材料(非多孔質の溶融フッ素樹脂)を含む窓部が設けられていると、その外装部材の物理耐久特性および接着特性を担保しながら、二次電池の容量維持特性および膨れ特性が改善された。よって、二次電池において優れた電池特性が得られた。 From the results shown in Table 1 and Table 2, the wound electrode body is accommodated in the film-shaped exterior member, and the window portion containing the window functional material (non-porous molten fluororesin) is included in the exterior member. When provided, the capacity maintenance characteristic and the swollenness characteristic of the secondary battery were improved while ensuring the physical durability characteristic and adhesion characteristic of the exterior member. Therefore, excellent battery characteristics were obtained in the secondary battery.
 以上、いくつかの実施形態および実施例を挙げながら本技術を説明したが、本技術は、一実施形態および実施例において説明した態様に限定されず、種々の変形が可能である。 As mentioned above, although this technique was demonstrated, giving some embodiment and an Example, this technique is not limited to the aspect demonstrated in one Embodiment and an Example, A various deformation | transformation is possible.
 具体的には、例えば、電池素子が巻回構造を有する場合に関して説明したが、本技術の二次電池において電池素子が有する構造は、特に限定されない。具体的には、電池素子は、例えば、積層構造などの他の構造を有していてもよい。 Specifically, for example, the case where the battery element has a winding structure has been described, but the structure of the battery element in the secondary battery of the present technology is not particularly limited. Specifically, the battery element may have another structure such as a laminated structure.
 また、リチウムの吸蔵放出により負極の容量が得られる二次電池(リチウムイオン二次電池)およびリチウムの析出溶解により負極の容量が得られる二次電池(リチウム金属二次電池)に関して説明したが、本技術の二次電池において負極の容量が得られる原理は、特に限定されない。具体的には、例えば、リチウムを吸蔵放出可能な負極材料の容量を正極の容量よりも小さくすることにより、二次電池は、リチウムの吸蔵放出による容量とリチウムの析出溶解による容量との和により負極の容量が得られる二次電池などでもよい。 In addition, the secondary battery (lithium ion secondary battery) in which the capacity of the negative electrode can be obtained by occlusion and release of lithium and the secondary battery (lithium metal secondary battery) in which the capacity of the negative electrode can be obtained by precipitation dissolution of lithium have been described. The principle of obtaining the capacity of the negative electrode in the secondary battery of the present technology is not particularly limited. Specifically, for example, by making the capacity of the negative electrode material capable of occluding and releasing lithium smaller than the capacity of the positive electrode, the secondary battery can be obtained by the sum of the capacity due to the occlusion and release of lithium and the capacity due to the precipitation dissolution of lithium. A secondary battery or the like that can obtain the capacity of the negative electrode may be used.
 また、電極反応物質としてリチウムを用いる場合に関して説明したが、これに限られない。電極反応物質は、例えば、ナトリウム(Na)およびカリウム(K)などの長周期型周期表における他の1族の元素でもよいし、マグネシウム(Mg)およびカルシウム(Ca)などの長周期型周期表における2族の元素でもよいし、アルミニウム(Al)などの他の軽金属でもよい。また、電極反応物質は、上記した一連の元素のうちのいずれか1種類または2種類以上を含む合金でもよい。 Further, although the case where lithium is used as the electrode reactant has been described, the present invention is not limited to this. The electrode reactant may be another group 1 element in the long-period periodic table such as sodium (Na) and potassium (K), or may be a long-period periodic table such as magnesium (Mg) and calcium (Ca). Group 2 elements may be used, or other light metals such as aluminum (Al) may be used. The electrode reactant may be an alloy containing any one or more of the series of elements described above.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本技術は、以下のような構成を取ることも可能である。
(1)
 正極、負極および電解液を含む電池素子と、
 前記電池素子を収納すると共に、非多孔質の溶融フッ素樹脂を含む窓部を有するフィルム状の外装部材と
 を備えた、二次電池。
(2)
 前記非多孔質の溶融フッ素樹脂は、非多孔質テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、非多孔質テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)および非多孔質テトラフルオロエチレン・エチレン共重合体(ETFE)のうちの少なくとも1種を含む、
 上記(1)に記載の二次電池。
(3)
 前記外装部材は、開口部を有し、
 前記非多孔質の溶融フッ素樹脂を含むフィルム状の窓部材が少なくとも前記開口部を被覆することにより、前記窓部が形成されている、
 上記(1)または(2)に記載の二次電池。
(4)
 前記窓部材は、前記開口部の面積よりも大きな面積を有していると共に、前記外装部材に接着剤を介して貼り付けられている、
 上記(3)に記載の二次電池。
(5)
 前記窓部材の上に、通気性を有する材料を含む保護層が設けられている、
 上記(3)または(4)に記載の二次電池。
(6)
 前記窓部材の厚さは、10μm以上500μm以下である、
 上記(3)ないし(5)のいずれかに記載の二次電池。
(7)
 前記外装部材は、
 前記電池素子を一方から被覆する第1外装部材と、
 前記電池素子を他方から被覆する第2外装部材と
 を含み、
 前記非多孔質の溶融フッ素樹脂を含むフィルム状の窓部材を介して、前記第1外装部材の一部と前記第2外装部材の一部とが互いに接着されることにより、前記窓部が形成されている、
 上記(1)または(2)に記載の二次電池。
(8)
 前記窓部材は、接着剤を介して前記第1外装部材および前記第2外装部材のそれぞれに貼り付けられている、
 上記(7)に記載の二次電池。
(9)
 前記窓部材の厚さは、10μm以上500μm以下である、
 上記(7)または(8)に記載の二次電池。
(10)
 リチウムイオン二次電池である、
 上記(1)ないし(9)のいずれかに記載の二次電池。
(11)
 上記(1)ないし(10)のいずれかに記載の二次電池と、
 前記二次電池の動作を制御する制御部と、
 前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
 を備えた、電池パック。
(12)
 上記(1)ないし(10)のいずれかに記載の二次電池と、
 前記二次電池から供給された電力を駆動力に変換する変換部と、
 前記駆動力に応じて駆動する駆動部と、
 前記二次電池の動作を制御する制御部と
 を備えた、電動車両。
(13)
 上記(1)ないし(10)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される1または2以上の電気機器と、
 前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
 を備えた、電力貯蔵システム。
(14)
 上記(1)ないし(10)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される可動部と
 を備えた、電動工具。
(15)
 上記(1)ないし(10)のいずれかに記載の二次電池を電力供給源として備えた、電子機器。
In addition, this technique can also take the following structures.
(1)
A battery element comprising a positive electrode, a negative electrode and an electrolyte;
A secondary battery comprising the battery element and a film-shaped exterior member having a window portion containing a non-porous molten fluororesin.
(2)
The non-porous molten fluororesin includes non-porous tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), non-porous tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and non-porous tetrafluoro. Including at least one ethylene / ethylene copolymer (ETFE),
The secondary battery as described in said (1).
(3)
The exterior member has an opening,
The window portion is formed by covering at least the opening with a film-like window member containing the non-porous molten fluororesin,
The secondary battery according to (1) or (2) above.
(4)
The window member has an area larger than the area of the opening, and is attached to the exterior member via an adhesive.
The secondary battery as described in (3) above.
(5)
A protective layer containing a material having air permeability is provided on the window member.
The secondary battery according to (3) or (4) above.
(6)
The window member has a thickness of 10 μm or more and 500 μm or less,
The secondary battery according to any one of (3) to (5) above.
(7)
The exterior member is
A first exterior member that covers the battery element from one side;
A second exterior member that covers the battery element from the other side,
The window portion is formed by bonding a part of the first exterior member and a part of the second exterior member to each other via a film-like window member containing the non-porous molten fluororesin. Being
The secondary battery according to (1) or (2) above.
(8)
The window member is attached to each of the first exterior member and the second exterior member via an adhesive.
The secondary battery according to (7) above.
(9)
The window member has a thickness of 10 μm or more and 500 μm or less,
The secondary battery according to (7) or (8) above.
(10)
A lithium ion secondary battery,
The secondary battery according to any one of (1) to (9).
(11)
The secondary battery according to any one of (1) to (10) above;
A control unit for controlling the operation of the secondary battery;
A battery pack comprising: a switch unit that switches the operation of the secondary battery in accordance with an instruction from the control unit.
(12)
The secondary battery according to any one of (1) to (10) above;
A conversion unit that converts electric power supplied from the secondary battery into driving force;
A drive unit that is driven according to the drive force;
An electric vehicle comprising: a control unit that controls the operation of the secondary battery.
(13)
The secondary battery according to any one of (1) to (10) above;
One or more electric devices supplied with electric power from the secondary battery;
And a control unit that controls power supply from the secondary battery to the electrical device.
(14)
The secondary battery according to any one of (1) to (10) above;
A power tool comprising: a movable part to which electric power is supplied from the secondary battery.
(15)
An electronic device comprising the secondary battery according to any one of (1) to (10) as a power supply source.
 本出願は、日本国特許庁において2016年12月16日に出願された日本特許出願番号第2016-244512を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2016-244512 filed on December 16, 2016 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲の趣旨やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. Is understood to be included.

Claims (15)

  1.  正極、負極および電解液を含む電池素子と、
     前記電池素子を収納すると共に、非多孔質の溶融フッ素樹脂を含む窓部を有するフィルム状の外装部材と
     を備えた、二次電池。
    A battery element comprising a positive electrode, a negative electrode and an electrolyte;
    A secondary battery comprising the battery element and a film-shaped exterior member having a window portion containing a non-porous molten fluororesin.
  2.  前記非多孔質の溶融フッ素樹脂は、非多孔質テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、非多孔質テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)および非多孔質テトラフルオロエチレン・エチレン共重合体(ETFE)のうちの少なくとも1種を含む、
     請求項1記載の二次電池。
    The non-porous molten fluororesin includes non-porous tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), non-porous tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and non-porous tetrafluoro. Including at least one ethylene / ethylene copolymer (ETFE),
    The secondary battery according to claim 1.
  3.  前記外装部材は、開口部を有し、
     前記非多孔質の溶融フッ素樹脂を含むフィルム状の窓部材が少なくとも前記開口部を被覆することにより、前記窓部が形成されている、
     請求項1記載の二次電池。
    The exterior member has an opening,
    The window portion is formed by covering at least the opening with a film-like window member containing the non-porous molten fluororesin,
    The secondary battery according to claim 1.
  4.  前記窓部材は、前記開口部の面積よりも大きな面積を有していると共に、前記外装部材に接着剤を介して貼り付けられている、
     請求項3記載の二次電池。
    The window member has an area larger than the area of the opening, and is attached to the exterior member via an adhesive.
    The secondary battery according to claim 3.
  5.  前記窓部材の上に、通気性を有する材料を含む保護層が設けられている、
     請求項3記載の二次電池。
    A protective layer containing a material having air permeability is provided on the window member.
    The secondary battery according to claim 3.
  6.  前記窓部材の厚さは、10μm以上500μm以下である、
     請求項3記載の二次電池。
    The window member has a thickness of 10 μm or more and 500 μm or less,
    The secondary battery according to claim 3.
  7.  前記外装部材は、
     前記電池素子を一方から被覆する第1外装部材と、
     前記電池素子を他方から被覆する第2外装部材と
     を含み、
     前記非多孔質の溶融フッ素樹脂を含むフィルム状の窓部材を介して、前記第1外装部材の一部と前記第2外装部材の一部とが互いに接着されることにより、前記窓部が形成されている、
     請求項1記載の二次電池。
    The exterior member is
    A first exterior member that covers the battery element from one side;
    A second exterior member that covers the battery element from the other side,
    The window portion is formed by bonding a part of the first exterior member and a part of the second exterior member to each other through a film-like window member containing the non-porous molten fluororesin. Being
    The secondary battery according to claim 1.
  8.  前記窓部材は、接着剤を介して前記第1外装部材および前記第2外装部材のそれぞれに貼り付けられている、
     請求項7記載の二次電池。
    The window member is attached to each of the first exterior member and the second exterior member via an adhesive.
    The secondary battery according to claim 7.
  9.  前記窓部材の厚さは、10μm以上500μm以下である、
     請求項7記載の二次電池。
    The window member has a thickness of 10 μm or more and 500 μm or less,
    The secondary battery according to claim 7.
  10.  リチウムイオン二次電池である、
     請求項1記載の二次電池。
    A lithium ion secondary battery,
    The secondary battery according to claim 1.
  11.  二次電池と、
     前記二次電池の動作を制御する制御部と、
     前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
     を備え、
     前記二次電池は、
     正極、負極および電解液を含む電池素子と、
     前記電池素子を収納すると共に、非多孔質の溶融フッ素樹脂を含む窓部を有するフィルム状の外装部材と
     を備えた、電池パック。
    A secondary battery,
    A control unit for controlling the operation of the secondary battery;
    A switch unit for switching the operation of the secondary battery according to an instruction from the control unit,
    The secondary battery is
    A battery element comprising a positive electrode, a negative electrode and an electrolyte;
    A battery pack including the battery element and a film-shaped exterior member having a window portion containing a non-porous molten fluororesin.
  12.  二次電池と、
     前記二次電池から供給された電力を駆動力に変換する変換部と、
     前記駆動力に応じて駆動する駆動部と、
     前記二次電池の動作を制御する制御部と
     を備え、
     前記二次電池は、
     正極、負極および電解液を含む電池素子と、
     前記電池素子を収納すると共に、非多孔質の溶融フッ素樹脂を含む窓部を有するフィルム状の外装部材と
     を備えた、電動車両。
    A secondary battery,
    A conversion unit that converts electric power supplied from the secondary battery into driving force;
    A drive unit that is driven according to the drive force;
    A control unit for controlling the operation of the secondary battery,
    The secondary battery is
    A battery element comprising a positive electrode, a negative electrode and an electrolyte;
    An electric vehicle including the battery element and a film-shaped exterior member having a window portion containing a non-porous molten fluororesin.
  13.  二次電池と、
     前記二次電池から電力を供給される1または2以上の電気機器と、
     前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
     を備え、
     前記二次電池は、
     正極、負極および電解液を含む電池素子と、
     前記電池素子を収納すると共に、非多孔質の溶融フッ素樹脂を含む窓部を有するフィルム状の外装部材と
     を備えた、電力貯蔵システム。
    A secondary battery,
    One or more electric devices supplied with electric power from the secondary battery;
    A control unit for controlling power supply from the secondary battery to the electrical device,
    The secondary battery is
    A battery element comprising a positive electrode, a negative electrode and an electrolyte;
    A power storage system comprising: the battery element; and a film-shaped exterior member having a window portion containing a non-porous molten fluororesin.
  14.  二次電池と、
     前記二次電池から電力を供給される可動部と
     を備え、
     前記二次電池は、
     正極、負極および電解液を含む電池素子と、
     前記電池素子を収納すると共に、非多孔質の溶融フッ素樹脂を含む窓部を有するフィルム状の外装部材と
     を備えた、電動工具。
    A secondary battery,
    A movable part to which power is supplied from the secondary battery,
    The secondary battery is
    A battery element comprising a positive electrode, a negative electrode and an electrolyte;
    A power tool including the battery element and a film-shaped exterior member having a window portion containing a non-porous molten fluororesin.
  15.  二次電池を電力供給源として備え、
     前記二次電池は、
     正極、負極および電解液を含む電池素子と、
     前記電池素子を収納すると共に、非多孔質の溶融フッ素樹脂を含む窓部を有するフィルム状の外装部材と
     を備えた、電子機器。
    A secondary battery is provided as a power supply source,
    The secondary battery is
    A battery element comprising a positive electrode, a negative electrode and an electrolyte;
    An electronic device comprising the battery element and a film-shaped exterior member having a window portion containing a non-porous molten fluororesin.
PCT/JP2017/037361 2016-12-16 2017-10-16 Secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic device WO2018110067A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018556218A JP6801722B2 (en) 2016-12-16 2017-10-16 Rechargeable batteries, battery packs, electric vehicles, power storage systems, power tools and electronics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016244512 2016-12-16
JP2016-244512 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018110067A1 true WO2018110067A1 (en) 2018-06-21

Family

ID=62558762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037361 WO2018110067A1 (en) 2016-12-16 2017-10-16 Secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic device

Country Status (2)

Country Link
JP (1) JP6801722B2 (en)
WO (1) WO2018110067A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114128023A (en) * 2019-07-30 2022-03-01 株式会社村田制作所 Secondary battery, battery pack, electronic device, electric tool, electric aircraft, and electric vehicle
JP2022542565A (en) * 2019-08-27 2022-10-05 エルジー エナジー ソリューション リミテッド Battery case for secondary battery and method for manufacturing pouch-type secondary battery
WO2022244853A1 (en) * 2021-05-19 2022-11-24 大日本印刷株式会社 Water-impermeable degassing film for power storage device
WO2024024863A1 (en) * 2022-07-29 2024-02-01 日東電工株式会社 Sheet for outer package and power storage device comprising same
US11916240B2 (en) 2020-12-08 2024-02-27 Lg Energy Solution, Ltd. Secondary battery and battery module including the same
JP7466975B2 (en) 2019-08-27 2024-04-15 エルジー エナジー ソリューション リミテッド Method for manufacturing battery case for secondary battery and gas exhaust part

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210947A (en) * 2020-07-10 2022-10-18 株式会社Lg新能源 Secondary battery including gas discharge portion for discharging gas and method of manufacturing secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034244A (en) * 2008-07-29 2010-02-12 Nok Corp Pressure relief valve
JP2012190639A (en) * 2011-03-10 2012-10-04 Sony Corp Nonaqueous electrolyte battery, battery pack and electronic apparatus
JP2013506966A (en) * 2009-10-05 2013-02-28 リ−テック・バッテリー・ゲーエムベーハー Electrochemical cell
WO2013146803A1 (en) * 2012-03-28 2013-10-03 株式会社オプトニクス精密 Safety valve and electrochemical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034244A (en) * 2008-07-29 2010-02-12 Nok Corp Pressure relief valve
JP2013506966A (en) * 2009-10-05 2013-02-28 リ−テック・バッテリー・ゲーエムベーハー Electrochemical cell
JP2012190639A (en) * 2011-03-10 2012-10-04 Sony Corp Nonaqueous electrolyte battery, battery pack and electronic apparatus
WO2013146803A1 (en) * 2012-03-28 2013-10-03 株式会社オプトニクス精密 Safety valve and electrochemical element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114128023A (en) * 2019-07-30 2022-03-01 株式会社村田制作所 Secondary battery, battery pack, electronic device, electric tool, electric aircraft, and electric vehicle
CN114128023B (en) * 2019-07-30 2024-03-29 株式会社村田制作所 Secondary battery, battery pack, electronic device, electric tool, electric aircraft, and electric vehicle
JP2022542565A (en) * 2019-08-27 2022-10-05 エルジー エナジー ソリューション リミテッド Battery case for secondary battery and method for manufacturing pouch-type secondary battery
JP7325892B2 (en) 2019-08-27 2023-08-15 エルジー エナジー ソリューション リミテッド Battery case for secondary battery and method for manufacturing pouch-type secondary battery
JP7466975B2 (en) 2019-08-27 2024-04-15 エルジー エナジー ソリューション リミテッド Method for manufacturing battery case for secondary battery and gas exhaust part
US11916240B2 (en) 2020-12-08 2024-02-27 Lg Energy Solution, Ltd. Secondary battery and battery module including the same
WO2022244853A1 (en) * 2021-05-19 2022-11-24 大日本印刷株式会社 Water-impermeable degassing film for power storage device
WO2024024863A1 (en) * 2022-07-29 2024-02-01 日東電工株式会社 Sheet for outer package and power storage device comprising same

Also Published As

Publication number Publication date
JPWO2018110067A1 (en) 2019-06-24
JP6801722B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2016009794A1 (en) Negative electrode active material for secondary battery, negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic equipment
JP6801722B2 (en) Rechargeable batteries, battery packs, electric vehicles, power storage systems, power tools and electronics
CN108475784B (en) Positive electrode active material for secondary battery, positive electrode for secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP6596815B2 (en) Secondary battery active material, secondary battery electrode, secondary battery, electric vehicle and electronic device
JP2018206514A (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic equipment
US11695119B2 (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
WO2016088471A1 (en) Secondary battery active material, secondary battery electrode, secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
WO2016056361A1 (en) Electrolyte for secondary cell, secondary cell, cell pack, electric vehicle, power storage system, electric power tool and electronic apparatus equipment
WO2016129383A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
WO2017159073A1 (en) Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
WO2015186517A1 (en) Secondary cell electrolyte, secondary cell, cell pack, electric vehicle, electric power-storing system, electric tool, and electronic device
JP6597793B2 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2018142682A1 (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
JP2015156280A (en) Active material for secondary battery, electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic apparatus
US11817572B2 (en) Secondary battery, battery pack, electrically driven vehicle, electric power storage system, electric tool, and electronic device
JP6257087B2 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6131868B2 (en) Nonaqueous electrolyte for lithium secondary battery, lithium secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6350109B2 (en) Secondary battery electrolyte, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
US11532821B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
WO2017168983A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880679

Country of ref document: EP

Kind code of ref document: A1