WO2018110001A1 - Electrode body production method - Google Patents

Electrode body production method Download PDF

Info

Publication number
WO2018110001A1
WO2018110001A1 PCT/JP2017/032345 JP2017032345W WO2018110001A1 WO 2018110001 A1 WO2018110001 A1 WO 2018110001A1 JP 2017032345 W JP2017032345 W JP 2017032345W WO 2018110001 A1 WO2018110001 A1 WO 2018110001A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
positive electrode
bonded
negative electrode
electrode
Prior art date
Application number
PCT/JP2017/032345
Other languages
French (fr)
Japanese (ja)
Inventor
上川英康
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018110001A1 publication Critical patent/WO2018110001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an electrode body of a battery.
  • an electrode body of a battery an electrode body having a structure in which a plurality of positive electrodes and negative electrodes are alternately stacked with a separator interposed therebetween is known.
  • Patent Document 1 discloses a method in which a long separator material, a long positive electrode material, a long separator material, and a long negative electrode material are laminated in this order, and then predetermined.
  • the method of manufacturing an electrode body is described by cut
  • the present invention solves the above-described problem, and is an electrode body that can suppress the occurrence of positional deviation between the time when the separator material on which the electrode is placed is cut and before the separator material is conveyed to the pickup position.
  • An object is to provide a manufacturing method.
  • the method for producing the electrode body of the present invention comprises: A method for producing an electrode body comprising a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, Adhering the positive electrode to the long first separator material; In the first working position, in a form surrounding the region to be a first separator for one element to which the positive electrode is bonded, while leaving an uncut portion in part based on the position of the positive electrode, Cutting the separator material, and The first separator material into which the first separator material is cut so that the region serving as the first separator for one element to which the positive electrode is bonded is located at a second work position different from the first work position.
  • a conveying step In the second working position, the region to be the first separator for one element to which the positive electrode is bonded is picked up, the uncut portion is cut, and the positive electrode is bonded from the first separator material. Separating the first separator for one element; A step of transporting the separated first separator for one element to which the positive electrode is bonded to a lamination stage; Adhering the negative electrode to the long second separator material; In a third working position, in a mode of surrounding the region serving as a second separator for one element to which the negative electrode is adhered, leaving an uncut portion in part based on the position of the negative electrode, Cutting the separator material, and The second separator material into which the second separator material is cut so that the region serving as the second separator for one element to which the negative electrode is bonded is located at a fourth work position different from the third work position.
  • a conveying step In the fourth work position, the region to be the second separator for one element to which the negative electrode is bonded is picked up, the uncut portion is cut, and the negative electrode is bonded from the second separator material. Separating the second separator for one element; Transporting the separated second separator for one element to which the negative electrode is bonded to the stacking stage; Laminating the first separator for one element to which the positive electrode is bonded and the second separator for one element to which the negative electrode is bonded in the stacking stage; It is characterized by having.
  • the notch of the first separator material does not cause a position shift of the region serving as the first separator for one element to which the positive electrode is bonded when the first separator material having the notch is conveyed, And when the area to be the first separator for one element to which the positive electrode is bonded is picked up, the uncut portion is cut in a mode,
  • the notch of the second separator material does not cause a positional shift of the region serving as the second separator for one element to which the negative electrode is bonded when the second separator material with the notch is conveyed. And when the area
  • the shape of the positive electrode and the shape of the negative electrode may be non-rectangular shapes.
  • the first separator material in the first working position, the first separator material is cut and conveyed to the second working position while leaving an uncut portion in part, and in the second working position, the positive electrode is Since the region that becomes the first separator for one element that has been bonded is picked up and the uncut portion is cut, the occurrence of misalignment when the region that becomes the first separator for one element to which the positive electrode is bonded is conveyed Can be suppressed.
  • the second separator material is cut while leaving an uncut portion in part, and conveyed to the fourth work position, and the negative electrode is adhered to the fourth work position.
  • the region to be the second separator for the element Since the region to be the second separator for the element is picked up and the uncut portion is cut, the occurrence of misalignment when the region to be the second separator for one element to which the negative electrode is bonded is conveyed is suppressed. be able to. Thereby, the electrode body which suppressed the position shift between a positive electrode and a negative electrode can be manufactured.
  • FIG. 1 It is sectional drawing which shows the structure of an electrode body. It is a side view for demonstrating each process in the manufacturing method of the electrode body in 1st Embodiment. It is a top view for demonstrating the method of making a notch in a 1st separator material. It is a figure for demonstrating the method to adhere
  • the structure of the electrode body will be briefly described, and then the method for manufacturing the electrode body will be described.
  • the electrode body 10 has a structure in which a plurality of first separators 11, positive electrodes 12, second separators 13, and negative electrodes 14 are sequentially laminated, and is used for a battery such as a lithium ion battery. .
  • the positive electrode 12 includes a positive electrode current collector made of a metal foil such as aluminum, and a positive electrode active material formed on both surfaces of the positive electrode current collector.
  • the positive electrode located on the outermost side may be configured such that the positive electrode active material is formed only on one surface of the positive electrode current collector.
  • the negative electrode 14 includes a negative electrode current collector made of a metal foil such as copper, and a negative electrode active material formed on both surfaces of the negative electrode current collector.
  • the negative electrode located on the outermost side may be configured such that the negative electrode active material is formed only on one surface of the negative electrode current collector.
  • first separator 11 and the second separator 13 those made of the same material can be used, and for example, the first separator 11 and the second separator 13 can be constituted by a microporous thin film made of polypropylene having excellent insulating properties.
  • FIG. 2 is a side view for explaining each step in the method of manufacturing the electrode body 10 in the first embodiment.
  • symbol of 11A is attached
  • symbol 11 is attached
  • the long first separator material 11 ⁇ / b> A is wound in a roll shape at the separator unwinding portion 21, unwound from the separator unwinding portion 21, and sent out in one direction.
  • the first separator material 11A is transported in one direction by stacking the long first separator material 11A on the long PET film and transporting the long PET film in one direction. To do.
  • the positive electrode 12 is placed on the long first separator material 11A, and the positive electrode 12 is bonded to the first separator material 11A.
  • the positive electrode 12 prepared in advance is placed at a predetermined distance H from one end S in the width direction of the long first separator material 11A.
  • one end S in the width direction of the first separator material 11A is the end on the side from which the positive electrode tab 12A protrudes when the positive electrode 12 is bonded, as shown in FIG.
  • the positive electrode 12 is attached to the first positive electrode 12 by the thermocompression bonding method in which the heater 12 is sandwiched between the upper part and the lower part of the positive electrode 12 placed on the first separator material 11A and heated and pressurized. Adhere to the separator material 11A.
  • the positive electrode tab 12A protrudes outside the one end S of the first separator material 11A.
  • the method of adhering the positive electrode 12 to the first separator material 11A is not limited to thermocompression bonding, and may be adhered by a method other than thermocompression bonding.
  • the cutting mechanism unit 23 cuts the first separator material 11A while leaving an uncut portion in part based on the position of the positive electrode 12.
  • the cutting mechanism unit 23 includes a camera (not shown), images the first separator material 11A including the positive electrode 12 by the camera, and based on the captured image, according to the position of the positive electrode 12, A cut 31 is made in the first separator material 11A by the cutting blade 23a.
  • a cut 31 is made in the first separator material 11A at positions along the outer periphery of the positive electrode 12 other than the side where the positive electrode tab 12A is provided. .
  • the cuts 31 are made so that the uncut portion 35 that is not cut is left so that the entire periphery of the positive electrode 12 is not cut off. That is, the cut 31 is a cut portion with respect to the uncut portion 35 described above.
  • FIG. 3 shows an example in which three uncut portions 35 are formed.
  • the notch 31 does not cause a positional shift between the region surrounded by the notch 31 and the other region when the first separator material 11A into which the notch 31 is put is conveyed in a later step. And when picking up the area
  • the cutting blade 23a with which the cutting mechanism part 23 is provided has a shape corresponding to the cut 31 which is a cutting part of FIG.
  • the uncut part 35 may be less than three places, and may be four or more places. It is preferable that the number of uncut portions 35 is small so that the uncut portion 35 can be easily cut when the uncut portion 35 is separated or separated in a later step, and the uncut portion along the length direction of the notch 31 is preferable.
  • the length of 35 is preferably shorter. However, when the number of uncut portions 35 is reduced and when the length of the uncut portions 35 is shortened, the first separator 11 is later transferred during the transport of the first separator material 11A into which the cuts 31 are made. There is a possibility that a position shift occurs in the region. For this reason, the number and length of the uncut portions 35 are appropriately set in consideration of easiness of cutting and prevention of misalignment when the first separator material 11A including the cuts 31 is conveyed. There is a need.
  • the shape of the positive electrode 12 is not limited to the shape shown in FIG.
  • the shape of the positive electrode 12 may be a non-rectangular shape or a rectangular shape.
  • the first separator material 11A is conveyed in the direction of arrow Y1 in FIG. That is, the portion of the first separator material 11A where the notch 31 is made at the first work position T1, that is, the region that becomes the first separator 11 for one element to which the positive electrode 12 is bonded is the first work. It is transported to a second work position T2 different from the position T1.
  • the positive electrode transport head 24 picks up an area to be the first separator 11 for one element to which the positive electrode 12 is adhered, and cuts the uncut portion 35. That is, the positive electrode transport head 24 adsorbs a region to be the first separator 11 for one element to which the positive electrode 12 is adhered, and the positive electrode transport head 24 is lifted to cut the uncut portion 35. Then, the first separator 11 for one element to which the positive electrode 12 is bonded is separated from the first separator material 11A. Thereby, the 1st separator 11 which the positive electrode 12 adhere
  • the first separator 11 picked up by the positive electrode conveying head 24 is conveyed to the lamination stage 25, the positive electrode 12 is recognized by a camera (not shown), the position and orientation are corrected, and the lamination is performed. Place on stage 25.
  • the first separator 11 and the positive electrode 12 placed on the stacking stage 25 are necessary until the second separator 13 for one element, to which the negative electrode 14 is bonded, is stacked on the first separator 11 and the positive electrode 12 in the next step. Accordingly, the laminated claw 27 is pressed from above.
  • the first separator material 11A in a state where the first separator 11 for one element to which the positive electrode 12 is bonded is picked up and separated by the positive electrode transport head 24 at the second work position T2. Show.
  • the first separator material 11A is cut while leaving the uncut portion 35 in a part based on the position of the positive electrode 12 at the first work position T1.
  • 31 is inserted, and the first separator material 11A into which the cut 31 has been made is conveyed from the first work position T1 to the second work position T2.
  • a region to be the first separator 11 for one element to which the positive electrode 12 is bonded is picked up, and the uncut portion 35 is cut by raising the positive electrode transport head 24,
  • the first separator 11 for one element is separated from the first separator material 11A. Thereafter, the separated first separator 11 for one element is conveyed to the stacking stage 25.
  • warping may occur.
  • the positive electrode in which the warp has occurred is suppressed in the state of being bonded to the first separator material 11A, but when the first separator material 11A is cut, the positive electrode 12 does not leave an uncut portion.
  • the warpage that has been suppressed is returned, and a positional shift is likely to occur when transporting from the first work position T1 to the second work position T2.
  • the uncut portion 35 is left so that the region that becomes the first separator 11 after cutting is not yet formed. Since it is connected to the first separator material 11 ⁇ / b> A via the cut portion 35, it is possible to suppress the occurrence of misalignment.
  • the notch 31 of the first separator material 11 ⁇ / b> A has a positional deviation of the region that becomes the first separator 11 for one element to which the positive electrode 12 is bonded when the first separator material 11 ⁇ / b> A with the notch is conveyed. This is performed in such a manner that the uncut portion 35 is cut when picking up the region that does not occur and becomes the first separator 11 for one element to which the positive electrode 12 is bonded. It is possible to effectively suppress the occurrence of positional deviation in the region that becomes the separator 11.
  • the shape of the positive electrode 12 in the present embodiment is a non-rectangular shape, but even in this case, the occurrence of misalignment of the region that becomes the first separator 11 after cutting is suppressed. Can do.
  • a step of making a cut 31 in the first separator material 11A, and a step of picking up a region to be the first separator 11 for one element to which the positive electrode 12 is bonded and separating it from the first separator material 11A Since it is performed at a different position, the efficiency of the manufacturing process can be improved.
  • the step of making the cut 31 in the first separator material 11A and the step of picking up the first separator 11 for one element to which the positive electrode 12 is bonded and separating it from the first separator material 11A are performed at the same position.
  • the cutting mechanism unit 23 and the positive electrode transport head 24 work at the same position, and work efficiency is reduced.
  • the cutting mechanism unit 23 performs the cutting operation at the first work position T1, and the positive electrode transport head 24 cuts the uncut portion 35 at the second work position T2. Since the pickup work of the first separator 11 for one element is performed, the work efficiency can be improved.
  • the first separator 11 to which the positive electrode 12 is bonded is picked up by the positive electrode transport head 24, the first separator material 11A is collected.
  • the negative electrode 14 is placed on a long second separator material (not shown), and the negative electrode 14 is bonded to the second separator material.
  • the negative electrode 14 is bonded to a position on the second separator material at a predetermined distance from one end in the width direction.
  • the one end in the width direction of the second separator material is the end on the side from which the negative electrode tab protrudes when the negative electrode 14 is bonded.
  • the second separator material is cut based on the position of the negative electrode 14 while leaving an uncut portion in part.
  • the method of cutting the second separator material is the same as the method of cutting the first separator material.
  • the second separator material is also conveyed in one direction.
  • the portion of the second separator material that is cut at the third work position, that is, the region that becomes the second separator 13 for one element to which the negative electrode 14 is bonded is different from the third work position. It is conveyed to the work position.
  • the negative electrode transport head 26 picks up an area to be the second separator 13 for one element to which the negative electrode 14 is bonded, and cuts the uncut portion. That is, the negative electrode transport head 26 adsorbs a region to be the second separator 13 for one element to which the negative electrode 14 is adhered, and lifts the negative electrode transport head 26 to cut an uncut portion.
  • the second separator 13 for one element to which the negative electrode 14 is bonded is separated from the second separator material. Thereby, the 2nd separator 13 which the negative electrode 14 adhere
  • the second separator 13 picked up by the negative electrode transport head 26 is transported to the stacking stage 25, and the second separator 13 is aligned with the position between the positive electrode 12 and the negative electrode 14. Is laminated on the first separator 11, more specifically, on the positive electrode 12 adhered on the first separator 11.
  • the alignment between the positive electrode 12 and the negative electrode 14 is performed, for example, by detecting the position of the positive electrode 12 on the stacking stage 25 and aligning the detected position of the positive electrode 12 with the position of the negative electrode 14 after stacking.
  • the laminated second separator 13 and negative electrode 14 are pressed from above by the laminating claws 27 as needed until the first separator 11 to which the positive electrode 12 is bonded is laminated on the next step.
  • the second separator material is cut based on the position of the negative electrode 14, the cut is made while leaving the uncut portion, so that the second separator material with the cut is used as the third separator material.
  • the cut is made while leaving the uncut portion, so that the second separator material with the cut is used as the third separator material.
  • the notch of the second separator material does not cause a position shift of the region to be the second separator 13 for one element to which the negative electrode 14 is adhered when the second separator material with the notch is conveyed.
  • the uncut portion is cut when picking up the region to be the second separator 13 for one element to which the negative electrode 14 is bonded, the second separator 13 for one element after cutting It is possible to effectively suppress the occurrence of positional deviation in the region.
  • the step of cutting the second separator material and the step of picking up the region to be the second separator 13 for one element to which the negative electrode 14 is bonded and separating it from the second separator material are performed at different positions. Therefore, the efficiency of the manufacturing process can be improved.
  • the first separator material 11A with the cuts is cut when transported from the first work position T1 to the second work position T2.
  • the occurrence of displacement of the first separator 11 for one element to which the positive electrode 12 is bonded can be suppressed.
  • the second separator material into which the cut has been made is transported from the third work position to the fourth work position, the second separator 13 corresponding to one element to which the negative electrode 14 is bonded is obtained by cutting. The occurrence of misalignment can be suppressed.
  • the alignment between the positive electrode 12 and the negative electrode 14 is performed. Since it performs, the position shift between the positive electrode 12 and the negative electrode 14 of the electrode body 10 manufactured can be suppressed more effectively.
  • the first separator 11 to which the positive electrode 12 is bonded is transferred to the stacking stage 25 by the positive electrode transfer head 24, and the first separator 11 is aligned while the position between the positive electrode 12 and the negative electrode 14 is adjusted.
  • the separator 11 is laminated on the second separator 13, more specifically, on the negative electrode 14 bonded on the second separator 13.
  • the laminated first separator 11 and the positive electrode 12 are pressed from above by the laminating claws 27 until the second separator 13 to which the negative electrode 14 is bonded is laminated on the first separator 11 and the positive electrode 12 as necessary.
  • the stacking of the second separator 13 to which the negative electrode 14 is bonded and the first separator 11 to which the positive electrode 12 is bonded is repeatedly performed until the number of stacked layers of the positive electrode 12 and the negative electrode 14 reaches a predetermined number.
  • first separator 11, the positive electrode 12, the second separator 13, and the negative electrode 14 that are stacked in plurality are bonded together.
  • first separator 11, the positive electrode 12, the second separator 13, and the negative electrode 14 are bonded together.
  • thermocompression bonding head 40 containing a heater from above the laminated body in which the first separator 11, the positive electrode 12, the second separator 13, and the negative electrode 14 are laminated.
  • the entire first separator 11, positive electrode 12, second separator 13 and negative electrode 14 are thermocompression bonded.
  • the heater may be incorporated not only in the thermocompression bonding head 40 but also in the lamination stage 25, or may be incorporated only in the lamination stage 25 without being incorporated in the thermocompression bonding head 40.
  • the electrode body 10 is manufactured by the above process.
  • the first separator 11, the positive electrode 12, the second separator 13, and the negative electrode 14 constituting the electrode body 10 are all laminated and then bonded together.
  • the laminated first separator 11, positive electrode 12, second separator 13, and negative electrode 14 may be bonded together.
  • thermocompression bonding head 40 can be omitted.
  • the manufactured electrode body 10 may have any structure as long as it includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode.
  • all the positive electrodes stacked may not have the same shape, and all the negative electrodes stacked may not have the same shape.
  • the positive electrode and the negative electrode positioned in the lower layer in the stacking direction may be smaller in size than the positive electrode and the negative electrode positioned in the upper layer and may have a step in the stacking direction.

Abstract

The invention suppresses the occurrence of a positional shift until a separator material carrying an electrode, after having been cut, has been conveyed to a pickup position. This electrode body production method comprises: a step of adhering a positive electrode 12 onto a long first separator material 11A; a step of making incisions in a first separator material, while leaving an uncut section, that surround a region whereon the positive electrode 12 has been adhered that is to be the first separator 11 for one element; a step of conveying the first separator material 11A in such a manner as to position, at a second work position T2, the region that is to be the first separator 11 whereon the positive electrode 12 has been adhered; a step of picking up, at the second work position T2, the region that is to be the first separator 11, cutting the uncut section, and separating the first separator 11 whereon the positive electrode 12 has been adhered; and a step of conveying to a layering stage 25 the first separator 11 whereon the positive electrode 12 has been adhered. These steps are also performed on a second separator material and a negative electrode 14.

Description

電極体の製造方法Method for manufacturing electrode body
 本発明は、電池の電極体の製造方法に関する。 The present invention relates to a method for manufacturing an electrode body of a battery.
 電池の電極体として、セパレータを間に介在させて、正極と負極を交互に複数積層した構造を有する電極体が知られている。 As an electrode body of a battery, an electrode body having a structure in which a plurality of positive electrodes and negative electrodes are alternately stacked with a separator interposed therebetween is known.
 そのような電極体の製造方法として、特許文献1には、長尺状のセパレータ材、長尺状の正極材、長尺状のセパレータ材および長尺状の負極材を順に積層した後、所定の形状となるように切断し、切断して得られる単位構造体を複数積層することによって、電極体を製造する方法が記載されている。 As a method for manufacturing such an electrode body, Patent Document 1 discloses a method in which a long separator material, a long positive electrode material, a long separator material, and a long negative electrode material are laminated in this order, and then predetermined. The method of manufacturing an electrode body is described by cut | disconnecting so that it may become the shape of this, and laminating | stacking multiple unit structures obtained by cut | disconnecting.
特表2015-528629号公報Special table 2015-528629
 しかしながら、特許文献1に記載の電極体の製造方法では、単位構造体を得るために、順に積層された長尺状のセパレータ材、長尺状の正極材、長尺状のセパレータ材および長尺状の負極材を切断する工程と、切断した単位構造体を積層位置に搬送するためにピックアップする工程とを別の位置で行っているので、切断した単位構造体を、ピックアップする位置に搬送するまでの間に位置ずれが生じる場合がある。単位構造体に位置ずれが生じると、単位構造体の積層時にも位置ずれが生じてしまう。 However, in the method of manufacturing an electrode body described in Patent Document 1, in order to obtain a unit structure, a long separator material, a long positive electrode material, a long separator material, and a long laminate that are sequentially stacked. Since the step of cutting the negative electrode material and the step of picking up the cut unit structure to transport to the stacking position are performed at different positions, the cut unit structure is transported to the position to be picked up There may be a positional shift between When the unit structure is displaced, the displacement is also caused when the unit structures are stacked.
 本発明は、上記課題を解決するものであり、電極を載置したセパレータ材を切断した後、ピックアップする位置に搬送するまでの間に、位置ずれが生じることを抑制することができる電極体の製造方法を提供することを目的とする。 The present invention solves the above-described problem, and is an electrode body that can suppress the occurrence of positional deviation between the time when the separator material on which the electrode is placed is cut and before the separator material is conveyed to the pickup position. An object is to provide a manufacturing method.
 本発明の電極体の製造方法は、
 正極と、負極と、前記正極および前記負極の間に配置されるセパレータとを備える電極体の製造方法であって、
 長尺状の第1のセパレータ材に前記正極を接着する工程と、
 第1の作業位置において、前記正極の位置に基づいて、一部に未切断部分を残しつつ、前記正極が接着した1素子分の第1のセパレータとなる領域を囲む態様で、前記第1のセパレータ材に切り込みを入れる工程と、
 前記正極が接着した1素子分の前記第1のセパレータとなる領域が、前記第1の作業位置とは異なる第2の作業位置に位置するように、切り込みを入れた前記第1のセパレータ材を搬送する工程と、
 前記第2の作業位置において、前記正極が接着した1素子分の前記第1のセパレータとなる領域をピックアップして前記未切断部分を切断し、前記第1のセパレータ材から、前記正極が接着した1素子分の前記第1のセパレータを分離する工程と、
 分離した、前記正極が接着した1素子分の前記第1のセパレータを積層ステージに搬送する工程と、
 長尺状の第2のセパレータ材に前記負極を接着する工程と、
 第3の作業位置において、前記負極の位置に基づいて、一部に未切断部分を残しつつ、前記負極が接着した1素子分の第2のセパレータとなる領域を囲む態様で、前記第2のセパレータ材に切り込みを入れる工程と、
 前記負極が接着した1素子分の前記第2のセパレータとなる領域が、前記第3の作業位置とは異なる第4の作業位置に位置するように、切り込みを入れた前記第2のセパレータ材を搬送する工程と、
 前記第4の作業位置において、前記負極が接着した1素子分の前記第2のセパレータとなる領域をピックアップして前記未切断部分を切断し、前記第2のセパレータ材から、前記負極が接着した1素子分の前記第2のセパレータを分離する工程と、
 分離した、前記負極が接着した1素子分の前記第2のセパレータを前記積層ステージに搬送する工程と、
 前記積層ステージで、前記正極が接着した1素子分の前記第1のセパレータと、前記負極が接着した1素子分の前記第2のセパレータを積層する工程と、
を有することを特徴とする。
The method for producing the electrode body of the present invention comprises:
A method for producing an electrode body comprising a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode,
Adhering the positive electrode to the long first separator material;
In the first working position, in a form surrounding the region to be a first separator for one element to which the positive electrode is bonded, while leaving an uncut portion in part based on the position of the positive electrode, Cutting the separator material, and
The first separator material into which the first separator material is cut so that the region serving as the first separator for one element to which the positive electrode is bonded is located at a second work position different from the first work position. A conveying step;
In the second working position, the region to be the first separator for one element to which the positive electrode is bonded is picked up, the uncut portion is cut, and the positive electrode is bonded from the first separator material. Separating the first separator for one element;
A step of transporting the separated first separator for one element to which the positive electrode is bonded to a lamination stage;
Adhering the negative electrode to the long second separator material;
In a third working position, in a mode of surrounding the region serving as a second separator for one element to which the negative electrode is adhered, leaving an uncut portion in part based on the position of the negative electrode, Cutting the separator material, and
The second separator material into which the second separator material is cut so that the region serving as the second separator for one element to which the negative electrode is bonded is located at a fourth work position different from the third work position. A conveying step;
In the fourth work position, the region to be the second separator for one element to which the negative electrode is bonded is picked up, the uncut portion is cut, and the negative electrode is bonded from the second separator material. Separating the second separator for one element;
Transporting the separated second separator for one element to which the negative electrode is bonded to the stacking stage;
Laminating the first separator for one element to which the positive electrode is bonded and the second separator for one element to which the negative electrode is bonded in the stacking stage;
It is characterized by having.
 前記第1のセパレータ材の切り込みは、切り込みを入れた前記第1のセパレータ材を搬送する際に、前記正極が接着した1素子分の前記第1のセパレータとなる領域の位置ずれが生じず、かつ、前記正極が接着した1素子分の前記第1のセパレータとなる領域をピックアップする際に前記未切断部分が切断されるような態様で行い、
 前記第2のセパレータ材の切り込みは、切り込みを入れた前記第2のセパレータ材を搬送する際に、前記負極が接着した1素子分の前記第2のセパレータとなる領域の位置ずれが生じず、かつ、前記負極が接着した1素子分の前記第2のセパレータとなる領域をピックアップする際に前記未切断部分が切断されるような態様で行うことができる。
The notch of the first separator material does not cause a position shift of the region serving as the first separator for one element to which the positive electrode is bonded when the first separator material having the notch is conveyed, And when the area to be the first separator for one element to which the positive electrode is bonded is picked up, the uncut portion is cut in a mode,
The notch of the second separator material does not cause a positional shift of the region serving as the second separator for one element to which the negative electrode is bonded when the second separator material with the notch is conveyed. And when the area | region used as the said 2nd separator for 1 element to which the said negative electrode adhere | attached is picked up, it can carry out in the aspect that the said uncut part is cut | disconnected.
 前記正極の形状および前記負極の形状は、非矩形の形状であってもよい。 The shape of the positive electrode and the shape of the negative electrode may be non-rectangular shapes.
 本発明によれば、第1の作業位置において、一部に未切断部分を残しつつ第1のセパレータ材に切り込みを入れて第2の作業位置に搬送し、第2の作業位置において、正極が接着した1素子分の第1のセパレータとなる領域をピックアップして未切断部分を切断するので、正極が接着した1素子分の第1のセパレータとなる領域が搬送される際の位置ずれの発生を抑制することができる。また、第3の作業位置において、一部に未切断部分を残しつつ第2のセパレータ材に切り込みを入れて、第4の作業位置に搬送し、第4の作業位置において、負極が接着した1素子分の第2のセパレータとなる領域をピックアップして未切断部分を切断するので、負極が接着した1素子分の第2のセパレータとなる領域が搬送される際の位置ずれの発生を抑制することができる。これにより、正極および負極間の位置ずれを抑制した電極体を製造することができる。 According to the present invention, in the first working position, the first separator material is cut and conveyed to the second working position while leaving an uncut portion in part, and in the second working position, the positive electrode is Since the region that becomes the first separator for one element that has been bonded is picked up and the uncut portion is cut, the occurrence of misalignment when the region that becomes the first separator for one element to which the positive electrode is bonded is conveyed Can be suppressed. Further, at the third work position, the second separator material is cut while leaving an uncut portion in part, and conveyed to the fourth work position, and the negative electrode is adhered to the fourth work position. Since the region to be the second separator for the element is picked up and the uncut portion is cut, the occurrence of misalignment when the region to be the second separator for one element to which the negative electrode is bonded is conveyed is suppressed. be able to. Thereby, the electrode body which suppressed the position shift between a positive electrode and a negative electrode can be manufactured.
電極体の構造を示す断面図である。It is sectional drawing which shows the structure of an electrode body. 第1の実施形態における電極体の製造方法における各工程を説明するための側面図である。It is a side view for demonstrating each process in the manufacturing method of the electrode body in 1st Embodiment. 第1のセパレータ材に切り込みを入れる方法を説明するための平面図である。It is a top view for demonstrating the method of making a notch in a 1st separator material. 積層された第1のセパレータ、正極、第2のセパレータおよび負極の全体を接着する方法を説明するための図である。It is a figure for demonstrating the method to adhere | attach the laminated | stacked 1st separator, the positive electrode, the 2nd separator, and the whole negative electrode.
 以下に本発明の実施形態を示して、本発明の特徴とするところをさらに具体的に説明する。 Embodiments of the present invention will be shown below, and the features of the present invention will be described more specifically.
 まず初めに電極体の構造について簡単に説明し、続いて、電極体の製造方法について説明する。 First, the structure of the electrode body will be briefly described, and then the method for manufacturing the electrode body will be described.
 電極体10は、図1に示すように、第1のセパレータ11、正極12、第2のセパレータ13および負極14が順に複数積層された構造を有し、例えばリチウムイオン電池などの電池に用いられる。 As shown in FIG. 1, the electrode body 10 has a structure in which a plurality of first separators 11, positive electrodes 12, second separators 13, and negative electrodes 14 are sequentially laminated, and is used for a battery such as a lithium ion battery. .
 正極12は、アルミニウムなどの金属箔からなる正極集電体と、正極集電体の両面に形成された正極活物質とを備える。ただし、電極体10の積層方向における最も外側に正極が存在する場合、最も外側に位置する正極は、正極集電体の片面にのみ正極活物質が形成されている構成であってもよい。 The positive electrode 12 includes a positive electrode current collector made of a metal foil such as aluminum, and a positive electrode active material formed on both surfaces of the positive electrode current collector. However, when the positive electrode is present on the outermost side in the stacking direction of the electrode body 10, the positive electrode located on the outermost side may be configured such that the positive electrode active material is formed only on one surface of the positive electrode current collector.
 負極14は、銅などの金属箔からなる負極集電体と、負極集電体の両面に形成された負極活物質とを備える。ただし、電極体10の積層方向における最も外側に負極が存在する場合、最も外側に位置する負極は、負極集電体の片面にのみ負極活物質が形成されている構成であってもよい。 The negative electrode 14 includes a negative electrode current collector made of a metal foil such as copper, and a negative electrode active material formed on both surfaces of the negative electrode current collector. However, when the negative electrode is present on the outermost side in the stacking direction of the electrode body 10, the negative electrode located on the outermost side may be configured such that the negative electrode active material is formed only on one surface of the negative electrode current collector.
 第1のセパレータ11および第2のセパレータ13としては、同じ素材のものを用いることができ、例えば、絶縁性に優れたポリプロピレン製の微多孔性薄膜によって構成することができる。 As the first separator 11 and the second separator 13, those made of the same material can be used, and for example, the first separator 11 and the second separator 13 can be constituted by a microporous thin film made of polypropylene having excellent insulating properties.
 図2は、第1の実施形態における電極体10の製造方法における各工程を説明するための側面図である。 FIG. 2 is a side view for explaining each step in the method of manufacturing the electrode body 10 in the first embodiment.
 なお、本明細書では、切断前の長尺状の第1のセパレータ材には11Aの符号を付し、切断後の第1のセパレータには11の符号を付して説明する。 In addition, in this specification, the code | symbol of 11A is attached | subjected to the elongate 1st separator material before a cutting | disconnection, and the code | symbol 11 is attached | subjected and demonstrated to a 1st separator after a cutting | disconnection.
 長尺状の第1のセパレータ材11Aは、セパレータ巻出部21においてロール状に巻かれており、セパレータ巻出部21から巻出されて、一方向に送り出される。例えば、長尺状のPETフィルムの上に長尺状の第1のセパレータ材11Aを重ね、長尺状のPETフィルムを一方向に搬送することによって、第1のセパレータ材11Aを一方向に搬送する。 The long first separator material 11 </ b> A is wound in a roll shape at the separator unwinding portion 21, unwound from the separator unwinding portion 21, and sent out in one direction. For example, the first separator material 11A is transported in one direction by stacking the long first separator material 11A on the long PET film and transporting the long PET film in one direction. To do.
 初めに、長尺状の第1のセパレータ材11Aの上に正極12を載せて、正極12を第1のセパレータ材11Aに接着する。 First, the positive electrode 12 is placed on the long first separator material 11A, and the positive electrode 12 is bonded to the first separator material 11A.
 具体的には、予め用意した正極12を、長尺状の第1のセパレータ材11Aの幅方向における一端Sから所定の距離Hの位置に載せる。この実施形態において、第1のセパレータ材11Aの幅方向における一端Sは、図3に示すように、正極12が接着されたときに、正極タブ12Aが突出している側の端である。 Specifically, the positive electrode 12 prepared in advance is placed at a predetermined distance H from one end S in the width direction of the long first separator material 11A. In this embodiment, one end S in the width direction of the first separator material 11A is the end on the side from which the positive electrode tab 12A protrudes when the positive electrode 12 is bonded, as shown in FIG.
 そして、第1のセパレータ材11A上に載置された正極12の上側および下側から、ヒーターを内蔵した接着部22によって挟み込み、加熱しながら加圧する熱圧着の方法で、正極12を第1のセパレータ材11Aに接着する。本実施形態では、図3に示すように、正極12が第1のセパレータ材11Aに接着された状態において、正極タブ12Aは、第1のセパレータ材11Aの一端Sの外側に突出している。 Then, the positive electrode 12 is attached to the first positive electrode 12 by the thermocompression bonding method in which the heater 12 is sandwiched between the upper part and the lower part of the positive electrode 12 placed on the first separator material 11A and heated and pressurized. Adhere to the separator material 11A. In the present embodiment, as shown in FIG. 3, in a state where the positive electrode 12 is bonded to the first separator material 11A, the positive electrode tab 12A protrudes outside the one end S of the first separator material 11A.
 なお、正極12を第1のセパレータ材11Aに接着する方法が熱圧着に限定されることはなく、熱圧着以外の方法により接着してもよい。 In addition, the method of adhering the positive electrode 12 to the first separator material 11A is not limited to thermocompression bonding, and may be adhered by a method other than thermocompression bonding.
 続いて、第1の作業位置T1において、切断機構部23により、正極12の位置に基づいて、一部に未切断部分を残しつつ、第1のセパレータ材11Aに切り込みを入れる。 Subsequently, at the first work position T1, the cutting mechanism unit 23 cuts the first separator material 11A while leaving an uncut portion in part based on the position of the positive electrode 12.
 具体的には、切断機構部23は、図示しないカメラを備えており、カメラによって正極12を含む第1のセパレータ材11Aを撮像し、撮像した画像に基づいて、正極12の位置に応じて、切断刃23aにより、第1のセパレータ材11Aに切り込み31を入れる。 Specifically, the cutting mechanism unit 23 includes a camera (not shown), images the first separator material 11A including the positive electrode 12 by the camera, and based on the captured image, according to the position of the positive electrode 12, A cut 31 is made in the first separator material 11A by the cutting blade 23a.
 この実施形態では、図3に示すように、正極12の外周辺のうち、正極タブ12Aが設けられている辺以外の辺にそれぞれ沿った位置で、第1のセパレータ材11Aに切り込み31を入れる。このとき、上述したように、正極12の周囲が全て切り取られないように、切断されていない部分である未切断部分35が残るように、切り込み31を入れる。すなわち、切り込み31は、上述の未切断部分35に対する切断部分となる。図3では、3箇所の未切断部分35が形成された例を示している。 In this embodiment, as shown in FIG. 3, a cut 31 is made in the first separator material 11A at positions along the outer periphery of the positive electrode 12 other than the side where the positive electrode tab 12A is provided. . At this time, as described above, the cuts 31 are made so that the uncut portion 35 that is not cut is left so that the entire periphery of the positive electrode 12 is not cut off. That is, the cut 31 is a cut portion with respect to the uncut portion 35 described above. FIG. 3 shows an example in which three uncut portions 35 are formed.
 ここで、切り込み31は、後の工程で、切り込み31を入れた第1のセパレータ材11Aを搬送する際に、切り込み31により囲まれた領域と他の領域との間に位置ずれが生じず、かつ、後述の正極用搬送ヘッド24により、切り込み31により囲まれた領域をピックアップする際に、未切断部分35が切断されて、1素子分の第1のセパレータ11を第1のセパレータ材11Aから確実に分離することができるような態様で形成する。 Here, the notch 31 does not cause a positional shift between the region surrounded by the notch 31 and the other region when the first separator material 11A into which the notch 31 is put is conveyed in a later step. And when picking up the area | region enclosed by the notch 31 with the conveyance head 24 for positive electrodes mentioned later, the uncut part 35 is cut | disconnected, and the 1st separator 11 for 1 element is taken from the 1st separator material 11A. It forms in the aspect which can isolate | separate reliably.
 切断機構部23が備える切断刃23aは、平面視で図3の切断部分である切り込み31に対応する形状を有している。第1のセパレータ材11Aの上方から切断刃23aを押しつけることにより、図3に示すように、未切断部分35を残しつつ、切り込み31を入れることができる。 The cutting blade 23a with which the cutting mechanism part 23 is provided has a shape corresponding to the cut 31 which is a cutting part of FIG. By pressing the cutting blade 23a from above the first separator material 11A, the cut 31 can be made while leaving the uncut portion 35, as shown in FIG.
 なお、未切断部分35は、3箇所未満でもよく、また、4箇所以上であってもよい。後の工程で未切断部分35を切り離す、あるいは分離する際に、容易に切断できるように、未切断部分35の数は少ない方が好ましく、また、切り込み31の長さ方向に沿った未切断部分35の長さは短い方が好ましい。ただし、未切断部分35の数を少なくした場合、および、未切断部分35の長さを短くした場合には、切り込み31を入れた第1のセパレータ材11Aの搬送時に、後に第1のセパレータ11となる領域に位置ずれが生じる可能性がある。このため、未切断部分35の数や長さは、切断容易性、および、切り込み31を入れた第1のセパレータ材11Aの搬送時における位置ずれ防止などの点を考慮して、適切に設定する必要がある。 In addition, the uncut part 35 may be less than three places, and may be four or more places. It is preferable that the number of uncut portions 35 is small so that the uncut portion 35 can be easily cut when the uncut portion 35 is separated or separated in a later step, and the uncut portion along the length direction of the notch 31 is preferable. The length of 35 is preferably shorter. However, when the number of uncut portions 35 is reduced and when the length of the uncut portions 35 is shortened, the first separator 11 is later transferred during the transport of the first separator material 11A into which the cuts 31 are made. There is a possibility that a position shift occurs in the region. For this reason, the number and length of the uncut portions 35 are appropriately set in consideration of easiness of cutting and prevention of misalignment when the first separator material 11A including the cuts 31 is conveyed. There is a need.
 なお、正極12の形状が図3に示すような形状に限定されることはない。正極12の形状は非矩形の形状であってもよいし、矩形の形状であってもよい。 Note that the shape of the positive electrode 12 is not limited to the shape shown in FIG. The shape of the positive electrode 12 may be a non-rectangular shape or a rectangular shape.
 第1のセパレータ材11Aは、図3の矢印Y1の方向に搬送される。すなわち、第1のセパレータ材11Aの、第1の作業位置T1で切り込み31が入れられた部分、すなわち、正極12が接着した1素子分の第1のセパレータ11となる領域は、第1の作業位置T1とは異なる第2の作業位置T2に搬送される。 The first separator material 11A is conveyed in the direction of arrow Y1 in FIG. That is, the portion of the first separator material 11A where the notch 31 is made at the first work position T1, that is, the region that becomes the first separator 11 for one element to which the positive electrode 12 is bonded is the first work. It is transported to a second work position T2 different from the position T1.
 続いて、第2の作業位置T2において、正極用搬送ヘッド24により、正極12が接着した1素子分の第1のセパレータ11となる領域をピックアップして未切断部分35を切断する。すなわち、正極用搬送ヘッド24により、正極12が接着した1素子分の第1のセパレータ11となる領域を吸着して、正極用搬送ヘッド24を上昇させることにより、未切断部分35を切断して、第1のセパレータ材11Aから、正極12が接着した1素子分の第1のセパレータ11を分離する。これにより、正極12が接着した第1のセパレータ11、すなわち1素子分の第1のセパレータ11が得られる。 Subsequently, at the second work position T2, the positive electrode transport head 24 picks up an area to be the first separator 11 for one element to which the positive electrode 12 is adhered, and cuts the uncut portion 35. That is, the positive electrode transport head 24 adsorbs a region to be the first separator 11 for one element to which the positive electrode 12 is adhered, and the positive electrode transport head 24 is lifted to cut the uncut portion 35. Then, the first separator 11 for one element to which the positive electrode 12 is bonded is separated from the first separator material 11A. Thereby, the 1st separator 11 which the positive electrode 12 adhere | attached, ie, the 1st separator 11 for 1 element, is obtained.
 続いて、正極用搬送ヘッド24により、ピックアップした、正極12が接着した第1のセパレータ11を積層ステージ25に搬送し、正極12を図示しないカメラで認識し、位置・姿勢を補正して、積層ステージ25上に載置する。積層ステージ25上に載置された第1のセパレータ11および正極12は、次の工程で、負極14が接着した、1素子分の第2のセパレータ13がその上に積層されるまで、必要に応じて、積層爪27によって上方から押さえられる。 Subsequently, the first separator 11 picked up by the positive electrode conveying head 24 is conveyed to the lamination stage 25, the positive electrode 12 is recognized by a camera (not shown), the position and orientation are corrected, and the lamination is performed. Place on stage 25. The first separator 11 and the positive electrode 12 placed on the stacking stage 25 are necessary until the second separator 13 for one element, to which the negative electrode 14 is bonded, is stacked on the first separator 11 and the positive electrode 12 in the next step. Accordingly, the laminated claw 27 is pressed from above.
 なお、図3では、第2の作業位置T2において、正極12が接着した1素子分の第1のセパレータ11が正極用搬送ヘッド24によってピックアップされて分離された状態の第1のセパレータ材11Aを示している。 In FIG. 3, the first separator material 11A in a state where the first separator 11 for one element to which the positive electrode 12 is bonded is picked up and separated by the positive electrode transport head 24 at the second work position T2. Show.
 このように、本実施形態における電極体10の製造方法では、第1の作業位置T1において、正極12の位置に基づいて、一部に未切断部分35を残しつつ第1のセパレータ材11Aに切り込み31を入れ、切り込み31を入れた第1のセパレータ材11Aを第1の作業位置T1から第2の作業位置T2に搬送する。そして、第2の作業位置T2において、正極12が接着した1素子分の第1のセパレータ11となる領域をピックアップし、正極用搬送ヘッド24を上昇させることにより未切断部分35を切断して、1素子分の第1のセパレータ11を第1のセパレータ材11Aから分離する。その後、分離した1素子分の第1のセパレータ11を積層ステージ25に搬送するようにしている。このように、正極12の位置に基づいて第1のセパレータ材11Aを切断する際に、未切断部分35を残しつつ切り込み31を入れるようにしているので、切り込み31を入れた第1のセパレータ材11Aを第1の作業位置T1から第2の作業位置T2に搬送する際に、切断後に第1のセパレータ11となる領域の位置ずれを抑制することができる。 Thus, in the manufacturing method of the electrode body 10 according to the present embodiment, the first separator material 11A is cut while leaving the uncut portion 35 in a part based on the position of the positive electrode 12 at the first work position T1. 31 is inserted, and the first separator material 11A into which the cut 31 has been made is conveyed from the first work position T1 to the second work position T2. Then, at the second work position T2, a region to be the first separator 11 for one element to which the positive electrode 12 is bonded is picked up, and the uncut portion 35 is cut by raising the positive electrode transport head 24, The first separator 11 for one element is separated from the first separator material 11A. Thereafter, the separated first separator 11 for one element is conveyed to the stacking stage 25. In this way, when the first separator material 11A is cut based on the position of the positive electrode 12, the cut 31 is made while leaving the uncut portion 35, so the first separator material with the cut 31 is inserted. When transporting 11A from the first work position T1 to the second work position T2, it is possible to suppress the positional deviation of the region that becomes the first separator 11 after cutting.
 例えば、正極集電体の片面にのみ正極活物質が形成されている正極の場合、反りが生じていることがある。反りが生じている正極は、第1のセパレータ材11Aに接着されている状態では反りが抑えられているが、第1のセパレータ材11Aを切断する際に、未切断部分を残さずに正極12の周囲を切断すると、抑えられていた反りが戻って、第1の作業位置T1から第2の作業位置T2に搬送する際に位置ずれが生じやすくなる。 For example, in the case of a positive electrode in which a positive electrode active material is formed only on one side of the positive electrode current collector, warping may occur. The positive electrode in which the warp has occurred is suppressed in the state of being bonded to the first separator material 11A, but when the first separator material 11A is cut, the positive electrode 12 does not leave an uncut portion. When the perimeter of the sheet is cut, the warpage that has been suppressed is returned, and a positional shift is likely to occur when transporting from the first work position T1 to the second work position T2.
 しかしながら、本実施形態によれば、上述したように、第1のセパレータ材11Aに切り込み31を入れる際に、未切断部分35を残すことにより、切断後に第1のセパレータ11となる領域は、未切断部分35を介して第1のセパレータ材11Aと接続されているため、位置ずれの発生を抑制することができる。 However, according to the present embodiment, as described above, when the cut 31 is made in the first separator material 11A, the uncut portion 35 is left so that the region that becomes the first separator 11 after cutting is not yet formed. Since it is connected to the first separator material 11 </ b> A via the cut portion 35, it is possible to suppress the occurrence of misalignment.
 特に、第1のセパレータ材11Aの切り込み31は、切り込みを入れた第1のセパレータ材11Aを搬送する際に、正極12が接着した1素子分の第1のセパレータ11となる領域の位置ずれが生じず、かつ、正極12が接着した1素子分の第1のセパレータ11となる領域をピックアップする際に未切断部分35が切断されるような態様で行うので、切断後に1素子分の第1のセパレータ11となる領域の位置ずれの発生を効果的に抑制することができる。 In particular, the notch 31 of the first separator material 11 </ b> A has a positional deviation of the region that becomes the first separator 11 for one element to which the positive electrode 12 is bonded when the first separator material 11 </ b> A with the notch is conveyed. This is performed in such a manner that the uncut portion 35 is cut when picking up the region that does not occur and becomes the first separator 11 for one element to which the positive electrode 12 is bonded. It is possible to effectively suppress the occurrence of positional deviation in the region that becomes the separator 11.
 また、図3に示すように、本実施形態における正極12の形状は、非矩形の形状であるが、この場合でも、切断後に第1のセパレータ11となる領域の位置ずれの発生を抑制することができる。 In addition, as shown in FIG. 3, the shape of the positive electrode 12 in the present embodiment is a non-rectangular shape, but even in this case, the occurrence of misalignment of the region that becomes the first separator 11 after cutting is suppressed. Can do.
 さらに、第1のセパレータ材11Aに切り込み31を入れる工程と、正極12が接着した1素子分の第1のセパレータ11となる領域をピックアップして第1のセパレータ材11Aから分離する工程とを、別の位置で行うようにしているので、製造工程の効率を向上させることができる。 Furthermore, a step of making a cut 31 in the first separator material 11A, and a step of picking up a region to be the first separator 11 for one element to which the positive electrode 12 is bonded and separating it from the first separator material 11A, Since it is performed at a different position, the efficiency of the manufacturing process can be improved.
 すなわち、第1のセパレータ材11Aに切り込み31を入れる工程と、正極12が接着した1素子分の第1のセパレータ11をピックアップして第1のセパレータ材11Aから分離する工程とを同じ位置で行う場合には、切断機構部23と正極用搬送ヘッド24とが同じ位置で作業をすることになり、作業効率が低下する。しかし、本実施形態によれば、切断機構部23は、第1の作業位置T1で切断作業を行い、正極用搬送ヘッド24は、第2の作業位置T2で、未切断部分35を切断しつつ、1素子分の第1のセパレータ11のピックアップ作業を行うので、作業効率を向上させることができる。 That is, the step of making the cut 31 in the first separator material 11A and the step of picking up the first separator 11 for one element to which the positive electrode 12 is bonded and separating it from the first separator material 11A are performed at the same position. In this case, the cutting mechanism unit 23 and the positive electrode transport head 24 work at the same position, and work efficiency is reduced. However, according to the present embodiment, the cutting mechanism unit 23 performs the cutting operation at the first work position T1, and the positive electrode transport head 24 cuts the uncut portion 35 at the second work position T2. Since the pickup work of the first separator 11 for one element is performed, the work efficiency can be improved.
 なお、正極用搬送ヘッド24によって、正極12が接着した第1のセパレータ11がピックアップされた後、第1のセパレータ材11Aは回収される。 In addition, after the first separator 11 to which the positive electrode 12 is bonded is picked up by the positive electrode transport head 24, the first separator material 11A is collected.
 上述した工程を、負極14に対しても行う。すなわち、初めに、長尺状の第2のセパレータ材(不図示)の上に負極14を載せて、負極14を第2のセパレータ材に接着する。正極12を第1のセパレータ材11Aに接着するときと同様に、負極14は、第2のセパレータ材上の、幅方向における一端から所定の距離の位置に置いて接着する。第2のセパレータ材の幅方向における一端とは、負極14を接着したときに、負極タブが突出している側の端である。 The above-described process is also performed on the negative electrode 14. That is, first, the negative electrode 14 is placed on a long second separator material (not shown), and the negative electrode 14 is bonded to the second separator material. Similarly to the case where the positive electrode 12 is bonded to the first separator material 11A, the negative electrode 14 is bonded to a position on the second separator material at a predetermined distance from one end in the width direction. The one end in the width direction of the second separator material is the end on the side from which the negative electrode tab protrudes when the negative electrode 14 is bonded.
 続いて、第3の作業位置において、負極14の位置に基づいて、一部に未切断部分を残しつつ、第2のセパレータ材に切り込みを入れる。第2のセパレータ材に切り込みを入れる方法は、第1のセパレータ材に切り込みを入れる方法と同じである。 Subsequently, at the third work position, the second separator material is cut based on the position of the negative electrode 14 while leaving an uncut portion in part. The method of cutting the second separator material is the same as the method of cutting the first separator material.
 第2のセパレータ材も、一方向に搬送される。第2のセパレータ材の、第3の作業位置で切り込みが入れられた部分、すなわち負極14が接着した1素子分の第2のセパレータ13となる領域は、第3の作業位置とは異なる第4の作業位置に搬送される。 The second separator material is also conveyed in one direction. The portion of the second separator material that is cut at the third work position, that is, the region that becomes the second separator 13 for one element to which the negative electrode 14 is bonded is different from the third work position. It is conveyed to the work position.
 続いて、第4の作業位置において、負極用搬送ヘッド26により、負極14が接着した1素子分の第2のセパレータ13となる領域をピックアップして未切断部分を切断する。すなわち、負極用搬送ヘッド26により、負極14が接着した1素子分の第2のセパレータ13となる領域を吸着して、負極用搬送ヘッド26を上昇させることにより、未切断部分を切断して、第2のセパレータ材から、負極14が接着した1素子分の第2のセパレータ13を分離する。これにより、負極14が接着した第2のセパレータ13、すなわち1素子分の第2のセパレータ13が得られる。 Subsequently, at the fourth work position, the negative electrode transport head 26 picks up an area to be the second separator 13 for one element to which the negative electrode 14 is bonded, and cuts the uncut portion. That is, the negative electrode transport head 26 adsorbs a region to be the second separator 13 for one element to which the negative electrode 14 is adhered, and lifts the negative electrode transport head 26 to cut an uncut portion. The second separator 13 for one element to which the negative electrode 14 is bonded is separated from the second separator material. Thereby, the 2nd separator 13 which the negative electrode 14 adhere | attached, ie, the 2nd separator 13 for 1 element, is obtained.
 続いて、負極用搬送ヘッド26により、ピックアップした、負極14が接着した第2のセパレータ13を積層ステージ25に搬送し、正極12と負極14との間の位置を合わせながら、第2のセパレータ13を第1のセパレータ11の上、より具体的には、第1のセパレータ11の上に接着している正極12の上に積層する。正極12と負極14との間の位置合わせは、例えば、積層ステージ25上における正極12の位置を検出し、検出した正極12の位置と積層後の負極14の位置が一致するように行う。 Subsequently, the second separator 13 picked up by the negative electrode transport head 26 is transported to the stacking stage 25, and the second separator 13 is aligned with the position between the positive electrode 12 and the negative electrode 14. Is laminated on the first separator 11, more specifically, on the positive electrode 12 adhered on the first separator 11. The alignment between the positive electrode 12 and the negative electrode 14 is performed, for example, by detecting the position of the positive electrode 12 on the stacking stage 25 and aligning the detected position of the positive electrode 12 with the position of the negative electrode 14 after stacking.
 積層された第2のセパレータ13および負極14は、必要に応じて、次の工程で正極12が接着した第1のセパレータ11がその上に積層されるまで、積層爪27によって上方から押さえられる。 The laminated second separator 13 and negative electrode 14 are pressed from above by the laminating claws 27 as needed until the first separator 11 to which the positive electrode 12 is bonded is laminated on the next step.
 この場合も、負極14の位置に基づいて第2のセパレータ材を切断する際に、未切断部分を残しつつ切り込みを入れるようにしているので、切り込みを入れた第2のセパレータ材を第3の作業位置から第4の作業位置に搬送する際に、切断後に第2のセパレータ13となる領域の位置ずれを抑制することができる。 Also in this case, when the second separator material is cut based on the position of the negative electrode 14, the cut is made while leaving the uncut portion, so that the second separator material with the cut is used as the third separator material. When transporting from the work position to the fourth work position, it is possible to suppress the displacement of the region that becomes the second separator 13 after cutting.
 特に、第2のセパレータ材の切り込みは、切り込みを入れた第2のセパレータ材を搬送する際に、負極14が接着した1素子分の第2のセパレータ13となる領域の位置ずれが生じず、かつ、負極14が接着した1素子分の第2のセパレータ13となる領域をピックアップする際に未切断部分が切断されるような態様で行うので、切断後に1素子分の第2のセパレータ13となる領域の位置ずれの発生を効果的に抑制することができる。 In particular, the notch of the second separator material does not cause a position shift of the region to be the second separator 13 for one element to which the negative electrode 14 is adhered when the second separator material with the notch is conveyed. Moreover, since the uncut portion is cut when picking up the region to be the second separator 13 for one element to which the negative electrode 14 is bonded, the second separator 13 for one element after cutting It is possible to effectively suppress the occurrence of positional deviation in the region.
 また、第2のセパレータ材に切り込みを入れる工程と、負極14が接着した1素子分の第2のセパレータ13となる領域をピックアップして第2のセパレータ材から分離する工程とを、別の位置で行うようにしているので、製造工程の効率を向上させることができる。 In addition, the step of cutting the second separator material and the step of picking up the region to be the second separator 13 for one element to which the negative electrode 14 is bonded and separating it from the second separator material are performed at different positions. Therefore, the efficiency of the manufacturing process can be improved.
 上述したように、本実施形態における電極体10の製造方法では、切り込みを入れた第1のセパレータ材11Aを、第1の作業位置T1から第2の作業位置T2へと搬送する際に、切断により得られる、正極12が接着した1素子分の第1のセパレータ11の位置ずれの発生を抑制することができる。また、切り込みを入れた第2のセパレータ材を、第3の作業位置から第4の作業位置へと搬送する際に、切断により得られる、負極14が接着した1素子分の第2のセパレータ13の位置ずれの発生を抑制することができる。さらに、正極12が接着した1素子分の第1のセパレータ11および負極14が接着した1素子分の第2のセパレータ13をそれぞれ積層する前に、正極12と負極14との間の位置合わせを行うので、製造される電極体10の正極12と負極14との間の位置ずれをより効果的に抑制することができる。 As described above, in the method of manufacturing the electrode body 10 according to the present embodiment, the first separator material 11A with the cuts is cut when transported from the first work position T1 to the second work position T2. The occurrence of displacement of the first separator 11 for one element to which the positive electrode 12 is bonded can be suppressed. Further, when the second separator material into which the cut has been made is transported from the third work position to the fourth work position, the second separator 13 corresponding to one element to which the negative electrode 14 is bonded is obtained by cutting. The occurrence of misalignment can be suppressed. Further, before laminating the first separator 11 for one element to which the positive electrode 12 is bonded and the second separator 13 for one element to which the negative electrode 14 is bonded, the alignment between the positive electrode 12 and the negative electrode 14 is performed. Since it performs, the position shift between the positive electrode 12 and the negative electrode 14 of the electrode body 10 manufactured can be suppressed more effectively.
 その後、続いて得られる、正極12が接着した第1のセパレータ11を、正極用搬送ヘッド24によって積層ステージ25に搬送して、正極12と負極14との間の位置を合わせながら、第1のセパレータ11を第2のセパレータ13の上、より具体的には、第2のセパレータ13の上に接着している負極14の上に積層する。積層された第1のセパレータ11および正極12は、必要に応じて、次の工程で負極14が接着した第2のセパレータ13がその上に積層されるまで、積層爪27によって上方から押さえられる。 Thereafter, the first separator 11 to which the positive electrode 12 is bonded is transferred to the stacking stage 25 by the positive electrode transfer head 24, and the first separator 11 is aligned while the position between the positive electrode 12 and the negative electrode 14 is adjusted. The separator 11 is laminated on the second separator 13, more specifically, on the negative electrode 14 bonded on the second separator 13. The laminated first separator 11 and the positive electrode 12 are pressed from above by the laminating claws 27 until the second separator 13 to which the negative electrode 14 is bonded is laminated on the first separator 11 and the positive electrode 12 as necessary.
 以後、正極12および負極14の積層枚数が所定枚数となるまで、負極14が接着した第2のセパレータ13と、正極12が接着した第1のセパレータ11の積層を繰り返し行う。 Thereafter, the stacking of the second separator 13 to which the negative electrode 14 is bonded and the first separator 11 to which the positive electrode 12 is bonded is repeatedly performed until the number of stacked layers of the positive electrode 12 and the negative electrode 14 reaches a predetermined number.
 最後に、複数積層されている第1のセパレータ11、正極12、第2のセパレータ13および負極14の全体を接着する。例えば、図4に示すように、第1のセパレータ11、正極12、第2のセパレータ13および負極14が積層された積層体の上方から、ヒーターが内蔵されている熱圧着ヘッド40を押しつけることによって、第1のセパレータ11、正極12、第2のセパレータ13および負極14の全体を熱圧着する。 Finally, the first separator 11, the positive electrode 12, the second separator 13, and the negative electrode 14 that are stacked in plurality are bonded together. For example, as shown in FIG. 4, by pressing a thermocompression bonding head 40 containing a heater from above the laminated body in which the first separator 11, the positive electrode 12, the second separator 13, and the negative electrode 14 are laminated. The entire first separator 11, positive electrode 12, second separator 13 and negative electrode 14 are thermocompression bonded.
 なお、ヒーターは、熱圧着ヘッド40だけではなく、積層ステージ25にも内蔵されていてもよいし、熱圧着ヘッド40には内蔵されずに、積層ステージ25にだけ内蔵されていてもよい。 The heater may be incorporated not only in the thermocompression bonding head 40 but also in the lamination stage 25, or may be incorporated only in the lamination stage 25 without being incorporated in the thermocompression bonding head 40.
 以上の工程により、電極体10が製造される。 The electrode body 10 is manufactured by the above process.
 本発明は、上記実施形態に限定されるものではなく、本発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above-described embodiment, and various applications and modifications can be made within the scope of the present invention.
 例えば、上記実施形態における電極体の製造方法では、電極体10を構成する第1のセパレータ11、正極12、第2のセパレータ13および負極14の全てを積層した後に、全体を接着した。しかし、第1のセパレータ11および第2のセパレータ13をそれぞれ積層する毎に、積層された第1のセパレータ11、正極12、第2のセパレータ13および負極14の全体を接着するようにしてもよい。 For example, in the method of manufacturing an electrode body in the above embodiment, the first separator 11, the positive electrode 12, the second separator 13, and the negative electrode 14 constituting the electrode body 10 are all laminated and then bonded together. However, every time the first separator 11 and the second separator 13 are laminated, the laminated first separator 11, positive electrode 12, second separator 13, and negative electrode 14 may be bonded together. .
 例えば、正極用搬送ヘッド24にヒーターを内蔵しておき、正極12が接着した第1のセパレータ11を積層した際に、正極用搬送ヘッド24によって熱圧着を行うようにしてもよい。同様に、負極用搬送ヘッド26にヒーターを内蔵しておき、負極14が接着した第2のセパレータ13を積層した際に、負極用搬送ヘッド26によって熱圧着を行うようにしてもよい。このような構成とすることにより、上述した熱圧着ヘッド40を省略することができる。 For example, a heater may be incorporated in the positive electrode transport head 24, and the first separator 11 to which the positive electrode 12 is bonded may be thermocompression bonded by the positive electrode transport head 24. Similarly, a heater may be incorporated in the negative electrode transport head 26 so that when the second separator 13 to which the negative electrode 14 is bonded is laminated, thermocompression bonding may be performed by the negative electrode transport head 26. With such a configuration, the above-described thermocompression bonding head 40 can be omitted.
 製造される電極体10は、正極と、負極と、正極および負極の間に配置されるセパレータとを備える構造であればよく、その形状はどのようなものであってもよい。例えば、積層される全ての正極の形状が同一ではなくてもよいし、積層される全ての負極形状が同一ではなくてもよい。例えば、積層方向の下層に位置する正極および負極に対して、上層に位置する正極および負極の大きさが小さく、積層方向において段差を有するような形状であってもよい。 The manufactured electrode body 10 may have any structure as long as it includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode. For example, all the positive electrodes stacked may not have the same shape, and all the negative electrodes stacked may not have the same shape. For example, the positive electrode and the negative electrode positioned in the lower layer in the stacking direction may be smaller in size than the positive electrode and the negative electrode positioned in the upper layer and may have a step in the stacking direction.
10  電極体
11  第1のセパレータ
11A 第1のセパレータ材
12  正極
12A 正極タブ
13  第2のセパレータ
14  負極
21  セパレータ巻出部
22  接着部
23  切断機構部
23a 切断刃
24  正極用搬送ヘッド
25  積層ステージ
26  負極用搬送ヘッド
27  積層爪
31  切り込み
35  未切断部分
40  熱圧着ヘッド
T1  第1の作業位置
T2  第2の作業位置
DESCRIPTION OF SYMBOLS 10 Electrode body 11 1st separator 11A 1st separator material 12 Positive electrode 12A Positive electrode tab 13 2nd separator 14 Negative electrode 21 Separator unwinding part 22 Adhesion part 23 Cutting mechanism part 23a Cutting blade 24 Positive electrode conveyance head 25 Laminating stage 26 Negative electrode transport head 27 Lamination claw 31 Notch 35 Uncut portion 40 Thermocompression bonding head T1 First work position T2 Second work position

Claims (3)

  1.  正極と、負極と、前記正極および前記負極の間に配置されるセパレータとを備える電極体の製造方法であって、
     長尺状の第1のセパレータ材に前記正極を接着する工程と、
     第1の作業位置において、前記正極の位置に基づいて、一部に未切断部分を残しつつ、前記正極が接着した1素子分の第1のセパレータとなる領域を囲む態様で、前記第1のセパレータ材に切り込みを入れる工程と、
     前記正極が接着した1素子分の前記第1のセパレータとなる領域が、前記第1の作業位置とは異なる第2の作業位置に位置するように、切り込みを入れた前記第1のセパレータ材を搬送する工程と、
     前記第2の作業位置において、前記正極が接着した1素子分の前記第1のセパレータとなる領域をピックアップして前記未切断部分を切断し、前記第1のセパレータ材から、前記正極が接着した1素子分の前記第1のセパレータを分離する工程と、
     分離した、前記正極が接着した1素子分の前記第1のセパレータを積層ステージに搬送する工程と、
     長尺状の第2のセパレータ材に前記負極を接着する工程と、
     第3の作業位置において、前記負極の位置に基づいて、一部に未切断部分を残しつつ、前記負極が接着した1素子分の第2のセパレータとなる領域を囲む態様で、前記第2のセパレータ材に切り込みを入れる工程と、
     前記負極が接着した1素子分の前記第2のセパレータとなる領域が、前記第3の作業位置とは異なる第4の作業位置に位置するように、切り込みを入れた前記第2のセパレータ材を搬送する工程と、
     前記第4の作業位置において、前記負極が接着した1素子分の前記第2のセパレータとなる領域をピックアップして前記未切断部分を切断し、前記第2のセパレータ材から、前記負極が接着した1素子分の前記第2のセパレータを分離する工程と、
     分離した、前記負極が接着した1素子分の前記第2のセパレータを前記積層ステージに搬送する工程と、
     前記積層ステージで、前記正極が接着した1素子分の前記第1のセパレータと、前記負極が接着した1素子分の前記第2のセパレータを積層する工程と、
    を有することを特徴とする電極体の製造方法。
    A method for producing an electrode body comprising a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode,
    Adhering the positive electrode to the long first separator material;
    In the first working position, in a form surrounding the region to be a first separator for one element to which the positive electrode is bonded, while leaving an uncut portion in part based on the position of the positive electrode, Cutting the separator material, and
    The first separator material into which the first separator material is cut so that the region serving as the first separator for one element to which the positive electrode is bonded is located at a second work position different from the first work position. A conveying step;
    In the second working position, the region to be the first separator for one element to which the positive electrode is bonded is picked up, the uncut portion is cut, and the positive electrode is bonded from the first separator material. Separating the first separator for one element;
    A step of transporting the separated first separator for one element to which the positive electrode is bonded to a lamination stage;
    Adhering the negative electrode to the long second separator material;
    In a third working position, in a mode of surrounding the region serving as a second separator for one element to which the negative electrode is adhered, leaving an uncut portion in part based on the position of the negative electrode, Cutting the separator material, and
    The second separator material into which the second separator material is cut so that the region serving as the second separator for one element to which the negative electrode is bonded is located at a fourth work position different from the third work position. A conveying step;
    In the fourth work position, the region to be the second separator for one element to which the negative electrode is bonded is picked up, the uncut portion is cut, and the negative electrode is bonded from the second separator material. Separating the second separator for one element;
    Transporting the separated second separator for one element to which the negative electrode is bonded to the stacking stage;
    Laminating the first separator for one element to which the positive electrode is bonded and the second separator for one element to which the negative electrode is bonded in the stacking stage;
    A method for producing an electrode body, comprising:
  2.  前記第1のセパレータ材の切り込みは、切り込みを入れた前記第1のセパレータ材を搬送する際に、前記正極が接着した1素子分の前記第1のセパレータとなる領域の位置ずれが生じず、かつ、前記正極が接着した1素子分の前記第1のセパレータとなる領域をピックアップする際に前記未切断部分が切断されるような態様で行い、
     前記第2のセパレータ材の切り込みは、切り込みを入れた前記第2のセパレータ材を搬送する際に、前記負極が接着した1素子分の前記第2のセパレータとなる領域の位置ずれが生じず、かつ、前記負極が接着した1素子分の前記第2のセパレータとなる領域をピックアップする際に前記未切断部分が切断されるような態様で行うことを特徴とする電極体の製造方法。
    The notch of the first separator material does not cause a position shift of the region serving as the first separator for one element to which the positive electrode is bonded when the first separator material having the notch is conveyed, And when the area to be the first separator for one element to which the positive electrode is bonded is picked up, the uncut portion is cut in a mode,
    The notch of the second separator material does not cause a positional shift of the region serving as the second separator for one element to which the negative electrode is bonded when the second separator material with the notch is conveyed. And the manufacturing method of the electrode body characterized by performing in the aspect that the said uncut part is cut | disconnected when picking up the area | region used as the said 2nd separator for 1 element to which the said negative electrode adhere | attached.
  3.  前記正極の形状および前記負極の形状は、非矩形の形状であることを特徴とする請求項1または2に記載の電極体の製造方法。 3. The method of manufacturing an electrode body according to claim 1, wherein the shape of the positive electrode and the shape of the negative electrode are non-rectangular shapes.
PCT/JP2017/032345 2016-12-15 2017-09-07 Electrode body production method WO2018110001A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-243342 2016-12-15
JP2016243342A JP2020047359A (en) 2016-12-15 2016-12-15 Manufacturing method for electrode body

Publications (1)

Publication Number Publication Date
WO2018110001A1 true WO2018110001A1 (en) 2018-06-21

Family

ID=62558347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032345 WO2018110001A1 (en) 2016-12-15 2017-09-07 Electrode body production method

Country Status (2)

Country Link
JP (1) JP2020047359A (en)
WO (1) WO2018110001A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161287A (en) * 2019-03-26 2020-10-01 株式会社豊田自動織機 Electrode with separator manufacturing device, and electrode with separator manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192981A (en) * 2012-05-02 2012-10-11 Nippon Film Co Ltd Packaging structure of rolled bag body for municipality-designated garbage bag
JP2014118193A (en) * 2012-12-18 2014-06-30 Sekisui Giken:Kk Container connected body
JP2015191870A (en) * 2014-03-28 2015-11-02 日本電気株式会社 Method of manufacturing power storage device and electrode element manufacturing apparatus for the power storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192981A (en) * 2012-05-02 2012-10-11 Nippon Film Co Ltd Packaging structure of rolled bag body for municipality-designated garbage bag
JP2014118193A (en) * 2012-12-18 2014-06-30 Sekisui Giken:Kk Container connected body
JP2015191870A (en) * 2014-03-28 2015-11-02 日本電気株式会社 Method of manufacturing power storage device and electrode element manufacturing apparatus for the power storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161287A (en) * 2019-03-26 2020-10-01 株式会社豊田自動織機 Electrode with separator manufacturing device, and electrode with separator manufacturing method
JP7103291B2 (en) 2019-03-26 2022-07-20 株式会社豊田自動織機 Electrode manufacturing equipment with separator and electrode manufacturing method with separator

Also Published As

Publication number Publication date
JP2020047359A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6946295B2 (en) How to manufacture a secondary battery
JP6106913B2 (en) Method for manufacturing electrode assembly including separator cutting step
JP6354869B2 (en) Sheet laminating apparatus and sheet laminating method
KR101598682B1 (en) Electrode assembly and fabricating method of electrode assembly
KR101586121B1 (en) Lamination device including electrode guide
JP6275147B2 (en) Electrode assembly
WO2018116543A1 (en) Electrode laminate production apparatus
WO2019017074A1 (en) Electrode body manufacturing device
JP6264165B2 (en) Battery unit manufacturing method and battery unit
KR20210087475A (en) Method of manufacturing cathode device, method of manufacturing electrode assembly and battery
KR101807354B1 (en) Electrode assembly
US9160028B2 (en) Device and method for stacking units for secondary battery
JP6280550B2 (en) Electrode assembly and basic unit for the same
WO2018110001A1 (en) Electrode body production method
JP2012209054A (en) Electrode laminate of laminated battery and manufacturing method of electrode laminate
WO2018127994A1 (en) Method for manufacturing electrode body
JP6962163B2 (en) Laminated electrode body manufacturing equipment
JPWO2019188725A1 (en) Manufacturing equipment and manufacturing method for laminates for secondary batteries
JP2019135699A (en) Manufacturing method for battery
US20200052278A1 (en) Method for bonding separators, method for manufacturing electrochemical device, and electrochemical device
JP6136425B2 (en) Electrode laminate, manufacturing method and manufacturing apparatus
KR102080253B1 (en) Electrode assembly
JP2019102196A (en) Manufacturing method of battery
WO2020196113A1 (en) Method for manufacturing secondary battery stacked body
KR20180041529A (en) Electrode assembly and method of manumfacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP