WO2018109930A1 - Doherty amplifier - Google Patents

Doherty amplifier Download PDF

Info

Publication number
WO2018109930A1
WO2018109930A1 PCT/JP2016/087584 JP2016087584W WO2018109930A1 WO 2018109930 A1 WO2018109930 A1 WO 2018109930A1 JP 2016087584 W JP2016087584 W JP 2016087584W WO 2018109930 A1 WO2018109930 A1 WO 2018109930A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
circuit
transmission line
harmonic
amplifier
Prior art date
Application number
PCT/JP2016/087584
Other languages
French (fr)
Japanese (ja)
Inventor
末松 憲治
亀田 卓
高木 直
一真 寺嶋
藤井 憲一
坪内 和夫
Original Assignee
株式会社Wave Technology
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Wave Technology, 国立大学法人東北大学 filed Critical 株式会社Wave Technology
Priority to PCT/JP2016/087584 priority Critical patent/WO2018109930A1/en
Priority to JP2018556148A priority patent/JP6736024B2/en
Publication of WO2018109930A1 publication Critical patent/WO2018109930A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/534Transformer coupled at the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/537A transformer being used as coupling element between two amplifying stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/541Transformer coupled at the output of an amplifier

Definitions

  • the present invention relates to a Doherty amplifier that is used in a wireless communication transmitter and has high saturation output power performance and good power efficiency performance during linear operation.
  • a communication signal for high-speed wireless communication has a large PAPR (Peak to Average Power Ratio), and a power amplifier used in the transmitter operates with an average power smaller than a saturated output power. Therefore, in order to suppress the power consumption of the transmitter, a power amplifier with high efficiency in average power is required.
  • a Doherty amplifier proposed by Doherty is prominent (see Non-Patent Document 1, for example).
  • the output power of the power amplifier increases, the size of the transistor used for it increases, and the output impedance of the transistor decreases. Therefore, in a power amplifier having a large output power, the transistor matching circuit requires a high impedance conversion ratio, which causes problems such as narrow band performance and increased matching circuit loss. For this reason, a high-performance Doherty amplifier is desired that has less problems such as narrow band performance and increased matching circuit loss even during high power operation.
  • it is known to apply a balun to a power amplifier see, for example, Patent Document 1).
  • the Doherty amplifier is configured by combining a carrier amplifier 100 that operates in a class AB to a class B and a peak amplifier 101 that operates in a class C, thereby obtaining high performance even during linear operation with a low signal level.
  • a parallel load connection type shown in FIG. 18 and a series load connection type configured in combination with the baluns 102 and 103 shown in FIG. 19 or FIG. 20 have been proposed.
  • a divider 206 is provided on the input side, and ⁇ / 4 lines 20a and 20b and a phase adjustment line 105 are provided on the line.
  • the parallel load connection type configuration generally has a larger impedance conversion ratio when performing output matching of the carrier amplifier 100 and the peak amplifier 101 than the series load connection type configuration, resulting in the configuration of the output matching circuit.
  • problems such as narrow band performance and increased loss of the matching circuit.
  • a series load connection configuration in which the impedance conversion ratio of the matching circuit is smaller than this can be used.
  • Doherty proposed a series load connection type Doherty amplifier configured as shown in FIG.
  • the transistor of the peak amplifier 101 (at that time a vacuum tube) operates on the assumption that the output impedance during linear operation is short-circuited.
  • the transistor of the actual peak amplifier 101 does not short-circuit the output impedance during linear operation, but rather is open. Therefore, this problem can be solved by loading an impedance conversion circuit 104 that converts an open circuit into a short circuit on the output side of the peak amplifier 101 during linear operation as shown in FIG.
  • the phase adjustment line 105 is provided on the input side of the carrier amplifier 100 in accordance with the provision of the impedance conversion circuit 104.
  • the impedance conversion circuit 104 provided on the output side of the peak amplifier 101 is provided so that the impedance condition for expecting the output load side from the carrier amplifier 100 is optimal during linear operation and saturation operation. It is necessary to realize it. For this reason, it is not direct to realize the optimum load impedance condition for the carrier amplifier 100. As a result, there is a problem that it is difficult to obtain the optimum impedance condition.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a Doherty amplifier capable of realizing good power efficiency even during linear operation.
  • the present invention provides a Doherty amplifier that distributes an input signal to a first input signal and a second input signal having a phase difference from each other, a carrier amplifier that amplifies the first input signal, and a second input signal.
  • a peak amplifier whose output impedance is open at the time of a small signal operation which is a linear operation, an impedance conversion circuit connected to the output side of the carrier amplifier, and a first amplifier which is amplified by the carrier amplifier and output through the impedance conversion circuit
  • a synthesis circuit composed of a balun for synthesizing one output signal and a second output signal amplified and output by a peak amplifier, and the carrier amplifier is connected to one balanced terminal of the synthesis circuit via an impedance conversion circuit
  • the peak amplifier is connected to the other balanced terminal of the synthesis circuit. Output signal is output.
  • the present invention it is possible to provide a Doherty amplifier capable of realizing good power efficiency even during a linear operation, and thereby it is possible to reduce the power consumption of the wireless transmitter.
  • FIG. 1 is a circuit diagram showing a configuration of a Doherty amplifier according to Embodiment 1 of the present invention.
  • the Doherty amplifier includes a distribution circuit 202 distributes the input signal S1 to the first input signal S2 and the second input signal S3 having a proper phase difference theta d each other, a carrier amplifier 100 for amplifying the first input signal S2, The second input signal S3 is amplified, and a peak amplifier 101 whose output impedance is opened during the small signal operation, an impedance conversion circuit 201 connected to the output side of the carrier amplifier 100, and an impedance conversion amplified by the carrier amplifier 100.
  • the synthesis circuit 200 is configured to synthesize the first output signal S4 output via the circuit 201 and the second output signal S5 amplified and output by the peak amplifier 101.
  • FIG. 2 is a circuit diagram showing a detailed configuration of the synthesis circuit 200 according to the first embodiment.
  • the synthesis circuit 200 is configured using the first coupled transmission line 300 and the second coupled transmission line 310 having a length of 1 ⁇ 4 wavelength with respect to the fundamental frequency f 0 and having the same performance. It is a balun.
  • the first coupled transmission line 300 includes a first transmission line 301 and a second transmission line 302 that are arranged close to each other in parallel.
  • the first transmission line 301 has a first terminal p1 and a second terminal p2, and the second transmission line 302 faces the first terminal p1 and faces the fourth terminal p4 and the second terminal p2, and third.
  • a terminal p3 is provided.
  • the second coupled transmission line 310 includes a third transmission line 311 and a fourth transmission line 312 that are arranged close to each other in parallel.
  • the third transmission line 311 has a fifth terminal p5 and a sixth terminal p6, and the fourth transmission line 312 faces the fifth terminal p5 and faces the eighth terminal p8 and the sixth terminal p6.
  • a terminal p7 is provided.
  • the second terminal p2, the fifth terminal p5, and the sixth terminal p6 are short-circuited to the ground, and the fourth terminal p4 and the seventh terminal p7 are connected to each other.
  • the first terminal p1 forms an unbalanced terminal T1 with the ground, and the third terminal p3 and the eighth terminal p8 form balanced terminals T2 and T3 that are in opposite phases to each other.
  • An example of such a balun is disclosed in Patent Document 1.
  • the output side of the carrier amplifier 100 is connected to one balanced terminal T2 of the synthesis circuit 200 via the impedance conversion circuit 201, and the output side of the peak amplifier 101 is connected to the other balanced terminal T3 of the synthesis circuit 200. .
  • a combined output signal of the first output signal S4 and the second output signal S5 combined by the combining circuit 200 is output from the unbalanced terminal T1.
  • the even-mode characteristic impedance Z oe and the odd-mode characteristic impedance Z oo of the first coupled transmission line 300 and the second coupled transmission line 310 are the same as the output load connected to the unbalanced terminal T1.
  • the impedance Z s and the impedance Z L of the load connected to the balanced terminals T2 and T3 are designed in advance so as to satisfy the relational expression of the following expression (1).
  • the carrier amplifier 100 and the peak amplifier 101 operate in the same manner as a normal push-pull amplifier, and the balanced terminal T2 and the balanced terminal T3 operate as balanced terminals that operate in opposite phases.
  • the impedances Z 2 and Z 3 for which the combined circuit 200 is expected from the balanced terminal T2 and the balanced terminal T3 during the saturation operation are given by the following equation (2) at the time of matching.
  • the impedance Z 2 at the time of linear operation is given by the following equation (4) from the equations (1) to (3).
  • the amplifier in high efficiency as the value of the load impedance Z 1 looking into the load side from the transistor is increased, conversely, as the output power value of the load impedance Z 1 becomes small becomes high.
  • the load impedance Z 1 is increased during linear operation where high efficiency is desired, and the load impedance is controlled according to the power level so that the value of load impedance Z 1 is decreased during saturation operation where large output power is desired.
  • an impedance conversion circuit 201 is provided between the carrier amplifier 100 and the synthesis circuit 200.
  • Such impedance conversion can be realized by using a transmission line or a circuit in which an inductor L and a capacitor C are combined.
  • phase difference theta d between first input signal S2 and the second input signal S3 is provided at the fundamental frequency f 0 so as to satisfy the following equation (5).
  • FIG. 4 to 6 show various configuration examples of the distribution circuit 202.
  • FIG. The distribution circuit shown in FIG. 4 is configured by combining a balun 400 that performs antiphase distribution and a phase adjustment line 401.
  • the distribution circuit shown in FIG. 5 is configured by combining an in-phase distributor 402 such as a Wilson coupler and a phase adjustment line 403.
  • the distribution circuit shown in FIG. 6 is configured using a 90 ° hybrid circuit 404.
  • FIG. 7 shows the drain efficiency with respect to the back-off amount from the saturated output power of the Doherty amplifier according to the first embodiment of the present invention. For the above reasons, the efficiency is high even during linear operation as shown in FIG. Operates as a Doherty amplifier.
  • the series load connection type Doherty amplifier according to the first embodiment of the present invention shown in FIG. 1 differs from the conventional series load connection type Doherty amplifier shown in FIG.
  • the impedance conversion circuit 201 is provided on the output side of the carrier amplifier 100, the optimum impedance condition for expecting the load side from the carrier amplifier 100 during linear operation and saturation operation can be directly and easily controlled. Is possible.
  • the optimum load impedance condition for the linear operation and the saturation operation for the carrier amplifier is directly determined using the impedance conversion circuit provided on the output side of the carrier amplifier.
  • a Doherty amplifier that can be controlled. This makes it possible to easily realize the optimum load impedance condition corresponding to the operation level for the carrier amplifier.
  • FIG. FIG. 8 is a circuit diagram showing the configuration of the Doherty amplifier according to the second embodiment of the present invention.
  • the basic configuration is the same as that of the Doherty amplifier according to the first embodiment shown in FIG. It is. Therefore, the same reference numerals as those in the circuit diagram shown in FIG.
  • FIG. 9 is a circuit diagram showing a detailed configuration of the synthesis circuit 210 used in the second embodiment.
  • the combining circuit 210 shown in FIG. 9 is configured using a coupled transmission line 320 having a length of 1 ⁇ 4 wavelength with respect to the fundamental frequency f 0 and a transmission line 330 having a length of 1 ⁇ 4 wavelength.
  • the coupled transmission line 320 includes a first transmission line 321 and a second transmission line 322 that are arranged close to each other in parallel.
  • the first transmission line 321 has a first terminal p1 and a second terminal p2, and the second transmission line 322 is a fourth terminal p4 facing the first terminal p1 and a third terminal p3 facing the second terminal p2.
  • the transmission line 330 having a length of 1 ⁇ 4 wavelength has an eighth terminal p8 and a seventh terminal p7.
  • the synthesis circuit 210 is configured without using the second coupled transmission line 310 in the synthesis circuit 200 shown in FIG.
  • the second terminal p2 is shorted to ground.
  • the fourth terminal p4 and the seventh terminal p7 are connected to each other.
  • the first terminal p1 forms an unbalanced terminal T1 with the ground, and the third terminal p3 and the eighth terminal p8 form balanced terminals T2 and T3 that are in opposite phases to each other.
  • the balun used in the Doherty amplifier combining circuit 210 of the second embodiment shown in FIG. 9 has characteristics equivalent to the balun used in the Doherty amplifier combining circuit 200 of the first embodiment shown in FIG.
  • the Doherty amplifier according to the second embodiment operates in the same manner as the Doherty amplifier according to the first embodiment.
  • FIG. Figure 10 is a circuit diagram showing the configuration of a Doherty amplifier according to a third embodiment of the present invention, instead of the impedance conversion circuit 201 of FIG. 1 showing the first embodiment, the fundamental wave frequency f 0 1 / A quarter wavelength transmission line 203 having a length of 4 wavelengths is used.
  • the same reference numerals as those in the circuit diagrams of the Doherty amplifiers of Embodiments 1 and 2 indicate the same or corresponding parts, and the description thereof is omitted.
  • the synthesis circuit 200 may be configured using the synthesis circuit 210 shown in FIG. 9 as in the second embodiment.
  • FIG. FIG. 11 is a circuit diagram of the Doherty amplifier according to the fourth embodiment of the present invention
  • FIGS. 12 and 13 are circuit diagrams showing a detailed configuration of the synthesis circuit 220 used in the fourth embodiment.
  • the synthesis circuit 220 illustrated in FIG. 13 illustrates another example configured without using the second coupled transmission line 310 in FIG. 12. Note that the same reference numerals as those in the circuit diagrams of the Doherty amplifiers of Embodiments 1 to 3 indicate the same or corresponding parts, and a description thereof will be omitted.
  • the combining circuit 220 in FIG. 12 is secondary to the ninth terminal p9 between the fourth terminal p4 and the seventh terminal p7 connected to each other.
  • a second harmonic injection extraction circuit 340 having an injection extraction terminal T4 for injecting or extracting harmonics is provided.
  • the second-order harmonic injection extraction circuit 340 connects the transmission lines 341 and 342 having a quarter wavelength with respect to the fundamental frequency f 0 in series, and the second order is connected to the connection point connected in series.
  • An injection extraction terminal T4 for injecting or extracting harmonics may be provided, and the other end of the transmission line 341 may be an open end.
  • the combining circuit 220 in FIG. 13 is secondary to the ninth terminal p9 between the fourth terminal p4 and the seventh terminal p7 connected to each other.
  • a second harmonic injection extraction circuit 340 having an injection extraction terminal T4 for injecting or extracting harmonics is provided, and has characteristics equivalent to those of the synthesis circuit 220 of FIG.
  • the same effects as in the first to third embodiments can be obtained.
  • FIG. FIG. 14 is a circuit diagram showing a configuration of the Doherty amplifier according to the fifth embodiment of the present invention
  • FIG. 15 is a circuit diagram showing a detailed configuration of the distribution circuit 204 used in the fifth embodiment.
  • the same reference numerals as those in the circuit diagrams of the Doherty amplifiers of Embodiments 1 to 4 indicate the same or corresponding parts, and the description thereof is omitted.
  • the synthesis circuit 200 may be configured using the synthesis circuit 210 as in the second embodiment.
  • the distribution circuit 204 includes a balun 400, a second harmonic injection extraction circuit 405 having an injection extraction terminal T5 for injecting or extracting the second harmonic, and a phase adjustment line 401.
  • the second harmonic injection extraction circuit 405 enables the injection extraction of the second harmonic without affecting the fundamental wave. As a result, the optimum circuit condition for the second harmonic frequency can be easily obtained. Can be realized.
  • the same effects as in the first to third embodiments can be obtained.
  • FIG. FIG. 16 is a circuit diagram of a Doherty amplifier according to the sixth embodiment of the present invention. Note that the same reference numerals as those in the circuit diagrams of the Doherty amplifiers of Embodiments 1 to 5 denote the same or corresponding parts, and a description thereof will be omitted. Further, the synthesis circuit 220 may be configured using either the synthesis circuit 220 shown in FIG. 12 or the synthesis circuit 220 shown in FIG. 13 as in the fourth embodiment.
  • the distribution circuit 204 includes a balun 400 and a second harmonic injection extraction circuit 405 having an injection extraction terminal T5 for injecting or extracting the second harmonic, and a phase adjustment line. 401.
  • the second harmonic injection extraction circuit 405 enables the injection extraction of the second harmonic without affecting the fundamental wave. As a result, the optimum circuit condition for the second harmonic frequency can be easily obtained. Can be realized.
  • the same effects as in the first to fifth embodiments can be obtained.
  • FIG. 17 is a circuit diagram showing a configuration of a Doherty amplifier according to the seventh embodiment of the present invention.
  • the combining circuit 220 shown in Embodiment 4 is used as the combining circuit, and the distribution circuit 204 shown in Embodiment 5 is used as the distribution circuit.
  • the combining circuit 220 may be configured using either the combining circuit 220 shown in FIG. 12 or the combining circuit 220 shown in FIG. 13 as in the fourth embodiment.
  • the amplitude and phase of the second harmonic are adjusted between the injection extraction terminal T4 for injecting or extracting the second harmonic of the synthesis circuit 220 and the injection extraction terminal T5 for injecting or extracting the second harmonic of the distribution circuit 204.
  • the second harmonic amplitude / phase adjustment circuit 205 is loaded.
  • the secondary harmonic generated at the output side of the Doherty amplifier is fed back to the input side with an appropriate amplitude and phase, or the secondary harmonic generated at the input side of the Doherty amplifier. It is possible to feed forward the second harmonic that injects the harmonic with an appropriate amplitude and phase to the output side, thereby enabling higher efficiency and lower distortion of the Doherty amplifier.
  • the same effects as in the first to sixth embodiments can be obtained.
  • the present invention can be freely combined with each other within the scope of the present invention, or can be appropriately modified or omitted.

Abstract

[Problem] To obtain a Doherty amplifier having a high saturation output power performance and further having a good power-efficiency performance during a linear operation. [Solution] In a Doherty amplifier of series load connection type configured by use of a balun, a carrier amplifier 100 is connected to one balanced terminal T2 of a combination circuit 200 via an impedance conversion circuit 201, a peak amplifier 101 is connected to the other balanced terminal T3 of the combination circuit 200, and a combined output signal is outputted from an unbalanced terminal T1 of the combination circuit 200.

Description

ドハティ増幅器Doherty amplifier
 本発明は、無線通信の送信機に用いられ、高い飽和出力電力性能を有するとともに、線形動作時に良好な電力効率性能を有するドハティ増幅器に関する。 The present invention relates to a Doherty amplifier that is used in a wireless communication transmitter and has high saturation output power performance and good power efficiency performance during linear operation.
 高速な無線通信の通信信号は、PAPR(Peak to Average Power Ratio : ピーク対平均電力比)が大きく、送信機に用いる電力増幅器は飽和出力電力より小さい平均電力で動作する。したがって、送信機の消費電力を抑えるためには平均電力における効率が高い電力増幅器が必要である。そのような電力増幅器としてドハティが提案したドハティ増幅器が有力である(例えば、非特許文献1参照)。
 電力増幅器の出力電力が大きくなると、それに用いるトランジスタのサイズが大きくなり、トランジスタの出力インピーダンスが小さくなる。したがって、出力電力が大きな電力増幅器では、トランジスタの整合回路は高いインピーダンス変換比が必要となるため、狭帯域性能となることや整合回路の損失が増大するなどの課題がある。このため、大電力動作時にも狭帯域性能となることや整合回路の損失が増大するなどの問題が小さい、高性能なドハティ増幅器が望まれる。
 また、電力増幅器にバランを適用することが知られている(例えば、特許文献1参照)。
A communication signal for high-speed wireless communication has a large PAPR (Peak to Average Power Ratio), and a power amplifier used in the transmitter operates with an average power smaller than a saturated output power. Therefore, in order to suppress the power consumption of the transmitter, a power amplifier with high efficiency in average power is required. As such a power amplifier, a Doherty amplifier proposed by Doherty is prominent (see Non-Patent Document 1, for example).
When the output power of the power amplifier increases, the size of the transistor used for it increases, and the output impedance of the transistor decreases. Therefore, in a power amplifier having a large output power, the transistor matching circuit requires a high impedance conversion ratio, which causes problems such as narrow band performance and increased matching circuit loss. For this reason, a high-performance Doherty amplifier is desired that has less problems such as narrow band performance and increased matching circuit loss even during high power operation.
In addition, it is known to apply a balun to a power amplifier (see, for example, Patent Document 1).
特許第5829885号公報Japanese Patent No. 5829985
 図18~図20は、ドハティが提案した従来のドハティ増幅器の回路図を示す(例えば、非特許文献1参照)。ドハティ増幅器は、AB~B級動作するキャリア増幅器100とC級動作するピーク増幅器101とを組み合わせて構成することにより、信号レベルの低い線形動作時にも高効率な性能を得るものである。このドハティ増幅器には、図18に示す並列負荷接続形と図19または図20に示すバラン102、103と組み合わせて構成される直列負荷接続形の2つの構成が提案されている。なお、図18に示すドハティ増幅器の回路においては、入力側に分配器206が設けられており、また線路には、λ/4線路20a、20b並びに位相調整線路105が設けられている。 18 to 20 show circuit diagrams of conventional Doherty amplifiers proposed by Doherty (see Non-Patent Document 1, for example). The Doherty amplifier is configured by combining a carrier amplifier 100 that operates in a class AB to a class B and a peak amplifier 101 that operates in a class C, thereby obtaining high performance even during linear operation with a low signal level. For this Doherty amplifier, two configurations of a parallel load connection type shown in FIG. 18 and a series load connection type configured in combination with the baluns 102 and 103 shown in FIG. 19 or FIG. 20 have been proposed. In the Doherty amplifier circuit shown in FIG. 18, a divider 206 is provided on the input side, and λ / 4 lines 20a and 20b and a phase adjustment line 105 are provided on the line.
 ここで,並列負荷接続形の構成は,一般に,直列負荷接続形の構成に比べ,キャリア増幅器100やピーク増幅器101の出力整合を行う際のインピーダンス変換比が大きくなり、その結果出力整合回路の構成が難しくなり、狭帯域性能となることや整合回路の損失が増大するなどの課題がある。 Here, the parallel load connection type configuration generally has a larger impedance conversion ratio when performing output matching of the carrier amplifier 100 and the peak amplifier 101 than the series load connection type configuration, resulting in the configuration of the output matching circuit. However, there are problems such as narrow band performance and increased loss of the matching circuit.
 並列負荷接続形の構成におけるこの課題を解決するために、整合回路のインピーダンス変換比がこれに比べて小さくなる直列負荷接続形の構成を用いることができる。ドハティは初め、図19に示すように構成された直列負荷接続形のドハティ増幅器を提案した。図19の直列負荷接続形の回路構成では、ピーク増幅器101のトランジスタ(当時は真空管)は、線形動作時の出力インピーダンスが短絡となることを前提として動作するものである。しかしながら、実際のピーク増幅器101のトランジスタは、線形動作時の出力インピーダンスが短絡とならず、むしろ開放となる。そこで、図20のように線形動作時のピーク増幅器101の出力側に開放を短絡に変換するインピーダンス変換回路104を装荷する構成とすることで、この問題を解決できるとしている。なお、図20の構成では、インピーダンス変換回路104を設けたことに伴い,キャリア増幅器100の入力側に位相調整線路105が設けられている。 In order to solve this problem in the parallel load connection configuration, a series load connection configuration in which the impedance conversion ratio of the matching circuit is smaller than this can be used. First, Doherty proposed a series load connection type Doherty amplifier configured as shown in FIG. In the series load connection type circuit configuration of FIG. 19, the transistor of the peak amplifier 101 (at that time a vacuum tube) operates on the assumption that the output impedance during linear operation is short-circuited. However, the transistor of the actual peak amplifier 101 does not short-circuit the output impedance during linear operation, but rather is open. Therefore, this problem can be solved by loading an impedance conversion circuit 104 that converts an open circuit into a short circuit on the output side of the peak amplifier 101 during linear operation as shown in FIG. In the configuration of FIG. 20, the phase adjustment line 105 is provided on the input side of the carrier amplifier 100 in accordance with the provision of the impedance conversion circuit 104.
 しかし,図20の構成では,キャリア増幅器100から出力負荷側を見込むインピーダンス条件が線形動作時と飽和動作時に最適となるようにするのに、ピーク増幅器101の出力側に設けたインピーダンス変換回路104を用いて実現する必要がある。このため、キャリア増幅器100に対する最適な負荷インピーダンス条件を実現するのに直接的でなく、この結果、最適なインピーダンス条件を得ることが難しくなる問題がある。 However, in the configuration of FIG. 20, the impedance conversion circuit 104 provided on the output side of the peak amplifier 101 is provided so that the impedance condition for expecting the output load side from the carrier amplifier 100 is optimal during linear operation and saturation operation. It is necessary to realize it. For this reason, it is not direct to realize the optimum load impedance condition for the carrier amplifier 100. As a result, there is a problem that it is difficult to obtain the optimum impedance condition.
 本発明は上述のような課題を解決するためになされたもので、線形動作時にも良好な電力効率を実現できるドハティ増幅器を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a Doherty amplifier capable of realizing good power efficiency even during linear operation.
 本発明は、ドハティ増幅器において、入力信号を互いに位相差を有する第1入力信号および第2入力信号に分配する分配回路と、第1入力信号を増幅するキャリア増幅器と、第2入力信号を増幅するとともに線形動作となる小信号動作時においては出力インピーダンスが開放となるピーク増幅器と、キャリア増幅器の出力側に接続されたインピーダンス変換回路と、キャリア増幅器で増幅されインピーダンス変換回路を介して出力される第1出力信号とピーク増幅器で増幅され出力される第2出力信号とを合成する、バランで構成される合成回路とを備え、キャリア増幅器はインピーダンス変換回路を介して合成回路の一方の平衡端子に接続され、ピーク増幅器は合成回路の他方の平衡端子に接続されており、合成回路の不平衡端子から合成された出力信号が出力される。 The present invention provides a Doherty amplifier that distributes an input signal to a first input signal and a second input signal having a phase difference from each other, a carrier amplifier that amplifies the first input signal, and a second input signal. In addition, a peak amplifier whose output impedance is open at the time of a small signal operation which is a linear operation, an impedance conversion circuit connected to the output side of the carrier amplifier, and a first amplifier which is amplified by the carrier amplifier and output through the impedance conversion circuit A synthesis circuit composed of a balun for synthesizing one output signal and a second output signal amplified and output by a peak amplifier, and the carrier amplifier is connected to one balanced terminal of the synthesis circuit via an impedance conversion circuit The peak amplifier is connected to the other balanced terminal of the synthesis circuit. Output signal is output.
 本発明によれば、線形動作時にも良好な電力効率を実現できるドハティ増幅器を提供でき、これにより無線送信機の低消費電力化が可能となる。 According to the present invention, it is possible to provide a Doherty amplifier capable of realizing good power efficiency even during a linear operation, and thereby it is possible to reduce the power consumption of the wireless transmitter.
本発明の実施の形態1におけるドハティ増幅器を示す回路図である。It is a circuit diagram which shows the Doherty amplifier in Embodiment 1 of this invention. 本発明の実施の形態1におけるドハティ増幅器の合成回路を示す回路図である。It is a circuit diagram which shows the synthetic | combination circuit of the Doherty amplifier in Embodiment 1 of this invention. 本発明の実施の形態1におけるドハティ増幅器の合成回路の動作を説明するための回路図である。It is a circuit diagram for demonstrating operation | movement of the synthetic | combination circuit of the Doherty amplifier in Embodiment 1 of this invention. 本発明の実施の形態1におけるドハティ増幅器に用いる分配回路を示す回路図である。It is a circuit diagram which shows the distribution circuit used for the Doherty amplifier in Embodiment 1 of this invention. 本発明の実施の形態1におけるドハティ増幅器に用いる分配回路の他の例を示す回路図である。It is a circuit diagram which shows the other example of the distribution circuit used for the Doherty amplifier in Embodiment 1 of this invention. 本発明の実施の形態1におけるドハティ増幅器に用いる分配回路の他の例を示す回路図である。It is a circuit diagram which shows the other example of the distribution circuit used for the Doherty amplifier in Embodiment 1 of this invention. 本発明の実施の形態1におけるドハティ増幅器の飽和出力電圧からのバックオフ量に対するドレイン効率特性示す図である。It is a figure which shows the drain efficiency characteristic with respect to the back-off amount from the saturation output voltage of the Doherty amplifier in Embodiment 1 of this invention. 本発明の実施の形態2におけるドハティ増幅器を示す回路図である。It is a circuit diagram which shows the Doherty amplifier in Embodiment 2 of this invention. 本発明の実施の形態2におけるドハティ増幅器の合成回路を示す回路図である。It is a circuit diagram which shows the synthetic | combination circuit of the Doherty amplifier in Embodiment 2 of this invention. 本発明の実施の形態3におけるドハティ増幅器を示す回路図である。It is a circuit diagram which shows the Doherty amplifier in Embodiment 3 of this invention. 本発明の実施の形態4におけるドハティ増幅器を示す回路図である。It is a circuit diagram which shows the Doherty amplifier in Embodiment 4 of this invention. 本発明の実施の形態4におけるドハティ増幅器の合成回路を示す回路図である。It is a circuit diagram which shows the synthetic | combination circuit of the Doherty amplifier in Embodiment 4 of this invention. 本発明の実施の形態4におけるドハティ増幅器に用いる合成回路の他の例を示す回路図である。It is a circuit diagram which shows the other example of the synthetic | combination circuit used for the Doherty amplifier in Embodiment 4 of this invention. 本発明の実施の形態5におけるドハティ増幅器を示す回路図である。It is a circuit diagram which shows the Doherty amplifier in Embodiment 5 of this invention. 本発明の実施の形態5におけるドハティ増幅器に用いる分配回路を示す回路図である。It is a circuit diagram which shows the distribution circuit used for the Doherty amplifier in Embodiment 5 of this invention. 本発明の実施の形態6におけるドハティ増幅器を示す回路図である。It is a circuit diagram which shows the Doherty amplifier in Embodiment 6 of this invention. 本発明の実施の形態7におけるドハティ増幅器を示す回路図である。It is a circuit diagram which shows the Doherty amplifier in Embodiment 7 of this invention. 従来のドハティ増幅器を示す回路図である。It is a circuit diagram which shows the conventional Doherty amplifier. 従来のドハティ増幅器の他の例を示す回路図である。It is a circuit diagram which shows the other example of the conventional Doherty amplifier. 従来のドハティ増幅器の他の例を示す回路図である。It is a circuit diagram which shows the other example of the conventional Doherty amplifier.
 以下、本発明の実施の形態につき、図面を参照して詳述する。なお、各図中、同一符号は、同一または相当部分を示すものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol shall show the same or an equivalent part.
実施の形態1.
 図1は、本発明の実施の形態1におけるドハティ増幅器の構成を示す回路図である。このドハティ増幅器は、入力信号S1を互いに適切な位相差θを有する第1入力信号S2および第2入力信号S3に分配する分配回路202と、第1入力信号S2を増幅するキャリア増幅器100と、第2入力信号S3を増幅するとともに小信号動作時においては出力インピーダンスが開放となるピーク増幅器101と、キャリア増幅器100の出力側に接続されるインピーダンス変換回路201と、キャリア増幅器100で増幅されインピーダンス変換回路201を介して出力される第1出力信号S4とピーク増幅器101で増幅され出力される第2出力信号S5とを合成する合成回路200で構成されている。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing a configuration of a Doherty amplifier according to Embodiment 1 of the present invention. The Doherty amplifier includes a distribution circuit 202 distributes the input signal S1 to the first input signal S2 and the second input signal S3 having a proper phase difference theta d each other, a carrier amplifier 100 for amplifying the first input signal S2, The second input signal S3 is amplified, and a peak amplifier 101 whose output impedance is opened during the small signal operation, an impedance conversion circuit 201 connected to the output side of the carrier amplifier 100, and an impedance conversion amplified by the carrier amplifier 100. The synthesis circuit 200 is configured to synthesize the first output signal S4 output via the circuit 201 and the second output signal S5 amplified and output by the peak amplifier 101.
 図2は実施の形態1の合成回路200の詳細構成を示す回路図である。この合成回路200は、基本波周波数fに対して1/4波長の長さを有し、性能が同等である、第1結合伝送線路300および第2結合伝送線路310を用いて構成されたバランである。第1結合伝送線路300は、互いに平行に近接して配置された第1伝送線路301および第2伝送線路302で構成されている。第1伝送線路301は、第1端子p1および第2端子p2を有し、第2伝送線路302は、第1端子p1に対向して第4端子p4および第2端子p2に対向して第3端子p3を有している。第2結合伝送線路310は、互いに平行に近接して配置された第3伝送線路311および第4伝送線路312で構成されている。第3伝送線路311は、第5端子p5および第6端子p6を有し、第4伝送線路312は、第5端子p5に対向して第8端子p8および第6端子p6に対向して第7端子p7を有している。第2端子p2と第5端子p5と第6端子p6はグランドに短絡され、第4端子p4と第7端子p7は互いに接続されている。第1端子p1はグランドとの間に不平衡端子T1を成し、第3端子p3と第8端子p8はそれぞれ、互いに逆相となる平衡端子T2、T3を成している。このようなバランに相当するものとしては、例えば特許文献1記載のものがある。 FIG. 2 is a circuit diagram showing a detailed configuration of the synthesis circuit 200 according to the first embodiment. The synthesis circuit 200 is configured using the first coupled transmission line 300 and the second coupled transmission line 310 having a length of ¼ wavelength with respect to the fundamental frequency f 0 and having the same performance. It is a balun. The first coupled transmission line 300 includes a first transmission line 301 and a second transmission line 302 that are arranged close to each other in parallel. The first transmission line 301 has a first terminal p1 and a second terminal p2, and the second transmission line 302 faces the first terminal p1 and faces the fourth terminal p4 and the second terminal p2, and third. A terminal p3 is provided. The second coupled transmission line 310 includes a third transmission line 311 and a fourth transmission line 312 that are arranged close to each other in parallel. The third transmission line 311 has a fifth terminal p5 and a sixth terminal p6, and the fourth transmission line 312 faces the fifth terminal p5 and faces the eighth terminal p8 and the sixth terminal p6. A terminal p7 is provided. The second terminal p2, the fifth terminal p5, and the sixth terminal p6 are short-circuited to the ground, and the fourth terminal p4 and the seventh terminal p7 are connected to each other. The first terminal p1 forms an unbalanced terminal T1 with the ground, and the third terminal p3 and the eighth terminal p8 form balanced terminals T2 and T3 that are in opposite phases to each other. An example of such a balun is disclosed in Patent Document 1.
 キャリア増幅器100の出力側はインピーダンス変換回路201を介して合成回路200の一方の平衡端子T2に接続され、ピーク増幅器101の出力側は合成回路200の他の一方の平衡端子T3に接続されている。合成回路200で合成された第1出力信号S4と第2出力信号S5の合成出力信号は不平衡端子T1から出力される。 The output side of the carrier amplifier 100 is connected to one balanced terminal T2 of the synthesis circuit 200 via the impedance conversion circuit 201, and the output side of the peak amplifier 101 is connected to the other balanced terminal T3 of the synthesis circuit 200. . A combined output signal of the first output signal S4 and the second output signal S5 combined by the combining circuit 200 is output from the unbalanced terminal T1.
 次に動作を説明する。
 図2に示した合成回路200は、第1結合伝送線路300および第2結合伝送線路310の偶モード特性インピーダンスZoeおよび奇モード特性インピーダンスZooは、不平衡端子T1に接続される出力負荷のインピーダンスZならびに、平衡端子T2およびT3に接続される負荷のインピーダンスZに対して次式(1)の関係式を満足するようにあらかじめ設計されている。
 なお、以下では、説明をわかりやすくするため、負荷のインピーダンスZ、Zは実数であるとし、さらに、Z=Rであるとする。
Next, the operation will be described.
In the synthesis circuit 200 shown in FIG. 2, the even-mode characteristic impedance Z oe and the odd-mode characteristic impedance Z oo of the first coupled transmission line 300 and the second coupled transmission line 310 are the same as the output load connected to the unbalanced terminal T1. The impedance Z s and the impedance Z L of the load connected to the balanced terminals T2 and T3 are designed in advance so as to satisfy the relational expression of the following expression (1).
In the following description, it is assumed that the load impedances Z s and Z L are real numbers, and further, Z L = R for easy understanding.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 飽和動作(大信号動作)時には、キャリア増幅器100とピーク増幅器101は通常のプッシュプル増幅器と同様の動作をし、平衡端子T2と平衡端子T3は互いに逆相で動作する平衡端子として動作する。この結果、飽和動作時に平衡端子T2と平衡端子T3から合成回路200を見込んだインピーダンスZ、Zは、整合時に次式(2)で与えられる。 During the saturation operation (large signal operation), the carrier amplifier 100 and the peak amplifier 101 operate in the same manner as a normal push-pull amplifier, and the balanced terminal T2 and the balanced terminal T3 operate as balanced terminals that operate in opposite phases. As a result, the impedances Z 2 and Z 3 for which the combined circuit 200 is expected from the balanced terminal T2 and the balanced terminal T3 during the saturation operation are given by the following equation (2) at the time of matching.
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
 次に、図3のように一方の平衡端子T3を開放とした場合(これは、ピーク増幅器101の出力インピーダンスZoutが線形動作となる小信号動作時に開放となることに対応する)、他の一方の平衡端子T2から合成回路200を見込んだインピーダンスZに対して次式(3)の関係式が成り立つ。 Then, when the open one balanced terminal T3 as shown in FIG. 3 (this corresponds to the output impedance Z out of the peak amplifier 101 is opened to the small signal operation as a linear operation), the other the following relational expression (3) holds from one balanced terminal T2 with respect to the impedance Z 2 in anticipation of the combining circuit 200.
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 したがって、線形動作(小信号動作)時のインピーダンスZは、式(1)~式(3)より、次式(4)で与えられる。 Therefore, the impedance Z 2 at the time of linear operation (small signal operation) is given by the following equation (4) from the equations (1) to (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 以上より、平衡端子T3を開放として、平衡端子T2から合成回路200を見込んだインピーダンスZは、平衡端子T2と平衡端子T3が互いに逆相で動作する平衡端子として動作する場合の、平衡端子T2から合成回路200を見込んだインピーダンスZの1/2倍となる。したがって、図1に示した本発明のドハティ増幅器は、合成回路200のバランを用いることによって、ピーク増幅器101の出力インピーダンスZoutが開放となる線形動作時には、キャリア増幅器100側から合成回路200側を見込んだインピーダンスZはZ=R/2となり、キャリア増幅器100とピーク増幅器101とが平衡動作する飽和動作時には、インピーダンスZ、Z=Z=Rとなる。 From the above, as an open balanced terminal T3, the impedance Z 2 in anticipation of the combining circuit 200 from the balanced terminal T2, when operating as a balanced terminal balanced terminal T2 and the balanced terminal T3 is operated in opposite phases, balanced terminal T2 It becomes 1/2 times the impedance Z 2 in anticipation of the combining circuit 200 from. Therefore, the Doherty amplifier of the present invention shown in FIG. 1 uses the balun of the synthesis circuit 200 to change the synthesis circuit 200 side from the carrier amplifier 100 side during linear operation in which the output impedance Zout of the peak amplifier 101 is open. I expected but the impedance Z 2 is Z 2 = R / 2, and the at the time of saturation operation the carrier amplifier 100 and peak amplifier 101 operates equilibrium impedance Z 2, Z 3 becomes Z 2 = Z 3 = R.
 一般に、増幅器ではトランジスタから負荷側を見込む負荷インピーダンスZの値が大きくなるほど効率は高くなり、逆に、負荷インピーダンスZの値が小さくなるほど出力電力は高くなる。このため、高い効率が望まれる線形動作時には負荷インピーダンスZの値が大きくなり、大きな出力電力が望まれる飽和動作時には負荷インピーダンスZの値が小さくなるように電力レベルに応じて負荷インピーダンスを制御する必要がある。このようなインピーダンス条件を実現するため、キャリア増幅器100と合成回路200の間にインピーダンス変換回路201が設けられる。 In general, the amplifier in high efficiency as the value of the load impedance Z 1 looking into the load side from the transistor is increased, conversely, as the output power value of the load impedance Z 1 becomes small becomes high. For this reason, the load impedance Z 1 is increased during linear operation where high efficiency is desired, and the load impedance is controlled according to the power level so that the value of load impedance Z 1 is decreased during saturation operation where large output power is desired. There is a need to. In order to realize such an impedance condition, an impedance conversion circuit 201 is provided between the carrier amplifier 100 and the synthesis circuit 200.
 ここでは、インピーダンス変換回路201により、キャリア増幅器100から負荷側を見込む負荷インピーダンスZが、線形動作時にはZ=2Rに、さらに、飽和動作時にはZ=Rにインピーダンス変換される。このようなインピーダンス変換は伝送線路やインダクタLとキャパシタCを組み合わせた回路を用いることで実現可能である。 Here, the impedance conversion circuit 201, a load impedance Z 1 of the carrier amplifier 100 allow for load side, at the time of linear operation to Z 1 = 2R, furthermore, at the time of saturation operation is impedance converted into Z 1 = R. Such impedance conversion can be realized by using a transmission line or a circuit in which an inductor L and a capacitor C are combined.
 なお、インピーダンス変換回路201による位相遅延θを含んで、第1出力信号S4と第2出力信号S5とが平衡端子T2と平衡端子T3で逆位相となるようにするため、分配回路202からの第1入力信号S2と第2入力信号S3との間の位相差θは基本波周波数fにおいて次式(5)を満足するように与えられる。 In addition, in order to make the first output signal S4 and the second output signal S5 have opposite phases at the balanced terminal T2 and the balanced terminal T3, including the phase delay θ t by the impedance conversion circuit 201, phase difference theta d between first input signal S2 and the second input signal S3 is provided at the fundamental frequency f 0 so as to satisfy the following equation (5).
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
 図4~図6に分配回路202の種々の構成例を示している。図4に示す分配回路は、逆相分配するバラン400と位相調整線路401とを組み合わせて構成するものである。図5に示す分配回路は、ウイルソンカプラなどの同相分配器402と位相調整線路403とを組み合わせて構成するものである。図6に示す分配回路は、90°ハイブリッド回路404を用いて構成するものである。 4 to 6 show various configuration examples of the distribution circuit 202. FIG. The distribution circuit shown in FIG. 4 is configured by combining a balun 400 that performs antiphase distribution and a phase adjustment line 401. The distribution circuit shown in FIG. 5 is configured by combining an in-phase distributor 402 such as a Wilson coupler and a phase adjustment line 403. The distribution circuit shown in FIG. 6 is configured using a 90 ° hybrid circuit 404.
 一方、キャリア増幅器100とピーク増幅器101の最大電圧振幅をVmaxとすると、飽和動作時のキャリア増幅器100とピーク増幅器101の出力電力はそれぞれ、Vmax /Rとなり、合成回路200で合成された最大出力電力はPsat=Vmax /R+Vmax /R=2Vmax /Rとなる。一方、キャリア増幅器100のみが動作している線形動作時の出力電力(出力電力の最大値)はPout=Vmax /(2R)となり、飽和動作時の出力電力Psatの1/4倍(-6dB)となる。 On the other hand, when the maximum voltage amplitude of the carrier amplifier 100 and peak amplifier 101 and V max, respectively the output power of the carrier amplifier 100 and peak amplifier 101 at saturation operation, V max 2 / R, and the synthesized in the synthesizing circuit 200 The maximum output power is P sat = V max 2 / R + V max 2 / R = 2 V max 2 / R. On the other hand, the output power (maximum value of output power) at the time of linear operation in which only the carrier amplifier 100 is operating is P out = V max 2 / (2R), which is ¼ times the output power P sat at the time of saturation operation. (−6 dB).
 図7は本発明の実施の形態1によるドハティ増幅器の飽和出力電力からのバックオフ量に対するドレイン効率を示しており、以上の理由により、図7のように線形動作時にも高効率な性能となるドハティ増幅器として動作する。 FIG. 7 shows the drain efficiency with respect to the back-off amount from the saturated output power of the Doherty amplifier according to the first embodiment of the present invention. For the above reasons, the efficiency is high even during linear operation as shown in FIG. Operates as a Doherty amplifier.
 以上から、図1に示す本発明の実施の形態1の直列負荷接続形のドハティ増幅器では、図20に示す従来の直列負荷接続形のドハティ増幅器と異なり、線形動作時に合成回路200からピーク増幅器101側を見込んだインピーダンスは開放(Zout=∞)であるが、これを短絡に変換させるインピーダンス変換回路はピーク増幅器101側には不要である。一方、キャリア増幅器100の出力側にインピーダンス変換回路201を設ける構成であるので、線形動作時と飽和動作時のキャリア増幅器100から負荷側を見込む最適なインピーダンス条件を直接的に容易に制御することが可能である。 From the above, the series load connection type Doherty amplifier according to the first embodiment of the present invention shown in FIG. 1 differs from the conventional series load connection type Doherty amplifier shown in FIG. The impedance in consideration of the side is open (Z out = ∞), but an impedance conversion circuit for converting this into a short circuit is not necessary on the peak amplifier 101 side. On the other hand, since the impedance conversion circuit 201 is provided on the output side of the carrier amplifier 100, the optimum impedance condition for expecting the load side from the carrier amplifier 100 during linear operation and saturation operation can be directly and easily controlled. Is possible.
 このように、本発明は、直列負荷接続形のドハティ増幅器において、キャリア増幅器の出力側に設けたインピーダンス変換回路を用いてキャリア増幅器に対する線形動作時と飽和動作時の最適な負荷インピーダンス条件を直接的に制御することを可能とするドハティ増幅器を提供する。これによりキャリア増幅器に対する動作レベルに応じた最適な負荷インピーダンス条件を容易に実現することが可能となる。 As described above, according to the present invention, in the Doherty amplifier of the series load connection type, the optimum load impedance condition for the linear operation and the saturation operation for the carrier amplifier is directly determined using the impedance conversion circuit provided on the output side of the carrier amplifier. Provided is a Doherty amplifier that can be controlled. This makes it possible to easily realize the optimum load impedance condition corresponding to the operation level for the carrier amplifier.
実施の形態2.
 図8は、本発明の実施の形態2におけるドハティ増幅器の構成を示す回路図であり、基本的構成は、合成回路210の一部分の構成以外は図1に示す実施の形態1のドハティ増幅器と同じである。よって、図1に示す回路図における符号と同じ符号は同一もしくは相当部分を示しており、説明を省略する。図9はこの実施の形態2に用いる合成回路210の詳細構成を示す回路図である。
Embodiment 2. FIG.
FIG. 8 is a circuit diagram showing the configuration of the Doherty amplifier according to the second embodiment of the present invention. The basic configuration is the same as that of the Doherty amplifier according to the first embodiment shown in FIG. It is. Therefore, the same reference numerals as those in the circuit diagram shown in FIG. FIG. 9 is a circuit diagram showing a detailed configuration of the synthesis circuit 210 used in the second embodiment.
 図9に示された合成回路210は、基本波周波数fに対して1/4波長の長さを有する結合伝送線路320と1/4波長の長さを有する伝送線路330とを用いて構成されたバランである。結合伝送線路320は、互いに平行に近接して配置された、第1伝送線路321および第2伝送線路322で構成されている。第1伝送線路321は、第1端子p1および第2端子p2を有し、第2伝送線路322は、第1端子p1に対向する第4端子p4および第2端子p2に対向する第3端子p3を有している。1/4波長の長さを有する伝送線路330は、第8端子p8および第7端子p7を有している。即ち、この合成回路210は、図2に示した合成回路200における第2結合伝送線路310を用いないで構成したものである。第2端子p2はグランドに短絡されている。第4端子p4と第7端子p7は互いに接続されている。第1端子p1はグランドとの間に不平衡端子T1を成し、第3端子p3と第8端子p8はそれぞれ、互いに逆相となる平衡端子T2、T3を成している。 The combining circuit 210 shown in FIG. 9 is configured using a coupled transmission line 320 having a length of ¼ wavelength with respect to the fundamental frequency f 0 and a transmission line 330 having a length of ¼ wavelength. Balun. The coupled transmission line 320 includes a first transmission line 321 and a second transmission line 322 that are arranged close to each other in parallel. The first transmission line 321 has a first terminal p1 and a second terminal p2, and the second transmission line 322 is a fourth terminal p4 facing the first terminal p1 and a third terminal p3 facing the second terminal p2. have. The transmission line 330 having a length of ¼ wavelength has an eighth terminal p8 and a seventh terminal p7. That is, the synthesis circuit 210 is configured without using the second coupled transmission line 310 in the synthesis circuit 200 shown in FIG. The second terminal p2 is shorted to ground. The fourth terminal p4 and the seventh terminal p7 are connected to each other. The first terminal p1 forms an unbalanced terminal T1 with the ground, and the third terminal p3 and the eighth terminal p8 form balanced terminals T2 and T3 that are in opposite phases to each other.
 図9に示す実施の形態2のドハティ増幅器の合成回路210に用いるバランは、図2に示す実施の形態1のドハティ増幅器の合成回路200に用いるバランと等価の特性であり、この結果、実施の形態2のドハティ増幅器は、実施の形態1のドハティ増幅器と同様の動作をする。 The balun used in the Doherty amplifier combining circuit 210 of the second embodiment shown in FIG. 9 has characteristics equivalent to the balun used in the Doherty amplifier combining circuit 200 of the first embodiment shown in FIG. The Doherty amplifier according to the second embodiment operates in the same manner as the Doherty amplifier according to the first embodiment.
実施の形態3.
 図10は、本発明の実施の形態3におけるドハティ増幅器の構成を示す回路図であり、実施の形態1を示す図1におけるインピーダンス変換回路201に代えて、基本波周波数fに対して1/4波長の長さを有する1/4波長伝送線路203を用いて構成されている。なお、実施の形態1~2のドハティ増幅器の回路図における符号と同じ符号は、同一もしくは相当部分を示しており、説明を省略する。また、合成回路200は、実施の形態2と同様に図9に示す合成回路210を用いて構成してもよい。
Embodiment 3 FIG.
Figure 10 is a circuit diagram showing the configuration of a Doherty amplifier according to a third embodiment of the present invention, instead of the impedance conversion circuit 201 of FIG. 1 showing the first embodiment, the fundamental wave frequency f 0 1 / A quarter wavelength transmission line 203 having a length of 4 wavelengths is used. Note that the same reference numerals as those in the circuit diagrams of the Doherty amplifiers of Embodiments 1 and 2 indicate the same or corresponding parts, and the description thereof is omitted. Further, the synthesis circuit 200 may be configured using the synthesis circuit 210 shown in FIG. 9 as in the second embodiment.
 本実施の形態3においては、特に、1/4波長伝送線路203の特性インピーダンスZをZ=Rとすると、合成回路側を見込むインピーダンスZ=R/2をZ=2Rに、また、Z=RをZ=Rにインピーダンス変換することができる。
 なお、1/4波長伝送線路203の位相遅延θはほぼ90度となるので、分配回路202における位相差θは、式(5)の関係から、ほぼ90度となるように設計される。
 このような実施の形態3においても実施の形態1~2と同様の効果も得ることができる。
In the third embodiment, particularly when the characteristic impedance Z 0 of the quarter-wave transmission line 203 is Z 0 = R, the impedance Z 2 = R / 2 for which the combined circuit side is expected is changed to Z 1 = 2R, and , Z 2 = R can be impedance converted to Z 1 = R.
Since the phase delay θ t of the ¼ wavelength transmission line 203 is approximately 90 degrees, the phase difference θ d in the distribution circuit 202 is designed to be approximately 90 degrees from the relationship of Expression (5). .
In the third embodiment, the same effects as in the first and second embodiments can be obtained.
実施の形態4.
 図11は、本発明の実施の形態4におけるドハティ増幅器の回路図であり、図12および図13は実施の形態4に用いる合成回路220の詳細構成を示す回路図である。図13に示す合成回路220は、図12における第2結合伝送線路310を用いないで構成した他の例を示している。なお、実施の形態1~3のドハティ増幅器の回路図における符号と同じ符号は、同一もしくは相当部分を示しており、説明を省略する。
Embodiment 4 FIG.
FIG. 11 is a circuit diagram of the Doherty amplifier according to the fourth embodiment of the present invention, and FIGS. 12 and 13 are circuit diagrams showing a detailed configuration of the synthesis circuit 220 used in the fourth embodiment. The synthesis circuit 220 illustrated in FIG. 13 illustrates another example configured without using the second coupled transmission line 310 in FIG. 12. Note that the same reference numerals as those in the circuit diagrams of the Doherty amplifiers of Embodiments 1 to 3 indicate the same or corresponding parts, and a description thereof will be omitted.
 図12の合成回路220は、図2に示す実施の形態1のドハティ増幅器の合成回路に用いるバランにおいて、互いに接続された第4端子p4と第7端子p7の間の第9端子p9に2次高調波を注入もしくは抽出する注入抽出端子T4を有した2次高調波注入抽出回路340を設けたものである。2次高調波注入抽出回路340は、例えば図12に示すように、基本波周波数f対して1/4波長の伝送線路341と342とを直列接続し、直列接続された接続点に2次高調波を注入もしくは抽出する注入抽出端子T4を設け、さらに伝送線路341の他端を開放端とすることにより構成できる。これにより、基本波には影響を与えることなく、2次高調波の注入抽出が可能となり、その結果、2次高調波周波数に対する最適な回路条件を容易に実現できるようになる。 In the balun used in the Doherty amplifier combining circuit according to the first embodiment shown in FIG. 2, the combining circuit 220 in FIG. 12 is secondary to the ninth terminal p9 between the fourth terminal p4 and the seventh terminal p7 connected to each other. A second harmonic injection extraction circuit 340 having an injection extraction terminal T4 for injecting or extracting harmonics is provided. For example, as shown in FIG. 12, the second-order harmonic injection extraction circuit 340 connects the transmission lines 341 and 342 having a quarter wavelength with respect to the fundamental frequency f 0 in series, and the second order is connected to the connection point connected in series. An injection extraction terminal T4 for injecting or extracting harmonics may be provided, and the other end of the transmission line 341 may be an open end. As a result, injection and extraction of the second harmonic can be performed without affecting the fundamental wave, and as a result, an optimum circuit condition for the second harmonic frequency can be easily realized.
 図13の合成回路220は、図9に示す実施の形態2のドハティ増幅器の合成回路に用いるバランにおいて、互いに接続された第4端子p4と第7端子p7の間の第9端子p9に2次高調波を注入もしくは抽出する注入抽出端子T4を有した2次高調波注入抽出回路340を設けたものであり、図12の合成回路220と等価の特性となる。
 このような実施の形態4においても実施の形態1~3と同様の効果も得ることができる。
In the balun used in the Doherty amplifier combining circuit according to the second embodiment shown in FIG. 9, the combining circuit 220 in FIG. 13 is secondary to the ninth terminal p9 between the fourth terminal p4 and the seventh terminal p7 connected to each other. A second harmonic injection extraction circuit 340 having an injection extraction terminal T4 for injecting or extracting harmonics is provided, and has characteristics equivalent to those of the synthesis circuit 220 of FIG.
In the fourth embodiment, the same effects as in the first to third embodiments can be obtained.
 実施の形態5.
 図14は、本発明の実施の形態5におけるドハティ増幅器の構成を示す回路図であり、図15は実施の形態5に用いる分配回路204の詳細構成を示す回路図である。なお、実施の形態1~4のドハティ増幅器の回路図における符号と同じ符号は、同一もしくは相当部分を示しており、説明を省略する。また、合成回路200は、実施の形態2と同様に合成回路210を用いて構成してもよい。
Embodiment 5 FIG.
FIG. 14 is a circuit diagram showing a configuration of the Doherty amplifier according to the fifth embodiment of the present invention, and FIG. 15 is a circuit diagram showing a detailed configuration of the distribution circuit 204 used in the fifth embodiment. Note that the same reference numerals as those in the circuit diagrams of the Doherty amplifiers of Embodiments 1 to 4 indicate the same or corresponding parts, and the description thereof is omitted. Further, the synthesis circuit 200 may be configured using the synthesis circuit 210 as in the second embodiment.
 分配回路204は、バラン400と2次高調波を注入もしくは抽出する注入抽出端子T5を有した2次高調波注入抽出回路405と位相調整線路401とで構成される。
 2次高調波注入抽出回路405は、基本波には影響を与えることなく、2次高調波の注入抽出を可能とするもので、その結果、2次高調波周波数に対する最適な回路条件を容易に実現できるようになる。
 このような実施の形態5においても実施の形態1~3と同様の効果も得ることができる。
The distribution circuit 204 includes a balun 400, a second harmonic injection extraction circuit 405 having an injection extraction terminal T5 for injecting or extracting the second harmonic, and a phase adjustment line 401.
The second harmonic injection extraction circuit 405 enables the injection extraction of the second harmonic without affecting the fundamental wave. As a result, the optimum circuit condition for the second harmonic frequency can be easily obtained. Can be realized.
In the fifth embodiment, the same effects as in the first to third embodiments can be obtained.
 実施の形態6.
 図16は、本発明の実施の形態6におけるドハティ増幅器の回路図である。なお、実施の形態1~5のドハティ増幅器の回路図における符号と同じ符号は、同一もしくは相当部分を示しており、説明を省略する。また、合成回路220は、実施の形態4と同様に図12に示す合成回路220または図13に示す合成回路220のいずれを用いて構成してもよい。
Embodiment 6 FIG.
FIG. 16 is a circuit diagram of a Doherty amplifier according to the sixth embodiment of the present invention. Note that the same reference numerals as those in the circuit diagrams of the Doherty amplifiers of Embodiments 1 to 5 denote the same or corresponding parts, and a description thereof will be omitted. Further, the synthesis circuit 220 may be configured using either the synthesis circuit 220 shown in FIG. 12 or the synthesis circuit 220 shown in FIG. 13 as in the fourth embodiment.
 分配回路204は、図15に示す実施の形態5における分配回路と同様にバラン400と2次高調波を注入もしくは抽出する注入抽出端子T5を有した2次高調波注入抽出回路405と位相調整線路401とで構成される。
 2次高調波注入抽出回路405は、基本波には影響を与えることなく、2次高調波の注入抽出を可能とするもので、その結果、2次高調波周波数に対する最適な回路条件を容易に実現できるようになる。
 このような実施の形態6においても実施の形態1~5と同様の効果も得ることができる。
Similarly to the distribution circuit in the fifth embodiment shown in FIG. 15, the distribution circuit 204 includes a balun 400 and a second harmonic injection extraction circuit 405 having an injection extraction terminal T5 for injecting or extracting the second harmonic, and a phase adjustment line. 401.
The second harmonic injection extraction circuit 405 enables the injection extraction of the second harmonic without affecting the fundamental wave. As a result, the optimum circuit condition for the second harmonic frequency can be easily obtained. Can be realized.
In the sixth embodiment, the same effects as in the first to fifth embodiments can be obtained.
実施の形態7.
 図17は、本発明の実施の形態7におけるドハティ増幅器の構成を示す回路図である。
 合成回路として、実施の形態4で示した合成回路220を用い、分配回路として、実施の形態5で示した分配回路204を用いている。合成回路220は、実施の形態4と同様に図12に示す合成回路220または図13に示す合成回路220のいずれを用いて構成してもよい。
合成回路220の2次高調波を注入もしくは抽出する注入抽出端子T4と分配回路204の2次高調波を注入もしくは抽出する注入抽出端子T5との間に、2次高調波の振幅と位相を調整する2次高調波振幅・位相調整回路205を装荷して構成される。
Embodiment 7 FIG.
FIG. 17 is a circuit diagram showing a configuration of a Doherty amplifier according to the seventh embodiment of the present invention.
The combining circuit 220 shown in Embodiment 4 is used as the combining circuit, and the distribution circuit 204 shown in Embodiment 5 is used as the distribution circuit. The combining circuit 220 may be configured using either the combining circuit 220 shown in FIG. 12 or the combining circuit 220 shown in FIG. 13 as in the fourth embodiment.
The amplitude and phase of the second harmonic are adjusted between the injection extraction terminal T4 for injecting or extracting the second harmonic of the synthesis circuit 220 and the injection extraction terminal T5 for injecting or extracting the second harmonic of the distribution circuit 204. The second harmonic amplitude / phase adjustment circuit 205 is loaded.
 本構成とすることにより、ドハティ増幅器の出力側で発生した2次高調波を適切な振幅、位相で入力側に注入する2次高調波に対するフィードバック、または、ドハティ増幅器の入力側で発生した2次高調波を適切な振幅、位相で出力側に注入する2次高調波に対するフィードフォワードが可能となり、これによりドハティ増幅器の高効率化や低歪化が可能となる。
 このような実施の形態7においても実施の形態1~6と同様の効果も得ることができる。
By adopting this configuration, the secondary harmonic generated at the output side of the Doherty amplifier is fed back to the input side with an appropriate amplitude and phase, or the secondary harmonic generated at the input side of the Doherty amplifier. It is possible to feed forward the second harmonic that injects the harmonic with an appropriate amplitude and phase to the output side, thereby enabling higher efficiency and lower distortion of the Doherty amplifier.
In the seventh embodiment, the same effects as in the first to sixth embodiments can be obtained.
本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することができる。 The present invention can be freely combined with each other within the scope of the present invention, or can be appropriately modified or omitted.
100 キャリア増幅器、101 ピーク増幅器、200,210,220 合成回路、201 インピーダンス変換回路、202,204 分配回路、203 1/4波長伝送線路、205 2次高調波振幅・位相調整回路、300 第1結合伝送線路、301 第1伝送線路、302 第2伝送線路、310 第2結合伝送線路、311 第3伝送線路、312 第4伝送線路、320 結合伝送線路、321 第1伝送線路、322 第2伝送線路、330 伝送線路、340,405 2次高調波注入抽出回路、341,342 伝送線路、400 バラン、401,403 位相調整線路、S1 入力信号、S2 第1入力信号、S3 第2入力信号、S4 第1出力信号、S5 第2出力信号、p1 第1端子、p2 第2端子、p3 第3端子、p4 第4端子、p5 第5端子、p6 第6端子、p7 第7端子、p8 第8端子、p9 第9端子、T1 不平衡端子、T2,T3 平衡端子、T4,T5 注入抽出端子。 100 carrier amplifier, 101 peak amplifier, 200, 210, 220 synthesis circuit, 201 impedance conversion circuit, 202, 204 distribution circuit, 203 1/4 wavelength transmission line, 205 second harmonic amplitude / phase adjustment circuit, 300 first coupling Transmission line, 301 first transmission line, 302 second transmission line, 310 second coupled transmission line, 311 third transmission line, 312 fourth transmission line, 320 coupled transmission line, 321 first transmission line, 322 second transmission line , 330 transmission line, 340, 405 second harmonic injection extraction circuit, 341, 342 transmission line, 400 balun, 401, 403 phase adjustment line, S1 input signal, S2 first input signal, S3 second input signal, S4 second 1 output signal, S5 second output signal, p1 first terminal, p2 second terminal p3 3rd terminal, p4 4th terminal, p5 5th terminal, p6 6th terminal, p7 7th terminal, p8 8th terminal, p9 9th terminal, T1 unbalanced terminal, T2, T3 balanced terminal, T4, T5 injection Extraction terminal.

Claims (8)

  1.  入力信号を互いに位相差を有する第1入力信号および第2入力信号に分配する分配回路と、前記第1入力信号を増幅するキャリア増幅器と、前記第2入力信号を増幅するとともに線形動作となる小信号動作時においては出力インピーダンスが開放となるピーク増幅器と、前記キャリア増幅器の出力側に接続されたインピーダンス変換回路と、前記キャリア増幅器で増幅され前記インピーダンス変換回路を介して出力される第1出力信号と前記ピーク増幅器で増幅され出力される第2出力信号とを合成する、バランで構成される合成回路とを備え、前記キャリア増幅器は前記インピーダンス変換回路を介して前記合成回路の一方の平衡端子に接続され、前記ピーク増幅器は前記合成回路の他方の平衡端子に接続されており、前記合成回路の不平衡端子から合成された出力信号が出力されることを特徴とするドハティ増幅器。 A distribution circuit that distributes an input signal to a first input signal and a second input signal having a phase difference from each other, a carrier amplifier that amplifies the first input signal, and a small amplifier that amplifies the second input signal and performs linear operation. A peak amplifier whose output impedance is open during signal operation, an impedance conversion circuit connected to the output side of the carrier amplifier, and a first output signal that is amplified by the carrier amplifier and output via the impedance conversion circuit And a second output signal amplified and output by the peak amplifier, and a synthesis circuit composed of a balun. The carrier amplifier is connected to one balanced terminal of the synthesis circuit via the impedance conversion circuit. Connected, and the peak amplifier is connected to the other balanced terminal of the synthesis circuit. Doherty amplifier, characterized in that the output signal synthesized from 衡端Ko is output.
  2.  前記合成回路は、基本波周波数に対して1/4波長の長さを有した第1結合伝送線路および第2結合伝送線路を用いて構成されたバランであって、
    前記第1結合伝送線路は、互いに平行に近接して配置された第1伝送線路および第2伝送線路で構成され、前記第1伝送線路は、第1端子および第2端子を有し、前記第2伝送線路は、前記第1端子に対向して第4端子および前記第2端子に対向して第3端子を有しており、
    前記第2結合伝送線路は、互いに平行に近接して配置された第3伝送線路および第4伝送線路で構成され、前記第3伝送線路は、第5端子および第6端子を有し、前記第4伝送線路は、前記第5端子に対向して第8端子および前記第6端子に対向して第7端子を有しており、
    前記第2端子と第5端子と第6端子はグランドに短絡され、前記第4端子と第7端子は互いに接続され、前記第1端子はグランドとの間に不平衡端子を成し、前記第3端子と第8端子はそれぞれ、互いに逆相となる平衡端子を成していることを特徴とする請求項1に記載のドハティ増幅器。
    The synthesis circuit is a balun configured using a first coupled transmission line and a second coupled transmission line having a length of ¼ wavelength with respect to a fundamental frequency,
    The first coupled transmission line includes a first transmission line and a second transmission line arranged in parallel and close to each other, the first transmission line having a first terminal and a second terminal, The two transmission lines have a fourth terminal facing the first terminal and a third terminal facing the second terminal,
    The second coupled transmission line includes a third transmission line and a fourth transmission line that are arranged close to each other in parallel, and the third transmission line has a fifth terminal and a sixth terminal, The four transmission lines have an eighth terminal facing the fifth terminal and a seventh terminal facing the sixth terminal,
    The second terminal, the fifth terminal, and the sixth terminal are short-circuited to the ground, the fourth terminal and the seventh terminal are connected to each other, the first terminal forms an unbalanced terminal with the ground, and the first terminal 2. The Doherty amplifier according to claim 1, wherein each of the third terminal and the eighth terminal forms a balanced terminal having a phase opposite to each other.
  3.  前記合成回路は、基本波周波数に対して1/4波長の長さを有する結合伝送線路と1/4波長の長さを有する伝送線路とを用いて構成されたバランであって、
    前記結合伝送線路は、互いに平行に近接して配置された第1伝送線路および第2伝送線路で構成され、前記第1伝送線路は、第1端子および第2端子を有し、前記第2伝送線路は、前記第1端子に対向する第4端子および前記第2端子に対向する第3端子を有しており、
    前記伝送線路は、第7端子および第8端子を有しており、
    前記第2端子はグランドに短絡され、前記第4端子と第7端子は互いに接続され、前記第1端子はグランドとの間に不平衡端子を成し、前記第3端子と第8端子はそれぞれ、互いに逆相となる平衡端子を成していることを特徴とする請求項1に記載のドハティ増幅器。
    The combining circuit is a balun configured using a coupled transmission line having a length of ¼ wavelength with respect to a fundamental frequency and a transmission line having a length of ¼ wavelength,
    The coupled transmission line includes a first transmission line and a second transmission line arranged close to each other in parallel, and the first transmission line has a first terminal and a second terminal, and the second transmission line The line has a fourth terminal facing the first terminal and a third terminal facing the second terminal,
    The transmission line has a seventh terminal and an eighth terminal,
    The second terminal is short-circuited to the ground, the fourth terminal and the seventh terminal are connected to each other, the first terminal forms an unbalanced terminal with the ground, and the third terminal and the eighth terminal are respectively 2. The Doherty amplifier according to claim 1, wherein the Doherty amplifiers are balanced terminals that are out of phase with each other.
  4.  前記インピーダンス変換回路は、あらかじめ決められた特性インピーダンスを有するとともに基本波周波数に対して1/4波長の長さを有する1/4波長伝送線路で構成されていることを特徴とする請求項1から請求項3のいずれか一項に記載のドハティ増幅器。 2. The impedance conversion circuit includes a quarter wavelength transmission line having a predetermined characteristic impedance and a length of a quarter wavelength with respect to a fundamental frequency. The Doherty amplifier according to claim 3.
  5.  前記合成回路は、2次高調波を注入もしくは抽出する注入抽出端子を有する2次高調波注入抽出回路が装荷されたバランで構成されていることを特徴とする請求項1から請求項4のいずれか一項に記載のドハティ増幅器。 5. The synthesizer circuit includes a balun loaded with a second harmonic injection extraction circuit having an injection extraction terminal for injecting or extracting a second harmonic. A Doherty amplifier according to any one of the preceding claims.
  6.  前記分配回路は、2次高調波を注入もしくは抽出する注入抽出端子を有する2次高調波注入抽出回路を装荷したバランと位相調整線路とから構成されていることを特徴とする請求項1から請求項4のいずれか一項に記載のドハティ増幅器。 2. The distribution circuit according to claim 1, wherein the distribution circuit includes a balun loaded with a second harmonic injection extraction circuit having an injection extraction terminal for injecting or extracting a second harmonic and a phase adjustment line. Item 5. The Doherty amplifier according to any one of Items 4 to 5.
  7.  前記合成回路は、2次高調波を注入もしくは抽出する注入抽出端子を有する2次高調波注入抽出回路が装荷されたバランで構成され、前記分配回路は、2次高調波を注入もしくは抽出する注入抽出端子を有する2次高調波注入抽出回路を装荷したバランと位相調整線路とから構成されていることを特徴とする請求項1から請求項4のいずれか一項に記載のドハティ増幅器。 The synthesis circuit is composed of a balun loaded with a second harmonic injection extraction circuit having an injection extraction terminal for injecting or extracting a second harmonic, and the distribution circuit is an injection for injecting or extracting the second harmonic. 5. The Doherty amplifier according to claim 1, comprising a balun loaded with a second harmonic injection extraction circuit having an extraction terminal and a phase adjustment line.
  8.  前記合成回路の2次高調波を注入もしくは抽出する注入抽出端子と、前記分配回路の2次高調波を注入もしくは抽出する注入抽出端子との間に、2次高調波の振幅と位相を調整する2次高調波振幅・位相調整回路が装荷されていることを特徴とする請求項7に記載のドハティ増幅器。 The amplitude and phase of the second harmonic are adjusted between the injection extraction terminal for injecting or extracting the second harmonic of the synthesis circuit and the injection extraction terminal for injecting or extracting the second harmonic of the distribution circuit. The Doherty amplifier according to claim 7, wherein a second harmonic amplitude / phase adjustment circuit is loaded.
PCT/JP2016/087584 2016-12-16 2016-12-16 Doherty amplifier WO2018109930A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/087584 WO2018109930A1 (en) 2016-12-16 2016-12-16 Doherty amplifier
JP2018556148A JP6736024B2 (en) 2016-12-16 2016-12-16 Doherty amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087584 WO2018109930A1 (en) 2016-12-16 2016-12-16 Doherty amplifier

Publications (1)

Publication Number Publication Date
WO2018109930A1 true WO2018109930A1 (en) 2018-06-21

Family

ID=62558277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087584 WO2018109930A1 (en) 2016-12-16 2016-12-16 Doherty amplifier

Country Status (2)

Country Link
JP (1) JP6736024B2 (en)
WO (1) WO2018109930A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255389A1 (en) * 2021-06-02 2022-12-08 株式会社村田製作所 High frequency module and communication device
WO2022259892A1 (en) * 2021-06-10 2022-12-15 株式会社村田製作所 Amplification circuit and high-frequency circuit
WO2023127435A1 (en) * 2021-12-28 2023-07-06 株式会社村田製作所 Power amplification circuit and power amplification module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279507A (en) * 2005-03-29 2006-10-12 Toshiba Corp Microwave amplifying device
JP2009153193A (en) * 2009-03-06 2009-07-09 Shimada Phys & Chem Ind Co Ltd Power synthetic amplifier
JP2013090166A (en) * 2011-10-19 2013-05-13 Wave Technology Inc Balun

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279507A (en) * 2005-03-29 2006-10-12 Toshiba Corp Microwave amplifying device
JP2009153193A (en) * 2009-03-06 2009-07-09 Shimada Phys & Chem Ind Co Ltd Power synthetic amplifier
JP2013090166A (en) * 2011-10-19 2013-05-13 Wave Technology Inc Balun

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255389A1 (en) * 2021-06-02 2022-12-08 株式会社村田製作所 High frequency module and communication device
WO2022259892A1 (en) * 2021-06-10 2022-12-15 株式会社村田製作所 Amplification circuit and high-frequency circuit
WO2023127435A1 (en) * 2021-12-28 2023-07-06 株式会社村田製作所 Power amplification circuit and power amplification module

Also Published As

Publication number Publication date
JP6736024B2 (en) 2020-08-05
JPWO2018109930A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
US8988147B2 (en) Multi-way Doherty amplifier
KR100870866B1 (en) Multiband Doherty Amplifier
US10686408B2 (en) Four-way Doherty amplifier and mobile telecommunications base station
JP4715994B2 (en) Doherty amplifier parallel operation circuit
US7170353B2 (en) Balanced amplifier circuit and high-frequency communication apparatus
US7521995B1 (en) Inverted doherty amplifier with increased off-state impedence
EP3461000B1 (en) Doherty amplifier
JP2009260444A (en) Power combiner, amplifier, and transmitter
JP2011151787A (en) Distributed doherty power amplifier
KR102598591B1 (en) Power amplifier circuit
EP3070840B1 (en) Power amplifier and power amplification method
CN106411275B (en) Improve the three tunnel Doherty power amplifiers and implementation method of bandwidth
WO2018109930A1 (en) Doherty amplifier
Nguyen et al. A coupler-based differential Doherty power amplifier with built-in baluns for high mm-wave linear-yet-efficient Gbit/s amplifications
CN112543002B (en) Broadband differential Doherty power amplifier and design method and application thereof
TW202002507A (en) Multi-channel radio-frequency power amplification device capable of increasing power gain and power-added efficiency
JP6904506B2 (en) Doherty type amplifier
JP5035846B2 (en) Doherty amplifier circuit
WO2010090202A1 (en) Radio-frequency power amplifier
JP5829885B2 (en) Balun
JP5527563B2 (en) High frequency power amplifier
JP2011040869A (en) High frequency power amplifier
JP2009153193A (en) Power synthetic amplifier
US8526536B2 (en) Quad LINC transmitter with switchable Chireix amplifiers
CN116614093A (en) Power amplifier and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923941

Country of ref document: EP

Kind code of ref document: A1