WO2018109899A1 - 水素輸送計画作成装置および水素輸送計画作成方法 - Google Patents

水素輸送計画作成装置および水素輸送計画作成方法 Download PDF

Info

Publication number
WO2018109899A1
WO2018109899A1 PCT/JP2016/087384 JP2016087384W WO2018109899A1 WO 2018109899 A1 WO2018109899 A1 WO 2018109899A1 JP 2016087384 W JP2016087384 W JP 2016087384W WO 2018109899 A1 WO2018109899 A1 WO 2018109899A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
plan
delivery
base
transport
Prior art date
Application number
PCT/JP2016/087384
Other languages
English (en)
French (fr)
Inventor
幸徳 外崎
大竹 宏明
秋葉 剛史
雅彦 村井
山田 正彦
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2016/087384 priority Critical patent/WO2018109899A1/ja
Publication of WO2018109899A1 publication Critical patent/WO2018109899A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Definitions

  • Embodiments of the present invention relate to a hydrogen transport plan creation device and a hydrogen transport plan creation method.
  • the method of transporting hydrogen includes (1) a method of transporting hydrogen to each installation location of the fuel cell through piping, (2) a method of storing hydrogen in a cylinder and transporting this cylinder to each installation location of the fuel cell, (3) There is a method in which hydrogen is stored in a tank trailer, the tank trailer is moved to an installation location of each fuel cell, and hydrogen is supplied to a storage device provided in the installation location.
  • the piping for hydrogen gas is stretched all over like the piping of city gas, hydrogen can be supplied to the installation location of the fuel cell through this piping.
  • city gas and hydrogen gas cannot be mixed.
  • the cost for installing the piping for hydrogen gas is very high. Therefore, as a method for carrying hydrogen, the method (2) and the method (3) are practical methods.
  • the vehicle that delivers hydrogen is a gasoline vehicle, and the amount of CO2 emitted from the vehicle when hydrogen is recovered and delivered is larger than the CO2 emission that can be reduced by using hydrogen in the fuel cell device When the fuel cell device is not used, CO2 emission can be reduced.
  • the vehicle delivering hydrogen is a fuel cell vehicle
  • the amount of hydrogen used by the fuel cell vehicle used for hydrogen delivery is excessive, the amount of hydrogen that can be used for the fuel cell device that is the delivery destination will be reduced.
  • the amount of CO2 emissions that can be reduced by using hydrogen in the fuel cell device is reduced. In this case, the overall CO2 reduction amount may be reduced.
  • the problem to be solved by the present invention is to provide a hydrogen transport plan creation device and a hydrogen transport plan creation method capable of minimizing the overall CO2 emission associated with power generation using a power generation device using hydrogen as fuel. It is to be.
  • the hydrogen transport plan creation device in the embodiment includes (a) a supply base having a hydrogen production apparatus, (b) a demand base having a fuel cell device that generates power using hydrogen, and (c) hydrogen recovered from the supply base, and A hydrogen transport plan creation device for creating a hydrogen transport plan between transport bases having a hydrogen storage device for storing hydrogen for delivery to the demand base, wherein the amount of CO2 discharged along with the transport of hydrogen The generated hydrogen transportation plan is modified so that the amount of hydrogen is reduced.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a hydrogen transport system including a hydrogen transport plan creation device according to an embodiment.
  • FIG. 2 is a block diagram illustrating a functional configuration example of the hydrogen transport plan creation device according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of an outline of hydrogen delivery and recovery in the embodiment.
  • FIG. 4 is a diagram illustrating an example of a hydrogen delivery route in the embodiment.
  • FIG. 5 is a flowchart illustrating an example of a basic operation of the hydrogen transport plan creation device according to the embodiment.
  • FIG. 6 is a flowchart illustrating an example of a procedure for creating a reference long-term delivery plan table and a modified long-term delivery plan table by the hydrogen transport plan creation device according to the embodiment.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a hydrogen transport system including a hydrogen transport plan creation device according to an embodiment.
  • FIG. 2 is a block diagram illustrating a functional configuration example of the hydrogen transport
  • FIG. 7 is a flowchart illustrating an example of a procedure for creating a modified long-term delivery plan table by a deterministic procedure by the hydrogen transport plan creation device according to the embodiment.
  • FIG. 8 is a diagram illustrating an example of a drawing screen on the terminal of the transportation base by the hydrogen transportation plan creation device in the embodiment.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a hydrogen transport system including a hydrogen transport plan creation device according to an embodiment.
  • the hydrogen transport plan creation device 10 includes a transmission / reception device 11 and a general-purpose computer 12.
  • the transmission / reception device 11 receives supply base measurement data from the supply base 30 and receives demand base measurement data from the demand base 40. Details of supply base measurement data and demand base measurement data will be described later.
  • the supply base 30 is a place where hydrogen can be produced.
  • the demand base 40 is a place having a device using hydrogen.
  • the transmission / reception device 11 of the hydrogen transport plan creation device 10 transmits the hydrogen daily delivery plan table, daily recovery plan table, long-term delivery plan table, and long-term recovery plan table to the transportation base 20.
  • Delivery means that the vehicle transports hydrogen from the transportation base 20 to another place, for example, the demand base 40.
  • the recovery means that the vehicle transports hydrogen from the supply base 30 to another place, for example, the transport base 20.
  • the combination of hydrogen recovery and delivery is sometimes referred to as transport.
  • the transmission / reception device 11 transmits the daily delivery plan table and the daily collection plan table to the mobile terminal 50 possessed by the driver of a vehicle that transports hydrogen (sometimes simply referred to as a vehicle).
  • the transportation base 20 is a place where a vehicle that starts collecting and delivering hydrogen in one day departs, and a place where a vehicle that has finished collecting and delivering returns.
  • Each vehicle has vehicle characteristics such as a vehicle type and a loading capacity upper limit.
  • the vehicle types are gasoline vehicles, diesel vehicles, fuel cell vehicles, and the like.
  • the CO2 emission amount with respect to the vehicle travel distance and fuel consumption is determined as a rating.
  • the transportation base 20 includes a transmission / reception device 21, a general-purpose computer 22, and a hydrogen storage device 23.
  • the transmission / reception device 21 receives a one-day delivery plan table, a one-day collection plan table, a long-term delivery plan table, and a long-term collection plan table, which are data transmitted from the hydrogen transport plan creation device 10. Details of the 1-day delivery plan table, 1-day collection plan table, long-term delivery plan table, and long-term collection plan table will be described later.
  • the general-purpose computer 22 draws data received by the transmission / reception device 21 on a screen of a terminal device (not shown).
  • the hydrogen storage device 23 temporarily stores, for example, the hydrogen sent from the supply base 30 as necessary.
  • the supply base 30 includes a transmission / reception device 31, a data server 32, a measuring instrument 33, and a hydrogen production device 34.
  • the hydrogen production apparatus 34 produces hydrogen.
  • the measuring instrument 33 measures data of a hydrogen production process, for example, a hydrogen production amount.
  • the data server 32 includes a storage device such as a nonvolatile memory. Data measured by the measuring instrument 33 is stored in the data server 32.
  • the transmission / reception device 31 transmits the data stored in the data server 32 to the hydrogen transport plan creation device 10 at regular intervals, for example, every hour. In addition, when data transmission is requested from the hydrogen transport plan creation device 10, the transmission / reception device 31 transmits supply site measurement data that is data measured by the measuring instrument 33 to the hydrogen transport plan creation device 10.
  • the demand base 40 includes a transmission / reception device 41, a data server 42, and measuring instruments 43-1, 43-2, 43-3.
  • a fuel cell device 44 that generates electricity using hydrogen
  • a gas generator 45 that generates electricity using gas
  • an electric device 46 that uses electricity from a normal power system are installed at the demand base 40.
  • the measuring instrument 43-1 measures the usage status of the fuel cell device 44, for example, the amount of hydrogen used.
  • the measuring instrument 43-2 measures the usage status of the gas power generation device 45, for example, the amount of gas used.
  • the measuring instrument 43-3 measures the usage status of the electrical device 46, for example, the amount of power consumption.
  • the data server 42 includes a storage device such as a nonvolatile memory. Data measured by the measuring instruments 43-1, 43-2, 43-3 is accumulated in the data server 42.
  • the transmission / reception device 41 transmits the data stored in the data server 42 to the hydrogen transport plan creation device 10 at regular intervals, for example, every hour. Further, when data transmission is requested from the hydrogen transportation plan creation device 10, the transmission / reception device 41 supplies the demand base measurement data, which is data measured by the measuring instruments 43-1, 43-2, 43-3, to the hydrogen transportation. It transmits to the plan creation apparatus 10. Based on the supply base measurement data and the demand base measurement data, the hydrogen transport plan creation device 10 generates a hydrogen delivery plan, a hydrogen recovery plan, and CO2 that is the amount of CO2 emitted from the vehicle for each plan. Calculate emissions.
  • FIG. 2 is a block diagram illustrating a functional configuration example of the hydrogen transport plan creation device according to the embodiment.
  • the hydrogen transport plan creation device 10 includes a hydrogen delivery plan creation unit 101, a hydrogen recovery plan creation unit 102, a delivery plan / recovery plan adjustment unit 103, a CO2 emission calculation unit 104, a visualization processing unit 105, It has a supply base result DB 106, a demand base result DB 107, a transport vehicle DB 108, and a hydrogen transport plan DB 109. These can be realized as each function of the general-purpose computer 12.
  • the demand base result DB 107, the transport vehicle DB 108, and the hydrogen transport plan DB 109 are realized by a storage device such as a nonvolatile memory.
  • the hydrogen delivery plan creation unit 101 creates a daily delivery plan table and a long-term delivery plan table. Specifically, the hydrogen delivery plan creation unit 101 determines a hydrogen delivery plan from the transport base 20 to the demand base 40 until a certain period of time so that the amount of hydrogen temporarily stored at the demand base 40 is not insufficient. Created based on the actual amount of hydrogen stored at the demand base 40 in a part of the fixed period, and reduce the amount of CO2 emitted from the vehicle delivering hydrogen to the demand base 40 along with the delivery during the fixed period Modify the created delivery plan as required. Details of the operation of the hydrogen delivery plan creation unit 101 will be described later.
  • the daily delivery plan table corresponds to the delivery date and time (1 day) of hydrogen for each demand base 40, the vehicle number for identifying the vehicle that delivers hydrogen during the day corresponding to the delivery date and time, and the delivery date and time.
  • 2 is a table in which the amount of hydrogen delivered during one day and the order (delivery route) through each demand base 40 during one day corresponding to the delivery date and time are described.
  • the long-term delivery plan table is a table in which scheduled delivery dates of hydrogen for a certain period, for example, two months ahead, for each demand base 40 are written.
  • the hydrogen recovery plan creation unit 102 creates a daily recovery plan table and a long-term recovery plan table. Specifically, the hydrogen recovery plan creation unit 102 makes a hydrogen recovery plan from the supply base 30 to the transport base 20 up to a certain period ahead so that the amount of hydrogen temporarily stored at the supply base 30 does not become excessive. The amount of CO 2 generated based on the actual amount of hydrogen stored in the supply base 30 in a part of the fixed period and discharged from the vehicle recovering hydrogen from the supply base 30 during the fixed period is Revise the created recovery plan so that it is reduced. Details of the operation of the hydrogen recovery plan creation unit 102 will be described later.
  • the daily recovery plan table corresponds to the hydrogen recovery date and time (1 day) for each supply site 30, the vehicle number for identifying the vehicle that recovers hydrogen during the day corresponding to the recovery date, and the recovery date and time.
  • 2 is a table in which the amount of hydrogen collected during one day and the order (collection route) through each supply base 30 during one day corresponding to the collection date and time are described.
  • the long-term recovery plan table is a table in which scheduled dates of hydrogen recovery for each supply base 30 for a certain period, for example, two months ahead are described.
  • the delivery plan / recovery plan adjustment unit 103 includes a daily delivery plan table created by the hydrogen delivery plan creation unit 101, a long-term delivery plan table, a daily collection plan table created by the hydrogen recovery plan creation unit 102, and a long-term collection plan.
  • the table is adjusted to satisfy a delivery request or a collection request for which a date or the like is specified, or is adjusted to perform a hydrogen delivery and recovery on the same vehicle.
  • the transport vehicle DB 108 includes data on the actual travel distance of the vehicle used for delivery and recovery of hydrogen, fuel usage of the vehicle, CO2 emission data based on this fuel usage, data on the upper limit of hydrogen loading capacity of the vehicle, and the like. Acquire and accumulate these. These data may be acquired by communication with a vehicle used for hydrogen delivery and recovery, or may be acquired by an input operation to the general-purpose computer 12 of the hydrogen transport plan creation device 10.
  • the CO2 emission calculation unit 104 uses a vehicle for the daily delivery plan and long-term creation plan created by the hydrogen delivery plan creation unit 101 and the daily collection plan and long-term collection plan created by the hydrogen recovery plan creation unit 102.
  • the CO2 emission when the hydrogen is delivered and recovered is the CO2 based on the distance of the route indicated by the daily delivery plan and the daily recovery plan and the travel distance of the vehicle and the fuel consumption accumulated in the vehicle DB 108. Calculate based on emissions.
  • the visualization processing unit 105 includes a display device, and includes a daily delivery plan table created by the hydrogen delivery plan creation unit 101, a long-term delivery plan table, a daily collection plan table created by the hydrogen recovery plan creation unit 102, and a long-term collection.
  • the plan table is displayed on the screen of the display device.
  • the supply base result DB 106 acquires supply base measurement data from the supply base 30 and accumulates it.
  • the demand base result DB 107 acquires demand base measurement data from the demand base 40 and accumulates it.
  • the hydrogen transport plan DB 109 accumulates the daily delivery plan table, long-term delivery plan table created by the hydrogen delivery plan creation unit 101, and the daily collection plan table and long-term collection plan table created by the hydrogen recovery plan creation unit 102. . In addition, the hydrogen transport plan DB 109 stores data used by the CO2 emission calculation unit 104 to calculate the CO2 emission (cost data generated as the vehicle moves to transport hydrogen). .
  • FIG. 3 is a diagram illustrating an example of an outline of hydrogen delivery and recovery in the embodiment.
  • FIG. 4 is a diagram illustrating an example of a hydrogen delivery route in the embodiment.
  • the supply base 30, the demand base 40, and the transport base 20 are arranged in different places, but two of the supply base 30, the demand base 40, and the transport base 20 can be regarded as the same place. More than one type of base may be arranged together.
  • the form of hydrogen delivery is that the vehicle that has recovered the hydrogen produced at the supply base 30 leaves the transport base 20 and then passes through one or more demand bases 40. However, it is assumed that it is a form that returns to the original transportation base 20. Further, the form of hydrogen recovery is that the vehicle departs from the transport base 20 and then passes through one or more supply bases 30 while recovering the hydrogen produced at the supply base 30 while returning to the original transport base. It is assumed that the configuration returns to 20.
  • the delivery plan is one day, one day delivery plan in which the vehicle delivers hydrogen to which demand base 40, and up to a certain period ahead (for example, two months ahead). And a long-term delivery plan that determines whether to deliver hydrogen to the demand base 40.
  • the hydrogen recovery plan is one day, and the vehicle is scheduled to recover hydrogen from which supply base 30, and the one-day recovery plan planned for a certain period (for example, two months ahead). And a long-term recovery plan that defines when and from which supply base 30 hydrogen is recovered.
  • the hydrogen transport plan creation device 10 creates these plans.
  • FIG. 5 is a flowchart illustrating an example of a basic operation of the hydrogen transport plan creation device according to the embodiment.
  • the hydrogen transport plan creation device 10 is activated at regular intervals, for example, every other day.
  • the hydrogen transport plan creation device 10 selects a hydrogen delivery plan (long-term delivery plan) and a hydrogen recovery plan (long-term collection plan) to be executed on the day, and these selected plans are used to operate the transportation base 20 and the transportation vehicle. It is transmitted to the mobile terminal 50 possessed by the person (S100, S200). At that time, a delivery request from the demand base 40 or a collection request from the supply base 30 may occur.
  • the delivery request is a request for delivery of hydrogen to the demand base 40 because, for example, the demand base 40 does not have enough hydrogen to use, or the demand base 40 uses more hydrogen than usual.
  • the recovery request is, for example, that the storage amount of hydrogen in a hydrogen tank (hydrogen storage facility) for temporarily storing hydrogen produced at the supply base 30 has reached a limit at the supply base 30, 30, a request for recovery of hydrogen to the supply base 30 for reasons such as further inability to produce hydrogen.
  • the hydrogen transport plan creation device 10 receives these requests (S300), and adjusts the long-term delivery plan table and the long-term collection plan table so as to meet these requests. (S400), each adjusted plan table is drawn on the screen of the visualization processing unit 105.
  • the hydrogen transport plan creation device 10 transmits to the transport base 20 and the mobile terminal 50 the plan table selected by the operator through a predetermined operation from the drawn plan table.
  • This daily delivery plan table includes a hydrogen delivery date, a vehicle number, a hydrogen delivery amount to each demand base, a delivery route indicating the order of visits to each demand base (see Table 1 (a)), each demand The recommended arrival time of the vehicle at the base (see Table 1 (b)) is shown.
  • the items shown in the daily delivery plan table are not limited to this.
  • the driver of the vehicle for delivering hydrogen needs to deliver what amount of hydrogen to which demand base 40 by which route when and by which vehicle by checking the daily delivery plan table. Can know. Also, if the recommended arrival time of the vehicle is described in the daily delivery plan table, the driver can use this time as a guideline for delivering hydrogen.
  • the delivery route in the daily delivery plan table will be described.
  • the arrow connected from the first base to the second base indicates that the hydrogen delivery vehicle moves along the direction of the arrow.
  • This traveling salesman problem can be solved by using a commercially available optimization general-purpose solver.
  • the CO2 emission amount calculation unit 104 of the hydrogen transport plan creation device 10 converts the cost into the CO2 emission amount required for the movement of the vehicle between the bases by multiplying the moving distance between the bases by a coefficient. it can.
  • the calculation result of this CO2 emission amount is stored in the hydrogen transport plan DB 109.
  • Table 2 shows an example of a standard long-term delivery plan table in which whether or not a vehicle carries hydrogen to the demand base 40 on each day is shown in a table format.
  • Table 2 will be described assuming that the number of demand bases 40 is three.
  • a circle is set in the fields of demand bases D 1 , D 2 , D 3 and a delivery schedule column on June 1, and each demand base and a delivery schedule column on June 2 A circle is not set. This indicates that hydrogen is scheduled to be delivered to the demand bases D 1 , D 2 , and D 3 on June 1, and no hydrogen is scheduled to be delivered to any demand base on June 2. .
  • the delivery schedule column in the same column is displayed. A circle is set.
  • the hydrogen transport plan creation device 10 first estimates the amount of hydrogen used per day at each demand base 40.
  • An example of demand base measurement data is shown in Table 3 below.
  • the demand base measurement data is the remaining amount of hydrogen stored in a hydrogen tank (not shown) that is installed at each demand base 40 and temporarily stores hydrogen delivered from the vehicle. This is data showing (actual hydrogen remaining amount and estimated hydrogen remaining amount) for each date.
  • the demand base measurement data is accumulated in the demand base result DB 107 of the hydrogen transport plan creation device 10.
  • the actual hydrogen remaining amount in this demand base measurement data is the remaining amount of hydrogen in each day in the hydrogen tank when the full hydrogen storage amount in the hydrogen tank is 100%.
  • the actual hydrogen remaining amount is defined as a value directly measured from the measurement data at the demand base D 1 or estimated from other measurement data.
  • hydrogen delivery plan creation part 101 of the transportation schedule creation device 10 of the hydrogen tank seeking each day of the estimated remaining amount of hydrogen June 4 and later, in the demand centers D 1, when either hydrogen is insufficient, i.e. It can be calculated whether the estimated hydrogen remaining amount becomes a negative value.
  • the hydrogen transport plan creation device 10 normally creates a regression equation using a plurality of data, and sets the date when the remaining amount of hydrogen stored in the hydrogen tank installed at each demand base becomes 0 or less. A method is used to determine when there is a shortage of hydrogen. In the present embodiment, the hydrogen transport plan creation device 10 can estimate the remaining amount of the hydrogen tank using an existing method.
  • each demand base 40 for example, demand bases D 2 and D 3
  • the amount of hydrogen used per day used at each demand base 40 is substantially constant every day
  • the hydrogen tanks installed at the demand bases D 1 have a demand base D 2 at most every 7 days so as not to run out of hydrogen stored in the hydrogen tanks installed at the respective demand bases. Every 5 days at the longest in the hydrogen tank to be installed, that is hydrogen per long with 9 days of the hydrogen tank installed in demand bases D 3 must be replenished shown in.
  • the circles shown in Table 2 indicate the dates when hydrogen needs to be replenished.
  • the vehicle When the vehicle delivers hydrogen at a predetermined cycle to each demand base 40, the vehicle must carry the hydrogen from the supply base 30 on the day when the circle is set in the long-term delivery plan table. .
  • the standard long-term delivery plan table shown in Table 2 a description in which circles are set for a plurality of demand bases on the same day indicates that hydrogen is transported to the plurality of demand bases 40 on this day. Indicates that it must be.
  • the above-mentioned standard long-term delivery plan table is designed to deliver hydrogen over a predetermined number of days at a period determined for each demand base, considering that hydrogen is not insufficient for each demand base 40. It is a planned table.
  • CO2 emissions associated with delivery vary depending on the number of demand bases that are the transport destination of hydrogen.
  • hydrogen needs to be delivered to any of the demand bases 25 times (each day for 25 days). If there are many opportunities for hydrogen to be delivered, there is a possibility that the amount of CO2 emissions will increase according to the number of deliveries. For this reason, it is not necessarily optimal from the viewpoint of CO2 emission that hydrogen is delivered in accordance with the long-term delivery plan shown in Table 2.
  • the hydrogen transport plan creation device 10 creates a modified long-term delivery plan table by modifying the reference long-term delivery plan table.
  • Table 4 shows an example in which hydrogen is delivered to a plurality of demand bases as much as possible during one day.
  • the cycle in which hydrogen is delivered is not constant (delivery every 5 or 4 days).
  • the hydrogen for any of the demand bases D 1 , D 2 , and D 3 Is reduced to 14 times (each day for 14 days).
  • hydrogen does not run short in both the example shown in Table 2 and the example shown in Table 4.
  • the amount of hydrogen used at each demand base 40 is the same, so the total value of CO2 emissions in the demand base 40 for a certain period is the same. is there.
  • the amount of CO2 emitted during the delivery of hydrogen to each demand base is smaller than the delivery according to the standard long-term delivery plan table shown in Table 2.
  • the CO2 emission amount at the time of delivery of hydrogen to each demand base 40 is the CO2 emission amount when the vehicle is traveling for delivery, and when the vehicle is stopped at the transport base 20 or each demand base 40. Including CO2 emissions.
  • the hydrogen transport plan creation apparatus 10 includes a total of six combinations of routes from the transport base 20 through each demand base 40 through the delivery vehicle. A route with the smallest CO2 emission amount may be selected as a route for actual delivery. As a selection method, for example, the hydrogen transport plan creation device 10 may select a route with the minimum cost by solving the traveling salesman problem as determined in Table 1.
  • the hydrogen transport plan creation device 10 calculates in advance the CO2 emission amount in each case of 2N routes, determines the route with the smallest CO2 emission amount from each route, and transports information on this route. It records in vehicle DB108.
  • the CO2 emission amount in a fixed period (for example, two months) in the modified long-term delivery plan table is smaller than the CO2 emission amount in the same period based on the reference long-term delivery plan table.
  • FIG. 6 is a flowchart illustrating an example of a procedure for creating a reference long-term delivery plan table and a modified long-term delivery plan table by the hydrogen transport plan creation device according to the embodiment.
  • the hydrogen delivery plan creation unit 101 of the hydrogen transport plan creation apparatus 10 delivers hydrogen to each demand base 40 necessary for creating a reference long-term delivery plan table based on the demand base measurement data of each demand base.
  • a cycle is determined, and this delivery cycle is stored in the hydrogen transport plan DB 109 (S110).
  • the hydrogen delivery plan creation unit 101 Based on the delivery cycle to each demand base 40 determined in S110, the hydrogen delivery plan creation unit 101 sets a circle on each scheduled delivery date from the reference date (for example, the first day of a certain period) along the delivery cycle. Create a standard long-term delivery plan table. The hydrogen delivery plan creation unit 101 calculates the CO2 emission amount based on this reference long-term delivery plan table, and stores the reference long-term delivery plan table and the calculation result of the CO2 emission amount in the hydrogen transport plan DB 109 (S120).
  • the hydrogen delivery plan creation unit 101 Based on the reference long-term delivery plan table obtained in S120, the hydrogen delivery plan creation unit 101 creates a plurality of modified long-term delivery plans obtained by correcting the reference long-term delivery plan table.
  • the hydrogen delivery plan creation unit 101 calculates the CO2 emission amount based on each of the created modified long-term delivery plans, and stores the modified long-term delivery plan table and the calculation result of the CO2 emission amount in the hydrogen transport plan DB 109 (S130).
  • the hydrogen delivery plan creation unit 101 selects a modified long-term delivery plan table with the smallest CO2 emission from a plurality of modified long-term delivery plan tables stored in the hydrogen transport plan DB 109, and selects the selected modified long-term delivery plan table. Is selected as a candidate delivery plan to be executed (S140).
  • FIG. 7 is a flowchart illustrating an example of a procedure for creating a modified long-term delivery plan table based on a deterministic procedure by the hydrogen transport plan creation device according to the embodiment.
  • the modified long-term delivery plan table may be created by a metaheuristic method such as a genetic algorithm.
  • the hydrogen delivery plan creation unit 101 sets N to 1 (S130a). When there are N delivery dates different in the standard delivery plan table, the hydrogen delivery plan creation unit 101 corrects the standard delivery plan table so that the delivery date is advanced by one day. The hydrogen delivery plan creation unit 101 modifies the reference delivery plan table so that each delivery date after the forwarded date in the reference delivery plan table is also advanced one day (S130b).
  • the process returns to S130b.
  • the hydrogen delivery plan creation unit 101 applies the standard delivery plan table modified in S130b to all demand bases. If the delivery date can be extended by one day before the next scheduled delivery date, the standard delivery plan table modified in S130b is further revised so that the delivery date of all demand bases is delayed by one day. A delivery plan table is created (S130d).
  • the hydrogen delivery plan creation unit 101 calculates the total value of the CO2 emission amount at each demand base according to the created modified delivery plan table, and uses this calculated result and the created modified delivery plan table as a hydrogen transportation plan. Save in the DB 109 (S130e).
  • the hydrogen delivery plan creation unit 101 adds 1 to N and returns to S130b. If N set in S130a is the maximum value of the delivery cycle (Yes in S130f), the hydrogen delivery plan creation unit 101 ends the process in S130. This completes the creation of the modified long-term delivery plan table.
  • a modified long-term delivery plan table for three demand bases 40 (demand bases D 1 , D 2 , D 3 ) is created is shown.
  • the number of demand bases 40 becomes 1000 units, even if the above method is applied to all demand bases 40, it is difficult for the hydrogen delivery plan creation unit 101 to create a modified long-term delivery plan table. .
  • the hydrogen delivery plan creation unit 101 clusters the reference long-term delivery plan table corresponding to each demand base 40 according to the delivery cycle at each demand base 40 and the position of the demand base 40.
  • the hydrogen delivery plan creation unit 101 creates a modified long-term delivery plan table by applying the method shown in FIG. 7 to each cluster, and records the result in the created hydrogen transport plan DB 109.
  • the above clustering can also be applied to the creation of a modified long-term collection plan table by modifying the standard long-term collection plan table for reducing CO2 emissions within the period indicated by the standard long-term collection plan table.
  • the hydrogen recovery plan creation unit 102 stores how much hydrogen is accumulated in a hydrogen tank (not shown) installed at the supply base 30 per day. Estimate whether the hydrogen storage rate in the hydrogen tank will be 100% per day.
  • the hydrogen tank installed at the supply base 30 temporarily stores the hydrogen produced at the supply base 30.
  • the supply base measurement data indicates the amount of hydrogen (cumulative production amount and estimated cumulative production amount) installed in each supply base 30 and stored in the hydrogen tank for each date. Accumulated in the supply base result DB 106 of the transportation plan creation device 10.
  • the cumulative production amount in the supply base measurement data is the hydrogen storage amount in each date in the hydrogen tank when the full hydrogen storage amount in the hydrogen tank is 100%.
  • the cumulative production volume is assumed from the measurement data at supply bases S 1 is directly measured, or estimated values from other measurement data.
  • the hydrogen transport plan based on the cumulative production volume from June 1 to June 3 of the hydrogen tank installed at the supply base S 1 in the supply base measurement data shown in Table 5 hydrogen recovery planning unit 102 of the generating device 10, the hydrogen tank, seeking the estimated cumulative amount of produced each day on June 4 and later, in supply base S 1, when to hydrogen is full, i.e. It is possible to calculate whether the estimated accumulated production amount is 100%.
  • the hydrogen recovery plan creation unit 102 estimates that the hydrogen production amount of each day after June 4 in the hydrogen tank installed at the supply base S 1 is 20% of the full storage amount, and this hydrogen production based on the amount, in the hydrogen tank installed in the supply base S 1, it is possible to obtain the estimated cumulative amount of produced each day.
  • Amount of hydrogen produced each day in each supply base is likely to change specifications of equipment to be installed in each supply base, such as supply base S 1, seasonal, by use of the hydrogen generator 34. Therefore, normally, the hydrogen transport plan creation device 10 creates a regression equation using a plurality of data, and obtains the date when the hydrogen storage amount in the hydrogen tank installed at each supply base becomes 100 [%]. Thus, a method for determining when the hydrogen is full is used. In the present embodiment, the hydrogen transport plan creation device 10 can estimate the storage amount of the hydrogen tank using an existing method.
  • each supply base 30 for example, supply bases S 2 and S 3
  • the amount of hydrogen produced per day produced at each supply base 30 is substantially constant for each day
  • the reference long-term recovery plan table shown in Table 6 indicates in a tabular form whether or not the vehicle recovers hydrogen from the supply base 30 on each day. For the sake of simplicity, description will be made assuming that the number of supply bases 30 as collection destinations is three. For example, in Table 6, circles are set in the columns for supply bases S 1 , S 2 , S 3 and the column for collection schedule on June 1, and each supply base and collection column for June 2 are set. A circle is not set. This indicates that hydrogen is scheduled to be recovered from supply bases S 1 , S 2 , S 3 on June 1, and no hydrogen is scheduled to be recovered from any supply base on June 2. .
  • the hydrogen recovery cycle at the supply site S 1 is 5 days
  • the hydrogen recovery cycle at the supply site S 2 is 6 days
  • the hydrogen recovery cycle at the supply site S 3 is 7 days.
  • the vehicle discharges 5 [kg] of CO2
  • the vehicle discharges 7 [kg] of CO2.
  • the vehicle emits 10 [kg] of CO 2.
  • the reference long-term collection plan table is created based on the collection cycle at each supply base 30.
  • modified long-term collection plan table created by modifying the standard long-term collection plan table will be described.
  • the first example of the modified long-term collection plan table is shown in Table 7 below.
  • Table 7 is a modified long-term recovery plan table when the vehicle recovers hydrogen every 5 days from hydrogen tanks installed at all supply bases 30.
  • Table 8 is a modified long-term recovery plan table when the vehicle recovers hydrogen every 7 days from hydrogen tanks installed at all supply bases 30.
  • the reference long-term recovery plan table shown in Table 6 and the modified long-term recovery plan table shown in Table 7 have the same amount of hydrogen recovery. For this reason, the modified long-term recovery plan table shown in Table 7 shows better results in hydrogen recovery than the modified long-term recovery plan table shown in Table 6.
  • the number of collections (9 times) shown in the standard long-term collection plan table shown in Table 8 is the number of collections (27 times) shown in the standard long-term collection plan table shown in Table 6 and the modified long-term shown in Table 7. Significantly less than the number of collections (13) shown in the collection plan table. Therefore, the hydrogen recovery amount (2700 [l]) shown in the reference long-term recovery plan table shown in Table 8 is larger than the hydrogen recovery amount (3302 [l]) shown in the modified long-term recovery plan table shown in Table 7. Significantly less (see Table 9).
  • the hydrogen recovery plan creation unit 102 is shown in Table 7.
  • the long-term collection plan to be implemented in S200 is finally determined.
  • the hydrogen recovery plan creation unit 102 can create a modified long-term recovery plan table using a deterministic algorithm or genetic algorithm, as in the procedure for creating a modified long-term delivery plan table (see FIG. 7).
  • the hydrogen collection plan creation unit 102 applies the vehicle based on the result of solving the traveling salesman problem in order to create the one-day collection plan table as in the long-term delivery plan table.
  • the order of passing through the supply base 30 is determined with respect to the supply base 30 passing through on the date.
  • the delivery request is a request for designating the date and time when hydrogen is delivered from the demand base 40, and is a request designated by the administrator of the demand base 40.
  • the collection request is a request for designating the date and time when hydrogen is collected from the supply base 30 and is a request designated by the administrator of the supply base 30.
  • the delivery plan / collection plan adjustment unit 103 adjusts the modified long-term delivery plan table in accordance with a delivery request that designates delivery date and time in the format shown in Table 10 (a) will be described.
  • the modified long-term delivery plan table employed at the present time is the table shown in Table 4.
  • An example of the adjustment process of the long-term delivery plan is shown in Table 11 below.
  • the delivery plan / collection plan adjustment unit 103 In order to create a modified long-term delivery plan table that targets delivery schedules after June 13 specified in the delivery request shown in Table 10 (a), the delivery plan / collection plan adjustment unit 103 at a predetermined delivery period of 13 days after (cycle storage amount is not insufficient in the hydrogen tank), a scheduled delivery in demand bases D 1, anew specified at the present modification prolonged delivery plan table.
  • This designated delivery schedule corresponds to the black circle in Table 11.
  • June 13 days after the scheduled delivery date of the demand base D 1 is, June 15, June 19, June 24, Sun, June 28, July 3, July 7, July 12, July 16, July 21, July 25, July 30 (4-day or 5-day cycle) It is.
  • Table 11 in the modified long-term delivery plan table after the adjustment, June of 13 days after the scheduled delivery date of the demand base D 1, 6 January 13, June 20, June 27 , July 4, July 11, July 18, and July 25 (6-day cycle).
  • the delivery plan / collection plan adjustment unit 103 performs the procedure shown in FIG. 7 on the modified long-term delivery plan table shown in Table 11. by apply, on the premise that meet the delivery request that delivery date is specified, the scheduled delivery date of the demand base D 1 was as much as possible in accordance with the scheduled delivery date in the other of the demand base, modified after the final adjustment long-term delivery plan You can create a table.
  • the number of deliveries (15 times) in delivery along the adjusted long-term delivery plan table shown in Table 12 is the number of deliveries in delivery along the long-term delivery plan table in the middle of adjustment shown in Table 11 (20 times). ) Can be less. That is, the number of deliveries (15 times) in the delivery according to the adjusted long-term delivery plan table shown in Table 12 is 15 times the delivery number (14 times) in the long-term delivery plan table before the adjustment shown in Table 4. It can be suppressed to one increase.
  • the CO2 emission amount (122 [kg]) in the delivery according to the adjusted long-term delivery plan table shown in Table 12 satisfies the delivery request designating the delivery date and time, and before the adjustment shown in Table 4 Can be suppressed to an increase of 3 [kg] with respect to the CO2 emission amount (119 [kg]) in the delivery according to the long-term delivery plan table.
  • the delivery plan / collection plan adjustment unit 103 of the hydrogen transport plan creation device 10 acquires the upper limit value of the hydrogen load amount in the vehicle transporting hydrogen from the transport base 20 from the vehicle DB 108, and based on this upper limit value, It can be determined whether the vehicle can transport hydrogen, and based on the determination result, at least one of the delivery plan and the recovery plan can be adjusted so that the vehicle can transport hydrogen.
  • the delivery plan / recovery plan adjustment unit 103 adjusts the delivery plan and the recovery plan in order to reduce CO2 emissions during delivery and recovery when a single vehicle delivers and recovers hydrogen on the same day. It can. For example, on the same day, the same vehicle can collect and deliver hydrogen on the same day, and the total distance of the movement route and the movement route on the same day can be reduced.
  • the delivery plan / collection plan adjustment unit 103 can adjust the delivery plan and the collection plan so that the total of the CO2 emission amount in the collection and the CO2 emission amount in the collection is reduced.
  • FIG. 8 is a diagram illustrating an example of a drawing screen on the terminal of the transportation base by the hydrogen transportation plan creation device in the embodiment.
  • the long-term delivery plan received from the hydrogen transport plan creation device 10 to the transport base is displayed in a table format on the terminal of the transport base.
  • operator of the vehicle in a transport base can confirm a display result.
  • the modified long-term delivery plan currently implemented (see Table 4) and the reference long-term delivery plan as a comparison target (see Table 2) may be displayed together on the terminal. Only the plan may be displayed on the terminal.
  • the transportation base manager performs an operation for clicking the delivery schedule column in the modified long-term delivery plan table, so that the delivery route (see FIG. 4)
  • the order of delivery in the daily delivery plan may be displayed (see FIG. 8).
  • the hydrogen transport plan creation device 10 obtains the next delivery schedule date shown in the modified long-term delivery plan from the current date for each demand site, and keeps the demand site up to the day before this delivery schedule date. May notify the mobile terminal 50 owned by the vehicle driver of a demand base control message indicating that hydrogen is not replenished.
  • the hydrogen transport plan creation device can minimize the overall CO2 emission accompanying power generation using a power generation device using hydrogen as fuel.
  • the hydrogen delivery plan creation unit 101 uses the demand base measurement data stored in the demand base result DB 107 to calculate the amount of hydrogen used per day at each demand base 40 according to statistics.
  • a long-term delivery plan table is created based on the estimation result using a method used in computer learning or machine learning.
  • the hydrogen recovery plan creation unit 102 uses the supply base measurement data in the supply base result DB 106 and uses the technique used in statistics, machine learning, etc. for the amount of hydrogen produced at each supply base 30. Estimate and create a long-term collection plan based on the estimation results.
  • the amount of hydrogen per day used at the demand base 40 and the amount of hydrogen produced per day at the supply base 30 changes depending on the weather, day of the week, etc., it is used at each demand base 40 per day.
  • the amount of hydrogen to be produced and the amount of hydrogen produced at each supply base 30 can be determined appropriately, and the correct long-term delivery plan table and long-term recovery plan table can be created.
  • the vehicle that transports hydrogen departs from the transportation base 20 and supplies hydrogen. While the vehicle is being transported, the demand base 40 and the supply base 30 scheduled to visit the vehicle in the daily delivery plan table and the daily collection plan table are changed as a whole by reviewing the transportation plan, and the hydrogen transportation plan DB 109.
  • the one-day delivery plan table, the one-day collection plan table, the modified long-term delivery plan table, and the modified long-term collection plan table stored in the table may be changed.
  • the hydrogen transport plan creation device 10 notifies the mobile terminal 50 possessed by the driver of the vehicle that is transporting hydrogen that the demand base 40 or the supply base 30 scheduled to be visited has been changed.
  • the hydrogen transport plan creation device 10 displays a necessary plan table among the changed daily delivery plan table, daily recovery plan table, modified long-term delivery plan table, and modified long-term collection plan table for the vehicle that is transporting hydrogen.
  • the mobile terminal 50 owned by the driver is notified. Thereby, the driver of the vehicle that is transporting hydrogen can sequentially grasp that the demand base 40 and the supply base 30 that are scheduled to be visited are changed due to the review of the transportation plan as a whole.
  • the delivery plan / recovery plan adjustment unit 103 is based on the working mode of the driver who transports the hydrogen from the transportation base 20, for example, working hours and working days so as not to overlap these working hours and the dates outside the working days.
  • the one-day delivery plan table, the one-day collection plan table, the modified long-term delivery plan table, and the modified long-term collection plan table can be adjusted.
  • DESCRIPTION OF SYMBOLS 10 Hydrogen transport plan preparation apparatus, 11, 21, 31, 41 ... Transmission / reception apparatus, 12, 22 ... General-purpose computer, 20 ... Transport base, 23 ... Hydrogen storage apparatus, 30 ... Supply base, 32, 42 ... Data server, 33 , 43-1, 43-2, 43-3 ... measuring instrument, 34 ... hydrogen production device, 40 ... demand base, 44 ... fuel cell device, 45 ... gas power generation device, 46 ... electrical equipment, 50 ... mobile terminal, DESCRIPTION OF SYMBOLS 101 ... Hydrogen delivery plan creation part, 102 ... Hydrogen recovery plan creation part, 103 ... Delivery plan / collection plan adjustment part, 104 ... CO2 emission amount calculation part, 105 ... Visualization process part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

実施形態における水素輸送計画作成装置は、(a)水素製造装置を有する供給拠点、(b)燃料電池装置を有する需要拠点、および(c)供給拠点から回収した水素、および、前記需要拠点に配送するための水素を貯蔵する輸送拠点の間における水素の輸送計画を作成する水素輸送計画作成装置であって、水素の輸送に伴って排出されるCO2の量が削減されるように、前記作成した水素の輸送計画を修正する。

Description

水素輸送計画作成装置および水素輸送計画作成方法
 本発明の実施形態は、水素輸送計画作成装置および水素輸送計画作成方法に関する。
 発電に伴うCO2(二酸化炭素)排出量が削減される方法の1つとして、水素を燃料とした発電装置、例えば燃料電池装置を使用する方法がある。燃料電池は定置で使用されることが多いため、この燃料電池が設置されている場所に水素が運ばれる必要がある。水素を運ぶ方法は、(1)配管を通して燃料電池の各設置場所に水素を運ぶ方法、(2)水素をボンベに貯蔵して、このボンベを燃料電池の各設置場所に運ぶ方法、(3)水素をタンクトレーラーに貯蔵して、タンクトレーラーを各燃料電池の設置場所に移動させて、この設置場所に設けられる貯蔵装置に水素を補給する方法などがある。
 都市ガスの配管のように、水素ガス用の配管が一帯に張り巡らされていれば、この配管を通して水素が燃料電池の設置場所に供給されることが可能である。しかし、現状では、都市ガスと水素ガスとを混合させることはできない。また、水素ガス用の配管を設置するための費用は非常に高い。よって、水素を運ぶ方法としては、上記の(2)の方法や、(3)の方法が現実的な方法である。
特許第4947252号公報 特許第3682876号公報
 水素を配送する車両がガソリン車であって、燃料電池装置で水素が使用されることによって削減できるCO2排出量よりも、水素を回収、配送をする際に車両から排出されるCO2の量が多いときは、燃料電池装置を使用しない方がCO2排出量を小さくできる。
 また、水素を配送する車両が燃料電池車であったとしても、水素の配送時に使用する燃料電池車による水素使用量が多すぎると、配送先である燃料電池装置に使用できる水素が減り、この燃料電池装置で水素を使用することによって削減できるCO2排出量が減る。この場合、全体的なCO2削減量が少なくなってしまう可能性がある。
 本発明が解決しようとする課題は、水素を燃料とした発電装置を用いた発電に伴う全体的なCO2排出量を最小化することが可能な水素輸送計画作成装置および水素輸送計画作成方法を提供することである。
 実施形態における水素輸送計画作成装置は、(a)水素製造装置を有する供給拠点、(b)水素によって発電する燃料電池装置を有する需要拠点、および(c)前記供給拠点から回収した水素、および、前記需要拠点に配送するための水素を貯蔵する水素貯蔵装置を有する輸送拠点の間における水素の輸送計画を作成する水素輸送計画作成装置であって、水素の輸送に伴って排出されるCO2の量が削減されるように、前記作成した水素の輸送計画を修正する。
 本発明によれば、水素を燃料とした発電装置を用いた発電に伴う全体的なCO2排出量を最小化することができる。
図1は、実施形態における水素輸送計画作成装置を含む水素輸送システムの構成の一例を示すブロック図である。 図2は、実施形態における水素輸送計画作成装置の機能構成例を示すブロック図である。 図3は、実施形態における水素の配送と回収の概要の一例を示す図である。 図4は、実施形態における水素の配送経路の一例を示す図である。 図5は、実施形態における水素輸送計画作成装置の基本の動作の一例を示すフローチャートである。 図6は、実施形態における水素輸送計画作成装置による、基準長期配送計画表と、修正長期配送計画表の作成手順の一例を示すフローチャートである。 図7は、実施形態における水素輸送計画作成装置による、決定論的な手続きによる修正長期配送計画表の作成手順の一例を示すフローチャートである。 図8は、実施形態における水素輸送計画作成装置による輸送拠点の端末への描画画面の一例を示す図である。
 以下、水素輸送計画作成装置および水素輸送計画作成方法における実施形態について図面を用いて説明する。 
 図1は、実施形態における水素輸送計画作成装置を含む水素輸送システムの構成の一例を示すブロック図である。 
 図1に示すように、水素輸送計画作成装置10は、送受信装置11および汎用計算機12を有する。送受信装置11は、供給拠点30から供給拠点計測データを受信し、需要拠点40から需要拠点計測データを受信する。供給拠点計測データおよび需要拠点計測データの詳細は後述する。供給拠点30は、水素を製造できる場所である。需要拠点40は、水素を使用する装置を有する場所である。
 また、水素輸送計画作成装置10の送受信装置11は、水素の1日配送計画表、1日回収計画表、長期配送計画表、および長期回収計画表を輸送拠点20に送信する。配送とは、車両が、輸送拠点20から他の場所、例えば需要拠点40へ水素が輸送ることである。回収とは、車両が、供給拠点30から他の場所、例えば輸送拠点20に水素を輸送することである。水素の回収と、配送とをあわせて輸送と称されることがある。また、送受信装置11は、水素を輸送する車両(単に車両と称されることがある)の運転士が所持する移動体端末50に1日配送計画表および1日回収計画表を送信する。
 輸送拠点20は、1日における水素の回収、配送を開始する車両が出発する場所、および、回収、配送を終えた車両が戻ってくる場所である。各車両は、車種や積載量上限などの車両特性を有する。車種は、ガソリン車、ディーゼル車、燃料電池車などである。各車両のそれぞれは、車両の走行距離や燃料使用量に対するCO2排出量が定格として定められる。
 輸送拠点20は、送受信装置21、汎用計算機22、水素貯蔵装置23を有する。送受信装置21は、水素輸送計画作成装置10から送信されたデータである、1日配送計画表、1日回収計画表、長期配送計画表、長期回収計画表を受信する。1日配送計画表、1日回収計画表、長期配送計画表、長期回収計画表の詳細は後述する。汎用計算機22は、送受信装置21により受信したデータを図示しない端末装置の画面上に描画する。水素貯蔵装置23は、供給拠点30から送られた水素を必要に応じて例えば一時的に貯蔵する。
 上記の供給拠点30は、送受信装置31、データサーバ32、計測器33、水素製造装置34を有する。水素製造装置34は水素を製造する。計測器33は、水素製造過程、例えば水素製造量のデータを計測する。 
 データサーバ32は、不揮発性メモリなどの記憶装置を含む。計測器33により計測されたデータは、データサーバ32に蓄積される。
 一定周期毎、例えば1時間毎に、送受信装置31は、データサーバ32に蓄積されたデータを水素輸送計画作成装置10に送信する。また、水素輸送計画作成装置10からデータ送信が要求された場合に、送受信装置31は、計測器33により計測されたデータである供給拠点計測データを水素輸送計画作成装置10に送信する。
 上記の需要拠点40は、送受信装置41、データサーバ42、計測器43-1,43-2,43-3を有する。 
 また、需要拠点40には、水素によって発電する燃料電池装置44、ガスによって発電するガス発電装置45、通常の電力系統からの電気を用いる電気機器46が設置される。計測器43-1は燃料電池装置44の使用状況、例えば水素使用量を計測する。計測器43-2は、ガス発電装置45の使用状況、例えばガス使用量を計測する。計測器43-3は、電気機器46の使用状況、例えば消費電力量を計測する。
 データサーバ42は、不揮発性メモリなどの記憶装置を含む。計測器43-1,43-2,43-3が計測したデータはデータサーバ42に蓄積される。一定周期毎、例えば1時間毎に、送受信装置41は、データサーバ42に蓄積されたデータを水素輸送計画作成装置10に送信する。また、水素輸送計画作成装置10からデータ送信が要求された場合に、送受信装置41は、計測器43-1,43-2,43-3により計測されたデータである需要拠点計測データを水素輸送計画作成装置10に送信する。 
 供給拠点計測データおよび需要拠点計測データに基づいて、水素輸送計画作成装置10は、水素の配送計画と、水素の回収計画と、各計画に対して、車両から排出されるCO2の量であるCO2排出量とを計算する。
 図2は、実施形態における水素輸送計画作成装置の機能構成例を示すブロック図である。 
 図2に示すように、水素輸送計画作成装置10は、水素配送計画作成部101、水素回収計画作成部102、配送計画・回収計画調整部103、CO2排出量算出部104、可視化処理部105、供給拠点実績DB106、需要拠点実績DB107、輸送車両DB108、水素輸送計画DB109を有する。これらは、汎用計算機12の各機能として実現できる。需要拠点実績DB107、輸送車両DB108、水素輸送計画DB109は、不揮発性メモリなどの記憶装置で実現される。
 水素配送計画作成部101は、1日配送計画表と、長期配送計画表とを作成する。詳しくは、水素配送計画作成部101は、需要拠点40において一時的に貯蔵される水素の量が不足しないように、一定期間先までの輸送拠点20から需要拠点40への水素の配送計画を、一定期間内の一部における需要拠点40において貯蔵される水素の量の実績に基づいて作成し、水素を需要拠点40に配送する車両から一定期間における配送に伴って排出されるCO2の量が削減されるように、作成した配送計画を修正する。水素配送計画作成部101の動作の詳細は後述する。
 1日配送計画表は、各需要拠点40に対する、水素の配送日時(1日)、配送日時に対応する1日の間に水素を配送する車両を識別するための車両番号と、配送日時に対応する1日の間に配送される水素の量と、配送日時に対応する1日の間に各需要拠点40を経由する順番(配送経路)とが記載された表である。また、長期配送計画表は、各需要拠点40に対する、一定期間、例えば2ヶ月先までの水素の配送予定日が記された表である。
 水素回収計画作成部102は、1日回収計画表と長期回収計画表とを作成する。詳しくは、水素回収計画作成部102は、供給拠点30において一時的に貯蔵される水素の量が過剰とならないように、一定期間先までの供給拠点30から輸送拠点20への水素の回収計画を、一定期間内の一部における供給拠点30において貯蔵される水素の量の実績に基づいて作成し、水素を供給拠点30から回収する車両から一定期間における回収に伴って排出されるCO2の量が削減されるように、作成した回収計画を修正する。水素回収計画作成部102の動作の詳細は後述する。
 1日回収計画表は、各供給拠点30に対する、水素の回収日時(1日)、回収日時に対応する1日の間に水素を回収する車両を識別するための車両番号と、回収日時に対応する1日の間に回収する水素量と、回収日時に対応する1日の間に各供給拠点30を経由する順番(回収経路)とが記載された表である。長期回収計画表は、各供給拠点30に対する、一定期間、例えば2ヶ月先までの水素の回収予定日が記された表である。
 配送計画・回収計画調整部103は、水素配送計画作成部101が作成した1日配送計画表、長期配送計画表、および、水素回収計画作成部102が作成した1日回収計画表、長期回収計画表に対して、日付などが指定される配送要求や回収要求を満たすための調整を行なったり、同一の車両で水素の配送と回収とを行なうための調整を行なったりする。
 輸送車両DB108は、水素の配送と回収に用いる車両の実績走行距離のデータと、車両の燃料使用量、この燃料使用量に基づくCO2排出量のデータと、車両の水素積載量上限のデータ等とを取得して、これらを蓄積する。これらのデータは、水素の配送と回収に用いられる車両との通信により取得されてもよいし、水素輸送計画作成装置10の汎用計算機12への入力操作により取得されてもよい。
 CO2排出量算出部104は、水素配送計画作成部101で作成した1日配送計画および長期作成計画と、水素回収計画作成部102で作成した1日回収計画および長期回収計画とに対して、車両が水素の配送および回収を行なう際におけるCO2排出量を、1日配送計画や1日回収計画で示される経路の距離と、車両DB108に蓄積される、車両の走行距離や燃料使用量に基づくCO2排出量とに基づいて計算する。
 可視化処理部105は、ディスプレイ装置を含み、水素配送計画作成部101が作成した1日配送計画表、長期配送計画表、および、水素回収計画作成部102が作成した1日回収計画表、長期回収計画表をディスプレイ装置の画面上に表示する。
 供給拠点実績DB106は、供給拠点30から供給拠点計測データを取得して、これを蓄積する。 
 需要拠点実績DB107は、需要拠点40から需要拠点計測データを取得して、これを蓄積する。
 水素輸送計画DB109は、水素配送計画作成部101で作成した1日配送計画表、長期配送計画表、および、水素回収計画作成部102が作成した1日回収計画表、長期回収計画表を蓄積する。また、水素輸送計画DB109は、CO2排出量算出部104がCO2排出量を計算するために使用するデータ(水素を輸送するために車両が移動することに伴って発生するコストのデータ)を保存する。
 図3は、実施形態における水素の配送と回収の概要の一例を示す図である。図4は、実施形態における水素の配送経路の一例を示す図である。 
 図3に示した例では、供給拠点30、需要拠点40、および輸送拠点20が、それぞれ異なる場所に配置されるが、同じとみなせる場所に供給拠点30、需要拠点40、輸送拠点20のうち2種類以上の拠点があわせて配置されることもある。
 図4に示すように、水素の配送の形態は、供給拠点30で製造された水素を回収し終えた車両が、輸送拠点20を出発してから1つ以上の需要拠点40を経由して配送しながら、元の輸送拠点20まで戻る形態であると仮定する。また、水素の回収の形態は、車両が、輸送拠点20を出発してから1つ以上の供給拠点30を経由して、この供給拠点30で製造された水素を回収しながら、元の輸送拠点20まで戻る形態であると仮定する。
 次に水素の配送を例にして、水素の配送計画について説明する。上記のように、配送計画は、1日で、車両が、どの需要拠点40に水素を配送するかを計画した1日配送計画と、一定期間先(例えば、2ヶ月先)まで、いつ、どの需要拠点40に水素を配送するかを定めた長期配送計画とを含む。 
 同様に、上記のように、水素の回収計画は、1日で、車両が、どの供給拠点30から水素を回収するが計画された1日回収計画と、一定期間先(例えば、2ヶ月先)まで、いつ、どの供給拠点30から水素を回収するかを定めた長期回収計画とを含む。水素輸送計画作成装置10は、これらの計画を作成する。
 図5は、実施形態における水素輸送計画作成装置の基本の動作の一例を示すフローチャートである。 
 水素輸送計画作成装置10は、一定周期、例えば1日おきに起動する。水素輸送計画作成装置10は、当日に実施される水素配送計画(長期配送計画)と水素回収計画(長期回収計画)とを選択し、これら選択した計画を、輸送拠点20と、輸送車両の運転士が所持する移動体端末50とに送信する(S100、S200)。その際、需要拠点40からの配送要求や、供給拠点30からの回収要求が発生することがある。
 配送要求とは、例えば、需要拠点40において使用したい水素が足りない、または需要拠点40において通常時よりも水素を多く使いたい等の理由で当該需要拠点40への水素の配送を求める要求である。回収要求とは、例えば、供給拠点30において、当該供給拠点30で製造された水素を一時的に貯蔵するための水素タンク(水素貯蔵設備)における水素の貯蔵量が限界に達しており、供給拠点30で、さらに水素を製造できない等の理由で当該供給拠点30への水素の回収を求める要求である。
 配送要求や回収要求が発生した場合は、水素輸送計画作成装置10は、これらの要求を受信し(S300)、これらの要求に応じるように、長期配送計画表と長期回収計画表とを調整し(S400)、調整した各計画表を可視化処理部105の画面上に描画する。水素輸送計画作成装置10は、この描画された計画表からオペレータが所定の操作により選択された計画表を輸送拠点20や移動体端末50に送信する。
 次に、図5におけるS100に関わる、水素の長期配送計画の選択方法について説明する。 
 1日配送計画表の一例を以下の表1に示す。 
Figure JPOXMLDOC01-appb-T000001
 この1日配送計画表は、水素の配送日、車両番号、各需要拠点への水素の配送量、各需要拠点のそれぞれに対する訪問の順番を示す配送経路(表1(a)参照)、各需要拠点への車両の推奨到着時刻(表1(b)参照)が示される。なお、1日配送計画表に示す事項はこの限りではない。
 水素を配送するための車両の運転士は、1日配送計画表を確認することで、いつ、どの車両で、どの需要拠点40に、どれだけの量の水素を、どの経路で配送すればよいかを知ることができる。また、1日配送計画表に車両の推奨到着時刻が記載されていれば、運転士は、この時刻を水素を配送するときの目安に用いることができる。
 次に、1日配送計画表における配送経路について説明する。 
 図4における、1つ目の拠点から2つ目の拠点にかけて結んだ矢印は、この矢印の方向に沿って水素配送用の車両が移動することを示す。図4では、車両が4つの拠点(輸送拠点20が1つ(輸送拠点C)、需要拠点40が3つ(需要拠点D、D、D))を1回ずつ経由する順路は、全部で(4-1)!=6通りである。
 各拠点から拠点へ車両が移動するためにはコストが発生すると仮定し、コストが最小になる経路が1日配送計画表における配送経路として選択されると仮定する。このコストが最小になる経路を見つける問題は、オペレーションズ・リサーチの分野で巡回セールスマン問題と呼ばれ、この問題の様々な解法が知られる。この巡回セールスマン問題は、市販の最適化汎用ソルバを使うことで解かれることができる。
 車両が一般的な車両であれば、移動におけるコストは車両の移動距離にほぼ比例する。このため、水素輸送計画作成装置10のCO2排出量算出部104は、各拠点間の移動距離に対して係数を掛けることによって、コストを、各拠点間の車両の移動にかかるCO2排出量に変換できる。このCO2排出量の計算結果は水素輸送計画DB109に保存される。
 次に長期配送計画について説明する。各日において、車両が需要拠点40に水素を運ぶかどうかが表形式で示された基準長期配送計画表の一例を、以下の表2に示す。 
Figure JPOXMLDOC01-appb-T000002
 簡単化のため、表2では、需要拠点40の数は3であるとして説明する。例えば、表2において、6月1日において、需要拠点D、D、Dの欄および配送予定の欄に丸印が設定され、6月2日において各需要拠点および配送予定の欄に丸印は設定されない。これは、6月1日に需要拠点D、D、Dに水素が配送される予定であり、6月2日は、いずれの需要拠点にも水素が配送されない予定であることを示す。基準長期配送計画表における各日の列において、需要拠点D、D、Dの欄のいずれか1つ以上の欄に丸印が設定されていれば、同じ列の配送予定の欄に丸印が設定される。また、基準長期配送計画表における各日の列において、需要拠点D、D、Dの欄のすべての欄に丸印が設定されていなければ、同じ列の配送予定の欄に丸印は設定されない。長期配送計画表が作成されるにあたり、水素輸送計画作成装置10は、まず、各需要拠点40での1日当たりの水素使用量を見積もる。 
 需要拠点計測データの一例を以下の表3に示す。 
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、需要拠点計測データは、各需要拠点40に設置されて、車両から配送された水素を一時的に貯蔵する水素タンク(図示せず)に貯蔵される水素の残量(実績水素残量および推定水素残量)を日付ごとに示したデータである。需要拠点計測データは、水素輸送計画作成装置10の需要拠点実績DB107に蓄積される。
 この需要拠点計測データにおける実績水素残量は、水素タンクでの水素の満貯蔵量を100%とした場合の、水素タンクでの、各日における水素の残量である。表3に示した例では、実績水素残量は、需要拠点Dでの計測データから直接計測された、または他の計測データから推定された値であると定義する。
 各需要拠点について、例えば表3に示された需要拠点計測データにおける、需要拠点Dに設置される水素タンクの、6月1日から6月3日までの実績水素残量に基づいて、水素輸送計画作成装置10の水素配送計画作成部101は、この水素タンクの、6月4日以降の各日の推定水素残量を求めて、需要拠点Dにおいて、いつ水素が不足するか、つまり推定水素残量が負の値になるかを算出できる。
 表3に示された例では、6月1日から6月3日にかけて、需要拠点Dに設置される水素タンクの実績水素残量が1日あたり満貯蔵量の13%ずつ減少している。つまり、水素配送計画作成部101は、需要拠点Dに設置される水素タンクにおける、6月4日以降の各日の水素使用量は満貯蔵量の13%であると推定して、この水素使用量に基づいて、需要拠点Dに設置される水素タンクにおける、各日の推定水素残量を求めることができる。他の需要拠点についても同様である。
 各需要拠点での各日の水素使用量は、需要拠点Dなどの各需要拠点に設置される機器のスペック、季節性、燃料電池装置44の使い方によって変化する可能性がある。このため、水素輸送計画作成装置10は、通常は、複数のデータを用いて回帰式を作成し、各需要拠点に設置される水素タンクに貯蔵される水素の残量が0以下になる日付を求めることで、いつ水素が不足するかを求める方法などを用いる。本実施形態では、水素輸送計画作成装置10は、既存の手法を用いて水素タンクの残量を推定できる。
 表3に示された例では、需要拠点Dに設置される水素タンクの推定水素残量が6月9日の時点で負の値になるため、この6月9日に該当の水素タンクでの水素が不足することが示される。そこで、この水素タンクに貯蔵される水素が不足しないようにするためには、需要拠点Dに設置される水素タンクに、水素が前日の6月8日に補給される必要がある。以後も、需要拠点Dでの水素使用量に関して同様の傾向がある、つまり、以後も需要拠点Dでの各日での推定水素残量の減少が同様であると仮定すれば、需要拠点Dに設置される水素タンクに水素が補給される周期は7日である。
 同様に、それぞれの需要拠点40(例えば需要拠点D、D)で使用される、1日当たりの水素使用量が各日でほぼ一定であると仮定すると、各需要拠点40に対しては水素タンクに貯蔵される水素が不足しないように、それぞれの周期で各需要拠点40に水素が運ばれる必要がある。
 表2に示した例では、各需要拠点に設置される水素タンクに貯蔵される水素が不足しないように、需要拠点Dに設置される水素タンクには長くとも7日ごと、需要拠点Dに設置される水素タンクには長くとも5日ごと、需要拠点Dに設置される水素タンクには長くとも9日ごとに水素が補充されなければならないことが示される。表2に示した丸印は、水素が補充されることが必要な日付を示す。
 車両が、各需要拠点40に対して決められた周期で水素が配送される場合は、車両は、長期配送計画表にて丸印が設定される日に供給拠点30から水素を運び出さなければならない。表2に示された基準長期配送計画表にて、同じ日に複数の需要拠点の欄に対して丸印が設定される記載は、この日に、これら複数の需要拠点40に水素が運ばれなければならないことを示す。本実施形態では、上記の基準長期配送計画表は、各需要拠点40に対して、水素が不足しないようにすることを考慮して、需要拠点ごとに定めた周期で所定日数にわたる水素の配送が計画された表である。
 表2では、6月と7月で、需要拠点D、D、Dに対し、水素が合計25回にわたって配送されなければならない。1日に需要拠点D、D、Dの少なくとも1つに対し水素が配送される場合は、この1日における配送先の需要拠点の数に関わらず、配送回数は1回である。
 配送に伴うCO2排出量は、水素の輸送先である需要拠点の数に応じて変化する。表2に示した例では、水素が各需要拠点のいずれかに25回(25日間の各日)配送される必要がある。水素が配送される機会が多いと、配送の回数に応じてCO2排出量が増大する可能性がある。このため、表2に示した長期配送計画に沿って水素が配送されることは、CO2排出量の観点から必ずしも最適ではない。
 ここで、基準長期配送計画表を修正した修正長期配送計画表の一例を以下の表4に示す。 
Figure JPOXMLDOC01-appb-T000004
 表2に示した例と同じ需要拠点(需要拠点D、D、D)で、各需要拠点の少なくとも1つにおいて、水素が配送される周期を短くすることが可能である場合は、基準長期配送計画表で示される期間内におけるCO2排出量を削減するために、水素輸送計画作成装置10は、基準長期配送計画表を修正することで修正長期配送計画表を作成する。
 表4では、1日の間に複数の需要拠点に対して水素がなるべく1回で配送される場合の例である。表4に示した例では、各需要拠点のうち需要拠点D、Dについては、水素が配送される周期は一定ではなくなる(5日または4日ごとに配送)。 
 しかし、少なくとも需要拠点D、Dに対して、水素が配送される日付が揃うことにより、表2に示した例と比べて、需要拠点D、D、Dのいずれかについて水素が配送される回数が14回(14日間の各日)に減少する。各需要拠点40では、表2に示した例でも表4に示した例でも水素は不足しない。また、表2に示した例でも表4に示した例でも、各需要拠点40における水素の使用量は同じであるため、需要拠点40全体での一定期間におけるCO2排出量の合計値は同じである。
 表4に示した修正長期配送計画表にしたがった配送では、表2に示した基準長期配送計画表にしたがった配送より、各需要拠点への水素の配送時におけるCO2排出量が少ない。各需要拠点40への水素の配送時におけるCO2排出量は、配送のために車両が走行しているときにおけるCO2排出量と、輸送拠点20や各需要拠点40に車両が停止しているときにおけるCO2排出量とを含む。
 次に、各需要拠点への水素の配送時におけるCO2排出量の算出方法について述べる。どの日に、どの需要拠点に水素が配送されればよいかは、長期配送計画表から知られる。例えば、表2に示した基準長期配送計画表において、6月1日は3か所の需要拠点の全ての欄に丸印が設定されるため、すべての需要拠点40に水素が配送されることを意味する。 
 配送先の需要拠点が3か所である場合は、輸送拠点20から各需要拠点40を配送車両が経由する経路の組合せが全部で6通りである、水素輸送計画作成装置10は、その中で最もCO2排出量が小さい経路を実際の配送のための経路として選択すればよい。選択の方法としては、水素輸送計画作成装置10は、例えば、表1で配送経路が決められたように巡回セールスマン問題を解くことによって、コストが最小である経路を選択すればよい。
 また、需要拠点40がN箇所ある場合には、これらの需要拠点40を訪問するか否かによって、上記の経路は2N通りの組合せがある。この場合、水素輸送計画作成装置10は、2N通りの経路のそれぞれケースにおけるCO2排出量を予め計算し、それぞれの経路のうち、CO2排出量が最も少ない経路を決めて、この経路の情報を輸送車両DB108に記録する。
 上記の巡回セールスマン問題を予め解いた結果から、例えば、1日の間に、需要拠点D、D、Dのうち1つの需要拠点のみに水素が配送される場合には、1日で5kgのCO2を車両が排出すると仮定する。また、1日の間に、需要拠点D、D、Dのうち2つの需要拠点のみに水素が配送される場合には、1日で7kgのCO2を車両が排出すると仮定する。また、1日の間に3つの需要拠点(需要拠点D、D、D)のすべてに水素が配送される場合には、1日で10kgのCO2を車両が排出すると仮定する。
 この場合、表2に示した基準長期配送計画表に基づいて、車両は、6月1日から7月31日までの間に合計で134(=5×22+7×2+10×1)[kg]のCO2を排出する。また、表4に示した修正長期配送計画表に基づいて、車両は、6月1日から7月31日までの間に合計で119(=7×7+10×7)kgのCO2を排出する。 
 このように、修正長期配送計画表における、一定期間(例えば2か月間)でのCO2排出量は、基準長期配送計画表に基づく同一期間でのCO2排出量より少ない。
 次に、基準長期配送計画表と、これを修正した修正長期配送計画の作成方法について述べる。
 図6は、実施形態における水素輸送計画作成装置による、基準長期配送計画表と、修正長期配送計画表の作成手順の一例を示すフローチャートである。 
 まず、水素輸送計画作成装置10の水素配送計画作成部101は、各需要拠点の需要拠点計測データに基づいて、基準長期配送計画表を作成するために必要な、各需要拠点40に対する水素の配送周期を決定し、この配送周期を水素輸送計画DB109に保存する(S110)。
 S110で決定した、各需要拠点40に対する配送周期をもとに、水素配送計画作成部101は、基準日(例えば一定期間の初日)から当該配送周期に沿った各配送予定日に丸印を設定した基準長期配送計画表を作成する。水素配送計画作成部101は、この基準長期配送計画表に基づくCO2排出量を算出し、これら基準長期配送計画表とCO2排出量の算出結果を水素輸送計画DB109に保存する(S120)。
 S120で求めた基準長期配送計画表を基に、水素配送計画作成部101は、この基準長期配送計画表を修正した修正長期配送計画を複数作成する。水素配送計画作成部101は、作成したそれぞれの修正長期配送計画に基づくCO2排出量を算出し、修正長期配送計画表とCO2排出量の算出結果とを水素輸送計画DB109に保存する(S130)。
 水素配送計画作成部101は、水素輸送計画DB109に保存してある複数の修正長期配送計画表の中からCO2排出量が最も少ない修正長期配送計画表を選択し、この選択した修正長期配送計画表に示される配送計画を、実施する配送計画の候補として選択する(S140)。
 次に、上記のS130で説明した、修正長期配送計画表の作成について説明する。図7は、実施形態における水素輸送計画作成装置による、決定論的な手続きによる修正長期配送計画表を作成手順の一例を示すフローチャートである。これ以外にも修正長期配送計画表は、遺伝的アルゴリズム等のメタヒューリスティック法で作成されてもよい。
 まず、水素配送計画作成部101は、Nを1に設定する(S130a)。水素配送計画作成部101は、基準配送計画表の中でN日違いの配送日がある場合、この配送日を1日前倒しするように基準配送計画表を修正する。水素配送計画作成部101は、基準配送計画表における、この前倒しした日以降の各配送日も1日前倒しするように基準配送計画表を修正する(S130b)。
 S130bで修正した基準配送計画表においてN日違いの配送日がある場合(S130bのNo)、S130bに戻る。また、S130bで修正した基準配送計画表においてN日違いの配送日がなくなった場合(S130bのYes)、水素配送計画作成部101は、全需要拠点に対して、S130bで修正した基準配送計画表における、次の配送予定日までに配送日を1日延ばすことができる場合、すべての需要拠点の配送日を1日後倒しするように、S130bで修正した基準配送計画表をさらに修正することで修正配送計画表を作成する(S130d)。
 水素配送計画作成部101は、作成した修正配送計画表にしたがった、各需要拠点におけるCO2排出量の合計値を算出し、この算出結果と、上記の作成した修正配送計画表とを水素輸送計画DB109に保存する(S130e)。
 そして、S130aで設定したNが配送周期の最大値でない場合(S130fのNo)、水素配送計画作成部101は、このNに1を加算して、S130bに戻る。 
 また、S130aで設定したNが配送周期の最大値である場合(S130fのYes)、水素配送計画作成部101は、S130の処理を終了する。これにより、修正長期配送計画表の作成が終了する。
 本実施形態では、3つの需要拠点40(需要拠点D、D、D)に対する修正長期配送計画表が作成される例を示した。しかし、需要拠点40の数が1000単位になると、すべての需要拠点40に対して上記方法を適用しても、水素配送計画作成部101は、修正長期配送計画表を作成することは困難である。
 この場合、水素配送計画作成部101は、各需要拠点40での配送の周期や需要拠点40の位置によって各需要拠点40に対応する基準長期配送計画表をクラスタリングする。水素配送計画作成部101は、各クラスタについて上記の図7に示した方法を適用することで、修正長期配送計画表を作成し、この作成した水素輸送計画DB109に結果を記録する。上記のクラスタリングは、基準長期回収計画表で示される期間内におけるCO2排出量を削減するための、基準長期回収計画表を修正することによる修正長期回収計画表の作成にも適用できる。
 次に、上記の図5のS200で示した、水素の回収計画について説明する。水素の配送と同様に長期回収計画表を作成するために、水素回収計画作成部102は、供給拠点30に設置される水素タンク(図示せず)に、1日当たりにどれだけ水素が溜り、何日で水素タンクにおける水素の貯蔵率が100%になるかを見積もる。供給拠点30に設置される水素タンクは、供給拠点30で製造された水素を一時的に貯蔵する。
 供給拠点計測データの一例について以下の表5に示す。 
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、供給拠点計測データは、各供給拠点30に設置され水素タンクに貯蔵される水素の量(累積製造量および推定累積製造量)を日付ごとに示したものであり、水素輸送計画作成装置10の供給拠点実績DB106に蓄積される。
 この供給拠点計測データにおける累積製造量は、水素タンクでの水素の満貯蔵量を100%とした場合の、水素タンクでの各日付における水素の貯蔵量である。表5に示した例では、累積製造量は、供給拠点Sでの計測データから直接計測された、または他の計測データから推定された値と仮定する。
 各供給拠点について、例えば表5に示した供給拠点計測データにおける、供給拠点Sに設置される水素タンクの、6月1日から6月3日までの累積製造量に基づいて、水素輸送計画作成装置10の水素回収計画作成部102は、この水素タンクの、6月4日以降の各日の推定累積製造量を求めて、供給拠点Sにおいて、いつ水素が満タンになるか、つまり推定累積製造量が100[%]になるかを算出できる。
 表5に示した例では、6月1日から6月3日にかけて、供給拠点Sに設置される水素タンクの累積製造量が1日あたり満貯蔵量の20%ずつ増加する。つまり、水素回収計画作成部102は、供給拠点Sに設置される水素タンクにおける、6月4日以降の各日の水素製造量は満貯蔵量の20%であると推定し、この水素製造量に基づいて、供給拠点Sに設置される水素タンクにおける、各日の推定累積製造量を求めることができる。他の供給拠点についても同様である。
 各供給拠点での各日の水素製造量は、供給拠点Sなどの各供給拠点に設置される機器のスペック、季節性、水素製造装置34の使い方によって変化する可能性がある。このため、通常は、水素輸送計画作成装置10は、複数のデータを用いて回帰式を作成し、各供給拠点に設置される水素タンクにおける水素の貯蔵量が100[%]になる日付を求めることで、いつ水素が満タンとなるかを求める方法などを用いる。本実施形態では、水素輸送計画作成装置10は、既存の手法を用いて水素タンクの貯蔵量を推定できる。
 表5に示した例では、供給拠点Sに設置される水素タンクの推定累積製造量が6月6日の時点で100[%]になるため、この6月6日に該当の水素タンクでの水素が満タンになることが示される。このように、ある供給拠点の水素タンクが満タンになると、これ以上は水素を貯蔵できないため、この供給拠点でさらに製造した水素が捨てられる必要がある。そのため、供給拠点Sに設置される水素タンクから6月6日に水素が回収される必要がある。これによって、以後も供給拠点Sでの水素製造量に関して同様の傾向がある、つまり、以後も供給拠点Sでの各日での推定製造量の増加が同様であると仮定すれば、供給拠点Sに設置される水素タンクからの水素の回収周期は5日である。
 同様にして、それぞれの供給拠点30(例えば供給拠点S、S)で製造される、1日当たりの水素製造量が各日でほぼ一定であると仮定すると、各供給拠点30に対しては、水素タンクに貯蔵される水素が満タンにならず、製造した水素が捨てられないように、それぞれの周期で各供給拠点30から水素が運ばれる必要がある。
 次に長期回収計画について説明する。基準長期回収計画表の一例を以下の表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示した基準長期回収計画表は、各日において、車両が供給拠点30から水素を回収するかどうかを表形式で示す。簡単化のため、回収先である供給拠点30の数は3であるとして説明する。例えば、表6において、6月1日において、供給拠点S、S、Sの欄および回収予定の欄に丸印が設定され、6月2日において各供給拠点および回収予定の欄に丸印は設定されない。これは、6月1日に供給拠点S、S、Sから水素が回収される予定であり、6月2日は、いずれの供給拠点からも水素が回収されない予定であることを示す。 
 基準長期回収計画表における各日の列において、供給拠点S、S、Sの欄のいずれか1つ以上の欄に丸印が設定されていれば、同じ列の回収予定の欄に丸印が設定される。また、基準長期回収計画表における各日の列において、供給拠点S、S、Sの欄のすべての欄に丸印が設定されていなければ、同じ列の回収予定の欄に丸印は設定されない。
 ここでは、供給拠点Sでの水素の回収周期が5日であり、供給拠点Sでの水素の回収周期が6日であり、供給拠点Sでの水素の回収周期が7日である場合について説明する。 
 1つの供給拠点のみから水素を回収する場合には、車両は5[kg]のCO2を排出し、2つの供給拠点から水素を回収する場合には、車両は7[kg]のCO2を排出し、3つの供給拠点30(供給拠点S、S、S)のすべてから水素を回収する場合には、車両は10[kg]のCO2を排出すると仮定する。この場合、表6の例では、6月1日から7月31日までの間に、車両は合計で148(=5×22+7×4+10×1)[kg]のCO2を排出することが理解される。
 この時、水素の回収のために、車両が出動する回数は27回である。本実施形態では、基準長期回収計画表は、各供給拠点30での回収周期に基づいて作成される。
 次に、基準長期回収計画表を修正することで作成された修正長期回収計画表について説明する。 
 修正長期回収計画表の第1の例を以下の表7に示す。 
Figure JPOXMLDOC01-appb-T000007
 修正長期回収計画表の第2の例を以下の表8に示す。 
Figure JPOXMLDOC01-appb-T000008
 表7は、車両が、すべての供給拠点30に設置される水素タンクから5日毎に水素を回収する場合の修正長期回収計画表である。表8は、車両が、すべての供給拠点30に設置される水素タンクから7日毎に水素を回収する場合の修正長期回収計画表である。
 表7に示した例では、供給拠点Sと供給拠点Sに設置される水素タンクが満タンにならずに、それぞれ5/6=83%(供給拠点S)と5/7=71%(供給拠点S)の状態で水素が回収される。
 ここで、すべての供給拠点30で水素タンクが満タンになると、100リットルの水素が回収できると仮定すると、表6、7、8に対応するCO2排出量[kg]、水素回収量[l]、回収回数は、以下の表9に示す結果となる。
Figure JPOXMLDOC01-appb-T000009
 表7に示した修正長期回収計画表で示されるCO2排出量(130(=10×13)[kg])および回収回数(13回)は、表6に示した基準長期回収計画表で示されるCO2排出量(148[kg])および回収回数(27回)より少ない。また、表6に示した基準長期回収計画表と表7に示した修正長期回収計画表とで、水素回収量は同等である。このため、表6に示した修正長期回収計画表よりも、表7に示した修正長期回収計画表の方が、水素の回収において良い結果が示される。
 一方、表8に示した修正長期回収計画表の例では、供給拠点Sと供給拠点Sにおける水素タンクの貯蔵量が100%(満タン)になるが、これらの供給拠点で製造されて捨てられる水素が多い。
 また、表8に示した基準長期回収計画表で示される回収回数(9回)は、表6に示した基準長期回収計画表で示される回収回数(27回)や表7に示した修正長期回収計画表で示される回収回数(13回)より大幅に少ない。このため、表8に示した基準長期回収計画表で示される水素回収量(2700[l])は、表7に示した修正長期回収計画表で示される水素回収量(3302[l])より大幅に少ない(表9参照)。 
 このため、CO2排出量と水素回収量との重み付け評価や、CO2排出量が基準排出量に対する許容量に含まれるか否かなどに基づいて、水素回収計画作成部102は、表7に示した修正長期回収計画表と表8に示した修正長期回収計画表とのうち、S200における実施対象の長期回収計画を最終的に判断する。
 水素回収計画作成部102は、修正長期配送計画表を作成するための手順(図7参照)のように、決定論的なアルゴリズムや遺伝的アルゴリズムを用いて、修正長期回収計画表を作成できる。
 長期回収計画表が作成できれば、長期配送計画表と同様に、1日回収計画表を作成するために、巡回セールスマン問題を解いた結果に基づいて、水素回収計画作成部102は、車両が該当の日付で経由する供給拠点30に対して、供給拠点30を経由する順番を決定する。
 次に、図5におけるS400の処理について説明する。 
 配送要求は、需要拠点40から水素が配送される日付、時間が指定される要求であり、需要拠点40の管理者により指定される要求であると仮定する。また、回収要求は供給拠点30か水素が回収される日付、時間が指定される要求であり、供給拠点30の管理者により指定される要求であると仮定する。これらの要求は、計測データが伝送されるための経路のいずれかを経由して水素輸送計画作成装置10に通知される。これらの配送要求や回収要求における日付、時間に対応する場合は、水素輸送計画作成装置10は、現時点で選択される修正長期配送計画表や修正長期回収計画表を調整する必要がある。
 配送要求、回収要求の一例を以下の表10に示す。 
Figure JPOXMLDOC01-appb-T000010
 表10(a)に示した配送要求は、6月7日現在で、6月13日の13時00分を需要拠点Dへの水素の配送日時として指定する要求である。 
 また、表10(b)に示した回収要求は、6月7日現在で、7月10日(時間指定なし)を供給拠点Sからの水素の回収日時として指定する要求である。
 以下では、表10(a)に示した形式の、配送日時を指定する配送要求に応じて、配送計画・回収計画調整部103が、修正長期配送計画表を調整する手順について述べる。 
 まず、現時点で採用される修正長期配送計画表が、表4に示した表であるとする。長期配送計画の調整過程の一例を以下の表11に示す。 
Figure JPOXMLDOC01-appb-T000011
 表10(a)に示した配送要求で指定された6月13日以降の配送予定を調整対象とする修正長期配送計画表を作成するために、配送計画・回収計画調整部103は、6月13日以降の所定の配送周期(水素タンクでの貯蔵量が不足しない周期)で、需要拠点Dにおける配送予定を、現在の修正長期配送計画表に改めて指定する。この指定された配送予定は、表11における黒の丸印に対応する。
 具体的には、表4に示した、調整前の修正長期配送計画表では、需要拠点Dにおける6月13日以降の配送予定日は、6月15日、6月19日、6月24日、6月28日、7月3日、7月7日、7月12日、7月16日、7月21日、7月25日、7月30日(4日周期または5日周期)である。 
 これに対し、表11に示した、調整後の修正長期配送計画表では、需要拠点Dにおける6月13日以降の配送予定日は、6月13日、6月20日、6月27日、7月4日、7月11日、7月18日、7月25日である(6日周期)である。
 このように需要拠点Dにおける配送予定日が変更されると、表4に示した、調整前の修正長期配送計画表のように、複数の需要拠点に水素を同日に配送する計画が崩れる。このため、表11に示した修正長期配送計画表に沿った配送におけるCO2排出量の合計(全区間におけるCO2排出量の合計)(125(=5×12+7×5+10×3)[kg])は、表4に示した修正長期配送計画表に沿った配送におけるCO2排出量の合計(119[kg])より多い。
 そこで、全区間におけるCO2排出量の合計をできるだけ少なくするために、配送計画・回収計画調整部103は、表11に示した修正長期配送計画表に対して、図7に示したような手順を適用することで、配送日時が指定される配送要求を満たす前提で、需要拠点Dにおける配送予定日をその他の需要拠点における配送予定日にできるだけ合わせた、最終的な調整後の修正長期配送計画表を作成できる。
 修正長期配送計画表の調整結果の一例を以下の表12に示す。 
Figure JPOXMLDOC01-appb-T000012
 表4に示した、調整前の修正長期配送計画表と比較して、表12に示した、調整後の修正長期配送計画表では、6月13日(配送要求で指定)と6月15日とに配送日が分割される。これにより、表12に示した調整後の修正長期配送計画表に沿った配送におけるCO2排出量(122(=5×2+7×6+10×7)[kg])は、表4に示した調整前の修正長期配送計画表に沿った配送におけるCO2排出量(119[kg])より多い。
 一方で、表12に示した調整後の長期配送計画表に沿った配送における配送回数(15回)は、表11に示した調整途中の長期配送計画表に沿った配送における配送回数(20回)より少なくできる。 
 つまり、表12に示した調整後の長期配送計画表に沿った配送における配送回数(15回)は、表4に示した調整前の長期配送計画表に沿った配送回数(14回)に対し1回の増加に抑えることができる。
 そして、表12に示した調整後の長期配送計画表に沿った配送におけるCO2排出量(122[kg])は、配送日時を指定する配送要求を満たした上で、表4に示した調整前の長期配送計画表に沿った配送におけるCO2排出量(119[kg])に対し3[kg]の増加に抑えることができる。
 また、水素輸送計画作成装置10の配送計画・回収計画調整部103は、輸送拠点20から水素を輸送する車両における水素の積載量の上限値を車両DB108から取得し、この上限値に基づいて、車両が水素を輸送できるか否かを判定し、この判定結果に基づいて、車両が水素を輸送できるように配送計画および回収計画の少なくとも一方を調整できる。
 また、配送計画・回収計画調整部103は、1台の車両が水素の配送および回収を同日に実施する際に、配送および回収におけるCO2排出量を削減するために、配送計画および回収計画を調整できる。 
 例えば、1日において同じ車両が水素の回収と配送とを行なえるように、かつ、同日における回収にかかる移動経路の距離と配送にかかる移動経路の距離の合計が少なくできるようにして、同日における回収におけるCO2排出量と、回収におけるCO2排出量との合計が少なくなるように、配送計画・回収計画調整部103は、配送計画と回収計画を調整できる。
 次に、図5におけるS500の処理の詳細について説明する。ここでは輸送拠点20の端末に送信してデータを表示する例について述べる。 
 図8は、実施形態における水素輸送計画作成装置による輸送拠点の端末への描画画面の一例を示す図である。 
 水素輸送計画作成装置10から輸送拠点に受信された長期配送計画は、輸送拠点の端末に表形式で表示される。これにより、輸送拠点にいる、車両の運転士は、表示結果を確認できる。この図8のように、現在実施される修正長期配送計画(表4参照)と比較対象としての基準長期配送計画(表2参照)とがあわせて端末に表示されてもよいし、修正長期配送計画のみが端末に表示されてもよい。また、輸送拠点の端末において、輸送拠点の管理者が、修正長期配送計画表の配送予定の欄をクリックするための操作を行うことで、画面下部に、当日の配送経路(図4参照)や、1日配送計画における配送の順番(表1参照)が表示されてもよい(図8参照)。
 この表示とともに、水素輸送計画作成装置10は、現在の日付からみた、修正長期配送計画で示される次の配送予定の日付を需要拠点ごとに求めて、この配送予定の日付の前日まで需要拠点には水素が補充されない旨を示す需要拠点制御メッセージを、車両の運転士が所持する移動体端末50に通知してもよい。
 以上のように、本実施形態における水素輸送計画作成装置は、水素を燃料とした発電装置を用いた発電に伴う全体的なCO2排出量を最小化できる。
 次に、実施形態の変形例について説明する。 
 (第1の変形例)
 ここまで説明した実施形態では、需要拠点40で使用される1日当たりの水素量、および供給拠点30で製造される1日当たりの水素量は一定であると仮定していた。しかし、実際には、需要拠点40で使用される1日当たりの水素量、および供給拠点30で製造される1日当たりの水素量は、天候や曜日等により変化することが考えられる。
 そこで、実施形態の変形例として、水素配送計画作成部101は、需要拠点実績DB107に蓄積される需要拠点計測データを用いて、それぞれの需要拠点40において1日当たりで使用する水素量を、統計学や機械学習などで使用される手法を用いて推定して、この推定結果をもとに、長期配送計画表を作成する。
 同様に、水素回収計画作成部102は、供給拠点実績DB106に供給拠点計測データを用いて、それぞれの供給拠点30において製造する水素量を、統計学や機械学習などで使用される手法を用いて推定して、この推定結果をもとに長期回収計画表を作成する。
 これにより、需要拠点40で使用される1日当たりの水素量、および供給拠点30で製造される1日当たりの水素量が天候や曜日等により変化しても、それぞれの需要拠点40において1日当たりで使用される水素量とそれぞれの供給拠点30において製造される水素量とが適切に求められることができ、正しい長期配送計画表および長期回収計画表が作成されることができる。
 (第2の変形例)
 上記のように作成された1日配送計画表、1日回収計画表、修正長期配送計画表、修正長期回収計画表に基づいて、水素を輸送する車両が、輸送拠点20を出発して、水素を輸送している途中に、全体的は輸送計画の見直しなどにより、1日配送計画表、1日回収計画表における車両の訪問予定の需要拠点40や供給拠点30が変更され、水素輸送計画DB109に蓄積される1日配送計画表、1日回収計画表、修正長期配送計画表、修正長期回収計画表が変更されることがある。 
 この場合、水素輸送計画作成装置10は、水素を輸送中の車両の運転士が所持する移動体端末50に、訪問予定の需要拠点40や供給拠点30が変更された旨を通知する。また水素輸送計画作成装置10は、変更された1日配送計画表、1日回収計画表、修正長期配送計画表、修正長期回収計画表のうち必要な計画表を、水素を輸送中の車両の運転士が所持する移動体端末50に通知する。これにより、水素を輸送中の車両の運転士は、全体的は輸送計画の見直しなどにより訪問予定の需要拠点40や供給拠点30が変更されたことを、逐次把握できる。
 (第3の変形例)
 配送計画・回収計画調整部103は、輸送拠点20から前記水素を輸送する運転士の勤務形態、例えば勤務時間、勤務日に基づいて、これら勤務時間や勤務日の範囲外の日時と重複しないように、1日配送計画表、1日回収計画表、修正長期配送計画表、修正長期回収計画表を調整できる。
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 10…水素輸送計画作成装置、11,21,31,41…送受信装置、12,22…汎用計算機、20…輸送拠点、23…水素貯蔵装置、30…供給拠点、32,42…データサーバ、33,43-1,43-2,43-3…計測器、34…水素製造装置、40…需要拠点、44…燃料電池装置、45…ガス発電装置、46…電気機器、50…移動体端末、101…水素配送計画作成部、102…水素回収計画作成部、103…配送計画・回収計画調整部、104…CO2排出量算出部、105…可視化処理部。

Claims (9)

  1.  (a)水素製造装置を有する供給拠点、
     (b)水素によって発電する燃料電池装置を有する需要拠点、および
     (c)前記供給拠点から回収した水素、および、前記需要拠点に配送するための水素を貯蔵する水素貯蔵装置を有する輸送拠点
    の間における水素の輸送計画を作成する水素輸送計画作成装置であって、
     水素の輸送に伴って排出されるCO2の量が削減されるように、前記作成した水素の輸送計画を修正する水素輸送計画作成装置。
  2.  前記需要拠点において一時的に貯蔵される水素の量が不足しないように、一定期間先までの前記輸送拠点から前記需要拠点への水素の配送計画を、前記一定期間内の一部における前記需要拠点において前記貯蔵される水素の量の実績に基づいて作成し、水素を前記需要拠点に配送する車両から前記一定期間における前記配送に伴って排出されるCO2の量が削減されるように、前記作成した配送計画を修正する水素配送計画作成部と、
     前記供給拠点において一時的に貯蔵される水素の量が過剰とならないように、一定期間先までの前記供給拠点から前記輸送拠点への水素の回収計画を、前記一定期間内の一部における前記供給拠点において前記貯蔵される水素の量の実績に基づいて作成し、水素を前記供給拠点から回収する車両から前記一定期間における前記回収に伴って排出されるCO2の量が削減されるように、前記作成した回収計画を修正する水素回収計画作成部と
    を備える請求項1記載の水素輸送計画作成装置。
  3.  前記水素配送計画作成部が作成した配送計画を、前記需要拠点から通知される、前記配送の時期を定める配送要求を満たすように調整し、前記水素回収計画作成部が作成した回収計画を、前記供給拠点から通知される、前記回収の時期を定める回収要求を満たすように調整する計画調整部をさらに備える請求項2記載の水素輸送計画作成装置。
  4.  前記需要拠点における水素の使用量の実績値を保存する需要拠点実績保存部と、
     前記供給拠点における水素の製造量の実績値を保存する供給拠点実績保存部とをさらに備え、
     前記水素配送計画作成部は、
     前記需要拠点実績保存部に保存される実績値に基づいて、前記需要拠点での1日当たりの水素の使用量を推定し、前記推定した使用量に基づいて前記配送計画を作成し、
     前記水素回収計画作成部は、
     前記供給拠点実績保存部に保存される実績値に基づいて、前記供給拠点での1日当たりの水素の製造量を推定し、前記推定した製造量に基づいて前記回収計画を作成する
    請求項2記載の水素輸送計画作成装置。
  5.  前記計画調整部は、
     前記輸送拠点から水素を輸送する車両における水素の積載量の上限値に基づいて、前記車両が水素を輸送できるか否かを判定し、
     前記判定の結果に基づいて、前記車両が水素を輸送できるように前記配送計画および前記回収計画の少なくとも一方を調整する
    請求項3記載の水素輸送計画作成装置。
  6.  前記計画調整部は、
     水素の配送および回収を同日に実施する際に、前記配送および回収において水素を輸送する車両から排出されるCO2の量が削減されるように、前記配送計画および前記回収計画を調整する
    請求項3記載の水素輸送計画作成装置。
  7.  前記輸送拠点から水素を輸送する車両から排出されるCO2の量を、水素を輸送する車両の走行距離または燃料使用量に基づいて算出するCO2排出量算出部をさらに備える
    請求項2ないし請求項6のいずれか1項に記載の水素輸送計画作成装置。
  8.  前記水素配送計画作成部は、
     複数の前記需要拠点を、それぞれの地理的な要因または配送周期、回収周期でクラスタリングし、前記クラスタリングした前記需要拠点ごとに前記配送計画を作成し、
     前記水素回収計画作成部は、
     複数の前記供給拠点を、それぞれの地理的な要因または配送周期、回収周期でクラスタリングし、前記クラスタリングした前記供給拠点ごとに前記回収計画を作成する
    請求項2ないし請求項6のいずれか1項に記載の水素輸送計画作成装置。
  9.  (a)水素製造装置を有する供給拠点、
     (b)水素によって発電する燃料電池装置を有する需要拠点、および
     (c)前記供給拠点から回収した水素、および、前記需要拠点に配送するための水素を貯蔵する水素貯蔵装置を有する輸送拠点
    の間における水素の輸送計画を作成する水素輸送計画作成方法であって、
     水素の輸送に伴って排出されるCO2の量が削減されるように、前記作成した水素の輸送計画を修正する水素輸送計画作成方法。
PCT/JP2016/087384 2016-12-15 2016-12-15 水素輸送計画作成装置および水素輸送計画作成方法 WO2018109899A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087384 WO2018109899A1 (ja) 2016-12-15 2016-12-15 水素輸送計画作成装置および水素輸送計画作成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087384 WO2018109899A1 (ja) 2016-12-15 2016-12-15 水素輸送計画作成装置および水素輸送計画作成方法

Publications (1)

Publication Number Publication Date
WO2018109899A1 true WO2018109899A1 (ja) 2018-06-21

Family

ID=62559445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087384 WO2018109899A1 (ja) 2016-12-15 2016-12-15 水素輸送計画作成装置および水素輸送計画作成方法

Country Status (1)

Country Link
WO (1) WO2018109899A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044424A1 (ja) * 2018-08-28 2020-03-05 東芝エネルギーシステムズ株式会社 水素配送計画装置および水素配送計画方法
WO2023127115A1 (ja) * 2021-12-28 2023-07-06 株式会社日立製作所 水素取引支援装置、水素取引支援方法、及び水素取引支援システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362070A (ja) * 2003-06-02 2004-12-24 Idemitsu Kosan Co Ltd コージェネレーショングリッド燃料自動発注・配送システム
JP2005111381A (ja) * 2003-10-08 2005-04-28 Ebara Corp 廃棄物処理により得られるエネルギの販売システム
JP2012083882A (ja) * 2010-10-08 2012-04-26 Ricoh Co Ltd 配送計画作成装置、配送計画作成方法および配送計画作成プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362070A (ja) * 2003-06-02 2004-12-24 Idemitsu Kosan Co Ltd コージェネレーショングリッド燃料自動発注・配送システム
JP2005111381A (ja) * 2003-10-08 2005-04-28 Ebara Corp 廃棄物処理により得られるエネルギの販売システム
JP2012083882A (ja) * 2010-10-08 2012-04-26 Ricoh Co Ltd 配送計画作成装置、配送計画作成方法および配送計画作成プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044424A1 (ja) * 2018-08-28 2020-03-05 東芝エネルギーシステムズ株式会社 水素配送計画装置および水素配送計画方法
WO2023127115A1 (ja) * 2021-12-28 2023-07-06 株式会社日立製作所 水素取引支援装置、水素取引支援方法、及び水素取引支援システム

Similar Documents

Publication Publication Date Title
US20140149164A1 (en) Scheduling management system and scheduling management method
CN110245791B (zh) 一种订单处理方法及系统
US20180314998A1 (en) Resource Allocation in a Network System
US20180225796A1 (en) Resource Allocation in a Network System
CN111044060B (zh) 多车辆路径规划方法及多车辆路径规划系统
JPWO2015132947A1 (ja) 車両予防保守システム
AU2018210259A1 (en) A data-driven system for optimal vehicle fleet dimensioning, ride-sharing, and real-time dispatching based on shareability networks
TW201011257A (en) Navigation system capable of updating map data and method thereof
CN111062629B (zh) 车辆调度方法、装置、计算机设备和存储介质
US20150302346A1 (en) Methods and systems for optimizing efficiency of a workforce management system
Volkov et al. Markov-based redistribution policy model for future urban mobility networks
JP2010039833A (ja) 需要発生予測システム、需要発生予測装置、および需要発生予測方法
AU2018217973A1 (en) Dynamic selection of geo-based service options in a network system
CN111256715A (zh) 对自主车辆的机会性加燃料
US20200184577A1 (en) Management method and management apparatus
WO2018109899A1 (ja) 水素輸送計画作成装置および水素輸送計画作成方法
EP4242591A2 (en) Generating navigation routes and identifying carpooling options in view of calculated trade-offs between parameters
CN104240053A (zh) 一种规划配送车辆行程的方法
CN111862662B (zh) 一种基于公交运行数据的公交线路调整监测方法
CN114298559A (zh) 换电站的换电方法、换电管理平台及存储介质
CN107025504A (zh) 一种考虑区域交通状况的服务型库房选址方法
CN108830433A (zh) 一种基于lbs的运维路线规划方法、系统
CN109284891A (zh) 基于时空索引的充电桩维修调度方法
Nair et al. Large-scale transit schedule coordination based on journey planner requests
US20190340315A1 (en) Method and device for providing vehicle navigation simulation environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP