WO2018109521A1 - Dispositif de transfert de pression pour une installation de traitement de fluide par osmose inverse - Google Patents

Dispositif de transfert de pression pour une installation de traitement de fluide par osmose inverse Download PDF

Info

Publication number
WO2018109521A1
WO2018109521A1 PCT/IB2016/057526 IB2016057526W WO2018109521A1 WO 2018109521 A1 WO2018109521 A1 WO 2018109521A1 IB 2016057526 W IB2016057526 W IB 2016057526W WO 2018109521 A1 WO2018109521 A1 WO 2018109521A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
cylinder
piston
pressure
concentrate
Prior art date
Application number
PCT/IB2016/057526
Other languages
English (en)
Inventor
Yves Giraud
Original Assignee
Arkling Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkling Limited filed Critical Arkling Limited
Priority to PCT/IB2016/057526 priority Critical patent/WO2018109521A1/fr
Publication of WO2018109521A1 publication Critical patent/WO2018109521A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B5/00Machines or pumps with differential-surface pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
    • F04B9/107Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber rectilinear movement of the pumping member in the working direction being obtained by a single-acting liquid motor, e.g. actuated in the other direction by gravity or a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
    • F04B9/107Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber rectilinear movement of the pumping member in the working direction being obtained by a single-acting liquid motor, e.g. actuated in the other direction by gravity or a spring
    • F04B9/1076Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber rectilinear movement of the pumping member in the working direction being obtained by a single-acting liquid motor, e.g. actuated in the other direction by gravity or a spring with fluid-actuated inlet or outlet valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • B01D2313/246Energy recovery means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the present invention relates to a pressure transfer device for a reverse osmosis fluid treatment plant, and in particular for the desalination of seawater, or brackish water by reverse osmosis.
  • the pressure transfer device according to the invention makes it possible in particular to increase the pressure of the liquid to be treated to introduce it into a filtration unit.
  • Reverse osmosis fluid treatment plants require the fluids to be treated to be compressed at high pressures in order to counterbalance the osmotic pressure of the fluid. This is particularly the case for desalination of seawater or brackish water. Part of the energy required for fluid compression is dispersed in the fluids exiting the reverse osmosis filter and is therefore lost.
  • pressure exchangers such as that described in WO2013061229, may be used.
  • Such a device installed upstream of the reverse osmosis filter makes it possible to deliver a part of the incoming fluids into the filter, the remainder being supplied by a high pressure pump.
  • the energy gain attributable to these pressure exchange devices can nevertheless be improved.
  • the efficiency of the increase in pressure between two filtration units by the concentrate of the second filtration unit remains average. It is therefore necessary to find a way to increase the pressure of the fluids with a higher yield, allowing to minimize energy expenditure.
  • the present invention relates to a pressure transfer device that can be used to increase the pressure of a fluid to be treated by reverse osmosis by an already treated fluid.
  • the fluid to be treated designates a fluid comprising one or more solutes, in variable concentration. It can in particular designate a saline water such as seawater or brackish water, also known as "Brackish water".
  • the fluid to be treated may have undergone first treatment by reverse osmosis or no reverse osmosis treatment. It may be in particular the concentrate from a first reverse osmosis filtration unit intended to be treated by a second reverse osmosis filtration unit. In the case of a seawater desalination plant, the concentrate designates the water that is out of a filtration unit.
  • the liquid to be treated is compressed by the pressure transfer device of the present invention and injected into a filtration unit.
  • the concentrate resulting from the filtration is used back by the pressure transfer device to compress the liquid to be treated.
  • a reverse osmosis treatment facility may include one or more filtration units. In the case of an installation comprising a single filtration unit, the concentrate from this filtration unit is used to compress the seawater to be desalinated upstream of this filtration unit.
  • the pressure transfer device can be arranged between two filtration units, so as to compress the first concentrate, resulting from a first filtration unit, before its treatment by a second filtration unit.
  • the pressure of the second concentrate from the second filtration unit is used for the compression of the first concentrate.
  • the pressure transfer device comprises a piston having a central portion and an annular portion. The central portion of the piston slides in a first cylinder, while the annular portion slides concomitantly in a second cylinder, wider than the first cylinder. The second cylinder is fed with the fluid to be treated and the first cylinder is fed with the concentrate from a filtration unit.
  • the pressure applied to the central portion of the piston by the concentrate from a filtration unit is transmitted to the fluid to be treated in the second cylinder, thanks to the annular portion of the piston.
  • the pressure of the fluid to be treated is thus increased.
  • the piston establishes an alternating cycle of compression and return thanks to the admission and the alternative evacuation of the concentrate in the first cylinder.
  • the fluid to be treated is compressed by the annular part of the piston by means of a set of valves allowing in turn to compress the fluid in an intermediate space of the second cylinder and to restore the inlet pressure of this fluid in this intermediate space, in function of the piston movement.
  • the inlet pressure of the fluid to be treated exerts on the annular part of the piston a force which is added to that exerted by the pressure of the concentrate on the central part of the piston.
  • Parallel admission of one of the fluids can be used to induce the return movement of the piston.
  • a portion of the concentrate may be directed to a rear surface of the piston to return it to the compression start position.
  • the longitudinal axis of the first cylinder and that of the second cylinder are merged.
  • the central portion of the piston cooperates with the first cylinder, while the annular portion of the piston cooperates with the second cylinder, the diameter of the first cylinder being smaller than that of the second cylinder.
  • the annular portion of the piston defines two spaces in the second cylinder. A first space being in fluid communication with the inlet of the fluid to be treated and a second space being in fluid communication with the discharge of the fluid to be treated to a filtration unit.
  • the annular portion of the piston is provided with one or more valves, which can be in the closed or open position. They are in particular in the closed position in the compression phase of the piston, and in the open position in the return phase of the piston.
  • the one or more valves integral with the annular part of the piston allow fluid communication between the first and the second space during the return phase and block the fluid communication between the first and the second space in the compression phase.
  • valve or valves secured to the annular part of the piston adopts an open position when the pressure of the fluid in two spaces delimited by the annular portion of the piston is equal, and a closed position when the pressure of the fluid is different in the two spaces delimited by the annular portion of the piston.
  • the fluidic communication between the second space and the discharge of the liquid to be treated to a filtration unit is provided by one or more valves that can be in the closed or open position.
  • the valve or valves located between the second space and the evacuation of the liquid to be treated are closed during the return phase and opened during the compression phase.
  • a dynamic valve allows in turn the admission of a fluid and its evacuation, according to a repetitive cycle.
  • a dynamic valve may be a rotary valve, alternately opening and closing an intake duct and an exhaust duct.
  • a dynamic or rotary valve can be driven by a thermal or electric motor.
  • Such a rotary valve may for example be that described in patent application PCT / IB2016 / 055141.
  • Continuous supply of fluid may be provided to one of the rear surfaces of the piston.
  • the rear surfaces of the piston designate the surfaces oriented in the direction of the compression movement of the piston.
  • the application of a fluid on a rear face of the piston induces the movement of the piston in the direction of return.
  • the front surfaces of the piston designate the surfaces receiving the forces to move the piston in the compression phase.
  • the continuous feed of the fluid is preferably oriented towards the rear surface of the central portion of the piston.
  • the continuous supply can in this case be arranged between the central portion and the annular portion of the piston.
  • the fluid admitted by the continuous feed is a part of the concentrate used to compress the fluid to be treated.
  • the continuous supply can be replaced by an alternating power supply, the fluid of which is distributed by a dynamic valve. This arrangement allows the fluid to be distributed on the rear face of the piston only during its return movement.
  • the front surface of the central portion of the piston, interacting with the alternately admitted concentrate in the first cylinder, is greater than the rear surface of the piston. central part of the piston, on which the fluid admitted by the continuous supply is applied.
  • the present invention also relates to a reverse osmosis fluid treatment plant, comprising one or more reverse osmosis filtration units and one or more pressure transfer devices.
  • the pressure transfer device or devices of such an installation are characterized by one or more of the aspects described above.
  • the plant may comprise upstream of a reverse osmosis filtration unit one or more pumps selected from a feed pump, and a high pressure pump.
  • the installation advantageously comprises one or more groups of pressure transfer devices, where the pressure transfer devices are preferably arranged in parallel within a group, so that the overall flow of concentrate used for compressing the fluid to be treated is distributed in all the pressure transfer devices of the group.
  • the dynamic or rotary valves of the pressure transfer devices are then oriented so that their relative angular position is shifted.
  • the angular position of the dynamic or rotary valves of a group of pressure transfer devices is shifted so that the flow of concentrate is admitted into all of the pressure transfer devices of the group in a homogeneous and continuous manner.
  • the present invention includes the compression method, comprising in particular a step of compressing the fluid to be treated and a return step.
  • the compression step of the fluid to be treated is performed by the thrust of a second fluid applied to the central portion of the piston.
  • the annular part makes it possible to transfer this thrust to the fluid to be treated.
  • Figure la Simplified diagram of an installation according to the present invention comprising a filtration unit
  • Figure lb Simplified diagram of an installation according to the present invention comprising two filtration units.
  • Figure 2 Distribution of fluids in the pressure transfer device during the compression phase.
  • FIGS. 1a and 1b Examples of reverse osmosis fluid treatment plant G, and in particular for the treatment of seawater or brackish water, are shown schematically in FIGS. 1a and 1b.
  • the installation shown schematically in FIG. 1a comprises a first reverse osmosis filtration unit F1, in which the fluid to be treated G is introduced at a first pressure P1, thanks to a high pressure pump W.
  • a first pressure P1 thanks to a high pressure pump W.
  • a first fraction of treated water G1 At the outlet of this first unit of filtration F1 is collected a first fraction of treated water G1, on the one hand, and the concentrate C1, on the other hand, whose outlet pressure is ⁇ .
  • Concentrate Cl is collected to be filtered in a second filter unit F2 by reverse osmosis, so as to produce a second fraction of treated water G2.
  • the concentrate C2 is removed from the second filtration unit F2 at a pressure P3.
  • the concentrate C1 is injected into the second filtration unit F2 at a pressure P2 greater than the pressure ⁇ .
  • the pressure of the concentrate C1 is increased from the value ⁇ to the value P2 by means of a pressure transfer device R, supplied by the concentrate C2 coming from the second unit.
  • the pressure transfer device R comprises a valve V for alternately feeding a cylinder K comprising a piston M movable in translation in the cylinder K.
  • the piston M comprises a central portion M1 and an annular portion M2
  • the cylinder K comprises a first cylinder K1 and a second cylinder K2.
  • the central portion Ml of the piston is movable in translation in the first cylinder K1, and the annular portion M2 of the piston M is movable in translation in the second cylinder K2.
  • the annular portion M2 of the piston M and the central portion Ml of the piston are integral with the body of the piston M through the first K1 and second K2 cylinders.
  • the annular portion M2 is disposed at the circumference of the piston body while the central portion M1 is disposed at the front end of the piston body, the closest to the inlet of the second concentrate C2.
  • the piston body may be of variable length provided that it maintains the central portion M1 and the annular portion M2 at a distance from each other adapted to the stroke of the piston in the first K1 and second K2 cylinders and to the other elements of the pressure exchange device R.
  • the piston body may extend beyond the annular portion M2. It can be expected that the movement of the piston body M extends outside the cylinder K.
  • the first K1 and second K2 cylinders are arranged along the same longitudinal axis.
  • the diameter of the first cylinder K1 is smaller than that of the second cylinder K2.
  • the central portion Ml of the piston M delimits in the first cylinder Kl a chamber L1, in fluid communication with the valve V.
  • the valve V has an inlet VI of the concentrate C2, derived from the second filtration unit F2, and an exhaust V2 of the concentrate C2.
  • the concentrate C2 admitted to the pressure P3 in the chamber L1 of the first cylinder K1 then exerts pressure on the front surface S1 of the central portion M1 of the piston.
  • the annular portion M2 of the piston M delimits a first space T1 and a second space T2, between the inner wall of the second cylinder K2 and the piston body.
  • the first T1 and second T2 spaces are in fluid communication thanks to one or more valves B l integral with the annular portion M2 of the piston M.
  • the number of valves B 1 can be between 1 and 20, and preferably between 5 and 15
  • the number of valves B 1 can be adapted to the dimensions of the pressure exchange device K, and / or according to its applications.
  • the first space T1 is supplied with concentrate C1, coming from the first filtration unit F1, through the supply duct A1, at the pressure ⁇ .
  • the concentrate Cl then exerts a pressure on the front surface S2 of the annular portion M2 of the piston M.
  • the second space T2 is in fluid communication with the discharge line A2 of the first concentrate C1, from which the concentrate C1 is discharged at the pressure P2 to the second filtration unit F2.
  • the fluidic communication is performed by one or more valves B2.
  • the number of valves B2 can be between 1 and 20, and preferably between 5 and 15.
  • the number of valves B2 can be adapted to the dimensions of the pressure exchange device K, and / or depending on the applications.
  • the first concentrate C1 then exerts a pressure on the rear surface S4 of the annular portion M2 of the piston, opposite its surface S2.
  • the pressure alternately varies from a value ⁇ to a value P2, as a function of the stroke of the piston in the cylinder, and in particular as a function of the stroke of the annular portion M2 of the piston M in the second cylinder K2.
  • the pressure in the second space T2 passes in particular from the value ⁇ to the value P2 during the compression phase, when the piston M is moved in translation in the cylinder K, thanks to the admission of the concentrate C2 by the valve V, until at its position furthest from the valve V.
  • the pressure in the second space T2 changes from the value P2 to ⁇ during the return phase, where the piston M returns to its position. position closest to the valve V, following the evacuation of the concentrate C2 by the evacuation V2 of the valve V.
  • valve B2 In the compression phase, the valve B2, or the set of valves B2, is in the open position, allowing the communication between the exhaust duct A2 and the second space T2, and the flap B l, or the flaps B l , is in the closed position, blocking the fluid communication between the first T1 and the second T2 spaces.
  • the closing of a valve B l can be conditioned to the pressure difference between the spaces T1 and T2.
  • a valve B l can be automatically closed when the pressure in the second space T2 is greater than the pressure in the first space Tl, or when the pressure in the second space T2 is greater than the pressure in the first space Tl of a value predetermined threshold.
  • a valve B 1 can open under the effect of a return spring when the pressures in the first T1 and second T2 spaces equalize, or when the pressure difference between the first T1 and second T2 spaces passes under a predetermined threshold value.
  • a valve B 1 can be opened under the influence of a return spring when the pressure difference allows it.
  • valve or valves B2 are in the closed position, blocking the fluid communication between the exhaust duct A2 and the second space T2, and or the valves B l, are in the open position, allowing the fluidic communication between the first T1 and the second T2 spaces.
  • the pressures in the spaces T1 and T2 are thus balanced.
  • the cylinder K is further provided with a continuous feed E concentrate C2, from the second filter unit F2, producing a residual volume El on a rear surface S 3 of the central portion Ml of the piston M, opposite its surface S I.
  • the rear surface S3 of the central portion M1 of the piston M is smaller than its front surface S I.
  • the continuous supply E can in particular be provided on a lateral surface of the cylinder K.
  • the continuous supply E in concentrate C2 can for example be arranged in the first cylinder K1, close to the second cylinder K2.
  • the continuous supply E may in particular be arranged between the central parts M1 and annulus M2 of the piston M.
  • the supply E may more particularly be arranged between the annular portion M2 of the piston M and the inlet line A1 of the concentrate C1.
  • the concentrate C2 is admitted into the chamber L1 of the first cylinder K at the same pressure P3 as in the continuous feed E, but because of the surface difference, S 1 being larger that S2, the concentrate C2 admitted into the chamber L1 of the first cylinder K1 sets the piston in the direction of compression.
  • 51 denotes the front surface of the central portion Ml of the piston in contact with the second concentrate C2, of pressure P3,
  • the valve V is controlled so as to close the inlet VI of the concentrate C2 and to open the exhaust V2 of the concentrate C2 at the moment when the piston M reaches its equilibrium point farthest from the valve V.
  • the valve or valves B2 close at the same time, isolating the exhaust pipe A2 of the second space T2.
  • the valve (s) B l open, allowing the first Tl t second T2 spaces to rebalance at the pressure ⁇ .
  • the valve V is controlled so as to close the evacuation V2 of the concentrate C2 and to open the inlet VI of the concentrate C2 at the moment when the central portion Ml of the piston M reaches its closest point to the valve V. Simultaneously with this arrangement of the valve V, the valve or valves B2 open, allowing the fluid communication between the second space T2 and the discharge A2 of the first concentrate Cl, and the one or more flaps B l close.
  • An installation according to the present invention comprises at least one pressure transfer device R disposed between the first Fl and the second F2 filtration unit.
  • the pressure transfer devices R can be combined into one or more groups, each comprising 1 to 10 pressure transfer devices.
  • each device R comprises a dynamic valve V, and the pressure transfer devices R are arranged in parallel.
  • a group contains from 2 to 5 devices R arranged in parallel, and more particularly 4 devices for transferring pressure.
  • the overall flow of second concentrate C2 exiting the second filtration unit F2 supplies all the devices R of a group.
  • the dynamic valves V of a set of pressure transfer devices R of a group are each at an angular position offset from the others.
  • the pressure transfer device R operates in the manner described above in the case where an installation comprises only a filter unit F1, such as that shown in FIG.
  • the seawater replaces the first concentrate C1 described above, and the concentrate from the single filtration unit acts as the second concentrate C2 as described above.
  • several pressure transfer devices R may be arranged in parallel to form a group of pressure transfer devices R, with the same arrangements as those described above.
  • an installation comprising several filtration units is equipped with a first device, or group of devices, of pressure transfer RI, arranged between two filtration units, and a second device, or group of devices. , pressure transfer R2 disposed upstream of the first filtration unit.
  • the device, or group of devices, of pressure transfer R2 located upstream of the first filtration unit can then be fed by the concentrate of one or more of the filtration units, so as to compress the seawater to his treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

: Dispositif de transfert de pression pour une installation de traitement de fluides par osmose inverse comprenant au moins une unité de filtration. Le dispositif comprend un piston mobile en translation dans un cylindre, où le piston comprend une partie centrale et une partie annulaire, et où le cylindre comprend un premier cylindre accueillant la partie centrale du piston, et un second cylindre accueillant la partie annulaire du piston.

Description

Dispositif de transfert de pression pour une installation de traitement de fluide par osmose inverse
Domaine technique
La présente invention concerne un dispositif de transfert de pression destiné à une installation de traitement de fluides par osmose inverse, et en particulier destinée au dessalement de l'eau de mer, ou d'eau saumâtre par osmose inverse. Le dispositif de transfert de pression selon l'invention permet notamment d'augmenter la pression du liquide à traiter pour l'introduire dans une unité de filtration.
Etat de la technique
Les installations de traitement de fluides par osmose inverse nécessitent de comprimer les fluides à traiter à des pressions élevées, de manière à contrebalancer la pression osmotique du fluide. C'est notamment le cas pour le dessalement de l'eau de mer ou d'une eau saumâtre. Une partie de l'énergie requise pour la compression des fluides est dispersée dans les fluides sortant du filtre d'osmose inverse et est par conséquent perdue.
Il est donc avantageux de pouvoir récupérer l'énergie des fluides sortant pour participer à la compression des fluides entrant dans le filtre d'osmose inverse.
Pour ce faire, des échangeurs de pression, tels que celui décrit dans WO2013061229, peuvent être utilisés. Un tel dispositif installé en amont du filtre d'osmose inverse, permet de délivrer une partie des fluides entrants dans le filtre, le reste étant fourni par une pompe haute pression. Le gain d'énergie attribuable à ces dispositifs d'échange de pression peut néanmoins être amélioré. En particulier, dans le cas d'installations comprenant plusieurs unités de filtration, le rendement de l'augmentation de pression entre deux unités de filtration par le concentrât de la seconde unité de filtration, obtenue grâce aux technologies actuellement utilisées, reste moyen. Il est donc nécessaire de trouver un moyen d'augmenter la pression des fluides avec un rendement plus élevé, permettant de minimiser les dépenses énergétiques. Exposé de l'invention
La présente invention se rapporte à un dispositif de transfert de pression utilisable pour augmenter la pression d'un fluide à traiter par osmose inverse par un fluide déjà traité. Le fluide à traiter désigne un fluide comprenant un ou plusieurs solutés, en concentration variable. Il peut notamment désigner une eau saline telle que l'eau de mer ou de l'eau saumâtre, également connue sous le terme de « Brackish water ». Le fluide à traiter peut avoir subi un premier traitement par osmose inverse ou aucun traitement par osmose inverse. Il peut être notamment le concentrât issu d'une première unité de filtration par osmose inverse, destiné à être traité par une seconde unité de filtration par osmose inverse. Dans le cas d'une installation de dessalement d'eau de mer, le concentrât désigne l'eau sursalée sortant d'une unité de filtration. Le liquide à traiter est comprimé grâce au dispositif de transfert de pression de la présente invention et injecté dans une unité de filtration. Le concentrât résultant de la filtration est utilisé en retour par le dispositif de transfert de pression pour comprimer le liquide à traiter. Une installation de traitement par osmose inverse peut comprendre une ou plusieurs unités de filtrations. Dans le cas d'une installation comprenant une seule unité de filtration, le concentrât issu de cette unité de filtration est utilisé pour comprimer l'eau de mer à dessaler en amont de cette unité de filtration.
Dans le cas où l'installation comprend plusieurs unités de filtration, le dispositif de transfert de pression selon la présente invention peut être disposé entre deux unités de filtration, de manière à compresser le premier concentrât, issue d'une première unité de filtration, avant son traitement par une seconde unité de filtration. Dans ce cas, la pression du second concentrât, issu de la seconde unité de filtration est mise à profit pour la compression du premier concentrât. Pour ce faire, le dispositif de transfert de pression comprend un piston ayant une partie centrale et une partie annulaire. La partie centrale du piston coulisse dans un premier cylindre, alors que la partie annulaire coulisse de manière concomitante dans un second cylindre, plus large que le premier cylindre. Le second cylindre est alimenté par le fluide à traiter et le premier cylindre est alimenté par le concentrât issu d'une unité de filtration.
La pression appliquée sur la partie centrale du piston par le concentrât issu d'une unité de filtration est transmise au fluide à traiter dans le second cylindre, grâce à la partie annulaire du piston. La pression du fluide à traiter est ainsi augmentée.
Le piston établit un cycle alternatif de compression et de retour grâce à l'admission et l'évacuation alternative du concentrât dans le premier cylindre. Le fluide à traiter est comprimé par la partie annulaire du piston grâce à un ensemble de clapets permettant tour à tour de comprimer le fluide dans un espace intermédiaire du second cylindre et de rétablir la pression d'entrée de ce fluide dans cet espace intermédiaire, en fonction du mouvement du piston. Dans la phase de compression, la pression d'entrée du fluide à traiter exerce sur la partie annulaire du piston une force qui s'ajoute à celle exercée par la pression du concentrât sur la partie centrale du piston.
Une admission parallèle d'un des fluides peut être utilisée pour induire le mouvement de retour du piston. En particulier, une partie du concentrât peut être dirigée sur une surface arrière du piston pour le ramener en position de début de compression.
Le dispositif selon la présente invention se caractérise par l'un ou plusieurs des éléments suivants :
L'axe longitudinal du premier cylindre et celui du second cylindre sont confondus.
La partie centrale du piston coopère avec le premier cylindre, alors que la partie annulaire du piston coopère avec le second cylindre, le diamètre du premier cylindre étant inférieur à celui du second cylindre. - La partie annulaire du piston délimite deux espaces dans le second cylindre. Un premier espace étant en communication fluidique avec l'admission du fluide à traiter et un second espace étant en communication fluidique avec l'évacuation du fluide à traiter vers une unité de filtration. - La partie annulaire du piston est pourvue d'un ou plusieurs clapets, pouvant être en position fermée ou ouverte. Ils sont notamment en position fermée en phase de compression du piston, et en position ouverte en phase de retour du piston. Le ou les clapets solidaires de la partie annulaire du piston permettent une communication fluidique entre le premier et le second espace pendant la phase de retour et bloquent la communication fluidique entre le premier et le second espace en phase de compression.
Le ou les clapets solidaires de la partie annulaire du piston adopte une position ouverte lorsque la pression du fluide dans des deux espaces délimités par la partie annulaire du piston est égale, et une position fermée lorsque la pression du fluide est différente dans les deux espaces délimités par la partie annulaire du piston.
La communication fluidique entre le second espace et l'évacuation du liquide à traiter vers une unité de filtration est assurée par un ou plusieurs clapets pouvant être en position fermée ou ouverte. Le ou les clapets situés entre le second espace et l'évacuation du liquide à traiter sont fermés lors de la phase de retour et ouverts lors de la phase de compression.
L'admission dans le premier cylindre du concentrât issu d'une unité de filtration est effectuée par une vanne dynamique. Une vanne dynamique permet tour à tour l'admission d'un fluide et son évacuation, selon un cycle répétitif. En particulier, une telle vanne dynamique peut être une vanne rotative, ouvrant et fermant de manière alternative un conduit d'admission et un conduit d'évacuation. Une vanne dynamique, ou rotative, peut être entraînée par un moteur thermique ou électrique. Une telle vanne rotative peut être par exemple celle décrite dans la demande de brevet PCT/IB2016/055141.
Une alimentation continue d'un fluide peut être prévue vers l'une des surfaces arrière du piston. Les surfaces arrière du piston désignent les surfaces orientées dans le sens du mouvement de compression du piston. L'application d'un fluide sur une face arrière du piston induit le mouvement du piston dans le sens du retour. Par opposition, les surfaces avant du piston désignent les surfaces recevant les forces permettant de faire mouvoir le piston en phase de compression. L'alimentation continue du fluide est de préférence orientée vers la surface arrière de la partie centrale du piston. L'alimentation continue peut en l'occurrence être disposée entre la partie centrale et la partie annulaire du piston. Le fluide admis par l'alimentation continue est une partie du concentrât utilisé pour comprimer le fluide à traiter. L'alimentation continue peut être remplacée par une alimentation alternative, dont le fluide est distribué par une vanne dynamique. Cette disposition permet de distribuer le fluide sur la face arrière du piston seulement lors de son mouvement de retour.
La surface avant de la partie centrale du piston, interagissant avec le concentrât alternativement admis dans le premier cylindre, est supérieure à la surface arrière de la partie centrale du piston, sur laquelle s'applique le fluide admis par l'alimentation continue.
La présente invention concerne également une installation de traitement de fluides par osmose inverse, comprenant une ou plusieurs unités de filtration par osmose inverse et un ou plusieurs dispositifs de transfert de pression. Le ou les dispositifs de transfert de pression d'une telle installation se caractérisent par l'un ou plusieurs des aspects décrits ci-dessus. L'installation peut comporter en amont d'une unité de filtration par osmose inverse une ou plusieurs pompes sélectionnées parmi une pompe d'alimentation, et une pompe haute pression.
L'installation comprend de manière avantageuse un ou plusieurs groupes de dispositifs de transfert de pression, où les dispositifs de transfert de pression sont de préférence disposés en parallèle au sein d'un groupe, de manière à ce que le flux global de concentrât utilisé pour comprimer le fluide à traiter se répartisse dans l'ensemble des dispositifs de transfert de pression du groupe. Les vannes dynamiques ou rotatives des dispositifs de transfert de pression sont alors orientées de manière à ce que leur position angulaire relative soit décalée. La position angulaire des vannes dynamiques ou rotatives d'un groupe de dispositifs de transfert de pressions est décalée de manière à ce que le flux de concentrât soit admis dans l'ensemble des dispositifs de transfert de pression du groupe de manière homogène et continue. La présente invention inclut le procédé de compression, comprenant notamment une étape de compression du fluide à traiter et une étape de retour. L'étape de compression du fluide à traiter est effectuée grâce à la poussée d'un second fluide appliqué sur la partie centrale du piston. La partie annulaire permet de transférer cette poussée au fluide à traiter. Brève description des schémas
Figure la : Schéma simplifié d'une installation selon la présente invention comprenant une unité de filtration
Figure lb : Schéma simplifié d'une installation selon la présente invention comprenant deux unités de filtration.
Figure 2 : Répartition des fluides dans le dispositif de transfert de pression lors de la phase de compression.
Figure 3 : répartition des fluides dans le dispositif de transfert de pression lors de la phase de retour. Description détaillée de l'invention
Des exemples d'installation de traitement de fluide G par osmose inverse, et notamment pour le traitement de l'eau de mer ou d'une eau saumâtre, sont schématisés par les figures la et lb. L'installation schématisée par la figure la comprend une première unité de filtration Fl par osmose inverse, dans laquelle le fluide à traiter G est introduit à une première pression PI, grâce à une pompe haute pression W. À la sortie de cette première unité de filtration Fl est recueillie une première fraction d'eau traitée Gl, d'une part, et le concentrât Cl, d'autre part, dont la pression de sortie est Ρ . Le concentrât Cl est recueilli pour être filtré dans une seconde unité de filtration F2 par osmose inverse, de manière à produire une seconde fraction d'eau traitée G2. Le concentrât C2 est évacué de la seconde unité de filtration F2 à une pression P3.
Le concentrât Cl est injecté dans la seconde unité de filtration F2 à une pression P2 supérieure à la pression Ρ . Entre la première unité de filtration Fl et la seconde unité de filtration F2, la pression du concentrât Cl est augmentée de la valeur Ρ à la valeur P2 grâce à un dispositif de transfert de pression R, alimenté par le concentrât C2 issu de la seconde unité de filtration F2. Le dispositif de transfert de pression R comprend une vanne V permettant d'alimenter de manière alternative un cylindre K comportant un piston M mobile en translation dans le cylindre K. En particulier le piston M comprend une partie centrale Ml et une partie annulaire M2, et le cylindre K comprend un premier cylindre Kl et un second cylindre K2.
La partie centrale Ml du piston est mobile en translation dans le premier cylindre Kl, et la partie annulaire M2 du piston M est mobile en translation dans le second cylindre K2. La partie annulaire M2 du piston M et la partie centrale Ml du piston sont solidaires du corps du piston M traversant les premier Kl et second K2 cylindres. La partie annulaire M2 est disposée à la circonférence du corps du piston alors que la partie centrale Ml est disposée à l'extrémité avant du corps du piston, la plus proche de l'admission du second concentrât C2. Le corps du piston peut être de longueur variable, pour peu qu'il maintienne la partie centrale Ml et la partie annulaire M2 à une distance l'une de l'autre adaptée à la course du piston dans les premier Kl et second K2 cylindres et aux autres éléments du dispositif d'échange de pression R. Le corps du piston peut s'étendre au-delà de la partie annulaire M2. Il peut être prévu que le débattement du corps du piston M s'étende à l'extérieur du cylindre K. Les premier Kl et second K2 cylindres sont disposés selon un même axe longitudinal. Le diamètre du premier cylindre Kl est inférieur à celui du second cylindre K2. La partie centrale Ml du piston M délimite dans le premier cylindre Kl une chambre Ll, en communication fluidique avec la vanne V. La vanne V comporte une admission VI du concentrât C2, issu de la seconde unité de filtration F2, et un échappement V2 du concentrât C2. Le concentrât C2 admis à la pression P3 dans la chambre Ll du premier cylindre Kl exerce alors une pression sur la surface avant S I de la partie centrale Ml du piston.
La partie annulaire M2 du piston M délimite un premier espace Tl et un second espace T2, compris entre la paroi interne du second cylindre K2 et le corps du piston. Les premier Tl et second T2 espaces sont en communication fluidique grâce à un ou plusieurs clapets B l solidaires de la partie annulaire M2 du piston M. Le nombre de clapets B l peut être compris entre 1 et 20, et de préférence entre 5 et 15. Le nombre de clapets B l peut être adapté aux dimensions du dispositif d'échange de pression K, et/ou en fonction de ses applications. Le premier espace Tl est alimenté en concentrât Cl, issu de la première unité de filtration Fl, par le conduit d'alimentation Al, à la pression Ρ . Le concentrât Cl exerce alors une pression sur la surface avant S2 de la partie annulaire M2 du piston M.
Le second espace T2 est en communication fluidique avec la conduite d'évacuation A2 du premier concentrât Cl, d'où le concentrât Cl est évacué à la pression P2 vers la seconde unité de filtration F2. La communication fluidique est effectuée par un ou plusieurs clapets B2. Le nombre de clapets B2 peut être compris entre 1 et 20, et de préférence entre 5 et 15. Le nombre de clapets B2 peut être adapté aux dimensions du dispositif d'échange de pression K, et/ou en fonction des applications. Le premier concentrât Cl exerce alors une pression sur la surface arrière S4 de la partie annulaire M2 du piston, opposée à sa surface S2.
Dans le second espace T2, la pression varie alternativement d'une valeur Ρ à une valeur P2, en fonction de la course du piston dans le cylindre, et en particulier en fonction de la course de la partie annulaire M2 du piston M dans le second cylindre K2. La pression dans le second espace T2 passe notamment de la valeur Ρ à la valeur P2 pendant la phase de compression, lorsque le piston M est mu en translation dans le cylindre K, grâce à l'admission du concentrât C2 par la vanne V, jusqu'à sa position la plus éloignée de la vanne V. La pression dans le second espace T2 passe de la valeur P2 à Ρ pendant la phase de retour, où le piston M revient à sa position la plus proche de la vanne V, suite à l'évacuation du concentrât C2 par l'évacuation V2 de la vanne V.
En phase de compression, le clapet B2, ou l'ensemble des clapets B2, se trouve en position ouverte, permettant la communication entre le conduit d'évacuation A2 et le second espace T2, et le clapet B l, ou les clapets B l, se trouve en position fermée, bloquant la communication fluidique entre le premier Tl et le second T2 espaces. La fermeture d'un clapet B l peut être conditionnée à la différence de pression entre les espaces Tl et T2. Un clapet B l peut être automatiquement fermé lorsque la pression dans le second espace T2 est supérieure à la pression dans le premier espace Tl, ou lorsque la pression dans le second espace T2 est supérieure à la pression dans le premier espace Tl d'une valeur seuil prédéterminée. Un clapet B 1 peut s'ouvrir sous l'effet d'un ressort de rappel lorsque les pressions dans les premier Tl et second T2 espaces s'égalisent, ou lorsque la différence de pression entre les premier Tl et second T2 espaces passe sous une valeur seuil prédéterminée. Un clapet B 1 peut être ouvert sous l'influence d'un ressort de rappel lorsque la différence de pression le permet.
En phase de retour, le ou les clapets B2, se trouvent en position fermée, bloquant la communication fluidique entre le conduit d'évacuation A2 et le second espace T2, et le ou les clapets B l, se trouvent en position ouverte, permettant la communication fluidique entre les premier Tl et le second T2 espaces. Les pressions dans les espaces Tl et T2 s'équilibrent donc.
Le cylindre K est en outre pourvu d'une alimentation continue E en concentrât C2, issu de la seconde unité de filtration F2, produisant un volume résiduel El sur une surface arrière S 3 de la partie centrale Ml du piston M, opposée à sa surface S I. La surface arrière S3 de la partie centrale Ml du piston M est inférieure à sa surface avant S I. L'alimentation continue E peut notamment être prévue sur une surface latérale du cylindre K. L'alimentation continue E en concentrât C2 peut par exemple être aménagée dans le premier cylindre Kl, proche du second cylindre K2. L'alimentation continue E peut notamment être aménagée entre les parties centrale Ml et annulaire M2 du piston M. L'alimentation E peut plus particulièrement être aménagée entre la partie annulaire M2 du piston M et la conduite d'admission Al du concentrât Cl.
Le concentrât C2 est admis dans la chambre Ll du premier cylindre K à la même pression P3 que dans l'alimentation continue E, mais du fait de la différence de surface, S 1 étant plus grande que S2, le concentrât C2 admis dans la chambre Ll du premier cylindre Kl met le piston en mouvement dans le sens de la compression.
Inversement, lors de la phase de retour, le concentrât C2 évacué par la conduite d'évacuation V2 de la vanne V n'oppose plus de pression sur la surface S 1 de la partie centrale Ml du piston, et le volume El continue d'exercer une pression résiduelle sur sa surface S2, initiant son mouvement de retour.
La phase de compression se poursuit jusqu'à l'équilibre des pressions exercées de part et d'autre du piston. En d'autres termes, les pressions combinées du concentrât C2 admis à la pression P3 par la vanne V sur la surface S I, et du concentrât Cl admis à la pression Ρ par l'admission Al sur la surface S2, compensent les pressions exercées par le concentrât Cl à la pression P2 sur la surface S4 et par le concentrât C2, à la pression P3 sur la surface S3 du piston.
L'équilibre peut alors être déterminé par l'équation suivante :
(S I- S3) x P3 + S2 x PI' = S4 x P2
51 désigne la surface avant de la partie centrale Ml du piston en contact avec le second concentrât C2, de pression P3,
53 désigne la surface arrière de la partie centrale Ml du piston en contact avec le concentrât C2, de pression P3,
52 désigne la surface avant de la partie annulaire M2 du piston en contact avec le premier concentrât Cl de pression Ρ
54 désigne la surface arrière de la partie annulaire M2 du piston en contact avec le premier concentrât Cl à la pression P2.
La vanne V est pilotée de manière à fermer l'admission VI du concentrât C2 et à ouvrir l'échappement V2 du concentrât C2 au moment où le piston M atteint son point d'équilibre le plus éloigné de la vanne V. Le ou les clapets B2, se ferment au même moment, isolant la conduite d'évacuation A2 du second espace T2. Le ou les clapets B l, s'ouvrent, permettant aux premier Tl t second T2 espaces de se rééquilibrer à la pression Ρ .
La vanne V est pilotée de manière à fermer l'évacuation V2 du concentrât C2 et à ouvrir l'admission VI du concentrât C2 au moment où la partie centrale Ml du piston M atteint son point le plus proche de la vanne V. Simultanément à cette disposition de la vanne V, le ou les clapets B2 s'ouvrent, permettant la communication fluidique entre le second espace T2 et l'évacuation A2 du premier concentrât Cl, et le ou les clapets B l se ferment. Une installation selon la présente invention comprend au moins un dispositif de transfert de pression R, disposé entre la première Fl et la second F2 unité de filtration. Les dispositifs de transfert de pression R peuvent être réunis en un ou plusieurs groupes, comprenant chacun 1 à 10 dispositifs de transferts de pression. Dans un groupe de dispositifs de transfert de pression R, chaque dispositif R comprend une vanne dynamique V, et les dispositifs de transfert de pression R sont disposés en parallèle. De préférence, un groupe contient de 2 à 5 dispositifs R disposés en parallèle, et plus particulièrement 4 dispositifs de transfert de pression. Le flux global de second concentrât C2, sortant de la seconde unité de filtration F2, alimente l'ensemble des dispositifs R d'un groupe. De manière à conserver un flux constant, les vannes dynamiques V d'un ensemble de dispositifs de transfert de pression R d'un groupe sont chacune à une position angulaire décalée par rapport aux autres.
Le dispositif de transfert de pression R fonctionne de la manière décrite ci-dessus dans le cas où une installation ne comprend qu'une unité de filtration Fl, telle que celle représentée à la figure lb. Dans ce cas l'eau de mer remplace le premier concentrât Cl décrit ci-dessus, et le concentrât issu de l'unité de filtration unique agit comme le second concentrât C2 de la manière décrite ci-dessus. Dans ce cas également, plusieurs dispositifs de transfert de pression R peuvent être disposés en parallèle pour former un groupe de dispositifs de transfert de pression R, avec les mêmes dispositions que celles décrites plus haut. II est également envisagé qu'une installation comprenant plusieurs unités de filtration soit équipée d'un premier dispositif, ou groupe de dispositifs, de transfert de pression RI, disposé entre deux unités de filtration, et d'un second dispositif, ou groupe de dispositifs, de transfert de pression R2 disposé en amont de la première unité de filtration. Le dispositif, ou groupe de dispositifs, de transfert de pression R2 situé en amont de la première unité de filtration peut alors être alimenté par le concentrât de l'une ou plusieurs des unités de filtration, de manière à comprimer l'eau de mer pour son traitement.

Claims

Revendications
1. Dispositif de transfert de pression R, comprenant un cylindre K, un piston M mobile en translation dans ledit cylindre K, une admission Al et une évacuation A2 d'un premier fluide Cl, une admission VI et une évacuation V2 d'un second fluide C2, caractérisé en ce que le cylindre K comprend un premier cylindre Kl et un second cylindre K2, en ce que le piston M comprend une partie centrale Ml mobile en translation dans le premier cylindre Kl alimenté en fluide C2, et une partie annulaire M2 délimitant un premier espace Tl et un second espace T2 dans le second cylindre K2, où les premier Tl et second T2 espaces sont alimentés en premier fluide Cl, où le second espace T2 est en communication fluidique avec le premier espace Tl par un ou plusieurs clapet B 1 , solidaire de la partie annulaire M2 du piston M, et en communication fluidique avec l'évacuation A2 du premier fluide Cl par un ou plusieurs clapet B2.
2. Dispositif selon la revendication 1 caractérisé en ce que l'admission du second fluide C2 dans le premier cylindre Kl est effectuée par une vanne dynamique V.
3. Dispositif selon les revendications 1 à 3, caractérisé en ce que le ou les clapets B l peuvent prendre une position ouverte lorsque la pression du fluide Cl est identique ou similaire dans les premier Tl et second T2 espaces, et une position fermée lorsque la pression du premier fluide C 1 dans le second espace T2 est supérieure à celle du premier fluide Cl dans le premier espace Tl.
4. Dispositif selon l'une ou l'autre des revendications précédentes, caractérisé en ce qu'il comprend une alimentation continue E du second fluide C2 disposée latéralement sur le cylindre K.
5. Dispositif selon l'une ou l'autre des revendications précédentes, caractérisé en ce que la partie centrale Ml du piston M comporte une première surface S I, et une seconde surface S2, la première et la seconde surface étant sur deux faces opposées du piston M, où les deux surfaces S I et S2 sont en contact avec le second fluide C2.
6. Dispositif selon la revendication 5, caractérisé en ce que la surface S2 est inférieure à la surface S 1.
7. Installation de traitement de fluides par osmose inverse, comprenant au moins une unité de filtration Fl par osmose inverse, caractérisée en ce que l'installation comprend au moins un dispositif de transfert de pression R tel que décrit dans les revendications 1 à 6.
8. Installation selon la revendication 7, caractérisée en ce qu'elle comprend une unité de filtration Fl et en ce que le premier fluide Cl est de l'eau de mer et le second fluide C2 est le concentrât issu de ladite unité de filtration Fl.
9. Installation selon la revendication 7, caractérisée en ce qu'elle comprend deux unités de filtration ou plus, et en ce que le premier fluide Cl est le concentrât issu d'une première unité de filtration Fl, et en ce que le second fluide C2 est le concentrât issu d'une seconde unité de filtration F2, où le premier fluide Cl est admis dans le premier espace Tl du dispositif de transfert de pression R par l'admission Al, et évacué du dispositif de transfert de pression R vers la seconde unité de filtration F2.
10. Installation selon la revendication 9, caractérisé en ce que le concentrât C2, issu de la seconde unité de filtration F, est admis dans le premier cylindre Kl du dispositif et évacué du premier cylindre Kl grâce à la vanne dynamique V.
11. Installation selon l'une ou l'autre des revendications 7 à 10, caractérisée en ce que plusieurs dispositifs d'échange de pression R sont réunis en un groupe au sein duquel ils sont disposés en parallèle.
12. Installation selon la revendication 11, caractérisé en ce que la position angulaire respective des vannes dynamiques V est décalée, de manière à ce que le flux global du second concentrât C2, transitant à travers l'ensemble des dispositifs de transfert de pression du groupe, soit contant et homogène.
13. Installation selon la revendication 7, caractérisée en ce qu'elle comprend au moins deux unités de filtrations, un premier dispositif de transfert de pression disposé en amont des unités de filtration, et au moins un second dispositif de transfert de pression disposé entre deux unités de filtration.
14. Procédé pour augmenter la pression d'un premier fluide Cl d'une valeur d'entrée à une valeur de sortie, par l'intermédiaire d'un second fluide C2, en utilisant un dispositif de transfert de pression K tel que décrit dans les revendications 1 à 6, comprenant les étapes : a) De compression, initiée par l'admission du second fluide C2 dans le premier cylindre Kl, et permettant la compression du premier fluide Cl admis dans le second cylindre K2 d'une valeur d'entrée à une valeur de sortie, et
b) De retour, initiée par l'évacuation du second fluide C2 hors du premier cylindre Kl, permettant le rééquilibrage des pressions du premier fluide Cl à une valeur d'entrée dans le second cylindre K2.
PCT/IB2016/057526 2016-12-12 2016-12-12 Dispositif de transfert de pression pour une installation de traitement de fluide par osmose inverse WO2018109521A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2016/057526 WO2018109521A1 (fr) 2016-12-12 2016-12-12 Dispositif de transfert de pression pour une installation de traitement de fluide par osmose inverse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2016/057526 WO2018109521A1 (fr) 2016-12-12 2016-12-12 Dispositif de transfert de pression pour une installation de traitement de fluide par osmose inverse

Publications (1)

Publication Number Publication Date
WO2018109521A1 true WO2018109521A1 (fr) 2018-06-21

Family

ID=57614412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/057526 WO2018109521A1 (fr) 2016-12-12 2016-12-12 Dispositif de transfert de pression pour une installation de traitement de fluide par osmose inverse

Country Status (1)

Country Link
WO (1) WO2018109521A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011979A1 (fr) * 1996-09-19 1998-03-26 Telme S.P.A. Dispositif de pompage pour osmose inverse entraine par un moteur
DE19702292A1 (de) * 1997-01-23 1998-07-30 Dieter Schmidt Verfahren und Vorrichtung zur Filterung, insbesondere bei der Gewinnung von trinkbarem Wasser mittels einer filternden Umkehrosmose-Einrichtung
US6017200A (en) * 1997-08-12 2000-01-25 Science Applications International Corporation Integrated pumping and/or energy recovery system
US6206663B1 (en) * 1997-07-19 2001-03-27 Gustav Klauke Gmbh Piston pump
US6491813B2 (en) * 2000-02-02 2002-12-10 Schenker Italia S.R.L. Equipment for desalination of water by reverse osmosis with energy recovery
WO2013061229A2 (fr) 2011-10-25 2013-05-02 Arkling Limited Échangeur de pression volumétrique pour une installation de dessalement d'eau de mer et installation de dessalement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011979A1 (fr) * 1996-09-19 1998-03-26 Telme S.P.A. Dispositif de pompage pour osmose inverse entraine par un moteur
DE19702292A1 (de) * 1997-01-23 1998-07-30 Dieter Schmidt Verfahren und Vorrichtung zur Filterung, insbesondere bei der Gewinnung von trinkbarem Wasser mittels einer filternden Umkehrosmose-Einrichtung
US6206663B1 (en) * 1997-07-19 2001-03-27 Gustav Klauke Gmbh Piston pump
US6017200A (en) * 1997-08-12 2000-01-25 Science Applications International Corporation Integrated pumping and/or energy recovery system
US6491813B2 (en) * 2000-02-02 2002-12-10 Schenker Italia S.R.L. Equipment for desalination of water by reverse osmosis with energy recovery
WO2013061229A2 (fr) 2011-10-25 2013-05-02 Arkling Limited Échangeur de pression volumétrique pour une installation de dessalement d'eau de mer et installation de dessalement

Similar Documents

Publication Publication Date Title
FR2492470A1 (fr) Dispositif de recuperation d'energie, appareil de pompage de fluide a moto-pompes et procede de recuperation de l'energie du type utilisant ce dispositif et cet appareil
FR2981704A1 (fr) Echangeur de pression volumetrique pour une installation de dessalement d'eau de mer et installation de dessalement
US6773226B2 (en) Rotary work exchanger and method
FR2903456A1 (fr) Pompe transfert a plusieurs pistons
CN106132514B (zh) 能量回收系统
DK2758154T3 (en) ACTIVE PRESSURE AMPLIFIER, REVERSE OSMOSE AND ITS USE
EP2158024A1 (fr) Systeme de purification de liquide par membrane a moyenne pression
EP3143288B1 (fr) Convertisseur de pression à piston comprenant un détendeur de fin de course
EP3146167B1 (fr) Moteur à air comprimé à chambre active incluse et à distribution active à l'admission
EP3104963B1 (fr) Procede d'exploitation d'une installation de traitement d'eau, et installation pour la mise en oeuvre du procede
WO2017132301A1 (fr) Séparation de liquide sur membrane entraînée par pression discontinue utilisant un échangeur de pression pour une efficacité augmentée
US11378067B2 (en) Pump and a desalination system including the pump
WO2018109521A1 (fr) Dispositif de transfert de pression pour une installation de traitement de fluide par osmose inverse
EP3317229A1 (fr) Procede de pilotage d'une installation de dessalement alimentee par une source d' energie renouvelable et installation associee
EP3861215B1 (fr) Échangeur de pression volumétrique à effet booster et mesure de débit integrée, pour une installation de dessalement d'eau de mer
CN109095562A (zh) 反渗透海水淡化方法及系统
EP1980744A1 (fr) Perfectionnement aux dispositifs d'alimentation de carburant sous haute pression par pompe transfert
EP0450257B1 (fr) Machine hydraulique apte à réaliser en même temps la détente d'un liquide et le pompage d'un autre liquide
EP3545194B1 (fr) Système et procédé de purification de liquide par osmose inverse.
FR2902669A1 (fr) Procede et installation de fourniture d'un fluide sous pression utilisable notamment pour le traitement de l'eau
FR3029907B1 (fr) Procede de purification de l'eau par osmose inverse et installation mettant en oeuvre un tel procede.
FR2608673A1 (fr) Canon d'abattage hydraulique a action impulsionnelle
WO2012140070A1 (fr) Kit d'extraction par evaporation osmotique et procede le mettant en oeuvre
EP1540178A1 (fr) Dispositif d'amplification hydraulique pour un systeme de pompage a haute pression
FR2549904A1 (fr) Pompe a haute pression pour liquide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16819182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16819182

Country of ref document: EP

Kind code of ref document: A1