WO2018109241A1 - System for producing metallic particles by means of atomisation with gas - Google Patents

System for producing metallic particles by means of atomisation with gas Download PDF

Info

Publication number
WO2018109241A1
WO2018109241A1 PCT/ES2016/070889 ES2016070889W WO2018109241A1 WO 2018109241 A1 WO2018109241 A1 WO 2018109241A1 ES 2016070889 W ES2016070889 W ES 2016070889W WO 2018109241 A1 WO2018109241 A1 WO 2018109241A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
molten metal
atomization
nozzle
ducts
Prior art date
Application number
PCT/ES2016/070889
Other languages
Spanish (es)
French (fr)
Inventor
José Manuel MARTÍN GARCÍA
Iñigo ITURRIZA ZUBILLAGA
Iñigo ANDUEZA GAZTELUMENDI
Original Assignee
Centro Tecnológico Ceit-Ik4
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro Tecnológico Ceit-Ik4 filed Critical Centro Tecnológico Ceit-Ik4
Priority to ES201990048A priority Critical patent/ES2726638B1/en
Priority to PCT/ES2016/070889 priority patent/WO2018109241A1/en
Publication of WO2018109241A1 publication Critical patent/WO2018109241A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying

Definitions

  • the present invention is related to obtaining metallic particles intended for the manufacture of objects with complex geometries, proposing a gas atomization system that uses a nozzle designed with characteristics that allow to obtain with precision metallic particles of controlled shapes and sizes, for a wide range of pure metals and their alloys, optimizing the consumption of metal and gas used for atomization.
  • a gas atomization system that uses a nozzle designed with characteristics that allow to obtain with precision metallic particles of controlled shapes and sizes, for a wide range of pure metals and their alloys, optimizing the consumption of metal and gas used for atomization.
  • Powdered metals are widely used as raw material for the manufacture of engineering objects or components in various fields of application (such as transportation, tools, etc.); obtaining said objects or components generally by means of a set of steps that involve the realization of a preform with the desired geometry, its consolidation by sintering and, in some cases, complementary operations to determine the objects with a precision of very limited dimensional tolerances. It should be noted, in that sense, that the objects of complex geometries produced by powder metallurgy, have excellent properties and have an important economic advantage of manufacturing compared to those obtained by alternative methods of production, such as forging or machining.
  • Inert gas atomization uses inert gases, such as Argon, Helium or Nitrogen, between others, introducing the gas at high pressure, to determine atomization pressures between 2 and 80 bar, whereby the gas reaches supersonic output speeds in the atomizer system, transferring a kinetic energy that allows the disintegration, in particles, of a column molten metal liquid on which the gas is projected.
  • inert gases such as Argon, Helium or Nitrogen
  • the most important parts of the gas atomization systems for obtaining metallic particles are a means of generating a liquid column of molten metal and a nozzle of projection of the gas on the liquid column of molten metal, having to have the nozzles characteristics that allow to obtain a gas flow that affects certain conditions on the liquid molten metal column, since the gas pressure and the flow rate are two critical process variables, since they have a direct influence on the size and the distribution of the metallic particles that are obtained.
  • Various solutions for the production of metallic powders with certain characteristics have been developed in this regard, trying to optimize the gas flow that is used, in a consistent and continuous process.
  • US 4416600 presents a solution that uses a multi-piece nozzle with an inner chamber containing a spiral duct as a means of controlling the flow of a gas, to obtain metal particles.
  • US 3253783 presents a solution that uses a nozzle in which a gas flow is introduced tangentially into an inner chamber and subsequently exits through a continuous annular groove.
  • US 4619597 presents a solution that uses a gas atomization nozzle that has a specific relationship with the diameter of a liquid metal column to be atomized.
  • the amount of gas used may be excessive, then a significant cooling of the molten metal liquid column, resulting in its solidification, so that the atomization process is interrupted. And in turn, excessive gas consumption has a negative impact on the economy of the atomization process, as well as on the control of the final characteristics of the particles resulting from the atomization, that is, the shape, size and distribution of the configuration from the same.
  • a system for obtaining metal particles by gas atomization is proposed, using a nozzle that is designed with particular characteristics, allowing metallic particles of controlled shape and sizes to be obtained, very strictly adjusting the consumption of metal that is atomized. and of the gas used for atomization.
  • This system object of the invention uses a nozzle comprising a central piece that holds a conduit tube of a flow of molten metal, to axially form a liquid column of the molten metal that exits axially through said central part, said said going centerpiece supported by a socket that determines around the tube a hollow chamber, while around the socket are two overlapping pieces, among which is a closed chamber with which it communicates a supply inlet of a pressurized gas, while in a of the pieces a series of ducts are defined that extend in an inclined position from the closed chamber towards an area located in front of the exit of the liquid column of molten metal from the central piece.
  • the inclined ducts can be of different diameters and cross-sectional shapes, an embodiment being provided with two concentric distributions of said ducts on different slopes and with different diameters of the ducts, around the centerpiece.
  • a system is thus obtained whose nozzle allows the gas to exit through a set of holes, determining a series of gas beams that impact on the molten metal liquid column, allowing the control of the impact of the gas on the molten metal liquid column to be improved. for its fragmentation into particles of certain morphologies.
  • This solution also achieves an increase in the contact surface of the gas with the liquid column of molten metal, which optimizes the consumption of gas and metal to obtain a certain number of particles.
  • the component parts of the nozzle are joined together in a detachable way, which favors the cleaning and replacement of any piece that is damaged by use, mainly the central part, which is the most affected, since that the flow of molten metal at high temperature comes out of it; while the hollow chamber defined around the tube prevents the direct transmission of heat from the tube to the rest of the parts of the structural assembly of the nozzle.
  • the detachability also allows to control the convergence angles of the gas projection in relation to the molten metal liquid column, as well as the gas flow and its incidence on the molten metal liquid column, varying the shape and size of inclined gas outlet ducts, by selective replacement of the part that has said ducts.
  • the system object of the invention results from very advantageous characteristics for the metal atomization function to which it is intended, acquiring its own life and preferential character with respect to conventional systems of the same application.
  • Figure 1 shows in perspective an embodiment of a gas atomization nozzle, for the system for obtaining metal particles according to the invention.
  • Figure 2 is a schematic view of a cross-sectional perspective of the nozzle of the previous figure seen from another viewing angle.
  • the object of the invention relates to a system for producing metal particles by gas atomization, using a nozzle (1) through which a flow of molten metal is axially passed to form a liquid column of the metal to be atomized, and projecting through said nozzle (1) a flow of gas under pressure, which impacts on the liquid column of molten metal, fragmenting it into small drops or particles.
  • the nozzle (1) comprises a centerpiece (2) provided with an axial hole, in which a tube (3) for the circulation of the flow of molten metal from a melting means, to exit the molten metal through of said centerpiece (2), giving rise to the liquid column to be atomized.
  • the central part (2) is supported by a bushing (4) that surrounds the tube (3) in a longitudinal portion thereof, between said bushing (4) and the tube (3) being a hollow chamber (5) that maintains a thermal insulation between both.
  • the bushing (4) there is a set of two overlapping pieces, an upper one (6) and a lower one (7), between which a closed chamber (8) is defined, with which it communicates at least one input ( 9) of supply of pressurized gas, while through the lower part (7) there are defined ducts (10) that extend in an inclined position from the closed chamber (8) towards a projection area located outside ahead of the centerpiece (2).
  • the flow of a molten metal flow can be established, from a melting crucible, the molten metal coming out through the central piece (2), so that axially it is formed axially outside a liquid column of molten metal; and then, by introducing a flow of pressurized gas into the closed chamber (8) through the inlet or inlets (8), the gas exits through the ducts (10), projecting towards an outside area located in front of the centerpiece (2) , where the projected gas impacts on the molten metal liquid column, fragmenting it into small drops or particles that, when cooled, solidify.
  • the projection of the gas through the inclined ducts (10) produces beams all around the contour of the molten metal liquid column, in conditions that favor the fragmentation of the liquid metal, with a consumption of gas and metal that can be perfectly regulated by the inclination, diameter and distribution of the ducts (10), which can be variable.
  • the projection of the gas is provided according to an embodiment, not limited, through a set of ducts (10) distributed in two concentric distributions with respect to the central part (2), with the ducts (10) of one and another distribution of different diameters and in different inclinations to influence the liquid column of molten metal to atomize in paths somewhat separated from each other (about two millimeters), which increases the surface of impact of the gas on the liquid column of molten metal, favoring atomization with minimal gas consumption.
  • two gas inlets (9) are provided, located in diametrically opposite positions, which favors the distribution of the gas in said closed chamber (8), to exit a uniform way through all projection ducts (10).
  • this embodiment is not limiting either, there being a single inlet (9) or more than two, for the introduction of gas into the closed chamber (8), without altering the object of the invention.
  • the assembly of the structural assembly of the nozzle (1) is also established with a detachable clamp between the component parts, which allows varying the shape, size, inclination and distribution of the ducts (10), by replacing the part bottom (7) in which said ducts (10) are defined, thus resulting in the versatile system for determining the configuration of metal particles by atomization, as desired.
  • the detachability allows, in turn, the cleaning of the nozzle (1) and the replacement of any of the parts thereof that is damaged, which is especially of interest in the case of the central part (2), since the flow of molten metal that passes through it can leave debris that can accumulate and can affect the atomization process and, in addition, said centerpiece (2) is subjected during the atomization processes to the high temperatures of the molten metal that passes through it, being able to be affected by said centerpiece (2) in its configuration.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The invention relates to a system for producing metallic particles by means of atomisation with gas, using a nozzle (1) through which a flow of molten metal passes to form axially a liquid column of molten metal, while a flow of pressurised gas is projected by means of the nozzle (1) and hits the liquid column of molten metal. The nozzle (1) comprises a central piece (2) from which the liquid column of molten metal exits, there being defined around the central piece (2) a series of tubes (10) that extend in inclined positions from a closed chamber (8) provided with at least one inlet (9) for introducing a pressurised gas towards a projection area on the liquid column of molten metal in front of the central piece (2).

Description

DESCRIPCION  DESCRIPTION
SISTEMA DE PRODUCCIÓN DE PARTÍCULAS METÁLICAS MEDIANTE ATOMIZACIÓNSYSTEM OF PRODUCTION OF METAL PARTICLES THROUGH ATOMIZATION
CON GAS WITH GAS
Sector de la técnica Technical sector
La presente invención está relacionada con la obtención de partículas metálicas destinadas para la fabricación de objetos con geometrías complejas, proponiendo un sistema de atomización con gas que utiliza una tobera diseñada con unas características que permiten obtener con precisión partículas metálicas de formas y tamaños controlados, para un amplio rango de metales puros y sus aleaciones, optimizando el consumo de metal y del gas utilizado para la atomización. Estado de la técnica The present invention is related to obtaining metallic particles intended for the manufacture of objects with complex geometries, proposing a gas atomization system that uses a nozzle designed with characteristics that allow to obtain with precision metallic particles of controlled shapes and sizes, for a wide range of pure metals and their alloys, optimizing the consumption of metal and gas used for atomization. State of the art
Los metales en forma de polvo se utilizan ampliamente como materia prima para la fabricación de objetos o componentes de ingeniería en diversos campos de aplicación (como transporte, herramientas, etc.); obteniéndose dichos objetos o componentes generalmente mediante un conjunto de pasos que involucran la realización de una preforma con la geometría deseada, su consolidación mediante sinterización y, en algunos casos, operaciones complementarias para determinar los objetos con una precisión de tolerancias dimensionales muy acotadas. Es de señalar, en ese sentido, que los objetos de geometrías complejas producidos por metalurgia de polvos, tienen excelentes propiedades y presentan una ventaja económica importante de fabricación frente a los obtenidos por métodos alternativos de producción, como la forja o el mecanizado. En relación con ello, uno de los métodos más utilizados para la obtención de polvos metálicos es la atomización, para lo cual existen diversas soluciones, como la atomización con agua, con plasma, por centrifugado, etc., destacando la atomización con gas, que permite obtener partículas metálicas con bajo porcentaje de oxígeno final. Para la atomización con gas se utilizan gases inertes, como Argón, Helio o Nitrógeno, entre otros, introduciéndose el gas a elevada presión, para determinar presiones de atomización entre 2 y 80 bares, con lo cual el gas alcanza velocidades supersónicas de salida en el sistema atomizador, transfiriendo una energía cinética que permite la desintegración, en partículas, de una columna líquida de metal fundido sobre la que se proyecta el gas. Powdered metals are widely used as raw material for the manufacture of engineering objects or components in various fields of application (such as transportation, tools, etc.); obtaining said objects or components generally by means of a set of steps that involve the realization of a preform with the desired geometry, its consolidation by sintering and, in some cases, complementary operations to determine the objects with a precision of very limited dimensional tolerances. It should be noted, in that sense, that the objects of complex geometries produced by powder metallurgy, have excellent properties and have an important economic advantage of manufacturing compared to those obtained by alternative methods of production, such as forging or machining. In this regard, one of the most used methods for obtaining metal powders is atomization, for which there are several solutions, such as water atomization, plasma, centrifugation, etc., highlighting gas atomization, which It allows to obtain metallic particles with a low percentage of final oxygen. Inert gas atomization uses inert gases, such as Argon, Helium or Nitrogen, between others, introducing the gas at high pressure, to determine atomization pressures between 2 and 80 bar, whereby the gas reaches supersonic output speeds in the atomizer system, transferring a kinetic energy that allows the disintegration, in particles, of a column molten metal liquid on which the gas is projected.
Las partes más importantes de los sistemas de atomización con gas para la obtención de partículas metálicas, son un medio de generación de una columna líquida de metal fundido y una tobera de salida de proyección del gas sobre la columna líquida de metal fundido, debiendo tener la tobera unas características que permitan obtener un flujo de gas que incida en unas determinadas condiciones sobre la columna líquida de metal fundido, ya que la presión del gas y la velocidad del flujo son dos variables críticas del proceso, pues tienen una influencia directa sobre el tamaño y la distribución de las partículas metálicas que se obtienen. Se han desarrollado al respecto diversas soluciones para la producción de polvos metálicos con características determinadas, intentando optimizar el flujo de gas que se utiliza, en un proceso consistente y continuo. The most important parts of the gas atomization systems for obtaining metallic particles are a means of generating a liquid column of molten metal and a nozzle of projection of the gas on the liquid column of molten metal, having to have the nozzles characteristics that allow to obtain a gas flow that affects certain conditions on the liquid molten metal column, since the gas pressure and the flow rate are two critical process variables, since they have a direct influence on the size and the distribution of the metallic particles that are obtained. Various solutions for the production of metallic powders with certain characteristics have been developed in this regard, trying to optimize the gas flow that is used, in a consistent and continuous process.
Por ejemplo, el documento US 4416600 presenta una solución que utiliza una tobera de varias piezas con una cámara interior que contiene un conducto en espiral como medio de control del flujo de un gas, para obtener partículas metálicas. For example, US 4416600 presents a solution that uses a multi-piece nozzle with an inner chamber containing a spiral duct as a means of controlling the flow of a gas, to obtain metal particles.
El documento US 3253783 presenta una solución que utiliza una tobera en la que un flujo de un gas se introduce de manera tangencial a una cámara interior y posteriormente sale por una ranura anular continua. US 3253783 presents a solution that uses a nozzle in which a gas flow is introduced tangentially into an inner chamber and subsequently exits through a continuous annular groove.
El documento US 4619597 presenta una solución que utiliza una tobera de atomización con gas que tiene una relación específica con el diámetro de una columna de metal líquido a atomizar. US 4619597 presents a solution that uses a gas atomization nozzle that has a specific relationship with the diameter of a liquid metal column to be atomized.
Y los documentos US 1856679, US 3501802, US 2440531 , US 3592391 y US 3901492 presentan otras formas de ejercer control sobre el flujo de un gas para controlar el tamaño de partículas que se obtienen de la atomización de un metal fundido. En todos estos casos el flujo del gas que se utiliza para la atomización se controla manualmente y es función, en cada caso, de las tolerancias del mecanizado de una ranura de la tobera por la que se proyecta el gas, con respecto a una columna líquida del metal fundido a atomizar; con lo cual, dado que en general la tobera está sujeta a elevadas temperaturas durante la atomización, la ranura de salida del gas puede variar en dimensiones y uniformidad, alterando el resultado de la atomización. And documents US 1856679, US 3501802, US 2440531, US 3592391 and US 3901492 present other ways of exercising control over the flow of a gas to control the size of particles obtained from the atomization of a molten metal. In all these cases the flow of the gas used for atomization is controlled manually and it is a function, in each case, of the machining tolerances of a nozzle groove through which the gas is projected, with respect to a liquid column of the molten metal to be atomized; whereby, since in general the nozzle is subject to high temperatures during the atomization, the gas outlet groove can vary in dimensions and uniformity, altering the atomization result.
Además, si el tamaño de la ranura de la tobera no se controla con precisión, la cantidad de gas que se utiliza puede ser excesiva, produciéndose entonces un enfriamiento importante de la columna líquida de metal fundido, dando lugar a su solidificación, con lo que se interrumpe el proceso de la atomización. Y a su vez, un consumo excesivo de gas repercute negativamente en la economía del proceso de la atomización, como en el control de las características finales de las partículas resultantes de la atomización, es decir la forma, el tamaño y la distribución de la configuración de las mismas. Objeto de la invención In addition, if the size of the nozzle groove is not precisely controlled, the amount of gas used may be excessive, then a significant cooling of the molten metal liquid column, resulting in its solidification, so that the atomization process is interrupted. And in turn, excessive gas consumption has a negative impact on the economy of the atomization process, as well as on the control of the final characteristics of the particles resulting from the atomization, that is, the shape, size and distribution of the configuration from the same. Object of the invention
De acuerdo con la invención se propone un sistema de obtención de partículas metálicas mediante atomización con gas, utilizando una tobera que está diseñada con unas características particulares, permitiendo obtener partículas metálicas de forma y tamaños controlados, ajusfando muy estrictamente el consumo de metal que se atomiza y del gas que se utiliza para la atomización. According to the invention, a system for obtaining metal particles by gas atomization is proposed, using a nozzle that is designed with particular characteristics, allowing metallic particles of controlled shape and sizes to be obtained, very strictly adjusting the consumption of metal that is atomized. and of the gas used for atomization.
Este sistema objeto de la invención utiliza una tobera que comprende una pieza central que sujeta a un tubo de conducción de un flujo de metal fundido, para formar axialmente una columna líquida del metal fundido que sale axialmente a través de la mencionada pieza central, yendo dicha pieza central soportada por un casquillo que determina alrededor del tubo una cámara hueca, mientras que alrededor del casquillo van dos piezas superpuestas, entre las cuales queda una cámara cerrada con la que comunica una entrada de suministro de un gas a presión, mientras que en una de las piezas se hallan definidos una serie de conductos que se extienden en posición inclinada desde la cámara cerrada hacia una zona situada por delante de la salida de la columna líquida de metal fundido desde la pieza central. This system object of the invention uses a nozzle comprising a central piece that holds a conduit tube of a flow of molten metal, to axially form a liquid column of the molten metal that exits axially through said central part, said said going centerpiece supported by a socket that determines around the tube a hollow chamber, while around the socket are two overlapping pieces, among which is a closed chamber with which it communicates a supply inlet of a pressurized gas, while in a of the pieces a series of ducts are defined that extend in an inclined position from the closed chamber towards an area located in front of the exit of the liquid column of molten metal from the central piece.
Los conductos inclinados pueden ser de diferentes diámetros y formas de sección transversal, estando prevista una realización con dos distribuciones concéntricas de dichos conductos en inclinaciones distintas y con diámetros diferentes de los conductos, alrededor de la pieza central. The inclined ducts can be of different diameters and cross-sectional shapes, an embodiment being provided with two concentric distributions of said ducts on different slopes and with different diameters of the ducts, around the centerpiece.
Se obtiene así un sistema cuya boquilla permite la salida del gas por un conjunto de orificios, determinando una serie de haces del gas que inciden sobre la columna líquida de metal fundido, permitiendo mejorar el control del impacto del gas sobre la columna líquida de metal fundido para su fragmentación en partículas de morfologías determinadas. A system is thus obtained whose nozzle allows the gas to exit through a set of holes, determining a series of gas beams that impact on the molten metal liquid column, allowing the control of the impact of the gas on the molten metal liquid column to be improved. for its fragmentation into particles of certain morphologies.
Con esta solución se consigue además un aumento de la superficie de contacto del gas con la columna líquida de metal fundido, con lo cual se optimiza el consumo de gas y del metal para obtener un número de partículas determinado. This solution also achieves an increase in the contact surface of the gas with the liquid column of molten metal, which optimizes the consumption of gas and metal to obtain a certain number of particles.
Por otro lado, las piezas componentes de la boquilla van unidas entre sí de manera desmontable, lo cual favorece la limpieza y la sustitución de cualquier pieza que se deteriore por el uso, principalmente la pieza central, que es la que más resulta afectada, ya que por ella sale el flujo del metal fundido a alta temperatura; en tanto que la cámara hueca definida alrededor del tubo evita la transmisión directa del calor desde el tubo al resto de las piezas del conjunto estructural de la tobera. La desmontabilidad permite además controlar los ángulos de convergencia de la proyección del gas en relación a la columna líquida de metal fundido, así como el flujo del gas y la incidencia del mismo sobre la columna líquida de metal fundido, variando la forma y el tamaño de los conductos inclinados de salida del gas, mediante la sustitución selectiva de la pieza que posee dichos conductos. On the other hand, the component parts of the nozzle are joined together in a detachable way, which favors the cleaning and replacement of any piece that is damaged by use, mainly the central part, which is the most affected, since that the flow of molten metal at high temperature comes out of it; while the hollow chamber defined around the tube prevents the direct transmission of heat from the tube to the rest of the parts of the structural assembly of the nozzle. The detachability also allows to control the convergence angles of the gas projection in relation to the molten metal liquid column, as well as the gas flow and its incidence on the molten metal liquid column, varying the shape and size of inclined gas outlet ducts, by selective replacement of the part that has said ducts.
Por todo ello, el sistema objeto de la invención resulta de unas características muy ventajosas para la función de atomización de metales a la que está destinado, adquiriendo vida propia y carácter preferente respecto de los sistemas convencionales de la misma aplicación. Therefore, the system object of the invention results from very advantageous characteristics for the metal atomization function to which it is intended, acquiring its own life and preferential character with respect to conventional systems of the same application.
Descripción de las figuras Description of the figures
La figura 1 muestra en perspectiva un ejemplo de realización de una tobera de atomización con gas, para el sistema de obtención de partículas metálicas según la invención. La figura 2 es una vista esquemática de una perspectiva en sección transversal de la tobera de la figura anterior vista desde otro ángulo de observación. Figure 1 shows in perspective an embodiment of a gas atomization nozzle, for the system for obtaining metal particles according to the invention. Figure 2 is a schematic view of a cross-sectional perspective of the nozzle of the previous figure seen from another viewing angle.
Descripción detallada de la invención Detailed description of the invention
El objeto de la invención se refiere a un sistema de producción de partículas metálicas mediante atomización con gas, utilizando una tobera (1) por la que se hace pasar axialmente un flujo de metal fundido para formar una columna líquida del metal a atomizar, y proyectándose a través de dicha tobera (1) un flujo de gas a presión, el cual impacta sobre la columna líquida de metal fundido, fragmentándola en pequeñas gotas o partículas. The object of the invention relates to a system for producing metal particles by gas atomization, using a nozzle (1) through which a flow of molten metal is axially passed to form a liquid column of the metal to be atomized, and projecting through said nozzle (1) a flow of gas under pressure, which impacts on the liquid column of molten metal, fragmenting it into small drops or particles.
La tobera (1) comprende una pieza central (2) provista con un orificio axial, en la cual se sujeta un tubo (3) destinado para la circulación del flujo de metal fundido desde un medio de fusión, para salir el metal fundido a través de la mencionada pieza central (2), dando lugar a la columna líquida a atomizar. The nozzle (1) comprises a centerpiece (2) provided with an axial hole, in which a tube (3) for the circulation of the flow of molten metal from a melting means, to exit the molten metal through of said centerpiece (2), giving rise to the liquid column to be atomized.
La pieza central (2) es soportada por un casquillo (4) que rodea al tubo (3) en una porción longitudinal del mismo, quedando entre dicho casquillo (4) y el tubo (3) una cámara hueca (5) que mantiene un aislamiento térmico entre ambos. The central part (2) is supported by a bushing (4) that surrounds the tube (3) in a longitudinal portion thereof, between said bushing (4) and the tube (3) being a hollow chamber (5) that maintains a thermal insulation between both.
Alrededor del casquillo (4) va dispuesto un conjunto de dos piezas superpuestas, una superior (6) y una inferior (7), entre las cuales queda definida una cámara cerrada (8), con la cual comunica, al menos, una entrada (9) de suministro de gas a presión, mientras que a través de la pieza inferior (7) se hallan definidos unos conductos (10) que se extienden en posición inclinada desde la cámara cerrada (8) hacia una zona de proyección situada en el exterior por delante de la pieza central (2). Around the bushing (4) there is a set of two overlapping pieces, an upper one (6) and a lower one (7), between which a closed chamber (8) is defined, with which it communicates at least one input ( 9) of supply of pressurized gas, while through the lower part (7) there are defined ducts (10) that extend in an inclined position from the closed chamber (8) towards a projection area located outside ahead of the centerpiece (2).
Con ello así, por el tubo (3) puede establecerse la circulación de un flujo de metal fundido, desde un crisol de fusión, saliendo el metal fundido a través de la pieza central (2), de manera que en el exterior se forma axialmente una columna líquida de metal fundido; y entonces, introduciendo por la entrada o entradas (9) un flujo de gas a presión en la cámara cerrada (8), el gas sale por los conductos (10), proyectándose hacia una zona exterior situada por delante de pieza central (2), en donde el gas proyectado impacta sobre la columna líquida de metal fundido, fragmentándola en pequeñas gotas o partículas que al enfriarse se solidifican. La proyección del gas a través de los conductos (10) inclinados produce unos haces por todo el contorno de la columna líquida de metal fundido, en unas condiciones que favorecen la fragmentación del metal líquido, con un consumo de gas y del metal que pueden ser perfectamente regulados mediante la inclinación, el diámetro y la distribución de los conductos (10), que pueden ser variables. Thus, through the tube (3) the flow of a molten metal flow can be established, from a melting crucible, the molten metal coming out through the central piece (2), so that axially it is formed axially outside a liquid column of molten metal; and then, by introducing a flow of pressurized gas into the closed chamber (8) through the inlet or inlets (8), the gas exits through the ducts (10), projecting towards an outside area located in front of the centerpiece (2) , where the projected gas impacts on the molten metal liquid column, fragmenting it into small drops or particles that, when cooled, solidify. The projection of the gas through the inclined ducts (10) produces beams all around the contour of the molten metal liquid column, in conditions that favor the fragmentation of the liquid metal, with a consumption of gas and metal that can be perfectly regulated by the inclination, diameter and distribution of the ducts (10), which can be variable.
En ese sentido, la proyección del gas se prevé según una realización, no limitativa, a través de un conjunto de conductos (10) repartidos en dos distribuciones concéntricas respecto de la pieza central (2), con los conductos (10) de una y otra distribución de distintos diámetros y en distintas inclinaciones para incidir sobre la columna líquida de metal fundido a atomizar en sendas zonas algo separadas entre sí (unos dos milímetros), lo cual aumenta la superficie de impacto del gas sobre la columna líquida de metal fundido, favoreciendo la atomización con un mínimo consumo de gas. Por otro lado, en relación con la cámara cerrada (8) se prevén dos entradas (9) de introducción de gas, situadas en posiciones diametralmente opuestas, lo cual favorece la distribución del gas en la mencionada cámara cerrada (8), para salir de una manera uniforme por todos los conductos (10) de proyección. No obstante, esta realización tampoco es limitativa, pudiendo haber una sola entrada (9) o más de dos, para la introducción del gas en la cámara cerrada (8), sin que ello altere el objeto de la invención. In that sense, the projection of the gas is provided according to an embodiment, not limited, through a set of ducts (10) distributed in two concentric distributions with respect to the central part (2), with the ducts (10) of one and another distribution of different diameters and in different inclinations to influence the liquid column of molten metal to atomize in paths somewhat separated from each other (about two millimeters), which increases the surface of impact of the gas on the liquid column of molten metal, favoring atomization with minimal gas consumption. On the other hand, in relation to the closed chamber (8), two gas inlets (9) are provided, located in diametrically opposite positions, which favors the distribution of the gas in said closed chamber (8), to exit a uniform way through all projection ducts (10). However, this embodiment is not limiting either, there being a single inlet (9) or more than two, for the introduction of gas into the closed chamber (8), without altering the object of the invention.
El montaje del conjunto estructural de la tobera (1) se establece además con una sujeción desmontable entre las piezas componentes, lo cual permite variar la forma, el tamaño, la inclinación y la distribución de los conductos (10), mediante sustitución de la pieza inferior (7) en la que están definidos dichos conductos (10), resultando así el sistema versátil para determinar la configuración de partículas metálicas mediante la atomización, según se desee. The assembly of the structural assembly of the nozzle (1) is also established with a detachable clamp between the component parts, which allows varying the shape, size, inclination and distribution of the ducts (10), by replacing the part bottom (7) in which said ducts (10) are defined, thus resulting in the versatile system for determining the configuration of metal particles by atomization, as desired.
La desmontabilidad permite, a su vez, la limpieza de la tobera (1) y la sustitución de cualquiera de las piezas de la misma que resulte deteriorada, lo cual es especialmente de interés en el caso de la pieza central (2), ya que el flujo de metal fundido que pasa por ella puede dejar restos que se van acumulando pudiendo afectar al proceso de la atomización y, además, dicha pieza central (2) es sometida durante los procesos de atomización a las altas temperaturas del metal fundido que pasa por ella, pudiendo llegar a resultar afectada por ello dicha pieza central (2) en su configuración. The detachability allows, in turn, the cleaning of the nozzle (1) and the replacement of any of the parts thereof that is damaged, which is especially of interest in the case of the central part (2), since the flow of molten metal that passes through it can leave debris that can accumulate and can affect the atomization process and, in addition, said centerpiece (2) is subjected during the atomization processes to the high temperatures of the molten metal that passes through it, being able to be affected by said centerpiece (2) in its configuration.

Claims

REIVINDICACIONES
1. - Sistema de producción de partículas metálicas mediante atomización con gas, utilizando una tobera (1) por la que se hace pasar un flujo de metal fundido para formar axialmente una columna líquida de metal fundido, mientras que a través de dicha tobera (1) es proyectable un flujo de gas a presión que va a impactar sobre la columna líquida de metal fundido, caracterizado porque la tobera (1) comprende una pieza central (2), desde la cual sale la columna liquida de metal fundido, estando definidos alrededor de dicha pieza central (2) una serie de conductos (10) que se extienden en posiciones inclinadas desde una cámara cerrada (8) provista con, al menos, una entrada (9) de introducción de un gas a presión, hacia una zona de proyección sobre la columna líquida de metal fundido por delante de la pieza central (2). 1. - System of production of metallic particles by atomization with gas, using a nozzle (1) through which a flow of molten metal is passed to axially form a liquid column of molten metal, while through said nozzle (1 ) a flow of gas under pressure that will impact the liquid molten metal column is projected, characterized in that the nozzle (1) comprises a central piece (2), from which the liquid molten metal column exits, being defined around of said central part (2) a series of ducts (10) extending in inclined positions from a closed chamber (8) provided with at least one inlet (9) for introducing a gas under pressure, towards an area of projection on the liquid column of molten metal in front of the centerpiece (2).
2. - Sistema de producción de partículas metálicas mediante atomización con gas, de acuerdo con la primera reivindicación, caracterizado porque en la pieza central (2) se sujeta un tubo (3) de conducción del metal fundido, en tanto que dicha pieza central (2) es soportada por un casquillo (4), alrededor del cual va dispuesto un conjunto de dos piezas superpuestas, una superior (6) y otra inferior (7), entre las cuales queda definida la cámara cerrada (8), estando definidos los conductos (10) de proyección del gas a través de la pieza inferior (7). 2. - System of production of metallic particles by atomization with gas, according to the first claim, characterized in that in the central piece (2) a pipe (3) of molten metal conduction is held, while said central part ( 2) it is supported by a bushing (4), around which a set of two superimposed pieces, one upper (6) and one lower (7), between which the closed chamber (8) is defined, being arranged gas projection ducts (10) through the lower part (7).
3. - Sistema de producción de partículas metálicas mediante atomización con gas, de acuerdo con la reivindicación 2, caracterizado porque entre el tubo (3) y el casquillo (4) queda una cámara hueca (5) de aislamiento térmico. 3. - System of production of metallic particles by atomization with gas, according to claim 2, characterized in that a hollow chamber (5) of thermal insulation is between the tube (3) and the bushing (4).
4. - Sistema de producción de partículas metálicas mediante atomización con gas, de acuerdo con las reivindicaciones 1 y 2, caracterizado porque en relación con la cámara cerrada (8) van dispuestas dos entradas (9) situadas en posiciones diametralmente opuestas. 4. - System of production of metal particles by atomization with gas, according to claims 1 and 2, characterized in that in relation to the closed chamber (8) two inlets (9) located in diametrically opposite positions are arranged.
5. - Sistema de producción de partículas metálicas mediante atomización con gas, de acuerdo con las reivindicaciones 1 y 2, caracterizado porque los conductos (10) se establecen repartidos en dos distribuciones concéntricas respecto de la pieza central (2), con los conductos (10) de una y otra distribución de distintos diámetros y en distintas inclinaciones. 5. - System of production of metal particles by atomization with gas, according to claims 1 and 2, characterized in that the ducts (10) are established distributed in two concentric distributions with respect to the central part (2), with the ducts ( 10) of one and another distribution of different diameters and in different inclinations.
6.- Sistema de producción de partículas metálicas mediante atomización con gas, de acuerdo con las reivindicaciones 1 y 2, caracterizado porque las piezas componentes del conjunto estructural de la tobera (1) van unidas entre sí con una sujeción desmontable. 6. System for the production of metal particles by atomization with gas, according to claims 1 and 2, characterized in that the component parts of the structural assembly of the nozzle (1) are joined together with a removable fastener.
PCT/ES2016/070889 2016-12-14 2016-12-14 System for producing metallic particles by means of atomisation with gas WO2018109241A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201990048A ES2726638B1 (en) 2016-12-14 2016-12-14 PRODUCTION SYSTEM OF METAL PARTICLES THROUGH GAS ATOMIZATION
PCT/ES2016/070889 WO2018109241A1 (en) 2016-12-14 2016-12-14 System for producing metallic particles by means of atomisation with gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2016/070889 WO2018109241A1 (en) 2016-12-14 2016-12-14 System for producing metallic particles by means of atomisation with gas

Publications (1)

Publication Number Publication Date
WO2018109241A1 true WO2018109241A1 (en) 2018-06-21

Family

ID=62558102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070889 WO2018109241A1 (en) 2016-12-14 2016-12-14 System for producing metallic particles by means of atomisation with gas

Country Status (2)

Country Link
ES (1) ES2726638B1 (en)
WO (1) WO2018109241A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778516A (en) * 1986-11-03 1988-10-18 Gte Laboratories Incorporated Process to increase yield of fines in gas atomized metal powder
US5213610A (en) * 1989-09-27 1993-05-25 Crucible Materials Corporation Method for atomizing a titanium-based material
US5228620A (en) * 1990-10-09 1993-07-20 Iowa State University Research Foundtion, Inc. Atomizing nozzle and process
US6142382A (en) * 1997-06-18 2000-11-07 Iowa State University Research Foundation, Inc. Atomizing nozzle and method
US20160023277A1 (en) * 2013-09-24 2016-01-28 Iowa State University Research Foundation, Inc. Atomizer for improved ultra-fine powder production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778516A (en) * 1986-11-03 1988-10-18 Gte Laboratories Incorporated Process to increase yield of fines in gas atomized metal powder
US5213610A (en) * 1989-09-27 1993-05-25 Crucible Materials Corporation Method for atomizing a titanium-based material
US5228620A (en) * 1990-10-09 1993-07-20 Iowa State University Research Foundtion, Inc. Atomizing nozzle and process
US6142382A (en) * 1997-06-18 2000-11-07 Iowa State University Research Foundation, Inc. Atomizing nozzle and method
US20160023277A1 (en) * 2013-09-24 2016-01-28 Iowa State University Research Foundation, Inc. Atomizer for improved ultra-fine powder production

Also Published As

Publication number Publication date
ES2726638A1 (en) 2019-10-08
ES2726638B1 (en) 2020-06-12

Similar Documents

Publication Publication Date Title
ES2822048T3 (en) Process and apparatus for producing powder particles by atomization of elongated member feed material
ES2769777T3 (en) Device and procedure for the melting by floating zone of a material and for the atomization of the molten material to produce powder
ES2265586T3 (en) INJECTOR FOR METAL FOUNDING OVEN.
US7118052B2 (en) Method and apparatus for atomising liquid media
US6972138B2 (en) Process and device for high-speed flame spraying
US20220324022A1 (en) Microwave plasma processing of spheroidized copper or other metallic powders
JPH01266868A (en) Apparatus and method for producing heat-spray coating
US4203717A (en) Flat flame burner assembly
CN107250669B (en) Non- water-cooled gaseous fuel burners and its heating means
CN110331396A (en) Ring type coaxial powder-feeding laser nozzle
US20140008454A1 (en) HVOF Torch with Fuel Surrounding Oxidizer
US3966374A (en) Apparatus for the manufacture of spherical metallic powder non-contaminated by ambient atmosphere
TWI547328B (en) Metal powder manufacturing method and device
CN105252012A (en) Device and method for continuously manufacturing metal powder through multi-electrode plasma arcs
ES2726638B1 (en) PRODUCTION SYSTEM OF METAL PARTICLES THROUGH GAS ATOMIZATION
CN114054764A (en) Spray pipe atomizer for gas atomization powder preparation
CN114481003A (en) Hot cathode spray gun, nano plasma spraying device and method
CN1986121A (en) Metal powder production apparatus
US10792681B2 (en) Nozzle for discharging compressed air
JP2012107828A (en) Burner for producing inorganic spheroidized particle, inorganic spheroidized particle production device, and method of producing inorganic spheroidized particle
CA2410797A1 (en) Apparatus for injecting gas into a vessel
US3344469A (en) Apparatus for production of fine spherical metal particles
JP5134474B2 (en) Method for producing spherical particles
JP5750286B2 (en) Method for producing inorganic spheroidized particles, burner for producing inorganic spheroidized particles, and inorganic spheroidized particle producing apparatus
JP6854008B2 (en) Metal powder manufacturing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923735

Country of ref document: EP

Kind code of ref document: A1