WO2018109237A1 - Rotary electrical machine - Google Patents

Rotary electrical machine Download PDF

Info

Publication number
WO2018109237A1
WO2018109237A1 PCT/ES2016/070877 ES2016070877W WO2018109237A1 WO 2018109237 A1 WO2018109237 A1 WO 2018109237A1 ES 2016070877 W ES2016070877 W ES 2016070877W WO 2018109237 A1 WO2018109237 A1 WO 2018109237A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotation
magnetizable
machine according
coil
Prior art date
Application number
PCT/ES2016/070877
Other languages
Spanish (es)
French (fr)
Inventor
Enrique ANDRADES LAGO
Javier ANDRADES LAGO
Original Assignee
Andrades Lago Enrique
Andrades Lago Javier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andrades Lago Enrique, Andrades Lago Javier filed Critical Andrades Lago Enrique
Priority to PCT/ES2016/070877 priority Critical patent/WO2018109237A1/en
Publication of WO2018109237A1 publication Critical patent/WO2018109237A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/22Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
    • H02K19/24Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators with variable-reluctance soft-iron rotors without winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/15Sectional machines

Definitions

  • the present invention relates to the field of machinery for conversion between electrical and mechanical energy, and more specifically to a rotating electric machine capable of operating as a motor and as a generator.
  • Induction motors are a type of alternating current motor in which the current necessary to produce rotor torque is generated by electromagnetic induction by means of stator winding. This avoids the typical electrical connections of universal, direct current or synchronous motors.
  • the most common induction motors are three-phase motors, typically squirrel cage or winding. When a spatial and temporal offset is applied to said coils, a rotating magnetic field is induced on the rotor.
  • US 6177,750 B1 and US 6,566,778 B1 present a sample of the wide variety of rotor and stator designs existing in induction motors. However, they all suffer from a low torque that considerably limits the resulting performance.
  • Synchronous machines allow this limitation to be overcome by synchronizing the rotation speed of the shaft with the electric frequency, both being mutually dependent on both its operation as a motor (conversion of electrical energy into mechanical energy) and as a generator (conversion of mechanical energy into electrical energy ).
  • An example of such starting methods is presented in US 5,488,286 A. Its use is also known for reactive power control in a network, thanks to the possibility of varying the reactive power that absorbs or yields to the network, keeping the active power developed at a constant level.
  • US 6,100,620 A presents a synchronous rotary electric machine that implements step functions for the electric phase difference between rotor and stator teeth, allowing the device to operate at high frequency.
  • US 6, 140,719 A features a synchronous machine that incorporates a high temperature superconductor rotor with thermal reserve to absorb the resulting energy in case of failure.
  • stator and rotor arrangement forces the use of coils that are shorter than their radius, limiting the generated field density.
  • the rotor is displaced axially from the center of the coil, which limits the induced electromotive force.
  • the present invention solves the problems described above by means of a rotating electric machine comprising at least one stator and a rotating rotor with respect to the stator, where the stator comprises a plurality of coils each wound forming an arcuate or curved tubular body.
  • the rotor is a circumferential ring-shaped body and is arranged inside the coils and is rotatable through the inside of the coils.
  • the rotor comprises a heterogeneous crown with a non-magnetizable section that serves as support for one or more magnetizable sections. While the non-magnetizable section may close on itself, covering the entire arc of the rotor circumference around the axis of rotation, the magnetizable section extends an arc of circumference less than 360 ° around said axis. That is, the magnetizable section (or sections) do not close on themselves around the axis.
  • the magnetizable section extends in an arc of circumference greater than the length of one of the reels and less than the entire circumference minus the length of said reels.
  • the length of the coil is understood as the circumference arc in which the coil extends, or in other words to the projection of said coil on the circumference defined by the rotation of the magnetizable section of the rotor.
  • the magnetizable section cannot be completely covered by said coil; as well as that, in certain instants of the rotation, the magnetizable section is outside (is longer) of said coil in its entirety.
  • the above definition is preferably applied to the coil of greater length.
  • the coils have a smaller radius than length, allowing to optimize the induced electromotive force, understanding by length the dimension that follows the direction of rotation of the rotor, and by radius the largest dimension of the section perpendicular to said direction of rotation.
  • the magnetizable section preferably comprises a ferromagnetic material, while the non-magnetizable section preferably comprises a paramagnetic material or a diamagnetic material.
  • the rotor comprises a first gear teeth in an inner face and / or a second gear teeth in an outer face for the transmission of mechanical energy between said rotor and a transmission shaft.
  • the machine preferably comprises a plurality of internal gears distributed angularly and equidistant around the axis of rotation.
  • Said plurality of gears connects the first gear with the drive shaft, said gears preferably alternating with the stator coils, that is, each gear is disposed between the space between two consecutive coils.
  • the teeth can be fully implemented on the non-magnetizable section, either on the magnetizable or non-magnetizable section. That is, in the second case the magnetizable section with the built-in teeth, also magnetizable, would cover an arc less than 360 °. The rest of the arc up to 360 ° is composed of non-magnetizable material, with an equally non-magnetizable teeth.
  • the position of the transmission shaft that allows to introduce or extract the mechanical energy does not have to coincide with the axis of rotation of the rotor, being able to be implemented on any of the gears of the system, or on an external element.
  • the mechanical energy can be extracted by a second non-magnetizable external crown, concentric to the rotor.
  • the machine comprises a plurality of rotors mechanically connected to the same drive shaft, multiple rotors can be introduced in the same set of coils or in different sets of coils depending on the particular implementation of the machine.
  • the plurality of rotors are preferably connected by a plurality of external gears angularly distributed around said transmission shaft.
  • the rotary electric machine can operate both as a motor and as a generator.
  • operating as a motor it also comprises control means that switch the plurality of coils sequentially to induce a rotating magnetic field on the rotor, converting electrical energy into mechanical energy.
  • the machine is connected to rotating means that cause the rotor to move (such as blades in a wind generator or any other rotating element of the power generation systems known in the state of the art) , said rotor movement being converted into electrical energy through the electromotive force induced in the stator.
  • the rotary electric machine described maintains the basic advantages of synchronous machines with respect to induction motors, that is, the high torque and performance. Additionally, the described machine has the following advantages over said synchronous machines:
  • an optimal coil (I understand that the one that generates the highest magnetic field density) has a radius much smaller than its length. In traditional machines known in the state of the art this situation is reversed, allowing the present invention to generate denser magnetic fields from the same current. This fact translates into greater torque and lower consumption.
  • the machine of the present invention operates at the point of highest magnetic field density, which occurs in the center of the coils. Torque and induced electromotive force are optimized.
  • Figure 1 schematically shows a rotor with internal teeth according to a particular embodiment of the machine of the invention.
  • Figure 2 shows a rotor with internal and external teeth according to another particular embodiment of the machine of the invention.
  • Figure 3 illustrates the connection of the rotor to the drive shaft, in this central case, and the coils according to particular embodiments thereof.
  • Figure 4 schematically shows the stator and rotor assembly, according to particular embodiments thereof.
  • Figure 5 shows a second view of the same stator and rotor assembly.
  • Figure 6 exemplifies a machine with multiple concentric crowns according to a preferred embodiment of the invention.
  • Figures 7 to 10 present two states of interaction between a linear magnetizable body and a coil, described only to illustrate the physical principles that act on the coils of the equivalent rotary machine.
  • Figure 11 shows a rotary machine with two crowns in which the transmission shaft is implemented in an external gear, according to a particular embodiment of the invention.
  • Figure 12 shows a rotary machine with a crown in which the drive shaft is implemented in an external gear, in accordance with a particular embodiment of the invention.
  • Figure 13 illustrates a rotary machine with two crowns in which the outer crown acts as a drive shaft, in accordance with a particular embodiment of the invention.
  • Figure 1 presents a first preferred embodiment of the rotor 100 of the invention which, as seen, is in the form of a circumferential ring.
  • the cross section of the rotor is rectangular in shape, although it could have another shape suitable for its function.
  • the rotor of figure (1) has an inner face and an outer face, so that the inner and / or the outer face can have a gear teeth.
  • the internal face of the rotor has a first gear teeth 103.
  • the rotor 100 comprises a non-magnetizable section 101 that extends throughout the complete circumference of the rotor around the axis of rotation of the rotor 100, and in which the gear teeth 103 is formed.
  • the magnetizable section 102 extends in an arc of circumference, that is, it does not cover the entire complete circumference, and it is mounted on the outside on the non-magnetizable section 101, that is, the non-magnetizable section 101 and the magnetizable section 102 are superimposed.
  • the magnetizable section 102 covers an arc of circumference of 270 °, although said arc may vary in other implementations.
  • other preferred embodiments may have polyphase configurations in which multiple magnetizable sections 102 alternate with multiple portions of the non-magnetizable section 101.
  • Figure 2 shows a second preferred embodiment of the rotor 100, in this case combining the first gear teeth 103 of the inner face with a second gear teeth 104 on the outer face. Note that, again, both teeth are implemented with a non-magnetizable material, being integrated in the non-magnetizable section 101 of the rotor 100.
  • FIG 3 shows the coils 200 in which the rotor 100 is inserted. Said coils are distributed angularly and preferably equidistant from each other, around the axis of rotation of the rotor 100. It can be seen that each coil 200 is a tubular body arched or curved, that is, the thread with which the coil is formed is wound to form the tubular configuration, whose curvature is coincident with the curvature of the rotor.
  • the cross section of the coil cavity is rectangular and substantially coincident with the cross section of the rotor.
  • the rotor 100 is arranged inside said coils 200, in order to maximize the efficiency of the machine. Since the magnetizable section 102 of the rotor 100 covers an arc of 270 °, the maximum length of a coil 200 covers a maximum arc of 90 °. Note that with said length of the coil 200 it also acts as a lower dimension of the arc covered by the magnetizable section 102. Note also that the number, size and shape of the coils may vary in other preferred embodiments of the invention. In particular, in case of using a coil 200 of greater length, the rotary machine would remain functional, although the arc in which there will be traction will be smaller.
  • the machine incorporates internal gears 300 that connect the first gear teeth 103 with a drive shaft 400 in this embodiment coinciding with the rotation axis of the rotor.
  • the gears 300 have a cylindrical shape with the perimeter face provided with gear teeth, and so that the gears 300 are arranged such that the axis of rotation of each gear 300 is parallel to the rotation axis of the rotor.
  • the internal gears 300 are angularly distributed around said drive shaft 400, alternating with the coils 200, that is, each gear 103 is disposed between the space between two consecutive coils.
  • the drive shaft 400 has its own gear positioned in the center of the machine and engaged with the rest of the gears 300, so that the rotation of the rotor 100 causes the rotation of the drive shaft 400. In the embodiment of Figure 3, the drive shaft 400 could also be placed in the position of the rotation shaft of any of the gears 300.
  • the rotary electric machine can be implemented with any other mechanical system known in the state of the art that allows to transmit the rotation between rotor 100 and transmission shaft 400.
  • other preferred implementations of the invention may comprise multiple connected rotors 100 to the same transmission shaft 400.
  • FIGS 4 and 5 present two views of a preferred embodiment of the structure or crankcase that acts as a stator 500 and supports the rest of the rotating machine elements.
  • the stator comprises a base 501 with a central opening 502 that allows the transmission shaft 400 to pass.
  • the stator 500 also comprises a plurality of fixing elements 503 that fix the position of the internal gears 300, allowing said internal gears 300 to rotate on themselves but not around the drive shaft 400.
  • the position of the coils 200 in the stator 500 also remains fixed during the entire operation of the machine, the stator 500 being able to incorporate any support element and any additional electrical connection necessary.
  • the rotary machine can operate in both motor mode and generator mode.
  • the movement of the rotor 100 is motivated by the interaction of the magnetic field generated by the coils 200 and the magnetization of the magnetizable material itself 102.
  • the magnetizable section 102 is always partially inserted into a first coil 200 or is about to be introduced therein.
  • a second coil 200 houses said magnetizable section 102 along its entire length. In this way, by supplying the second coil 200 with electric current, the magnetizable section 102 is magnetized and is attracted by the magnetic field generated by the first coil 200.
  • the feeding of the coils 200 is switched by the control means to give rise to this situation, that is, a first coil 200 that divides the material and a second coil 200 that magnetizes it .
  • the motor may operate in one direction of rotation or another interchangeably.
  • the machine In generator mode, the machine generates electrical energy from mechanical work applied to the axis of the machine.
  • the operation is the inverse to the motor mode, with the difference that the rotor 100 rotates faster than it would with the voltage level to which the coils 200 are fed, so that the electromotive force induced in the stator 500 makes that the current circulates in the opposite direction to the operation as motor.
  • the described configuration can be extended to multiple concentric crowns around the same transmission shaft 400, as exemplified in Figure 6 with a two-crown rotor. Both crowns follow the previously described structure, with a non-magnetizable section 101 that closes on itself and that supports a magnetizable section 102 that covers an arc of circumference less than 360 °. Each crown is introduced into a group of coils 200, although in particular implementations the number or arrangement of coils could change 200 between both crowns.
  • the inner crown is connected to the drive shaft 400 through the internal gears 300, in contact with the first gear teeth 103 of its inner face.
  • the inner crown is connected to the outer crown through a plurality of external gears 301, in contact with the second gear teeth 104 of its outer face.
  • the outer crown is only toothed on its inner face, although in other embodiments it could comprise external teeth connected to successive crowns.
  • the force F that moves the mechanism is born from the interaction between the magnetic field B generated by the coil 200 and the magnetization M proper of the magnetizable body 102.
  • Figure 1 1 shows a rotary machine in which the transmission shaft 400 is implemented on one of the external gears 301 communicating the first and second rotor 100.
  • the coils have not been represented nor have the magnetizable and non-magnetizable parts of the rotor been differentiated.
  • the machine comprises a single rotor 100, the transmission shaft 400 being integrated in an external gear 301.
  • said external gear 301 does not operate as a connection between crowns, but is an element for extracting or introducing mechanical energy into the system, depending on whether it operates as a motor or as a generator.
  • Figure 13 presents a preferred embodiment in which a non-magnetizable external crown acts as a whole as a transmission shaft 400. That is, the external crown does not participate in the conversion of electrical to mechanical energy nor does it have associated coils, but rather It is used to extract mechanical energy from the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

A rotary electrical machine comprises a stator (500) and one or more rotors (100), each rotor (100) being formed by a non-magnetisable segment (101) and one or more magnetisable segments (102) inserted into a plurality of coils (200) of the stator (500). Each magnetisable segment covers an arc of circumference about the axis of rotation of the rotor (100) of less than 360°. The field generated inside the coils (200) can thus be utilised, increasing the torque and the output of the machine.

Description

MÁQUINA ELÉCTRICA ROTATIVA  ROTARY ELECTRIC MACHINE
DESCRIPCIÓN Objeto de la invención DESCRIPTION Object of the invention
La presente invención se refiere al campo de la maquinaria para conversión entre energía eléctrica y mecánica, y más concretamente a una máquina eléctrica rotativa capaz de operar como motor y como generador. The present invention relates to the field of machinery for conversion between electrical and mechanical energy, and more specifically to a rotating electric machine capable of operating as a motor and as a generator.
Antecedentes de la invención Background of the invention
Las máquinas eléctricas rotativas más explotadas en el contexto mundial son la máquina síncrona y el motor de inducción. Los motores de inducción son un tipo de motor de corriente alterna en el que la corriente necesaria para producir torsión en el rotor es generada por inducción electromagnética mediante bobinado del estator. Se evitan así las conexiones eléctricas típicas de los motores universales, de corriente continua o síncronos. Los motores de inducción más habituales son motores trifásicos, típicamente de jaula de ardilla o de bobinado. Cuando se aplica un desfase tanto espacial como temporal a dichas bobinas, se induce un campo magnético variable giratorio sobre el rotor. Por ejemplo, US, 6177,750 B1 y US 6,566,778 B1 presentan una muestra de la gran variedad de diseños de rotor y estator existentes en los motores de inducción. No obstante, todos ellos adolecen de un bajo par que limita considerablemente el rendimiento resultante. The most exploited rotary electric machines in the world context are the synchronous machine and the induction motor. Induction motors are a type of alternating current motor in which the current necessary to produce rotor torque is generated by electromagnetic induction by means of stator winding. This avoids the typical electrical connections of universal, direct current or synchronous motors. The most common induction motors are three-phase motors, typically squirrel cage or winding. When a spatial and temporal offset is applied to said coils, a rotating magnetic field is induced on the rotor. For example, US 6177,750 B1 and US 6,566,778 B1 present a sample of the wide variety of rotor and stator designs existing in induction motors. However, they all suffer from a low torque that considerably limits the resulting performance.
Las máquinas síncronas permiten superar esta limitación al sincronizar la velocidad de rotación del eje con la frecuencia eléctrica, siendo ambas mutuamente dependientes tanto en su operación como motor (conversión de energía eléctrica en energía mecánica) y como generador (conversión de energía mecánica en energía eléctrica). No obstante, resulta más habitual su uso como generadores al no presentar par de arranque, lo que requiere emplear diferentes métodos de arranque y aceleración hasta alcanzar la velocidad de sincronía. Un ejemplo de dichos métodos de arranque se presenta en US 5,488,286 A. También es conocido su uso para control de potencia reactiva en una red, gracias a la posibilidad de variar la potencia reactiva que absorbe o cede a la red, manteniendo la potencia activa desarrollada en un nivel constante. Synchronous machines allow this limitation to be overcome by synchronizing the rotation speed of the shaft with the electric frequency, both being mutually dependent on both its operation as a motor (conversion of electrical energy into mechanical energy) and as a generator (conversion of mechanical energy into electrical energy ). However, it is more common to use them as generators by not presenting starting torque, which requires using different starting and acceleration methods until the synchronization speed is reached. An example of such starting methods is presented in US 5,488,286 A. Its use is also known for reactive power control in a network, thanks to the possibility of varying the reactive power that absorbs or yields to the network, keeping the active power developed at a constant level.
En un primer ejemplo, US 6,100,620 A presenta una máquina eléctrica rotativa síncrona que implementa funciones en escalón para la diferencia de fase eléctrica entre dientes de rotor y estator, permitiendo al dispositivo operar a alta frecuencia. En un segundo ejemplo, US 6, 140,719 A presenta una máquina síncrona que incorpora un rotor de superconductor de alta temperatura con reserva térmica para absorber la energía resultante en caso de fallo. In a first example, US 6,100,620 A presents a synchronous rotary electric machine that implements step functions for the electric phase difference between rotor and stator teeth, allowing the device to operate at high frequency. In a second example, US 6, 140,719 A features a synchronous machine that incorporates a high temperature superconductor rotor with thermal reserve to absorb the resulting energy in case of failure.
No obstante, a pesar de la variedad de máquinas síncronas conocidas, éstas siguen presentando una serie de limitaciones: However, despite the variety of known synchronous machines, they still have a number of limitations:
- Requieren escobillas para excitar el rotor, obligando al uso de imanes permanentes para potencias elevadas. Adicionalmente, esto supone un incremento en la dificultad de fabricación y una reducción de la fiabilidad del sistema.  - They require brushes to excite the rotor, forcing the use of permanent magnets for high powers. Additionally, this implies an increase in manufacturing difficulty and a reduction in system reliability.
- Dado que los imanes permanentes no pueden modificar su densidad de campo magnético, quedan limitados el control de par y de la velocidad de operación.  - Since permanent magnets cannot modify their magnetic field density, torque control and operating speed are limited.
- La disposición de estator y rotor obliga a utilizar bobinas con una longitud menor a su radio, limitando la densidad de campo generada.  - The stator and rotor arrangement forces the use of coils that are shorter than their radius, limiting the generated field density.
- El rotor se encuentra desplazado axialmente del centro de la bobina, lo cual limita la fuerza electromotriz inducida.  - The rotor is displaced axially from the center of the coil, which limits the induced electromotive force.
- Las máquinas síncronas operan como imanes tendiendo a orientarse dentro de un campo magnético. Al existir un elemento rotando dentro de la bobina, dicha bobina no puede aprovecharse en su totalidad, repercutiendo negativamente en el par y la fuerza electromotriz inducida.  - Synchronous machines operate as magnets tending to be oriented within a magnetic field. Since there is an element rotating inside the coil, said coil cannot be fully utilized, negatively affecting the torque and the induced electromotive force.
En definitiva, sigue existiendo en el estado de la técnica la necesidad de una máquina eléctrica rotativa que optimice la fiabilidad del sistema, así como su par y fuerza electromotriz inducida. In short, there is still a need in the state of the art for a rotating electric machine that optimizes the reliability of the system, as well as its torque and induced electromotive force.
Descripción de la invención La presente invención soluciona los problemas anteriormente descritos mediante una máquina eléctrica rotativa que comprende al menos un estator y un rotor giratorio respecto al estator, donde el estator comprende una pluralidad de bobinas cada una arrollada formando un cuerpo tubular arqueado o curvo. El rotor es un cuerpo con forma de anillo circunferencial y está dispuesto en el interior de las bobinas y es giratorio pasando por el interior de las bobinas. Description of the invention The present invention solves the problems described above by means of a rotating electric machine comprising at least one stator and a rotating rotor with respect to the stator, where the stator comprises a plurality of coils each wound forming an arcuate or curved tubular body. The rotor is a circumferential ring-shaped body and is arranged inside the coils and is rotatable through the inside of the coils.
Con esta configuración, se consigue maximizar la fuerza electromotriz inducida y la eficiencia y fiabilidad del sistema. With this configuration, it is possible to maximize the induced electromotive force and the efficiency and reliability of the system.
Para ello, el rotor comprende una corona heterogénea con una sección no magnetizable que sirve de soporte para una o más secciones magnetizables. Mientras que la sección no magnetizable puede cerrarse sobre si misma, cubriendo el arco completo de la circunferencia del rotor en torno al eje de rotación, la sección magnetizable se extiende un arco de circunferencia menor de 360° en torno a dicho eje. Es decir, la sección (o secciones) magnetizables no se cierran sobre sí mismas en torno al eje. For this, the rotor comprises a heterogeneous crown with a non-magnetizable section that serves as support for one or more magnetizable sections. While the non-magnetizable section may close on itself, covering the entire arc of the rotor circumference around the axis of rotation, the magnetizable section extends an arc of circumference less than 360 ° around said axis. That is, the magnetizable section (or sections) do not close on themselves around the axis.
Preferentemente, la sección magnetizable se extiende en un arco de circunferencia mayor que la longitud de una de las bobina y menor que la circunferencia completa menos la longitud de dicha bobina. Nótese que en este contexto se entiende por longitud de la bobina el arco de circunferencia en el que se extiende la bobina, o dicho de otro modo a la proyección de dicha bobina sobre la circunferencia definida por la rotación de la sección magnetizable del rotor. Preferably, the magnetizable section extends in an arc of circumference greater than the length of one of the reels and less than the entire circumference minus the length of said reels. Note that in this context the length of the coil is understood as the circumference arc in which the coil extends, or in other words to the projection of said coil on the circumference defined by the rotation of the magnetizable section of the rotor.
Es decir, con la cota mínima y máxima descritas para el arco de la sección magnetizable se garantiza que, al atravesar una bobina, la sección magnetizable no pueda estar cubierta en su totalidad por dicha bobina; así como que, en determinados instantes de la rotación, la sección magnetizable esté fuera (es más larga) de dicha bobina en su totalidad. En caso de utilizar bobinas de distintas longitudes, la anterior definición se aplica preferentemente sobre la bobina de mayor longitud. That is, with the minimum and maximum dimension described for the arc of the magnetizable section it is guaranteed that, when passing through a coil, the magnetizable section cannot be completely covered by said coil; as well as that, in certain instants of the rotation, the magnetizable section is outside (is longer) of said coil in its entirety. In the case of using coils of different lengths, the above definition is preferably applied to the coil of greater length.
Nótese que, preferentemente, las bobinas tienen menor radio que longitud, permitiendo optimizar la fuerza electromotriz inducida, entendiendo por longitud la dimensión que sigue la dirección de rotación del rotor, y por radio la mayor dimensión de la sección perpendicular a dicha dirección de rotación. En cuanto a los materiales en los que se implementa el rotor, la sección magnetizable comprende preferentemente un material ferromagnético, mientras que la sección no magnetizable comprende preferentemente un material paramagnético o un material diamagnético. También preferentemente, el rotor comprende un primer dentado de engranaje en una cara interior y/o un segundo dentado de engranaje en una cara exterior para la transmisión de energía mecánica entre dicho rotor y un eje de transmisión. En el caso de comprender dicho primer dentado en la cara interior, la máquina comprende preferentemente una pluralidad de engranajes internos distribuidos angularmente y de forma equidistante en torno al eje de rotación. Dicha pluralidad de engranajes conecta el primer dentado con el eje de transmisión, alternándose preferentemente dichos engranajes con las bobinas del estator, es decir, cada engranaje está dispuesto entre el espacio entre dos bobinas consecutivas. Nótese que, dependiendo de la realización preferente, el dentado puede estar implementado bien totalmente sobre la sección no magnetizable, bien tanto en la sección magnetizable como no magnetizable. Es decir, en el segundo caso la sección magnetizable con el dentado incorporado, también magnetizable, cubriría un arco menor de 360°. El resto de arco hasta completar los 360° se compone de material no magnetizable, con un dentado igualmente no magnetizable. Note that, preferably, the coils have a smaller radius than length, allowing to optimize the induced electromotive force, understanding by length the dimension that follows the direction of rotation of the rotor, and by radius the largest dimension of the section perpendicular to said direction of rotation. As for the materials in which the rotor is implemented, the magnetizable section preferably comprises a ferromagnetic material, while the non-magnetizable section preferably comprises a paramagnetic material or a diamagnetic material. Also preferably, the rotor comprises a first gear teeth in an inner face and / or a second gear teeth in an outer face for the transmission of mechanical energy between said rotor and a transmission shaft. In the case of understanding said first gear on the inner face, the machine preferably comprises a plurality of internal gears distributed angularly and equidistant around the axis of rotation. Said plurality of gears connects the first gear with the drive shaft, said gears preferably alternating with the stator coils, that is, each gear is disposed between the space between two consecutive coils. Note that, depending on the preferred embodiment, the teeth can be fully implemented on the non-magnetizable section, either on the magnetizable or non-magnetizable section. That is, in the second case the magnetizable section with the built-in teeth, also magnetizable, would cover an arc less than 360 °. The rest of the arc up to 360 ° is composed of non-magnetizable material, with an equally non-magnetizable teeth.
Nótese asimismo que la posición del eje de transmisión que permite introducir o extraer la energía mecánica no tiene por que coincidir con el eje de rotación del rotor, pudiendo implementarse sobre cualquiera de los engranajes del sistema, o bien en un elemento externo. Asimismo, en una opción preferente, la energía mecánica puede extraerse mediante una segunda corona externa no magnetizable, concéntrica al rotor. Note also that the position of the transmission shaft that allows to introduce or extract the mechanical energy does not have to coincide with the axis of rotation of the rotor, being able to be implemented on any of the gears of the system, or on an external element. Also, in a preferred option, the mechanical energy can be extracted by a second non-magnetizable external crown, concentric to the rotor.
La configuración descrita permite la combinación de múltiples rotores en un mismo eje de rotación, así como la conexión en serie de múltiples motores. Es decir, de acuerdo con una opción preferente, la máquina comprende una pluralidad de rotores mecánicamente conectados al mismo eje de transmisión, pudiendo múltiples rotores ser introducidos en el mismo conjunto de bobinas o en distintos conjuntos de bobinas dependiendo de la implementación particular de la máquina. La pluralidad de rotores está preferentemente conectados por una pluralidad de engranajes externos distribuidos angularmente alrededor de dicho eje de transmisión. The described configuration allows the combination of multiple rotors on the same axis of rotation, as well as the serial connection of multiple motors. That is, of According to a preferred option, the machine comprises a plurality of rotors mechanically connected to the same drive shaft, multiple rotors can be introduced in the same set of coils or in different sets of coils depending on the particular implementation of the machine. The plurality of rotors are preferably connected by a plurality of external gears angularly distributed around said transmission shaft.
La máquina eléctrica rotativa puede operar tanto como motor y como generador. Preferentemente, operando como motor, comprende además medios de control que conmutan la pluralidad de bobinas secuencialmente para inducir un campo magnético rotativo sobre el rotor, convirtiendo la energía eléctrica en energía mecánica. También preferentemente, operando como generador, la máquina está conectada a medios de rotación que provocan el movimiento del rotor (como por ejemplo aspas en un generador eólico o cualquier otro elemento rotativo de los sistemas de generación de energía conocidos en el estado de la técnica), siendo dicho movimiento del rotor convertido en energía eléctrica a través de la fuerza electromotriz inducida en el estator. The rotary electric machine can operate both as a motor and as a generator. Preferably, operating as a motor, it also comprises control means that switch the plurality of coils sequentially to induce a rotating magnetic field on the rotor, converting electrical energy into mechanical energy. Also preferably, operating as a generator, the machine is connected to rotating means that cause the rotor to move (such as blades in a wind generator or any other rotating element of the power generation systems known in the state of the art) , said rotor movement being converted into electrical energy through the electromotive force induced in the stator.
La máquina eléctrica rotativa descrita mantiene las ventajas base de las máquinas síncronas respecto a los motores de inducción, es decir, el elevado par y rendimiento. Adicionalmente, la máquina descrita presenta las siguientes ventajas respecto a dichas máquinas síncronas: The rotary electric machine described maintains the basic advantages of synchronous machines with respect to induction motors, that is, the high torque and performance. Additionally, the described machine has the following advantages over said synchronous machines:
- La excitación del rotor no necesita escobillas, por lo que resulta más fácil y barata de fabricar, mejorándose asimismo la fiabilidad del sistema.  - The excitation of the rotor does not need brushes, so it is easier and cheaper to manufacture, also improving the reliability of the system.
- También derivado de poder excitar sin escobillas, se mejora la eficiencia del control de velocidad y par del motor, aumentándose la eficiencia global y el rango de operación.  - Also derived from being able to excite without brushes, the efficiency of the motor speed and torque control is improved, increasing the overall efficiency and the operating range.
- Desde un punto de vista geométrico, una bobina óptima (entiendo por óptima aquélla que genera mayor densidad de campo magnético) tiene un radio mucho menor a su longitud. En las máquinas tradicionales conocidas en el estado de la técnica esta situación está invertida, permitiendo a la presente invención generar campos magnéticos más densos a partir de la misma corriente. Este hecho se traduce en mayor par y menor consumo. - La máquina de la presente invención opera en el punto de mayor densidad de campo magnético, que se da en el centro de las bobinas. Se optimiza así el par y la fuerza electromotriz inducida. - From a geometric point of view, an optimal coil (I understand that the one that generates the highest magnetic field density) has a radius much smaller than its length. In traditional machines known in the state of the art this situation is reversed, allowing the present invention to generate denser magnetic fields from the same current. This fact translates into greater torque and lower consumption. - The machine of the present invention operates at the point of highest magnetic field density, which occurs in the center of the coils. Torque and induced electromotive force are optimized.
- Al operar mediante tracción en lugar de rotación, se aprovecha todo el bobinado del estator, de nuevo mejorando el par y la fuerza electromotriz inducida.  - When operating by traction instead of rotation, the whole winding of the stator is used, again improving the torque and the induced electromotive force.
Éstas y otras ventajas de la invención serán aparentes a la luz de la descripción detallada de la misma. These and other advantages of the invention will be apparent in light of the detailed description thereof.
Descripción de las figuras Description of the figures
Con objeto de ayudar a una mejor comprensión de las características de la invención de acuerdo con un ejemplo preferente de realización práctica de la misma, y para complementar esta descripción, se acompañan como parte integrante de la misma las siguientes figuras, cuyo carácter es ilustrativo y no limitativo: In order to help a better understanding of the features of the invention according to a preferred example of practical realization thereof, and to complement this description, the following figures are attached as an integral part thereof, the character of which is illustrative and non-limiting:
La figura 1 muestra esquemáticamente un rotor con dientes internos de acuerdo con una realización particular de la máquina de la invención. Figure 1 schematically shows a rotor with internal teeth according to a particular embodiment of the machine of the invention.
La figura 2 presenta un rotor con dientes internos y externos de acuerdo con otra realización particular de la máquina de la invención. Figure 2 shows a rotor with internal and external teeth according to another particular embodiment of the machine of the invention.
La figura 3 ilustra la conexión del rotor al eje de transmisión, en este caso central, y las bobinas de acuerdo con realizaciones particulares de los mismos. Figure 3 illustrates the connection of the rotor to the drive shaft, in this central case, and the coils according to particular embodiments thereof.
La figura 4 muestra esquemáticamente el conjunto de estator y rotor, de acuerdo con realizaciones particulares de los mismos. Figure 4 schematically shows the stator and rotor assembly, according to particular embodiments thereof.
La figura 5 presenta una segunda vista del mismo conjunto de estator y rotor. Figure 5 shows a second view of the same stator and rotor assembly.
La figura 6 ejemplifica una máquina con múltiples coronas concéntricas según una realización preferente de la invención. Las figuras 7 a 10 presentan sendos estados de la interacción entre un cuerpo magnetizable lineal y una bobina, descritos únicamente para ilustrar los principios físicos que actúan sobre las bobinas de la máquina rotativa equivalente. Figure 6 exemplifies a machine with multiple concentric crowns according to a preferred embodiment of the invention. Figures 7 to 10 present two states of interaction between a linear magnetizable body and a coil, described only to illustrate the physical principles that act on the coils of the equivalent rotary machine.
La figura 11 muestra una máquina rotativa con dos coronas en la que el eje de transmisión se implementa en un engranaje externo, de acuerdo con una realización particular de la invención. La figura 12 presenta una máquina rotativa con una corona en la que el eje de transmisión se implementa en un engranaje externo, de acuerdo con una realización particular de la invención. Figure 11 shows a rotary machine with two crowns in which the transmission shaft is implemented in an external gear, according to a particular embodiment of the invention. Figure 12 shows a rotary machine with a crown in which the drive shaft is implemented in an external gear, in accordance with a particular embodiment of the invention.
La figura 13 ilustra una máquina rotativa con dos coronas en la que la corona externa actúa como eje de transmisión, de acuerdo con una realización particular de la invención. Figure 13 illustrates a rotary machine with two crowns in which the outer crown acts as a drive shaft, in accordance with a particular embodiment of the invention.
Realización preferente de la invención Preferred Embodiment of the Invention
En este texto, el término "comprende" y sus derivaciones (como "comprendiendo", etc.) no deben entenderse en un sentido excluyente, es decir, estos términos no deben interpretarse como excluyentes de la posibilidad de que lo que se describe y define pueda incluir más elementos, etapas, etc. In this text, the term "comprises" and its derivations (such as "understanding", etc.) should not be understood in an exclusive sense, that is, these terms should not be construed as excluding the possibility that what is described and defined can include more elements, stages, etc.
La figura 1 presenta una primera realización preferente del rotor 100 de la invención que como se aprecia tiene forma de un anillo circunferencial. En la realización de la figura 1 , la sección transversal del rotor tiene forma rectangular, aunque podría tener otra forma adecuada a su función. El rotor de la figura (1) tiene una cara interior y una cara exterior, de modo que la cara interior y/o la exterior, pueden tener un dentado de engranaje. Concretamente en la figura 1 , la cara interna del rotor tiene un primer dentado de engranaje 103. Figure 1 presents a first preferred embodiment of the rotor 100 of the invention which, as seen, is in the form of a circumferential ring. In the embodiment of Figure 1, the cross section of the rotor is rectangular in shape, although it could have another shape suitable for its function. The rotor of figure (1) has an inner face and an outer face, so that the inner and / or the outer face can have a gear teeth. Specifically in Figure 1, the internal face of the rotor has a first gear teeth 103.
El rotor 100 comprende una sección no magnetizable 101 que se extiende en toda la circunferencia completa del rotor en torno al eje de rotación del rotor 100, y en la que está formado el dentado de engranaje 103. La sección magnetizable 102 se extiende en un arco de circunferencia, es decir, no abarca toda la circunferencia completa, y está montada por el exterior sobre la sección no magnetizable 101 , es decir, la sección no magnetizable 101 y la sección magnetizable 102 están superpuestas. En el caso particular de la figura 1 , la sección magnetizable 102 cubre un arco de circunferencia de 270°, si bien dicho arco puede variar en otras implementaciones. Asimismo, otras realizaciones preferentes pueden presentar configuraciones polifásicas en las que se alternan múltiples secciones magnetizables 102 con múltiples porciones de la sección no magnetizable 101. The rotor 100 comprises a non-magnetizable section 101 that extends throughout the complete circumference of the rotor around the axis of rotation of the rotor 100, and in which the gear teeth 103 is formed. The magnetizable section 102 extends in an arc of circumference, that is, it does not cover the entire complete circumference, and it is mounted on the outside on the non-magnetizable section 101, that is, the non-magnetizable section 101 and the magnetizable section 102 are superimposed. In the particular case of Figure 1, the magnetizable section 102 covers an arc of circumference of 270 °, although said arc may vary in other implementations. Also, other preferred embodiments may have polyphase configurations in which multiple magnetizable sections 102 alternate with multiple portions of the non-magnetizable section 101.
La figura 2 presenta una segunda realización preferente del rotor 100, en este caso combinando el primer dentado de engranaje 103 de la cara interna con un segundo dentado de engranaje 104 en la cara externa. Nótese que, de nuevo, ambos dentados están implementados con un material no magnetizable, quedando integrados en la sección no magnetizable 101 del rotor 100. Figure 2 shows a second preferred embodiment of the rotor 100, in this case combining the first gear teeth 103 of the inner face with a second gear teeth 104 on the outer face. Note that, again, both teeth are implemented with a non-magnetizable material, being integrated in the non-magnetizable section 101 of the rotor 100.
La figura 3 presenta las bobinas 200 en las que se introduce el rotor 100. Dichas bobinas están distribuidas angularmente y preferentemente de forma equidistante entre sí, en torno al eje de rotación del rotor 100. Se puede apreciar que cada bobina 200 es un cuerpo tubular arqueado o curvo, es decir, el hilo con el que se forma la bobina está arrollado para formar la configuración tubular, cuya curvatura es coincidente con la curvatura del rotor. La sección transversal de la cavidad de las bobinas, es rectangular y substancialmente coincidente con la sección transversal del rotor. Figure 3 shows the coils 200 in which the rotor 100 is inserted. Said coils are distributed angularly and preferably equidistant from each other, around the axis of rotation of the rotor 100. It can be seen that each coil 200 is a tubular body arched or curved, that is, the thread with which the coil is formed is wound to form the tubular configuration, whose curvature is coincident with the curvature of the rotor. The cross section of the coil cavity is rectangular and substantially coincident with the cross section of the rotor.
Al contrario que en los casos tradicionales conocidos en el estado de la técnica, el rotor 100 está dispuesto en el interior de dichas bobinas 200, con objeto de maximizar la eficiencia de la máquina. Puesto que la sección magnetizable 102 del rotor 100 cubre un arco de 270°, la longitud máxima de una bobina 200 abarca un arco máximo de 90°. Nótese que con dicha longitud de la bobina 200 actúa también como cota inferior del arco cubierto por la sección magnetizable 102. Nótese asimismo que el número, tamaño y forma de las bobinas puede variar en otras realizaciones preferentes de la invención. En particular, en caso de utilizar una bobina 200 de mayor longitud, la máquina rotativa seguiría siendo funcional, aunque el arco en el que existirá tracción será más reducido. Unlike in the traditional cases known in the state of the art, the rotor 100 is arranged inside said coils 200, in order to maximize the efficiency of the machine. Since the magnetizable section 102 of the rotor 100 covers an arc of 270 °, the maximum length of a coil 200 covers a maximum arc of 90 °. Note that with said length of the coil 200 it also acts as a lower dimension of the arc covered by the magnetizable section 102. Note also that the number, size and shape of the coils may vary in other preferred embodiments of the invention. In particular, in case of using a coil 200 of greater length, the rotary machine would remain functional, although the arc in which there will be traction will be smaller.
Adicionalmente, la máquina incorpora unos engranajes internos 300 que conectan el primer dentado de engranaje 103 con un eje de transmisión 400 de en esta realización coincidente con el eje de giro del rotor. Los engranajes 300 tienen forma cilindrica con la cara perimetral dotada de dientes de engranaje, y de modo que los engranajes 300 están dispuestos de forma que el eje de giro de cada engranaje 300 es paralelo al aje de rotación del rotor. Los engranajes internos 300 están distribuidos angularmente en torno a dicho eje de transmisión 400, alternándose con las bobinas 200, es decir, cada engranaje 103 está dispuesto entre el espacio entre dos bobinas consecutivas. El eje de transmisión 400 tiene su propio engranaje colocado en el centro de la máquina y engranado con el resto de engranajes 300, de manera que el giro del rotor 100 produce el giro del eje de transmisión 400. En la realización de la figura 3, el eje de transmisión 400 podría igualmente estar colocado en la posición del eje de rotación de cualquier de los engranajes 300. Additionally, the machine incorporates internal gears 300 that connect the first gear teeth 103 with a drive shaft 400 in this embodiment coinciding with the rotation axis of the rotor. The gears 300 have a cylindrical shape with the perimeter face provided with gear teeth, and so that the gears 300 are arranged such that the axis of rotation of each gear 300 is parallel to the rotation axis of the rotor. The internal gears 300 are angularly distributed around said drive shaft 400, alternating with the coils 200, that is, each gear 103 is disposed between the space between two consecutive coils. The drive shaft 400 has its own gear positioned in the center of the machine and engaged with the rest of the gears 300, so that the rotation of the rotor 100 causes the rotation of the drive shaft 400. In the embodiment of Figure 3, the drive shaft 400 could also be placed in the position of the rotation shaft of any of the gears 300.
No obstante, la máquina eléctrica rotativa puede implementarse con cualquier otro sistema mecánico conocido en el estado de la técnica que permita transmitir la rotación entre rotor 100 y eje de transmisión 400. Nótese asimismo que otras implementaciones preferentes de la invención pueden comprender múltiples rotores 100 conectados a un mismo eje de transmisión 400. However, the rotary electric machine can be implemented with any other mechanical system known in the state of the art that allows to transmit the rotation between rotor 100 and transmission shaft 400. Note also that other preferred implementations of the invention may comprise multiple connected rotors 100 to the same transmission shaft 400.
Las figuras 4 y 5 presentan sendas vistas de una realización preferente de la estructura o cárter que actúa como estator 500 y soporta el resto de elementos de la máquina rotativa. El estator comprende una base 501 con una abertura central 502 que permite el paso del eje de transmisión 400. El estator 500 comprende asimismo una pluralidad de elementos de fijación 503 que fijan la posición de los engranajes internos 300, permitiendo que dichos engranajes internos 300 giren sobre sí mismos pero no alrededor del eje de transmisión 400. La posición de las bobinas 200 en el estator 500 también permanece fija durante toda la operación de la máquina, pudiendo incorporar el estator 500 cualquier elemento de soporte y cualquier conexión eléctrica adicional necesaria. La máquina rotativa puede funcionar tanto en modo motor como en modo generador. En modo motor, el movimiento del rotor 100 es motivado por la interacción del campo magnético generado por las bobinas 200 y la magnetización del propio material magnetizable 102. Dada la geometría de la máquina, en cualquier posición del rotor 100 la sección magnetizable 102 siempre está parcialmente introducida en una primera bobina 200 o está próxima a introducirse en ella. Además, una segunda bobina 200 alberga en toda su longitud dicha sección magnetizable 102. De esta forma, al alimentar con corriente eléctrica la segunda bobina 200, la sección magnetizable 102 se magnetiza y es atraída por el campo magnético generado por la primera bobina 200. Figures 4 and 5 present two views of a preferred embodiment of the structure or crankcase that acts as a stator 500 and supports the rest of the rotating machine elements. The stator comprises a base 501 with a central opening 502 that allows the transmission shaft 400 to pass. The stator 500 also comprises a plurality of fixing elements 503 that fix the position of the internal gears 300, allowing said internal gears 300 to rotate on themselves but not around the drive shaft 400. The position of the coils 200 in the stator 500 also remains fixed during the entire operation of the machine, the stator 500 being able to incorporate any support element and any additional electrical connection necessary. The rotary machine can operate in both motor mode and generator mode. In motor mode, the movement of the rotor 100 is motivated by the interaction of the magnetic field generated by the coils 200 and the magnetization of the magnetizable material itself 102. Given the geometry of the machine, in any position of the rotor 100 the magnetizable section 102 is always partially inserted into a first coil 200 or is about to be introduced therein. In addition, a second coil 200 houses said magnetizable section 102 along its entire length. In this way, by supplying the second coil 200 with electric current, the magnetizable section 102 is magnetized and is attracted by the magnetic field generated by the first coil 200.
A lo largo de los 360° de giro del rotor, la alimentación de las bobinas 200 es conmutada por los medios de control para dar lugar esta situación, es decir, una primera bobina 200 que fracciona el material y una segunda bobina 200 que lo magnetiza. Nótese que una vez la sección magnetizable 102 está suficientemente introducida en la primera bobina 200, existe un acoplamiento magnético suficiente para ser magnetizada por ella, por lo que deja de ser imprescindible la magnetización de la primera bobina 200. En función del orden de conmutación de las bobinas 200, el motor podrá operar en un sentido de giro u otro indistintamente. Throughout the 360 ° rotation of the rotor, the feeding of the coils 200 is switched by the control means to give rise to this situation, that is, a first coil 200 that divides the material and a second coil 200 that magnetizes it . Note that once the magnetizable section 102 is sufficiently inserted in the first coil 200, there is a magnetic coupling sufficient to be magnetized by it, so that magnetization of the first coil 200 is no longer essential. Depending on the order of switching of the coils 200, the motor may operate in one direction of rotation or another interchangeably.
En modo generador, la máquina genera energía eléctrica a partir de trabajo mecánico aplicado al eje de la máquina. El funcionamiento es el inverso al modo motor, con la diferencia de que el rotor 100 gira más rápido de lo que lo haría con el nivel de voltaje al que se alimentan las bobinas 200, de forma que la fuerza electromotriz inducida en el estator 500 hace que la corriente circule en sentido opuesto a la operación como motor. In generator mode, the machine generates electrical energy from mechanical work applied to the axis of the machine. The operation is the inverse to the motor mode, with the difference that the rotor 100 rotates faster than it would with the voltage level to which the coils 200 are fed, so that the electromotive force induced in the stator 500 makes that the current circulates in the opposite direction to the operation as motor.
La configuración descrita puede ser extendida a múltiples coronas concéntricas en torno a un mismo eje de transmisión 400, tal y como se ejemplifica en la figura 6 con un rotor de dos coronas. Ambas coronas siguen la estructura previamente descrita, con una sección no magnetizable 101 que se cierra sobre sí misma y que soporta una sección magnetizable 102 que cubre un arco de circunferencia menor de 360°. Cada corona se introduce en un grupo de bobinas 200, si bien en implementaciones particulares podría cambiar el número o disposición de bobinas 200 entre ambas coronas. La corona interior está conectada al eje de transmisión 400 a través de los engranajes internos 300, en contacto con el primer dentado de engranaje 103 de su cara interior. Asimismo, la corona interior está conectada a la corona exterior a través de una pluralidad de engranajes externos 301 , en contacto con el segundo dentado de engranaje 104 de su cara externa. En este caso particular, la corona externa sólo está dentada en su cara interna, si bien en otras realizaciones podría comprender dentado externo conectado a sucesivas coronas. The described configuration can be extended to multiple concentric crowns around the same transmission shaft 400, as exemplified in Figure 6 with a two-crown rotor. Both crowns follow the previously described structure, with a non-magnetizable section 101 that closes on itself and that supports a magnetizable section 102 that covers an arc of circumference less than 360 °. Each crown is introduced into a group of coils 200, although in particular implementations the number or arrangement of coils could change 200 between both crowns. The inner crown is connected to the drive shaft 400 through the internal gears 300, in contact with the first gear teeth 103 of its inner face. Also, the inner crown is connected to the outer crown through a plurality of external gears 301, in contact with the second gear teeth 104 of its outer face. In this particular case, the outer crown is only toothed on its inner face, although in other embodiments it could comprise external teeth connected to successive crowns.
Para facilitar la comprensión del funcionamiento de la máquina, consideremos el problema lineal equivalente según se muestra e las figuras 7 a 10, en el que sustituimos la corona heterogénea por un cuerpo ferromagnético 102 lineal insertado en una bobina 200. Nótese que el desplazamiento lineal del cuerpo ferromagnético 102 es equivalente al desplazamiento rotacional de la corona. En ese caso, el perfil de intensidad del campo magnético B a lo largo del eje de la bobina 200 es una meseta, decayendo rápidamente fuera de la longitud de la bobina. To facilitate the understanding of the operation of the machine, consider the equivalent linear problem as shown in Figures 7 to 10, in which we replace the heterogeneous crown with a linear ferromagnetic body 102 inserted in a coil 200. Note that the linear displacement of the Ferromagnetic body 102 is equivalent to the rotational displacement of the crown. In that case, the intensity profile of the magnetic field B along the axis of the coil 200 is a plateau, rapidly decaying out of the length of the coil.
La fuerza F que mueve el mecanismo nace de la interacción entre el campo magnético B generado por la bobina 200 y la magnetización M propia del cuerpo magnetizable 102. Para que exista dicha fuerza F no basta con que existan dichos campos, sino que el extremo del cuerpo magnetizable 102 debe estar parcialmente introducido en la bobina 200. Consideremos por lo tanto una primera situación en la que el cuerpo magnetizable 102 está totalmente insertado en la bobina 200, tal como se observa en la figura 7. En ese caso no existiría ninguna fuerza, ya que los extremos del cuerpo magnetizable 102 no están afectados por ningún campo magnético. Por el contrario, en una segunda situación, ilustrada en la figura 8, en la que el cuerpo magnetizable 102 está parcialmente introducido en la bobina 200, en el extremo del cuerpo magnetizable 102 se genera una fuerza con misma dirección y sentido que los vectores de los campos B y M. The force F that moves the mechanism is born from the interaction between the magnetic field B generated by the coil 200 and the magnetization M proper of the magnetizable body 102. For such force F to exist, it is not enough that such fields exist, but that the end of the magnetizable body 102 must be partially inserted in the coil 200. Let us therefore consider a first situation in which the magnetizable body 102 is fully inserted in the coil 200, as seen in Figure 7. In that case there would be no force , since the ends of the magnetizable body 102 are not affected by any magnetic field. On the contrary, in a second situation, illustrated in Figure 8, in which the magnetizable body 102 is partially inserted in the coil 200, at the end of the magnetizable body 102 a force is generated with the same direction and direction as the vectors of fields B and M.
Finalmente, cuando el cuerpo magnetizable 102 no está acoplado magnéticamente a la bobina 200, no existiría campo M, y por lo tanto no se generaría fuerza de tracción, tal como se muestra en la figura 9. No obstante, al incluir una bobina 200 anterior que excita el cuerpo magnetizable 102 y genera el campo M, sí que se genera la fuerza de tracción ya que el extremo del cuerpo magnetizable 102 está en el borde de la bobina 200 que es donde empieza el dominio del campo magnético B. Por lo tanto, la utilización de múltiples bobinas 200 permite que exista fuerza desde que el cuerpo magnetizable 102 entra en la bobina 200, aprovechando así toda la longitud de dicha bobina 200. Finally, when the magnetizable body 102 is not magnetically coupled to the coil 200, field M would not exist, and therefore no tensile force would be generated, as shown in Figure 9. However, by including a previous coil 200 which excites the magnetizable body 102 and generates the field M, yes it it generates the tensile force since the end of the magnetizable body 102 is at the edge of the coil 200 which is where the domain of the magnetic field B begins. Therefore, the use of multiple coils 200 allows for force to exist since the body magnetizable 102 enters the coil 200, thus taking advantage of the entire length of said coil 200.
Nótese que el eje de extracción 400 no tiene por qué estar ubicado sobre el eje de rotación del rotor 100. Por ejemplo, la figura 1 1 presenta una máquina rotativa en la que el eje de transmisión 400 se implementa sobre uno de los engranajes externos 301 que comunican el primer y el segundo rotor 100. Nótese que en este caso, por simplicidad, no se han representado las bobinas ni se han diferenciado las partes magnetizables y no magnetizables del rotor. En un segundo ejemplo, presentado en la figura 12, la máquina comprende un único rotor 100, estando el eje de transmisión 400 integrado en un engranaje externo 301. En este caso, dicho engranaje externo 301 no opera como conexión entre coronas, sino que es un elemento de extracción o introducción de energía mecánica en el sistema, dependiendo de si opera como motor o como generador. Finalmente, la figura 13 presenta una realización preferente en la que una corona externa no magnetizable actúa en su conjunto como eje de transmisión 400. Es decir, la corona externa no participa en la conversión de energía eléctrica a mecánica ni tiene bobinas asociadas, sino que se utiliza para extraer la energía mecánica del sistema. Note that the extraction shaft 400 does not have to be located on the rotation axis of the rotor 100. For example, Figure 1 1 shows a rotary machine in which the transmission shaft 400 is implemented on one of the external gears 301 communicating the first and second rotor 100. Note that in this case, for simplicity, the coils have not been represented nor have the magnetizable and non-magnetizable parts of the rotor been differentiated. In a second example, presented in Figure 12, the machine comprises a single rotor 100, the transmission shaft 400 being integrated in an external gear 301. In this case, said external gear 301 does not operate as a connection between crowns, but is an element for extracting or introducing mechanical energy into the system, depending on whether it operates as a motor or as a generator. Finally, Figure 13 presents a preferred embodiment in which a non-magnetizable external crown acts as a whole as a transmission shaft 400. That is, the external crown does not participate in the conversion of electrical to mechanical energy nor does it have associated coils, but rather It is used to extract mechanical energy from the system.
A la vista de esta descripción y figuras, el experto en la materia podrá entender que la invención ha sido descrita según algunas realizaciones preferentes de la misma, pero que múltiples variaciones pueden ser introducidas en dichas realizaciones preferentes, sin salir del objeto de la invención tal y como ha sido reivindicada. In view of this description and figures, the person skilled in the art may understand that the invention has been described according to some preferred embodiments thereof, but that multiple variations can be introduced in said preferred embodiments, without departing from the object of the invention such and as claimed.

Claims

REIVINDICACIONES
1. Máquina eléctrica rotativa que comprende al menos un estator (500) y un rotor (100) giratorio respecto al estator (500), comprendiendo dicho estator (500) una pluralidad de bobinas (200) distribuidas angularmente en torno a un eje de rotación del al menos un rotor (100), donde cada bobina (200) está arrollada formando un cuerpo tubular, y donde el rotor (100) es un cuerpo con forma de anillo circunferencial y está dispuesto en el interior de las bobinas (220), y donde el rotor (100) comprende: 1. Rotary electric machine comprising at least one stator (500) and a rotating rotor (100) with respect to the stator (500), said stator (500) comprising a plurality of coils (200) angularly distributed around an axis of rotation of the at least one rotor (100), where each coil (200) is wound forming a tubular body, and where the rotor (100) is a circumferential ring-shaped body and is disposed inside the coils (220), and where the rotor (100) comprises:
- una sección de material no magnetizable (101); y  - a section of non-magnetizable material (101); Y
- al menos una sección de material magnetizable (102) que se extiende en un arco de circunferencia menor de 360° en torno al eje de rotación.  - at least one section of magnetizable material (102) extending in an arc of circumference less than 360 ° around the axis of rotation.
2. Máquina de acuerdo con la reivindicación 1 caracterizada por que el al menos un rotor (100) comprende una pluralidad de secciones magnetizables (102) distribuidas angularmente alrededor del eje de rotación del rotor (100), cubriendo el conjunto de dicha pluralidad de secciones magnetizables (102) un arco de circunferencia menor de 360° en torno al eje de rotación. 2. Machine according to claim 1 characterized in that the at least one rotor (100) comprises a plurality of magnetizable sections (102) angularly distributed around the axis of rotation of the rotor (100), covering the assembly of said plurality of sections magnetizable (102) an arc of circumference less than 360 ° around the axis of rotation.
3. Máquina de acuerdo con cualquiera de las reivindicaciones anteriores caracterizada por que el arco de circunferencia cubierto por la al menos una sección magnetizable (102) es mayor que una longitud de una bobina (200) según la dirección de rotación del rotor (100), manteniéndose la sección magnetizable (102) al menos parcialmente fuera de dicha bobina (200) independientemente de su posición. 3. Machine according to any of the preceding claims characterized in that the circumference arc covered by the at least one magnetizable section (102) is greater than a length of a coil (200) according to the direction of rotation of the rotor (100) , the magnetizable section (102) being kept at least partially out of said coil (200) regardless of its position.
4. Máquina de acuerdo con cualquiera de las reivindicaciones anteriores caracterizada por que el arco de circunferencia cubierto por la suma de secciones magnetizables (102) es menor a 360° menos la longitud de una bobina (200) según la dirección de rotación del rotor (100). 4. Machine according to any of the preceding claims characterized in that the circumference arc covered by the sum of magnetizable sections (102) is less than 360 ° less the length of a coil (200) according to the direction of rotation of the rotor ( 100).
5. Máquina de acuerdo con cualquiera de las reivindicaciones anteriores caracterizada por que comprende un eje de transmisión (400) mecánicamente acoplado con el rotor (100) de forma que el giro del rotor produce el giro del eje de transmisión. , y una pluralidad de engranajes internos (300) que conectan un primer dentado de engranaje (103) de una cara interna del al menos un rotor (100) con un eje de transmisión (400) situado en el eje de rotación del rotor (100). 5. Machine according to any of the preceding claims characterized in that it comprises a transmission shaft (400) mechanically coupled with the rotor (100) so that the rotation of the rotor It produces the rotation of the transmission shaft. , and a plurality of internal gears (300) connecting a first gear teeth (103) of an internal face of the at least one rotor (100) with a transmission shaft (400) located on the axis of rotation of the rotor (100 ).
6. Máquina de acuerdo con la reivindicación 5 caracterizado por que la pluralidad de engranajes internos (300) y la pluralidad de bobinas (200) se alternan angularmente alrededor del eje de transmisión (400). Machine according to claim 5 characterized in that the plurality of internal gears (300) and the plurality of coils (200) alternate angularly around the transmission shaft (400).
7. Máquina de acuerdo con cualquiera de las reivindicaciones 1 a 4 caracterizada por que comprende un eje de transmisión (400) desplazado respecto al eje de rotación del rotor (100). 7. Machine according to any one of claims 1 to 4 characterized in that it comprises a drive shaft (400) offset with respect to the axis of rotation of the rotor (100).
8. Máquina de acuerdo con cualquiera de las reivindicaciones 1 a 4 caracterizada por que comprende una corona externa no magnetizable para transmisión de energía mecánica. 8. Machine according to any of claims 1 to 4 characterized in that it comprises a non-magnetizable external crown for mechanical energy transmission.
9. Máquina de acuerdo con cualquiera de las reivindicaciones anteriores caracterizada por que comprende una pluralidad de rotores (100) con un mismo eje de rotación. Machine according to any of the preceding claims characterized in that it comprises a plurality of rotors (100) with the same axis of rotation.
10. Máquina de acuerdo con la reivindicación 8 caracterizada por que comprende una pluralidad de engranajes externos (301) que conectan un segundo dentado de engranaje (104) en una cara exterior de un primer rotor (100) con el primer dentado de engranaje (103) de un segundo rotor (100). Machine according to claim 8 characterized in that it comprises a plurality of external gears (301) that connect a second gear teeth (104) on an outer face of a first rotor (100) with the first gear teeth (103 ) of a second rotor (100).
1 1. Máquina de acuerdo con las reivindicaciones 8 y 9 caracterizada por que comprende una pluralidad de engranajes externos (301) que conectan lateralmente el primer rotor (100) a un tercer engranaje. 1 Machine according to claims 8 and 9 characterized in that it comprises a plurality of external gears (301) that laterally connect the first rotor (100) to a third gear.
12. Máquina de acuerdo con cualquiera de las reivindicaciones anteriores caracterizada por que la longitud de la cada bobina (200) siguiendo la dirección de rotación del rotor (200) es mayor que el radio de dicha bobina (200) en una sección perpendicular a dicha dirección de rotación. 12. Machine according to any of the preceding claims characterized in that the length of each coil (200) following the direction of rotation of the rotor (200) is greater than the radius of said coil (200) in a section perpendicular to said direction of rotation
13. Máquina de acuerdo con cualquiera de las reivindicaciones anteriores caracterizada por que comprende medios de control configurados para conmutar la pluralidad de bobinas (200), convirtiendo una energía eléctrica de las bobinas (200) del estator (500) en energía mecánica del rotor (100). 13. Machine according to any of the preceding claims characterized in that it comprises control means configured to switch the plurality of coils (200), converting an electric energy of the coils (200) of the stator (500) into mechanical energy of the rotor ( 100).
14. Máquina de acuerdo con cualquiera de las reivindicaciones 1 a 11 caracterizada por que comprende medios de rotación configurados para rotar el rotor (100) e inducir una fuerza electromotriz que convierte una energía mecánica de dicho rotor (100) en energía eléctrica en las bobinas (200) del estator (500). 14. Machine according to any of claims 1 to 11 characterized in that it comprises rotating means configured to rotate the rotor (100) and induce an electromotive force that converts a mechanical energy of said rotor (100) into electrical energy in the coils (200) of the stator (500).
15. Máquina de acuerdo con cualquiera de las reivindicaciones anteriores caracterizada por que la al menos una sección magnetizable (102) comprende dentado de engranaje. 15. Machine according to any of the preceding claims characterized in that the at least one magnetizable section (102) comprises gear teeth.
16. Máquina de acuerdo con cualquiera de las reivindicaciones anteriores caracterizada por que el material magnetizable tiene una permeabilidad magnética mayor que la permeabilidad magnética del material no magnetizable. 16. Machine according to any of the preceding claims characterized in that the magnetizable material has a magnetic permeability greater than the magnetic permeability of the non-magnetizable material.
PCT/ES2016/070877 2016-12-12 2016-12-12 Rotary electrical machine WO2018109237A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2016/070877 WO2018109237A1 (en) 2016-12-12 2016-12-12 Rotary electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2016/070877 WO2018109237A1 (en) 2016-12-12 2016-12-12 Rotary electrical machine

Publications (1)

Publication Number Publication Date
WO2018109237A1 true WO2018109237A1 (en) 2018-06-21

Family

ID=58159098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070877 WO2018109237A1 (en) 2016-12-12 2016-12-12 Rotary electrical machine

Country Status (1)

Country Link
WO (1) WO2018109237A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488286A (en) 1993-05-12 1996-01-30 Sundstrand Corporation Method and apparatus for starting a synchronous machine
US6100620A (en) 1996-08-05 2000-08-08 S.H.R. Ltd. Bvi High frequency synchronous rotary electrical machine
US6140719A (en) 1999-02-17 2000-10-31 American Superconductor Corporation High temperature superconducting rotor for a synchronous machine
US6177750B1 (en) 1998-07-14 2001-01-23 Reliance Electric Technologies, Llc Rotating assembly construction for high speed induction motor
US20020053833A1 (en) * 2000-11-06 2002-05-09 Kim Houng Joong Electric motor
US6566778B1 (en) 2000-01-24 2003-05-20 Ishikawajima-Harima Heavy Industries Co., Ltd. Cage-type induction motor for high rotational speeds
US7145308B1 (en) * 2006-01-24 2006-12-05 Theodore O Chase Floating armature electric motor and method of assembly
US20100171384A1 (en) * 2009-01-07 2010-07-08 Shimon Elmaleh Electro-magnetic motor generator system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488286A (en) 1993-05-12 1996-01-30 Sundstrand Corporation Method and apparatus for starting a synchronous machine
US6100620A (en) 1996-08-05 2000-08-08 S.H.R. Ltd. Bvi High frequency synchronous rotary electrical machine
US6177750B1 (en) 1998-07-14 2001-01-23 Reliance Electric Technologies, Llc Rotating assembly construction for high speed induction motor
US6140719A (en) 1999-02-17 2000-10-31 American Superconductor Corporation High temperature superconducting rotor for a synchronous machine
US6566778B1 (en) 2000-01-24 2003-05-20 Ishikawajima-Harima Heavy Industries Co., Ltd. Cage-type induction motor for high rotational speeds
US20020053833A1 (en) * 2000-11-06 2002-05-09 Kim Houng Joong Electric motor
US7145308B1 (en) * 2006-01-24 2006-12-05 Theodore O Chase Floating armature electric motor and method of assembly
US20100171384A1 (en) * 2009-01-07 2010-07-08 Shimon Elmaleh Electro-magnetic motor generator system

Similar Documents

Publication Publication Date Title
ES2546961T3 (en) Electric motor-generator with unipolar field with switchable coil configuration
ES2241836T3 (en) UNIPOLAR TRANSVERSAL FLOW MACHINE.
KR101104499B1 (en) Inductor-type synchronous machine
CN109891726A (en) A kind of improved Multiple tunnel motor/generator
ES2549982T3 (en) Electric motor for a small electrical appliance
JP2005522161A (en) Electrical machine
KR102143808B1 (en) Magnet generator
ES2887339T3 (en) Complementary unidirectionally magnetic rotor/stator pairs
KR101162477B1 (en) Power generator having multilayer coil and multilayer permanent magnet
CN105637733B (en) Transverse flux motor or generator
ES2739914T3 (en) Wheel having combined electromechanical means for generating electricity that have a plurality of auxiliary power structures
CN108141121B (en) Electric motor
ES2900521T3 (en) Electric power motor-generator excited by magnetic transfer
ES2232089T3 (en) DOUBLE EXCITATION ELECTRICAL MACHINE, IN PARTICULAR ALTERNATOR FOR MOTOR VEHICLE.
RU2017137412A (en) Electric current generator
WO2011101501A2 (en) Electrical energy multi-generator
ES2666212B1 (en) SWITCHED AXIAL FLOW RELUCTANCE MACHINE AND ELECTRIC VEHICLE COMPRISING THE MACHINE
KR101115498B1 (en) Brushless DC Motor
ES2701052T3 (en) Reduction of rolling forces in an electric machine
KR101872262B1 (en) Magnet generator
WO2018109237A1 (en) Rotary electrical machine
WO2010126392A1 (en) Permanent-magnet generator
ES2895127T3 (en) Rotating mass energy accumulator
ES2902191T3 (en) Improvement of a permanent magnet synchronous machine
JP2008017578A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16840279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16840279

Country of ref document: EP

Kind code of ref document: A1