WO2018108097A1 - 一种定位方法、辅助站点及系统 - Google Patents

一种定位方法、辅助站点及系统 Download PDF

Info

Publication number
WO2018108097A1
WO2018108097A1 PCT/CN2017/115875 CN2017115875W WO2018108097A1 WO 2018108097 A1 WO2018108097 A1 WO 2018108097A1 CN 2017115875 W CN2017115875 W CN 2017115875W WO 2018108097 A1 WO2018108097 A1 WO 2018108097A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary
mobile terminal
base station
station
signal
Prior art date
Application number
PCT/CN2017/115875
Other languages
English (en)
French (fr)
Inventor
张毅
张国庆
周峰
张泉峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17880925.7A priority Critical patent/EP3537788A4/en
Publication of WO2018108097A1 publication Critical patent/WO2018108097A1/zh
Priority to US16/440,957 priority patent/US10935671B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • G01S1/0423Mounting or deployment thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0081Transmission between base stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • G01S5/02213Receivers arranged in a network for determining the position of a transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/68Marker, boundary, call-sign, or like beacons transmitting signals not carrying directional information

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a positioning method, an auxiliary station, and a system.
  • a mobile terminal can communicate with one or more base stations.
  • the base station acquires the location information of the mobile terminal relative to the base station, and then uses the known base station location information to obtain the location information of the mobile terminal with a certain precision, thereby realizing the positioning of the mobile terminal.
  • FIG. 1 is a schematic diagram of positioning based on an arrival time.
  • FIG. 1 illustrates three base stations and one mobile terminal as an example.
  • the three base stations are base station A, base station B, and base station C, respectively.
  • the base station A broadcasts a transmission signal to the mobile terminal (the propagation speed of the signal is a fixed value), and after receiving the signal, the mobile terminal calculates the distance d1 between the mobile terminal and the base station A according to the arrival time of the signal. Therefore, the position of the mobile terminal should exist on the arc with the base station A as the center and the radius d1 (such as the arc a in FIG. 1).
  • the location of the mobile terminal should exist on the arc with the base station B as the center and the radius d2 (such as the arc b in FIG. 1), and the position of the mobile terminal should exist at the center of the base station C, and the radius is On the arc of d3 (such as arc c in Figure 1). Then, the intersection of the arc a, the arc b, and the arc c is the position of the mobile terminal, thereby realizing the positioning of the mobile terminal.
  • the number of neighboring base stations in the existing network is very limited, and the mobile terminal cannot even detect neighboring base stations in many places.
  • the transmission power of the base station in order to control the interference between the base stations, the transmission power of the base station is controlled, so that the mobile terminal detects that the signals of the neighboring base stations are not too strong, and reduces the signal to noise ratio, thereby making the positioning accuracy of the mobile terminal subject to accuracy. influences.
  • the embodiment of the present application provides a positioning method, an auxiliary site, and a system, which can improve the accuracy of positioning of the mobile terminal.
  • the first aspect of the embodiments of the present invention provides a positioning method, which may include: when determining location information of a mobile terminal, the present invention may first set a secondary site, and the secondary site may have two forms, namely eLite And eBeacon, the working frequency band of the auxiliary site may be the operator spectrum or the unlicensed spectrum, and the auxiliary site may be synchronized by certain technical means, including but not limited to high-precision global positioning system (GPS) synchronization.
  • GPS global positioning system
  • the auxiliary station After setting the auxiliary station, the auxiliary station generates a downlink auxiliary positioning signal; the auxiliary station sends the downlink auxiliary positioning signal to the mobile terminal; after receiving the downlink auxiliary positioning signal, the mobile terminal assists the downlink The positioning signal is measured, the measurement result is obtained, and then Sending the measurement result to the base station; after receiving the measurement result, the base station determines the location information of the mobile terminal according to the measurement result. It can be seen that the channel environment between the auxiliary station and the mobile terminal can be designed better, so that the location information of the mobile terminal acquired by the base station has high confidence, so that the base station can locate the mobile terminal more accurately. Therefore, the present invention can improve the accuracy of positioning of the mobile terminal.
  • the downlink assisted positioning signal includes at least one of the following: a CRS and a PRS. It can be understood that the downlink auxiliary positioning signal can also be other types of signals, which is not limited herein.
  • the method further includes: since the secondary site does not provide basic communication functions, the user cannot be accessed and parked, or the other communication functions of the user may be affected. Therefore, the secondary site broadcasts the secondary site as a site that is not campable and/or accessible.
  • the second aspect of the embodiments of the present invention further provides a positioning method, which may include: the mobile terminal sends an uplink sounding signal to the auxiliary station; the auxiliary station receives the uplink sounding signal; the auxiliary station measures the uplink sounding signal, and obtains the measurement result; The measurement result is sent to the base station; after receiving the measurement result, the base station determines the location information of the mobile terminal according to the measurement result.
  • a positioning method may include: the mobile terminal sends an uplink sounding signal to the auxiliary station; the auxiliary station receives the uplink sounding signal; the auxiliary station measures the uplink sounding signal, and obtains the measurement result; The measurement result is sent to the base station; after receiving the measurement result, the base station determines the location information of the mobile terminal according to the measurement result.
  • the uplink sounding signal includes, but is not limited to, a sounding reference signal.
  • the auxiliary station measures the uplink sounding signal may include: the base station sends the indication information to the auxiliary station; the auxiliary station measures the uplink sounding signal according to the indication information, and obtains the measurement result, and the measurement result Including but not limited to TOA and AOA.
  • a third aspect of the embodiments of the present invention provides a secondary site, where the secondary site is configured to implement the functions of the method provided by the foregoing first aspect or any optional implementation manner of the first aspect, implemented by software, and the software includes
  • the module corresponding to the above function, the module corresponding to the above function may include a generating module and a sending module, the generating module is configured to implement a corresponding generated function, and the sending module is configured to implement a corresponding sending function.
  • a fourth aspect of the embodiments of the present invention provides a secondary site configured to implement the functions of the method provided by any of the foregoing second aspect or the optional implementation of the second aspect, implemented by software, where the software includes
  • the module corresponding to the above function may include a receiving module, a measuring module and a sending module, the receiving module is configured to implement a corresponding receiving function, the measuring module is used to implement a corresponding measuring function, and the sending module is configured to implement a corresponding function.
  • the function sent may include a receiving module, a measuring module and a sending module, the receiving module is configured to implement a corresponding receiving function, the measuring module is used to implement a corresponding measuring function, and the sending module is configured to implement a corresponding function. The function sent.
  • a fifth aspect of the embodiments of the present invention provides a positioning system, which includes the auxiliary station, the mobile terminal, and the base station provided by the third aspect of the embodiments of the present invention.
  • a sixth aspect of the embodiments of the present invention provides a positioning system, where the positioning system includes a secondary station, a mobile terminal, and a base station provided by the fourth aspect of the embodiments of the present invention.
  • the embodiment of the present invention has the following advantages: since the channel environment between the auxiliary station and the mobile terminal can be designed better, the location information of the mobile terminal acquired by the base station has high confidence, and thus the base station The mobile terminal can be positioned more accurately. Therefore, the present invention can improve the accuracy of positioning of the mobile terminal.
  • FIG. 1 is a schematic diagram of positioning based on arrival time
  • FIG. 2 is a schematic diagram of an application scenario of a secondary site according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a positioning method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of positioning of a CRS as a downlink auxiliary positioning signal according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of positioning of a PRS as a downlink auxiliary positioning signal according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of another positioning of a PRS as a downlink auxiliary positioning signal according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of another positioning method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of positioning of an uplink detection signal as an auxiliary positioning signal according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of an embodiment of a secondary site according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a secondary site according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another embodiment of a secondary site according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another embodiment of a secondary site according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another embodiment of a secondary site according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an embodiment of a positioning system according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of another embodiment of a positioning system according to an embodiment of the present invention.
  • the embodiment of the invention provides a positioning method, an auxiliary station and a system, which can improve the accuracy of positioning of the mobile terminal.
  • the present invention is mainly used in a wireless communication system, and the applicable scenarios are very rich.
  • the scenarios applicable to the present invention include, but are not limited to, the following scenarios: 1. Non-Light Of Sight (NLOS) regional positioning; 2. Far-point positioning such as cell edge; 3. Indoor positioning of the building; 4. Mobile The terminal can see that there are very few scenarios of the number of base stations.
  • NLOS Non-Light Of Sight
  • FIG. 2 is a schematic diagram of an application scenario of a secondary site according to an embodiment of the present invention.
  • the existing primary station is the carrier base station in the existing network
  • the auxiliary station is the auxiliary positioning station (auxiliary station) proposed by the invention.
  • the auxiliary station 1 can improve the positioning accuracy of the NLOS obstacle area
  • the auxiliary station 2 can improve the positioning of the cell edge.
  • Accuracy, auxiliary station n can mention High positioning accuracy in the room, if there are other requirements, you can continue to deploy the auxiliary site.
  • an embodiment of the present invention provides a positioning method, including:
  • the auxiliary station generates a downlink auxiliary positioning signal.
  • the present invention may first set the secondary site, the location of the secondary site is fixed, and then the secondary site generates a downlink auxiliary positioning signal.
  • the downlink auxiliary positioning signal includes at least one of a cell reference signal (CRS) and a position reference signal (PRS). It should be noted that the downlink auxiliary positioning signal may also be other types of signals, which is not limited herein.
  • the auxiliary station sends a downlink auxiliary positioning signal to the mobile terminal.
  • the auxiliary station may also send a downlink synchronization signal, such as a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS), in the process of transmitting the downlink auxiliary positioning signal.
  • a downlink synchronization signal such as a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS)
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the station can also send broadcast signals and the like.
  • the secondary site Since the secondary site does not provide basic communication functions, it cannot allow users to access and reside, otherwise it will affect other communication functions of the user. So in some possible embodiments, the secondary site broadcasts the secondary site as a site that is not campable and/or accessible.
  • the base station sends indication information to the mobile terminal.
  • the indication information is used to instruct the mobile terminal to perform measurement on the downlink auxiliary positioning signal.
  • the mobile terminal performs measurement on the downlink auxiliary positioning signal according to the indication information, to obtain a measurement result.
  • the measurement result may include a Time of Arrival (TOA) and an Angle of Arrival (AOA) of the downlink assisted positioning signal.
  • TOA Time of Arrival
  • AOA Angle of Arrival
  • the mobile terminal sends the measurement result to the base station.
  • the base station determines location information of the mobile terminal according to the measurement result.
  • step 101 the mobile terminal accesses the existing network and camps on the base station.
  • the present invention can improve the accuracy of positioning of the mobile terminal.
  • FIG. 4 is a schematic diagram of positioning of a CRS as a downlink auxiliary positioning signal according to an embodiment of the present invention.
  • the CRS is used as the auxiliary positioning signal in FIG. 4, and the auxiliary station includes two forms, namely eLite and eBeacon.
  • the eLite has a large transmitting power and can be used for outdoor deployment with a large coverage.
  • the eBeacon has a small transmitting function and can be used for local Range outdoor and indoor deployment.
  • the positioning diagram has the following characteristics:
  • the auxiliary station transmits downlink synchronization signals, such as PSS and SSS, and the auxiliary station also transmits CRS and broadcast signals;
  • the auxiliary station in the form of eLite transmits CRS1 to the mobile terminal
  • the auxiliary station in the form of eBeacon transmits CRS2 to the mobile terminal
  • the CRSO can be transmitted between the base station and the mobile terminal.
  • the secondary site has protocol control information (PCI) independent of the serving cell, and can broadcast itself as a non-resident/access site;
  • PCI protocol control information
  • the PCI of the auxiliary site in the form of eLite is PCI1
  • the PCI of the auxiliary site in the form of eBeacon is PCI2
  • the serving cell, that is, the PCI of the base station is PCI0.
  • the auxiliary site does not need to be configured with interfaces such as S1/X2.
  • the mobile terminal accesses the existing network and camps on the base station.
  • the base station configures the mobile terminal to perform field strength measurement of the auxiliary station, and the mobile terminal reports the measurement result to the base station.
  • FIG. 5 is a schematic diagram of positioning of a PRS as a downlink auxiliary positioning signal according to an embodiment of the present invention.
  • the PRS is used as the auxiliary positioning signal in FIG. 5, and the auxiliary site includes two forms, namely eLite and eBeacon.
  • the eLite has a large transmitting power and can be used for outdoor deployment with a large coverage.
  • the eBeacon has a small transmitting function and can be used for local Range outdoor and indoor deployment.
  • the positioning diagram has the following characteristics:
  • the auxiliary station transmits downlink synchronization signals, such as PSS and SSS, and the auxiliary station also transmits PRS and broadcast signals;
  • the auxiliary station in the form of eLite transmits PRS1 to the mobile terminal
  • the auxiliary station in the form of eBeacon transmits PRS2 to the mobile terminal
  • the PRSO can be transmitted between the base station and the mobile terminal.
  • the secondary site has a PCI independent of the serving cell and can broadcast itself as a non-resident/access site;
  • the PCI of the auxiliary site in the eLite mode is PCI1
  • the PCI of the auxiliary site in the eBeacon mode is PCI2
  • the serving cell, that is, the PCI of the base station is PCI0.
  • the auxiliary site does not need to be configured with interfaces such as S1/X2.
  • the mobile terminal accesses the existing network and camps on the base station.
  • the base station configures the mobile terminal to perform field strength measurement of the auxiliary station, and the mobile terminal reports the measurement result to the base station.
  • FIG. 6 is another schematic diagram of positioning of a PRS as a downlink auxiliary positioning signal according to an embodiment of the present invention.
  • the PRS is used as the auxiliary positioning signal in Figure 6.
  • the auxiliary site includes two modes, namely eLite and eBeacon.
  • the eLite has a large transmitting power and can be used for outdoor deployment with a large coverage.
  • the eBeacon has a small transmitting function and can be used for local Range outdoor and indoor deployment.
  • the positioning diagram has the following characteristics:
  • the secondary site uses the same PCI as the base station and does not send any information other than the PRS;
  • the PCI of the auxiliary site in the eLite form, the PCI of the auxiliary site in the eBeacon mode, and the PCI of the serving cell (base station) are all PCI0.
  • the base station can configure different auxiliary stations to send PRS on different time-frequency resources
  • the auxiliary station in the form of eLite transmits PRS0' to the mobile terminal
  • the auxiliary station in the form of eBeacon transmits PRS0 ⁇ to the mobile terminal
  • PRS0 can be transmitted between the base station and the mobile terminal.
  • the auxiliary site does not need to be configured with interfaces such as S1/X2.
  • the mobile terminal accesses the existing network and camps on the base station.
  • the base station configures the mobile terminal to perform field strength measurement of the auxiliary station, and the mobile terminal reports the measurement result to the base station.
  • the base station can obtain more location measurement information, and Many of the measurement information is highly confident (due to the better channel environment between the secondary station and the mobile terminal), so that the base station can locate the mobile terminal more accurately.
  • the system channel delay is necessary to perform periodic correction. Due to the precise position agnosticity and mobility of the mobile terminal, the correction of the anchor point selection is difficult, and the accuracy of the correction will affect the positioning accuracy of the system.
  • the auxiliary station in the embodiment of the present invention can be used as a correction anchor point because the location is fixed and the location is known, or the mobile terminal close to the auxiliary site can be selected as the correction anchor point.
  • the auxiliary station in this embodiment has basic auxiliary positioning signal generation and transmission functions, and the shape, power, and transmission of the auxiliary station can be adjusted and deployed conveniently.
  • an embodiment of the present invention provides another positioning method, including:
  • the mobile terminal sends an uplink sounding signal to the auxiliary station.
  • the mobile terminal accesses the existing network and camps on the base station.
  • the uplink sounding signal sent by the mobile terminal may also be received by the base station.
  • the foregoing detection signal includes an SRS.
  • the auxiliary station measures the uplink detection signal to obtain a measurement result.
  • the auxiliary station after detecting the uplink sounding signal, the auxiliary station measures the uplink sounding signal to obtain a measurement result.
  • the foregoing auxiliary station measures the uplink sounding signal, and the obtained measurement result includes:
  • the auxiliary station receives the indication information sent by the base station
  • the auxiliary station measures the uplink sounding signal according to the indication information, and obtains the measurement result;
  • the measurement results include TOA and AOA.
  • the measurement result may also include other measurement parameters, which are not limited herein.
  • the auxiliary station sends the measurement result to the base station.
  • the base station determines location information of the mobile terminal according to the measurement result.
  • the present invention can improve the accuracy of positioning of the mobile terminal.
  • FIG. 8 is a schematic diagram of positioning of an uplink detection signal as an auxiliary positioning signal according to an embodiment of the present invention.
  • the uplink detection signal is used as the auxiliary positioning signal in FIG. 8.
  • the auxiliary station includes two modes, namely eSniffer and eBeacon, and the eSniffer has a large transmission power, which can be used for outdoor deployment with a large coverage area, and the eBeacon transmission function is small and available. It is deployed outdoors and indoors in a local area.
  • the positioning diagram has the following characteristics:
  • the secondary station does not have a downlink channel, and the secondary station only performs uplink detection
  • the present invention can set the auxiliary station to have no downlink transmission function in advance, for example, the auxiliary site does not have a downlink channel when it leaves the factory, and can also be configured when the secondary site is used.
  • the secondary site has the same PCI as the serving cell, and the secondary site can receive management information of the serving cell;
  • the PCI of the auxiliary site in the eSniffer form is PCI0.
  • the auxiliary site does not need to be configured with interfaces such as S1/X2.
  • the mobile terminal accesses the existing network and camps on the base station.
  • the base station configures the mobile terminal to perform field strength measurement of the auxiliary station, and the mobile terminal reports the measurement result to the base station.
  • an embodiment of the auxiliary site in the embodiment of the present invention includes:
  • a generating module 301 configured to generate a downlink auxiliary positioning signal
  • the sending module 302 is configured to send a downlink auxiliary positioning signal to the mobile terminal, so that the base station determines the location information of the mobile terminal according to the measurement result obtained by the mobile terminal performing measurement on the downlink auxiliary positioning signal.
  • the present invention can improve the accuracy of positioning of the mobile terminal.
  • the downlink auxiliary positioning signal includes at least one of the following: the CRS is in a PRS.
  • the auxiliary site further includes:
  • the broadcast module 401 is configured to broadcast the secondary site as a site that is not campable and/or accessible.
  • the auxiliary site in the embodiment of the present invention is described above from the perspective of a modular functional entity.
  • the secondary site in the embodiment of the present invention is described from the perspective of hardware processing. Referring to FIG. 11, the secondary site in the embodiment of the present invention is described.
  • the processor 501, the transmitter 502, and the memory 503 are included.
  • the auxiliary site may have more or less components than those shown in FIG. 11, two or more components may be combined, or may have different component configurations or settings, and each component may include Hardware, software, or a combination of hardware and software implementations of one or more signal processing and/or application specific integrated circuits.
  • the processor 501 is configured to perform the following operations:
  • the transmitter 502 is configured to perform the following operations:
  • the memory 503 is used to store code required by the processor 501 to perform corresponding operations.
  • the present invention can improve the accuracy of positioning of the mobile terminal.
  • another embodiment of the secondary site in the embodiment of the present invention includes:
  • the receiving module 601 is configured to receive an uplink sounding signal sent by the mobile terminal.
  • the measuring module 602 is configured to measure the uplink detection signal to obtain a measurement result
  • the sending module 603 is configured to send the measurement result to the base station, so that the base station determines the location information of the mobile terminal according to the measurement result.
  • the present invention can improve the accuracy of positioning of the mobile terminal.
  • the uplink sounding signal includes an SRS.
  • the measuring module 602 is specifically configured to receive the indication information sent by the base station, and measure the uplink detection signal according to the indication information to obtain a measurement result, where the measurement result includes the TOA of the uplink detection signal. And AOA.
  • the auxiliary site in the embodiment of the present invention is described above from the perspective of a modular functional entity.
  • the secondary site in the embodiment of the present invention is described from the perspective of hardware processing. Referring to FIG. 13, the secondary site in the embodiment of the present invention is described.
  • the receiver 701, the processor 702, the transmitter 703, and the memory 704 are included.
  • the auxiliary site may have more or less components than those shown in FIG. 13, may combine two or more components, or may have different component configurations or settings, and each component may include Hardware, software, or a combination of hardware and software implementations of one or more signal processing and/or application specific integrated circuits.
  • the receiver 701 is configured to perform the following operations:
  • the processor 702 is configured to perform the following operations:
  • the transmitter 703 is configured to perform the following operations:
  • the measurement result is sent to the base station, so that the base station determines the location information of the mobile terminal according to the measurement result.
  • Memory 704 is used to store the code required by processor 702 to perform the corresponding operations.
  • the present invention can improve the accuracy of positioning of the mobile terminal.
  • the processor 702 is further configured to perform the following operations:
  • the base station Receiving the indication information sent by the base station; measuring the uplink sounding signal according to the indication information, and obtaining the measurement result; wherein the measurement result includes the TOA of the uplink sounding signal and the AOA.
  • an embodiment of the present invention further provides a positioning system, where the positioning system includes:
  • the auxiliary station 801 is configured to generate a downlink auxiliary positioning signal, and send a downlink auxiliary positioning signal to the mobile terminal 802.
  • the mobile terminal 802 is configured to receive a downlink auxiliary positioning signal, measure the downlink auxiliary positioning signal, and obtain a measurement result; send the measurement result to the base station 803;
  • the base station 803 is configured to receive the measurement result, and determine location information of the mobile terminal 802 according to the measurement result.
  • the present invention can improve the accuracy of positioning of the mobile terminal.
  • the base station 803 is further configured to send the indication information to the mobile terminal 802, where the indication information is used to instruct the mobile terminal 802 to perform measurement on the downlink assisted positioning signal.
  • an embodiment of the present invention further provides a positioning system, where the positioning system includes:
  • the mobile terminal 901 is configured to send an uplink sounding signal to the secondary station;
  • the auxiliary station 902 is configured to receive an uplink sounding signal, measure the uplink sounding signal, and obtain a measurement result; send the measurement result to the base station 903;
  • the base station 903 is configured to receive a measurement, and determine location information of the mobile terminal according to the measurement result.
  • the present invention can improve the accuracy of positioning of the mobile terminal.
  • the base station 903 is further configured to send the indication information to the auxiliary station 902, where the indication information is used to indicate that the auxiliary station 902 measures the uplink sounding signal.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本申请实施例公开了一种定位方法、辅助站点及系统,能够提高移动终端定位的准确性。本发明实施例方法包括:辅助站点生成下行辅助定位信号;所述辅助站点向移动终端发送所述下行辅助定位信号,以便基站根据所述移动终端对所述下行辅助定位信号进行测量所得到的测量结果确定所述移动终端的位置信息。

Description

一种定位方法、辅助站点及系统
本申请要求于2016年12月13日提交中国专利局、申请号为201611145753.7、发明名称为“一种定位方法、辅助站点及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种定位方法、辅助站点及系统。
背景技术
在移动通信网络中,移动终端可以和一个或者多个基站通信。基站获取到移动终端相对于基站的位置信息,再利用已知的基站位置信息,就可以得到一定精度的移动终端的位置信息,从而实现移动终端的定位。
现有方案提出了一种实现移动终端的定位方法,如图1所示,图1为现有的一种基于到达时间的定位示意图,图1以3个基站以及1个移动终端为例进行说明,其中3个基站分别为基站A、基站B以及基站C。基站A向移动终端广播发送信号(该信号的传播速度为定值),移动终端接收到信号后,根据该信号的到达时间计算移动终端与基站A之间的距离d1。从而移动终端的位置应该存在于以基站A为圆心、半径为d1的圆弧上(如图1中的圆弧a)。同理,移动终端的位置应该存在于以基站B为圆心、半径为d2的圆弧上(如图1中的圆弧b),以及移动终端的位置应该存在于以基站C为圆心、半径为d3的圆弧上(如图1中的圆弧c)。那么圆弧a、圆弧b以及圆弧c的交点即为移动终端的位置,从而实现移动终端的定位。
然而,在实际情况下,现网中相邻基站的数量十分有限,移动终端在很多地方甚至无法检测到相邻基站。另外,现网中为了控制基站间的干扰,会控制基站的发射功率,导致移动终端检测到相邻基站的信号不会太强,降低了信噪比,从而使得移动终端的定位的准确性受到影响。
发明内容
本申请实施例提供了一种定位方法、辅助站点及系统,能够提高移动终端定位的准确性。
有鉴于此,本发明实施例第一方面提供了一种定位方法,可包括:当需要确定移动终端的位置信息时,本发明可以先设置辅助站点,辅助站点可以具有两种形态,分别为eLite以及eBeacon,辅助站点的工作频段可以是运营商频谱,也可以是unlicensed频谱,辅助站点可以通过一定的技术手段获得同步,包括但不限于高精度全球定位系统(Global Position System,GPS)获得同步,嗅探相邻基站的同步信道获得同步;在设置辅助站点后,辅助站点生成下行辅助定位信号;辅助站点将下行辅助定位信号发送给移动终端;移动终端接收到下行辅助定位信号后,对下行辅助定位信号进行测量,得到测量结果,然后 将测量结果发送给基站;基站接收到测量结果后,根据测量结果确定移动终端的位置信息。可见,由于辅助站点与移动终端之间的信道环境可以设计的更好,从而基站获取到的移动终端的位置信息具有高置信度,从而基站可以更为准确的对移动终端进行定位。所以本发明能够提高移动终端定位的准确性。
在一些可能的实现方式中,下行辅助定位信号包括如下至少一种:CRS以及PRS。可以理解,下行辅助定位信号还可以为其他类型信号,此处不作限定。
在另一些可能的实现方式中,该方法还包括:由于辅助站点不提供基本的通信功能,所以不能让用户接入与驻留,否者会影响用户的其他通信功能。所以辅助站点广播辅助站点为不可驻留和/或接入的站点。
本发明实施例第二方面还提供了一种定位方法,可包括:移动终端向辅助站点发送上行探测信号;辅助站点接收上行探测信号;辅助站点对上行探测信号进行测量,得到测量结果;辅助站点向基站发送测量结果;基站接收到测量结果后,基站根据测量结果确定移动终端的位置信息。可见,由于辅助站点与移动终端之间的信道环境可以设计的更好,从而基站获取到的移动终端的位置信息具有高置信度,从而基站可以更为准确的对移动终端进行定位。所以本发明能够提高移动终端定位的准确性。
在一些可能的实现方式中,上行探测信号包括但不限于探测参考信号。
在另一个可能的实现方式中,辅助站点对上行探测信号进行测量,得到测量结果可包括:基站向辅助站点发送指示信息;辅助站点根据指示信息对上行探测信号进行测量,得到测量结果,测量结果包括但不限于TOA以及AOA。
本发明实施例第三方面提供了一种辅助站点,该辅助站点被配置实现上述第一方面或第一方面任一可选的实现方式所提供的方法的功能,由软件实现,其软件包括与上述功能相应的模块,与上述功能相应的模块可以包括生成模块以及发送模块,该生成模块用于实现相应生成的功能,发送模块用于实现相应发送的功能。
本发明实施例第四方面提供了一种辅助站点,该辅助站点被配置实现上述第二方面或第二方面任一可选的实现方式所提供的方法的功能,由软件实现,其软件包括与上述功能相应的模块,与上述功能相应的模块可以包括接收模块、测量模块以及发送模块,该接收模块用于实现相应接收的功能,测量模块用于实现相应测量的功能,发送模块用于实现相应发送的功能。
本发明实施例第五方面提供了一种定位系统,该定位系统包括本发明实施例第三方面所提供的辅助站点、移动终端以及基站。
本发明实施例第六方面提供了一种定位系统,该定位系统包括本发明实施例第四方面所提供的辅助站点、移动终端以及基站。
从以上技术方案可以看出,本发明实施例具有以下优点:由于辅助站点与移动终端之间的信道环境可以设计的更好,从而基站获取到的移动终端的位置信息具有高置信度,从而基站可以更为准确的对移动终端进行定位。所以本发明能够提高移动终端定位的准确性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附 图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为现有的一种基于到达时间的定位示意图;
图2为本发明实施例提供的一种辅助站点的应用场景示意图;
图3为本发明实施例中一种定位方法示意图;
图4为本发明实施例提供的一种以CRS作为下行辅助定位信号的定位示意图;
图5为本发明实施例提供的一种以PRS作为下行辅助定位信号的定位示意图;
图6为本发明实施例提供的另一种以PRS作为下行辅助定位信号的定位示意图;
图7为本发明实施例中另一种定位方法示意图;
图8为本发明实施例提供的一种以上行探测信号作为辅助定位信号的定位示意图;
图9为本发明实施例中辅助站点一个实施例示意图;
图10为本发明实施例中辅助站点另一个实施例示意图;
图11为本发明实施例中辅助站点另一个实施例示意图;
图12为本发明实施例中辅助站点另一个实施例示意图;
图13为本发明实施例中辅助站点另一个实施例示意图;
图14为本发明实施例中定位系统一个实施例示意图;
图15为本发明实施例中定位系统另一个实施例示意图。
具体实施方式
本发明实施例提供了一种定位方法、辅助站点及系统,能够提高移动终端定位的准确性。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明主要用于无线通信系统中,可适用的场景非常丰富,对于需要提高定位精度的场景,都可以使用本发明技术方案。本发明所适用的场景包括但不限于以下场景:1、非视距径(Non-Light Of Sight,NLOS)区域定位;2、小区边缘等远点定位;3、建筑物室内定位;4、移动终端可见基站数量极少场景。
如图2所示,图2为本发明实施例提供的一种辅助站点的应用场景示意图。现有主站为现网中的运营商基站,辅助站为本发明所提出的辅助定位站点(辅助站点),辅助站1可以提高NLOS障碍区的定位精度,辅助站2可以提高小区边缘的定位精度,辅助站n可以提 高室内的定位精度,若还有其他需求可以继续部署辅助站点。
请参阅图3,本发明实施例提供了一种定位方法,包括:
101、辅助站点生成下行辅助定位信号;
本实施例中,当需要确定移动终端的位置信息时,本发明可以先设置辅助站点,辅助站点的位置固定,然后辅助站点生成下行辅助定位信号。
可选的,在本发明的一些实施例中,下行辅助定位信号包括如下至少一种:小区参考信号(cell reference signal,CRS)以及位置参考信号(Position reference signal,PRS)。需要说明的是,下行辅助定位信号还可以为其他类型信号,此处不作限定。
102、辅助站点向移动终端发送下行辅助定位信号;
本实施例中,辅助站点在发送下行辅助定位信号的过程中,辅助站点还可以发送下行同步信号,比如主同步信号(Primary Synchronization Signal,PSS)以及辅同步信号(Secondary Synchronization Signal,SSS);辅助站点还可以发送广播信号等。
由于辅助站点不提供基本的通信功能,所以不能让用户接入与驻留,否者会影响用户的其他通信功能。所以在一些可能的实施例中,辅助站点广播辅助站点为不可驻留和/或接入的站点。
103、基站向移动终端发送指示信息;
本实施例中,该指示信息用于指示移动终端对下行辅助定位信号进行测量。
104、移动终端根据指示信息对下行辅助定位信号进行测量,得到测量结果。
本实施例中,测量结果可以包括下行辅助定位信号的到达时间(Time of Arrival,TOA)以及到达角度(Angle of Arrival,AOA)。
105、移动终端将测量结果发送给基站;
106、基站根据测量结果确定移动终端的位置信息。
本实施例中,需要说明的是,在步骤101之前,移动终端接入到现网中,驻留到基站上。
本实施例中,由于辅助站点与移动终端之间的信道环境可以设计的更好,从而基站获取到的移动终端的位置信息具有高置信度,从而基站可以更为准确的对移动终端进行定位。所以本发明能够提高移动终端定位的准确性。
在上述实施例的基础上,下面通过三个具体实例对本发明实施例的定位方法进行说明。
实例一:
如图4所示,图4为本发明实施例提供的一种以CRS作为下行辅助定位信号的定位示意图。具体的,图4中使用CRS作为辅助定位信号,辅助站点包括两种形态,分别为eLite和eBeacon,eLite发射功率较大,可用于覆盖范围较大的室外部署,eBeacon发射功能小,可用于局部范围室外和室内部署。该定位示意图具有以下特点:
1、辅助站点发射下行同步信号,比如PSS和SSS,辅助站点还发射CRS以及广播信号等;
在图4中,eLite形态的辅助站点向移动终端发射CRS1,eBeacon形态的辅助站点向移动终端发射CRS2,基站与移动终端之间可以传输CRSO。
2、辅助站点拥有与服务小区独立的协议控制信息(Protocol Control Information,PCI),并可以广播自己为不可驻留/接入的站点;
在图4中,eLite形态的辅助站点的PCI为PCI1,eBeacon形态的辅助站点的PCI为PCI2,服务小区,即基站的PCI为PCI0。
3、辅助站点无需配置S1/X2等接口;
4、移动终端接入到现网中,驻留到基站上,基站配置移动终端进行辅助站点的场强测量,移动终端上报测量结果到基站。
实例二:
如图5所示,图5为本发明实施例提供的一种以PRS作为下行辅助定位信号的定位示意图。具体的,图5中使用PRS作为辅助定位信号,辅助站点包括两种形态,分别为eLite和eBeacon,eLite发射功率较大,可用于覆盖范围较大的室外部署,eBeacon发射功能小,可用于局部范围室外和室内部署。该定位示意图具有以下特点:
1、辅助站点发射下行同步信号,比如PSS和SSS,辅助站点还发射PRS以及广播信号等;
在图5中,eLite形态的辅助站点向移动终端发射PRS1,eBeacon形态的辅助站点向移动终端发射PRS2,基站与移动终端之间可以传输PRSO。
2、辅助站点拥有与服务小区独立的PCI,并可以广播自己为不可驻留/接入的站点;
在图5中,eLite形态的辅助站点的PCI为PCI1,eBeacon形态的辅助站点的PCI为PCI2,服务小区,即基站的PCI为PCI0。
3、辅助站点无需配置S1/X2等接口;
4、移动终端接入到现网中,驻留到基站上,基站配置移动终端进行辅助站点的场强测量,移动终端上报测量结果到基站。
实例三:
如图6所示,图6为本发明实施例提供的另一种以PRS作为下行辅助定位信号的定位示意图。具体的,图6中使用PRS作为辅助定位信号,辅助站点包括两种形态,分别为eLite和eBeacon,eLite发射功率较大,可用于覆盖范围较大的室外部署,eBeacon发射功能小,可用于局部范围室外和室内部署。该定位示意图具有以下特点:
1、辅助站点使用与基站相同的PCI,不发送除了PRS以外的任何信息;
在图6中,eLite形态的辅助站点的PCI、eBeacon形态的辅助站点的PCI以及服务小区(基站)的PCI均为PCI0。
2、基站可以配置不同的辅助站点在不同的时频资源上发送PRS;
在图6中,eLite形态的辅助站点向移动终端发射PRS0`,eBeacon形态的辅助站点向移动终端发射PRS0``,基站与移动终端之间可以传输PRS0。
3、辅助站点无需配置S1/X2等接口;
4、移动终端接入到现网中,驻留到基站上,基站配置移动终端进行辅助站点的场强测量,移动终端上报测量结果到基站。
可见,基于上述实施例以及各实例可知,基站可以获取到更多的位置测量信息,而且 其中很多的测量信息都是具有高置信度的(由于辅助站点与移动终端之间的信道环境更好),从而基站可以更为准确的对移动终端进行定位。
另外,在本发明实施例中,系统通道时延是有必要进行周期性校正的。由于移动终端的精确位置不可知性和移动性,校正的锚点选取比较困难,且校正的精度会影响系统的定位精度。而本发明实施例中的辅助站点由于位置固定且位置已知,所以辅助站点可以作为校正锚点,或者可以选择靠近该辅助站点的移动终端作为校正锚点。
显然,本实施例中的辅助站点具备基本的辅助定位信号生成和发射功能,辅助站点的外形、功率、发射等可以调整,部署方便。
请参阅图7,本发明实施例提供了另一种定位方法,包括:
201、移动终端向辅助站点发送上行探测信号;
本实施例中,在步骤201之前,移动终端接入到现网中,驻留到基站上。
需要说明的是,移动终端发送的上行探测信号也可以被基站接收。
可选的,上述探测信号包括SRS。
202、辅助站点对上行探测信号进行测量,得到测量结果;
本实施例中,辅助站点检测到上行探测信号后,对上行探测信号进行测量,得到测量结果。
可选的,在本发明的一些实施例中,上述辅助站点对上行探测信号进行测量,得到测量结果包括:
辅助站点接收基站发送的指示信息;
辅助站点根据指示信息对上行探测信号进行测量,得到测量结果;
其中,测量结果包括TOA以及AOA。
可以理解的是,测量结果还可以包括其他测量参数,此处不作限定。
203、辅助站点将测量结果发送给基站;
204、基站根据测量结果确定移动终端的位置信息。
本实施例中,由于辅助站点与移动终端之间的信道环境可以设计的更好,从而基站获取到的移动终端的位置信息具有高置信度,从而基站可以更为准确的对移动终端进行定位。所以本发明能够提高移动终端定位的准确性。
下面通过一个具体实例对本发明实施例的定位方法进行说明:
如图8所示,图8为本发明实施例提供的一种以上行探测信号作为辅助定位信号的定位示意图。具体的,图8中使用上行探测信号作为辅助定位信号,辅助站点包括两种形态,分别为eSniffer和eBeacon,eSniffer发射功率较大,可用于覆盖范围较大的室外部署,eBeacon发射功能小,可用于局部范围室外和室内部署。该定位示意图具有以下特点:
1、辅助站点没有下行信道,辅助站点只进行上行检测;
需要说明的是,本发明可以提前设置辅助站点没有下行传输功能,比如辅助站点出厂时就没有下行信道,也可以在使用辅助站点的时候进行配置。
2、辅助站点拥有与服务小区相同的PCI,辅助站点可以接收服务小区的管理信息;
在图8中,eSniffer形态的辅助站点的PCI、eBeacon形态的辅助站点的PCI以及服 务小区(基站)的PCI均为PCI0。
3、辅助站点无需配置S1/X2等接口;
4、移动终端接入到现网中,驻留到基站上,基站配置移动终端进行辅助站点的场强测量,移动终端上报测量结果到基站。
上面通过实施例介绍了本发明实施例的定位方法,下面通过实施例介绍本发明实施例的辅助站点。请参阅图9,本发明实施例中辅助站点一个实施例包括:
生成模块301,用于生成下行辅助定位信号;
发送模块302,用于向移动终端发送下行辅助定位信号,以便基站根据移动终端对下行辅助定位信号进行测量所得到的测量结果确定移动终端的位置信息。
本实施例中,由于辅助站点与移动终端之间的信道环境可以设计的更好,从而基站获取到的移动终端的位置信息具有高置信度,从而基站可以更为准确的对移动终端进行定位。所以本发明能够提高移动终端定位的准确性。
可选的,在一些可能的实施例中,下行辅助定位信号包括如下至少一种:CRS以PRS。
进一步的,如图10所示,在一些可能的实施例中,辅助站点还包括:
广播模块401,用于广播辅助站点为不可驻留和/或接入的站点。
上面从模块化功能实体的角度对本发明实施例中的辅助站点进行了描述,下面从硬件处理的角度对本发明实施例中的辅助站点进行描述,请参阅图11,本发明实施例中的辅助站点包括:处理器501、发射器502以及存储器503。
本发明实施例涉及的辅助站点可以具有比图11所示出的更多或更少的部件,可以组合两个或更多个部件,或者可以具有不同的部件配置或设置,各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件或硬件和软件的组合实现。
处理器501用于执行如下操作:
生成下行辅助定位信号。
发射器502用于执行如下操作:
向移动终端发送下行辅助定位信号,以便基站根据移动终端对下行辅助定位信号进行测量所得到的测量结果确定移动终端的位置信息。
存储器503用于存储处理器501执行相应操作所需的代码。
本实施例中,由于辅助站点与移动终端之间的信道环境可以设计的更好,从而基站获取到的移动终端的位置信息具有高置信度,从而基站可以更为准确的对移动终端进行定位。所以本发明能够提高移动终端定位的准确性。
请参阅图12,本发明实施例中辅助站点另一个实施例包括:
接收模块601,用于接收移动终端发送的上行探测信号;
测量模块602,用于对上行探测信号进行测量,得到测量结果;
发送模块603,用于将测量结果发送给基站,以便基站根据测量结果确定移动终端的位置信息。
本实施例中,由于辅助站点与移动终端之间的信道环境可以设计的更好,从而基站获取到的移动终端的位置信息具有高置信度,从而基站可以更为准确的对移动终端进行定位。 所以本发明能够提高移动终端定位的准确性。
可选的,在一些可能的实施例中,上行探测信号包括SRS。
可选的,在一些可能的实施例中,测量模块602,具体用于接收基站发送的指示信息;根据指示信息对上行探测信号进行测量,得到测量结果;其中,测量结果包括上行探测信号的TOA以及AOA。
上面从模块化功能实体的角度对本发明实施例中的辅助站点进行了描述,下面从硬件处理的角度对本发明实施例中的辅助站点进行描述,请参阅图13,本发明实施例中的辅助站点包括:接收器701、处理器702、发射器703以及存储器704。
本发明实施例涉及的辅助站点可以具有比图13所示出的更多或更少的部件,可以组合两个或更多个部件,或者可以具有不同的部件配置或设置,各个部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件或硬件和软件的组合实现。
接收器701用于执行如下操作:
接收移动终端发送的上行探测信号。
处理器702用于执行如下操作:
对上行探测信号进行测量,得到测量结果;
发射器703用于执行如下操作:
将测量结果发送给基站,以便基站根据测量结果确定移动终端的位置信息。
存储器704用于存储处理器702执行相应操作所需的代码。
本实施例中,由于辅助站点与移动终端之间的信道环境可以设计的更好,从而基站获取到的移动终端的位置信息具有高置信度,从而基站可以更为准确的对移动终端进行定位。所以本发明能够提高移动终端定位的准确性。
处理器702还用于执行如下操作:
接收基站发送的指示信息;根据指示信息对上行探测信号进行测量,得到测量结果;其中,测量结果包括上行探测信号的TOA以及AOA。
如图14所示,本发明实施例还提供一种定位系统,该定位系统包括:
辅助站点801、移动终端802以及基站803;
辅助站点801,用于生成下行辅助定位信号;向移动终端802发送下行辅助定位信号;
移动终端802,用于接收下行辅助定位信号;对下行辅助定位信号进行测量,得到测量结果;将测量结果发送给基站803;
基站803,用于接收测量结果;根据测量结果确定移动终端802的位置信息。
本实施例中,由于辅助站点与移动终端之间的信道环境可以设计的更好,从而基站获取到的移动终端的位置信息具有高置信度,从而基站可以更为准确的对移动终端进行定位。所以本发明能够提高移动终端定位的准确性。
可选的,在本发明的一些实施例中,基站803,还用于向移动终端802发送指示信息,指示信息用于指示移动终端802对下行辅助定位信号进行测量。
如图15所示,本发明实施例还提供一种定位系统,该定位系统包括:
移动终端901、辅助站点902以及基站903;
移动终端901,用于向辅助站点发送上行探测信号;
辅助站点902,用于接收上行探测信号;对上行探测信号进行测量,得到测量结果;将测量结果发送给基站903;
基站903,用于接收测量;根据测量结果确定移动终端的位置信息。
本实施例中,由于辅助站点与移动终端之间的信道环境可以设计的更好,从而基站获取到的移动终端的位置信息具有高置信度,从而基站可以更为准确的对移动终端进行定位。所以本发明能够提高移动终端定位的准确性。
可选的,在本发明的一些实施例中,基站903,还用于向辅助站点902发送指示信息,指示信息用于指示辅助站点902对上行探测信号进行测量。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (17)

  1. 一种定位方法,其特征在于,包括:
    辅助站点生成下行辅助定位信号;
    所述辅助站点向移动终端发送所述下行辅助定位信号,以便基站根据所述移动终端对所述下行辅助定位信号进行测量所得到的测量结果确定所述移动终端的位置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述下行辅助定位信号包括如下至少一种:小区参考信号CRS以及位置参考信号PRS。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述辅助站点广播所述辅助站点为不可驻留和/或接入的站点。
  4. 一种定位方法,其特征在于,包括:
    辅助站点接收移动终端发送的上行探测信号;
    所述辅助站点对所述上行探测信号进行测量,得到测量结果;
    所述辅助站点将所述测量结果发送给基站,以便所述基站根据所述测量结果确定所述移动终端的位置信息。
  5. 根据权利要求4所述的方法,其特征在于,所述上行探测信号包括探测参考信号SRS。
  6. 根据权利要求4或5所述的方法,其特征在于,所述辅助站点对所述上行探测信号进行测量,得到测量结果包括:
    所述辅助站点接收所述基站发送的指示信息;
    所述辅助站点根据所述指示信息对所述上行探测信号进行测量,得到测量结果;
    其中,所述测量结果包括所述上行探测信号的到达时间TOA以及到达角度AOA。
  7. 一种辅助站点,其特征在于,包括:
    生成模块,用于生成下行辅助定位信号;
    发送模块,用于向移动终端发送所述下行辅助定位信号,以便基站根据所述移动终端对所述下行辅助定位信号进行测量所得到的测量结果确定所述移动终端的位置信息。
  8. 根据权利要求7所述的辅助站点,其特征在于,所述下行辅助定位信号包括如下至少一种:小区参考信号CRS以及位置参考信号PRS。
  9. 根据权利要求7或8所述的辅助站点,其特征在于,所述辅助站点还包括:
    广播模块,用于广播所述辅助站点为不可驻留和/或接入的站点。
  10. 一种辅助站点,其特征在于,包括:
    接收模块,用于接收移动终端发送的上行探测信号;
    测量模块,用于对所述上行探测信号进行测量,得到测量结果;
    发送模块,用于将所述测量结果发送给基站,以便所述基站根据所述测量结果确定所述移动终端的位置信息。
  11. 根据权利要求10所述的辅助站点,其特征在于,所述上行探测信号包括探测参考信号SRS。
  12. 根据权利要求10或11所述的辅助站点,其特征在于,所述测量模块,具体用于接收所述基站发送的指示信息;根据所述指示信息对所述上行探测信号进行测量,得到测量 结果;其中,所述测量结果包括所述上行探测信号的到达时间TOA以及到达角度AOA。
  13. 一种定位系统,其特征在于,包括如权利要求7至9任一项所述的辅助站点、移动终端及基站。
  14. 根据权利要求13所述的定位系统,其特征在于,所述基站,还用于根据所述测量结果确定所述移动终端的位置信息。
  15. 根据权利要求13或14所述的定位系统,其特征在于,所述基站,还用于向所述移动终端发送指示信息,所述指示信息用于指示所述移动终端对所述下行辅助定位信号进行测量。
  16. 一种定位系统,其特征在于,包括如权利要求10至12任一项所述的辅助站点、移动终端及基站。
  17. 根据权利要求16所述的定位系统,其特征在于,所述基站,还用于向所述辅助站点发送指示信息,所述指示信息用于指示所述辅助站点对所述上行探测信号进行测量。
PCT/CN2017/115875 2016-12-13 2017-12-13 一种定位方法、辅助站点及系统 WO2018108097A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17880925.7A EP3537788A4 (en) 2016-12-13 2017-12-13 POSITIONING PROCEDURE, ASSISTANCE CENTER AND SYSTEM
US16/440,957 US10935671B2 (en) 2016-12-13 2019-06-13 Positioning method, assistant site, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611145753.7A CN106714299A (zh) 2016-12-13 2016-12-13 一种定位方法、辅助站点及系统
CN201611145753.7 2016-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/440,957 Continuation US10935671B2 (en) 2016-12-13 2019-06-13 Positioning method, assistant site, and system

Publications (1)

Publication Number Publication Date
WO2018108097A1 true WO2018108097A1 (zh) 2018-06-21

Family

ID=58935789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115875 WO2018108097A1 (zh) 2016-12-13 2017-12-13 一种定位方法、辅助站点及系统

Country Status (4)

Country Link
US (1) US10935671B2 (zh)
EP (1) EP3537788A4 (zh)
CN (1) CN106714299A (zh)
WO (1) WO2018108097A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106714299A (zh) 2016-12-13 2017-05-24 上海华为技术有限公司 一种定位方法、辅助站点及系统
CN111818552B (zh) * 2019-04-12 2022-10-18 成都华为技术有限公司 一种基于cu-du架构的定位方法及装置
CN110618435B (zh) * 2019-11-07 2021-11-23 广东星舆科技有限公司 观测数据的生成方法与提高vrs稳定性的电文数据生成方法
JP7351213B2 (ja) * 2019-12-20 2023-09-27 日本電信電話株式会社 無線通信システム及び位置推定装置
CN115942452A (zh) * 2021-09-23 2023-04-07 维沃软件技术有限公司 定位方法、终端、网络侧设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090011774A1 (en) * 2007-07-06 2009-01-08 Samsung Electronics Co., Ltd. Method and apparatus for estimating geo-location of terminal wireless communication system
CN103260237A (zh) * 2012-02-20 2013-08-21 华为技术有限公司 一种网络定位方法和相关设备
CN103813440A (zh) * 2012-11-07 2014-05-21 中兴通讯股份有限公司 Lte系统中移动终端的定位方法和系统
CN105338624A (zh) * 2015-10-30 2016-02-17 东莞酷派软件技术有限公司 辅助定位的方法及装置
CN105657820A (zh) * 2014-11-14 2016-06-08 上海贝尔股份有限公司 一种用于定位室内的目标用户设备的方法及装置
CN106199516A (zh) * 2016-07-05 2016-12-07 重庆邮电大学 一种用于室内定位的辅助方法
CN106714299A (zh) * 2016-12-13 2017-05-24 上海华为技术有限公司 一种定位方法、辅助站点及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266976C (zh) * 2002-10-15 2006-07-26 华为技术有限公司 一种移动台定位方法及其直放站
JP5069727B2 (ja) * 2009-08-27 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ 無線基地局、移動局及び測定方法
WO2018070913A1 (en) * 2016-10-10 2018-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Otdoa network assistance to mtc/nb-iot user equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090011774A1 (en) * 2007-07-06 2009-01-08 Samsung Electronics Co., Ltd. Method and apparatus for estimating geo-location of terminal wireless communication system
CN103260237A (zh) * 2012-02-20 2013-08-21 华为技术有限公司 一种网络定位方法和相关设备
CN103813440A (zh) * 2012-11-07 2014-05-21 中兴通讯股份有限公司 Lte系统中移动终端的定位方法和系统
CN105657820A (zh) * 2014-11-14 2016-06-08 上海贝尔股份有限公司 一种用于定位室内的目标用户设备的方法及装置
CN105338624A (zh) * 2015-10-30 2016-02-17 东莞酷派软件技术有限公司 辅助定位的方法及装置
CN106199516A (zh) * 2016-07-05 2016-12-07 重庆邮电大学 一种用于室内定位的辅助方法
CN106714299A (zh) * 2016-12-13 2017-05-24 上海华为技术有限公司 一种定位方法、辅助站点及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537788A4

Also Published As

Publication number Publication date
EP3537788A1 (en) 2019-09-11
US20190293807A1 (en) 2019-09-26
CN106714299A (zh) 2017-05-24
US10935671B2 (en) 2021-03-02
EP3537788A4 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
WO2018108097A1 (zh) 一种定位方法、辅助站点及系统
JP7394777B2 (ja) 位置サービスのためのネットワークアーキテクチャ及び方法
Keating et al. Overview of positioning in 5G new radio
US9769626B2 (en) Fine timing measurement positioning and improvements in wireless local area networks
KR101842565B1 (ko) 관리되지 않는 네트워크에서의 액세스 포인트 위치 탐색 기법
US8825076B2 (en) Method and device for positioning terminal in long term evolution system
US10075934B2 (en) Positioning method and apparatus
CN111586584B (zh) 包括具有多个接收点的测量节点的系统中的定位方法
TW201911771A (zh) 藉由一定位參考信號之波束成形以促進位置制定之系統及方法
Li et al. Passive localization of standard WiFi devices
US7623872B2 (en) Method for sparse network deployment accuracy enhancements
JP2020076751A (ja) 低減衰rf技術を使用する対象の追跡および測距におけるマルチパス緩和
EP3036948B1 (en) Positioning in a shared cell
US9485745B2 (en) Indoor location using a packet synchronized receiver array
US20220271818A1 (en) Non-Line-of-Sight Path Detection for User Equipment Positioning in Wireless Networks
US20140087754A1 (en) Detecting Multipath and Determining Positioning Measurement Uncertainty
WO2014011381A1 (en) Method for performing measurements and positioning in a network based wlan positioning system
US10725181B2 (en) In-band pseudolite wireless positioning method, system and device
KR20160090722A (ko) 실내 공간에서의 위치 안내 방법
KR20160073640A (ko) 단말의 위치를 측정하는 방법 및 이를 지원하는 장치
Amin et al. Position location of LTE femtocells deployed in a cluster
EP3993521A1 (en) An apparatus and method for time synchronization
EP4332607A1 (en) Localization
KR101653578B1 (ko) 캐리어 결합을 지원하는 무선 접속 시스템에서 단말의 위치를 측정하는 방법 및 이를 지원하는 장치
CN114245315A (zh) 终端定位方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017880925

Country of ref document: EP

Effective date: 20190603

NENP Non-entry into the national phase

Ref country code: DE