WO2018107886A1 - 一种数据传输方法、基站及终端 - Google Patents

一种数据传输方法、基站及终端 Download PDF

Info

Publication number
WO2018107886A1
WO2018107886A1 PCT/CN2017/106491 CN2017106491W WO2018107886A1 WO 2018107886 A1 WO2018107886 A1 WO 2018107886A1 CN 2017106491 W CN2017106491 W CN 2017106491W WO 2018107886 A1 WO2018107886 A1 WO 2018107886A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
dci
aperiodic
scheduling
pdsch
Prior art date
Application number
PCT/CN2017/106491
Other languages
English (en)
French (fr)
Inventor
李辉
陈润华
高秋彬
塔玛拉卡⋅拉盖施
黄秋萍
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US16/468,867 priority Critical patent/US11259316B2/en
Priority to EP17881704.5A priority patent/EP3557804A4/en
Publication of WO2018107886A1 publication Critical patent/WO2018107886A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a data transmission method, a base station, and a terminal.
  • the wireless communication system includes at least one transmitter and one receiver.
  • the transmitter is a base station (e.g., an eNB in 3GPP LTE) and the receiver is a user equipment (UE).
  • the eNB transmits a downlink reference signal, and the UE receives the signal for channel measurement.
  • RS reference signals
  • CSI-RS Channel State Information Reference Signal
  • the system selects from multiple CSI-RS resource configurations, where one CSI-RS resource configuration uniquely determines a set of time-frequency resources (eg, resource granules RE) for transmitting CSI-RS.
  • one UE may semi-statically configure one or more CSI-RS resources. All CSI-RS resources are cyclically transmitted, that is, CSI-RSs are transmitted only in a predefined series of subframes, where the periodic CSI-RS period and subframe offset are semi-statically configured to the UE.
  • the UE When the UE receives the downlink data (such as the physical downlink shared channel PDSCH), the RE for transmitting the CSI-RS cannot be used for the PDSCH transmission, so that the rate matching of the PDSCH needs to be performed around the semi-statically configured periodic CSI-RS.
  • the downlink data such as the physical downlink shared channel PDSCH
  • the aforementioned CSI-RS has non-zero transmission power and is defined as NZP-CSI-RS.
  • the network may further configure one or more periodic zero-power CSI-RS resources (ZP-CSI-RS) for the UE.
  • the PDSCH performs PDSCH rate matching around these configured periodic CSI-RS resources.
  • the periodically transmitted subframe period and offset are indicated by the subframe configuration signaling subframe_config of the high-level signaling information element IE region, which is a zero-power and non-zero-power CSI-RS resource. Part of the configuration.
  • Aperiodic CSI-RS has recently been introduced to support RS sharing for different UEs and achieve higher spectrum effectiveness.
  • An example of such an aperiodic CSI-RS is aperiodic CSI-RS (a one-time transmission aperiodic CSI-RS) that can be transmitted once in any subframe. Since aperiodic CSI-RS can be arbitrarily transmitted in the time domain, it does not require a subframe_config configuration. If the eNB configures multiple aperiodic CSI-RS resources, it may use dynamic signaling to indicate that one (or more) aperiodic CSI-RSs are transmitted in a certain subframe.
  • aperiodic CSI-RS transmission is a multi-shot CSI-RS (aperiodic CSI-RS for multiple transmission).
  • the Multi-shot CSI-RS still requires a high layer signaling configuration period and a subframe offset, and is indicated by the IE area subframe_config. In this way it uses periodic transmission.
  • the multi-shot CSI-RS is transmitted only after the eNB is activated, and stops when the eNB is deactivated.
  • the introduction of the aperiodic CSI-RS needs to be enhanced for the downlink control signaling for the data transmission scheduling, that is, the eNB needs to indicate whether the UE transmits the aperiodic CSI-RS, and if so, the UE needs to indicate the aperiodic CSI-RS.
  • the configuration is such that the UE can correctly perform rate matching of the PDSCH.
  • the related art does not provide a scheme for ensuring that the UE correctly performs PDSCH rate matching after the introduction of the aperiodic CSI-RS, so that the data cannot be correctly transmitted.
  • An object of the present disclosure is to provide a data transmission method, a base station, and a terminal, which solve the problem that data cannot be correctly transmitted after the introduction of the aperiodic CSI-RS in the related art.
  • the embodiment of the present disclosure provides a data transmission method, which is applied to a base station, and includes: a bit occupied by downlink control information DCI for indicating physical downlink shared channel PDSCH scheduling on all carriers corresponding to the terminal to be scheduled.
  • the number configuration is set to N, N is the maximum value of the bit occupied by the DCI for indicating the PDSCH scheduling on the carrier on which the aperiodic channel state information reference signal CSI-RS is configured; the DCI is constructed according to the configuration.
  • the manner in which the number of bits occupied by the DCI used for indicating the PDSCH scheduling on all the carriers corresponding to the to-be-scheduled terminal is set to N is: adding a non-period of the corresponding bit number in the DCI of the carrier according to N.
  • Zero power CSI-RS indication area is: adding a non-period of the corresponding bit number in the DCI of the carrier according to N.
  • the step of adding the aperiodic zero-power CSI-RS indication area corresponding to the bit number in the DCI of the carrier includes: using the terminal The agreed value or the autonomous configuration value is filled in the aperiodic zero-power CSI-RS indication area.
  • each state corresponding to the bit value of the aperiodic zero-power CSI-RS indication area of each carrier simultaneously indicates the channel state information CSI process index and zero.
  • Power CSI-RS index For the carrier configured with the aperiodic CSI-RS, each state corresponding to the bit value of the aperiodic zero-power CSI-RS indication area of each carrier simultaneously indicates the channel state information CSI process index and zero. Power CSI-RS index.
  • the data transmission method further includes: configuring, by the RRC, the CSI process index and the zero-power CSI-RS process index corresponding to each state; or pre-defining the system in the system.
  • the CSI process index and the zero-power CSI-RS process index corresponding to each state are described.
  • the present disclosure further provides a data transmission method, which is applied to a terminal, and includes: receiving, by a base station, scheduling information, which is used to indicate a physical downlink shared channel (PDSCH) scheduling, and the number of bits occupied by the downlink control information DCI in the scheduling information.
  • scheduling information which is used to indicate a physical downlink shared channel (PDSCH) scheduling
  • DCI downlink control information
  • the scheduling information includes an aperiodic zero-power CSI-RS indication area added in the DCI.
  • the step of performing PDSCH rate matching according to the scheduling information includes: acquiring the non-periodic zero power in the scheduling information.
  • the CSI-RS indication area is used to indicate the bit value of all areas or partial areas of the PDSCH rate matching; and the PDSCH rate matching is performed according to the status corresponding to the bit value.
  • the step of performing PDSCH rate matching according to the scheduling information includes: acquiring the non-periodic zero power in the scheduling information.
  • the bits outside the CSI-RS indication area are used to indicate the bit value of all areas or partial areas of the PDSCH rate matching; and the PDSCH rate matching is performed according to the status corresponding to the bit value.
  • the data transmission method before the performing PDSCH rate matching according to the scheduling information, the data transmission method further includes: decoding the DCI according to the maximum value.
  • the present disclosure further provides a base station, including: a setting module, configured to set a bit number configuration occupied by downlink control information DCI for indicating physical downlink shared channel PDSCH scheduling on all carriers corresponding to the to-be-scheduled terminal, to N, N is configured with a non-periodic channel state information reference signal The maximum value of the bit occupied by the DCI for indicating the PDSCH scheduling on the carrier of the CSI-RS; the first processing module is configured to construct, according to the configured DCI, scheduling information for indicating PDSCH scheduling, and send Giving the terminal to be scheduled.
  • the setting module is specifically configured to: add an aperiodic zero-power CSI-RS indication area corresponding to the number of bits in the DCI of the carrier according to N.
  • the setting module includes: a filler submodule, configured to fill the aperiodic zero-power CSI-RS by using an agreed value or an autonomous configuration value with the terminal. In the indication area.
  • each state corresponding to the bit value of the aperiodic zero-power CSI-RS indication area of each carrier simultaneously indicates the channel state information CSI process index and zero.
  • Power CSI-RS index For the carrier configured with the aperiodic CSI-RS, each state corresponding to the bit value of the aperiodic zero-power CSI-RS indication area of each carrier simultaneously indicates the channel state information CSI process index and zero. Power CSI-RS index.
  • the base station further includes: a second processing module, configured to configure, by the RRC, the CSI process index and the zero-power CSI-RS process index corresponding to each state before configuring the aperiodic CSI-RS; or
  • the CSI process index and the zero-power CSI-RS process index corresponding to each state are predefined in the system.
  • the present disclosure further provides a terminal, including: a receiving module, configured to receive scheduling information that is sent by a base station to indicate physical downlink shared channel PDSCH scheduling; and the downlink control information DCI in the scheduling information occupies a bit number of bits.
  • the maximum value of the bit occupied by the DCI for indicating the PDSCH scheduling on the carrier of the aperiodic channel state information reference signal CSI-RS is configured, and the matching module is configured to perform PDSCH rate matching according to the scheduling information.
  • the scheduling information includes an aperiodic zero-power CSI-RS indication area added in the DCI.
  • the matching module includes: a first acquiring submodule, configured to acquire, in the scheduling information, the non-periodic zero-power CSI The value of the bit of all the regions or the partial regions for indicating the PDSCH rate matching, the first matching sub-module, for performing PDSCH rate matching according to the state corresponding to the bit value.
  • the matching module includes: a second acquiring submodule, configured to obtain, in the scheduling information, the non-periodic zero function
  • the value of the bit outside the CSI-RS indication area is used to indicate the bit rate of all the areas or the partial areas of the PDSCH rate matching.
  • the second matching sub-module is configured to perform PDSCH rate matching according to the status corresponding to the bit value.
  • the terminal further includes: a decoding module, configured to decode the DCI according to the maximum value before the matching module performs PDSCH rate matching according to the scheduling information.
  • a decoding module configured to decode the DCI according to the maximum value before the matching module performs PDSCH rate matching according to the scheduling information.
  • the present disclosure also provides a base station, comprising: a processor; and a memory and a transceiver connected to the processor, the memory for storing programs and data used by the processor when performing an operation, when When the processor invokes and executes the program and data stored in the memory, the following process is performed: configuring the bit number of the downlink control information DCI occupied by the downlink control information for the physical downlink shared channel PDSCH scheduling on all carriers corresponding to the terminal to be scheduled Set to N, N is the maximum value of the bit occupied by the DCI for indicating PDSCH scheduling on the carrier on which the aperiodic channel state information reference signal CSI-RS is configured, and is configured according to the configured DCI.
  • the scheduling information indicating the PDSCH scheduling is sent to the to-be-scheduled terminal by the transceiver, where the transceiver is configured to receive and transmit data under the control of the processor.
  • the present disclosure also provides a terminal comprising: a processor; and a memory and a transceiver connected to the processor, the memory for storing programs and data used by the processor when performing an operation, when When the processor invokes and executes the program and data stored in the memory, the following process is performed: receiving, by the transceiver, scheduling information that is sent by the base station to indicate physical downlink shared channel PDSCH scheduling; and downlink control in the scheduling information
  • the number of bits occupied by the information DCI is the maximum value of the bit occupied by the DCI for indicating the PDSCH scheduling on the carrier on which the aperiodic channel state information reference signal CSI-RS is configured; and the PDSCH rate matching is performed according to the scheduling information.
  • the transceiver is used to receive and transmit data under the control of the processor.
  • the data transmission method is configured by using the number of bits occupied by the downlink control information DCI for indicating the physical downlink shared channel PDSCH scheduling on all carriers corresponding to the terminal to be scheduled. If the terminal is set to N, the terminal can blindly solve the DCI size regardless of whether the carrier is configured with a non-periodic CSI-RS, which reduces the complexity of the terminal calculation and ensures the search space and PDCCH of each DCI size.
  • the scheduling flexibility ensures that after the introduction of the aperiodic CSI-RS, the UE correctly performs the PDSCH rate matching and the data can be correctly transmitted.
  • FIG. 1 is a schematic flow chart of a data transmission method in some optional embodiments of the present disclosure
  • FIG. 2 is a schematic flowchart of a data transmission method in some optional embodiments of the present disclosure
  • FIG. 3 is a schematic structural diagram of a base station in some optional embodiments of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a base station in some optional embodiments of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a terminal in some optional embodiments of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal in some optional embodiments of the present disclosure.
  • the present disclosure provides various solutions for the problem that data cannot be correctly transmitted after the introduction of a non-periodic CSI-RS in the prior art, as follows:
  • some optional embodiments of the present disclosure provide a data transmission method, which is applicable to a base station, where the data transmission method includes: Step 11: Corresponding to a terminal to be scheduled The bit number configuration occupied by the downlink control information DCI for indicating the physical downlink shared channel PDSCH scheduling on all the carriers is set to N, N is on the carrier on which the aperiodic channel state information reference signal CSI-RS is configured, and is used for The maximum value of the bit occupied by the DCI of the PDSCH scheduling is indicated; Step 12: The scheduling information for indicating the PDSCH scheduling is constructed according to the configured DCI, and sent to the to-be-scheduled terminal.
  • Step 11 Corresponding to a terminal to be scheduled The bit number configuration occupied by the downlink control information DCI for indicating the physical downlink shared channel PDSCH scheduling on all the carriers is set to N, N is on the carrier on which the aperiodic channel state information reference signal CSI-RS is configured, and is used for The maximum value of the bit occupied by
  • the N is only used to facilitate the accurate description of the number of bits occupied by the downlink control information DCI used to indicate the physical downlink shared channel PDSCH scheduling on all carriers corresponding to the terminal to be scheduled, and does not indicate any specific The physical meaning.
  • the value of N may preferably be a positive integer.
  • the data transmission method provided in the embodiment of the present disclosure may be configured to set the bit number configuration occupied by the downlink control information DCI for indicating the physical downlink shared channel PDSCH scheduling on all carriers corresponding to the to-be-scheduled terminal to N. Regardless of whether the carrier is configured with aperiodic CSI-RS, it is only necessary to blindly solve the size of one DCI, which reduces the complexity of terminal calculation and ensures each DCI.
  • the size of the search space and the flexibility of the PDCCH scheduling ensure that the UE correctly performs PDSCH rate matching after the introduction of the aperiodic CSI-RS, and the data can be correctly transmitted.
  • the solution may also be understood as acquiring the maximum value of the bit occupied by the DCI for indicating the PDSCH scheduling on the carrier configured with the aperiodic channel state information reference signal CSI-RS;
  • the number of bits occupied by the downlink control information DCI for indicating the physical downlink shared channel PDSCH scheduling on the carrier is configured to be the same;
  • the scheduling information for indicating the PDSCH scheduling is constructed according to the configured DCI, and sent to the to-be-scheduled terminal.
  • the method for setting the number of bits occupied by the DCI used for the PDSCH scheduling on all carriers corresponding to the to-be-scheduled terminal to be N is: adding non-periodic zero of the corresponding bit number in the DCI of the carrier according to N. Power CSI-RS indication area.
  • N can be set according to actual needs, and is not limited herein.
  • the step of adding the aperiodic zero-power CSI-RS indication area corresponding to the bit number in the DCI of the carrier includes: using and The agreed value or the autonomous configuration value between the terminals is filled in the aperiodic zero-power CSI-RS indication area.
  • the first type is filled with an arbitrary value, that is, the value in the preset bit number is not defined in the system, and the base station eNB selects an arbitrary value padding.
  • the padding is performed using a random value, that is, the value in the preset bit number is a value randomly generated by the base station itself.
  • the third type is to use the preset value to fill, that is, the value in the preset bit number is clearly defined, such as all 0s or all 1s.
  • the radio resource is used to control the RRC configuration value for padding, that is, the value in the preset bit number is RRC configuration (signaling).
  • the fifth type is filled with the reserved state indication value, that is, the value in the preset bit number is the agreed value of the state that is not used by the system.
  • the sixth type is filled with the agreed value of the state corresponding to the rate matching, that is, the value in the preset bit number is negotiated with the terminal to enable the terminal to identify, and the rate matching is not performed for the area. Status value.
  • the base station notifies the corresponding terminal by using the RRC signaling, so that the terminal performs subsequent processing.
  • the aperiodic (or aperiodic) ZP CSI-RS corresponding to the PDSCH rate matching is separately configured in each CSI process of each carrier.
  • the carrier of each carrier Each state corresponding to the bit value of the aperiodic zero-power CSI-RS indication region simultaneously indicates a channel state information CSI process index and a zero-power CSI-RS index.
  • each CSI process index and ZP CSI-RS index corresponds to a state of the aperiodic zero-power CSI-RS indication area, which may be predefined in the system or configured by RRC, specifically:
  • the data transmission method further includes: configuring, by the RRC, the CSI process index and the zero-power CSI-RS process index corresponding to each state; or predefining each state in the system Corresponding CSI process index and zero-power CSI-RS process index.
  • the data transmission method provided in some optional embodiments of the present disclosure can ensure correct transmission of data after introducing an aperiodic CSI-RS.
  • some optional embodiments of the present disclosure provide a data transmission method, which is applicable to a terminal, where the data transmission method includes: Step 21: Receive a PDSCH scheduling that is sent by a base station to indicate a physical downlink shared channel. Scheduling information; the number of bits occupied by the downlink control information DCI in the scheduling information is on the carrier on which the aperiodic channel state information reference signal CSI-RS is configured, and is used to indicate the bit occupied by the DCI of the PDSCH scheduling. Maximum value; Step 22: Perform PDSCH rate matching according to the scheduling information.
  • the data transmission method provided in the embodiment of the present disclosure is configured to receive scheduling information that is sent by the base station to indicate physical downlink shared channel (PDSCH) scheduling, and the number of bits occupied by the downlink control information DCI in the scheduling information is configured to be aperiodic.
  • the channel state information reference signal CSI-RS is used to indicate the maximum value of the bit occupied by the DCI of the PDSCH scheduling; so that when the PDSCH rate matching is performed according to the scheduling information, regardless of whether the carrier is configured with the aperiodic CSI-RS It is only necessary to blindly solve the size of a DCI, which reduces the computational complexity, ensures the search space of each DCI size, and the flexibility of PDCCH scheduling. After the introduction of the aperiodic CSI-RS, the UE can correctly perform the PDSCH. Rate matching, data can be transmitted correctly.
  • the DCI of the carrier received in this solution can be understood as occupying the same number of bits, and the number of bits is the above maximum value.
  • the scheduling information includes an aperiodic zero-power CSI-RS indication area added in the DCI.
  • the step of performing PDSCH rate matching according to the scheduling information includes: Obtaining, in the scheduling information, a bit value of all areas or partial areas for indicating PDSCH rate matching, including the aperiodic zero-power CSI-RS indication area; and according to a state corresponding to the bit value, Perform PDSCH rate matching.
  • the PDSCH rate matching for the newly added aperiodic zero-power CSI-RS indication area is added in the present embodiment.
  • the step of performing PDSCH rate matching according to the scheduling information includes: Obtaining, in the scheduling information, a value of a bit of all the regions or a partial region that is used to indicate that the PDSCH rate is matched, except the non-periodic zero-power CSI-RS indication region; and performing, according to the state corresponding to the bit value, PDSCH rate matching.
  • the PDSCH rate matching for the newly added aperiodic zero-power CSI-RS indication area is not added in this embodiment.
  • the step of acquiring, in the scheduling information, the bit values of all the regions or partial regions for indicating the PDSCH rate matching, except for the non-periodic zero-power CSI-RS indication region includes: not acquiring the non-periodic zero The bit value of the power CSI-RS indication area.
  • the acquiring the scheduling information except the non-periodic zero includes: indicating the area from the aperiodic zero power CSI-RS The agreed value of the state corresponding to the rate matching is not recognized; the PDSCH rate matching operation is not performed.
  • the state corresponding to the bit value of the non-periodic zero-power CSI-RS indication area is identified, but the corresponding PDSCH rate matching is not performed.
  • the data transmission method further includes: decoding the DCI according to the maximum value.
  • This operation can speed up the processing of the terminal.
  • the data transmission method provided in some optional embodiments of the present disclosure can ensure correct transmission of data after introducing an aperiodic CSI-RS.
  • the data transmission method provided by the embodiment of the present disclosure is further described below in conjunction with the base station and the terminal.
  • the UE configures aperiodic CSI-RS on any activated/configured carrier and cross-carrier scheduling is enabled, the DCI size for downlink PDSCH scheduling on any carrier (whether or not there is non-existence
  • the periodic CSI-RS needs to be equal to the size of the maximum DCI for indicating PDSCH rate matching on a certain carrier on which the aperiodic CSI-RS is configured;
  • the size of the DCI format used for PDSCH scheduling in the existing system is Nbit.
  • an nbit aperiodic ZP CSI-RS indication area needs to be added to the DCI for PDSCH rate matching.
  • the Nbit DCI format is filled with an nbit aperiodic CSI-RS indication area, so that the total size is N+nbit;
  • the NbitDCI format is filled with the nbit aperiodic CSI-RS indication area, and the DCI needs to fill the nbit, so that the size of the DCI is N+nbit.
  • the filled nbit there are several possibilities:
  • nbit is not defined in the system.
  • the eNB selects an arbitrary value to fill the nbit.
  • the UE follows the existing PDSCH rate matching mode, that is, there is no additional PDSCH rate matching (because there is no aperiodic CSI-RS on this carrier), the UE discards the padded nbit after DCI decoding.
  • nbit is clearly defined, such as all 0s or all ones.
  • the UE follows the existing PDSCH rate matching mode, that is, there is no additional PDSCH rate matching, and the UE discards the padded nbit after DCI decoding.
  • nbit is RRC configuration.
  • the UE follows the existing PDSCH rate matching method, that is, Without additional PDSCH rate matching, the UE discards this padded nbit after DCI decoding.
  • nbit is reserved.
  • the UE follows the existing PDSCH rate matching mode, that is, there is no additional PDSCH rate matching, and the UE discards the padded nbit after DCI decoding.
  • the UE will not receive an nbit aperiodic ZP CSI-RS indication area, and the status indicated by this area is not equal to "no aperioidc ZP-CSI-RS". From the perspective of the eNB, this means that the eNB needs to indicate "no aperiodic ZP-CSI-RS" in this nbit aperiodic ZP CSI-RS.
  • a status value is agreed between the base station and the terminal. Except for the aperiodic ZP CSI-RS indication area that fills the status value, the terminal does not receive or recognize.
  • the embodiment of the present disclosure proposes a mechanism for downlink data (PDSCH) rate matching for aperiodic CSI-RS for a UE configured with multi-carrier and cross-carrier scheduling. If the mechanism of the present disclosure is not adopted, the size of the DCI will not be fixed, and the UE needs to blindly decode the dynamically variable DCI, which will result in an increase in UE complexity or limited downlink scheduling.
  • PDSCH downlink data
  • each state of the nbit ZP CSI-RS indication area for PDSCH rate matching needs The ZP CSI-RS index and the CSI process index are also indicated.
  • each CSI process index and ZP CSI-RS index corresponds to a state of this nbit zone, which may be predefined in the system or configured by RRC.
  • the system parameter n 2 bits, there are the following four states for indicating rate matching of PDSCH around the ZPCSI-RS.
  • o state 1 first RRC configuration ⁇ CSI-process index, ZP-CSI-RS index ⁇ ;
  • o state 2 second RRC configuration ⁇ CSI-process index, ZP-CSI-RS index ⁇ ;
  • o state 1 the first RRC configuration ZP-CSI-RS of the first CSI process (or a predefined CSI process);
  • o state 2 a second RRC configuration ZP-CSI-RS of the first CSI process (or a predefined CSI process);
  • o State 3 The third RRC configuration ZP-CSI-RS of the first CSI process (or a predefined CSI process).
  • the data transmission method provided by the embodiment of the present disclosure solves the problem that data cannot be correctly transmitted after the introduction of the aperiodic CSI-RS in the related art.
  • some optional embodiments of the present disclosure provide a base station, including: a setting module 31, configured to use, on all carriers corresponding to the terminal to be scheduled, downlink control information DCI for indicating physical downlink shared channel PDSCH scheduling.
  • the occupied bit number configuration is set to N, N is the maximum value of the bit occupied by the DCI for indicating PDSCH scheduling on the carrier on which the aperiodic channel state information reference signal CSI-RS is configured; the first processing module 32.
  • the scheduling information used to indicate PDSCH scheduling is configured according to the configured DCI, and sent to the to-be-scheduled terminal.
  • the N is only used to facilitate the accurate description of the number of bits occupied by the downlink control information DCI used to indicate the physical downlink shared channel PDSCH scheduling on all carriers corresponding to the terminal to be scheduled, and does not indicate any specific The physical meaning.
  • the value of N may preferably be a positive integer.
  • the base station provided in some optional embodiments of the present disclosure sets the bit number configuration occupied by the downlink control information DCI for indicating the physical downlink shared channel PDSCH scheduling on all carriers corresponding to the to-be-scheduled terminal to N,
  • the terminal can blindly solve the DCI size regardless of whether the carrier is configured with the aperiodic CSI-RS, which reduces the complexity of the terminal calculation, ensures the search space of each DCI size, and ensures the flexibility of the PDCCH scheduling.
  • the UE After the introduction of the aperiodic CSI-RS, the UE correctly performs PDSCH rate matching, and the data can be correctly transmitted.
  • the setting module is specifically configured to: add a corresponding bit in a DCI of a carrier according to N The number of bits of the aperiodic zero-power CSI-RS indication area.
  • N can be set according to actual needs, and is not limited herein.
  • the setting module includes: a filler submodule, configured to use an agreed value or an autonomous configuration value between the terminal and the terminal, Filled in the aperiodic zero-power CSI-RS indication area.
  • the aperiodic (or aperiodic) ZP CSI-RS corresponding to the PDSCH rate matching is separately configured in each CSI process of each carrier.
  • each Each state corresponding to the bit value of the aperiodic zero-power CSI-RS indication region of the carrier simultaneously indicates a channel state information CSI process index and a zero-power CSI-RS index.
  • the combination of the CSI process index and the ZP CSI-RS index corresponds to a state of the non-periodic zero-power CSI-RS indication area, which may be pre-defined in the system or configured by the RRC.
  • the base station further includes: a processing module, configured to: configure, by the RRC, a CSI process index and a zero-power CSI-RS process index corresponding to each state before configuring the aperiodic CSI-RS; or pre-define in the system CSI process index and zero power CSI-RS process index.
  • the base station provided in some optional embodiments of the present disclosure can ensure correct transmission of data after introducing an aperiodic CSI-RS.
  • the base station provided in some optional embodiments of the present disclosure is a base station corresponding to the data transmission method of the base station side provided by the foregoing embodiment, and therefore all embodiments of the data transmission method on the base station side provided by the foregoing embodiment are required. Both are applicable to the base station and both achieve the same or similar benefits.
  • the embodiment provides a base station, including: a processor 41; and a memory 43 connected to the processor 41 through a bus interface 42, where the memory 43 is used to store the processor 41.
  • the processor 41 calls and executes the program and data stored in the memory 43, the following process is performed: all the carriers corresponding to the terminal to be scheduled are used to indicate the physical downlink shared channel.
  • the bit number configuration of the PDSCH scheduled downlink control information DCI is set to N, N is the carrier on which the non-periodic channel state information reference signal CSI-RS is configured, and is used to indicate the bit occupied by the DCI of the PDSCH scheduling.
  • a maximum value is used to construct scheduling information for indicating PDSCH scheduling according to the configured DCI, and is sent to the to-be-scheduled terminal by the transceiver 44.
  • the transceiver 44 is connected to the bus interface 42 for Data is received and transmitted under the control of the processor 41.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 41 and various circuits of memory represented by memory 43.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 44 may be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 41 is responsible for managing the bus architecture and the usual processing, and the memory 43 can store data used by the processor 41 when performing operations.
  • the embodiment of the present disclosure further provides a terminal, including: a receiving module 51, configured to receive scheduling information that is sent by a base station to indicate physical downlink shared channel PDSCH scheduling; and downlink control in the scheduling information.
  • the number of bits occupied by the information DCI is the maximum value of the bit occupied by the DCI for indicating the PDSCH scheduling on the carrier on which the aperiodic channel state information reference signal CSI-RS is configured, and the matching module 52 is configured to The scheduling information is used for PDSCH rate matching.
  • the terminal receives the scheduling information that is sent by the base station to indicate the physical downlink shared channel (PDSCH) scheduling, and the number of bits occupied by the downlink control information DCI in the scheduling information is configured.
  • the non-periodic channel state information reference signal CSI-RS is used to indicate the maximum value of the bit occupied by the DCI of the PDSCH scheduling; so that when the PDSCH rate matching is performed according to the scheduling information, regardless of whether the carrier is configured with the aperiodic CSI -RS, only need to blindly solve the size of a DCI, which reduces the computational complexity, ensures the search space of each DCI size and the flexibility of PDCCH scheduling, so that the UE can be correct after the introduction of the aperiodic CSI-RS.
  • the PDSCH rate matching is performed, and the data can be correctly transmitted.
  • the DCI of the carrier received in this solution can be understood as occupying the same number of bits, and the number of bits is the above maximum value.
  • the scheduling information includes a new non-periodic zero power added in the DCI.
  • CSI-RS indication area is a new non-periodic zero power added in the DCI.
  • the matching module includes: a first acquiring submodule, configured to acquire The scheduling information includes the aperiodic zero-power CSI-RS indication area, and is used to indicate a bit value of all areas or partial areas of the PDSCH rate matching; the first matching sub-module is configured to use the bit according to the bit The value corresponding to the value is used to perform PDSCH rate matching.
  • the PDSCH rate matching for the newly added aperiodic zero-power CSI-RS indication area is added in some optional embodiments.
  • the matching module includes: a second acquiring submodule, configured to acquire And the second matching submodule, configured to obtain the bit according to the bit, except the non-periodic zero-power CSI-RS indication area, which is used to indicate the bit value of all areas or partial areas of the PDSCH rate matching; The state corresponding to the value is PDTS rate matching.
  • the PDSCH rate matching for the newly added aperiodic zero-power CSI-RS indication area is not added in some optional embodiments.
  • the terminal further includes: a decoding module, configured to decode the DCI according to the maximum value before the matching module performs PDSCH rate matching according to the scheduling information.
  • a decoding module configured to decode the DCI according to the maximum value before the matching module performs PDSCH rate matching according to the scheduling information.
  • This operation can speed up the processing of the terminal.
  • the terminal provided in some optional embodiments of the present disclosure can ensure correct transmission of data after introducing an aperiodic CSI-RS.
  • the terminal provided in some optional embodiments of the present disclosure is a terminal corresponding to the data transmission method on the terminal side provided by the foregoing embodiment, and therefore all embodiments of the data transmission method on the terminal side provided by the foregoing embodiment are required. Both are applicable to the terminal and all achieve the same or similar benefits.
  • a terminal including: a processor 61; and a memory 63 connected to the processor 61 through a bus interface 62, where the memory 63 is used for storing The program and data used by the processor 61 when performing the operation, when the processor 61 calls and executes the program and data stored in the memory 63, the following process is performed: receiving the base station issued by the transceiver 64 Scheduling information indicating physical downlink shared channel PDSCH scheduling; The number of bits occupied by the downlink control information DCI in the scheduling information is the maximum value of the bit occupied by the DCI for indicating PDSCH scheduling on the carrier on which the aperiodic channel state information reference signal CSI-RS is configured; The scheduling information performs PDSCH rate matching.
  • the transceiver 64 is coupled to the bus interface 62 for receiving and transmitting data under the control of the processor 61.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 61 and various circuits of memory represented by memory 63.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 64 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 65 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 61 is responsible for managing the bus architecture and the usual processing, and the memory 63 can store data used by the processor 61 when performing operations.
  • the modules/sub-modules may be implemented in software for execution by various types of processors.
  • an identified executable code module can comprise one or more physical or logical blocks of computer instructions, which can be constructed, for example, as an object, procedure, or function. Nonetheless, the executable code of the identified modules need not be physically located together, but may include different instructions stored in different bits that, when logically combined, constitute a module and implement the provisions of the module. purpose.
  • the executable code module can be a single instruction or a plurality of instructions, and can even be distributed across multiple different code segments, distributed among different programs, and distributed across multiple memory devices.
  • operational data can be identified within the module and can be adapted to any The form is implemented and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed at different locations (including on different storage devices), and may at least partially exist as an electronic signal on a system or network.
  • the module can be implemented by software, considering the level of the existing hardware process, the module can be implemented in software, and the technician can construct a corresponding hardware circuit to implement the corresponding function without considering the cost.
  • the hardware circuitry includes conventional Very Large Scale Integration (VLSI) circuits or gate arrays as well as existing semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI Very Large Scale Integration
  • the modules can also be implemented with programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据传输方法、基站及终端,其中,数据传输方法包括:将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,N为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;根据配置后的所述DCI构建用于指示PDSCH调度的调度信息,并发送给所述待调度终端。

Description

一种数据传输方法、基站及终端
相关申请的交叉引用
本申请主张在2016年12月13日在中国提交的中国专利申请号No.201611146857.x的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别是指一种数据传输方法、基站及终端。
背景技术
无线通信系统中至少包括一个发射机和一个接收机。在蜂窝通信系统的下行传输中,发射机为基站(例如3GPP LTE中的eNB),接收机为用户设备(UE)。eNB发送下行参考信号,UE接收此信号进行信道测量。根据信道测量的不同目的,可以支持多种参考信号(RS)。例如在3GPP LTE中,信道状态信息参考信号(CSI-RS)用于进行信道测量和信道状态信息CSI反馈。系统从多个CSI-RS资源配置中进行选择,这里的一个CSI-RS资源配置唯一的确定一组用于传输CSI-RS的时频资源(例如资源颗粒RE)。在LTE中,一个UE可以半静态配置一个或者多个CSI-RS资源。所有CSI-RS资源均为周期性传输,即仅在预定义的一系列子帧中传输CSI-RS,其中周期性CSI-RS的周期和子帧偏移被半静态配置给UE。当UE接收下行数据(如物理下行共享信道PDSCH)时,用于传输CSI-RS的RE不能用于PDSCH传输,这样围绕半静态配置的周期性CSI-RS,需要对PDSCH进行速率匹配。
前述CSI-RS具有非零传输功率,定义为NZP-CSI-RS。此外,网络可以进一步为UE配置一个或者多个周期性零功率CSI-RS资源(ZP-CSI-RS)。PDSCH围绕这些配置的周期性CSI-RS资源进行PDSCH速率匹配。
对于零功率和非零功率CSI-RS,周期性传输的子帧周期和偏移由高层信令信息单元IE区域的子帧配置信令subframe_config指示,其为零功率和非零功率CSI-RS资源配置的一部分。
非周期CSI-RS近来被引入用于支持不同UE的RS共享并获得更高的谱 效率。这种非周期CSI-RS的一个例子是aperiodic CSI-RS(一次性传输的非周期CSI-RS),其可以在任意子帧进行一次性的传输。由于aperiodic CSI-RS可以在时域中任意传输,其不需要subframe_config配置。若eNB配置多个aperiodic CSI-RS资源,其可以用动态信令指示在某个子帧中进行一个(或多个)aperiodic CSI-RS的传输。
另一种非周期CSI-RS传输为multi-shot CSI-RS(多次性传输的非周期CSI-RS)。Multi-shot CSI-RS仍然需要高层信令配置周期及子帧偏移,并由IE区域subframe_config指示。这样其采用周期性传输。但是multi-shot CSI-RS仅在eNB激活后进行传输,并且当eNB去激活后停止传输。
非周期CSI-RS的引入需要对下行用于数据传输调度的控制信令进行增强,即eNB需要指示UE是否传输了非周期CSI-RS,如果是,则还需要指示UE此非周期CSI-RS的配置,这样UE能够正确进行PDSCH的速率匹配。
但是,相关技术中并没有提供非周期CSI-RS引入后,如何保证UE正确进行PDSCH速率匹配的方案,使得数据无法正确传输。
发明内容
本公开的目的在于提供一种数据传输方法、基站及终端,解决相关技术中非周期CSI-RS引入后,数据无法正确传输的问题。
为了解决上述技术问题,本公开实施例提供一种数据传输方法,应用于基站,包括:将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,N为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;根据配置后的所述DCI构建用于指示PDSCH调度的调度信息,并发送给所述待调度终端。
可选的,所述将待调度终端对应的所有载波上用于指示PDSCH调度的DCI占有的比特位数均设置为N的方式为:根据N在载波的DCI中增加对应比特位数的非周期零功率CSI-RS指示区域。
可选的,针对未配置非周期CSI-RS的载波,所述在载波的DCI中增加对应比特位数的非周期零功率CSI-RS指示区域的步骤包括:使用与终端间 的约定值或者自主配置值,填充在所述非周期零功率CSI-RS指示区域中。
可选的,针对配置了非周期CSI-RS的载波,每个载波的所述非周期零功率CSI-RS指示区域的比特取值所对应的每个状态同时指示信道状态信息CSI进程索引和零功率CSI-RS索引。
可选的,在配置非周期CSI-RS之前,所述数据传输方法还包括:由RRC配置所述每个状态对应的CSI进程索引和零功率CSI-RS进程索引;或者在系统中预定义所述每个状态对应的CSI进程索引和零功率CSI-RS进程索引。
本公开还提供了一种数据传输方法,应用于终端,包括:接收基站下发的用于指示物理下行共享信道PDSCH调度的调度信息;所述调度信息中的下行控制信息DCI占用的比特位数为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;
根据所述调度信息进行PDSCH速率匹配。
可选的,所述调度信息中包含在所述DCI中新增的非周期零功率CSI-RS指示区域。
可选的,在所述DCI是配置了非周期CSI-RS的载波的DCI时,所述根据所述调度信息进行PDSCH速率匹配的步骤包括:获取所述调度信息中包含所述非周期零功率CSI-RS指示区域在内的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值;根据所述比特取值所对应的状态,进行PDSCH速率匹配。
可选的,在所述DCI是未配置非周期CSI-RS的载波的DCI时,所述根据所述调度信息进行PDSCH速率匹配的步骤包括:获取所述调度信息中除所述非周期零功率CSI-RS指示区域外的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值;根据所述比特取值所对应的状态,进行PDSCH速率匹配。
可选的,在所述根据所述调度信息进行PDSCH速率匹配之前,所述数据传输方法还包括:根据所述最大值解码所述DCI。
本公开还提供了一种基站,包括:设置模块,用于将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,N为配置了非周期信道状态信息参考信号 CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;第一处理模块,用于根据配置后的所述DCI构建用于指示PDSCH调度的调度信息,并发送给所述待调度终端。
可选的,所述设置模块具体用于:根据N在载波的DCI中增加对应比特位数的非周期零功率CSI-RS指示区域。
可选的,针对未配置非周期CSI-RS的载波,所述设置模块包括:填充子模块,用于使用与终端间的约定值或者自主配置值,填充在所述非周期零功率CSI-RS指示区域中。
可选的,针对配置了非周期CSI-RS的载波,每个载波的所述非周期零功率CSI-RS指示区域的比特取值所对应的每个状态同时指示信道状态信息CSI进程索引和零功率CSI-RS索引。
可选的,所述基站还包括:第二处理模块,用于在配置非周期CSI-RS之前,由RRC配置所述每个状态对应的CSI进程索引和零功率CSI-RS进程索引;或者在系统中预定义所述每个状态对应的CSI进程索引和零功率CSI-RS进程索引。
本公开还提供了一种终端,包括:接收模块,用于接收基站下发的用于指示物理下行共享信道PDSCH调度的调度信息;所述调度信息中的下行控制信息DCI占用的比特位数为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;匹配模块,用于根据所述调度信息进行PDSCH速率匹配。
可选的,所述调度信息中包含在所述DCI中新增的非周期零功率CSI-RS指示区域。
可选的,在所述DCI是配置了非周期CSI-RS的载波的DCI时,所述匹配模块包括:第一获取子模块,用于获取所述调度信息中包含所述非周期零功率CSI-RS指示区域在内的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值;第一匹配子模块,用于根据所述比特取值所对应的状态,进行PDSCH速率匹配。
可选的,在所述DCI是未配置非周期CSI-RS的载波的DCI时,所述匹配模块包括:第二获取子模块,用于获取所述调度信息中除所述非周期零功 率CSI-RS指示区域外的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值;第二匹配子模块,用于根据所述比特取值所对应的状态,进行PDSCH速率匹配。
可选的,所述终端还包括:解码模块,用于所述匹配模块根据所述调度信息进行PDSCH速率匹配之前,根据所述最大值解码所述DCI。
本公开还提供了一种基站,包括:处理器;以及与所述处理器相连接的存储器和收发机,所述存储器用于存储所述处理器在执行操作时所使用的程序和数据,当处理器调用并执行所述存储器中所存储的程序和数据时,执行下列过程:将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,N为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;根据配置后的所述DCI构建用于指示PDSCH调度的调度信息,并通过收发机发送给所述待调度终端,其中,收发机用于在处理器的控制下接收和发送数据。
本公开还提供了一种终端,包括:处理器;以及与所述处理器相连接的存储器和收发机,所述存储器用于存储所述处理器在执行操作时所使用的程序和数据,当处理器调用并执行所述存储器中所存储的程序和数据时,执行下列过程:通过收发机接收基站下发的用于指示物理下行共享信道PDSCH调度的调度信息;所述调度信息中的下行控制信息DCI占用的比特位数为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;根据所述调度信息进行PDSCH速率匹配;其中,收发机用于在处理器的控制下接收和发送数据。
本公开的上述技术方案的有益效果如下:上述方案中,所述数据传输方法通过将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,可以使得终端不管载波是否配置了非周期CSI-RS,只需盲解一种DCI的大小即可,降低了终端计算的复杂度,保证了每个DCI大小的搜索空间以及PDCCH调度的灵活性,保证了非周期CSI-RS引入后,UE正确进行PDSCH速率匹配,数据能够正确传输。
附图说明
图1为本公开一些可选的实施例中的数据传输方法流程示意图;
图2为本公开一些可选的实施例中的数据传输方法流程示意图;
图3为本公开一些可选的实施例中的基站结构示意图;
图4为本公开一些可选的实施例中的基站结构示意图;
图5为本公开一些可选的实施例中的终端结构示意图;
图6为本公开一些可选的实施例中的终端结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开针对现有的技术中非周期CSI-RS引入后,数据无法正确传输的问题,提供了多种解决方案,具体如下:
一些可选的实施例中,如图1所示,本公开一些可选的实施例中提供一种数据传输方法,可应用于基站,所述数据传输方法包括:步骤11:将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,N为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;步骤12:根据配置后的所述DCI构建用于指示PDSCH调度的调度信息,并发送给所述待调度终端。
其中N只是为了便于准确的描述将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置为一样的值而引进的,并不表示什么具体的物理含义。N的取值优选可为正整数。
本公开实施例中提供的所述数据传输方法通过将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,可以使得终端不管载波是否配置了非周期CSI-RS,只需盲解一种DCI的大小即可,降低了终端计算的复杂度,保证了每个DCI 大小的搜索空间以及PDCCH调度的灵活性,保证了非周期CSI-RS引入后,UE正确进行PDSCH速率匹配,数据能够正确传输。
本方案还可以理解为获取配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;根据最大值将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置为相同;根据配置后的所述DCI构建用于指示PDSCH调度的调度信息,并发送给所述待调度终端。
具体的,所述将待调度终端对应的所有载波上用于指示PDSCH调度的DCI占有的比特位数均设置为N的方式为:根据N在载波的DCI中增加对应比特位数的非周期零功率CSI-RS指示区域。
其中,N可根据实际需求进行设定,在此不作限定。
考虑到实际应用情况,本实施例中,针对未配置非周期CSI-RS的载波,所述在载波的DCI中增加对应比特位数的非周期零功率CSI-RS指示区域的步骤包括:使用与终端间的约定值或者自主配置值,填充在所述非周期零功率CSI-RS指示区域中。
具体填充情况举例如下:
第一种,使用任意值进行填充,也就是预设比特位数内的取值不在系统中定义,基站eNB选择任意值填充。
第二种,使用随机值进行填充,也就是预设比特位数内的取值采用基站自身随机产生的值。
第三种,使用预设值进行填充,也就是预设比特位数内的取值明确定义,如全0或全1。
第四种,使用无线资源控制RRC配置值进行填充,也就是预设比特位数内的取值为RRC配置(信令)。
第五种,使用预留状态指示值进行填充,也就是预设比特位数内的取值为未被系统使用的状态的约定值。
第六种,使用不进行速率匹配所对应的状态的约定值进行填充,也就是预设比特位数内的取值为与终端协商好的能够让终端识别的,不针对该区域进行速率匹配的状态值。
在此说明,针对采用自主配置值填充非周期零功率CSI-RS指示区域的情况,基站会通过RRC信令通知给对应的终端,以便终端进行后续的处理。
对应于PDSCH速率匹配的非周期(或aperiodic)ZP CSI-RS在每个载波的每个CSI进程分别配置,本实施例中,针对配置了非周期CSI-RS的载波,每个载波的所述非周期零功率CSI-RS指示区域的比特取值所对应的每个状态同时指示信道状态信息CSI进程索引和零功率CSI-RS索引。
每个CSI进程索引和ZP CSI-RS索引的组合对应于非周期零功率CSI-RS指示区域的一个状态,其可以在系统中预先定义或者由RRC配置,具体为:
在配置非周期CSI-RS之前,所述数据传输方法还包括:由RRC配置所述每个状态对应的CSI进程索引和零功率CSI-RS进程索引;或者在系统中预定义所述每个状态对应的CSI进程索引和零功率CSI-RS进程索引。
综上所述,本公开一些可选的实施例中提供的数据传输方法能够保证引入非周期CSI-RS后,数据的正确传输。
如图2所示,本公开一些可选的实施例提供一种数据传输方法,可应用于终端,所述数据传输方法包括:步骤21:接收基站下发的用于指示物理下行共享信道PDSCH调度的调度信息;所述调度信息中的下行控制信息DCI占用的比特位数为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;步骤22:根据所述调度信息进行PDSCH速率匹配。
本公开实施例中提供的所述数据传输方法通过接收基站下发的用于指示物理下行共享信道PDSCH调度的调度信息,并且调度信息中的下行控制信息DCI占用的比特位数为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;使得在根据调度信息进行PDSCH速率匹配时,不管载波是否配置了非周期CSI-RS,只需盲解一种DCI的大小即可,降低了计算的复杂度,保证了每个DCI大小的搜索空间以及PDCCH调度的灵活性,使得非周期CSI-RS引入后,UE能够正确进行PDSCH速率匹配,数据能够正确传输。
本方案中接收的载波的DCI可以理解为占有相同的比特位数,比特位数为上述最大值。
进一步的,所述调度信息中包含在所述DCI中新增的非周期零功率CSI-RS指示区域。
对应于配置了非周期CSI-RS的载波的情况,也就是,在所述DCI是配置了非周期CSI-RS的载波的DCI时,所述根据所述调度信息进行PDSCH速率匹配的步骤包括:获取所述调度信息中包含所述非周期零功率CSI-RS指示区域在内的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值;根据所述比特取值所对应的状态,进行PDSCH速率匹配。
也就是相对于现有方案,本情境下,本实施例中增加了针对新增的非周期零功率CSI-RS指示区域的PDSCH速率匹配。
对应于未配置非周期CSI-RS的载波的情况,也就是,在所述DCI是未配置非周期CSI-RS的载波的DCI时,所述根据所述调度信息进行PDSCH速率匹配的步骤包括:获取所述调度信息中除所述非周期零功率CSI-RS指示区域外的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值;根据所述比特取值所对应的状态,进行PDSCH速率匹配。
也就是本情境下,本实施例中未增加针对新增的非周期零功率CSI-RS指示区域的PDSCH速率匹配。
对应于基站侧对非周期零功率CSI-RS指示区域的具体填充情况,本实施例中提供以下两种对应策略:
第一种,若所述非周期零功率CSI-RS指示区域为所述基站使用任意值、随机值、预设值、无线资源控制RRC配置值和预留状态指示值中的任一种填充的,则所述获取所述调度信息中除所述非周期零功率CSI-RS指示区域外的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值的步骤包括:不获取非周期零功率CSI-RS指示区域的比特取值。
还可以是对非周期零功率CSI-RS指示区域的比特取值对应的状态不进行识别,进而也不进行对应的PDSCH速率匹配。
第二种,若所述非周期零功率CSI-RS指示区域为所述基站使用不进行速率匹配所对应的状态的约定值填充的,则所述获取所述调度信息中除所述非周期零功率CSI-RS指示区域外的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值的步骤包括:从所述非周期零功率CSI-RS指示区域 中识别出所述不进行速率匹配所对应的状态的约定值;不执行PDSCH速率匹配操作。
也就是,对非周期零功率CSI-RS指示区域的比特取值对应的状态进行识别,但是不进行对应的PDSCH速率匹配。
进一步的,在所述根据所述调度信息进行PDSCH速率匹配之前,所述数据传输方法还包括:根据所述最大值解码所述DCI。
本操作可以加快终端的处理速度。
综上所述,本公开一些可选的实施例中提供的数据传输方法能够保证引入非周期CSI-RS后,数据的正确传输。
下面结合基站和终端两侧对本公开实施例提供的所述数据传输方法进行进一步说明。
方案概述如下:如果UE在任意激活/配置的载波上配置了非周期CSI-RS,并且使能了跨载波调度,则在任意载波上,用于下行PDSCH调度的DCI的大小(无论是否存在非周期CSI-RS)均需要等于配置了非周期CSI-RS的某一载波上的用于指示PDSCH速率匹配的最大DCI的大小;具体如下:
假设现有系统中用于PDSCH调度的DCI格式大小为Nbit;为了围绕非周期CSI-RS进行PDSCH的速率匹配,需要在DCI中增加nbit aperiodic ZP CSI-RS指示区域用于PDSCH速率匹配;
如果在一个配置了非周期CSI-RS的载波上DCI调度PDSCH,在Nbit DCI格式中填充nbit aperiodic CSI-RS指示区域,这样得到总的大小为N+nbit;
如果在一个没有配置非周期CSI-RS的载波上DCI调度PDSCH,在NbitDCI格式中填充nbit aperiodic CSI-RS指示区域,DCI需要填补nbit,这样DCI的大小为N+nbit。对于填补的nbit,有以下几种可能:
(1)nbit取值不在系统中定义,如eNB选择任意值填充此nbit。UE遵循现有PDSCH速率匹配方式,即无额外的PDSCH速率匹配(由于此载波上不存在非周期CSI-RS),UE在DCI解码后丢弃此填充的nbit。
(2)nbit取值明确定义,如全0或全1。UE遵循现有PDSCH速率匹配方式,即无额外的PDSCH速率匹配,UE在DCI解码后丢弃此填充的nbit。
(3)nbit取值为RRC配置。UE遵循现有的PDSCH速率匹配方式,即 无额外的PDSCH速率匹配,UE在DCI解码后丢弃此填充的nbit。
(4)nbit的取值保留。UE遵循现有的PDSCH速率匹配方式,即无额外的PDSCH速率匹配,UE在DCI解码后丢弃此填充的nbit。
(5)UE将不会接收一个nbit非周期ZP CSI-RS指示区域,此区域所指示的状态不等于“no aperioidc ZP-CSI-RS”。从eNB的角度来看,这意味着eNB需要在此nbit非周期ZP CSI-RS指示“no aperiodic ZP-CSI-RS”。
也可以理解为基站与终端间约定一个状态值,除此填充此状态值的非周期ZP CSI-RS指示区域外,终端不进行接收,或者不识别。
由上可知,本公开实施例针对配置了多载波及跨载波调度的UE,提出一种针对非周期CSI-RS进行的下行数据(PDSCH)速率匹配的机制。若不采用本公开的机制,DCI的大小将不固定,且UE需要盲解码大小动态可变的DCI,这将导致UE复杂度增加或者下行调度受限。
进一步,如果用于PDSCH速率匹配的非周期(或aperiodic)ZP CSI-RS在每个载波的每个CSI进程分别配置,则用于PDSCH速率匹配的nbit ZP CSI-RS指示区域的每个状态需要同时指示ZP CSI-RS索引和CSI进程索引。
每个CSI进程索引和ZP CSI-RS索引的组合对应于此nbit区域的一个状态,其可以在系统中预先定义或者由RRC配置。
例如,相关技术中系统参数n=2bits,存在以下四种状态用于指示围绕ZPCSI-RS进行PDSCH的速率匹配。
·状态0:无aperiodic ZP CSI-RS;
·状态1:第一RRC配置的aperiodic ZP CSI-RS;
·状态2:第二RRC配置的aperiodic ZP CSI-RS;
·状态3:第三RRC配置的aperiodic ZP CSI-RS。
状态1、2和3分别对应各自的预设配置。
本实施例中,如果由RRC进行配置,2bit ZP CSI-RS指示区域的四个状态的一种可能的设计为:
ο状态0:无ZP-CSI-RS指示;
ο状态1:第一RRC配置{CSI-process索引,ZP-CSI-RS索引};
ο状态2:第二RRC配置{CSI-process索引,ZP-CSI-RS索引};
ο状态3:第三RRC配置{CSI-process索引,ZP-CSI-RS索引}。
如果在系统中预定义,2bit ZP CSI-RS指示区域的四个状态的一种可能的设计为:
ο状态0:无ZP-CSI-RS指示;
ο状态1:第一CSI进程(或者预定义的CSI进程)的第一RRC配置ZP-CSI-RS;
ο状态2:第一CSI进程(或者预定义的CSI进程)的第二RRC配置ZP-CSI-RS;
ο状态3:第一CSI进程(或者预定义的CSI进程)的第三RRC配置ZP-CSI-RS。
综上所述,本公开实施例提供的数据传输方法很好的解决了相关技术中非周期CSI-RS引入后,数据无法正确传输的问题。
如图3所示,本公开一些可选的实施例提供一种基站,包括:设置模块31,用于将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,N为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;第一处理模块32,用于根据配置后的所述DCI构建用于指示PDSCH调度的调度信息,并发送给所述待调度终端。
其中N只是为了便于准确的描述将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置为一样的值而引进的,并不表示什么具体的物理含义。N的取值优选可为正整数。
本公开一些可选的实施例中提供的所述基站通过将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,可以使得终端不管载波是否配置了非周期CSI-RS,只需盲解一种DCI的大小即可,降低了终端计算的复杂度,保证了每个DCI大小的搜索空间以及PDCCH调度的灵活性,保证了非周期CSI-RS引入后,UE正确进行PDSCH速率匹配,数据能够正确传输。
具体的,所述设置模块具体用于:根据N在载波的DCI中增加对应比特 位数的非周期零功率CSI-RS指示区域。
其中,N可根据实际需求进行设定,在此不作限定。
考虑到实际应用情况,本一些可选的实施例中,针对未配置非周期CSI-RS的载波,所述设置模块包括:填充子模块,用于使用与终端间的约定值或者自主配置值,填充在所述非周期零功率CSI-RS指示区域中。
对应于PDSCH速率匹配的非周期(或aperiodic)ZP CSI-RS在每个载波的每个CSI进程分别配置,本一些可选的实施例中,针对配置了非周期CSI-RS的载波,每个载波的所述非周期零功率CSI-RS指示区域的比特取值所对应的每个状态同时指示信道状态信息CSI进程索引和零功率CSI-RS索引。
每个CSI进程索引和ZP CSI-RS索引的组合对应于非周期零功率CSI-RS指示区域的一个状态,其可以在系统中预先定义或者由RRC配置,具体为:所述基站还包括:第二处理模块,用于在配置非周期CSI-RS之前,由RRC配置所述每个状态对应的CSI进程索引和零功率CSI-RS进程索引;或者在系统中预定义所述每个状态对应的CSI进程索引和零功率CSI-RS进程索引。
综上所述,本公开一些可选的实施例中提供的基站能够保证引入非周期CSI-RS后,数据的正确传输。
需要说明的是,本公开一些可选的实施例中提供的基站是与上述实施例提供的基站侧的数据传输方法对应的基站,故上述实施例提供的基站侧的数据传输方法的所有实施例均适用于该基站,且均能达到相同或相似的有益效果。
如图4所示,本实施例提供一种基站,包括:处理器41;以及通过总线接口42与所述处理器41相连接的存储器43,所述存储器43用于存储所述处理器41在执行操作时所使用的程序和数据,当处理器41调用并执行所述存储器43中所存储的程序和数据时,执行下列过程:将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,N为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;根据配置后的所述DCI构建用于指示PDSCH调度的调度信息,并通过收发机44发送给所述待调度终端。其中,收发机44与总线接口42连接,用于在 处理器41的控制下接收和发送数据。
需要说明的是,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器41代表的一个或多个处理器和存储器43代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机44可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器41负责管理总线架构和通常的处理,存储器43可以存储处理器41在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
如图5所示,本公开实施例还提供一种终端,包括:接收模块51,用于接收基站下发的用于指示物理下行共享信道PDSCH调度的调度信息;所述调度信息中的下行控制信息DCI占用的比特位数为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;匹配模块52,用于根据所述调度信息进行PDSCH速率匹配。
本公开一些可选的实施例中提供的所述终端通过接收基站下发的用于指示物理下行共享信道PDSCH调度的调度信息,并且调度信息中的下行控制信息DCI占用的比特位数为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;使得在根据调度信息进行PDSCH速率匹配时,不管载波是否配置了非周期CSI-RS,只需盲解一种DCI的大小即可,降低了计算的复杂度,保证了每个DCI大小的搜索空间以及PDCCH调度的灵活性,使得非周期CSI-RS引入后,UE能够正确进行PDSCH速率匹配,数据能够正确传输。
本方案中接收的载波的DCI可以理解为占有相同的比特位数,比特位数为上述最大值。
进一步的,所述调度信息中包含在所述DCI中新增的非周期零功率 CSI-RS指示区域。
对应于配置了非周期CSI-RS的载波的情况,也就是,在所述DCI是配置了非周期CSI-RS的载波的DCI时,所述匹配模块包括:第一获取子模块,用于获取所述调度信息中包含所述非周期零功率CSI-RS指示区域在内的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值;第一匹配子模块,用于根据所述比特取值所对应的状态,进行PDSCH速率匹配。
也就是相对于现有方案,本情境下,本一些可选的实施例中增加了针对新增的非周期零功率CSI-RS指示区域的PDSCH速率匹配。
对应于未配置非周期CSI-RS的载波的情况,也就是,在所述DCI是未配置非周期CSI-RS的载波的DCI时,所述匹配模块包括:第二获取子模块,用于获取所述调度信息中除所述非周期零功率CSI-RS指示区域外的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值;第二匹配子模块,用于根据所述比特取值所对应的状态,进行PDSCH速率匹配。
也就是本情境下,本一些可选的实施例中未增加针对新增的非周期零功率CSI-RS指示区域的PDSCH速率匹配。
进一步的,所述终端还包括:解码模块,用于所述匹配模块根据所述调度信息进行PDSCH速率匹配之前,根据所述最大值解码所述DCI。
本操作可以加快终端的处理速度。
综上所述,本公开一些可选的实施例中提供的终端能够保证引入非周期CSI-RS后,数据的正确传输。
需要说明的是,本公开一些可选的实施例中提供的终端是与上述实施例提供的终端侧的数据传输方法对应的终端,故上述实施例提供的终端侧的数据传输方法的所有实施例均适用于该终端,且均能达到相同或相似的有益效果。
如图6所示,本公开一些可选的实施例中提供一种终端,包括:处理器61;以及通过总线接口62与所述处理器61相连接的存储器63,所述存储器63用于存储所述处理器61在执行操作时所使用的程序和数据,当处理器61调用并执行所述存储器63中所存储的程序和数据时,执行下列过程:通过收发机64接收基站下发的用于指示物理下行共享信道PDSCH调度的调度信息; 所述调度信息中的下行控制信息DCI占用的比特位数为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;根据所述调度信息进行PDSCH速率匹配。其中,收发机64与总线接口62连接,用于在处理器61的控制下接收和发送数据。
需要说明的是,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器61代表的一个或多个处理器和存储器63代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机64可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,用户接口65还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器61负责管理总线架构和通常的处理,存储器63可以存储处理器61在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
需要说明的是,此说明书中所描述的许多功能部件都被称为模块/子模块,以便更加特别地强调其实现方式的独立性。
本公开一些可选的实施例中,模块/子模块可以用软件实现,以便由各种类型的处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同位里上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适 当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。
在模块可以利用软件实现时,考虑到现有硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。
以上所述的是本公开的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述原理前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (22)

  1. 一种数据传输方法,应用于基站,包括:
    将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,N为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;
    根据配置后的所述DCI构建用于指示PDSCH调度的调度信息,并发送给所述待调度终端。
  2. 根据权利要求1所述的数据传输方法,其中,所述将待调度终端对应的所有载波上用于指示PDSCH调度的DCI占有的比特位数均设置为N的方式为:
    根据N在载波的DCI中增加对应比特位数的非周期零功率CSI-RS指示区域。
  3. 根据权利要求2所述的数据传输方法,其中,针对未配置非周期CSI-RS的载波,所述在载波的DCI中增加对应比特位数的非周期零功率CSI-RS指示区域的步骤包括:
    使用与终端间的约定值或者自主配置值,填充在所述非周期零功率CSI-RS指示区域中。
  4. 根据权利要求2所述的数据传输方法,其中,针对配置了非周期CSI-RS的载波,每个载波的所述非周期零功率CSI-RS指示区域的比特取值所对应的每个状态同时指示信道状态信息CSI进程索引和零功率CSI-RS索引。
  5. 根据权利要求4所述的数据传输方法,其中,在配置非周期CSI-RS之前,所述数据传输方法还包括:
    由RRC配置所述每个状态对应的CSI进程索引和零功率CSI-RS进程索引;或者
    在系统中预定义所述每个状态对应的CSI进程索引和零功率CSI-RS进程索引。
  6. 一种数据传输方法,应用于终端,包括:
    接收基站下发的用于指示物理下行共享信道PDSCH调度的调度信息;所述调度信息中的下行控制信息DCI占用的比特位数为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;
    根据所述调度信息进行PDSCH速率匹配。
  7. 根据权利要求6所述的数据传输方法,其中,所述调度信息中包含在所述DCI中新增的非周期零功率CSI-RS指示区域。
  8. 根据权利要求7所述的数据传输方法,其中,在所述DCI是配置了非周期CSI-RS的载波的DCI时,所述根据所述调度信息进行PDSCH速率匹配的步骤包括:
    获取所述调度信息中包含所述非周期零功率CSI-RS指示区域在内的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值;
    根据所述比特取值所对应的状态,进行PDSCH速率匹配。
  9. 根据权利要求7所述的数据传输方法,其中,在所述DCI是未配置非周期CSI-RS的载波的DCI时,所述根据所述调度信息进行PDSCH速率匹配的步骤包括:
    获取所述调度信息中除所述非周期零功率CSI-RS指示区域外的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值;
    根据所述比特取值所对应的状态,进行PDSCH速率匹配。
  10. 根据权利要求6所述的数据传输方法,其中,在所述根据所述调度信息进行PDSCH速率匹配之前,所述数据传输方法还包括:
    根据所述最大值解码所述DCI。
  11. 一种基站,包括:
    设置模块,用于将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,N为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;
    第一处理模块,用于根据配置后的所述DCI构建用于指示PDSCH调度的调度信息,并发送给所述待调度终端。
  12. 根据权利要求11所述的基站,其中,所述设置模块具体用于:
    根据N在载波的DCI中增加对应比特位数的非周期零功率CSI-RS指示区域。
  13. 根据权利要求12所述的基站,其中,针对未配置非周期CSI-RS的载波,所述设置模块包括:
    填充子模块,用于使用与终端间的约定值或者自主配置值,填充在所述非周期零功率CSI-RS指示区域中。
  14. 根据权利要求12所述的基站,其中,针对配置了非周期CSI-RS的载波,每个载波的所述非周期零功率CSI-RS指示区域的比特取值所对应的每个状态同时指示信道状态信息CSI进程索引和零功率CSI-RS索引。
  15. 根据权利要求14所述的基站,其中,所述基站还包括:
    第二处理模块,用于在配置非周期CSI-RS之前,由RRC配置所述每个状态对应的CSI进程索引和零功率CSI-RS进程索引;或者
    在系统中预定义所述每个状态对应的CSI进程索引和零功率CSI-RS进程索引。
  16. 一种终端,包括:
    接收模块,用于接收基站下发的用于指示物理下行共享信道PDSCH调度的调度信息;所述调度信息中的下行控制信息DCI占用的比特位数为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;
    匹配模块,用于根据所述调度信息进行PDSCH速率匹配。
  17. 根据权利要求16所述的终端,其中,所述调度信息中包含在所述DCI中新增的非周期零功率CSI-RS指示区域。
  18. 根据权利要求17所述的终端,其中,在所述DCI是配置了非周期CSI-RS的载波的DCI时,所述匹配模块包括:
    第一获取子模块,用于获取所述调度信息中包含所述非周期零功率CSI-RS指示区域在内的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值;
    第一匹配子模块,用于根据所述比特取值所对应的状态,进行PDSCH 速率匹配。
  19. 根据权利要求17所述的终端,其中,在所述DCI是未配置非周期CSI-RS的载波的DCI时,所述匹配模块包括:
    第二获取子模块,用于获取所述调度信息中除所述非周期零功率CSI-RS指示区域外的,用于指示PDSCH速率匹配的所有区域或部分区域的比特取值;
    第二匹配子模块,用于根据所述比特取值所对应的状态,进行PDSCH速率匹配。
  20. 根据权利要求16所述的终端,其中,所述终端还包括:
    解码模块,用于所述匹配模块根据所述调度信息进行PDSCH速率匹配之前,根据所述最大值解码所述DCI。
  21. 一种基站,包括:处理器;以及与所述处理器相连接的存储器和收发机,所述存储器用于存储所述处理器在执行操作时所使用的程序和数据,当处理器调用并执行所述存储器中所存储的程序和数据时,执行下列过程:
    将待调度终端对应的所有载波上用于指示物理下行共享信道PDSCH调度的下行控制信息DCI占有的比特位数配置均设置为N,N为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;
    根据配置后的所述DCI构建用于指示PDSCH调度的调度信息,并通过收发机发送给所述待调度终端,
    其中,收发机用于在处理器的控制下接收和发送数据。
  22. 一种终端,包括:处理器;以及与所述处理器相连接的存储器和收发机,所述存储器用于存储所述处理器在执行操作时所使用的程序和数据,当处理器调用并执行所述存储器中所存储的程序和数据时,执行下列过程:
    通过收发机接收基站下发的用于指示物理下行共享信道PDSCH调度的调度信息;所述调度信息中的下行控制信息DCI占用的比特位数为配置了非周期信道状态信息参考信号CSI-RS的载波上的,用于指示PDSCH调度的DCI所占的比特位的最大值;
    根据所述调度信息进行PDSCH速率匹配;
    其中,收发机用于在处理器的控制下接收和发送数据。
PCT/CN2017/106491 2016-12-13 2017-10-17 一种数据传输方法、基站及终端 WO2018107886A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/468,867 US11259316B2 (en) 2016-12-13 2017-10-17 Method for data transmission with introduce of aperiodic CSI-RS, base station and terminal
EP17881704.5A EP3557804A4 (en) 2016-12-13 2017-10-17 DATA PROCESSING, BASE STATION AND END DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611146857.XA CN108616341B (zh) 2016-12-13 2016-12-13 一种数据传输方法、基站及终端
CN201611146857.X 2016-12-13

Publications (1)

Publication Number Publication Date
WO2018107886A1 true WO2018107886A1 (zh) 2018-06-21

Family

ID=62557903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106491 WO2018107886A1 (zh) 2016-12-13 2017-10-17 一种数据传输方法、基站及终端

Country Status (4)

Country Link
US (1) US11259316B2 (zh)
EP (1) EP3557804A4 (zh)
CN (1) CN108616341B (zh)
WO (1) WO2018107886A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210234764A1 (en) * 2018-06-04 2021-07-29 Datang Mobile Communications Equipment Co.,Ltd Method and apparatus for configuring transmission bandwidth, and device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10756859B2 (en) 2017-03-06 2020-08-25 Lg Electronics Inc. Method and apparatus for receiving or transmitting downlink signal in wireless communication system
CN110402597A (zh) 2017-03-15 2019-11-01 高通股份有限公司 用于指示pdsch/pusch资源元素映射的方法
CN111083791B (zh) * 2018-10-22 2021-10-01 华为技术有限公司 数据传输方法及装置
WO2020252669A1 (zh) * 2019-06-18 2020-12-24 Oppo广东移动通信有限公司 一种数据传输处理方法、设备及存储介质
CN111901885A (zh) * 2020-01-20 2020-11-06 中兴通讯股份有限公司 一种信息调度方法、装置、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120009963A1 (en) * 2009-01-02 2012-01-12 So Yeon Kim Effective Method for Transmitting Control Information During the Combination of Multiple Carriers for Wideband Support
CN103326806A (zh) * 2012-03-19 2013-09-25 电信科学技术研究院 一种下行控制信令的传输方法及装置
CN105578599A (zh) * 2010-11-16 2016-05-11 华为技术有限公司 测量参考信号的发送方法和配置指示方法及设备
KR20160094321A (ko) * 2015-01-30 2016-08-09 한국전자통신연구원 하향링크 참조 신호를 전송하는 방법 및 장치, 그리고 다중 셀 협력 통신 시스템에서 제어 정보를 전송하는 방법 및 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2011002408A (es) * 2008-09-04 2011-04-12 Sharp Kk Sistema de comunicacion movil, aparato de estacion de base, aparato de estacion movil y metodo de comunicacion.
CN101998681B (zh) * 2009-08-15 2014-07-09 华为技术有限公司 信令处理方法、基站以及用户设备
CN103716116B (zh) * 2012-09-28 2019-04-16 中兴通讯股份有限公司 信道状态信息反馈信令的配置方法、基站和终端
US9609537B2 (en) * 2012-09-28 2017-03-28 Qualcomm Incorporated Randomization procedure for assigning interference measurement resources in wireless communication
WO2015160198A1 (en) * 2014-04-16 2015-10-22 Lg Electronics Inc. Method and apparatus for processing aperiodic channel state information in wireless communication system
CN105357162B (zh) * 2014-08-22 2020-12-11 中兴通讯股份有限公司 一种信号处理方法、基站和终端
US9743392B2 (en) 2015-01-30 2017-08-22 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for LTE operation
CN106100810A (zh) * 2016-06-16 2016-11-09 北京汇通金财信息科技有限公司 基于载波聚合技术的通信装置和方法
KR102257237B1 (ko) * 2016-09-30 2021-05-28 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 레이트 매칭

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120009963A1 (en) * 2009-01-02 2012-01-12 So Yeon Kim Effective Method for Transmitting Control Information During the Combination of Multiple Carriers for Wideband Support
CN105578599A (zh) * 2010-11-16 2016-05-11 华为技术有限公司 测量参考信号的发送方法和配置指示方法及设备
CN103326806A (zh) * 2012-03-19 2013-09-25 电信科学技术研究院 一种下行控制信令的传输方法及装置
KR20160094321A (ko) * 2015-01-30 2016-08-09 한국전자통신연구원 하향링크 참조 신호를 전송하는 방법 및 장치, 그리고 다중 셀 협력 통신 시스템에서 제어 정보를 전송하는 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3557804A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210234764A1 (en) * 2018-06-04 2021-07-29 Datang Mobile Communications Equipment Co.,Ltd Method and apparatus for configuring transmission bandwidth, and device
US11575578B2 (en) * 2018-06-04 2023-02-07 Datang Mobile Communications Equipment Co., Ltd. Method and apparatus for configuring transmission bandwidth, and device

Also Published As

Publication number Publication date
CN108616341B (zh) 2020-05-26
EP3557804A4 (en) 2019-12-04
CN108616341A (zh) 2018-10-02
US20200077427A1 (en) 2020-03-05
US11259316B2 (en) 2022-02-22
EP3557804A1 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
WO2018107886A1 (zh) 一种数据传输方法、基站及终端
US20230362911A1 (en) System and Method for Indicating Wireless Channel Status
KR102501669B1 (ko) 하이브리드 자동 반복 요청 피드백을 수행하는 방법 및 단말
US11678212B2 (en) Methods executed by user equipment and user equipment
US20230076897A1 (en) Reliability enhancement for pdcch
WO2018001113A1 (zh) 通信方法、装置和系统
RU2594982C2 (ru) Конфигурация пространства поиска для канала управления
KR20170097079A (ko) 많은 수의 셀들을 갖는 반송파 집성에서 상향링크 정보의 전송
KR101512706B1 (ko) 캐리어 정보를 제공하기 위한 장치 및 방법
US11197299B2 (en) Data transmission method and apparatus and computer storage medium
US20220173829A1 (en) Sidelink Channel State Information Transmission Method and Communication Apparatus
JP2022530668A (ja) クロススロットスケジューリング適応化のための装置及び方法
CN115804184A (zh) 触发资源集的报告
US20240014880A1 (en) Beam management enhancements
TWI803750B (zh) 實體上行控制通道資源確定方法、通信設備及電腦可讀存儲介質
CN110752905B (zh) 通信方法及装置
CN111436129B (zh) 数据传输方法和通信装置
WO2018059693A1 (en) Improving slow downlink control information reliability
CN116783857A (zh) 用于多trp操作中的基于单个cg的上行传输的方法和系统
CN114070528A (zh) 一种信号传输方法、装置及存储介质
CN115362741A (zh) Pucch重复数目指示
JP2023500098A (ja) 伝送パラメータの確定方法及び装置
US20240032067A1 (en) Communication Method and Communication Apparatus
RU2780827C1 (ru) Пользовательское оборудование, сетевой узел и способ связи
WO2022213821A1 (zh) 物理下行控制信道重复传输的方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017881704

Country of ref document: EP

Effective date: 20190715