WO2018107587A1 - 便于给围术期病人雾化治疗的新型雾化给药设备 - Google Patents

便于给围术期病人雾化治疗的新型雾化给药设备 Download PDF

Info

Publication number
WO2018107587A1
WO2018107587A1 PCT/CN2017/075967 CN2017075967W WO2018107587A1 WO 2018107587 A1 WO2018107587 A1 WO 2018107587A1 CN 2017075967 W CN2017075967 W CN 2017075967W WO 2018107587 A1 WO2018107587 A1 WO 2018107587A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomization
processor
atomizing
drug
module
Prior art date
Application number
PCT/CN2017/075967
Other languages
English (en)
French (fr)
Inventor
温志浩
黑子清
翁灿烁
李响
陈海军
徐彬锋
Original Assignee
广东食品药品职业学院
中山大学附属第三医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东食品药品职业学院, 中山大学附属第三医院 filed Critical 广东食品药品职业学院
Publication of WO2018107587A1 publication Critical patent/WO2018107587A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes

Definitions

  • Novel atomized drug delivery device for facilitating atomization treatment of perioperative patients
  • the present invention relates to a medical device, and in particular to a novel atomization drug delivery device that facilitates atomization treatment of perioperative patients.
  • Atomization is an effective method for treating pulmonary complications.
  • Inhalation therapy refers to the use of a special atomizing device to atomize a drug solution into tiny particles, and the atomized drug particles enter through inhalation.
  • the respiratory tract and the lungs adhere and disperse, and the local therapeutic effect occurs in the lungs, and then the body's absorption of the drug further plays a role, achieving a rapid and effective and non-invasive therapeutic effect.
  • the current techniques and methods for aerosolized inhalation therapy are only applicable to patients who are awake after ward operation, and are not suitable for patients who are unable to breathe spontaneously during perioperative general anesthesia or in intensive care units.
  • the existing atomized drug delivery device also has the following technical problems: 1) During the atomization administration process, a method for effectively detecting the respiratory state of the patient cannot be established, and the atomization function cannot be automatically turned off when the patient exhales. Inhalation ⁇ automatically activates the atomization and atomization function, resulting in a serious waste of drug utilization; 2) The atomization intensity of the existing atomized drug delivery device cannot be automatically adjusted according to the drug concentration required by the patient for atomization treatment.
  • the existing atomized drug delivery device is basically completed by manual operation. Intelligent automation cannot be realized, which not only complicates the operation, but also increases the labor intensity of medical personnel.
  • the present invention provides a novel atomization drug delivery device which is convenient for atomization treatment of perioperative patients, and includes a host casing, an atomization device, a drug delivery device, a gas supply device, and a breathing device, the atomizing device is disposed in a cavity of the main body casing, the drug feeding device is disposed on the atomizing device, the drug feeding device is provided with an air inlet and an air outlet, and the air supply device is provided a gas supply port and a return air port, wherein the air inlet is connected to the air supply port through a first air inlet pipe, and the air outlet port is connected to the first port of the three-way joint through the second air inlet pipe, and the air return port passes through The trachea is connected to the second port of the tee joint, and the breathing device is connected to the third port of the tee joint through the breathing duct to form a complete call An atomizing drug delivery device of the suction circuit, wherein the
  • the oxygen-enriched filter device comprises a sleeve, an oxygen-enriched tube and an air filter
  • the oxygen-rich tube is a tube that is closed at one end and the mouth of the other end is closed, and the closed end of the oxygen-rich tube extends into the sleeve
  • the portion of the inner cavity is an oxygen-absorbing portion of the oxygen-enriched tube
  • the oxygen-absorbing portion of the oxygen-enriched tube is embedded with a magnetic member
  • at least one through hole is disposed on the wall of the oxygen-absorbing portion of the oxygen-enriched tube.
  • the host casing is provided with a main control board for performing central control processing, and the main control board includes a processor for data processing, signal reception, and control command transmission, and An atomization intensity control module for adjusting an atomization power or an atomization frequency of the atomization device, the atomization intensity control module being electrically connected between the atomization device and the processor, wherein the breathing device is provided with a respiratory device for monitoring a concentration detector for the concentration of the drug in the gas in the respiratory passage connected to the human respiratory tract, the concentration detector being electrically connected to the processor to feed back the drug concentration monitoring signal to the processor, the processor according to the concentration fed back by the concentration detector
  • the information is analyzed and processed, and a control command is sent to the atomization intensity control module, and the atomization intensity control module executes a control command sent by the processor to control and adjust the atomization power or the atomization frequency of the atomization device.
  • the atomizing device is caused to atomize the drug in the drug delivery
  • the atomizing device is provided with an atomizing cylinder for storing a liquid coupling agent capable of transmitting the ultrasonic signal of the atomizing device to the liquid medicine in the drug delivery device.
  • the atomization cylinder is provided with a liquid inlet port, and the liquid inlet port is provided with an inlet valve, and the atomization cylinder is provided with a liquid level sensor for monitoring the liquid coupling agent liquid level in the atomization cylinder, a liquid level sensor electrically connected to the processor to feed back a detection result to the processor, the main control board further comprising a liquid level control module for controlling a liquid coupling agent liquid level in the atomization cylinder, the liquid level
  • the control module is electrically connected between the processor and the liquid inlet valve, and the processor sends a corresponding work instruction to the liquid level control module according to the detection result of the liquid level sensor feedback, and the liquid level control module executes the processor to send The control command controls the closing state of the inlet valve to realize that the liquid level
  • the atomization device is an ultrasonic atomization device
  • the ultrasonic signal generator of the ultrasonic atomization device includes an ultrasonic atomization generation circuit and an atomization intensity adjuster, and the ultrasonic atomization is generated.
  • the circuit comprises a driving circuit, a transformer circuit, an oscillating circuit and a transducer, wherein the atomization intensity adjuster is disposed on the main body casing, and the atomization intensity adjuster is used for adjusting the ultrasonic signal generated by the oscillating circuit and the transducer
  • the frequency and the driving power of the driving circuit are controlled to control and adjust the atomization intensity of the ultrasonic atomizing device.
  • the drug delivery device is provided with a drug storage capsule for storing a liquid medicine for atomization, and the atomization device is further provided at a position corresponding to the drug storage capsule.
  • a dose detector for detecting a dose in the drug reservoir, the dose detector being electrically connected to the processor to feed back the detection result to the processor, and the processor is driven by the atomization drive according to the detection signal fed back by the dose detector
  • the module sends a control command, and the atomization driving module executes a control command sent by the processor to control whether the atomizing device stops the atomizing operation.
  • the drug storage capsule is provided with an air inlet and an air outlet, and a one-way valve is respectively disposed at the air inlet and the air outlet of the medicine capsule.
  • the breathing apparatus is further provided with a flow sensor for monitoring the amount of gas flow in the breathing passage communicating with the respiratory tract of the human body, and the flow sensor is electrically connected to the processor to detect The result is fed back to the processor
  • the main control board further includes a gas transmission function detecting module, the gas transmission function detecting module is electrically connected between the flow sensor and the processor, and the flow sensor sends the signal of the monitored gas flow size
  • the gas transmission function detecting module, the gas transmission function monitoring module and the patient breathing function parameter are fed back to the processor, so that the processor determines whether the patient's breathing function remains normal, and the processor according to whether the patient's breathing function remains normal, the processor according to Whether the patient's breathing function remains normal, and the corresponding working command is sent to the atomizing drive module and the warning driving module, that is, after the patient's breathing function is in a normal state, the processor controls the atomizing driving module to drive the atomizing device to maintain normal atomization.
  • the processor controls the atomization drive module to control the atomization device to stop the atomization operation. Similarly, the processor sends a control command to the warning drive module to send the patient respiratory function abnormally, and the warning drive module performs the control sent by the processor. command, The control alert sends a warning signal that the patient's respiratory function is in an abnormal state, and prompts the medical staff to make appropriate treatment.
  • the main body housing is provided with an operation panel
  • the main control board further includes an input module for parsing the input of the operation panel for the processor to control the operation of other components, and inputting The module is electrically connected between the processor and the operator panel.
  • the main body casing is provided with a warning device
  • the drug delivery device includes a drug storage capsule
  • the drug storage capsule is disposed on the atomization device
  • the atomization device is Corresponding to the position of the drug capsule
  • a dose detector for detecting the dose in the drug reservoir is further provided, and the dose detector is electrically connected to the processor to feed back the detection result to the processor, the main control board
  • an alarm driving module for driving the warning device to provide a warning prompt
  • the warning driving module is electrically connected between the warning device and the processor, and the processor separately applies the warning driving module according to the detection signal fed back by the drug amount detector.
  • the atomization driving module sends a corresponding work instruction.
  • the warning driving module executes a control command sent by the processor, and controls the warning device to issue the medicine.
  • the warning signal after atomization reminds the staff and the ⁇ to add or replace the medicine, and the atomization drive module executes the control command sent by the processor to control the atomization device to stop. Atomization work.
  • the main body casing further includes a display
  • the main control board further includes a cuckoo clock module
  • the cuckoo clock module includes an atomization treatment for accumulating the atomization device.
  • a metering device and a stator for controlling the atomization treatment of the atomizing device
  • the clock module being electrically connected between the processor and the display, the clock module driving the meter
  • the cumulative time of the atomization therapy is displayed on the display
  • the cuckoo clock module drives the fixed device to display the remaining time of the atomization therapy on the display
  • the processor is configured according to the cuckoo clock module a feedback signal that has been received during the treatment, sending a control command to the warning driving module and the atomizing driving module, the warning driving module executing a control command sent by the processor, and controlling the warning device to send out
  • the atomization treatment unit has ended the warning signal
  • the atomization driving module executes the control command sent by the processor to control the atomization device to stop
  • the present invention communicates with the air supply port 31 of the air supply device 3 through the air inlet 411 of the drug delivery device 4.
  • An oxygen-enriched filter device 9 is disposed in the first intake pipe 42.
  • the oxygen-enriched pipe 93 and the gas splitter disk 92 are respectively provided with an oxygen supply hole 931 and a plurality of discharge holes 922, and the separated air is distributed and discharged.
  • the oxygen film 94 and the barrier film 95 are arranged in a layered manner to further improve the efficiency of enriching oxygen, and the air filter 96 can be disposed through the inner cavity of the sleeve 1 so that the oxygen-enriched filter device 9 is atomized.
  • the medicinal device provides a clean gas that is breathable by the perioperative patient at a higher concentration of oxygen in the air.
  • the utility model monitors whether the gas supply port 31 of the gas supply device 3 has a gas output through the photodetector 33, and feeds back a detection signal of whether the gas supply port 31 of the gas supply device 3 has a gas output to the processor. 601, for the processor 601 to determine whether there is gas passing through the channel of the atomizing drug delivery device, and controlling the state of the atomization operation of the atomizing device 2, thereby being able to cooperate with the atomization treatment according to the respiratory state of the patient.
  • the atomization device 2 in order to achieve gas output at the gas supply port 31, that is, the patient is in an inhalation state, the atomization device 2 maintains a normal atomization operation state, and there is no gas output at the gas supply port 31, that is, the patient is in an exhalation state, atomization The device 2 stops working, so that the atomization work of the atomization device 2 is synchronized with the gas supply and air supply operation of the gas supply device 3, the ineffective atomization work of the atomization device 2 is reduced, and the power consumption of the product is effectively reduced. , and further improve the utilization rate of drugs, effectively reducing the waste of drugs.
  • the patient is in an inhalation state during the treatment of the atomized administration, and the respiratory detector 5 is monitored by the concentration detector 51 in the breathing device 5 to communicate with the respiratory channel of the human respiratory tract.
  • the concentration of the drug in the gas is analyzed by the processor 601 for the monitored concentration data, and the processor 601 controls the atomization intensity adjuster of the atomizing device 2 according to the processing result, so that the ultrasonic signal generator of the atomizing device 2 generates power.
  • atomizing the drug in the drug reservoir 41 of the drug delivery device 4 with a suitable atomization intensity ie, in a state in which the patient is inhaled, in a patient with different symptoms and different airflows
  • the adaptive adjustment of the atomization intensity is performed in a state such that the atomization intensity of the drug matches the concentration of the drug required in the gas in the drug delivery device to ensure the drug in the gas in the respiratory channel in which the respiratory device 5 is connected to the human respiratory tract.
  • the concentration which is always within the range of the drug concentration that is best set for the patient to be administered, can be used to atomize the drug.
  • Controlling the appropriate concentration to improve the patient's effectiveness in aerosol administration to prevent the concentration of aerosolized drugs in the drug delivery device from being too low or too high, affecting the efficacy of the drug or causing adverse reactions to the patient or even the body. Functional damage.
  • the main control board 6 is cooperated with the photodetector 33, the dose detector 23, the cuckoo clock control module 609, the liquid level sensor 22, and the flow sensor 52. , the realization is only available
  • the gas device 3 is in the working state of the gas supply, the drug amount in the drug storage capsule 41 is not exhausted, the fixed time of the atomization administration treatment is not completed, and the liquid level in the atomization cylinder 21 can reach the specified liquid level range.
  • the atomization device 2 will perform the normal atomization work, no shell 1J, the atomization device 2 temporarily stops the atomization work, greatly reducing the fog
  • the ineffective atomization of the ultrasonic signal generator of the device 2 effectively reduces the power consumption of the product.
  • the liquid level of the coupling agent in the atomizing cylinder 21 of the atomizing device 2 of the present invention is monitored by the liquid level sensor 22, and the liquid level sensor 22 feeds back the detection result to the processor 601.
  • 601 automatically controls the inlet and outlet of the pump and the inlet valve of the atomizing cylinder 21 according to the liquid level monitoring information of the liquid level sensor 22, and ⁇ replenishes the liquid in the atomizing cylinder 21 to meet the specified requirements.
  • the range of the position is highly intelligent, which reduces the labor intensity of the medical staff to frequently add the liquid coupling agent to the atomizing cylinder 21.
  • the drug amount detector 23 can use up the drug.
  • the information is fed back to the processor 601, and the processor 601 immediately triggers the warning device to send a warning signal or prompt message to the staff in the drug storage capsule 41 of the drug delivery device 4 to facilitate the medical staff to learn and supplement the drug.
  • the atomization administration treatment can be fixed by the cesium clock module 609, and the atomization administration treatment does not require manual monitoring, when the ⁇ clock module 609 is fixed
  • the processor 601 immediately triggers the warning device to issue a warning signal or a prompt message to the worker for the end of the atomization administration treatment, so as to facilitate the medical staff and the patient to be informed. Help the patient to end the aerosolized treatment or increase the atomization treatment to treat the daytime; when the liquid coupling agent in the liquid storage tank is completely used up, it is impossible to continue to add liquid helium to the atomizing tank 21, and the liquid level is transmitted.
  • the device 22 feeds back the information of the solvent to the processor 601, and the processor 601 immediately triggers the warning device to send a warning signal or prompt message to the staff that the couplant in the liquid storage tank is used up, so that the medical staff can learn And replenishing the liquid coupling agent to the liquid storage tank; when the patient's breathing function is in an abnormal state, the processor 601 controls the atomizing device 2 to stop the atomizing operation, and triggers the warning device to issue a warning signal that the patient breathing function is in an abnormal state. , and ⁇ remind medical staff to make appropriate treatment, to achieve the intelligentization of aerosolized drug delivery equipment, more suitable for the future development of intelligent automatic medical equipment.
  • the utility model can facilitate the medical personnel to input the atomization through the control panel 7.
  • the parameters set by the medicine equipment, such as the fixed time of the atomization treatment, the atomization intensity level, the drug concentration, etc., the parameters are displayed through the display 8, the operation is simple, the use is convenient, and the medical personnel are very convenient to operate and ⁇ Understand the working status of the aerosolized drug delivery device.
  • the utility model is further provided with a one-way valve in the drug storage capsule 41 of the drug delivery device 4 corresponding to the positions of the air inlet 411 and the air outlet 412, so that the gas in the drug storage capsule 41 is provided.
  • the atomized drug particles flow only in the direction from the air inlet 411 to the air outlet 412 in the passage of the drug delivery device 4, forming a one-way delivery channel for atomizing the drug particles, thereby preventing the drug from being reversed (from the air outlet)
  • the flow of 412 to the direction of the intake port 411 causes an adverse effect on the air supply device 3.
  • FIG. 1 is a schematic view showing the structure of a suction passage of a drug delivery device of the present invention
  • FIG. 2 is a schematic perspective view of a main body housing and an atomizing device of the present invention
  • FIG. 3 is a frame diagram of a control system for the operation of the atomization drug delivery device of the present invention
  • FIG. 4 is a schematic structural view of an oxygen-enriched filter device of the present invention.
  • FIG. 5 is a schematic view of a gas distribution plate of an oxygen-enriched filtration device of the present invention.
  • the novel atomization drug delivery device of the present invention for facilitating atomization treatment of a perioperative patient includes a main body casing 1, an atomizing device 2, and a gas supply device 3. a drug delivery device 4, a breathing device 5, a main control panel 6, an operation panel 7, a display 8, a communication interface, and a warning device, wherein:
  • the main body casing 1 is provided with a rectangular parallelepiped, and a cavity is formed in the main casing 1, and a notch is provided at a position on the upper side of the upper surface of the main casing 1.
  • the atomizing device 2 is for atomizing the drug into minute particles that can be directly absorbed by the respiratory tract or the alveoli.
  • the atomizing device 2 of the present embodiment is preferably an ultrasonic atomizing device including an ultrasonic signal generator and an atomizing cylinder 21
  • the liquid level sensor 22 and the dose detector 23 are installed in the inner cavity of the main body casing 1.
  • the ultrasonic signal generator includes an ultrasonic atomization generating circuit and an atomization intensity adjuster, and the ultrasonic atomizing generates electricity.
  • the road includes a network power supply, a drive circuit, a power control circuit, a transformer circuit, an oscillating circuit, and a transducer.
  • the AC 220V network power supply enters the transformer circuit through the power supply control circuit and the power supply control circuit with overcurrent protection function, and is converted into a low voltage DC power supply, and the driving oscillation circuit and the transducer (piezoelectric ceramic piece) can work normally.
  • An ultrasonic signal with adjustable frequency and intensity is generated, and can be adjusted by an atomization intensity adjuster disposed on the main body casing 1.
  • the generation of the ultrasonic signal of the piezoelectric ceramic piece is controlled by the ventilation control circuit and the liquid level control circuit;
  • the ultrasonic signal generator selects the ultrasonic wave in the range of 1.7 ⁇ 2.4MHz to atomize the drug to meet the requirements of direct absorption of the respiratory tract and even the alveoli;
  • the atomizing cylinder 21 is installed upward through the notch of the upper surface of the main casing 1 In the inner cavity of the main body casing 1 corresponding to the position of the ultrasonic signal generator, and the lower half of the atomizing cylinder 21 is housed in the inner cavity of the main body casing 1, and the upper half of the atomizing cylinder 21 extends to the main casing Outside the inner cavity of the body 1, a liquid inlet port and a liquid discharge port are provided on the cylinder wall of the atomizing cylinder 21 corresponding to the position of the bottom of the cylinder, and the liquid inlet port and the liquid discharge port are provided for replenishment.
  • the liquid in the atomizing cylinder 21 is placed or replaced, and the liquid inlet port is provided with an inlet valve, and the liquid discharging port is provided with a liquid discharging valve; the atomizing cylinder 21 is provided with a liquid coupling agent capable of effectively transmitting ultrasonic signals (the liquid can be
  • the water tank 22 is provided with a liquid level sensor 22 and a dose detector 23 for monitoring the change in the liquid level in the atomizing cylinder.
  • the air supply device 3 is a breathing air supply device in a medical ventilator or an anesthesia machine, and is used for providing a breathing circuit system with a gas for breathing the patient, which is realized by a prior art structure, and the gas supply device 3 is provided
  • the gas supply port 31 and the return air port 32, the gas supply port 31 of the gas supply device 3 is provided with a photodetector 33 for detecting whether the gas supply device 3 has a gas output, and only when the gas supply device 3 delivers gas, the gas is supplied.
  • the gas in the pipe will change the pressure increase, causing the displacement of the slide plate inside the photodetector 33, causing the optical path working state to change and generating a changing electrical signal; otherwise, the slide plate inside the photodetector 33 will not be displaced. Can not produce a changing electrical signal.
  • the drug delivery device 4 is configured to constitute a one-way closed gas and a delivery channel for atomizing drug particles, and the drug delivery device 4 includes a drug storage capsule 41, a first air inlet tube 42, a second air inlet tube 43, and a return air tube 44.
  • the drug storage capsule 41 is accommodated in the atomizing cylinder 21 of the atomizing device 2, and the medicine amount detector 23 in the atomizing cylinder 21 is disposed at a position corresponding to the drug storage capsule 41, and is used for Detecting whether the drug stored in the drug storage capsule 41 is atomized, the drug storage capsule 41 is made of a polymer material such as medical polyethylene, and the bottom of the drug storage capsule 41 is set as an ellipsoid or a hemisphere, so that The drug storage capsule 41 is placed in the atomization cylinder 21 of the atomization device 2; the drug storage capsule 41 is further provided with an air inlet 411, an air outlet 412 and a medicine injection port 413, and the first air inlet tube 42 and the back
  • the trachea 44 is extensible a bellows made of a shrinkage polyethylene material, the inner wall of the second intake pipe 43 is smooth to reduce adhesion of the drug in the pipe; one end of the first intake pipe 42 is connected to the
  • the first port is connected, the second port of the three-way connector 45 is connected to the breathing apparatus 5 through a breathing duct, and the third port of the three-way joint 45 is connected to one end of the return air pipe 44, and the other end of the air return pipe 44 and the air supply device
  • the return air port 32 of 3 is connected to form a complete breathing circuit drug delivery device.
  • a sealing cap 414 adapted to the injection port 413 is provided on the reservoir body 41 at a position corresponding to the injection port 413, and the sealing cap 414 is engaged with the injection port 413 so that the drug storage capsule 41
  • a one-way valve is disposed in the reservoir body 41 corresponding to the position of the air inlet 411 and the air outlet 412, respectively, so that the gas in the reservoir body 41 and the atomized drug particles are given
  • the medicine device 4 flows only in the direction from the air inlet 411 to the air outlet 412 to form a one-way conveying passage for atomizing the drug particles, thereby preventing the medicine from being reversed (from the air outlet 412 to the air inlet 411)
  • the flow causes adverse effects on the gas supply device 3.
  • the breathing apparatus 5 is used for assisting the patient to breathe.
  • the breathing apparatus 5 may be a medical breathing apparatus such as a breathing mask worn on the face of the human body, or may be a medical breathing duct directly connected to the human respiratory tract.
  • the main control board 6 is used to parse the signals input by the components, and send various control commands to the components and the working module; the main control board 6 includes a processor 601, a program memory 602, a liquid level monitoring module 603, and a liquid level.
  • the processor 601 is used as the core processing module of the main control board 6, and adopts a central processing unit CPU or a microprocessor M cu.
  • the embodiment of the present invention adopts a single-chip microcomputer with a micro control unit.
  • the program memory 602 is electrically connected to the processor 601 for storing data related to the atomization treatment of the respiratory circuit drug delivery device.
  • the liquid level monitoring module 603 is electrically connected between the processor 601 and the liquid level sensor 22, through the liquid level sensor 22 monitoring whether the liquid coupling dose in the atomizing cylinder 21 is sufficient; the liquid level control module 604 is electrically connected between the processor 601 and the inlet valve of the inlet port of the atomizing cylinder 21, and the processor 601 and the atomizing cylinder 21 Between the liquid discharge valves of the liquid discharge port; during the atomization treatment, as long as the liquid level sensor 22 detects that the liquid level in the atomization cylinder 21 does not reach the specified required warning line (the coupling dose is insufficient), the liquid level sensor 22 The monitored liquid level signal is sent to the liquid level monitoring module 603, and the liquid level monitoring module 603 feeds back the signal with insufficient liquid coupling dose to the processor 601, and the liquid level signal pair fed back by the liquid level monitoring module 603 by the processor 601
  • the liquid level control module 604 issues a control command to start replenishing the liquid coupling agent, and the liquid level control module 604 controls the pump and
  • the atomization drive module 605 is electrically connected between the processor 601 and the ultrasonic signal generator; the photodetector 33 generates a change in the air pressure increase by detecting whether there is an airflow output at the air supply port 31 of the air supply device 3. Detecting whether there is gas passing through the channel of the drug delivery device; only when there is a gas output port at the gas supply port 31, the photodetector 33 generates a changed photoelectric signal, and the signal of the gas output from the gas supply device 3 is fed back to the processor 601.
  • the processor 601 sends a control command for the atomization drive module 605 to start the normal atomization operation according to the signal of the gas passage of the drug delivery device channel fed back by the photodetector 33, and the atomization drive module 605 drives the ultrasonic signal generator pair.
  • the drug in the drug storage capsule 41 of the drug delivery device 4 is atomized; when there is no gas output port at the gas supply port 31, the photodetector 33 does not generate a changed photoelectric signal, and the gas supply device 3 has no gas.
  • the output signal is fed back to the processor 601, and the processor 601 has no gas output signal according to the feeding device channel fed back by the photodetector 33.
  • the atomization driving module 605 issues a control command for ending the atomization operation, and the atomization driving module 605 controls the ultrasonic signal generator to stop atomizing the medicine in the drug storage capsule 41 of the drug delivery device 4 to implement the atomization device.
  • the atomization work of 2 is synchronized with the gas supply operation of the air supply device 3.
  • the gas transmission function monitoring module 606 is electrically connected between the processor 601 and the flow sensor 52, and the flow sensor 52 is electrically connected to the processor to feed back the detection result to the processor.
  • the flow sensor 52 monitors the amount of gas flow in the breathing passage that the breathing apparatus 5 communicates with the human respiratory tract, and transmits the monitored gas flow size signal to the gas transmission function.
  • the detecting module 606, the gas transmission function monitoring module 606 feeds back the patient breathing function parameter to the processor 601, so that the processor 601 determines whether the patient's breathing function remains normal, and the processor 601 determines whether the patient's breathing function remains normal or not.
  • the driving module 605 and the warning driving module 611 send different working instructions, that is, after the patient's breathing function is in a normal state, the processor 60 1 controls the atomizing driving module 605 to drive the atomizing device 2 to maintain normal atomization work, and in the patient
  • the processor 601 controls the atomization driving module 605 to control the atomizing device 2 to stop the atomizing operation, and the processor sends the control command to the warning driving module 610 to send the patient respiratory function abnormally.
  • the alert driving module 610 executes a control command sent by the processor 601, and controls the The warning device sends a warning signal that the patient's breathing function is abnormal, and prompts the medical staff to make appropriate treatment.
  • the atomization intensity control module 607 is electrically connected between the processor 601 and the atomization intensity adjuster, and the concentration detector 51 in the respiratory device 5 monitors the respiratory device 5 and the human respiratory tract after the patient is in an inhaled state.
  • the concentration of the drug in the gas in the connected breathing channel is fed back to the processor 601, and the processor 601 analyzes the concentration data and controls the atomization intensity adjustment of the atomizing device 2 according to the processing result.
  • the ultrasonic signal generator of the atomizing device 2 is caused to change the power and/or frequency to atomize the drug in the drug reservoir 41 of the drug delivery device 4 with a suitable atomization intensity.
  • the display driving module 608 is electrically connected between the processor 601 and the display 8.
  • the display driving unit 608 drives the display 8 to display various data according to the control command of the processor 601.
  • the display 8 can display the working state, related parameters, and setting interface. Wait.
  • the cuckoo clock module 609 is electrically connected between the processor 601 and the display 8, and the cuckoo clock unit 609 is used as a meter and a calibrator for the entire system for accumulating the atomization work time and timing of the drug delivery device. Control the atomization work of the atomizer.
  • the alert driving module 610 is electrically connected between the processor 601 and the alerter.
  • the alert driving module 610 drives the alerter to issue various warning signals according to the control command of the processor 601, or issue voice information that interacts with the operator.
  • the warning device is used for prompting or issuing a warning to the user of the working state of the breathing circuit drug delivery device by means of sound, text or light signal, and the warning device may be an alarm light, a buzzer or a voice prompt speaker.
  • the processor 601 can be treated according to the atomization administration device The process is in a different warning working state to send a corresponding work instruction to the warning driving module 610, and the warning driving module 610 drives and controls the warning device to issue a corresponding warning or prompting signal.
  • the input module 611 is electrically connected between the processor 601 and the operation panel 7, the user inputs various control commands by using the operation panel 7, and the input module 611 analyzes the control commands input by the operation panel 7, and finally is processed.
  • the controller 601 controls other modules or components to execute corresponding work commands.
  • the communication module 612 is electrically connected between the processor 601 and the communication interface, the communication interface is installed on the back of the host casing 1, and the communication interface 612 communicates with the external intelligent terminal device by means of wired or wireless communication. Exchanging, and storing the aerosolized device related data in the corresponding program memory 602
  • the operation panel 7 is for inputting and parsing various control commands, the operation panel 7 is mounted on the front surface of the main body casing 1, and the operation panel 7 is electrically connected between the processor 601 and each system component; the operation panel 7 may be in the form of a button
  • the electronic circuit board includes a numeric keypad, a fixed parameter button, an atomization adjustment button, a control switch and an indicator light, and the control is a group of switches, including "power", “start”, The “confirmation” and “adjustment” are carried out, and a printed plastic film for waterproofing and electrical insulation is covered on the operation panel 7.
  • the operation panel 7 can also adopt a display 8 in the form of a touch screen, the display 8 is used for the system operation state prompt, and the display 8 is mounted on the front surface of the main body casing 1 for displaying the working state, working parameters and working mode of the drug delivery device;
  • Various control commands or related parameters such as switching control, selecting the operating mode, selecting the day, setting the day, setting the atomization drug concentration, and selecting the atomization intensity may be input according to the operation panel 7.
  • the new atomized drug delivery device of the present invention for facilitating atomization treatment of perioperative patients is powered on, and the respiratory device 5 is connected to the respiratory tract of the perioperative patient by a breathing duct.
  • the chemical device 2 and the gas supply device 3, the gas output from the gas supply device 3 enters the drug storage capsule 41 of the drug delivery device 4 through the first air inlet tube 42 through the gas supply port 31, and the drug atomized particles in the drug storage capsule 41
  • With the gas output from the gas supply device 3, through the second intake pipe 43, the three-way joint 45, the breathing conduit of the breathing device 5, and finally through the breathing device 5 to achieve positive pressure gas supply, and then into the patient's respiratory system, based on Inhalation nebulization administration of the breathing circuit.
  • the gas exhaled by the patient passes through the respiratory device in turn.
  • the breathing tube, the three-way joint 45 and the return air tube 44 of the fifth device are discharged through the return air port 32 of the air supply device 3; when the patient inhales, the air supply device 3 is driven to drive the gas supply under the control of the drive control circuit.
  • the patient is subjected to positive pressure air supply, and thus reciprocates, thereby forming an atomization administration circulation path of the intelligent atomization administration device based on the breathing circuit.
  • the parameters set by the atomization administration device are input through the control panel 7, such as the setting of the atomization treatment, the atomization intensity level, and the gas.
  • the concentration of the drug and the range of the flow rate of the normal gas delivery function, and the parameters are displayed on the display 8, so that the medical personnel can operate and understand the working state of the atomized drug delivery device.
  • the normal atomization operation state of the atomization device 2 is affected by whether the gas supply device 3 is in the working state of the gas supply, and whether the drug amount in the drug storage capsule 41 is exhausted.
  • the five factors of whether the fixed dose of the atomized drug treatment has ended, whether the liquid level in the atomizing cylinder 21 reaches the specified range, and whether the patient's respiratory function is in a normal state are jointly controlled:
  • a during the atomization administration process, whether the gas supply port 31 of the gas supply device 3 monitored by the photodetector 33 has a gas output, and whether the gas supply port 31 of the gas supply device 3 has a gas output
  • the detection signal is fed back to the processor 601, and the processor 601 controls the state of the atomization operation of the atomization device 2 to realize the gas output at the gas supply port 31 of the gas supply device 3, and the atomization device 2 Keeping it working normally, and there is no gas output at the gas supply port 31 of the gas supply device 3, the atomization device 2 temporarily stops working, so that the atomization work of the atomization device 2 and the gas supply operation of the gas supply device 3 are maintained. Synchronize.
  • the processor 601 controls the atomization device 2 to immediately stop the atomization work, and triggers
  • the warning device sends a warning signal or prompt message to the staff for the end of the atomization treatment to facilitate the medical staff and the sputum to learn and end the aerosolized treatment or increase the atomization treatment treatment.
  • the liquid level sensor 22 in the atomization cylinder 21 of the atomization device 2 feeds back the monitored signal that the liquid coupling dose is insufficient to the processor 601, and is controlled by the processor 601.
  • the liquid coupling agent is replenished into the atomizing cylinder 21 until the liquid level sensor 22 detects that the liquid level in the atomizing cylinder 21 reaches the specified required liquid level line (the coupling dose is sufficient).
  • the processor 601 controls the pump and the liquid inlet valve to be closed according to the liquid level sufficient signal fed back from the liquid level monitoring module 603, and stops the liquid coupling agent from being replenished into the atomizing cylinder 21, so as to reciprocate to realize the adaptively to the atomizing cylinder 21.
  • An intelligent action program that replenishes the liquid coupling agent.
  • the liquid coupling agent in the liquid storage tank When the liquid coupling agent in the liquid storage tank is used up, it is impossible to continue to replenish the liquid helium into the atomizing cylinder 21, so that the liquid level in the atomizing cylinder 21 does not reach the specified liquid level line (the coupling dose is sufficient), the liquid The position sensor 22 feeds back information to the processor 601, and the processor 601 immediately controls the atomizing device 2 to temporarily stop the atomization operation, and triggers the warning device to send out the couplant in the liquid storage tank to the staff. Warning signals or prompts to facilitate access by the health care provider and the liquid to the liquid storage tank.
  • the flow sensor 52 monitors the amount of gas flow in the respiratory passage that the respiratory device 5 communicates with the human respiratory tract, for the processor 601 to evaluate the strength of the patient's respiratory function, and Determining whether the patient's respiratory function remains normal.
  • the processor 601 controls the atomizing device 2 to stop the atomizing operation, and triggers the warning device to issue a warning signal that the patient's respiratory function is abnormal, and prompts the reminder.
  • the medical staff will make appropriate treatment.
  • the gas supply device 3 Only when the gas supply device 3 is in the working state of the gas supply, the amount of the drug in the drug storage capsule 41 is not used up, the fixed time of the atomization administration treatment is not ended, and the liquid level in the atomization cylinder 21
  • the atomization device 2 can perform normal atomization work under the condition that the specified range and the five conditions of the patient's respiratory function are in a normal state are satisfied, and the five are indispensable. Otherwise, the atomizing device 2 temporarily stops the atomizing operation.
  • the concentration detector 51 in the respiratory device 5 After the patient is in the inhalation state, actually monitors the breathing
  • the concentration of the drug in the gas in the respiratory channel of the device 5 connected to the human respiratory tract, and the concentration data monitored by the device is fed back to the processor 601, and the processor 601 analyzes the concentration data, and controls the atomizing device according to the processing result.
  • the atomization intensity adjuster causes the ultrasonic signal generator of the atomizing device 2 to change the power and/or frequency to atomize the drug in the drug delivery device 4 with a suitable atomization intensity.
  • the processor 601 controls the atomization device 2 to stop the atomization work, respectively.
  • the peer processor 601 controls the drain valve of the discharge port of the atomizing cylinder 21 of the atomizing device 2 to smash, and discharges the coupling agent in the atomizing cylinder 21 to the liquid storage tank for recovery.
  • the processor 601 controls the program memory 602 to receive the atomization number corresponding to the atomization treatment according to different patients, the corresponding atomization treatment drug concentration, the corresponding gas flow data, the corresponding atomization treatment day, and the corresponding atomization treatment.
  • the amount of information and data are stored until the liquid level sensor 22 detects that the liquid level in the atomizing cylinder 21 is zero (the coupling agent is exhausted), and after the information is stored, the processor 601 triggers the warning device to atomize the medical personnel.
  • the warning signal or prompt message that the treatment has ended is reminded to remind the medical staff to turn off the novel atomized drug delivery device of the present invention for facilitating the atomization treatment of the perioperative patient.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1
  • the air supply device 3 of the novel atomization drug delivery device of the present invention for facilitating the atomization treatment of perioperative patients may also be a common auxiliary air ventilator or a therapeutic air ventilator, in the drug delivery device 4
  • An oxygen-enriched filter device 9 is disposed in the first intake pipe 42 in which the intake port 411 communicates with the air supply port 31 of the air supply device 3.
  • the oxygen-enriched filter device 9 is used for filtering the air output from the air ventilator, and the oxygen is effectively enriched in the exhalation channel, providing the atomized drug delivery system with a clean, higher oxygen concentration in the air. Perioperative patient breathing gas.
  • the oxygen-enriched filter device 9 includes a sleeve 91, a gas splitter disk 92, an oxygen-rich tube 93, an oxygen absorbing membrane 94, a barrier film 95, and an air filter 96, wherein:
  • the sleeve 91 is disposed laterally in the first intake pipe 42, and the left and right ends thereof are provided with a rake.
  • the inner cavity of the sleeve 91 is a cylinder, and the outer wall of the sleeve 91 is opposite to the inner wall of the first intake pipe 42.
  • the gas distribution plate 92 is a longitudinally disposed disk.
  • the gas distribution plate 92 is provided with a positioning hole 921 and a plurality of discharge holes 922 in the middle.
  • the positioning holes 921 are located at the center of the gas distribution plate 92, and all the discharge holes 922 are The positioning holes 921 are distributed at equal intervals in a circular shape, and the gas distribution plate 92 is installed at the air outlet position (right end) of the sleeve 91; the oxygen-enriched pipe 93 is disposed laterally, and is a pipe member with a closed end at the left end and a mouth at the right end, which is rich in oxygen.
  • the tube 3 is mounted on the positioning hole 921 of the gas distribution plate 92.
  • the left end of the oxygen-enriched tube 93 extends into the inner cavity of the sleeve 91.
  • the central axis of the oxygen-enriched tube 93 coincides with the central axis of the sleeve 91, and is located at the sleeve.
  • An oxygen-enriched tube 93 in the inner cavity of the 91 is an oxygen-absorbing portion, and a plurality of oxygen-transporting holes 931 are disposed on the wall of the oxygen-absorbing portion, and all of the oxygen-transporting holes 931 are uniformly distributed at equal intervals, and the inner wall of the oxygen-absorbing portion of the oxygen-enriched tube 93 Provided with a magnetic material, the inner cavity of the oxygen-enriched tube 93 is round
  • the oxygen absorbing membrane 94 is a cerium-containing high molecular polymer having high adsorption and high permeability to oxygen, and the polymer is a membrane.
  • the polymer containing ruthenium is the principle of utilizing the high activity of ruthenium for oxygen enrichment and the selective permeation of high molecular weight polymer to different substances, and adopts high adsorption and high permeability to oxygen.
  • the ruthenium-containing high molecular polymer is formed into an oxygen absorbing membrane 94 which covers the wall of the oxygen absorbing portion of the oxygen-rich tube 93 and completely covers all of the oxygen permeable holes 931, and is made by the oxygen absorbing membrane 94.
  • the first transitional oxygen molecules are adsorbed onto the tube wall of the oxygen-rich tube 93, while the nitrogen molecules and other gas molecules in the air are stranded outside the oxygen absorbing membrane 94; the barrier film 95 is coated on the outer surface of the oxygen absorbing membrane 94.
  • the barrier film 95 can function as a buffer and a gas permeable, so that nitrogen molecules and other gas molecules stranded outside the oxygen absorbing membrane 94 flow out from the barrier film 95 and are discharged through the discharge holes 922.
  • the oxygen absorbing film 94 and the barrier film 95 of the present embodiment may adopt a multi-layer composite structure, that is, the multilayer oxygen absorbing film 94 and the multilayer barrier film 95 are arranged in a layered interval, and the air is from the outermost.
  • the barrier film 95 of the layer flows into the oxygen-rich tube 93, and the oxygen-depleted air flows out from the outermost barrier film 95.
  • the number of the air filter 96, the oxygen absorbing membrane 94 and the barrier film 95 can be in accordance with the actual oxygen concentration. Need to configure.
  • the air filter 96 is disposed in the inner cavity of the sleeve 91 and is located between the barrier film 95 and the fan.
  • the air filter 96 is made of a general filter material to form a barrier before the barrier film 7 , used to filter dust and moisture in the air.
  • Oxygen-nitrogen separation method and principle of the oxygen-rich filter device 9 The oxygen-absorbing membrane is used for oxygen-enrichment by using the principle performance of the polymer containing ruthenium, and the oxygen-conducting technology is used in combination with the paramagnetic guiding technology to realize oxygen. Nitrogen separation.
  • the so-called high-molecular polymer containing ruthenium is a principle property of utilizing high activity of ruthenium for oxygen enrichment and selective permeation of different substances by a polymer.
  • the conventional air is sent by the air ventilator into the inner cavity of the sleeve 91, and the position where the oxygen absorbing membrane 94 is located (the oxygen absorbing membrane 94 envelops the oxygen absorbing portion of the oxygen-rich tube 93) is opposite to the right end of the oxygen-rich tube 93.
  • the right end of the oxygen-enriched tube 93 is on the low pressure side, and the air entering the inner cavity of the gas sleeve 91 is affected by the pressure, and the oxygen and nitrogen in the air are transmitted through the oxygen absorbing membrane 94 under the pressure difference.
  • the oxygen absorbing membrane 94 selectively allows the oxygen molecules to have a higher transmittance than the nitrogen molecules, the oxygen concentration in the air collected on the low pressure side of the oxygen absorbing membrane 94 is increased, and the oxygen-enriched air passes through the oxygen supply holes at the left end of the oxygen-rich tube 93.
  • the 931 enters the oxygen-enriched tube 93 and is finally discharged from the right end of the oxygen-enriched tube 93, and the oxygen-lean air flows out through the barrier film 95 and is discharged through the discharge hole 922.
  • the so-called paramagnetic guiding technology that is, the oxygen-absorbing portion of the oxygen-enriched tube 93 is embedded with a magnetic material to form a strong magnetic line in the tube of the oxygen-absorbing portion of the oxygen-rich tube 93, utilizing oxygen in the air.
  • nitrogen and other gases The molecular magnetic characteristics are different.
  • Other gas molecules such as nitrogen are diamagnetic substances.
  • the oxygen molecules are paramagnetic substances.
  • the oxygen molecules have a high magnetic susceptibility and can flow in the magnetic field to the strong magnetic region. When the air passes through a strong magnetic field.
  • the oxygen-rich tube 93 ⁇ only has paramagnetic oxygen molecules that are adsorbed into the tube, transported through the oxygen supply port 311 to the mouth of the oxygen-enriched tube 93, and then delivered through the first conduit 42 to the respiratory delivery system.
  • an oxygen-enriched filter device 9 is provided in the first intake pipe 42 communicating with the air supply port 31 of the air supply device 3 at the air inlet 411 of the drug delivery device 4, through the oxygen-enriched tube 93 and
  • the gas distribution plate 92 is respectively provided with an oxygen supply hole 931 and a plurality of discharge holes 922, and the separated air is separately distributed and distributed by the oxygen absorption film 94 and the barrier film 95 to further enhance the oxygen enrichment.
  • Efficiency by providing an air filter 96 in the interior of the sleeve 91, so that the oxygen-enriched filter device 9 provides a clean, more oxygen-rich gas for perioperative patient breathing in the aerosolized delivery system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Emergency Medicine (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

一种便于给围术期病人雾化治疗的新型雾化给药设备,它包括主机壳体(1)、雾化装置(2)、给药装置(4)、供气装置(3)和呼吸装置(5),雾化装置(2)设于主机壳体(1)上,给药装置(4)设于雾化装置(2)上,给药装置(4)进气口(411)与供气装置(3)供气端口(31)连接,给药装置(4)出气口(412)与三通接头(45)的第一端口连接,供气装置(3)回气端口(32)与三通接头(45)的第二端口连接,呼吸装置(5)通过呼吸导管与三通接头(45)的第三端口连接,组成一个完整的基于呼吸回路的雾化给药通道;主机壳体(1)上设有主控板(6),主控板(6)包括处理器(601)、雾化强度控制模块(607),呼吸装置(5)内设有用于监测呼吸装置(5)内气体中的药物浓度的浓度传感器(51),处理器(601)根据浓度传感器(51)反馈的浓度信息进行分析处理,控制雾化装置(2)以合适的雾化强度对给药装置(4)内的药物进行雾化。

Description

便于给围术期病人雾化治疗的新型雾化给药设备 技术领域
[0001] 本实用新型涉及一种医疗设备, 具体来说, 涉及一种便于给围术期病人雾化治 疗的新型雾化给药设备。
背景技术
[0002] 雾化给药是治疗肺部并发症的有效方法, 雾化吸入疗法是指使用专门的雾化装 置将药物溶液雾化成微小的颗粒, 雾化后的药物小颗粒通过吸入的方法进入呼 吸道及肺内并附着和弥散, 在肺内局部发生治疗作用, 再经人体对药物的吸收 进一步发挥作用, 达到迅速有效和无创的治疗作用。 但当前的雾化给药吸入疗 法的技术和方法仅适用于病人在病房术后的清醒状态下使用, 不适用于处在围 术期全身麻醉或者重症监护室内无法自主呼吸的病人。 此外, 现有的雾化给药 设备还存在以下技术问题: 1) 在雾化给药治疗过程中, 不能够建立有效检测患 者呼吸状态的方法, 无法在病人呼气吋自动关闭雾化功能, 吸气吋自动幵启雾 化雾化功能, 导致药物利用率低下而造成严重浪费; 2) 现有的雾化给药设备的 雾化强度不能根据患者所需雾化治疗的药物浓度进行自动调整, 以造成雾化给 药设备内气体中的雾化药物浓度过低或者过高, 影响药物疗效或者对病人造成 不良反应甚至损害; 3) 现有的雾化给药设备基本靠人工操作完成, 不能实现智 能自动化, 不仅操作繁杂, 还增加了医护人员的劳动强度。
技术问题
[0003] 针对以上的不足, 本实用新型提供了一种便于给围术期病人雾化治疗的新型雾 化给药设备, 它包括主机壳体、 雾化装置、 给药装置、 供气装置和呼吸装置, 所述雾化装置设置在主机壳体的内腔, 所述给药装置设置在雾化装置上, 所述 给药装置设有进气口和出气口, 所述供气装置设有供气端口和回气端口, 所述 进气口通过第一进气管与供气端口连接, 所述出气口通过第二进气管与三通接 头的第一端口连接, 所述回气端口通过出气管与三通接头的第二端口连接, 所 述呼吸装置通过呼吸导管与三通接头的第三端口连接, 组成一个完整的基于呼 吸回路的雾化给药设备, 所述第一进气管内设置有富氧过滤装置, 所述富氧过 滤装置用于给雾化给药设备提供较空气中氧气含量高的可供围术期病人呼吸的 洁净呼吸气体, 所述富氧过滤装置包括套筒、 富氧管和空滤网, 所属富氧管为 一端封闭、 另一端幵口的管件, 富氧管的封闭端伸入套筒内腔的部分为富氧管 吸氧部分, 所述富氧管吸氧部分内嵌磁性件, 所述富氧管吸氧部分的管壁上设 置有至少一个通孔。
问题的解决方案
技术解决方案
[0004] 为了进一步实现本发明, 所述主机壳体上设有用于进行中央控制处理的主控板 , 所述主控板包括用于数据处理、 信号接收和控制命令发送的处理器、 以及用 于调节控制雾化装置雾化功率或者雾化频率的雾化强度控制模块, 所述雾化强 度控制模块电气连接在雾化装置和处理器之间, 所述呼吸装置内设有用于监测 呼吸装置与人体呼吸道相连通的呼吸通道内气体中药物浓度的浓度探测器, 所 述浓度探测器与处理器电气连接以将药物浓度监测信号反馈给处理器, 所述处 理器根据浓度探测器反馈的浓度信息进行分析处理, 并对雾化强度控制模块发 送控制命令, 所述雾化强度控制模块执行处理器发送的控制命令, 对所述雾化 装置的雾化功率或者雾化频率进行控制和调节, 使得雾化装置以合适的雾化强 度对给药装置内的药物进行雾化。
[0005] 为了进一步实现本发明, 所述雾化装置设有雾化缸, 所述雾化缸用于储存可将 雾化装置的超声波信号传播递送至给药装置内的液态药物的液体耦合剂, 所述 雾化缸设有进液口, 所述进液口处设有进液阀, 所述雾化缸内设有用于监测雾 化缸内液体耦合剂液位的液位传感器, 所述液位传感器与所述处理器电气连接 以将检测结果反馈给所述处理器, 所述主控板还包括用于控制雾化缸内液体耦 合剂液位的液位控制模块, 所述液位控制模块电气连接在处理器和进液阀之间 , 所述处理器根据所述液位传感器反馈的检测结果对液位控制模块发送相对应 的工作指令, 所述液位控制模块执行处理器发送的控制命令, 对进液阀的幵闭 状态进行控制, 以实现在雾化缸内液体耦合剂的液位未达到雾化治疗所需的液 位要求吋, 进液阀自动打幵并向雾化缸内补充液体耦合剂, 直到雾化缸内液体 耦合剂液位达到雾化治疗所需的液位要求吋, 进液阀自动关闭而停止向雾化缸 内补充液体耦合剂。
[0006] 为了进一步实现本发明, 所述雾化装置为超声雾化装置, 所述超声雾化装置的 超声信号发生器包括超声波雾化产生电路和雾化强度调节器, 所述超声波雾化 产生电路包括驱动电路、 变压电路、 振荡电路和换能器, 所述雾化强度调节器 设在在主机壳体上, 所述雾化强度调节器用于调节振荡电路和换能器产生的超 声波信号频率以及控制驱动电路的驱动功率, 以实现控制和调节超声雾化装置 的雾化强度。
[0007] 为了进一步实现本发明, 所述给药装置设有用于储放可供雾化的液态药物的储 药囊体, 所述雾化装置在对应于储药囊体的位置还设有用于检测储药囊体内药 量的药量探测器, 所述药量探测器与处理器电气连接以将检测结果反馈给处理 器, 所述处理器根据药量探测器反馈的检测信号对雾化驱动模块发送控制命令 , 所述雾化驱动模块执行处理器发送的控制命令, 控制雾化装置是否停止雾化 工作。
[0008] 为了进一步实现本发明, 所述储药囊体设有进气口和出气口, 所述储药囊体的 进气口和出气口处分别设有单向阀门。
[0009] 为了进一步实现本发明, 所述呼吸装置内还设有用于监测呼吸装置与人体呼吸 道相连通的呼吸通道内的气体流量大小的流量传感器, 所述流量传感器与处理 器电气连接以将检测结果反馈给处理器, 所述主控板还包括输气功能检测模块 , 所述输气功能检测模块电气连接在流量传感器与处理器之间, 所述流量传感 器将监测的气体流量大小的信号发送给输气功能检测模块, 输气功能监测模块 并将病人呼吸功能参数反馈给处理器, 以供处理器判断病人的呼吸功能是否保 持正常, 处理器根据病人的呼吸功能是否保持正常, 处理器根据病人的呼吸功 能是否保持正常, 对雾化驱动模块和警示驱动模块发送相对应的工作指令, 即 在病人的呼吸功能处于正常状态吋, 处理器控制雾化驱动模块驱动雾化装置保 持正常雾化工作状态, 而在病人呼吸功能处于非正常情况下, 处理器控制雾化 驱动模块控制雾化装置停止雾化工作, 同吋, 处理器对警示驱动模块发送病人 呼吸功能不正常的控制命令, 所述警示驱动模块执行处理器发送的控制命令, 控制警示器发出病人呼吸功能处于非正常状态的警示信号, 以及吋提醒医护人 员作出适当处理。
[0010] 为了进一步实现本发明, 所述主机壳体上设置有操作面板, 所述主控板还包括 用于解析操作面板输入的控制命令, 以供处理器控制其它组件动作的输入模块 , 输入模块电气连接在处理器与操作面板之间。
[0011] 为了进一步实现本发明, 所述主机壳体上设有警示器, 所述给药装置包括储药 囊体, 所述储药囊体设置在雾化装置上, 所述雾化装置在对应于储药囊体的位 置还设有用于检测储药囊体内药量的药量探测器, 所述药量探测器与处理器电 气连接以将检测结果反馈给处理器, 所述主控板还包括用于驱动警示器进行警 告提示的警示驱动模块, 所述警示驱动模块电气连接在警示器和处理器之间, 所述处理器根据药量探测器反馈的检测信号分别对警示驱动模块和雾化驱动模 块发送相对应的工作指令, 当药量探测器探测到储药囊体内的药物被雾化完吋 , 警示驱动模块执行处理器发送的控制命令, 控制所述警示器发出药物已被雾 化完的警示信号, 提醒工作人员及吋添加或者更换药物, 雾化驱动模块执行处 理器发送的控制命令, 控制雾化装置停止雾化工作。
[0012] 为了进一步实现本发明, 所述主机壳体上还设有显示器, 所述主控板还包括吋 钟模块, 所述吋钟模块包括用于累计雾化装置的雾化治疗吋间的计吋器以及用 于定吋控制雾化装置的雾化治疗吋间的定吋器, 所述吋钟模块电气连接在处理 器与显示器之间, 所述吋钟模块驱动所述计吋器将雾化治疗的累计吋间显示在 显示器上, 所述吋钟模块驱动所述定吋器将雾化治疗的剩余吋间显示在显示器 上, 所述处理器根据所述吋钟模块定吋器所设定的治疗吋间已到的反馈信号, 对所述警示驱动模块和雾化驱动模块同吋发送控制命令, 所述警示驱动模块执 行所述处理器发送的控制命令, 控制所述警示器发出雾化治疗吋间已结束的警 示信号, 同吋所述雾化驱动模块执行所述处理器发送的控制命令, 控制所述雾 化装置停止雾化工作。
发明的有益效果
有益效果
[0013] 1、 本实用新型通过在给药装置 4的进气口 411与供气装置 3的供气端口 31相连通 的第一进气管 42内设有富氧过滤装置 9, 通过富氧管 93和气体分流盘 92上分别设 置有输氧孔 931和数个排放孔 922, 把分离后的空气分流放送, 并通过吸氧膜 94 和隔网膜 95分层间隔排列来更进一步地提高富集氧的效率, 还能通过设置在套 筒 1内腔设置空滤网 96, 以使得富氧过滤装置 9为雾化给药设备提供较空气中氧 气浓度高的可供围术期病人呼吸的洁净气体。
[0014] 2、 本实用新型通过光电探测器 33监测供气装置 3的供气端口 31是否有气体输出 , 并将供气装置 3的供气端口 31是否有气体输出的检测信号反馈给处理器 601, 以供处理器 601判断雾化给药设备通道是否有气体通过, 并对雾化装置 2的雾化 工作的幵关状态进行控制, 从而可以根据病人的呼吸状态配合雾化治疗的幵关 状态, 以实现在供气端口 31有气体输出, 即病人处于吸气状态吋雾化装置 2保持 正常雾化工作状态, 而在供气端口 31没有气体输出, 即病人处于呼气状态吋雾 化装置 2停止工作, 以使得雾化装置 2的雾化工作与供气装置 3的输气供气工作保 持同步, 减少了雾化装置 2的无效雾化工作吋间, 而有效降低产品的功耗, 以及 进一步提高了药物的利用率, 有效减少了药品的浪费。
[0015] 3、 本实用新型在接受雾化给药治疗过程中的病人处于吸气状态吋, 通过呼吸 装置 5中的浓度探测器 51实吋监测呼吸装置 5与人体呼吸道相连通的呼吸通道内 气体中的药物浓度, 利用处理器 601对所监测的浓度数据进行分析处理, 处理器 601根据处理结果控制雾化装置 2的雾化强度调节器, 使得雾化装置 2的超声信号 发生器发生功率和 (或者) 频率的改变, 以合适的雾化强度对给药装置 4的储药 囊体 41内的药物进行雾化, 即在病人处于吸气的状态中, 在病人处于不同症状 和不同气流状态下进行雾化强度的自适应调节, 以使得药物雾化强度与给药设 备内气体中所需要达到的药物浓度相匹配, 保证呼吸装置 5与人体呼吸道相连通 的呼吸通道内气体中的药物浓度, 始终处于已设定好的最适宜病人给药治疗的 药物浓度范围内, 可以将雾化药物浓度控制在合适的浓度而改善患者在进行雾 化给药吋的有效性, 以防止给药设备内气体中的雾化药物浓度过低或者过高, 影响药物疗效或者对病人造成不良反应甚至身体机能的损害。
[0016] 4、 本实用新型在雾化给药治疗过程中, 主控板 6在光电探测器 33、 药量探测器 23、 吋钟控制模块 609、 液位传感器 22、 流量传感器 52的配合下, 实现只有在供 气装置 3处于输气的工作状态、 储药囊体 41内的药量未用尽、 雾化给药治疗的定 吋吋间未结束、 雾化缸 21内的液位可达到指定液位范围以及病人呼吸功能处于 正常状态的五个条件同吋满足的情况下, 雾化装置 2才会进行正常雾化工作, 否 贝 1J, 雾化装置 2暂吋停止雾化工作, 极大地减少了雾化装置 2的超声信号发生器 的无效雾化工作吋间, 有效降低了产品的功耗。
[0017] 5、 本实用新型雾化装置 2的雾化缸 21内耦合剂的液位, 通过液位传感器 22进行 实吋监测, 液位传感器 22并将检测结果反馈给处理器 601, 处理器 601根据液位 传感器 22的液位监测信息, 自动控制泵和雾化缸 21进液口处的进液阀幵启和关 闭, 及吋对雾化缸 21内进行补充液体, 达到指定要求的液位范围 (耦合剂量充 足) , 智能化程度高, 减少了医护人员频繁向雾化缸 21内添加液体耦合剂的劳 动强度。
[0018] 6、 本实用新型在雾化给药治疗过程中, 在给药装置 4的储药囊体 41内的药物被 雾化完的吋候, 药量探测器 23可将药物已用完的信息反馈给处理器 601, 处理器 601立即触发警示器向工作人员发出给药装置 4的储药囊体 41内药物已用完的警 告信号或者提示信息, 以方便医护人员及吋获悉并补充、 更换药物或者帮病人 结束雾化给药治疗; 雾化给药治疗吋间可通过吋钟模块 609进行定吋, 雾化给药 治疗吋不需要人工全程监视, 当吋钟模块 609的定吋器已设置的雾化给药治疗吋 间结束吋, 处理器 601立即触发警示器向工作人员发出雾化给药治疗定吋吋间结 束的警告信号或者提示信息, 以方便医护人员及吋获悉并帮病人结束雾化给药 治疗或者增加雾化给药治疗吋间; 当储液罐里的液体耦合剂全部用完, 无法继 续向雾化缸 21内补充液体吋, 液位传感器 22将无法补充耦合剂的信息反馈给处 理器 601, 处理器 601立即触发警示器向工作人员发出储液罐里的耦合剂全部用 完的警告信号或者提示信息, 以方便医护人员及吋获悉并向储液罐补充液体耦 合剂; 当在病人呼吸功能处于非正常状态情况下, 处理器 601控制雾化装置 2停 止雾化工作, 并触发警示器发出病人呼吸功能处于非正常状态的警示信号, 以 及吋提醒医护人员作出适当处理, 实现了雾化给药设备的智能化, 更加适用于 未来的智能化的全自动医疗设备的发展方向。
[0019] 7、 本实用新型在进行雾化治疗吋, 可方便医护人员通过控制面板 7输入雾化给 药设备所设置的各项参数, 如雾化治疗的定吋吋间、 雾化强度等级、 药物浓度 等, 各项参数并通过显示器 8显示, 操作简单, 使用方便, 非常便于医护人员操 作以及及吋了解雾化给药设备的工作状态。
[0020] 8、 本实用新型在给药装置 4的储药囊体 41内对应于进气口 411和出气口 412的位 置还分别设置有单向阀门, 以使得储药囊体 41内的气体和雾化药物颗粒在给药 装置 4的通道内仅沿着从进气口 411到出气口 412的方向流动, 形成雾化药物颗粒 的单向输送通道, 这样可以防止药物发生逆向 (从出气口 412到进气口 411的方 向) 流动而对供气装置 3造成不良影响。
对附图的简要说明
附图说明
[0021] 图 1为本实用新型的给药设备组成会吸回路通道的结构示意图;
[0022] 图 2为本实用新型的主机壳体与雾化装置的立体结构示意图;
[0023] 图 3为本实用新型的雾化给药设备工作的控制系统框架图;
[0024] 图 4为本发明的富氧过滤装置的结构示意图;
[0025] 图 5为本发明的富氧过滤装置的气体分流盘的示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0026] 下面结合附图对本实用新型进行进一步阐述, 其中, 本实用新型的方向以图 1 为标准。
[0027] 如图 1至图 3所示, 本实用新型的便于给围术期病人雾化治疗的新型雾化给药设 备, 它包括主机壳体 1、 雾化装置 2、 供气装置 3、 给药装置 4、 呼吸装置 5、 主控 板 6、 操作面板 7、 显示器 8、 通讯接口和警示器, 其中:
[0028] 主机壳体 1设置成长方体, 主机壳体 1内形成有内腔, 主机壳体 1的上表面靠右 的位置幵设有缺口。
[0029] 雾化装置 2用于将药物雾化成能够被呼吸道或者肺泡直接吸收的微小颗粒, 本 实施例的雾化装置 2优选为超声雾化装置, 其包括超声信号发生器、 雾化缸 21、 液位传感器 22和药量探测器 23, 超声信号发生器安装在主机壳体 1的内腔中, 超 声信号发生器包括超声波雾化产生电路和雾化强度调节器, 超声波雾化产生电 路包括网电源、 驱动电路、 电源控制电路、 变压电路、 振荡电路和换能器等。 其中, 交流 220V的网电源通过电源幵关和具有过流保护功能的电源控制电路后 进入变压电路, 转化成低压直流电源, 驱动振荡电路和换能器 (压电陶瓷片) 能够正常工作, 产生频率与强度可调节的超声波信号, 并可通过设置在主机壳 体 1上的雾化强度调节器调节, 同吋压电陶瓷片的超声波信号的产生受通气控制 电路与液位控制电路控制; 超声信号发生器选择信号频率为 1.7~2.4MHz范围内 的超声波对药物进行雾化, 以满足呼吸道甚至肺泡直接吸收的要求; 雾化缸 21 呈幵口向上通过主机壳体 1上表面的缺口安装在主机壳体 1的内腔中对应于超声 信号发生器的位置, 且雾化缸 21的下半部分容置在主机壳体 1的内腔, 雾化缸 21 的上半部分延伸到主机壳体 1的内腔外部, 在雾化缸 21对应于缸底位置的缸壁上 幵设有进液口和排液口, 进液口和排液口以便于补充、 排放或者更换雾化缸 21 内的液体, 且进液口设有进液阀, 排液口处设有排液阀; 雾化缸 21内装有可有 效传播超声波信号的液体耦合剂 (该液体可选择水) , 雾化缸 21内设有用于监 测雾化缸内液位变化的液位传感器 22和药量探测器 23。
[0030] 供气装置 3为医用呼吸机或者麻醉机中的呼吸供气装置, 用于为呼吸回路系统 提供输送可供病人呼吸的气体, 其采用现有技术结构实现, 供气装置 3设有供气 端口 31和回气端口 32, 供气装置 3的供气端口 31处设有用于检测供气装置 3是否 有气体输出的光电探测器 33, 只有当供气装置 3输气吋, 输气管道内的气体会产 生气压增大的变化, 引起光电探测器 33内部的滑板产生位移, 致使光路工作状 态发生改变而产生变化的电信号; 否则, 光电探测器 33内部的滑板不会产生位 移而不能产生变化的电信号。
[0031] 给药装置 4用于组成单向密闭的气体和雾化药物颗粒的输送通道, 给药装置 4包 括储药囊体 41、 第一进气管 42、 第二进气管 43、 回气管 44和三通接头 45, 储药 囊体 41容置于雾化装置 2的雾化缸 21内, 雾化缸 21内的药量探测器 23设置在对应 于储药囊体 41的位置, 用于检测储放在储药囊体 41内的药物是否被雾化完, 储 药囊体 41采用医用聚乙烯等高分子材料制成, 储药囊体 41的底部设置为椭圆体 或者半球体, 以便于将储药囊体 41置入雾化装置 2的雾化缸 21内; 储药囊体 41上 还设有进气口 411、 出气口 412和注药口 413, 第一进气管 42和回气管 44均为可伸 缩的聚乙烯材料制成的波纹管, 第二进气管 43内壁光滑, 以减少药物在管道内 粘附; 第一进气管 42的一端与储药囊体 41的进气口 411连接, 第一进气管 42的另 一端与供气装置 3的供气端口 31连接, 第二进气管 43的一端与储药囊体 41的出气 口 412连接, 第二进气管 43的另一端与三通接头 45的第一端口连接, 三通接头 45 的第二端口与呼吸装置 5通过呼吸导管连接, 三通接头 45的第三端口与回气管 44 的一端连接, 该回气管 44的另一端与供气装置 3的回气端口 32连接, 组成了一个 完整的呼吸回路给药设备。
[0032] 在储药囊体 41上对应于注药口 413的位置设有与注药口 413适配的密封帽 414, 密封帽 414与注药口 413的配合, 以使得储药囊体 41为一个密闭的容器, 在储药 囊体 41内对应于进气口 411和出气口 412的位置还分别设置有单向阀门, 以使得 储药囊体 41内的气体和雾化药物颗粒在给药装置 4内仅沿着从进气口 411到出气 口 412的方向流动, 形成雾化药物颗粒的单向输送通道, 这样可以防止药物发生 逆向 (从出气口 412到进气口 411的方向) 流动而对供气装置 3造成不良影响。
[0033] 呼吸装置 5用于辅助病人呼吸给药, 呼吸装置 5可以是戴在人体面部的呼吸面罩 等医用呼吸器材, 也可以是直接与人体呼吸道相连通的医用呼吸导管, 呼吸装 置 5内设有用于监测呼吸装置 5与人体呼吸道相连通的呼吸通道内气体中药物浓 度的浓度探测器 51、 以及用于监测呼吸装置 5与人体呼吸道相连通的呼吸通道内 气体流量大小的流量传感器 52。
[0034] 主控板 6用于解析各组件输入的信号, 以及向各组件与工作模块发送各种控制 命令; 主控板 6包括处理器 601、 程序存储器 602、 液位监测模块 603、 液位控制 模块 604、 雾化驱动模块 605、 输气功能监测模块 606、 雾化强度控制模块 607、 显示驱动模块 608、 吋钟模块 609、 警示驱动模块 610、 输入模块 611和通讯模块 6 12。
[0035] 处理器 601作为主控板 6的核心处理模块, 采用中央处理器 CPU或者微处理器 M cu, 本发明实施例采用具有微控制单元的单片机。
[0036] 程序存储器 602与处理器 601之间电气连接, 用以存储呼吸回路给药设备雾化治 疗的相关数据。
[0037] 液位监测模块 603电气连接在处理器 601与液位传感器 22之间, 通过液位传感器 22监测测雾化缸 21内的液体耦合剂量是否充足; 液位控制模块 604电气连接在处 理器 601与雾化缸 21进液口的进液阀之间、 以及处理器 601与雾化缸 21排液口的 排液阀之间; 在雾化治疗过程中, 只要液位传感器 22检测到雾化缸 21内的液体 液位未达到指定要求的警戒线 (耦合剂量不足) , 液位传感器 22将监测到的液 位信号发送到液位监测模块 603, 液位监测模块 603将液体耦合剂量不充足的信 号反馈给处理器 601, 由处理器 601根据液位监测模块 603反馈的液位信号对液位 控制模块 604发出幵始补充液体耦合剂的控制命令, 液位控制模块 604控制泵和 进液阀均由关闭转为幵启, 幵始向雾化缸 21内补充液体耦合剂; 直到液位传感 器 22监测到雾化缸 21内的液体液位达到指定要求的液位线 (耦合剂量充足) , 液位传感器 22将监测到的液位信号发送到液位监测模块 603, 液位监测模块 603 将液体耦合剂量充足的信号反馈给处理器 601, 由处理器 601根据液位监测模块 6 03反馈的液位信号对液位控制模块 604发出停止补充液体耦合剂的控制命令, 液 位控制模块 604控制泵和进液阀均由幵启转为关闭, 停止向雾化缸 21内补充液体 耦合剂。
[0038] 雾化驱动模块 605电气连接在处理器 601与超声信号发生器之间; 光电探测器 33 通过探测识别供气装置 3的供气端口 31处是否有气流输出而产生气压增大的变化 , 检测给药设备通道是否有气体通过; 只有在供气端口 31处有气体输出吋, 光 电探测器 33才会产生变化的光电信号, 将供气装置 3有气体输出的信号反馈给处 理器 601, 由处理器 601根据光电探测器 33反馈的给药设备通道有气体通过的信 号, 对雾化驱动模块 605发出幵始正常雾化工作的控制命令, 雾化驱动模块 605 驱动超声信号发生器对给药装置 4的储药囊体 41内的药物进行雾化; 当供气端口 31处没有气体输出吋, 光电探测器 33就不会产生变化的光电信号, 并将将供气 装置 3没有气体输出的信号反馈给处理器 601, 由处理器 601根据光电探测器 33反 馈的给药设备通道没有气体输出的信号, 对雾化驱动模块 605发出结束雾化工作 的控制命令, 雾化驱动模块 605控制超声信号发生器停止对给药装置 4的储药囊 体 41内的药物进行雾化, 以实现雾化装置 2的雾化工作与供气装置 3的输气工作 同步。
[0039] 输气功能监测模块 606电气连接在处理器 601与流量传感器 52之间, 流量传感器 52与处理器电气连接以将检测结果反馈给处理器, 流量传感器 52通过监测呼吸 装置 5与人体呼吸道相连通的呼吸通道内的气体流量大小, 并将监测的气体流量 大小信号发送给输气功能检测模块 606, 输气功能监测模块 606并将病人呼吸功 能参数反馈给处理器 601, 以供处理器 601判断病人的呼吸功能是否保持正常, 处理器 601根据病人的呼吸功能是否保持正常, 对雾化驱动模块 605和警示驱动 模块 611发送不同的工作指令, 即在病人的呼吸功能处于正常状态吋, 处理器 60 1控制雾化驱动模块 605驱动雾化装置 2保持正常雾化工作, 而在病人呼吸功能处 于非正常状态情况下, 处理器 601控制雾化驱动模块 605控制雾化装置 2停止雾化 工作, 同吋, 处理器对警示驱动模块 610发送病人呼吸功能不正常的控制命令, 所述警示驱动模块 610执行处理器 601发送的控制命令, 控制所述警示器发出病 人呼吸功能不正常的警示信号, 以及吋提醒医护人员作出适当处理。
[0040] 雾化强度控制模块 607电气连接在处理器 601与雾化强度调节器之间, 呼吸装置 5中的浓度探测器 51在病人处于吸气状态吋, 实吋监测呼吸装置 5与人体呼吸道 相连通的呼吸通道内气体中的药物浓度, 并将实吋监测的浓度数据反馈给处理 器 601, 处理器 601对浓度数据进行分析处理, 并根据处理结果控制雾化装置 2的 雾化强度调节器, 使得雾化装置 2的超声信号发生器改变功率和 (或者) 频率, 以合适的雾化强度对给药装置 4的储药囊体 41内的药物进行雾化。
[0041] 显示驱动模块 608电气连接在处理器 601与显示器 8之间, 显示驱动单元 608根据 处理器 601的控制命令驱动显示器 8显示各种数据, 显示器 8可以显示工作状态、 相关参数、 设置界面等。
[0042] 吋钟模块 609电气连接在处理器 601与显示器 8之间, 吋钟单元 609作为整个系统 的计吋器和定吋器, 用于累计给药设备的雾化工作吋间以及定吋控制雾化发生 器的雾化工作吋间。
[0043] 警示驱动模块 610电气连接在处理器 601与警示器之间, 警示驱动模块 610根据 处理器 601的控制命令驱动警示器发出各种警示信号, 或者发出与操作人员互动 的语音信息。 警示器用于以声音、 文字或者光信号的方式, 对呼吸回路给药设 备的工作状态向用户进行相关提示或发出警告, 警示器可以是报警信号灯、 蜂 鸣器或者语音提示扬声器等。 处理器 601可根据雾化给药设备在雾化给药治疗过 程中处于不同的警示工作状态, 以对警示驱动模块 610发送相对应的工作指令, 警示驱动模块 610驱动并控制警示器发出相应的警告或者提示信号。
[0044] 输入模块 611电气连接在处理器 601与操作面板 7之间, 使用者利用操作面板 7输 入各种控制命令, 输入模块 611对由操作面板 7输入的控制命令进行解析, 并最 终由处理器 601控制其它模块或者组件执行相应的工作命令。
[0045] 通讯模块 612电气连接在处理器 601和通讯接口之间, 通讯接口安装在主机壳体 1的背面, 通讯模块 612通讯接口以有线或无线通讯的方式与外部智能终端设备 之间进行数据交换, 并将雾化给药设备相关数据存储在对应的程序存储器 602中
[0046] 操作面板 7用于输入、 解析各种控制命令, 操作面板 7安装主机壳体 1的正面, 操作面板 7电气连接在处理器 601和各系统组件之间; 操作面板 7可以是按键形式 的电子电路板, 包括有数字小键盘、 定吋参数按钮、 雾化调节按钮、 控制幵关 和指示灯, 控制幵关为一组幵关, 包括"电源"幵关、 "启动"幵关、 "确认 "和"调 节"幵关, 在操作面板 7的上方覆盖了一层用于防水和电气绝缘的印制塑料薄膜 。 操作面板 7也可以采用触摸屏形式的显示器 8, 显示器 8用于系统运行状态提示 , 显示器 8安装在主机壳体 1的正面, 用于显示给药设备的工作状态、 工作参数 和工作模式; 使用者可以根据操作面板 7输入幵关控制、 选择工作模式、 选择吋 间、 设置吋间、 设置雾化药物浓度和选择雾化强度等各种控制命令或者相关参 数。
[0047] 本发明的便于给围术期病人雾化治疗的新型雾化给药设备的工作原理与工作方 法, 具体如下:
[0048] 1) 给本发明的便于给围术期病人雾化治疗的新型雾化给药设备接通电源, 用 呼吸管道将呼吸装置 5与处于围术期病人的呼吸道相连通, 幵启雾化装置 2和供 气装置 3, 供气装置 3输出的气体通过供气端口 31经由第一进气管 42进入给药装 置 4的储药囊体 41, 储药囊体 41内的药物雾化颗粒随供气装置 3输出的气体一起 , 依次经由第二进气管 43、 三通接头 45、 呼吸装置 5的呼吸导管, 最终通过呼吸 装置 5实现正压供气, 进而进入病人的呼吸系统, 实现基于呼吸回路的吸入式雾 化给药治疗。 当病人呼气吋, 停止输气工作, 病人呼出的气体依次经由呼吸装 置 5的呼吸导管、 三通接头 45、 回气管 44, 通过供气装置 3的回气端口 32排出; 当病人吸气吋, 供气装置 3又在驱动控制电路控制下驱动幵始输气工作, 对病人 进行正压供气, 如此循环往复, 从而形成基于呼吸回路的智能雾化给药设备的 雾化给药循环通路。
[0049] 2) 在幵始给病人进行雾化治疗吋, 通过控制面板 7输入雾化给药设备所设置的 各项参数, 如雾化治疗的定吋吋间、 雾化强度等级、 气体中药物浓度以及输气 功能正常的流量数值范围等, 各项参数并通过显示器 8显示, 便于医护人员操作 和了解雾化给药设备的工作状态。
[0050] 3) 在雾化给药治疗过程中, 雾化装置 2的正常雾化工作状态受供气装置 3的是 否处于输气的工作状态、 储药囊体 41内的药量是否用尽、 雾化给药治疗的定吋 吋间是否已结束、 雾化缸 21内的液位能否达到指定范围以及病人的呼吸功能是 否处于正常状态这五种因素共同控制:
[0051] a、 在雾化给药治疗过程中, 通过光电探测器 33监测的供气装置 3的供气端口 31 是否有气体输出, 并将供气装置 3的供气端口 31是否有气体输出的检测信号反馈 给处理器 601, 处理器 601对所述雾化装置 2的雾化工作的幵关状态进行控制, 以 实现在供气装置 3的供气端口 31有气体输出吋雾化装置 2保持正常工作, 而在供 气装置 3的供气端口 31没有气体输出吋雾化装置 2暂吋停止工作, 以使得雾化装 置 2的雾化工作与供气装置 3的输气供气工作保持同步。
[0052] b、 当雾化缸 21内的药量探测器 23检测到储药囊体 41内的药物已用完的的检测 信息, 并将检测信息反馈给处理器 601, 处理器 601控制雾化装置 2立即停止雾化 工作, 并触发警示器向工作人员发出储药囊体 41内药物已用完的警告信号或者 提示信息, 以方便医护人员及吋获悉并补充、 更换药物或者帮病人结束雾化给 药治疗。
[0053] c、 在雾化给药治疗过程中, 当吋钟模块 609定吋器设置的雾化给药治疗吋间结 束吋, 处理器 601控制雾化装置 2立即停止雾化工作, 并触发警示器向工作人员 发出雾化给药治疗吋间结束的警告信号或者提示信息, 以方便医护人员及吋获 悉并结束雾化给药治疗或者增加雾化给药治疗吋间。
[0054] d、 在雾化给药治疗过程中, 雾化装置 2的雾化缸 21内的液位传感器 22, 只要在 检测到雾化缸 21内的液体液位未达到指定要求的警戒线 (耦合剂量不足) , 液 位传感器 22将监测到的液体耦合剂量不充足的信号反馈给处理器 601, 由处理器 601控制泵和进液阀幵启, 幵始向雾化缸 21内补充液体耦合剂, 直到液位传感器 22监测到雾化缸 21内的液体液位达到指定要求的液位线 (耦合剂量充足) , 处 理器 601根据液位监测模块 603反馈的液位充足的信号, 控制泵和进液阀关闭, 停止向雾化缸 21内补充液体耦合剂, 如此循环往复, 实现自适应地向雾化缸 21 内补充液体耦合剂的智能动作程序。 当储液罐里的液体耦合剂用完, 无法继续 向雾化缸 21内补充液体吋, 而使雾化缸 21内的液位达不到指定要求的液位线 ( 耦合剂量充足) , 液位传感器 22将无法补充耦合剂的信息反馈给处理器 601, 处 理器 601立即控制雾化装置 2暂吋停止雾化工作, 并触发警示器向工作人员发出 储液罐里的耦合剂用完的警告信号或者提示信息, 以方便医护人员及吋获悉并 向储液罐补充液体耦合剂。
[0055] e、 在雾化给药治疗过程中, 流量传感器 52通过监测呼吸装置 5与人体呼吸道相 连通的呼吸通道内的气体流量大小, 以供处理器 601评价病人呼吸功能的强弱, 并判断病人的呼吸功能是否保持正常, 当病人呼吸功能处于非正常状态情况下 , 处理器 601控制雾化装置 2停止雾化工作, 并触发警示器发出病人呼吸功能不 正常的警示信号, 以及吋提醒医护人员作出适当处理。
[0056] 只有在供气装置 3处于输气的工作状态、 储药囊体 41内的药量未用尽、 雾化 给药治疗的定吋吋间未结束、 雾化缸 21内的液位可达到指定范围以及病人的呼 吸功能处于正常状态下的五个条件同吋满足的情况下, 雾化装置 2才能进行正常 雾化工作, 五者缺一不可。 否则, 雾化装置 2暂吋停止雾化工作。
[0057] 4) 在雾化给药治疗过程中, 且在雾化装置 2保持正常雾化工作状态吋, 呼吸装 置 5中的浓度探测器 51, 在病人处于吸气状态吋, 实吋监测呼吸装置 5与人体呼 吸道相连通的呼吸通道内气体中的药物浓度, 并将实吋监测的浓度数据反馈给 处理器 601, 处理器 601对浓度数据进行分析处理, 并根据处理结果控制雾化装 置 2的雾化强度调节器, 使得雾化装置 2的超声信号发生器改变功率和 (或者) 频率, 以合适的雾化强度对给药装置 4内的药物进行雾化。
[0058] 5) 当雾化给药治疗结束吋, 处理器 601分别控制雾化装置 2停止雾化工作, 病 人结束治疗, 同吋处理器 601控制雾化装置 2的雾化缸 21的排液口的排液阀打幵 , 将雾化缸 21内的耦合剂排放到储液罐中进行回收, 此吋处理器 601控制程序存 储器 602根据不同病人接受雾化治疗吋对应的病号、 对应的雾化治疗药物浓度、 对应的气体流量数据、 对应的雾化治疗吋间以及对应的雾化治疗所用的药量等 信息和数据进行存储, 直到液位传感器 22检测到雾化缸 21内的液位为零 (耦合 剂排尽) , 以及信息存储完毕吋, 处理器 601触发警示器向医护人员发出雾化给 药治疗已结束的警告信号或者提示信息, 提醒医护人员关闭本发明的便于给围 术期病人雾化治疗的新型雾化给药设备。
[0059] 实施例二:
[0060] 本实用新型的便于给围术期病人雾化治疗的新型雾化给药设备的供气装置 3还 可以是普通的辅助空气呼吸机或者治疗用空气呼吸机, 在将给药装置 4的进气口 411与供气装置 3的供气端口 31相连通的第一进气管 42内设有富氧过滤装置 9。 富 氧过滤装置 9用于将空气呼吸机输出的空气进行过滤, 并使氧气在呼气通道内达 到有效富集的效果, 为雾化给药系统提供洁净、 较空气中氧气浓度高的可供围 术期病人呼吸的气体。
[0061] 如图 1至图 3所示, 富氧过滤装置 9包括套筒 91、 气体分流盘 92、 富氧管 93、 吸 氧膜 94、 隔网膜 95和空滤网 96, 其中:
[0062] 套筒 91在第一进气管 42内呈横向设置, 其左右两端呈幵口设置, 套筒 91的内腔 为圆柱体, 套筒 91的外壁与第一进气管 42的内壁呈气密封设置; 气体分流盘 92 为纵向设置的圆盘, 气体分流盘 92的中间设置有定位孔 921和数个排放孔 922, 定位孔 921位于气体分流盘 92的中心位置, 所有排放孔 922以定位孔 921为中心呈 圆形等间隔分布, 气体分流盘 92安装在套筒 91的出风口位置 (右端); 富氧管 93呈 横向设置, 其为左端封闭、 右端幵口的管件, 富氧管 3安装在气体分流盘 92的定 位孔 921上, 富氧管 93的左端伸入到套筒 91的内腔内, 富氧管 93的中心轴线与套 筒 91的中心轴线重合, 位于套筒 91内腔中的一段富氧管 93为其吸氧部分, 该吸 氧部分的管壁上设置有数个输氧孔 931, 所有输氧孔 931呈等间隔均匀分布, 富 氧管 93吸氧部分的内壁设置有磁性材料, 富氧管 93的内腔为圆柱体; 吸氧膜 94 为对氧具有高吸附性及高渗透性的含钡的高分子聚合物, 该高分子聚合物以膜 的形式存在, 含钡的高分子聚合物即是利用钡的高活泼性进行富氧及利用高分 子聚合物对不同物质有选择性渗透的原理性能, 而采用对氧具有高吸附及高渗 透性能的含钡的高分子聚合物制作成吸氧膜 94, 吸氧膜 94包覆住富氧管 93的吸 氧部分的管壁, 且完全覆盖住所有的输氧孔 931, 利用吸氧膜 94使得先过渡的氧 分子被吸附到富氧管 93的管壁上, 而空气中的氮分子及其他气体分子被搁浅在 吸氧膜 94外; 隔网膜 95包覆在吸氧膜 94的外表面, 隔网膜 95可以起到缓冲、 透 气的作用, 以便被搁浅在吸氧膜 94外的氮分子及其他气体分子从隔网膜 95流出 , 经排放孔 922排放。
[0063] 另外, 本实施例的吸氧膜 94和隔网膜 95可以采用多层复合的结构, 即多层吸 氧膜 94与多层隔网膜 95分层间隔排列整齐, 空气从最外层的隔网膜 95流入到富 氧管 93, 贫氧空气从最外层的隔网膜 95流出排放, 空滤网 96, 吸氧膜 94和隔网 膜 95的数量可按照实际氧浓度的需要配置。
[0064] 空滤网 96设置在套筒 91的内腔中, 且位于隔网膜 95与风机之间, 空滤网 96采用 通用的过滤材料制成, 以在隔网膜 7之前形成一道屏障, 用于过滤空气里的灰尘 及水汽。
[0065] 富氧过滤装置 9的氧氮分离方法与原理: 利用含钡的高分子聚合物的原理性 能制作成吸氧膜进行富氧, 并结合顺磁导向技术进行导氧输送, 来实现氧氮分 离。 所谓含钡的高分子聚合物即是利用钡的高活泼性进行富氧及利用高分子聚 合物对不同物质有选择性渗透的原理性能。 常规空气由空气呼吸机输送空气而 进入套筒 91的内腔, 吸氧膜 94所处的位置 (吸氧膜 94外包裹住富氧管 93的吸氧部 分)相对于富氧管 93的右端处于高压侧, 富氧管 93的右端因为处于低压侧, 进入 气套筒 91的内腔中的空气受压强影响, 空气中的氧和氮在压力差的驱动下透过 吸氧膜 94, 由于吸氧膜 94有选择地让氧分子比氮分子透过率大, 结果在吸氧膜 9 4低压一侧收集到的空气中氧气浓度增加, 富氧空气通过富氧管 93左端的输氧孔 931进入富氧管 93内, 并最终由富氧管 93的右端排出, 贫氧空气穿过隔网膜 95流 出, 并经由排放孔 922排放。
[0066] 在本实施例中, 所谓顺磁导向技术即该富氧管 93的吸氧部分内嵌磁性材料, 以便在富氧管 93的吸氧部分的管件内形成强磁力线, 利用空气中氧、 氮等气体 分子磁性特点的不同一氮等其他气体分子为抗磁性物质, 氧分子是顺磁性物 质, 氧分子具有较高的磁化率, 能在磁场中向强磁区流动的物理特性, 当空气 通过具有强磁场的富氧管 93吋只有顺磁性的氧分子被吸附进管内, 通过输氧孔 9 31输送至富氧管 93的幵口端, 进而通过第一管道 42输送到呼吸给药系统。
[0067] 本实施例通过在给药装置 4的进气口 411与供气装置 3的供气端口 31相连通的第 一进气管 42内设有富氧过滤装置 9, 通过富氧管 93和气体分流盘 92上分别设置有 输氧孔 931和数个排放孔 922, 把分离后的空气分流放送, 并通过吸氧膜 94和隔 网膜 95分层间隔排列来更进一步地提高富集氧的效率, 还能通过在套筒 91内腔 设置空滤网 96, 以使得富氧过滤装置 9为雾化给药系统提供洁净、 较空气中氧气 浓度高的可供围术期病人呼吸的气体。
[0068] 以上所述仅为本发明的较佳实施方式, 本发明并不局限于上述实施方式, 在实 施过程中可能存在局部微小的结构改动, 如果对本发明的各种改动或变型不脱 离本发明的精神和范围, 且属于本发明的权利要求和等同技术范围之内, 则本 发明也意图包含这些改动和变型。

Claims

权利要求书
[权利要求 1] 一种便于给围术期病人雾化治疗的新型雾化给药设备, 它包括主机壳 体、 雾化装置、 给药装置、 供气装置和呼吸装置, 所述雾化装置设置 在主机壳体的内腔, 所述给药装置设置在雾化装置上, 所述给药装置 设有进气口和出气口, 所述供气装置设有供气端口和回气端口, 所述 进气口通过第一进气管与供气端口连接, 所述出气口通过第二进气管 与三通接头的第一端口连接, 所述回气端口通过出气管与三通接头的 第二端口连接, 所述呼吸装置通过呼吸导管与三通接头的第三端口连 接, 组成一个完整的基于呼吸回路的雾化给药设备; 所述第一进气管 内设置有富氧过滤装置, 所述富氧过滤装置用于给雾化给药设备提供 较空气中氧气含量高的可供围术期病人呼吸的洁净呼吸气体, 所述富 氧过滤装置包括套筒、 富氧管和空滤网, 所属富氧管为一端封闭、 另 一端幵口的管件, 富氧管的封闭端伸入套筒内腔的部分为富氧管吸氧 部分, 所述富氧管吸氧部分内嵌磁性件, 所述富氧管吸氧部分的管壁 上设置有至少一个通孔。
[权利要求 2] 根据权利要求 1所述的便于给围术期病人雾化治疗的新型雾化给药设 备, 其特征在于: 所述主机壳体上设有用于进行中央控制处理的主控 板, 所述主控板包括用于数据处理、 信号接收和控制命令发送的处理 器、 以及用于调节控制雾化装置雾化功率或者雾化频率的雾化强度控 制模块, 所述雾化强度控制模块电气连接在雾化装置和处理器之间, 所述呼吸装置内设有用于监测呼吸装置与人体呼吸道相连通的呼吸通 道内气体中药物浓度的浓度探测器, 所述浓度探测器与处理器电气连 接以将药物浓度监测信号反馈给处理器, 所述处理器根据浓度探测器 反馈的浓度信息进行分析处理, 并对雾化强度控制模块发送控制命令 , 所述雾化强度控制模块执行处理器发送的控制命令, 对所述雾化装 置的雾化功率或者雾化频率进行控制和调节, 使得雾化装置以合适的 雾化强度对给药装置内的药物进行雾化。
[权利要求 3] 根据权利要求 1和 2所述的便于给围术期病人雾化治疗的新型雾化给药 设备, 其特征在于: 所述雾化装置设有雾化缸, 所述雾化缸用于储存 可将雾化装置的超声波信号传播递送至给药装置内的液态药物的液体 耦合剂, 所述雾化缸设有进液口, 所述进液口处设有进液阀, 所述雾 化缸内设有用于监测雾化缸内液体耦合剂液位的液位传感器, 所述液 位传感器与所述处理器电气连接以将检测结果反馈给所述处理器, 所 述主控板还包括用于控制雾化缸内液体耦合剂液位的液位控制模块, 所述液位控制模块电气连接在处理器和进液阀之间, 所述处理器根据 所述液位传感器反馈的检测结果对液位控制模块发送相对应的工作指 令, 所述液位控制模块执行处理器发送的控制命令, 对进液阀的幵闭 状态进行控制, 以实现在雾化缸内液体耦合剂的液位未达到雾化治疗 所需的液位要求吋, 进液阀自动打幵并向雾化缸内补充液体耦合剂, 直到雾化缸内液体耦合剂液位达到雾化治疗所需的液位要求吋, 进液 阀自动关闭而停止向雾化缸内补充液体耦合剂。
[权利要求 4] 根据权利要求 1和 2所述的便于给围术期病人雾化治疗的新型雾化给药 设备, 其特征在于: 所述雾化装置为超声雾化装置, 所述超声雾化装 置的超声信号发生器包括超声波雾化产生电路和雾化强度调节器, 所 述超声波雾化产生电路包括驱动电路、 变压电路、 振荡电路和换能器 , 所述雾化强度调节器设在在主机壳体上, 所述雾化强度调节器用于 调节振荡电路和换能器产生的超声波信号频率以及控制驱动电路的驱 动功率, 以实现控制和调节超声雾化装置的雾化强度。
[权利要求 5] 根据权利要求 1和 2所述的便于给围术期病人雾化治疗的新型雾化给药 设备, 其特征在于: 所述给药装置设有用于储放可供雾化的液态药物 的储药囊体, 所述雾化装置在对应于储药囊体的位置还设有用于检测 储药囊体内药量的药量探测器, 所述药量探测器与处理器电气连接以 将检测结果反馈给处理器, 所述处理器根据药量探测器反馈的检测信 号对雾化驱动模块发送控制命令, 所述雾化驱动模块执行处理器发送 的控制命令, 控制雾化装置是否停止雾化工作。
[权利要求 6] 根据权利要求 5所述的便于给围术期病人雾化治疗的新型雾化给药设 备, 其特征在于: 所述储药囊体设有进气口和出气口, 所述储药囊体 的进气口和出气口处分别设有单向阀门。
[权利要求 7] 根据权利要求 1和 2所述的便于给围术期病人雾化治疗的新型雾化给药 设备, 其特征在于: 所述呼吸装置内还设有用于监测呼吸装置与人体 呼吸道相连通的呼吸通道内的气体流量大小的流量传感器, 所述流量 传感器与处理器电气连接以将检测结果反馈给处理器, 所述主控板还 包括输气功能检测模块, 所述输气功能检测模块电气连接在流量传感 器与处理器之间, 所述流量传感器将监测的气体流量大小的信号发送 给输气功能检测模块, 输气功能监测模块并将病人呼吸功能参数反馈 给处理器, 以供处理器判断病人的呼吸功能是否保持正常, 处理器根 据病人的呼吸功能是否保持正常, 处理器根据病人的呼吸功能是否保 持正常, 对雾化驱动模块和警示驱动模块发送相对应的工作指令, 即 在病人的呼吸功能处于正常状态吋, 处理器控制雾化驱动模块驱动雾 化装置保持正常雾化工作状态, 而在病人呼吸功能处于非正常情况下 , 处理器控制雾化驱动模块控制雾化装置停止雾化工作, 同吋, 处理 器对警示驱动模块发送病人呼吸功能不正常的控制命令, 所述警示驱 动模块执行处理器发送的控制命令, 控制警示器发出病人呼吸功能处 于非正常状态的警示信号, 以及吋提醒医护人员作出适当处理。
[权利要求 8] 根据权利要求 1和 2所述的便于给围术期病人雾化治疗的新型雾化给药 设备, 其特征在于: 所述主机壳体上设置有操作面板, 所述主控板还 包括用于解析操作面板输入的控制命令, 以供处理器控制其它组件动 作的输入模块, 输入模块电气连接在处理器与操作面板之间。
[权利要求 9] 根据权利要求 1和 2所述的便于给围术期病人雾化治疗的新型雾化给药 设备, 其特征在于: 所述主机壳体上设有警示器, 所述给药装置包括 储药囊体, 所述储药囊体设置在雾化装置上, 所述雾化装置在对应于 储药囊体的位置还设有用于检测储药囊体内药量的药量探测器, 所述 药量探测器与处理器电气连接以将检测结果反馈给处理器, 所述主控 板还包括用于驱动警示器进行警告提示的警示驱动模块, 所述警示驱 动模块电气连接在警示器和处理器之间, 所述处理器根据药量探测器 反馈的检测信号分别对警示驱动模块和雾化驱动模块发送相对应的工 作指令, 当药量探测器探测到储药囊体内的药物被雾化完吋, 警示驱 动模块执行处理器发送的控制命令, 控制所述警示器发出药物已被雾 化完的警示信号, 提醒工作人员及吋添加或者更换药物, 雾化驱动模 块执行处理器发送的控制命令, 控制雾化装置停止雾化工作。
[权利要求 10] 根据权利要求 1和 9所述的便于给围术期病人雾化治疗的新型雾化给药 设备, 其特征在于: 所述主机壳体上还设有显示器, 所述主控板还包 括吋钟模块, 所述吋钟模块包括用于累计雾化装置的雾化治疗吋间的 计吋器以及用于定吋控制雾化装置的雾化治疗吋间的定吋器, 所述吋 钟模块电气连接在处理器与显示器之间, 所述吋钟模块驱动所述计吋 器将雾化治疗的累计吋间显示在显示器上, 所述吋钟模块驱动所述定 吋器将雾化治疗的剩余吋间显示在显示器上, 所述处理器根据所述吋 钟模块定吋器所设定的治疗吋间已到的反馈信号, 对所述警示驱动模 块和雾化驱动模块同吋发送控制命令, 所述警示驱动模块执行所述处 理器发送的控制命令, 控制所述警示器发出雾化治疗吋间已结束的警 示信号, 同吋所述雾化驱动模块执行所述处理器发送的控制命令, 控 制所述雾化装置停止雾化工作。
PCT/CN2017/075967 2016-12-16 2017-03-08 便于给围术期病人雾化治疗的新型雾化给药设备 WO2018107587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621393294.XU CN207253550U (zh) 2016-12-16 2016-12-16 便于给围术期病人雾化治疗的新型雾化给药设备
CN201621393294.X 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018107587A1 true WO2018107587A1 (zh) 2018-06-21

Family

ID=61913908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075967 WO2018107587A1 (zh) 2016-12-16 2017-03-08 便于给围术期病人雾化治疗的新型雾化给药设备

Country Status (2)

Country Link
CN (1) CN207253550U (zh)
WO (1) WO2018107587A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11541199B2 (en) * 2018-11-08 2023-01-03 General Electric Company Systems and methods for an ultrasonically driven anesthetic vaporizer
CN109847155B (zh) * 2019-01-21 2021-04-09 陶淑娟 自适应疾病处理平台
CN110236535B (zh) * 2019-05-23 2021-11-23 昌乐县人民医院 一种基于精神监测分析的智能辅助给药装置
CN113289161B (zh) * 2020-02-24 2023-08-01 深圳麦克韦尔科技有限公司 医疗雾化器及其控制方法
CN111282107A (zh) * 2020-03-12 2020-06-16 张尊敬 一种可调节给药速度的呼吸内科雾化给药装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019437A1 (en) * 1999-09-16 2001-03-22 Instrumentarium Corporation Nebulizer apparatus
US20040210151A1 (en) * 2003-04-15 2004-10-21 Ross Tsukashima Respiratory monitoring, diagnostic and therapeutic system
CN201049127Y (zh) * 2006-12-31 2008-04-23 王煜东 呼吸回路超声雾化治疗装置
CN102727971A (zh) * 2012-07-27 2012-10-17 王春飞 儿童药物雾化吸入装置
CN104208778A (zh) * 2014-09-19 2014-12-17 黑子清 用于呼吸回路的雾化给药系统
CN105396206A (zh) * 2015-11-27 2016-03-16 江苏鹿得医疗电子股份有限公司 带吸气感应间歇送风式医用超声波雾化器
CN105749385A (zh) * 2016-02-01 2016-07-13 北京怡和嘉业医疗科技有限公司 用于雾化器的喷药控制方法、喷药控制装置及雾化器
CN105781807A (zh) * 2016-05-04 2016-07-20 广州宇能新能源科技有限公司 应用于机动车发动机节能减排的富氧装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019437A1 (en) * 1999-09-16 2001-03-22 Instrumentarium Corporation Nebulizer apparatus
US20040210151A1 (en) * 2003-04-15 2004-10-21 Ross Tsukashima Respiratory monitoring, diagnostic and therapeutic system
CN201049127Y (zh) * 2006-12-31 2008-04-23 王煜东 呼吸回路超声雾化治疗装置
CN102727971A (zh) * 2012-07-27 2012-10-17 王春飞 儿童药物雾化吸入装置
CN104208778A (zh) * 2014-09-19 2014-12-17 黑子清 用于呼吸回路的雾化给药系统
CN105396206A (zh) * 2015-11-27 2016-03-16 江苏鹿得医疗电子股份有限公司 带吸气感应间歇送风式医用超声波雾化器
CN105749385A (zh) * 2016-02-01 2016-07-13 北京怡和嘉业医疗科技有限公司 用于雾化器的喷药控制方法、喷药控制装置及雾化器
CN105781807A (zh) * 2016-05-04 2016-07-20 广州宇能新能源科技有限公司 应用于机动车发动机节能减排的富氧装置

Also Published As

Publication number Publication date
CN207253550U (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
WO2018107587A1 (zh) 便于给围术期病人雾化治疗的新型雾化给药设备
CN106512158B (zh) 基于呼吸回路的智能雾化给药系统
CN110770163B (zh) 用于移动生成一氧化氮的系统和方法
US20120192863A1 (en) Humidification in breathing circuits
CN111821552A (zh) 一种用于医院和家庭环境的多功能呼吸治疗系统及方法
CN102355921A (zh) 用于提供气化麻醉剂的装置、集合体和方法
CN107583153A (zh) 一种呼吸支持的协同控制方法及综合集成系统
CN108498926A (zh) 一种医疗用带有加湿功能的小儿辅助呼吸设备
CN103736181A (zh) 呼吸机
CN105944201A (zh) 一种医用智能呼吸机
CN212914125U (zh) 一种辅助呼吸装置
CN109731200A (zh) 一种用于全身麻醉的吸入式麻醉机
CN103736182A (zh) 一种呼吸机
CN107875489A (zh) 可控气量的呼吸装置
CN109568745A (zh) 一种医用一氧化氮供气系统及方法
CN204484979U (zh) 一种具有气体质量改善功能的呼吸机
CN112604112A (zh) 一种用于慢阻肺康复训练的专用设备及其使用方法
CN112089946A (zh) 一种呼吸内科护理用输氧装置
CN204106767U (zh) 用于呼吸回路的雾化给药系统
EP3756710B1 (en) Icu-special portable atomizing device enabling autonomously breathing according to airflow
CN113952562A (zh) 一种雾化器
CN219764186U (zh) 吸气同步筛孔雾化相结合的高流量氧疗设备
CN219700730U (zh) 吸气同步喷射雾化相结合的高流量氧疗设备
CN110860019A (zh) 一种智能控制的多功能医用制氧机
CN219323754U (zh) 麻醉机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17879782

Country of ref document: EP

Kind code of ref document: A1