WO2018107309A1 - 电子装置及其充电控制方法 - Google Patents

电子装置及其充电控制方法 Download PDF

Info

Publication number
WO2018107309A1
WO2018107309A1 PCT/CN2016/109371 CN2016109371W WO2018107309A1 WO 2018107309 A1 WO2018107309 A1 WO 2018107309A1 CN 2016109371 W CN2016109371 W CN 2016109371W WO 2018107309 A1 WO2018107309 A1 WO 2018107309A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
voltage
current
phase
Prior art date
Application number
PCT/CN2016/109371
Other languages
English (en)
French (fr)
Inventor
黄霖锴
叶泽钢
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2016/109371 priority Critical patent/WO2018107309A1/zh
Priority to US16/330,302 priority patent/US20190229548A1/en
Priority to CN201680039406.8A priority patent/CN107980191A/zh
Publication of WO2018107309A1 publication Critical patent/WO2018107309A1/zh

Links

Images

Classifications

    • H02J7/0077
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electronic device, and more particularly to an electronic device having a charging function and a charging control method thereof.
  • the constant current charging phase usually applies a large current for constant current charging to quickly replenish the battery.
  • the constant current charging phase stops when the voltage of the battery reaches a preset value, and shifts to the constant voltage charging phase.
  • the preset value is often set too low, resulting in premature transition from the constant current charging phase to the constant voltage charging phase, and the charging speed cannot be maximized.
  • the embodiment of the invention discloses an electronic device and a charging control method thereof, which can prolong the time of the constant current charging phase and increase the charging speed.
  • the electronic device disclosed in the embodiment of the invention includes a battery, a charging management chip, a charging path impedance circuit and a processor
  • the battery includes a battery core
  • the charging path impedance circuit is located between the battery core and the charging management chip
  • the processor is configured to determine the resistance value of the charging path impedance circuit, and obtain the charging current in the constant current charging phase when the battery is in the constant current charging phase, and calculate according to the resistance value of the charging path impedance circuit and the charging current in the constant current charging phase.
  • the processor is further configured to adjust a constant voltage threshold voltage for triggering the battery to switch from a constant current charging phase to a constant voltage charging phase to an initial constant voltage threshold voltage and the charging path The sum of the partial pressures of the impedance circuits.
  • the charging control method disclosed in the embodiment of the present invention is applied to an electronic device, the electronic device includes a battery, and the battery includes a battery core and a charging circuit, wherein the method includes the steps of: determining a charging path impedance of the battery The resistance of the circuit; when the battery is in the constant current charging phase, the constant current charge is obtained.
  • the charging current of the electric phase; the voltage division of the charging path impedance circuit is calculated according to the resistance value of the charging path impedance circuit and the charging current of the constant current charging phase; and the constant switching of the trigger battery from the constant current charging phase to the constant voltage charging phase
  • the voltage threshold voltage is adjusted to be the sum of the initial constant voltage threshold voltage and the voltage division of the charging path impedance circuit.
  • the electronic device and the charging control method thereof of the invention can increase the critical value from the constant current charging phase to the constant voltage charging phase within a reasonable range, prolong the time of the constant current charging phase, and improve the charging speed.
  • FIG. 1 is a block diagram showing the structure of an electronic device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing changes in voltage and current of a battery in various charging stages according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of a charging control method in accordance with an embodiment of the present invention.
  • FIG. 4 is a sub-flow chart of step S301 in FIG.
  • FIG. 5 is a flowchart of a charging control method in another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an electronic device 100 according to an embodiment of the invention.
  • the electronic device 100 includes a battery 10 , a charging management chip 20 , a processor 30 , a charging path impedance circuit 35 , and a charging interface 40 .
  • the battery 10 includes a battery cell 11.
  • the charging path impedance circuit 35 It is a circuit having an impedance other than the battery core 11 between the charge management chip 20 and the battery 10.
  • the charging interface 40 is used to connect the charging power source 200.
  • the charging management chip 20 is configured to convert the power supply voltage connected to the charging interface 40 into a corresponding charging voltage Vic or charging current Ic to charge the battery 10 when the charging interface 40 is connected to the charging power source 200.
  • the charging management chip 20 detects the voltage Vd and the current Id of the battery 10 in real time, and controls the charging phase of the switching battery 10 according to the detected voltage Vd and/or current Id of the battery 10.
  • the charging phase of the battery 10 includes at least a constant current charging phase and a constant voltage charging phase.
  • the processor 30 is connected to the battery cell 11 and the power management chip 20.
  • the processor 30 is configured to determine the resistance value Rbat of the charging path impedance circuit 35, and obtain the battery 10 when it is in the constant current charging phase.
  • the charging current Ic in the constant current charging phase is calculated based on the resistance value Rbat of the charging path impedance circuit 35 and the charging current Ic in the constant current charging phase to calculate the divided voltage Vf of the charging path impedance circuit 35.
  • the initial constant voltage threshold voltage Vc1 is 4.2V (volts) or 4.35V.
  • the adjusted constant voltage threshold voltage Vc for triggering switching from the constant current charging phase to the constant voltage charging phase is the sum of the initial constant voltage threshold voltage Vc1 and the divided voltage Vf of the charging path impedance circuit 35, thereby being effective Prolong the time of the constant current charging phase and increase the charging speed.
  • the charging management chip 20 controls to switch the battery 10 from the constant current charging phase to the constant voltage when the battery 10 is in the constant current charging phase and detects that the voltage Vd of the battery 10 reaches the adjusted constant voltage threshold voltage Vc. Charging phase.
  • the voltage Vd of the battery 10 refers to the overall voltage of the battery 10, including the sum of the voltages of the battery cell 11 and the charging circuit 12.
  • the processor 30 determines the resistance value Rbat of the charging path impedance circuit 35 of the battery 10, including: the processor 30 acquires the current voltage of the battery cell 11 when the battery 10 is in a specific charging phase. Vbat, the charging voltage Vic and the charging current Ic output by the charging management chip 20, the processor 30 is calculated according to the voltage Vbat of the battery cell 11, the charging voltage Vic output by the charging management chip 20, and the charging current Ic.
  • the resistance value Rbat of the charging path impedance circuit 35 is derived.
  • the specific charging phase may be a constant current charging phase.
  • the specific charging phase may also be a pre-charging stage before a constant current charging phase or a constant voltage charging phase after a constant current charging phase, and the processor 30 acquires the battery cell 11 at the same time.
  • the processor 30 re-determines the resistance value Rbat of the charging path impedance circuit 35 at the beginning of each charging, and then, when determining that the battery 10 is in the constant current charging phase during the current charging process, acquires The charging current Ic in the constant current charging phase.
  • the processor 30 calculates the divided voltage Vf of the charging path impedance circuit 35 based on the resistance Rbat of the charging path impedance circuit 35 and the charging current Ic of the constant current charging phase, and switches the constant current charging phase to constant.
  • the constant voltage threshold voltage Vc in the voltage charging phase is adjusted to be the sum of the initial constant voltage threshold voltage Vc1 and the divided voltage Vf of the charging path impedance circuit 35. Therefore, since the resistance value Rbat of the charging path impedance circuit 35 may vary with time and usage conditions, the resistance value Rbat of the re-determined charging path impedance circuit 35 is more accurate each time charging is started.
  • the resistance value Rbat of the charging path impedance circuit 35 changes relatively slowly with time, which is a relatively fixed value
  • the processor 30 determines the resistance value Rbat of the charging path impedance circuit 35
  • the resistance value Rbat of the charging path impedance circuit 35 may not be re-determined subsequently.
  • the processor 30 re-determines the resistance value Rbat of the charging path impedance circuit 35 every predetermined time interval (for example, ten days) or a preset number of charging times (for example, 20 times).
  • the processor 30 After the processor 30 re-determines the resistance value Rbat of the charging path impedance 35, the voltage division Vf of the charging path impedance circuit 35 is calculated according to the resistance value Rbat of the charging path impedance circuit 35 and the charging current Ic of the constant current charging phase. And the constant voltage threshold voltage Vc that switches the constant current charging phase to the constant voltage charging phase is adjusted to the sum of the initial constant voltage threshold voltage Vc1 and the divided voltage Vf of the charging path impedance circuit 35. Thereby, the adjusted constant voltage threshold voltage Vc is newly determined
  • the charging phase of the battery 10 includes the aforementioned pre-charging phase, constant current charging phase, constant voltage charging phase, and charging cut-off.
  • the charge management chip 20 prestores a constant current threshold voltage V L for triggering switching from the precharge phase to the constant current charge phase, and a constant voltage threshold voltage Vc1 for triggering the switching from the constant current charging phase to the constant voltage charging phase. It is used to trigger the cutoff critical current Ij from the constant voltage charging phase to the charging cutoff.
  • the charge management chip 20 replaces the constant voltage threshold voltage Vc1 with the adjusted constant voltage threshold voltage Vc in response to the control of the processor 30.
  • FIG. 2 is a schematic diagram of changes in the voltage Vd and the current Id of the battery 10 at various charging stages.
  • the charging management chip 20 controls the battery 10 to enter a pre-charging stage when it is determined that the voltage of the battery 10 is less than the constant current threshold voltage V L .
  • the charge management chip 20 controls charging of the battery 10 with a small current.
  • the voltage Vd of the battery 10 gradually rises.
  • the charge management chip 20 determines that the voltage Vd of the battery 10 is greater than or equal to the constant current threshold voltage V L
  • the battery 10 is controlled to enter a constant current charging phase.
  • the charge management chip 20 controls the output of a constant large current to charge the battery 10. Also, as shown in FIG. 2, as the charging progresses, the voltage Vd of the battery 10 continues to rise gradually.
  • the charge management chip 20 determines that the voltage Vd of the battery 10 is greater than or equal to the adjusted constant voltage.
  • the battery 10 is controlled to enter a constant voltage charging phase.
  • the charge management chip 20 determines the battery 10 with respect to the existing charging control.
  • the voltage Vd rises to the initial constant voltage threshold voltage Vc1 to control the battery 10 to enter the constant voltage charging phase.
  • the present application can maintain a longer period of time in the constant current charging phase, that is, charging for a longer time with a large current, and improving the charging. speed.
  • the voltage Vbat of the battery cell 11 rises to the initial constant voltage threshold voltage Vc1
  • the voltage Vd of the battery 10 rises to Vc1+Vf to trigger the charge management chip 20 to control the switching to the constant voltage charging phase. Therefore, in the constant current charging phase, it is ensured that the voltage of the cell 11 is maintained below the initial constant voltage threshold voltage Vc1 without increasing the charging risk of the battery 10.
  • the charge management chip 20 controls the output of the constant charging voltage Vic to charge the battery 10, and since the voltage Vd of the battery 10 gradually rises, the charging voltage Vic and the battery The difference between the voltages Vd of 10 will become smaller and smaller.
  • the current Id of the battery 10 will gradually decrease during the constant voltage charging phase.
  • the voltage Vd of the battery 10 gradually rises, but rises slowly. Therefore, in the constant voltage charging phase, as shown in FIG. 2, the voltage Vd of the battery 10 can also be regarded as a constant voltage.
  • the control station When the current Id of the battery 10 is reduced to less than or equal to the cutoff critical current Ij, that is, when the charge management chip 20 determines that the current Id of the battery 10 is less than or equal to the cutoff critical current Ij, the control station The charging of the battery 10 is turned off, that is, the charging of the battery 10 is stopped.
  • the battery 10 includes a positive terminal 101 and a negative terminal 102 .
  • the charge management chip 20 is connected to the positive terminal 101 and the negative terminal 102 of the battery 10, and supplies the battery 10 with a charging voltage Vic and a charging current Ic.
  • the charge management chip 20 determines the voltage Vd of the battery 10 by detecting the voltage of the positive terminal 101 of the battery 10.
  • the charging current Ic is the current output by the charging management chip 20, and is equal to the current flowing through the battery 10, so the charging management chip 20 can determine the charging current Ic according to the output.
  • the charging path impedance circuit 35 includes a battery internal circuit 36 located in the battery 10 and a connection circuit 37 outside the battery 10.
  • the connection circuit 37 includes a connection line, a flexible circuit board, and/or a PCB trace between the battery 10 and the charge management chip, and the like.
  • the connection circuit 37 is located between the negative electrode 102 of the battery 10 and the charge management chip 20, and the connection circuit 37 can be equivalent to a resistor R0.
  • the battery 10 further includes a protection module 13 for detecting the temperature of the battery core 11 and the voltage Vbat and current Id of the battery core 11, and determining the battery core 11
  • a protection signal is generated during temperature, overvoltage or overcurrent.
  • the battery internal circuit 36 includes a discharge path switch 121 and a charging path switch 122 .
  • the discharge path switch 121 and the charging path switch 122 are connected in series in the current loop of the battery cell 11 .
  • the discharge path switch 121 and the charging path switch 122 are connected in series between the negative electrode of the battery cell 11 and the ground.
  • the protection module 13 is connected to the discharge path switch 121 and the charging path switch 122.
  • the protection module 13 When the battery cell 11 is over-temperature, over-voltage or over-current and the battery 10/cell 11 is in a discharging state, the protection module 13 outputs a protection signal to the discharge path switch 121, and controls the discharge path switch 121 to cut stop. Thereby, the current loop of the battery 10 is cut off, and the battery 10 stops discharging.
  • the protection module 13 When the battery cell 11 is over-temperature, over-voltage or over-current and the battery 10/cell 11 is in a charging state, the protection module 13 outputs a protection signal to the charging path switch 122 to control the charging path switch 122 to be turned off. Similarly, the current loop of the battery 10 is shut off and the battery 10 stops charging.
  • the discharge path switch 121 is a first MOS transistor Q1
  • the charging path switch 122 is a second MOS transistor Q2.
  • the protection module 13 includes a first output pin 131 and a second output pin 132.
  • the gate of the first MOS transistor Q1 is electrically connected to the first output pin 131 of the protection module 13, the source is electrically connected to the battery cell 11, and the drain is electrically connected to the drain of the MOS transistor Q2. connection.
  • the gate of the second MOS transistor Q2 is electrically connected to the second output pin 131 of the protection module 13, and the source is coupled to the ground.
  • the first MOS transistor Q1 and the second MOS transistor Q2 are NMOS transistors.
  • the protection signal output by the protection module 13 is a low level signal.
  • the protection module 13 outputs a low level protection signal to the first through the first output pin 131 when determining that the battery cell 11 is over temperature, overvoltage or overcurrent and the battery 10/cell 11 is in a discharged state.
  • the gate of the MOS transistor Q1 controls the first MOS transistor Q1 to be turned off.
  • the protection module 13 outputs a low level protection signal to the second through the second output pin 132 when determining that the battery cell 11 is over temperature, overvoltage or overcurrent and the battery 10/cell 11 is in a charged state.
  • the MOS transistor Q2 controls the second MOS transistor Q2 to be turned off.
  • the protection module 13 determines that the battery cell 11 has not experienced any of over temperature, overvoltage, and overcurrent, the first output pin 131 and the second output pin 132 are continuously outputted. The high level maintains the first MOS transistor Q1 and the second MOS transistor Q2 on.
  • the charging circuit 12 further includes a resistor R1 , which is connected in series with the charging path switch 121 and the discharge path switch 122 in the current loop of the battery core 11 .
  • the resistor R1 is connected between the cathode of the battery cell 11 and the source of the first MOS transistor Q1.
  • the resistor R1 can be a precision resistor.
  • the divided voltage Vf of the charging path impedance circuit 35 is the sum of the voltages of the resistor R1, the first MOS transistor Q1, and the second MOS transistor Q2.
  • the processor 30 includes two detection pins 31 , and the two detection pins 31 are connected to the positive and negative poles of the battery core 11 , and the processor 30 detects the battery core 11 . Positive and negative voltage The difference determines the voltage Vbat of the cell 11.
  • the processor 30 includes an I 2 C bus interface or an FPC connection interface, etc., and the I 2 C bus interface or flexible circuit board (FPC) connection interface of the processor 30 is through an I 2 C bus or An FPC or the like is connected to the battery cell 11, and the processor 30 detects the voltage Vbat of the battery cell 11 via an I 2 C bus or FPC or the like.
  • I 2 C bus interface or an FPC connection interface etc.
  • FPC flexible circuit board
  • the charging interface 40 can be a USB interface or the like.
  • the charging power source 200 can be a wired or wireless mains adapter connected to a commercial power supply, or can be a USB interface power supply of a computer or the like.
  • the processor 30 can be a central processing unit, a microprocessor, a microcontroller, a single chip microcomputer, a digital signal processor, or the like.
  • the protection module 13 of the battery 10 can be a protection chip, and specifically can also be a micro control chip such as a single chip microcomputer, a microprocessor, or a microcontroller.
  • the electronic device 100 can be a battery-equipped device such as a mobile phone, a tablet computer, a notebook computer, a head mounted display device, or the like.
  • FIG. 3 is a flowchart of a charging control method according to an embodiment of the present invention.
  • the method is applied to the aforementioned electronic device 100.
  • the method includes the steps of:
  • the processor 30 determines the resistance value Rbat of the charging path impedance circuit 35 in the battery 10 (S301).
  • the processor 30 acquires the charging current Ic in the constant current charging phase when the battery 10 is in the constant current charging phase (S302)
  • the constant voltage threshold voltage Vc that switches the constant current charging phase to the constant voltage charging phase is adjusted to the sum of the initial constant voltage threshold voltage Vc1 and the divided voltage Vf of the charging path impedance circuit 35 (S304).
  • the method further comprises the steps of:
  • the charging management chip 20 controls to switch the battery 10 from the constant current charging phase to the constant voltage charging phase when detecting that the voltage Vd of the battery 10 reaches the adjusted constant voltage threshold voltage Vc. (S305).
  • the method further includes the step of: before the step S301, the charging management chip 20 detects the voltage of the battery 10 when the battery 10 is charged, and determines that the voltage of the battery 10 is less than the constant current threshold voltage V.
  • the battery 10 is controlled to enter a precharge phase. In the precharge phase, the charge management chip 20 controls charging of the battery 10 with a small current.
  • the method further includes the step of: the charging management chip 20 controlling the battery 10 to enter a constant current charging phase when determining that the voltage of the battery 10 is greater than or equal to the constant current threshold voltage V L .
  • the charge management chip 20 controls the output of a constant large current to charge the battery 10.
  • the method further includes the step of: the charging management chip 20 controlling the battery 10 to enter a constant current charging phase when determining that the voltage of the battery 10 is greater than or equal to the adjusted constant voltage threshold voltage Vc.
  • the charge management chip 20 controls the output of a constant voltage to charge the battery 10.
  • the method further includes the steps of: the charging management chip 20 detecting the current Id of the battery 10 when charging the battery 10, and determining that the current Id of the battery 10 is less than or equal to the cutoff in the constant voltage charging phase. At the critical current Ij, charging of the battery 10 is stopped.
  • step S301 specifically includes:
  • the processor 30 acquires the voltage Vbat of the current battery cell 11, the charging voltage Vic output by the charging management chip 20, and the charging current Ic when the battery 10 is in a specific charging phase (S3011).
  • the specific charging phase may be any one of a constant current charging phase, a pre-charging phase, and a constant voltage charging phase.
  • FIG. 5 is a flowchart of a charging control method according to another embodiment of the present invention.
  • the charging control method includes the steps of:
  • the charging control chip 20 detects the voltage Vd of the battery 10 when the battery 10 is charged (S501).
  • step S502 is performed to perform steps when detecting that the voltage Vd of the battery 10 is greater than or equal to the constant current threshold voltage V L and less than the initial constant voltage threshold voltage Vc1.
  • step S509 is performed.
  • the charge control chip 20 controls the battery 10 to enter the precharge phase (S502). Among them, in pre-charging At the stage, the charge management chip 20 controls charging of the battery 10 with a small current.
  • the charge control chip 20 determines whether the voltage Vd of the battery 10 is smaller than the constant current threshold voltage V L (S501). If yes, the process returns to step S502, and if no, step S504 is performed.
  • the charge control chip 20 controls the battery 10 to enter the constant current charging phase (S504).
  • the processor 30 acquires the current voltage Vbat of the battery cell 11, the charging voltage Vic output by the charge management chip 20, and the charging current Ic (S505).
  • the processor 30 calculates the resistance Rbat of the charging path impedance circuit 35 based on the voltage Vbat of the battery cell 11, the charging voltage Vic output by the charging management chip 20, and the charging current Ic (S506).
  • the processor 30 adjusts the constant voltage threshold voltage Vc1 to Vc1 + Ic * Rbat to obtain the adjusted constant voltage threshold voltage Vc (S507).
  • the charge control chip 20 determines whether the voltage Vd of the battery 10 is smaller than the adjusted constant voltage threshold voltage Vc (S508). If yes, go back to step S508, and if no, go to step S509.
  • the charge control chip 20 controls the battery 10 to enter the constant voltage charging phase (S509).
  • the charge control chip 20 determines whether the current Id of the battery 10 is greater than the cutoff critical current Ij (S510). If yes, go back to step S509, if no, go to step S511.
  • the charge control chip 20 controls the charge cutoff of the battery 10 (S511).
  • the resistance Rbat of the charging path impedance circuit 35 is determined during the constant current charging phase.
  • the charging path impedance circuit The resistance value Rbat of 35 can also be determined during any charging phase entered after the battery 10 is turned on. For example, if the battery 10 is turned on and the incoming charging phase is the pre-charging phase, the resistance value Rbat of the charging path impedance circuit 35 can be determined during the pre-charging phase.
  • the constant voltage threshold voltage Vc for switching the constant current charging phase to the constant voltage charging phase can be increased within an allowable range, so that the constant current charging phase takes longer. , effectively improve the charging speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开一种充电控制方法,应用于电子装置中,所述方法包括步骤:确定电子装置的电池的充电路径阻抗电路的阻值;在电池处于恒流充电阶段时,获取恒流充电阶段的充电电流;根据充电路径阻抗电路的阻值以及恒流充电阶段的充电电流计算得出充电路径阻抗电路的分压;以及将触发电池从恒流充电阶段切换到恒压充电阶段的恒压临界电压调整为初始的恒压临界电压与所述充电路径阻抗电路的分压之和。本申请还公开所述电子装置,本申请的电子装置及充电控制方法,可将所述恒流充电阶段在允许范围内设置的更长,提高充电速度。

Description

电子装置及其充电控制方法 技术领域
本发明涉及一种电子装置,尤其涉及一种具有充电功能的电子装置及其充电控制方法。
背景技术
目前,手机、平板电脑、头戴式显示装置等电子装置已经应用比较广泛,极大地便利和改善了人们的生活。目前的电子装置,通常配备可充电电池,可以循环使用。现在对电子装置的电池的充电,通常包括预充电、恒流充电、恒压充电以及充电截止几个阶段。通常为了实现快速充电,恒流充电阶段通常会施加大电流进行恒流充电,以对电池快速补充电量。一般,恒流充电阶段在电池的电压达到预设值时就会停止,而转入恒压充电阶段。然而,现有技术中,所述预设值往往设置地过低,导致过早地从恒流充电阶段转入恒压充电阶段,充电速度无法达到最大。
发明内容
本发明实施例公开一种电子装置及其充电控制方法,可延长恒流充电阶段的时间,提高充电速度。
本发明实施例公开的电子装置,包括电池、充电管理芯片、充电路径阻抗电路及处理器,所述电池包括电芯,所述充电路径阻抗电路位于电芯及充电管理芯片之间,其中,所述处理器用于确定充电路径阻抗电路的阻值,并在电池处于恒流充电阶段时,获取恒流充电阶段的充电电流,并根据充电路径阻抗电路的阻值以及恒流充电阶段的充电电流计算得出充电路径阻抗电路的分压,所述处理器并用于将触发所述电池从恒流充电阶段切换到恒压充电阶段的恒压临界电压调整为初始的恒压临界电压与所述充电路径阻抗电路的分压之和。
本发明实施例公开的充电控制方法,应用于一电子装置中,所述电子装置包括电池,所述电池包括电芯及充电电路,其中,所述方法包括步骤:确定所述电池的充电路径阻抗电路的阻值;在电池处于恒流充电阶段时,获取恒流充 电阶段的充电电流;根据充电路径阻抗电路的阻值以及恒流充电阶段的充电电流计算得出充电路径阻抗电路的分压;以及将触发电池从恒流充电阶段切换到恒压充电阶段的恒压临界电压调整为初始的恒压临界电压与所述充电路径阻抗电路的分压之和。
本发明的电子装置及其充电控制方法,可在合理的范围内增大从恒流充电阶段转入恒压充电阶段的临界值,延长了恒流充电阶段的时间,提高充电速度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例中的电子装置的结构框图。
图2为本发明一实施例中的电池在各个充电阶段的电压及电流的变化示意图。
图3为本发明一实施例中的充电控制方法的流程图。
图4为图3中的步骤S301的子流程图。
图5为本发明另一实施例中的充电控制方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,为本发明一实施例中的电子装置100的示意图。如图1所示,所述电子装置100包括电池10、充电管理芯片20、处理器30、充电路径阻抗电路35及充电接口40。所述电池10包括电芯11。所述充电路径阻抗电路35 为充电管理芯片20与电池10之间的除电芯11之外的具有阻抗的电路。
所述充电接口40用于连接充电电源200。所述充电管理芯片20用于在所述充电接口40连接于充电电源200时,将充电接口40接入的电源电压转换为相应的充电电压Vic或充电电流Ic对电池10进行充电。所述充电管理芯片20并实时侦测电池10的电压Vd及电流Id,并根据侦测到的电池10的电压Vd和/或电流Id控制切换电池10的充电阶段。在一些实施例中,所述电池10的充电阶段至少包括恒流充电阶段和恒压充电阶段。
所述处理器30与所述电芯11及所述电源管理芯片20连接,所述处理器30用于确定充电路径阻抗电路35的阻值Rbat,并在电池10处于恒流充电阶段时,获取恒流充电阶段的充电电流Ic,并根据充电路径阻抗电路35的阻值Rbat以及恒流充电阶段的充电电流Ic计算得出充电路径阻抗电路35的分压Vf。所述处理器30并将触发从恒流充电阶段切换到恒压充电阶段的恒压临界电压Vc调整为初始的恒压临界电压Vc1与所述充电路径阻抗电路35的分压Vf之和,即调整至Vc=Vc1+Vf。其中,所述处理器30根据公式:分压Vf=Rbat*Ic计算得出所述充电路径阻抗电路35的分压Vf。
在一些实施例中,所述初始的恒压临界电压Vc1为4.2V(伏特)或4.35V。
由于调整后的用于触发从恒流充电阶段切换到恒压充电阶段的恒压临界电压Vc为初始的恒压临界电压Vc1与所述充电路径阻抗电路35的分压Vf之和,从而可有效地延长恒流充电阶段的时间,提高充电速度。
所述充电管理芯片20在电池10处于恒流充电阶段时,侦测到电池10的电压Vd达到所述调整后的恒压临界电压Vc时,控制将电池10从恒流充电阶段切换至恒压充电阶段。其中,所述电池10的电压Vd指的是电池10的整体电压,包括电芯11及充电电路12的电压之和。
在一些实施例中,所述处理器30确定电池10的充电路径阻抗电路35的阻值Rbat,包括:所述处理器30在电池10处于特定充电阶段时,获取当前所述电芯11的电压Vbat、所述充电管理芯片20输出的充电电压Vic及充电电流Ic,所述处理器30根据所述电芯11的电压Vbat、所述充电管理芯片20输出的充电电压Vic及充电电流Ic计算得出所述充电路径阻抗电路35的阻值Rbat。
具体的,所述处理器30根据公式:Rbat=(Vic-Vbat)/Ic计算得出所述充电路径阻抗电路35的阻值Rbat。
其中,所述特定充电阶段可为恒流充电阶段。在其他实施例中,所述特定充电阶段还可为恒流充电阶段之前的预充电阶段或恒流充电阶段之后的恒压充电阶段,所述处理器30获取同一时刻下的所述电芯11的电压Vbat、所述充电管理芯片20输出的充电电压Vic及充电电流Ic。在同一时刻下,所述电芯11的电压Vbat、所述充电管理芯片20输出的充电电压Vic及充电电流Ic与充电路径阻抗电路35的阻值Rbat相关,同样能根据公式:Rbat=(Vic-Vbat)/Ic计算得出所述充电路径阻抗电路35的阻值Rbat。
在一些实施例中,所述处理器30在每次充电开始,则重新确定充电路径阻抗电路35的阻值Rbat,然后,在本次充电过程中确定电池10处于恒流充电阶段时,则获取恒流充电阶段的充电电流Ic。如前所述,处理器30并根据充电路径阻抗电路35的阻值Rbat以及恒流充电阶段的充电电流Ic计算得出充电路径阻抗电路35的分压Vf,并将恒流充电阶段切换到恒压充电阶段的恒压临界电压Vc调整为初始的恒压临界电压Vc1与所述充电路径阻抗电路35的分压Vf之和。从而,由于充电路径阻抗电路35的阻值Rbat可能会随着时间和使用条件的变化而有所变化,每次充电开始时,重新确定的充电路径阻抗电路35的阻值Rbat会更精准。
在另一些实施例中,由于充电路径阻抗电路35的阻值Rbat随着时间的变化会比较缓慢,是相对固定的值,所述处理器30在确定充电路径阻抗电路35的阻值Rbat后,后续可不再重新确定所述充电路径阻抗电路35的阻值Rbat。或者,所述处理器30每间隔预设时间(例如十天)或者预设充电次数(例如20次)才重新确定充电路径阻抗电路35的阻值Rbat。所述处理器30并在重新确定充电路径阻抗35的阻值Rbat后,根据充电路径阻抗电路35的阻值Rbat以及恒流充电阶段的充电电流Ic计算得出充电路径阻抗电路35的分压Vf,并将恒流充电阶段切换到恒压充电阶段的恒压临界电压Vc调整为初始的恒压临界电压Vc1与所述充电路径阻抗电路35的分压Vf之和。从而,重新确定调整后的恒压临界电压Vc
其中,所述电池10的充电阶段包括前述的预充电阶段、恒流充电阶段、 恒压充电阶段及充电截止。所述充电管理芯片20中预存有用于触发从预充电阶段切换为恒流充电阶段的恒流临界电压VL、用于触发从恒流充电阶段切换到恒压充电阶段的恒压临界电压Vc1、用于触发从恒压充电阶段切换到充电截止的截止临界电流Ij。所述充电管理芯片20响应所述处理器30的控制,将所述恒压临界电压Vc1替换为所述调整后的恒压临界电压Vc。
请一并参阅图2,为电池10处于各个充电阶段的电压Vd和电流Id的变化示意图。其中,所述充电管理芯片20在判断所述电池10的电压小于所述恒流临界电压VL时,控制所述电池10进入预充电阶段。在预充电阶段,所述充电管理芯片20控制以小电流对电池10充电。如图2所示,在预充电阶段,随着充电的进行,电池10的电压Vd逐渐上升。
当所述电池10的电压Vd上升至大于或等于所述恒流临界电压VL时,即,所述充电管理芯片20判断所述电池10的电压Vd大于等于所述恒流临界电压VL时,控制所述电池10进入恒流充电阶段。在恒流充电阶段,所述充电管理芯片20控制输出恒定的大电流对所述电池10进行充电。同样,如图2所示,随着充电的进行,电池10的电压Vd继续逐渐上升。
当所述电池10的电压Vd上升至大于或等于所述调整后的恒压临界电压Vc时,即,所述充电管理芯片20判断所述电池10的电压Vd大于等于所述调整后的恒压临界电压Vc时,控制所述电池10进入恒压充电阶段。
由于所述调整后的恒压临界电压Vc等于初始的恒压临界电压Vc1与充电路径阻抗电路35的分压Vf之和,相对于现有的充电控制,所述充电管理芯片20判断电池10的电压Vd上升至初始的恒压临界电压Vc1就控制所述电池10进入恒压充电阶段,本申请可以在恒流充电阶段维持更长的时间,即以大电流充电的时间更长,提高了充电速度。此外,由于电芯11的电压Vbat上升至所述初始的恒压临界电压Vc1时,电池10的电压Vd会上升为Vc1+Vf而触发所述充电管理芯片20控制切换至恒压充电阶段。因此,在恒流充电阶段会保证电芯11的电压维持在所述初始的恒压临界电压Vc1之下,不会增加电池10的充电风险。
在恒压充电阶段,所述充电管理芯片20控制输出恒定的充电电压Vic对电池10充电,由于电池10的电压Vd逐渐上升,因此,充电电压Vic与电池 10的电压Vd之差会越来越小,在电池10的总体阻值不变的情况下,如图2所示,在恒压充电阶段,电池10的电流Id将会逐渐减小。所述电池10的电压Vd逐渐上升,但是上升较为缓慢。故此在恒压充电阶段,如图2所示,所述电池10的电压Vd也可近似视为恒定电压。
当所述电池10的电流Id减少至小于或等于所述截止临界电流Ij时,即,所述充电管理芯片20判断所述电池10的电流Id小于或等于所述截止临界电流Ij时,控制所述电池10的充电截止,即停止对电池10充电。
其中,如图1所示,所述电池10包括正极端101及负极端102。所述充电管理芯片20与电池10的正极端101及负极端102连接,而为电池10提供充电电压Vic及充电电流Ic。所述充电管理芯片20并通过侦测电池10的正极端101的电压确定所述电池10的电压Vd。其中,由于电池10与充电管理芯片20串联,充电电流Ic为充电管理芯片20输出的电流,也等于流过电池10的电流,故所述充电管理芯片20可根据输出的充电电流Ic确定所述电池10的电流Id。
如图1所示,所述充电路径阻抗电路35包括位于电池10中的电池内部电路36及电池10外的连接电路37。所述连接电路37包括连接线路、柔性电路板和/或位于电池10与充电管理芯片之间的PCB走线等。在一些实施例中,所述连接电路37位于电池10的负极102与充电管理芯片20之间,且所述连接电路37可等效为一电阻R0。
如图1所示,所述电池10还包括保护模块13,所述保护模块13用于侦测所述电芯11的温度及电芯11的电压Vbat、电流Id,并在判断电芯11过温、过压或过流时,产生保护信号。
如图1所示,所述电池内部电路36包括放电路径开关121及充电路径开关122,所述放电路径开关121及充电路径开关122串联于所述电芯11的电流回路中。具体的,所述放电路径开关121及充电路径开关122串联于所述电芯11的负极与地之间。
所述保护模块13与所述放电路径开关121及充电路径开关122连接。在电芯11过温、过压或过流且电池10/电芯11处于放电状态下时,所述保护模块13输出保护信号至所述放电路径开关121,控制所述放电路径开关121截 止。从而,截断所述电池10的电流回路,电池10停止放电。
在电芯11过温、过压或过流且电池10/电芯11处于充电状态下时,所述保护模块13输出保护信号至所述充电路径开关122,控制所述充电路径开关122截止。同样,截断所述电池10的电流回路,电池10停止充电。
在一些实施例中,如图1所示,所述放电路径开关121为一第一MOS管Q1,所述充电路径开关122为一第二MOS管Q2。所述保护模块13包括第一输出引脚131及第二输出引脚132。
所述第一MOS管Q1的栅极与所述保护模块13的第一输出引脚131电连接,源极与所述电芯11的电连接,漏极与所述MOS管Q2的漏极电连接。所述第二MOS管Q2的栅极与所述保护模块13的第二输出引脚131电连接,源极与地耦接。
如图1所示,所述第一MOS管Q1及第二MOS管Q2为NMOS管。所述保护模块13输出的保护信号为低电平信号。所述保护模块13在判断电芯11过温、过压或过流且电池10/电芯11处于放电状态下时,通过第一输出引脚131输出低电平的保护信号至所述第一MOS管Q1的栅极,控制所述第一MOS管Q1截止。所述保护模块13在判断电芯11过温、过压或过流且电池10/电芯11处于充电状态下时,通过第二输出引脚132输出低电平的保护信号至所述第二MOS管Q2,控制所述第二MOS管Q2截止。
显然,当所述保护模块13判断所述电芯11未发生过温、过压及过流中的任意一种情况时,控制所述第一输出引脚131及第二输出引脚132持续输出高电平而维持所述第一MOS管Q1及第二MOS管Q2导通。
如图1所示,所述充电电路12还包括电阻R1,所述电阻R1与所述充电路径开关121及放电路径开关122串联于电芯11的电流回路中。具体的,所述电阻R1连接于所述电芯11的负极与所述第一MOS管Q1的源极之间。所述电阻R1可为精密电阻。
所述充电路径阻抗电路35的分压Vf为所述电阻R1、所述第一MOS管Q1及所述第二MOS管Q2的电压之和。
如图1所示,所述处理器30包括两个侦测引脚31,所述两个侦测引脚31与电芯11的正负极连接,所述处理器30通过侦测电芯11的正负极的电压之 差确定所述电芯11的电压Vbat。
在另一些实施例中,所述处理器30包括I2C总线接口或FPC连接接口等,所述处理器30的I2C总线接口或柔性电路板(FPC)连接接口通过I2C总线或FPC等与所述电芯11连接,所述处理器30通过I2C总线或FPC等侦测所述电芯11的电压Vbat。
其中,所述充电接口40可为USB接口等。所述充电电源200可为连接有市电的有线或无线的市电适配器,或者可为电脑的USB接口电源等等。
所述处理器30可为中央处理器、微处理器、微控制器、单片机、数字信号处理器等。所述电池10的保护模块13可为保护芯片,具体也可为单片机、微处理器、微控制器等微控制芯片。
所述电子装置100可为手机、平板电脑、笔记本电脑、头戴式显示装置等等具有电池的装置。
请参阅图3,为本发明一实施例中的充电控制方法的流程图。所述方法应用于前述的电子装置100中。所述方法包括步骤:
处理器30确定电池10中的充电路径阻抗电路35的阻值Rbat(S301)。
处理器30在电池10处于恒流充电阶段时,获取恒流充电阶段的充电电流Ic(S302)
根据充电路径阻抗电路35的阻值Rbat以及恒流充电阶段的充电电流Ic计算得出充电路径阻抗电路35的分压Vf(S303)。具体的,根据公式:分压Vf=Rbat*Ic计算得出所述充电路径阻抗电路35的分压Vf。
将恒流充电阶段切换到恒压充电阶段的恒压临界电压Vc调整为初始的恒压临界电压Vc1与所述充电路径阻抗电路35的分压Vf之和(S304)。
在一些实施例中,所述方法还包括步骤:
充电管理芯片20在电池10处于恒流充电阶段时,侦测到电池10的电压Vd达到所述调整后的恒压临界电压Vc时,控制将电池10从恒流充电阶段切换至恒压充电阶段(S305)。
在一些实施例中,所述方法在步骤S301之前还包括步骤:充电管理芯片20在对电池10进行充电时,侦测电池10的电压,在判断所述电池10的电压小于恒流临界电压VL时,控制所述电池10进入预充电阶段。在预充电阶段, 所述充电管理芯片20控制以小电流对电池10充电。
在一些实施例中,所述方法还包括步骤:充电管理芯片20在判断所述电池10的电压大于等于恒流临界电压VL时,控制所述电池10进入恒流充电阶段。在恒流充电阶段,所述充电管理芯片20控制输出恒定的大电流对所述电池10进行充电。
在一些实施例中,所述方法还包括步骤:充电管理芯片20在判断所述电池10的电压大于等于调整后的恒压临界电压Vc时,控制所述电池10进入恒流充电阶段。在恒流充电阶段,所述充电管理芯片20控制输出恒定的电压对所述电池10进行充电。
在一些实施例中,所述方法还包括步骤:充电管理芯片20在对电池10进行充电时,侦测电池10的电流Id,在恒压充电阶段判断所述电池10的电流Id小于或等于截止临界电流Ij时,停止对电池10充电。
请参阅图4,为一实施例中的步骤S301的子流程图。所述步骤S301具体包括:
处理器30在电池10处于特定充电阶段时,获取当前所述电芯11的电压Vbat、所述充电管理芯片20输出的充电电压Vic及充电电流Ic(S3011)。
所述处理器30根据所述电芯11的电压Vbat、所述充电管理芯片20输出的充电电压Vic及充电电流Ic计算得出所述充电路径阻抗电路35的阻值Rbat(S3011)。具体的,所述处理器30根据公式:Rbat=(Vic-Vbat)/Ic计算得出所述充电路径阻抗电路35的阻值Rbat。其中,所述特定充电阶段可为恒流充电阶段、预充电阶段及恒压充电阶段中的任意一个。
请参阅图5,为本发明另一实施例中的充电控制方法的流程图。在另一实施例中,所述充电控制方法包括步骤:
充电控制芯片20在对电池10进行充电时,侦测电池10的电压Vd(S501)。当侦测电池10的电压Vd小于恒流临界电压VL时,执行步骤S502,当侦测电池10的电压Vd大于等于恒流临界电压VL时且小于初始恒压临界电压Vc1时,执行步骤S504,当侦测电池10的电压大于等于初始恒压临界电压Vc1时,执行步骤S509。
充电控制芯片20控制电池10进入预充电阶段(S502)。其中,在预充电 阶段,所述充电管理芯片20控制以小电流对电池10充电。
充电控制芯片20判断所述电池10的电压Vd是否小于恒流临界电压VL(S501)。如果是,则返回步骤S502,如果否,则执行步骤S504。
充电控制芯片20控制电池10进入恒流充电阶段(S504)。
处理器30获取电芯11当前的电压Vbat、所述充电管理芯片20输出的充电电压Vic及充电电流Ic(S505)。
处理器30根据所述电芯11的电压Vbat、所述充电管理芯片20输出的充电电压Vic及充电电流Ic计算得出所述充电路径阻抗电路35的阻值Rbat(S506)。
处理器30将恒压临界电压Vc1调整成为Vc1+Ic*Rbat得到调整后的恒压临界电压Vc(S507)。
充电控制芯片20判断所述电池10的电压Vd是否小于调整后的恒压临界电压Vc(S508)。如果是,则返回步骤S508,如果否,则执行步骤S509。
充电控制芯片20控制电池10进入恒压充电阶段(S509)。
充电控制芯片20判断电池10的电流Id是否大于所述截止临界电流Ij(S510)。如果是,则返回步骤S509,如果否,则执行步骤S511。
充电控制芯片20控制电池10的充电截止(S511)。
其中,图5所示的实施例中,所述充电路径阻抗电路35的阻值Rbat是在恒流充电阶段确定的,显然,如前所述,在其他实施例中,所述充电路径阻抗电路35的阻值Rbat还可在电池10开启充电后所进入的任一充电阶段中确定。例如,若电池10开启充电后,进入的充电阶段为预充电阶段,则所述充电路径阻抗电路35的阻值Rbat可在预充电阶段确定。
本发明的电子装置100及充电控制方法,可在允许范围内调高所述用于将恒流充电阶段切换到恒压充电阶段的恒压临界电压Vc,使得恒流充电阶段的时间会更长,有效提高充电速度。
以上所述是本发明的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (20)

  1. 一种电子装置,包括电池、充电管理芯片、充电路径阻抗电路及处理器,所述电池包括电芯,所述充电路径阻抗电路位于电芯及充电管理芯片之间,其特征在于,所述处理器用于确定充电路径阻抗电路的阻值,并在电池处于恒流充电阶段时,获取恒流充电阶段的充电电流,并根据充电路径阻抗电路的阻值以及恒流充电阶段的充电电流计算得出充电路径阻抗电路的分压,所述处理器并用于将触发电池从恒流充电阶段切换到恒压充电阶段的恒压临界电压调整为初始的恒压临界电压与所述充电路径阻抗电路的分压之和。
  2. 如权利要求1所述的电子装置,其特征在于,所述处理器在电池处于特定充电阶段时,获取所述电芯的电压、所述充电管理芯片输出的充电电压及充电电流,所述处理器根据所述电芯的电压、所述充电管理芯片输出的充电电压及充电电流计算得出所述充电路径阻抗电路的阻值。
  3. 如权利要求2所述的电子装置,其特征在于,所述处理器根据公式Rbat=(Vic-Vbat)/Ic计算得出所述充电路径阻抗电路的阻值Rbat,其中,Vic为所述充电管理芯片输出的充电电压,Vbat为所述电芯的电压,Ic为所述充电管理芯片输出的充电电流。
  4. 如权利要求2所述的电子装置,其特征在于,所述特定充电阶段为恒流充电阶段、预充电阶段以及恒压充电阶段中的一个。
  5. 如权利要求1-4任一项所述的电子装置,其特征在于,所述充电管理芯片还用于在电池处于恒流充电阶段时,侦测电池的电压,并判断所述电池的电压是否达到调整后的恒压临界电压;在所述电池的电压达到所述调整后的恒压临界电压时,所述充电管理芯片控制将电池从恒流充电阶段切换至恒压充电阶段。
  6. 如权利要求1-4任一项所述的电子装置,其特征在于,所述充电管理芯片还用于在对电池进行充电时侦测电池的电压,并判断所述电池的电压是否小于恒流临界电压;在所述电池的电压小于恒流临界电压时,所述充电管理芯片控制所述电池进入预充电阶段。
  7. 如权利要求6所述的电子装置,其特征在于,所述充电管理芯片还用 于在判断出所述电池的电压大于等于恒流临界电压时,控制所述电池进入恒流充电阶段。
  8. 如权利要求5所述的电子装置,其特征在于,充电管理芯片还用于在对电池进行充电时侦测电池的电流,并在恒压充电阶段判断出所述电池的电流小于或等于截止临界电流时,停止对电池充电。
  9. 如权利要求6所述的电子装置,其特征在于,所述电池包括正极端及负极端,所述充电管理芯片与电池的正极端及负极端连接,并为电池提供充电电压及充电电流,所述充电管理芯片通过侦测电池的正极端的电压确定所述电池的电压。
  10. 如权利要求8所述的电子装置,其特征在于,所述电池的电流与充电管理芯片输出的充电电流相等,所述充电管理芯片根据所述充电管理芯片输出的充电电流确定所述电池的电流。
  11. 如权利要求1-4任一项所述的电子装置,其特征在于,所述电池还包括保护模块,所述保护模块用于侦测所述电芯的温度及电芯的电压、电流,并在判断电芯过温、过压或过流时,产生保护信号。
  12. 如权利要求11所述的电子装置,其特征在于,所述充电电路包括充电路径开关及放电路径开关,所述充电路径开关及放电路径开关串联于所述电芯的电流回路中,所述保护模块与所述充电路径开关及放电路径开关连接,用于在电芯过温、过压或过流且电池/电芯处于充电状态下时,输出保护信号至所述充电路径开关,控制所述充电路径开关截止;所述保护模块还用于在电芯过温、过压或过流且电池/电芯处于放电状态下时,输出保护信号至所述放电路径开关,控制所述放电路径开关截止。
  13. 一种充电控制方法,应用于一电子装置中,所述电子装置包括电池,所述电池包括电芯及充电电路,其特征在于,所述方法包括步骤:
    确定所述电池的充电路径阻抗电路的阻值;
    在电池处于恒流充电阶段时,获取恒流充电阶段的充电电流;
    根据充电路径阻抗电路的阻值以及恒流充电阶段的充电电流计算得出充电路径阻抗电路的分压;以及
    将触发所述电池从恒流充电阶段切换到恒压充电阶段的恒压临界电压调 整为初始的恒压临界电压与所述充电路径阻抗电路的分压之和。
  14. 如权利要求13所述的充电控制方法,其特征在于,所述步骤“确定所述电池的充电路径阻抗电路的阻值”包括:
    在电池处于特定充电阶段时,获取所述电芯的电压、所述充电管理芯片输出的充电电压及充电电流;以及
    根据所述电芯的电压、所述充电管理芯片输出的充电电压及充电电流计算得出所述充电路径阻抗电路的阻值。
  15. 如权利要求14所述的充电控制方法,其特征在于,所述步骤“根据所述电芯的电压、所述充电管理芯片输出的充电电压及充电电流计算得出所述充电路径阻抗电路的阻值”包括:
    根据公式Rbat=(Vic-Vbat)/Ic计算得出所述充电路径阻抗电路的阻值Rbat;其中,Vic为所述充电管理芯片输出的充电电压,Vbat为所述电芯的电压,Ic为所述充电管理芯片输出的充电电流。
  16. 如权利要求14所述的充电控制方法,其特征在于,所述特定充电阶段为恒流充电阶段、预充电阶段以及恒压充电阶段中的一个。
  17. 如权利要求13-16任一项所述的充电控制方法,其特征在于,所述方法还包括步骤:
    在电池处于恒流充电阶段时,侦测电池的电压,并判断所述电池的电压是否达到所述调整后的恒压临界电压;在电池的电压达到所述调整后的恒压临界电压时,控制将电池从恒流充电阶段切换至恒压充电阶段。
  18. 如权利要求13-16任一项所述的充电控制方法,其特征在于,所述方法还包括步骤:
    在对电池进行充电时,侦测电池的电压;
    判断所述电池的电压是否小于恒流临界电压;以及
    在所述电池的电压小于恒流临界电压时,控制所述电池进入预充电阶段。
  19. 如权利要求18所述的充电控制方法,其特征在于,所述方法还包括步骤:
    当判断出所述电池的电压大于等于恒流临界电压时,控制所述电池进入恒流充电阶段。
  20. 如权利要求17所述的充电控制方法,其特征在于,所述方法还包括步骤:
    在对电池进行充电时侦测电池的电流,并在恒压充电阶段判断出所述电池的电流小于或等于截止临界电流时,停止对电池充电。
PCT/CN2016/109371 2016-12-12 2016-12-12 电子装置及其充电控制方法 WO2018107309A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/109371 WO2018107309A1 (zh) 2016-12-12 2016-12-12 电子装置及其充电控制方法
US16/330,302 US20190229548A1 (en) 2016-12-12 2016-12-12 Electronic device and charging control method thereof
CN201680039406.8A CN107980191A (zh) 2016-12-12 2016-12-12 电子装置及其充电控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109371 WO2018107309A1 (zh) 2016-12-12 2016-12-12 电子装置及其充电控制方法

Publications (1)

Publication Number Publication Date
WO2018107309A1 true WO2018107309A1 (zh) 2018-06-21

Family

ID=62005237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109371 WO2018107309A1 (zh) 2016-12-12 2016-12-12 电子装置及其充电控制方法

Country Status (3)

Country Link
US (1) US20190229548A1 (zh)
CN (1) CN107980191A (zh)
WO (1) WO2018107309A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3672016B1 (en) 2018-09-12 2022-12-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging management circuit, terminal and charging method
WO2020062128A1 (zh) * 2018-09-29 2020-04-02 Oppo广东移动通信有限公司 移动终端的充电控制方法、充电控制装置
CN109738819A (zh) * 2018-12-10 2019-05-10 上海艾为电子技术股份有限公司 电池转换电压计算系统、方法、电池及电池充电装置
CN111722134B (zh) * 2019-03-18 2021-08-24 Oppo广东移动通信有限公司 电池的直流阻抗的测量方法和装置,充电系统和终端设备
CN113937842B (zh) * 2019-10-22 2022-08-19 华为技术有限公司 一种电子设备、充电方法及充电系统
CN112838626A (zh) * 2019-11-25 2021-05-25 北京小米移动软件有限公司 电子设备及其充电方法,可读存储介质
CN112072737A (zh) * 2020-08-31 2020-12-11 广东小天才科技有限公司 充电方法及装置、电子设备、计算机可读存储介质
CN112542868B (zh) * 2020-11-27 2023-05-23 Oppo广东移动通信有限公司 充电控制电路、方法及系统、电子设备
CN116054302B (zh) * 2022-06-29 2023-10-20 荣耀终端有限公司 充电电路、电子设备及充电系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107378A (zh) * 2013-02-05 2013-05-15 广东欧珀移动通信有限公司 一种移动终端的电池充电方法及装置移动终端
CN104882641A (zh) * 2014-02-27 2015-09-02 苏州宝润电子科技有限公司 基于自主检测实现快速充电的方法
JP2015171275A (ja) * 2014-03-10 2015-09-28 株式会社豊田自動織機 二次電池の充電装置および充電方法
JP2015204705A (ja) * 2014-04-15 2015-11-16 リコー電子デバイス株式会社 充電制御回路及び方法、並びに充電装置
CN105794079A (zh) * 2014-01-17 2016-07-20 联发科技股份有限公司 通过测量电池的内电阻来调整电池的电压阈值的方法及装置,以及,用于测量电池的内电阻的传感器电路及相应的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8219333B2 (en) * 2010-06-29 2012-07-10 O2Micro, Inc Battery management systems for protecting batteries from fault conditions
CN103972869A (zh) * 2014-04-18 2014-08-06 深圳市诺比邻科技有限公司 电池的双重保护系统及方法
CN106100028A (zh) * 2016-06-27 2016-11-09 深圳天珑无线科技有限公司 充电设备和充电电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107378A (zh) * 2013-02-05 2013-05-15 广东欧珀移动通信有限公司 一种移动终端的电池充电方法及装置移动终端
CN105794079A (zh) * 2014-01-17 2016-07-20 联发科技股份有限公司 通过测量电池的内电阻来调整电池的电压阈值的方法及装置,以及,用于测量电池的内电阻的传感器电路及相应的方法
CN104882641A (zh) * 2014-02-27 2015-09-02 苏州宝润电子科技有限公司 基于自主检测实现快速充电的方法
JP2015171275A (ja) * 2014-03-10 2015-09-28 株式会社豊田自動織機 二次電池の充電装置および充電方法
JP2015204705A (ja) * 2014-04-15 2015-11-16 リコー電子デバイス株式会社 充電制御回路及び方法、並びに充電装置

Also Published As

Publication number Publication date
US20190229548A1 (en) 2019-07-25
CN107980191A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2018107309A1 (zh) 电子装置及其充电控制方法
TWI600245B (zh) 電源供應電路、電源供應系統以及電源供應方法
US9502917B2 (en) Charging method of electronic cigarettes and electronic cigarette box
CN108574319B (zh) 一种用于改进电池组的温度管理的方法
WO2018133537A1 (zh) 一种电子设备及基于电子设备的充电控制方法
CN107894567B (zh) 电池包以及电池包接口状态的检测系统和检测方法
TWI418109B (zh) 電池設備、用於電池系統之積體電路及電池保護方法
TWI353704B (en) Charger and method of charging
EP3036819B1 (en) Method and apparatus for adjusting voltage threshold for battery by measuring internal resistance of battery, and corresponding method and sensor circuit for measuring internal resistance of battery
US20160116928A1 (en) Usb power supply apparatus
US10079498B2 (en) Charging circuit, power management circuit, and electronic device using the same
TWI628894B (zh) 充電器電路和功率系統
JPWO2012132985A1 (ja) 蓄電システム及び二次電池制御方法
KR101117445B1 (ko) 충방전 제어 회로 및 충전식 전원 장치
US20140354050A1 (en) Power bank and control method for supplying power
US20170346314A1 (en) Battery protection board, battery and mobile terminal
TW201306411A (zh) 過壓過流保護電路
JP2011259693A (ja) 電池充電保護回路
US20070103143A9 (en) Battery protection method and battery protection circuit
TWM519348U (zh) 電源供應系統
WO2022188822A1 (zh) 激光传感器控制电路、方法和电子设备
US10312701B2 (en) Charging method and portable electronic device using the same
WO2017201737A1 (zh) 电池保护板、电池和移动终端
US9459328B2 (en) Apparatus for simulating battery
WO2017201735A1 (zh) 电池保护板、电池和移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16923745

Country of ref document: EP

Kind code of ref document: A1