WO2018106101A1 - Reconfigurable modular industrial delta robot, system and tool for same - Google Patents

Reconfigurable modular industrial delta robot, system and tool for same Download PDF

Info

Publication number
WO2018106101A1
WO2018106101A1 PCT/MX2017/000146 MX2017000146W WO2018106101A1 WO 2018106101 A1 WO2018106101 A1 WO 2018106101A1 MX 2017000146 W MX2017000146 W MX 2017000146W WO 2018106101 A1 WO2018106101 A1 WO 2018106101A1
Authority
WO
WIPO (PCT)
Prior art keywords
assemblies
assembly
industrial robot
effector
base
Prior art date
Application number
PCT/MX2017/000146
Other languages
Spanish (es)
French (fr)
Inventor
Juan Pablo Martínez Esponda
Original Assignee
Automatische Technik México S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automatische Technik México S.A. De C.V. filed Critical Automatische Technik México S.A. De C.V.
Publication of WO2018106101A1 publication Critical patent/WO2018106101A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators

Definitions

  • the present invention relates to a delta type modular industrial robot formed by a multi-component system that can be customized or configured according to the initial needs of a customer to offer maximum performance and efficiency according to their production processes.
  • the present invention also describes a series of tools that can be adapted, configured and / or customized in the robot or system of the present invention according to the specific needs of the client.
  • the present invention describes different methods for configuring, customizing, adapting and / or controlling the multiple components or tools of the robot or system of the present invention.
  • Delta-type industrial robots, as well as automated systems used in modern industry tend to be expensive and limiting.
  • the most serious problem for the client is the economic reinvestment that he has to do to modify his production process, however there are other important problems that the client will have to face, such as, but not limited to, lack of compatibility between the new equipment and the old equipment (even more between equipment of different manufacturers), long periods of integration between the new and old equipment, rearrangement of other production lines to be able to expand the process in question, training of the personnel to use the new equipment, among others .
  • a small or medium-sized entrepreneur has initiated production and packaging operations of refreshing beverages and has made a considerable investment in the purchase of industrial delta robots that can lift a maximum mass of 5 kg in a cylindrical work space with a diameter of 800 mrn and the maximum speed of the robot.
  • this small or medium businessman will have to buy new equipment that can lift up to 10 kg in a cylindrical workspace with a diameter of 1,000 mm and at the same maximum speed of the robot in a short or medium term, which means, that there will be that invest time, money and effort to achieve that goal.
  • the present invention provides a modular robot and a system that can be initially customized to the customer and subsequently reconfigured to increase load capacity and workspace, which would obviously save time, money and effort to an entrepreneur who seeks to double his inventory. .
  • Adept Quattro TM robots are four-arm delta robots designed for different packaging, manufacturing, assembly and material handling applications. However, there is a series or family of each of these robots designed for specific objectives, namely to work at a certain speed, in a certain workspace, with some flexibility, maximum torque and precision. The technical specifications of these robots are completely silent with respect to the possibility of reconfiguring said robot according to the specific needs of the client, and instead, the client has to spend more money to acquire an Adept Quattro TM robot that is not made tailored to the client and that does not have the ability to be reconfigured to the initial or future needs of the client.
  • the delta type industrial robot of the present description is composed of three trapezoidal joint assemblies, three motor base assemblies, three articulated arm assemblies, six forearm assemblies and an effector assembly.
  • One of the objectives of the present invention is to provide a robot characterized by having a maximum customization capacity according to the needs of the client.
  • the items that can be customized are:
  • the base of the robot of the present invention is composed of three trapezoidal joint assemblies and three servomotor base assemblies
  • the first component Customizable of the present invention is the diameter of the base of the robot since by manufacturing in different dimensions the base trapezoids of the trapezoidal junction assemblies that form the robot, the diameter of the base of each robot can be directly customized and therefore, adapt the base of the robot of the present invention to the dimensional needs of the client.
  • the second customizable component of the robot of the present invention consists in the simple or double application of torque on each arm without reducing the maximum angular speed when increasing to double torque. This is possible since the motor base assembly can be configured in a simple version with a motor, a reducer and a counterpoint assembly or in a double version with two motors and two reducers, and therefore, the robot of the present invention it is able to adapt to the customer's torque needs and maintain its maximum angular speed by increasing to double torque.
  • Each arm assembly of the present invention is formed by a shoulder rotor that aligns the shoulder axis with respect to one or two motors of the motor base assembly and by a shoulder oppressor that aligns the upper bar and lower bar of the assembly of the arm with respect to the shoulder rotor.
  • the third customizable component of the robot of the present invention consists in the ability to use upper and lower bars of different diameters in the arm assemblies. It is possible to customize the diameter of the upper and lower bars by modifying the dimensions of the diameter of the perforations of the shoulder rotors and the elbows of the robot, and therefore, the robot of the present invention is able to become a robot more flexible or rigid and thus adapt to the stability needs of the arm required by the client.
  • the fourth customizable component of the robot of the present invention consists in the ability to customize the length of the arm assemblies by means of modifying the length of the upper and lower bars of the arm assemblies, and hence the robot of The present invention is capable of adapting the length of its arms to the dimensional needs of the client.
  • the fifth customizable component of the robot of the present invention consists in the ability to customize the length of the forearm assemblies by modifying the length of the forearm bar, and therefore, the robot of the present invention is capable of adapt the length of your forearms to the dimensional needs of the client.
  • the sixth customizable component of the robot of the present invention consists in the ability to use bars of different diameters in the forearm assemblies, by increasing or reducing the diameter of the forearm bars of the robot of the present invention, the robot is capable to modify its flexibility or rigidity and thus adapt to the needs of stability in the forearm required by the client.
  • the effector assembly of the robot of the present invention is made up of an effector ring that is similar to that of the prior art, since it joins the six forearm assemblies by means of spherical joints.
  • the interior of the effector assembly of the present invention is very different from that of the prior art since it has a large perforation and two perforated tabs where tools for the robot can be assembled and disassembled very easily.
  • the seventh customizable component of the robot of the present invention consists in varying the diameter of the effector assembly by selecting three different sizes of effector rings; a small one, a medium one and a large one, and therefore, the robot of the present invention is able to adapt the diameter of its effector assemblies to the dimensional needs of the client.
  • Another objective of the present invention compared to other delta robots of the prior art, is to provide superior customization for the benefit of the customer.
  • the only delta type robot capable of customizing its four functional dimensions is obtained (Diameter of the robot base, arm length, forearm length and effector diameter) in conjunction with the kinematics and dynamics to obtain a work space and functionality fully customized to the client's needs.
  • the only delta type robot capable of modifying the diameters of the arms of its arms and forearms is obtained to adjust the level of flexibility or rigidity to the needs of the client.
  • the robot of the present invention can customize the type of reducer and the type of motor to the needs of the customer to maximize the rotational speed and angular acceleration of each arm assembly.
  • the delta robot of the present invention is the only one capable of driving each of the arm assemblies by means of one or two motors, capacity that It allows to double the torque applied to each arm assembly and, in turn, maintain the maximum angular speed of each arm assembly by increasing to double torque.
  • the delta-type robot of the present invention is capable of using planetary type reducers with narrow clearance between its gears or harmonic type with near-zero strike, capacity that combined with the stiffness chosen for the configuration of the robot, allows to customize the precision of the robot to the application and needs of the client.
  • Another objective of the present invention is to provide the ability to eliminate the intrusion generated by the delta-like robots of the art prior to the industrial processes where they are installed.
  • the robots of the prior art have to be assembled to the industrial processes by three brackets in star-like configuration at the base of the robot, this is directly related to the creation of structures that trap the industrial processes within their structures, complicating the installation of the robots, the maintenance application to both the robot and the industrial process in question and the adaptability of the client's future process.
  • the delta-type robot of the present invention has the ability to be assembled to the industrial process by a single point, which allows to create structures that only come into lateral contact with the customer's industrial process, allowing and facilitating the robot's mobility for maintenance application to the robot and the process and allowing the customer to change or modify their processes Easier way in the future.
  • Figure 1 shows a perspective view of the complete assembly of the delta modular robot of the present invention in a first preferred three-engine mode
  • Figure 2 shows a perspective view of the complete assembly of the delta modular robot of the present invention in a second preferred six-engine mode
  • Figure 3 shows a top view of the three-type delta modular robot
  • Figure 4 shows a top view of the six-engine delta modular robot
  • Figure 5a shows the trapezoidal joint assembly of the present invention composed of a base trapezoid
  • Figure 5b shows a rear trapezoidal assembly without square
  • Figure 5c shows an expanded trapezoidal joint assembly
  • Figure 6 shows a perspective view of a simple motor base assembly of the present invention corresponding to the first preferred three motor mode
  • Figure 7 shows a perspective view of a double motor base assembly of the present invention corresponding to the second preferred six engine mode
  • Figure 8 shows a perspective view of the articulated arm assembly of the present invention
  • Figure 9 shows a perspective view of the forearm assembly of the present invention
  • Figure 10 is a perspective view of the effector assembly of the present invention
  • Figures lia and 11b show a top view of the delta type modular robot of the present invention in its second preferred six-engine mode, wherein the dimensions of the robot 11b are larger than those of the robot lia;
  • Figures 12a and 12b show a perspective view of a tool for handling bottles
  • Figures 13a and 13b show a perspective view of a tool for manipulating soft objects with cylindrical shape.
  • FIGS. 1 and 3 the complete assembly of the delta-type modular robot 0 of the present invention is shown in its first preferred three-engine mode, which is formed by a base with three base assemblies. of simple motors 3, three trapezoidal junction assemblies 2, three articulated arm assemblies 5, six forearm assemblies 6 and an effector assembly 7; wherein the three trapezoidal junction assemblies 2 assemble the three simple motor base assemblies 3 to generate the delta-like robotic configuration.
  • Each of the simple motor base assemblies 3 is assembled by means of the reducer shaft 21 and the tailstock shaft 25 to a respective shoulder rotor 40 of each articulated arm assembly 5.
  • Each of the articulated arm assemblies 5 a in turn, it is assembled in each of its two spherical joints 45 located at its elbow 44 laterally and independently with a forearm assembly 6 (See figure 8). All forearm assemblies 6 are preferably longitudinally equal to each other for form a parallelogram between the robot base and the effector ring 70.
  • Figure 1 also shows the coupling of each pair of forearm assemblies 6 to an effector assembly 7 by means of an effector ring 70 which has three outputs 73 in where each outlet 73 has two spherical joints 71 as shown in Figure 10.
  • the simple motor base assemblies 3 are attached by fasteners 26 to the trapezoidal joint assemblies 2, such that each trapezoidal junction assembly 2 joins two simple motor base assemblies 3 to thereby position the three simple motor base assemblies 3 in a delta type configuration. It should be noted that one of the trapezoidal joint assemblies 2 cannot be seen in figures 1 or 3 since it is covered by a structural profile 1. The trapezoidal joint assembly 2 which is covered by the structural profile 1 lacks a square 11 as will be described at the end of this paragraph.
  • the base trapezoid 10 and the square 11 of each trapezoidal joint 2 are assembled together by means of fasteners 12 and the robot base formed by three trapezoidal joint assemblies 2 and three simple motor base assemblies 3, assembles the structural profile 1 by means of the fasteners 13 that connect the brackets 11 of each trapezoidal joint assembly 2 to the structural profile 1 and in the case of the trapezoidal joint assembly 2 covered by the structural profile 1, the base trapezoid 10 is assembled directly by means of fasteners 12 to the structural profile 1.
  • a complete assembly of the delta 0 'modular robot of the present invention is shown in its second preferred embodiment of six engines, which is comprised of a base with three double motor base assemblies 4, three trapezoidal joint assemblies 2, three articulated arm assemblies 5, six forearm assemblies 6 and an effector assembly 7; wherein the three trapezoidal junction assemblies 2 assemble the three double motor base assemblies 4 to generate the delta-like robotic configuration.
  • Each of the double motor base assemblies 4 is assembled by means of the two axes of the two reducers 21 to a respective shoulder rotor 40 of each articulated arm assembly 5.
  • Each of the articulated arm assemblies 5 in turn it is assembled in each of its two spherical joints 45 located on its elbow 44 laterally and independently with a forearm assembly 6 (See Figure 8). All forearm assemblies 6 are preferably longitudinally equal to each other to form a parallelogram between the robot base and the effector ring 70.
  • Figure 2 also shows the coupling of each pair of forearm assemblies 6 to an effector assembly 7 by means of an effector ring 70 which has three outlets 73 where each outlet 73 has two spherical joints 71 as shown in Figure 10.
  • the double motor base assemblies 4 are attached by fasteners 26 to the trapezoidal joint assemblies 2, such that each trapezoidal junction assembly 2 joins two double motor base assemblies 4 to thereby position the three 4 double motor base assemblies in a delta type configuration. It should be noted that one of the trapezoidal joint assemblies 2 cannot be seen in figures 2 or 4 since it is covered by a structural profile 1. The trapezoidal joint assembly 2 that is covered by the profile Structural 1 lacks a square 11 as will be described at the end of this paragraph.
  • the base trapezoid 10 and the square 11 of each trapezoidal joint 2 are assembled together by means of fastening elements 12 and the robot base formed by three trapezoidal joint assemblies 2 and by three double motor base assemblies 4 is assembled to the structural profile 1 by means of the fasteners 13 that join the brackets 11 of each trapezoidal joint assembly 2 to the structural profile 1 and in the case of the trapezoidal joint assembly 2 covered by the structural profile 1, the base trapezoid 10 is assembled directly by means of fasteners 12 to the structural profile 1.
  • the trapezoidal joint assembly 2 is shown in greater detail which is a key element that allows the base of the delta type robot of the present invention to be formed
  • the trapezoidal joint assembly 2 is formed by a base trapezoid 10 and a square 11
  • the square 11 and the base trapezoid 10 contain four holes or perforations each to join both parts by means of four fasteners 12.
  • the fasteners 12 can be selected from a group comprising, but not limited to normal screws, pressure screws, rivets, pins, or a combination thereof.
  • the base trapezoid 10 is formed by two alignment flanges 14 centrally located between the upper portions 15 and lower portions 16 of the base trapezoid 10, wherein the upper portion 15 and lower 16 are in low relief in relation to the flanges 14 which are in high relief. Both the upper portion 15 and the lower portion 16 have three horizontally distributed holes to make their corresponding coupling with the base assemblies of 3 or double single motors 4.
  • the base 10 trapezoid also has an upper wall 18 in which the four perforations are located in which the fasteners 12 are inserted to create the assembly between the base 10 trapezoid and the square 11. This upper wall 18 is important together with the lower face, outer front face 19 and rear face since by expanding these walls or faces longitudinally, the radius of the robot base of the present invention can be modified, as shows more clearly in Figure 5c.
  • the square 11 contains a rear wall 17 with four holes or perforations to laterally fix the trapezoidal joint assembly 2 to the structural profile 1. It should be noted that two trapezoidal joint assemblies 2 contain squares 11 with rear walls 17 to fix the trapezoidal joint assembly 2 to the structural profile 1, while a trapezoidal joint assembly lacks a square 11 and is fixed directly from the base trapezoid 10 to the bottom of the structural profile 1 by means of fasteners 12, as shown more clearly in the figure 5b.
  • the base 10 trapezoids can be manufactured in different lengths in order to increase or decrease the diameter of the robot base according to the needs of the client or the task that needs to be performed.
  • the length of the upper face of the upper wall 18 must be modified, as well as the lower face (not shown), the front outer face 19 and the back face (no shown) of the base 10 trapezoid, the lower face being the counterpart of the upper face and the rear face being the counterface of the front face 19.
  • the three base 10 trapezoids of each robot must be manufactured with the same lengths for conserve delta type symmetry at the base of the robot, according to the first reconfigurable component of the robot.
  • each upper portion 15 and lower 16 remain intact, so that they can always be attached to the simple 3 or double 4 motor base assemblies without the need to make modifications to the engine bases 20.
  • the four perforations that are in the upper wall 18 of the base trapezoid 10 and which serve to join the base trapezoid 10 to the square 11 by means of fasteners 12 must be correctly positioned when modifying the length of the diameter of each base of robot.
  • the correct position of the perforations for the two base trapezoids 10 corresponding to the two frontal trapezoidal junction assemblies 2 having squares 11 is that shown by the four perforations of the square 11 when the front outer face 19 of the square 11 is aligned in parallel and comes into contact with the upper portion 15 of the base trapezoid 10, as can be seen more clearly in Figures 5a and 5c.
  • the correct position for the four perforations of the third base trapezoid 10 corresponding to the rear trapezoidal joint assembly 2 covered by the structural profile 1 is that central to the upper face 18 of the base trapezoid 10 which coincides longitudinally with the two grooves (not shown in the figures) of structural profile 1, such and as can be seen more clearly in Figure 5b.
  • Figure 6 shows the simple motor base assembly 3 in which to each articulated arm assembly 5 the torque from a single motor 22 and reducer 21 of a simple motor base assembly 3 is applied.
  • simple motor base 3 comprises an engine base 20, a reducer 21, a motor 22, a tailstock base 23, a tailstock bearing 24, a tailstock shaft 25 and fasteners 26, 27 (not shown in Figure 6), 28 and 29 to couple the components of the simple motor base assembly 3 and also, connect the simple motor base assembly 3 to the other assemblies.
  • the motor base 20 has a receiving slot 30 that engages with the flanges aligners 14 of two base trapezoids 10 through elements of clamping 26, which are fixed to the holes of the upper 15 and lower portion 16 of the trapezoidal joint assembly 2 shown in Figure 5.
  • the reducer 21 is assembled to the first bore 31 of the motor base 20 by means of fasteners 27, while the counterpoint base 23 is assembled into the second bore 32, by means of fasteners 28.
  • the fasteners 27 and 28 can be selected from, but not limited to, normal screws, pressure screws, rivets, pins, or a combination thereof, while the reducers can be selected from, but not limited to, planetary reducers, harmonic reducers or a combination thereof.
  • the motor 22 is fixed to the reducer 21 by means of fasteners 29.
  • the fasteners can be be selected from, but not limited to, normal screws, pressure screws, rivets, pins, or a combination thereof, while the motors can be selected from, but not limited to, servomotors, stepper motors, motors alternating current, direct current motors or a combination thereof.
  • the tailstock base 23 is assembled to the second bore 32 of the motor base 20 by means of fasteners 28.
  • a tailstock bearing 24 is assembled and a tailstock shaft is assembled onto the tailstock bearing 24 25.
  • the articulated arm assemblies 5 are attached to the simple motor base assembly 3 through the counterpoint axis 25 and the output shaft of the reducer 21, each connected to one side of the shoulder rotor 40 of each articulated arm assembly 5.
  • the reducer 21 in the first perforation 31 of the motor base 20 the reducer 21 is generally assembled and in the second perforation 32 the counterpoint 25 is generally assembled; however, the reducer 21 and the tailstock shaft 25 could be assembled inversely at the convenience of the customer so that in the first bore 31 of the motor base 20 the tailstock 25 can be assembled and in the second bore 32 assemble the reducer 21.
  • Figure 7 is a perspective view showing a double motor base assembly 4 in which to each articulated arm assembly 5 the torque from two motors 22 and two reducers 21 of a double motor base assembly 4 is applied.
  • the double motor base assembly 4 is formed by a motor base 20, two reducers 21, two motors 22, fasteners 26, 27 and 29 and a flexible copy (not shown) to assemble the components of the assembly. 4 double engine base and also, assemble or attach the double 4 motor base to the other assemblies.
  • the motor base 20 has a receiving slot 30 that engages with the alignment flanges 14 of two base trapezoids 10 through elements of clamping 26, which are fixed to the holes of the upper 15 and lower portion 16 of the trapezoidal joint assembly 2 shown in Figure 5.
  • Two reducers 21 are assembled to the motor base 20 by means of fasteners 27, a first reducer 21 in the first perforation 31 of the motor base 20 and a second reducer 21 in the second perforation 32 of the motor base 20 or vice versa .
  • the fasteners can be selected from, but are not limited to, normal screws, pressure screws, rivets, pins, or a combination thereof, while the reducers can be selected from, but not limited to, planetary reducers, harmonic reducers or a combination thereof.
  • Two motors 22 are fixed to the two reducers 21, one motor 22 to each reducer 21 by means of fasteners 29.
  • the fasteners can be selected from, but are not limited to, normal screws, pressure screws, pins, or a combination thereof, while the motors can be selected from, but are not limited to, servomotors, stepper motors, alternating current motors, direct current motors or a combination thereof.
  • the double motor base assembly 4 does not require a tailstock base 23, a tailstock bearing 24 or a tailstock shaft 25, due to the two motors 22 assembled in the double motor base assembly 4.
  • the articulated arm assemblies 5 are attached to the double motor base assembly 4 through the two output shafts of the reducers 21, a gear output shaft 21 to each side of the shoulder rotor 40 of each arm assembly 5.
  • the assembly of the first reducer 21 on the first side of the shoulder rotor 40 is made directly, without intermediate elements and the assembly of the second reducer 21 on the second side of the shoulder rotor 40 is made indirectly using a flexible copy assembled between the output arrow of the second reducer 21 and the second side of the shoulder rotor 40.
  • Said flexible copy has the ability to deform elastically temporarily to compensate for the angular offset that may exist between the output of each arrow of the reducers on the shoulder rotor 40.
  • the robots formed by simple motor base assemblies 3 that provide the torque of a single motor 22 and reducer 21 to each articulated arm assembly 5 are designed to satisfy initial needs of customers with high speed rotational and low or medium torque productions. If the customer were to need an increase in their production to achieve high torque and maintain their high rotational speed in the articulated arm assemblies 5 of their robot, then the simple motor base assemblies 3 could be improved to become assemblies of double motor base 4 and thus provide twice the torque and, in turn, maintain the same maximum rotational speed in each arm assembly through the use of two motors 22 and two reducers 21 to each articulated arm assembly 5.
  • the base of simple motors 3 is disassembled the base of tailstock 23, tailstock bearing 24 and tailstock shaft 25 and are replaced by a second reducer 21 and a second motor 22 whereby this simple motor base assembly 3 would become a double motor base assembly 4, according to the second reconfigurable component of the robot.
  • Figure 8 shows the articulated arm assembly 5 formed by a shoulder rotor 40 in which a reducer 21 and a counterpoint shaft 25 or two reducers 21 (one with a flexible copy) are introduced depending on whether the base assembly of Engine is simple 3 or double 4 as mentioned above.
  • the articulated arm assembly 5 also comprises a shoulder oppressor 41, an upper bar 42, a lower bar 43, an elbow 44, two spherical joints 45, fasteners 46, 47, 49 and 50 and a joint element 48.
  • the upper and lower bar 42 43 pass through two perforations formed between the shoulder rotor joint 40 and the shoulder oppressor 41, while at the other end the upper and lower bar 42 are inserted into an elbow 44 and secured by fasteners 47 and a joint element 48.
  • the shoulder rotor 40 and shoulder presser 41 are joined together by means of fasteners 46.
  • the joint element 48 is added which is inserted into the elbow cavities 44 for glue and maximize the force of the assembly between the elbow 44 and the upper bar 42 and lower 43, while the connecting element 48 is fresh, the upper bars 42 and lower 43 are inserted into the two perforations of the elbow 44 in the desired position and the assembly is allowed to rest for a certain time so that the connecting element 48 hardens.
  • the fasteners 47 are optional and, if necessary, are introduced in an upper and lower part of the elbow 44 to press the upper bar 42 and lower 43 against the walls of the perforations of the elbow 44 and provide a force of Extra support to the elbow assembly.
  • the fasteners 46 and 47 can be selected from, but are not limited to, prisoners, normal thymes, pressure screws, rivets, pins, or a combination thereof, and where the joint element is epoxy glue although it could Use any other type of glue.
  • the robot of the present invention can be expand or reduce both the diameter and the length of the upper 42 and lower bars 43 of their arm assemblies 5.
  • the shoulder rotor 40 When it is desired to modify or change the diameter of the upper bars 42 and lower 43 according to the needs of the customer to obtain greater flexibility or stiffness in the structure of the arm assemblies 5, the shoulder rotor 40 must also be modified, the shoulder oppressor 41 and the elbow 44 with the aim that the perforations that receive the upper bar 42 and lower 43 fit the new corresponding diameter of the upper bars 42 and lower 43 created to the extent of the customer, according to the third reconfigurable component of the robot.
  • both the upper and lower bars 42 can also be manufactured in different lengths that allow you to customize the work space of the robot according to customer needs.
  • the new upper 42 and lower bars 43 would replace the previous ones and would be assembled by means of the fasteners 46 and 47 to the respective shoulder rotor 40 and shoulder oppressor 41 and to the elbow 44, according to the fourth reconfigurable element of the robot.
  • Figure 9 shows the forearm assembly 6 formed by a forearm bar 60, two copies 61 each assembled at one end of the forearm bar 60 by means of a connecting element 63, and two spherical seats 62, a spherical seat 62 on each copy 61.
  • a spherical seat 62 of the forearm bar 60 is coupled to the spherical joint 45 of the elbow 44, while the other spherical seat 62 of the bar is coupled to a spherical joint 71 of the effector assembly 7 .
  • Each arm assembly 5 is connected to two forearm assemblies 6 by means of two spherical joints 45 positioned at the elbow 44 of the arm assembly 5. To maintain a delta-like configuration in the robot, it is very important to maintain equal lengths in each one of the arm assemblies 5 and forearm assemblies 6.
  • the diameter and length of the upper and lower bars 42 of the arm assemblies 5, for the robot of the present invention can be extended or reduced.
  • the length and diameter of the forearm bars 60 can be manufactured of different dimensions, thus allowing a better flexibility, rigidity or precision, or a greater or lesser working space according to the fifth and sixth reconfigurable components of the robot.
  • Figure 10 shows the effector assembly 7 of the present invention formed externally by an effector ring 70 and six spherical joints 71 that are assembled such that two spherical joints 71 are assembled on each of the three projections 73 of the effector ring 70, two spherical joints 71 for each projection 73 of the effector ring 70.
  • the effector ring 70 of the present invention is totally different in its internal part compared to the art robots prior to the fact that it comprises an internal perforation 72 and two tabs 74 located in the internal perforation 72 such that the flanges 74 are facing each other or located opposite each other.
  • Each of the flanges 74 has perforations or holes evenly distributed along the flanges 74 in order to adapt tools to the internal perforation 72 and flanges 74 of the effector ring 70, which are assembled by fasteners 75.
  • the elements clamping can be selected from, but not limited to, normal screws, pressure screws, rivets, pins, or a combination thereof.
  • effector ring 70 shown shows only two tabs 74 and three perforations per flange, as many tabs and perforations 70 could be added to the effector ring as necessary to hold the tools according to the needs of any customer.
  • the effector ring 70 can be small, medium or large, depending on the tool to be adapted and / or according to the client's work space needs according to the seventh reconfigurable component of the robot.
  • Figures lia and 11b show two top views of delta-type modular robots of the present invention in its version of six engines of different sizes to provide different custom workspace to the customer, comparing them between customizing the components to the needs of Some customer, the delta lia robot shows the preferred dimensions of the present invention and the delta 11b robot shows expanded dimensions in its three trapezoidal junction assemblies 2, in its three articulated arm assemblies 5 and in its six assemblies forearm 6. It should be noted that different robot sizes can be obtained, as to the variation of one or all of the reconfigurable elements and the present figure is only a non-limiting example of the different dimensions according to the tasks to be performed.
  • Figures 12a and 12b show the assembly of a tool for handling containers formed by a copy cleaner A 80, two clamping bars 85, four clamping elements 87 and three clamps for handling containers according to the needs of a customer, each clamp you can manipulate a bottle simultaneously, for example, a customer who needs to handle a certain amount of containers simultaneously, the number of tweezers to handle containers could be from a single to a greater quantity defined according to the needs of any customer,
  • the advantage of being able to attach various clamps to an effector assembly 7 of a delta-type robot is that the more bottles are handled simultaneously, the cycle time necessary to meet the needs of the customer will be longer and having more time to perform One cycle, the robot can move more carefully to protect the customer's product.
  • Each clamp for handling containers consists of a clamp for containers 81, a pneumatic piston 82, two clamping elements 88 and an opening sphere 83.
  • Each clamp for containers 81 has a small base with two perforations that allow the clamp for containers 81 is attached to two clamping bars 85 by means of two clamping elements 88, the clamp for container 81 also has two clamp fingers 86 which allow it to hold containers preferably inside the lip or neck of the container, although both fingers of clamp 86 could also hold the containers on the outside of the lip or neck of the container.
  • the tool for handling containers is attached to the effector ring 70 of the effector assembly 7 of the industrial robot by means of a copy effector A 80, which has in its lower part two perforations in which the two clamping bars 85 are assembled, said clamping bars 85 are held by means of two fasteners 87 to the effector copy ⁇ 80 and, finally, to those two bars the amount of tweezers are assembled to handle packages that the customer needs.
  • the copy effector A 80 comprises at its top at least one flange 89, preferably two flanges 89, with a plurality of perforations distributed along this (s) so that said perforations align with the perforations of the tabs 74 of the effector ring 70.
  • the tabs 89 protrude from the top of the effector copy A 80 and may be located opposite each other. The tabs 89 are properly dimensioned in such a way that they enter into the inner part 72 of the effector ring 70.
  • the clamp 81 must be made of a flexible material that allows its two clamp fingers 86 to deform elastically temporarily without being injured to hold or release the client's containers.
  • each caliper to manipulate containers we can find two states, the first state is of contraction in which a pneumatic feed controlled by the robot keeps the pneumatic piston 82 of each caliper to manipulate containers contracted in order to maintain the opening sphere 83 in the position close to the body of the pneumatic piston 82 whereby the container clamp 81 is maintained in its normal position without deforming.
  • the second state is of expansion in which a pneumatic feed controlled by the robot keeps the pneumatic piston 82 of each caliper expanded to manipulate containers in order to keep the opening sphere 83 in the position far from the body of the pneumatic piston 82 whereby certain force is induced by the opening sphere 83 to the pincer fingers 86 that promote its temporary elastic deformation which allows Hold the container in question.
  • the robot controller can modify the state of the tool (s) so that they pass from the first state to the second state; While the tools are kept in the second state, the robot can manipulate the container (s) according to the client's needs, finally, when the robot has positioned the client's container (s) in its final destination, then the robot controller you can change the state of the tool or tools to handle containers again so that they pass from the second to the first state without being injured; when returning to the first state, the container (s) are free again and the robot can move to any other point of the movement routine.
  • Figures 13a and 13b show a tool for manipulating soft cylindrical objects, such as bread.
  • the tool is formed by a copier effector B 90 which in turn integrates a wide finger 91 in the same piece, two thin fingers 92, a pneumatic piston 93, a piston base clamp 94, a piston plunger clamp 95, six bearings 96, four fasteners 97 and a fastener 98.
  • the tool for handling soft cylindrical objects is coupled by means of its copy effector B 90 to the effector ring 70 of the effector assembly 7 of the delta type robot of the present invention.
  • Said copier effector B 90 is a base where four bearings 96 are assembled, two of those Four bearings 96 stop the fasteners 97 which, in turn, function as an axle and position the piston base clamp 94 to attach the pneumatic piston to the copier effector B 90 and provide a degree of rotational freedom to the pneumatic piston 93 so that when The pneumatic piston 93 expands or contracts, can rotate without deforming or forcing its plunger.
  • the other two bearings 96 stop two fasteners 97 which, in turn, function as axes and assemble the two thin fingers 92 allowing them a degree of rotational freedom that allows them to rotate with respect to the copy effect B 90 to generate a movement of opening or closing on the fingers.
  • the copier effector 90 B also contains in its construction a wide finger 91 that functions as a counterpoint to hold parts when the thin fingers 92 close.
  • the two thin fingers 92 are coupled to the copy effector B 90 as discussed in the previous paragraph.
  • Each thin finger 92 is elongated, at a point opposite the point where the thin fingers 92 join with the copy effect B, has a curved surface that is manufactured to the specific shape of the product to be handled.
  • each thin finger 92 there is a seat for bearings 96 where a bearing 96 must be assembled, said bearing 96 supports a fastener 98 that joins the two thin fingers 92, acts as a shaft and assembles the piston plunger clamp 95 between the two thin fingers 92 and the piston of the pneumatic piston 93, allowing it to rotate on the axis of the clamping element 98 without hurting or forcing the piston of the pneumatic piston 93.
  • the tool for manipulating soft cylindrical objects is actuated by means of the pneumatic piston 93, which on one side connects the wide finger 91 of the copy effector B 90 at its base, said wide finger 91 is a fixed point within the tool to manipulate soft cylindrical objects and the other side in its plunger connects to the two thin fingers 92.
  • the robot controller of the present invention eliminates the pneumatic feed of the pneumatic piston 93, the thin fingers 92 tend to approach the wide finger 91 by the action of an internal spring to the piston body 93 which applies force so that the piston of the piston 93, by means of this action, the tool to manipulate soft cylindrical objects could take control over the product or soft cylindrical object of the client so that the robot can manipulate it according to the needs of the process.
  • the robot controller of the present invention drives the pneumatic feed of the pneumatic piston 93
  • the thin fingers 92 tend to move away from the wide finger 91 by the action of the pneumatic feed that applies force for the piston piston 93 to expand away from the Piston body 93, by this action, the tool for handling soft cylindrical objects releases the product or soft cylindrical object from the customer so that the robot can move without load to take a new object from the process in question.
  • the copy effector A 90 comprises at its top at least one flange 99, preferably two tabs 99, with a plurality of perforations distributed along this (s) so that said perforations align with the perforations of the tabs 74 of the effector ring 70.
  • the tabs 99 protrude from the top of the effector copy A 90 and may be located opposite each other.
  • the tabs 99 are properly sized so that they enter into the inner part 72 of the effector ring 70.
  • the tool for manipulating soft cylindrical objects can contain two pneumatic pistons 93 for each of the thin fingers 92, thus allowing the tool to be more versatile when gripping irregular parts.

Abstract

The present invention relates to a modular industrial delta robot formed by a system of multiple components that can be personalised or configured according to the initial or subsequent needs of a client, to offer maximum performance and efficiency in accordance with the productive processes thereof. The configurable components are the diameter of the base of the robot, the quantity of motors that apply torque to the arms, the lengths and diameter of the bars of the arms, the lengths and diameters of the bars of the forearms, and the diameter of the effector assembly of the present invention, thereby personalising or configuring the work space, flexibility, speed, torque and precision, according to the specific needs of the client.

Description

ROBOT INDUSTRIAL MODULAR TIPO DELTA RECONFIGURABLE, SISTEMAINDUSTRIAL MODULAR ROBOT TYPE RECONFIGURABLE, SYSTEM
Y HERRAMIENTA DEL MISMO AND TOOL OF THE SAME
Campo de la invención  Field of the Invention
La presente invención se refiere a un robot industrial modular de tipo delta formado por un sistema de múltiples componentes que se pueden personalizar o configurar conforme a las necesidades iniciales de un cliente para ofrecer un máximo desempeño y eficiencia acorde a sus procesos productivos.  The present invention relates to a delta type modular industrial robot formed by a multi-component system that can be customized or configured according to the initial needs of a customer to offer maximum performance and efficiency according to their production processes.
La presente invención también describe una serie de herramientas que se pueden adaptar, configurar y/o personalizar en el robot o sistema de la presente invención conforme a las necesidades específicas del cliente.  The present invention also describes a series of tools that can be adapted, configured and / or customized in the robot or system of the present invention according to the specific needs of the client.
Asimismo, la presente invención describe diferentes métodos para configurar, personalizar, adaptar y/o controlar los múltiples componentes o las herramientas del robot o sistema de la presente invención.  Also, the present invention describes different methods for configuring, customizing, adapting and / or controlling the multiple components or tools of the robot or system of the present invention.
Antecedentes de la Invención Background of the Invention
Los robots industriales tipo delta, asi como los sistemas automatizados usados en la industria moderna tienden a ser costosos y limitativos.  Delta-type industrial robots, as well as automated systems used in modern industry tend to be expensive and limiting.
Es una realidad que hoy en día, existen pequeños, medianos y grandes empresarios que requieren de determinados equipos, robots y sistemas para efectuar diferentes actividades dentro de una industria tal como, pero no limitado a, armado, ensamble, empaque, desempaque, reempaque, embalaje, manipulación, separación, y organización de productos.  It is a reality that today, there are small, medium and large entrepreneurs that require certain equipment, robots and systems to carry out different activities within an industry such as, but not limited to, assembly, assembly, packaging, unpacking, repacking, packaging, handling, separation, and organization of products.
Normalmente estos empresarios destinan una cantidad considerable de dinero en la compra de sistemas automatizados y robots industriales de tipo delta pensando en la versatilidad de aplicación que obtendrán en el futuro, únicamente para darse cuenta de que, con el paso del tiempo, requieren de equipos de mayor capacidad y/o mayor tamaño debido a un incremento en la demanda de sus productos como consecuencia de su gran éxito empresarial. En estos casos, el empresario tendrá que realizar modificaciones sustanciales a su proceso actual que implican una nueva inversión de una magnitud similar a la que realizó inicialmente, y en gran parte de los casos, el cliente se verá forzado a sustituir totalmente sus equipos anteriores por otros de mayor capacidad y/o mayor tamaño para poder alcanzar sus objetivos, o bien comprar nuevos equipos y combinar equipos nuevos y viejos. Normally these entrepreneurs allocate a considerable amount of money in the purchase of automated systems and industrial robots of delta type thinking about the versatility of application that they will obtain in the future, only to realize that, with the passage of time, they require equipment of greater capacity and / or larger due to an increase in the demand for their products as a result of their great business success. In these cases, the employer will have to make substantial modifications to his current process that involve a new investment of a similar magnitude to the one he made initially, and in most cases, the client will be forced to completely replace his previous equipment with others of greater capacity and / or larger size to be able to reach their objectives, or buy new equipment and combine new and old equipment.
Evidentemente, el problema más grave para el cliente es la reinversión económica que tiene que realizar para modificar su proceso productivo, sin embargo existen otros problemas importantes que el cliente deberá afrontar, tales como, pero no limitados a, falta de compatibilidad entre los equipos nuevos y los viejos equipos (más aún entre equipos de diferentes fabricantes) , largos periodos de integración entre los nuevos y viejos equipos, reacomodo de otras líneas de producción para poder expandir el proceso en cuestión, capacitación del personal para usar los nuevos equipos, entre otros.  Obviously, the most serious problem for the client is the economic reinvestment that he has to do to modify his production process, however there are other important problems that the client will have to face, such as, but not limited to, lack of compatibility between the new equipment and the old equipment (even more between equipment of different manufacturers), long periods of integration between the new and old equipment, rearrangement of other production lines to be able to expand the process in question, training of the personnel to use the new equipment, among others .
Por ejemplo, un pequeño o mediano empresario ha iniciado operaciones de producción y embalaje de bebidas refrescantes y ha hecho una inversión considerable en la compra de robots industriales tipo delta que pueden levantar una masa máxima de 5 kg en un especio de trabajo cilindrico con diámetro de 800 mrn y a la velocidad máxima del robot. Sin embargo, después de dos años su empresa ha tenido tanto éxito que ahora la demanda de sus bebidas se ha duplicado y además ha incorporado otros productos a su proceso productivo, pero no puede cumplir con dicha demanda ya que sus robots y sistemas lo limitan. Por consiguiente, este pequeño o mediano empresario tendrá que comprar nuevos equipos que puedan levantar hasta 10 kg en un espacio de trabajo cilindrico con diámetro de 1,000 mm y a la misma velocidad máxima del robot en un corto o mediano plazo, lo cual significa, que habrá que invertir tiempo, dinero y esfuerzo para lograr dicho objetivo. La presente invención proporciona un robot modular y un sistema que se puede personalizar de manera inicial al cliente y reconfigurar posteriormente para aumentar la capacidad de carga y espacio de trabajo, lo cual evidentemente ahorraría tiempo, dinero y esfuerzo a un empresario que busca duplicar su inventario. For example, a small or medium-sized entrepreneur has initiated production and packaging operations of refreshing beverages and has made a considerable investment in the purchase of industrial delta robots that can lift a maximum mass of 5 kg in a cylindrical work space with a diameter of 800 mrn and the maximum speed of the robot. However, after two years your company has been so successful that now the demand for its drinks has doubled and it has also incorporated other products into its production process, but it cannot meet that demand since its robots and systems They limit it. Therefore, this small or medium businessman will have to buy new equipment that can lift up to 10 kg in a cylindrical workspace with a diameter of 1,000 mm and at the same maximum speed of the robot in a short or medium term, which means, that there will be that invest time, money and effort to achieve that goal. The present invention provides a modular robot and a system that can be initially customized to the customer and subsequently reconfigured to increase load capacity and workspace, which would obviously save time, money and effort to an entrepreneur who seeks to double his inventory. .
Se puede argumentar que un grande empresario tiene la suficiente solvencia económica para realizar una inversión mayor desde un inicio o bien no escatimar en gastos subsecuentes a la entrada de operaciones de su fábrica; sin embargo, normalmente los inversionistas o empresarios buscan invertir una menor cantidad de dinero para obtener un mejor margen de ganancias y un mayor retorno de inversión. La presente invención mediante sus robots y sistemas con múltiples componentes reconfigurables y/o personalizables permiten lograr esto.  It can be argued that a large entrepreneur has sufficient economic solvency to make a major investment from the beginning or not to spare in expenses subsequent to the entry of operations of his factory; However, normally investors or entrepreneurs seek to invest a smaller amount of money to obtain a better profit margin and a greater return on investment. The present invention by means of its robots and systems with multiple reconfigurable and / or customizable components allow to achieve this.
Actualmente, existen robots industriales de tipo delta como por ejemplo, la patente US 7 188 544 B2 de ABB AB, que describe un robot industrial tipo delta con un sistema de brazo rotatorio en el espacio y que incluye una sección base, una placa movible, así como otros elementos con los que teóricamente puede cargar hasta 8 kg de masa en su configuración más costosa (teórico debido a que en la implementación industrial práctica, únicamente se ha visto manipulando cargas menores a 3 kilogramos) . Sin embargo, el robot de dicho documento carece de la posibilidad de configurar y reconfigurar sus diversos componentes a las necesidades del cliente con el transcurso del tiempo y con base en el crecimiento de sus procesos productivos, mientras que el robot de la presente invención puede lograr esto. Currently, there are delta-type industrial robots such as, for example, US patent 7 188 544 B2 of ABB AB, which describes a delta-type industrial robot with a rotating arm system in space and that includes a base section, a movable plate, as well as other elements with which it can theoretically load up to 8 kg of mass in its most expensive configuration (theoretically because in the practical industrial implementation, it has only been seen handling loads less than 3 kilograms). However, the robot of said document lacks the possibility of configuring and reconfiguring its various components at customer needs over time and based on the growth of their production processes, while the robot of the present invention can achieve this.
Los robots Adept Quattro™ de Omron Adept Technologies, Inc., son robots delta de cuatro brazos diseñados para diferentes aplicaciones de embalaje, manufacturación, ensamble y manejo de materiales. Sin embargo, existe una serie o familia de cada uno de estos robots diseñados para objetivos específicos, a saber, para trabajar a cierta velocidad, en cierto espacio de trabajo, con cierta flexibilidad, torque y precisión máximos. Las especificaciones técnicas de dichos robots son completamente silenciosas respecto a la posibilidad de reconfigurar dicho robot conforme a las necesidades específicas del cliente, y en su lugar, el cliente tiene que desembolsar mayor cantidad de dinero para adquirir un robot Adept Quattro™ que no está hecho a la medida del cliente y que no tiene la capacidad de ser reconfigurado a las necesidades iniciales o futuras del cliente.  Omron Adept Technologies, Inc.'s Adept Quattro ™ robots are four-arm delta robots designed for different packaging, manufacturing, assembly and material handling applications. However, there is a series or family of each of these robots designed for specific objectives, namely to work at a certain speed, in a certain workspace, with some flexibility, maximum torque and precision. The technical specifications of these robots are completely silent with respect to the possibility of reconfiguring said robot according to the specific needs of the client, and instead, the client has to spend more money to acquire an Adept Quattro ™ robot that is not made tailored to the client and that does not have the ability to be reconfigured to the initial or future needs of the client.
Breve descripción de la invención Brief Description of the Invention
El robot industrial de tipo delta de la presente descripción está compuesto de tres ensambles de unión trapezoidal, tres ensambles de base de motores, tres ensambles de brazo articulado, seis ensambles de antebrazo y un ensamble de efector. Uno de los objetivos de la presente invención es proporcionar un robot caracterizado por contar con una máxima capacidad de personalización conforme a las necesidades del cliente. Los elementos que se pueden personalizar son:  The delta type industrial robot of the present description is composed of three trapezoidal joint assemblies, three motor base assemblies, three articulated arm assemblies, six forearm assemblies and an effector assembly. One of the objectives of the present invention is to provide a robot characterized by having a maximum customization capacity according to the needs of the client. The items that can be customized are:
La base del robot de la presente invención está compuesta de tres ensambles de unión trapezoidal y tres ensambles de base de servomotores, el primer componente personalizable de la presente invención es el diámetro de la base del robot puesto que al fabricar en diferentes dimensiones los trapezoides base de los ensambles de unión trapezoidal que forman el robot, directamente se puede personalizar el diámetro de la base de cada robot y por ende, adaptar la base del robot de la presente invención a las necesidades dimensionales del cliente. The base of the robot of the present invention is composed of three trapezoidal joint assemblies and three servomotor base assemblies, the first component Customizable of the present invention is the diameter of the base of the robot since by manufacturing in different dimensions the base trapezoids of the trapezoidal junction assemblies that form the robot, the diameter of the base of each robot can be directly customized and therefore, adapt the base of the robot of the present invention to the dimensional needs of the client.
El segundo componente personalizable del robot de la presente invención consiste en la aplicación simple o doble de torque en cada brazo sin reducir la velocidad angular máxima al incrementar a doble torque. Esto es posible puesto que el ensamble de la base de motores puede estar configurado en una versión simple contando con un motor, un reductor y un ensamble de contrapunto o en una versión doble contando con dos motores y dos reductores, y por ende, el robot de la presente invención es capaz de adaptarse a las necesidades de torque del cliente y mantener su velocidad angular máxima al incrementar a doble torque.  The second customizable component of the robot of the present invention consists in the simple or double application of torque on each arm without reducing the maximum angular speed when increasing to double torque. This is possible since the motor base assembly can be configured in a simple version with a motor, a reducer and a counterpoint assembly or in a double version with two motors and two reducers, and therefore, the robot of the present invention it is able to adapt to the customer's torque needs and maintain its maximum angular speed by increasing to double torque.
Cada ensamble de brazo de la presente invención está formado por un rotor hombro que alinea el eje del hombro con respecto a uno o dos motores del ensamble de la base de los motores y por un opresor hombro que alinea la barra superior y barra inferior del ensamble del brazo con respecto al rotor hombro.  Each arm assembly of the present invention is formed by a shoulder rotor that aligns the shoulder axis with respect to one or two motors of the motor base assembly and by a shoulder oppressor that aligns the upper bar and lower bar of the assembly of the arm with respect to the shoulder rotor.
El tercer componente personalizable del robot de la presente invención consiste en la capacidad de uso de barras superiores e inferiores de diferentes diámetros en los ensambles de brazo. Es posible personalizar el diámetro de las barras superiores e inferiores al modificar las dimensiones del diámetro de las perforaciones de los rotores hombro y de los codos del robot, y por ende, el robot de la presente invención, es capaz de convertirse en un robot más flexible o rígido y de esta manera adaptarse a las necesidades de estabilidad del brazo requeridas por el cliente. The third customizable component of the robot of the present invention consists in the ability to use upper and lower bars of different diameters in the arm assemblies. It is possible to customize the diameter of the upper and lower bars by modifying the dimensions of the diameter of the perforations of the shoulder rotors and the elbows of the robot, and therefore, the robot of the present invention is able to become a robot more flexible or rigid and thus adapt to the stability needs of the arm required by the client.
El cuarto componente personalizable del robot de la presente invención consiste en la capacidad de personalizar la longitud de los ensambles de brazo por medio de la modificación de la longitud de las barras superiores e inferiores de los ensambles de brazo, y por ende, el robot de la presente invención es capaz de adaptar la longitud de sus brazos a las necesidades dimensionales del cliente.  The fourth customizable component of the robot of the present invention consists in the ability to customize the length of the arm assemblies by means of modifying the length of the upper and lower bars of the arm assemblies, and hence the robot of The present invention is capable of adapting the length of its arms to the dimensional needs of the client.
El quinto componente personalizable del robot de la presente invención consiste en la capacidad de personalizar la longitud de los ensambles de antebrazo por medio de la modificación de la longitud de la barra de antebrazo, y por ende, el robot de la presente invención es capaz de adaptar la longitud de sus antebrazos a las necesidades dimensionales del cliente.  The fifth customizable component of the robot of the present invention consists in the ability to customize the length of the forearm assemblies by modifying the length of the forearm bar, and therefore, the robot of the present invention is capable of adapt the length of your forearms to the dimensional needs of the client.
El sexto componente personalizable del robot de la presente invención consiste en la capacidad de uso de barras de diferentes diámetros en los ensambles de antebrazo, al incrementar o reducir el diámetro de las barras de los antebrazos del robot de la presente invención, el robot es capaz de modificar su flexibilidad o rigidez y de esta manera adaptarse a las necesidades de estabilidad en antebrazo requeridas por el cliente.  The sixth customizable component of the robot of the present invention consists in the ability to use bars of different diameters in the forearm assemblies, by increasing or reducing the diameter of the forearm bars of the robot of the present invention, the robot is capable to modify its flexibility or rigidity and thus adapt to the needs of stability in the forearm required by the client.
El ensamble de efector del robot de la presente invención está compuesto por un anillo efector que en su exterior es similar al del arte previo puesto que une a los seis ensambles de antebrazos por medio de articulaciones esféricas. Sin embargo, el interior del ensamble de efector de la presente invención es muy diferente al del arte previo puesto que cuenta con una perforación grande y dos pestañas perforadas en donde se pueden ensamblar y desensamblar de manera muy sencilla herramientas para el robot. Además, el séptimo componente personalizable del robot de la presente invención consiste en la variación de diámetro del ensamble de efector por medio de la selección de tres tamaños diferentes de anillos efectores; uno chico, uno mediano y uno grande, y por ende, el robot de la presente invención es capaz de adaptar el diámetro de sus ensambles de efectores a las necesidades dimensionales del cliente. The effector assembly of the robot of the present invention is made up of an effector ring that is similar to that of the prior art, since it joins the six forearm assemblies by means of spherical joints. However, the interior of the effector assembly of the present invention is very different from that of the prior art since it has a large perforation and two perforated tabs where tools for the robot can be assembled and disassembled very easily. In addition, the seventh customizable component of the robot of the present invention consists in varying the diameter of the effector assembly by selecting three different sizes of effector rings; a small one, a medium one and a large one, and therefore, the robot of the present invention is able to adapt the diameter of its effector assemblies to the dimensional needs of the client.
Otro objetivo de la presente invención en comparación con otros robots de tipo delta del arte previo, es el de proporcionar una personalización superior en beneficio del cliente. Por lo general, existen cinco variables que cualquier cliente desea personalizar, estas son: espacio de trabajo, flexibilidad, velocidad, torque y precisión.  Another objective of the present invention compared to other delta robots of the prior art, is to provide superior customization for the benefit of the customer. In general, there are five variables that any client wishes to customize, these are: workspace, flexibility, speed, torque and precision.
Según se demuestra en la primera, cuarta, quinta y séptima capacidad personalizable del robot de la presente invención, a comparación del arte previo, se obtiene el único robot de tipo delta capaz de personalizar sus cuatro dimensiones funcionales (Diámetro de la base del robot, longitud del brazo, longitud del antebrazo y el diámetro del efector) en conjunto con la cinemática y dinámica para obtener un espacio de trabajo y funcionalidad totalmente personalizada a las necesidades del cliente.  As demonstrated in the first, fourth, fifth and seventh customizable capacity of the robot of the present invention, in comparison to the prior art, the only delta type robot capable of customizing its four functional dimensions is obtained (Diameter of the robot base, arm length, forearm length and effector diameter) in conjunction with the kinematics and dynamics to obtain a work space and functionality fully customized to the client's needs.
En cuanto a flexibilidad, según se muestra en la tercera y sexta capacidad personalizable del robot de la presente invención, a comparación del arte previo, se obtiene al único robot de tipo delta capaz de modificar los diámetros de las barras de sus brazos y antebrazos para ajustar el nivel de flexibilidad o rigidez a las necesidades del cliente.  As for flexibility, as shown in the third and sixth customizable capacity of the robot of the present invention, in comparison to the prior art, the only delta type robot capable of modifying the diameters of the arms of its arms and forearms is obtained to adjust the level of flexibility or rigidity to the needs of the client.
En cuanto a la velocidad angular de los brazos, el robot de la presente invención puede personalizar el tipo de reductor y el tipo de motor a las necesidades del cliente para maximizar la velocidad rotacional y aceleración angular de cada ensamble de brazo. En cuanto _a torque, a diferencia de los robots de tipo delta en el arte previo, el robot de tipo delta de la presente invención es el único capaz de accionar cada uno de los ensambles de brazo por medio de uno o dos motores, capacidad que permite duplicar el torque aplicado a cada ensamble de brazo y a su vez, mantener la velocidad angular máxima de cada ensamble de brazo al incrementar a doble torque. As for the angular speed of the arms, the robot of the present invention can customize the type of reducer and the type of motor to the needs of the customer to maximize the rotational speed and angular acceleration of each arm assembly. As for the torque, unlike the delta robots in the prior art, the delta robot of the present invention is the only one capable of driving each of the arm assemblies by means of one or two motors, capacity that It allows to double the torque applied to each arm assembly and, in turn, maintain the maximum angular speed of each arm assembly by increasing to double torque.
En cuanto a la precisión, el robot de tipo delta de la presente invención es capaz de utilizar reductores de tipo planetario con huelgo estrecho entre sus engranes o de tipo armónico con huelgo cercano a cero, capacidad que combinada con la rigidez elegida para la configuración del robot, permite personalizar la precisión del robot a la aplicación y necesidades del cliente.  As for the precision, the delta-type robot of the present invention is capable of using planetary type reducers with narrow clearance between its gears or harmonic type with near-zero strike, capacity that combined with the stiffness chosen for the configuration of the robot, allows to customize the precision of the robot to the application and needs of the client.
Finalmente, otro objetivo de la presente invención es la de proporcionar la capacidad de eliminar la intrusión que generan los robots de tipo delta del arte previo a los procesos industriales en donde son instalados. Los robots del arte previo tienen que ser ensamblados a los procesos industriales por tres soportes en configuración tipo estrella en la base del robot, esto se ve directamente relacionado a la creación de estructuras que atrapan los procesos industriales dentro de sus estructuras, complicando la instalación de los robots, la aplicación de mantenimiento tanto al robot como al proceso industrial en cuestión y la adaptabilidad del proceso futuro del cliente.  Finally, another objective of the present invention is to provide the ability to eliminate the intrusion generated by the delta-like robots of the art prior to the industrial processes where they are installed. The robots of the prior art have to be assembled to the industrial processes by three brackets in star-like configuration at the base of the robot, this is directly related to the creation of structures that trap the industrial processes within their structures, complicating the installation of the robots, the maintenance application to both the robot and the industrial process in question and the adaptability of the client's future process.
El robot de tipo delta de la presente invención tiene la capacidad de ser ensamblado al proceso industrial por un solo punto, lo cual permite crear estructuras que solo entran en contacto lateral con el proceso industrial del cliente, permitiendo y facilitando la movilidad del robot para la aplicación de mantenimiento al robot y al proceso y permitiendo al cliente cambiar o modificar sus procesos de manera más sencilla en el futuro. The delta-type robot of the present invention has the ability to be assembled to the industrial process by a single point, which allows to create structures that only come into lateral contact with the customer's industrial process, allowing and facilitating the robot's mobility for maintenance application to the robot and the process and allowing the customer to change or modify their processes Easier way in the future.
Breve descripción de las figuras Brief description of the figures
La presente invención será mejor entendida a partir de las siguientes figuras tomadas en conjunto con la descripción detallada de la invención, en donde las figuras describen:  The present invention will be better understood from the following figures taken in conjunction with the detailed description of the invention, wherein the figures describe:
La figura 1 muestra una vista en perspectiva del ensamble completo del robot modular tipo delta de la presente invención en una primera modalidad preferida de tres motores;  Figure 1 shows a perspective view of the complete assembly of the delta modular robot of the present invention in a first preferred three-engine mode;
La figura 2 muestra una vista en perspectiva del ensamble completo del robot modular tipo delta de la presente invención en una segunda modalidad preferida de seis motores;  Figure 2 shows a perspective view of the complete assembly of the delta modular robot of the present invention in a second preferred six-engine mode;
La figura 3 muestra una vista superior del robot modular de tipo delta de tres motores;  Figure 3 shows a top view of the three-type delta modular robot;
La figura 4 muestra una vista superior del robot modular de tipo delta de seis motores;  Figure 4 shows a top view of the six-engine delta modular robot;
La figura 5a muestra el ensamble de unión trapezoidal de la presente invención compuesta de un trapezoide base, la figura 5b muestra un ensamble trapezoidal posterior sin escuadra y la figura 5c muestra un ensamble de unión trapezoidal expandido;  Figure 5a shows the trapezoidal joint assembly of the present invention composed of a base trapezoid, Figure 5b shows a rear trapezoidal assembly without square and Figure 5c shows an expanded trapezoidal joint assembly;
La figura 6 muestra una vista en perspectiva de un ensamble de base de motores simples de la presente invención correspondiente a la primera modalidad preferida de tres motores;  Figure 6 shows a perspective view of a simple motor base assembly of the present invention corresponding to the first preferred three motor mode;
La figura 7 muestra una vista en perspectiva de un ensamble de base de motores dobles de la presente invención correspondiente a la segunda modalidad preferida de seis motores;  Figure 7 shows a perspective view of a double motor base assembly of the present invention corresponding to the second preferred six engine mode;
La figura 8 muestra una vista en perspectiva del ensamble de brazo articulado de la presente invención;  Figure 8 shows a perspective view of the articulated arm assembly of the present invention;
La figura 9 muestra una vista en perspectiva del ensamble de antebrazo de la presente invención; La figura 10 es una vista en perspectiva del ensamble de efector de la presente invención; Figure 9 shows a perspective view of the forearm assembly of the present invention; Figure 10 is a perspective view of the effector assembly of the present invention;
Las figuras lia y 11b muestran una vista superior del robot modular de tipo delta de la presente invención en su segunda modalidad preferida de seis motores, en donde las dimensiones del robot 11b son más grandes que las del robot lia;  Figures lia and 11b show a top view of the delta type modular robot of the present invention in its second preferred six-engine mode, wherein the dimensions of the robot 11b are larger than those of the robot lia;
Las figuras 12a y 12b muestran una vista en perspectiva de una herramienta para manipular botellas; y  Figures 12a and 12b show a perspective view of a tool for handling bottles; Y
Las figuras 13a y 13b muestran una vista en perspectiva de una herramienta para manipular objetos suaves con forma cilindrica.  Figures 13a and 13b show a perspective view of a tool for manipulating soft objects with cylindrical shape.
Descripción detallada de la invención Haciendo referencia a la figura 1 y 3, se muestra el ensamble completo del robot modular tipo delta 0 de la presente invención en su primera modalidad preferida de tres motores, el cual está conformado por una base con tres ensambles de base de motores simple 3, tres ensambles de unión trapezoidal 2, tres ensambles de brazo articulado 5, seis ensambles de antebrazo 6 y un ensamble de efector 7; en donde los tres ensambles de unión trapezoidal 2 ensamblan a los tres ensambles de base de motores simple 3 para generar la configuración robótica de tipo delta. Cada uno de los ensambles de base de motores simple 3 se ensambla por medio del eje del reductor 21 y del eje de contrapunto 25 a un respectivo rotor hombro 40 de cada ensamble de brazo articulado 5. Cada uno de los ensambles de brazo articulado 5 a su vez se ensambla en cada una de sus dos articulaciones esféricas 45 ubicadas en su codo 44 de manera lateral y en forma independiente con un ensamble de antebrazo 6 (Ver figura 8) . Todos los ensambles de antebrazos 6 son preferentemente longitudinalmente iguales entre ellos para formar un paralelogramo entre la base del robot y el anillo del efector 70. Finalmente, la figura 1 también muestra el acoplamiento de cada par de ensambles de antebrazo 6 a un ensamble de efector 7 mediante un anillo efector 70 que cuenta con tres salidas 73 en donde cada salida 73 cuenta con dos articulaciones esféricas 71 tal y como se muestra en la figura 10. DETAILED DESCRIPTION OF THE INVENTION Referring to FIGS. 1 and 3, the complete assembly of the delta-type modular robot 0 of the present invention is shown in its first preferred three-engine mode, which is formed by a base with three base assemblies. of simple motors 3, three trapezoidal junction assemblies 2, three articulated arm assemblies 5, six forearm assemblies 6 and an effector assembly 7; wherein the three trapezoidal junction assemblies 2 assemble the three simple motor base assemblies 3 to generate the delta-like robotic configuration. Each of the simple motor base assemblies 3 is assembled by means of the reducer shaft 21 and the tailstock shaft 25 to a respective shoulder rotor 40 of each articulated arm assembly 5. Each of the articulated arm assemblies 5 a in turn, it is assembled in each of its two spherical joints 45 located at its elbow 44 laterally and independently with a forearm assembly 6 (See figure 8). All forearm assemblies 6 are preferably longitudinally equal to each other for form a parallelogram between the robot base and the effector ring 70. Finally, Figure 1 also shows the coupling of each pair of forearm assemblies 6 to an effector assembly 7 by means of an effector ring 70 which has three outputs 73 in where each outlet 73 has two spherical joints 71 as shown in Figure 10.
Los ensambles de base de motores simple 3 están unidos mediante elementos de sujeción 26 a los ensambles de unión trapezoidal 2, de tal manera que cada ensamble de unión trapezoidal 2 une a dos ensambles de base de motores simple 3 para de esta manera posicionar a los tres ensambles de bases de motores simples 3 en una configuración de tipo delta. Cabe señalar que uno de los ensambles de unión trapezoidal 2 no se alcanza a apreciar en las figuras 1 o 3 ya que el mismo está cubierto por un perfil estructural 1. El ensamble de unión trapezoidal 2 que está cubierto por el perfil estructural 1 carece de una escuadra 11 como se describirá al final del presente párrafo. Así mismo, el trapezoide base 10 y la escuadra 11 de cada unión trapezoidal 2 están ensamblados entre sí mediante elementos de sujeción 12 y la base del robot conformada por tres ensambles de unión trapezoidal 2 y de tres ensambles de base de motores simple 3, se ensambla al perfil estructural 1 mediante los elementos de sujeción 13 que unen las escuadras 11 de cada ensamble de unión trapezoidal 2 al perfil estructural 1 y en el caso del ensamble de unión trapezoidal 2 cubierto por el perfil estructural 1, el trapezoide base 10 se ensambla directamente por medio de elementos de sujeción 12 al perfil estructural 1.  The simple motor base assemblies 3 are attached by fasteners 26 to the trapezoidal joint assemblies 2, such that each trapezoidal junction assembly 2 joins two simple motor base assemblies 3 to thereby position the three simple motor base assemblies 3 in a delta type configuration. It should be noted that one of the trapezoidal joint assemblies 2 cannot be seen in figures 1 or 3 since it is covered by a structural profile 1. The trapezoidal joint assembly 2 which is covered by the structural profile 1 lacks a square 11 as will be described at the end of this paragraph. Likewise, the base trapezoid 10 and the square 11 of each trapezoidal joint 2 are assembled together by means of fasteners 12 and the robot base formed by three trapezoidal joint assemblies 2 and three simple motor base assemblies 3, assembles the structural profile 1 by means of the fasteners 13 that connect the brackets 11 of each trapezoidal joint assembly 2 to the structural profile 1 and in the case of the trapezoidal joint assembly 2 covered by the structural profile 1, the base trapezoid 10 is assembled directly by means of fasteners 12 to the structural profile 1.
Ahora, haciendo referencia a la figura 2 y 4, se muestra un ensamble completo del robot modular tipo delta 0' de la presente invención en su segunda modalidad preferida de seis motores, el cual está conformado por una base con tres ensambles de base de motores doble 4, tres ensambles de unión trapezoidal 2, tres ensambles de brazo articulado 5, seis ensambles de antebrazo 6 y un ensamble de efector 7; en donde los tres ensambles de unión trapezoidal 2 ensamblan a los tres ensambles de base de motores doble 4 para generar la configuración robótica de tipo delta. Cada uno de los ensambles de base de motores doble 4 se ensambla por medio de los dos ejes de los dos reductores 21 a un respectivo rotor hombro 40 de cada ensamble de brazo articulado 5. Cada uno de los ensambles de brazo articulado 5 a su vez se ensambla en cada una de sus dos articulaciones esféricas 45 ubicadas en su codo 44 de manera lateral y en forma independiente con un ensamble de antebrazo 6 (Ver figura 8) . Todos los ensambles de antebrazos 6 son preferentemente longitudinalmente iguales entre ellos para formar un paralelogramo entre la base del robot y el anillo del efector 70. Finalmente, la figura 2 también muestra el acoplamiento de cada par de ensambles de antebrazo 6 a un ensamble de efector 7 mediante un anillo efector 70 que cuenta con tres salidas 73 en donde cada salida 73 cuenta con dos articulaciones esféricas 71 tal y como se muestra en la figura 10. Now, with reference to FIGS. 2 and 4, a complete assembly of the delta 0 'modular robot of the present invention is shown in its second preferred embodiment of six engines, which is comprised of a base with three double motor base assemblies 4, three trapezoidal joint assemblies 2, three articulated arm assemblies 5, six forearm assemblies 6 and an effector assembly 7; wherein the three trapezoidal junction assemblies 2 assemble the three double motor base assemblies 4 to generate the delta-like robotic configuration. Each of the double motor base assemblies 4 is assembled by means of the two axes of the two reducers 21 to a respective shoulder rotor 40 of each articulated arm assembly 5. Each of the articulated arm assemblies 5 in turn it is assembled in each of its two spherical joints 45 located on its elbow 44 laterally and independently with a forearm assembly 6 (See Figure 8). All forearm assemblies 6 are preferably longitudinally equal to each other to form a parallelogram between the robot base and the effector ring 70. Finally, Figure 2 also shows the coupling of each pair of forearm assemblies 6 to an effector assembly 7 by means of an effector ring 70 which has three outlets 73 where each outlet 73 has two spherical joints 71 as shown in Figure 10.
Los ensambles de base de motores dobles 4 están unidos mediante elementos de sujeción 26 a los ensambles de unión trapezoidal 2, de tal manera que cada ensamble de unión trapezoidal 2 une a dos ensambles de base de motores doble 4 para de esta manera posicionar a los tres ensambles de bases de motores dobles 4 en una configuración de tipo delta. Cabe señalar que uno de los ensambles de unión trapezoidal 2 no se alcanza a apreciar en las figuras 2 o 4 ya que el mismo está cubierto por un perfil estructural 1. El ensamble de unión trapezoidal 2 que está cubierto por el perfil estructural 1 carece de una escuadra 11 como se describirá al final del presente párrafo. Así mismo, el trapezoide base 10 y la escuadra 11 de cada unión trapezoidal 2 están ensamblados entre sí mediante elementos de sujeción 12 y la base del robot conformada por tres ensambles de unión trapezoidal 2 y por tres ensambles de base de motores dobles 4 se ensambla al perfil estructural 1 mediante los elementos de sujeción 13 que unen las escuadras 11 de cada ensamble de unión trapezoidal 2 al perfil estructural 1 y en el caso del ensamble de unión trapezoidal 2 cubierto por el perfil estructural 1, el trapezoide base 10 se ensambla directamente por medio de elementos de sujeción 12 al perfil estructural 1. The double motor base assemblies 4 are attached by fasteners 26 to the trapezoidal joint assemblies 2, such that each trapezoidal junction assembly 2 joins two double motor base assemblies 4 to thereby position the three 4 double motor base assemblies in a delta type configuration. It should be noted that one of the trapezoidal joint assemblies 2 cannot be seen in figures 2 or 4 since it is covered by a structural profile 1. The trapezoidal joint assembly 2 that is covered by the profile Structural 1 lacks a square 11 as will be described at the end of this paragraph. Likewise, the base trapezoid 10 and the square 11 of each trapezoidal joint 2 are assembled together by means of fastening elements 12 and the robot base formed by three trapezoidal joint assemblies 2 and by three double motor base assemblies 4 is assembled to the structural profile 1 by means of the fasteners 13 that join the brackets 11 of each trapezoidal joint assembly 2 to the structural profile 1 and in the case of the trapezoidal joint assembly 2 covered by the structural profile 1, the base trapezoid 10 is assembled directly by means of fasteners 12 to the structural profile 1.
En las figuras 5a a 5c se muestran con mayor detalle el ensamble de unión trapezoidal 2 el cual es un elemento clave que permite formar la base del robot de tipo delta de la presente invención, el ensamble de unión trapezoidal 2 está conformado por un trapezoide base 10 y una escuadra 11, la escuadra 11 y el trapezoide base 10 contienen cuatro orificios o perforaciones cada uno para unir ambas partes mediante cuatro elementos de sujeción 12. Los elementos de sujeción 12 pueden seleccionarse de un grupo que comprende, pero no está limitado a tornillos normales, tornillos de presión, remaches, pijas, o una combinación de los mismos. El trapezoide base 10 está conformado por dos rebordes alineadores 14 localizados centralmente entre las porciones superiores 15 y porciones inferiores 16 del trapezoide base 10, en donde la porción superior 15 e inferior 16 se encuentran en bajo relieve en relación con los rebordes 14 que están en alto relieve. Tanto la porción superior 15 como la inferior 16 tienen tres perforaciones distribuidas equidistantemente en forma horizontal para realizar su acoplamiento correspondiente con los ensambles de base de motores simples 3 o dobles 4. El trapezoide base 10 también cuanta con una pared superior 18 en la cual se localizan las cuatro perforaciones en las cuales se insertan los elementos de sujeción 12 para crear el ensamble entre el trapezoide base 10 y la escuadra 11. Esta pared superior 18 es importante junto con la cara inferior, cara frontal exterior 19 y cara posterior puesto que al expandir estas paredes o caras de manera longitudinal, se puede modificar el radio de la base del robot de la presente invención, tal y como se muestra de forma más clara en la figura 5c. In figures 5a to 5c the trapezoidal joint assembly 2 is shown in greater detail which is a key element that allows the base of the delta type robot of the present invention to be formed, the trapezoidal joint assembly 2 is formed by a base trapezoid 10 and a square 11, the square 11 and the base trapezoid 10 contain four holes or perforations each to join both parts by means of four fasteners 12. The fasteners 12 can be selected from a group comprising, but not limited to normal screws, pressure screws, rivets, pins, or a combination thereof. The base trapezoid 10 is formed by two alignment flanges 14 centrally located between the upper portions 15 and lower portions 16 of the base trapezoid 10, wherein the upper portion 15 and lower 16 are in low relief in relation to the flanges 14 which are in high relief. Both the upper portion 15 and the lower portion 16 have three horizontally distributed holes to make their corresponding coupling with the base assemblies of 3 or double single motors 4. The base 10 trapezoid also has an upper wall 18 in which the four perforations are located in which the fasteners 12 are inserted to create the assembly between the base 10 trapezoid and the square 11. This upper wall 18 is important together with the lower face, outer front face 19 and rear face since by expanding these walls or faces longitudinally, the radius of the robot base of the present invention can be modified, as shows more clearly in Figure 5c.
La escuadra 11 contiene una pared posterior 17 con cuatro orificios o perforaciones para fijar lateralmente el ensamble de unión trapezoidal 2 al perfil estructural 1. Cabe señalar que dos ensambles de unión trapezoidal 2 contienen escuadras 11 con paredes posteriores 17 para fijar el ensamble de unión trapezoidal 2 al perfil estructural 1, mientras que un ensamble de unión trapezoidal carece de escuadra 11 y se fija directamente del trapezoide base 10 a la parte inferior del perfil estructural 1 mediante elementos de sujeción 12, tal y como se muestra de forma más clara en la figura 5b.  The square 11 contains a rear wall 17 with four holes or perforations to laterally fix the trapezoidal joint assembly 2 to the structural profile 1. It should be noted that two trapezoidal joint assemblies 2 contain squares 11 with rear walls 17 to fix the trapezoidal joint assembly 2 to the structural profile 1, while a trapezoidal joint assembly lacks a square 11 and is fixed directly from the base trapezoid 10 to the bottom of the structural profile 1 by means of fasteners 12, as shown more clearly in the figure 5b.
Los trapezoides base 10 se pueden fabricar en diferentes longitudes con el objetivo de aumentar o disminuir el diámetro de la base del robot de acuerdo a las necesidades del cliente o a la tarea que se requiera realizar. Para aumentar o disminuir el diámetro de la base de un robot, se debe de modificar la longitud de la cara superior de la pared superior 18, así como la cara inferior (no mostrada), la cara exterior frontal 19 y la cara posterior (no mostrada) del trapezoide base 10, la cara inferior siendo la contracara de la cara superior y siendo la cara posterior la contracara de la cara frontal 19. Los tres trapezoides base 10 de cada robot deben de ser fabricados con las mismas longitudes para conservar la simetría de tipo delta en la base del robot, de acuerdo al primer componente reconfigurable del robot. The base 10 trapezoids can be manufactured in different lengths in order to increase or decrease the diameter of the robot base according to the needs of the client or the task that needs to be performed. To increase or decrease the diameter of the base of a robot, the length of the upper face of the upper wall 18 must be modified, as well as the lower face (not shown), the front outer face 19 and the back face (no shown) of the base 10 trapezoid, the lower face being the counterpart of the upper face and the rear face being the counterface of the front face 19. The three base 10 trapezoids of each robot must be manufactured with the same lengths for conserve delta type symmetry at the base of the robot, according to the first reconfigurable component of the robot.
Cabe mencionar que independientemente de la longitud de fabricación de los trapezoides base 10 de cada robot, los rebordes alineadores 14, porción superior 15 y porción inferior 16 se mantienen intactos y por ende siempre permiten una alineación y acoplamiento adecuados con los ensambles de base de motores simples 3 o dobles 4.  It should be mentioned that regardless of the manufacturing length of the base trapezoids 10 of each robot, the alignment flanges 14, upper portion 15 and lower portion 16 remain intact and therefore always allow proper alignment and coupling with the motor base assemblies single 3 or double 4.
Así mismo, las tres perforaciones distribuidas en forma horizontal en cada porción superior 15 e inferior 16 se mantienen intactas, de tal manera que siempre se puedan acoplar a los ensambles de base de motores simple 3 o doble 4 sin la necesidad de realizar modificaciones en las bases de motores 20.  Likewise, the three perforations distributed horizontally in each upper portion 15 and lower 16 remain intact, so that they can always be attached to the simple 3 or double 4 motor base assemblies without the need to make modifications to the engine bases 20.
Las cuatro perforaciones que se encuentran en la pared superior 18 del trapezoide base 10 y que sirven para unir el trapezoide base 10 a la escuadra 11 por medio de elementos de sujeción 12 deben de ser posicionadas correctamente al modificar la longitud del diámetro de cada base de robot. La posición correcta de las perforaciones para los dos trapezoides base 10 correspondientes a los dos ensambles de unión trapezoidal 2 frontales que cuentan con escuadras 11 es aquella mostrada por las cuatro perforaciones de la escuadra 11 cuando la cara exterior frontal 19 de la escuadra 11 se alinea de manera paralela y entra en contacto con la porción superior 15 del trapezoide base 10, tal y como se puede apreciar de manera más clara en las figuras 5a y 5c. La posición correcta para las cuatro perforaciones del tercer trapezoide base 10 correspondiente al ensamble de unión trapezoidal 2 posterior cubierto por el perfil estructural 1 es aquella central a la cara superior 18 del trapezoide base 10 que concuerda longitudinalmente con las dos ranuras (no mostradas en las figuras) del perfil estructural 1, tal y como se puede apreciar de manera más clara en la figura 5b. The four perforations that are in the upper wall 18 of the base trapezoid 10 and which serve to join the base trapezoid 10 to the square 11 by means of fasteners 12 must be correctly positioned when modifying the length of the diameter of each base of robot. The correct position of the perforations for the two base trapezoids 10 corresponding to the two frontal trapezoidal junction assemblies 2 having squares 11 is that shown by the four perforations of the square 11 when the front outer face 19 of the square 11 is aligned in parallel and comes into contact with the upper portion 15 of the base trapezoid 10, as can be seen more clearly in Figures 5a and 5c. The correct position for the four perforations of the third base trapezoid 10 corresponding to the rear trapezoidal joint assembly 2 covered by the structural profile 1 is that central to the upper face 18 of the base trapezoid 10 which coincides longitudinally with the two grooves (not shown in the figures) of structural profile 1, such and as can be seen more clearly in Figure 5b.
En la figura 6 se muestra el ensamble de base de motores simple 3 en el cual a cada ensamble de brazo articulado 5 se aplica el torque proveniente de un solo motor 22 y reductor 21 de un ensamble de base de motores simple 3. El ensamble de base de motores simple 3 comprende una base de motores 20, un reductor 21, un motor 22, una base contrapunto 23, un balero contrapunto 24, un eje contrapunto 25 y elementos de sujeción 26, 27 (no mostrados en la figura 6) , 28 y 29 para acoplar los componentes propios del ensamble de base de motores simple 3 y además, acoplar el ensamble de base de motores simple 3 a los demás ensambles.  Figure 6 shows the simple motor base assembly 3 in which to each articulated arm assembly 5 the torque from a single motor 22 and reducer 21 of a simple motor base assembly 3 is applied. simple motor base 3 comprises an engine base 20, a reducer 21, a motor 22, a tailstock base 23, a tailstock bearing 24, a tailstock shaft 25 and fasteners 26, 27 (not shown in Figure 6), 28 and 29 to couple the components of the simple motor base assembly 3 and also, connect the simple motor base assembly 3 to the other assemblies.
Para crear una alineación precisa entre los ensambles de unión trapezoidal 2 y los ensambles de base de motores simple 3, la base de motores 20 tiene una ranura de recepción 30 que se acopla con los rebordee alineadores 14 de dos trapezoides base 10 a través de elementos de sujeción 26, que se fijan a los orificios de la porción superior 15 e inferior 16 del ensamble de unión trapezoidal 2 mostrado en la figura 5.  To create a precise alignment between the trapezoidal junction assemblies 2 and the simple motor base assemblies 3, the motor base 20 has a receiving slot 30 that engages with the flanges aligners 14 of two base trapezoids 10 through elements of clamping 26, which are fixed to the holes of the upper 15 and lower portion 16 of the trapezoidal joint assembly 2 shown in Figure 5.
El reductor 21 se ensambla a la primera perforación 31 de la base de motores 20 mediante elementos de sujeción 27, mientras que la base contrapunto 23 se ensambla en la segunda perforación 32, mediante elementos de sujeción 28. Los elementos de sujeción 27 y 28 pueden seleccionarse entre, pero no están limitados a, tornillos normales, tornillos de presión, remaches, pijas, o una combinación de los mismos, en tanto que los reductores pueden seleccionarse entre, pero no están limitados a, reductores planetarios, reductores armónicos o una combinación de los mismos.  The reducer 21 is assembled to the first bore 31 of the motor base 20 by means of fasteners 27, while the counterpoint base 23 is assembled into the second bore 32, by means of fasteners 28. The fasteners 27 and 28 can be selected from, but not limited to, normal screws, pressure screws, rivets, pins, or a combination thereof, while the reducers can be selected from, but not limited to, planetary reducers, harmonic reducers or a combination thereof.
El motor 22 se fija al reductor 21 mediante elementos de sujeción 29. Los elementos de sujeción pueden seleccionarse entre, pero no están limitados a, tornillos normales, tornillos de presión, remaches, pijas, o una combinación de los mismos, en tanto que los motores pueden seleccionarse entre, pero no están limitados a, servomotores, motores a paso, motores de corriente alterna, motores de corriente directa o una combinación de los mismos. The motor 22 is fixed to the reducer 21 by means of fasteners 29. The fasteners can be be selected from, but not limited to, normal screws, pressure screws, rivets, pins, or a combination thereof, while the motors can be selected from, but not limited to, servomotors, stepper motors, motors alternating current, direct current motors or a combination thereof.
La base contrapunto 23 se ensambla a la segunda perforación 32 de la base de motores 20 mediante elementos de sujeción 28. En el asiento de la base de contrapunto 23 se ensambla un balero contrapunto 24 y sobre el balero contrapunto 24 se ensambla un eje de contrapunto 25. Los ensambles de brazo articulado 5 se unen al ensamble de base de motores simple 3 a través del eje de contrapunto 25 y el eje de salida del reductor 21, cada uno conectado a un costado del rotor hombro 40 de cada ensamble de brazo articulado 5. Cabe mencionar que en la primera perforación 31 de la base de motores 20 generalmente se ensambla el reductor 21 y en la segunda perforación 32 generalmente se ensambla el contrapunto 25; sin embargo, se podrían ensamblar el reductor 21 y el eje de contrapunto 25 de manera inversa a conveniencia del cliente de manera que en la primera perforación 31 de la base de motores 20 se puede ensamblar el contrapunto 25 y en la segunda perforación 32 se puede ensamblar el reductor 21.  The tailstock base 23 is assembled to the second bore 32 of the motor base 20 by means of fasteners 28. In the seat of the tailstock base 23 a tailstock bearing 24 is assembled and a tailstock shaft is assembled onto the tailstock bearing 24 25. The articulated arm assemblies 5 are attached to the simple motor base assembly 3 through the counterpoint axis 25 and the output shaft of the reducer 21, each connected to one side of the shoulder rotor 40 of each articulated arm assembly 5. It should be mentioned that in the first perforation 31 of the motor base 20 the reducer 21 is generally assembled and in the second perforation 32 the counterpoint 25 is generally assembled; however, the reducer 21 and the tailstock shaft 25 could be assembled inversely at the convenience of the customer so that in the first bore 31 of the motor base 20 the tailstock 25 can be assembled and in the second bore 32 assemble the reducer 21.
La figura 7 es una vista en perspectiva que muestra un ensamble de base de motores doble 4 en el cual a cada ensamble de brazo articulado 5 se aplica el torque proveniente de dos motores 22 y dos reductores 21 de un ensamble de base de motores doble 4. El ensamble de base de motores doble 4 está formado por una base de motores 20, dos reductores 21, dos motores 22, elementos de sujeción 26, 27 y 29 y un copie flexible (no ilustrado) para ensamblar los componentes propios del ensamble de base de motores doble 4 y además, ensamblar o acoplar la base de motores doble 4 a los demás ensambles. Figure 7 is a perspective view showing a double motor base assembly 4 in which to each articulated arm assembly 5 the torque from two motors 22 and two reducers 21 of a double motor base assembly 4 is applied. The double motor base assembly 4 is formed by a motor base 20, two reducers 21, two motors 22, fasteners 26, 27 and 29 and a flexible copy (not shown) to assemble the components of the assembly. 4 double engine base and also, assemble or attach the double 4 motor base to the other assemblies.
Para crear una alineación precisa entre los ensambles de unión trapezoidal 2 y los ensambles de base de motores doble 4, la base de motores 20 tiene una ranura de recepción 30 que se acopla con los rebordes alineadores 14 de dos trapezoides base 10 a través de elementos de sujeción 26, que se fijan a los orificios de la porción superior 15 e inferior 16 del ensamble de unión trapezoidal 2 mostrado en la figura 5.  To create a precise alignment between the trapezoidal junction assemblies 2 and the double motor base assemblies 4, the motor base 20 has a receiving slot 30 that engages with the alignment flanges 14 of two base trapezoids 10 through elements of clamping 26, which are fixed to the holes of the upper 15 and lower portion 16 of the trapezoidal joint assembly 2 shown in Figure 5.
Dos reductores 21 se ensamblan a la base de motores 20 mediante elementos de sujeción 27, un primer reductor 21 en la primera perforación 31 de la base de motores 20 y un segundo reductor 21 en la segunda perforación 32 de la base de motores 20 o viceversa. Los elementos de sujeción pueden seleccionarse entre, pero no están limitados a, tornillos normales, tornillos de presión, remaches, pijas, o una combinación de los mismos, en tanto que los reductores pueden seleccionarse entre, pero no están limitados a, reductores planetarios, reductores armónicos o una combinación de los mismos.  Two reducers 21 are assembled to the motor base 20 by means of fasteners 27, a first reducer 21 in the first perforation 31 of the motor base 20 and a second reducer 21 in the second perforation 32 of the motor base 20 or vice versa . The fasteners can be selected from, but are not limited to, normal screws, pressure screws, rivets, pins, or a combination thereof, while the reducers can be selected from, but not limited to, planetary reducers, harmonic reducers or a combination thereof.
Dos motores 22 se fijan a los dos reductores 21, un motor 22 a cada reductor 21 mediante elementos de sujeción 29. Los elementos de sujeción pueden seleccionarse entre, pero no están limitados a, tornillos normales, tornillos de presión, pijas, o una combinación de los mismos, en tanto que los motores pueden seleccionarse entre, pero no están limitados a, servomotores, motores a paso, motores de corriente alterna, motores de corriente directa o una combinación de los mismos.  Two motors 22 are fixed to the two reducers 21, one motor 22 to each reducer 21 by means of fasteners 29. The fasteners can be selected from, but are not limited to, normal screws, pressure screws, pins, or a combination thereof, while the motors can be selected from, but are not limited to, servomotors, stepper motors, alternating current motors, direct current motors or a combination thereof.
El ensamble de base de motores doble 4 no requiere de base contrapunto 23, balero contrapunto 24 ni tampoco de eje contrapunto 25, debido a los dos motores 22 ensamblados en el ensamble de base de motores doble 4. The double motor base assembly 4 does not require a tailstock base 23, a tailstock bearing 24 or a tailstock shaft 25, due to the two motors 22 assembled in the double motor base assembly 4.
Los ensambles de brazo articulado 5 se unen al ensamble de base de motores doble 4 a través de los dos ejes de salida de los reductores 21, un eje de salida de reductor 21 a cada costado del rotor hombro 40 de cada ensamble de brazo 5.  The articulated arm assemblies 5 are attached to the double motor base assembly 4 through the two output shafts of the reducers 21, a gear output shaft 21 to each side of the shoulder rotor 40 of each arm assembly 5.
Cabe la pena mencionar que el ensamble del primer reductor 21 al primer costado del rotor hombro 40 se hace de manera directa, sin elementos intermedios y el ensamble del segundo reductor 21 al segundo costado del rotor hombro 40 se hace de manera indirecta utilizando un copie flexible ensamblado entre la flecha de salida del segundo reductor 21 y el segundo costado del rotor hombro 40. Dicho copie flexible tiene la capacidad de deformarse elásticamente de manera temporal para compensar el desfasamiento angular que pudiese existir entre la salida de cada flecha de los reductores sobre el rotor hombro 40.  It is worth mentioning that the assembly of the first reducer 21 on the first side of the shoulder rotor 40 is made directly, without intermediate elements and the assembly of the second reducer 21 on the second side of the shoulder rotor 40 is made indirectly using a flexible copy assembled between the output arrow of the second reducer 21 and the second side of the shoulder rotor 40. Said flexible copy has the ability to deform elastically temporarily to compensate for the angular offset that may exist between the output of each arrow of the reducers on the shoulder rotor 40.
Como se comenta en el inicio de la descripción de las figuras 6 y 7, los robots formados por ensambles de base de motores simples 3 que aportan el torque de un solo motor 22 y reductor 21 a cada ensamble de brazo articulado 5 están ideados para satisfacer necesidades iniciales de clientes con producciones de alta velocidad rotacional y de bajo o medio torque. Si el cliente llegase a necesitar un incremento en su producción para alcanzar un alto torque y mantener su alta velocidad rotacional en los ensambles de brazo articulado 5 de su robot, entonces los ensambles de base de motores simple 3 podrían ser mejorados para convertirse en ensambles de base de motores dobles 4 y de esta manera aportar el doble de torque y a su vez, mantener su misma velocidad rotacional máxima en cada ensamble de brazo por medio del uso de dos motores 22 y dos reductores 21 a cada ensamble de brazo articulado 5. Para realizar este cambio, a la base de motores simple 3 se le desmonta la base de contrapunto 23, balero de contrapunto 24 y eje de contrapunto 25 y se reemplazan por un segundo reductor 21 y un segundo motor 22 por lo cual este ensamble de base de motores simple 3 se convertiría en un ensamble de base de motores doble 4, de acuerdo al segundo componente reconfigurable del robot. As discussed in the beginning of the description of figures 6 and 7, the robots formed by simple motor base assemblies 3 that provide the torque of a single motor 22 and reducer 21 to each articulated arm assembly 5 are designed to satisfy initial needs of customers with high speed rotational and low or medium torque productions. If the customer were to need an increase in their production to achieve high torque and maintain their high rotational speed in the articulated arm assemblies 5 of their robot, then the simple motor base assemblies 3 could be improved to become assemblies of double motor base 4 and thus provide twice the torque and, in turn, maintain the same maximum rotational speed in each arm assembly through the use of two motors 22 and two reducers 21 to each articulated arm assembly 5. To make this change, the base of simple motors 3 is disassembled the base of tailstock 23, tailstock bearing 24 and tailstock shaft 25 and are replaced by a second reducer 21 and a second motor 22 whereby this simple motor base assembly 3 would become a double motor base assembly 4, according to the second reconfigurable component of the robot.
Es importante señalar que el aumento o duplicación de torque y mantener la misma velocidad rotacional máxima de los ensambles de brazos del robot es algo que hasta la fecha ningún robot de tipo delta puede hacer, ya que la mayoría de los robots delta existentes en el mercado normalmente tienen un diseño establecido de fábrica que no puede ser reconfigurado para agregar dos motores conectados a cada ensamble de brazo articulado para obtener doble torque y mantener la misma velocidad rotacional del robot.  It is important to note that increasing or doubling the torque and maintaining the same maximum rotational speed of the robot arm assemblies is something that no delta robot can do to date, since most existing delta robots in the market They usually have a factory set design that cannot be reconfigured to add two motors connected to each articulated arm assembly to obtain double torque and maintain the same rotational speed of the robot.
En la figura 8 se muestra el ensamble de brazo articulado 5 conformado por un rotor hombro 40 en el cual se introducen un reductor 21 y un eje contrapunto 25 o dos reductores 21 (uno con un copie flexible) dependiendo de si el ensamble de base de motor es simple 3 o doble 4 tal y como fue mencionado con anterioridad. El ensamble de brazo articulado 5 también comprende un opresor hombro 41, una barra superior 42, una barra inferior 43, un codo 44, dos articulaciones esféricas 45, elementos de sujeción 46, 47, 49 y 50 y un elemento de unión 48. La barra superior 42 e inferior 43 atraviesan dos perforaciones formadas entre la unión del rotor hombro 40 y el opresor hombro 41, en tanto que en otro extremo la barra superior 42 e inferior 43 se introducen en un codo 44 y se fijan mediante elementos de sujeción 47 y un elemento de unión 48. El rotor hombro 40 y opresor hombro 41 están unidos entre sí mediante elementos de sujeción 46. Para ensamblar las barras superior 42 e inferior 43 al codo 44, se agrega el elemento de unión 48 que es insertado dentro de las cavidades del codo 44 para pegar y maximizar la fuerza del ensamble entre el codo 44 y la barra superior 42 e inferior 43, mientras que el elemento de unión 48 está fresco, las barras superior 42 e inferior 43 se insertan en las dos perforaciones del codo 44 en la posición deseada y se deja reposar al ensamble determinado tiempo para que el elemento de unión 48 se endurezca. Los elementos de sujeción 47 son opcionales y en caso de que sean necesarios, se introducen en una parte superior e inferior del codo 44 para aprisionar a la barra superior 42 e inferior 43 contra las paredes de las perforaciones del codo 44 y brindar una fuerza de sujeción extra al ensamble del codo. Los elementos de sujeción 46 y 47 se pueden seleccionar entre, pero no están limitados a, prisioneros, tomillos normales, tornillos de presión, remaches, pijas, o una combinación de los mismos, y en donde el elemento de unión es pegamento epóxico aunque podría utilizarse cualquier otro tipo de pegamento. Figure 8 shows the articulated arm assembly 5 formed by a shoulder rotor 40 in which a reducer 21 and a counterpoint shaft 25 or two reducers 21 (one with a flexible copy) are introduced depending on whether the base assembly of Engine is simple 3 or double 4 as mentioned above. The articulated arm assembly 5 also comprises a shoulder oppressor 41, an upper bar 42, a lower bar 43, an elbow 44, two spherical joints 45, fasteners 46, 47, 49 and 50 and a joint element 48. The upper and lower bar 42 43 pass through two perforations formed between the shoulder rotor joint 40 and the shoulder oppressor 41, while at the other end the upper and lower bar 42 are inserted into an elbow 44 and secured by fasteners 47 and a joint element 48. The shoulder rotor 40 and shoulder presser 41 are joined together by means of fasteners 46. To assemble the upper and lower bars 42 to the elbow 44, the joint element 48 is added which is inserted into the elbow cavities 44 for glue and maximize the force of the assembly between the elbow 44 and the upper bar 42 and lower 43, while the connecting element 48 is fresh, the upper bars 42 and lower 43 are inserted into the two perforations of the elbow 44 in the desired position and the assembly is allowed to rest for a certain time so that the connecting element 48 hardens. The fasteners 47 are optional and, if necessary, are introduced in an upper and lower part of the elbow 44 to press the upper bar 42 and lower 43 against the walls of the perforations of the elbow 44 and provide a force of Extra support to the elbow assembly. The fasteners 46 and 47 can be selected from, but are not limited to, prisoners, normal thymes, pressure screws, rivets, pins, or a combination thereof, and where the joint element is epoxy glue although it could Use any other type of glue.
Para aquellos casos en los que el cliente tenga algún requerimiento especial de tamaño del espacio de trabajo o de crear un robot más flexible o rígido, en conjunto con la modificación del diámetro de la base del robot, para el robot de la presente invención se pueden ampliar o reducir tanto el diámetro como la longitud de las barras superiores 42 e inferiores 43 de sus ensambles de brazo 5.  For those cases in which the client has some special requirement of size of the workspace or of creating a more flexible or rigid robot, together with the modification of the diameter of the robot base, for the robot of the present invention can be expand or reduce both the diameter and the length of the upper 42 and lower bars 43 of their arm assemblies 5.
Cuando se desea modificar o cambiar el diámetro de las barras superiores 42 e inferiores 43 de acuerdo a las necesidades del cliente para obtener una mayor flexibilidad o rigidez en la estructura de los ensambles de brazo 5, se debe de modificar también el rotor hombro 40, el opresor hombro 41 y el codo 44 con el objetivo de que las perforaciones que reciben la barra superior 42 e inferior 43 se ajusten al nuevo diámetro correspondiente de las barras superiores 42 e inferiores 43 creadas a la medida del cliente, de acuerdo al tercer componente reconfigurable del robot. When it is desired to modify or change the diameter of the upper bars 42 and lower 43 according to the needs of the customer to obtain greater flexibility or stiffness in the structure of the arm assemblies 5, the shoulder rotor 40 must also be modified, the shoulder oppressor 41 and the elbow 44 with the aim that the perforations that receive the upper bar 42 and lower 43 fit the new corresponding diameter of the upper bars 42 and lower 43 created to the extent of the customer, according to the third reconfigurable component of the robot.
Cuando se desea modificar o cambiar la longitud de las barras superiores 42 e inferiores 43 de los ensambles de brazo 5 de acuerdo a las necesidades del cliente para obtener un espacio de trabajo personalizado a las necesidades del cliente, tanto la barra superior 42 como inferior 43 también se pueden fabricar en distintas longitudes que permiten personalizar el espacio de trabajo del robot de acuerdo a las necesidades del cliente. Las nuevas barras superiores 42 e inferiores 43 reemplazarían a las anteriores y se ensamblarían mediante los elementos de sujeción 46 y 47 al respectivo rotor hombro 40 y opresor hombro 41 y al codo 44, de acuerdo al cuarto elemento reconfigurable del robot.  When it is desired to modify or change the length of the upper 42 and lower bars 43 of the arm assemblies 5 according to the needs of the client to obtain a customized workspace to the needs of the client, both the upper and lower bars 42 They can also be manufactured in different lengths that allow you to customize the work space of the robot according to customer needs. The new upper 42 and lower bars 43 would replace the previous ones and would be assembled by means of the fasteners 46 and 47 to the respective shoulder rotor 40 and shoulder oppressor 41 and to the elbow 44, according to the fourth reconfigurable element of the robot.
En la figura 9 se muestra el ensamble de antebrazo 6 formado por una barra antebrazo 60, dos copies 61 ensamblados cada uno en un extremo de la barra antebrazo 60 por medio de un elemento de unión 63, y dos asientos esféricos 62, un asiento esférico 62 en cada copie 61. Un asiento de esférico 62 de la barra de antebrazo 60 se acopla a la articulación esférica 45 del codo 44, mientras que el otro asiento esférico 62 de la barra se acopla a una articulación esférica 71 del ensamble de efector 7.  Figure 9 shows the forearm assembly 6 formed by a forearm bar 60, two copies 61 each assembled at one end of the forearm bar 60 by means of a connecting element 63, and two spherical seats 62, a spherical seat 62 on each copy 61. A spherical seat 62 of the forearm bar 60 is coupled to the spherical joint 45 of the elbow 44, while the other spherical seat 62 of the bar is coupled to a spherical joint 71 of the effector assembly 7 .
Cada ensamble de brazo 5 es conectado a dos ensambles de antebrazo 6 por medio de dos articulaciones esféricas 45 posicionadas en el codo 44 del ensamble de brazo 5. Para mantener una configuración de tipo delta en el robot, es muy importante mantener longitudes iguales en cada uno de los ensambles de brazo 5 y ensambles de antebrazo 6.  Each arm assembly 5 is connected to two forearm assemblies 6 by means of two spherical joints 45 positioned at the elbow 44 of the arm assembly 5. To maintain a delta-like configuration in the robot, it is very important to maintain equal lengths in each one of the arm assemblies 5 and forearm assemblies 6.
Para aquellos casos en los que el cliente tenga algún requerimiento especial de tamaño del espacio de trabajo o de crear un robot más flexible o rígido, en conjunto con la modificación del diámetro de la base del robot, del diámetro y longitud de las barras superiores 42 e inferiores 43 de los ensambles de brazo 5, para el robot de la presente invención se puede ampliar o reducir el diámetro y longitud de las barras de antebrazo 60 de sus ensambles de antebrazo 6. For those cases in which the client has a special requirement for work space size or to create a more flexible or rigid robot, together with the modification of the robot's base diameter, the diameter and length of the upper and lower bars 42 of the arm assemblies 5, for the robot of the present invention the diameter and length of the forearm bars 60 of its forearm assemblies 6 can be extended or reduced.
Cuando se desea modificar o cambiar la longitud o diámetro de las barras de antebrazo 60 de los ensambles de antebrazo 6 de acuerdo a las necesidades del cliente para obtener un espacio de trabajo o una flexibilidad o rigidez del ensamble de antebrazo 6 personalizada a las necesidades del cliente, la longitud y diámetro de las barras antebrazo 60 pueden ser fabricadas de diferentes dimensiones, permitiendo de esta manera una mejor flexibilidad, rigidez o precisión, o bien un mayor o menor espacio de trabajo de acuerdo al quinto y sexto componentes reconfigurables del robot .  When it is desired to modify or change the length or diameter of the forearm bars 60 of the forearm assemblies 6 according to the needs of the client to obtain a work space or a flexibility or stiffness of the forearm assembly 6 customized to the needs of the customer, the length and diameter of the forearm bars 60 can be manufactured of different dimensions, thus allowing a better flexibility, rigidity or precision, or a greater or lesser working space according to the fifth and sixth reconfigurable components of the robot.
Al modificar el diámetro de las barras de antebrazo 60 y para crear un ensamble correcto, también se tiene que modificar el diámetro exterior e interior de cada uno de los dos copies 61 de los ensambles de cada antebrazo 6.  When changing the diameter of the forearm bars 60 and to create a correct assembly, the outer and inner diameter of each of the two copies 61 of the assemblies of each forearm 6 must also be modified.
La figura 10 muestra el ensamble de efector 7 de la presente invención formado en su parte externa por un anillo de efector 70 y seis articulaciones esféricas 71 que están ensambladas de tal manera que dos articulaciones esféricas 71 son ensambladas en cada una de las tres salientes 73 del anillo efector 70, dos articulaciones esféricas 71 por cada saliente 73 del anillo efector 70. Además, como se muestra en la misma figura, el anillo efector 70 de la presente invención es totalmente diferente en su parte interna en comparación a los robots del arte previo puesto que comprende una perforación interna 72 y dos pestañas 74 localizadas en la perforación interna 72 de tal manera que las pestañas 74 están en contracara o localizados una enfrente de la otra. Cada una de las pestañas 74 tiene perforaciones u orificios distribuidos uniformemente a lo largo de las pestañas 74 con el objetivo de adaptar herramientas a la perforación interna 72 y pestañas 74 del anillo efector 70, las cuales se ensamblan mediante elementos de sujeción 75. Los elementos de sujeción pueden seleccionarse entre, pero no están limitados, a tornillos normales, tornillos de presión, remaches, pijas, o una combinación de los mismos. Figure 10 shows the effector assembly 7 of the present invention formed externally by an effector ring 70 and six spherical joints 71 that are assembled such that two spherical joints 71 are assembled on each of the three projections 73 of the effector ring 70, two spherical joints 71 for each projection 73 of the effector ring 70. Furthermore, as shown in the same figure, the effector ring 70 of the present invention is totally different in its internal part compared to the art robots prior to the fact that it comprises an internal perforation 72 and two tabs 74 located in the internal perforation 72 such that the flanges 74 are facing each other or located opposite each other. Each of the flanges 74 has perforations or holes evenly distributed along the flanges 74 in order to adapt tools to the internal perforation 72 and flanges 74 of the effector ring 70, which are assembled by fasteners 75. The elements clamping can be selected from, but not limited to, normal screws, pressure screws, rivets, pins, or a combination thereof.
La existencia de dos pestañas es innovadora puesto que permiten una mejor funcionalidad para ensamblar o desensamblar herramientas al ensamble de efector 7 del robot de manera más sencilla y rápida.  The existence of two tabs is innovative since they allow better functionality to assemble or disassemble tools to the assembly of effector 7 of the robot more easily and quickly.
Aunque el anillo efector 70 ilustrado muestra tan solo dos pestañas 74 y tres perforaciones por pestaña, se podrían agregar al anillo efector 70 tantas pestañas y perforaciones como fuera necesario para sujetar las herramientas conforme a las necesidades de cualquier cliente.  Although the effector ring 70 shown shows only two tabs 74 and three perforations per flange, as many tabs and perforations 70 could be added to the effector ring as necessary to hold the tools according to the needs of any customer.
El anillo efector 70 puede ser chico, mediano o grande, dependiendo de la herramienta que se desea adaptar y/o conforme a las necesidades de espacio de trabajo del cliente de acuerdo al séptimo componente reconfigurable del robot.  The effector ring 70 can be small, medium or large, depending on the tool to be adapted and / or according to the client's work space needs according to the seventh reconfigurable component of the robot.
Las figuras lia y 11b muestran dos vistas superiores de robots modulares de tipo delta de la presente invención en su versión de seis motores de diferentes tamaños para proporcionar diferentes espacio de trabajo personalizadas al cliente, haciendo comparación entre ellas al personalizar los componentes a las necesidades de algún cliente, el robot de tipo de delta lia muestra las dimensiones preferidas de la presente invención y el robot de tipo delta 11b muestra dimensiones expandidas en sus tres ensambles de unión trapezoidal 2, en sus tres ensambles de brazo articulado 5 y en sus seis ensambles de antebrazo 6. Cabe señalar que diferentes tamaños de robot pueden ser obtenidos, conforme a la variación de uno o todos los elementos reconfigurables y la presente figura únicamente es un ejemplo no limitativo de las diferentes dimensiones conforme a las tareas a desempeñar. Figures lia and 11b show two top views of delta-type modular robots of the present invention in its version of six engines of different sizes to provide different custom workspace to the customer, comparing them between customizing the components to the needs of Some customer, the delta lia robot shows the preferred dimensions of the present invention and the delta 11b robot shows expanded dimensions in its three trapezoidal junction assemblies 2, in its three articulated arm assemblies 5 and in its six assemblies forearm 6. It should be noted that different robot sizes can be obtained, as to the variation of one or all of the reconfigurable elements and the present figure is only a non-limiting example of the different dimensions according to the tasks to be performed.
Las figuras 12a y 12b muestran el ensamble de una herramienta para manipular envases conformado por un efector copie A 80, dos barras de sujeción 85, cuatro elementos de sujeción 87 y tres pinzas para manipular envases de acuerdo con las necesidades de un cliente, cada pinza puede manipular una botella de manera simultánea, por ejemplo, un cliente que necesita manipular una cantidad determinada de envases de manera simultánea, la cantidad de pinzas para manipular envases podría ser desde una sola hasta una mayor cantidad definida conforme a las necesidades de cualquier cliente, la ventaja de poder acoplar diversas pinzas a un ensamble de efector 7 de un robot de tipo delta es que entre más botellas se manipulen de manera simultánea, el tiempo de ciclo necesario para satisfacer las necesidades del cliente será mayor y al tener más tiempo para realizar un ciclo, el robot puede desplazarse de manera más cuidadosa para proteger el producto del cliente.  Figures 12a and 12b show the assembly of a tool for handling containers formed by a copy cleaner A 80, two clamping bars 85, four clamping elements 87 and three clamps for handling containers according to the needs of a customer, each clamp you can manipulate a bottle simultaneously, for example, a customer who needs to handle a certain amount of containers simultaneously, the number of tweezers to handle containers could be from a single to a greater quantity defined according to the needs of any customer, The advantage of being able to attach various clamps to an effector assembly 7 of a delta-type robot is that the more bottles are handled simultaneously, the cycle time necessary to meet the needs of the customer will be longer and having more time to perform One cycle, the robot can move more carefully to protect the customer's product.
Cada pinza para manipular envases consta de una pinza para envases 81, un pistón neumático 82, dos elementos de sujeción 88 y una esfera de apertura 83. Cada pinza para envases 81 cuenta con una pequeña base con dos perforaciones que permiten que la pinza para envases 81 se ensamble a dos barras de sujeción 85 por medio de dos elementos de sujeción 88, la pinza para envase 81 también cuenta con dos dedos de pinza 86 que le permiten sujetar envases preferentemente del interior del labio o cuello del envase, aunque los dos dedos de pinza 86 también podrían sujetar los envases en el exterior del labio o cuello del envase.  Each clamp for handling containers consists of a clamp for containers 81, a pneumatic piston 82, two clamping elements 88 and an opening sphere 83. Each clamp for containers 81 has a small base with two perforations that allow the clamp for containers 81 is attached to two clamping bars 85 by means of two clamping elements 88, the clamp for container 81 also has two clamp fingers 86 which allow it to hold containers preferably inside the lip or neck of the container, although both fingers of clamp 86 could also hold the containers on the outside of the lip or neck of the container.
La herramienta para manipular envases se acopla al anillo efector 70 del ensamble de efector 7 del robot industrial por medio de un efector copie A 80, el cual tiene en su parte inferior dos perforaciones en las cuales se ensamblan las dos barras de sujeción 85, dichas barras de sujeción 85 se sujetan por medio de dos elementos de sujeción 87 al efector copie Ά 80 y, finalmente, a esas dos barras se ensamblan la cantidad de pinzas para manipular envases que necesite el cliente. Cabe señalar que el efector copie A 80 comprende en su parte superior al menos una pestaña 89, preferiblemente dos pestañas 89, con una pluralidad de perforaciones distribuidas a lo largo de ésta(s) con el objetivo de que dichas perforaciones se alineen con las perforaciones de las pestañas 74 del anillo efector 70. Las pestañas 89 sobresalen de la parte superior del efector copie A 80 y pueden estar localizadas en forma opuesta una de la otra. Las pestañas 89 están debidamente dimensionadas de tal manera que entran dentro de la parte interna 72 del anillo efector 70. The tool for handling containers is attached to the effector ring 70 of the effector assembly 7 of the industrial robot by means of a copy effector A 80, which has in its lower part two perforations in which the two clamping bars 85 are assembled, said clamping bars 85 are held by means of two fasteners 87 to the effector copy Ά 80 and, finally, to those two bars the amount of tweezers are assembled to handle packages that the customer needs. It should be noted that the copy effector A 80 comprises at its top at least one flange 89, preferably two flanges 89, with a plurality of perforations distributed along this (s) so that said perforations align with the perforations of the tabs 74 of the effector ring 70. The tabs 89 protrude from the top of the effector copy A 80 and may be located opposite each other. The tabs 89 are properly dimensioned in such a way that they enter into the inner part 72 of the effector ring 70.
La pinza 81 debe estar fabricada en un material flexible que le permita a sus dos dedos de pinza 86 deformarse elásticamente de manera temporal sin lastimarse para sujetar o liberar los envases del cliente.  The clamp 81 must be made of a flexible material that allows its two clamp fingers 86 to deform elastically temporarily without being injured to hold or release the client's containers.
En cuanto a funcionalidad de cada pinza para manipular envases, podemos encontrar dos estados, el primer estado es de contracción en el que una alimentación neumática controlada por el robot mantiene contraído el pistón neumático 82 de cada pinza para manipular envases con la finalidad de mantener la esfera de apertura 83 en la posición cercana al cuerpo del pistón neumático 82 por lo cual se mantiene la pinza para envases 81 en su posición normal sin deformarse. El segundo estado es de expansión en el que una alimentación neumática controlada por el robot mantiene expandido el pistón neumático 82 de cada pinza para manipular envases con la finalidad de mantener la esfera de apertura 83 en la posición lejana al cuerpo del pistón neumático 82 por lo cual por medio de la esfera de apertura 83 se induce cierta fuerza a los dedos de pinza 86 que fomentan su deformación elástica temporal que permite sujetar el envase en cuestión. As for the functionality of each caliper to manipulate containers, we can find two states, the first state is of contraction in which a pneumatic feed controlled by the robot keeps the pneumatic piston 82 of each caliper to manipulate containers contracted in order to maintain the opening sphere 83 in the position close to the body of the pneumatic piston 82 whereby the container clamp 81 is maintained in its normal position without deforming. The second state is of expansion in which a pneumatic feed controlled by the robot keeps the pneumatic piston 82 of each caliper expanded to manipulate containers in order to keep the opening sphere 83 in the position far from the body of the pneumatic piston 82 whereby certain force is induced by the opening sphere 83 to the pincer fingers 86 that promote its temporary elastic deformation which allows Hold the container in question.
Cuando el robot se posiciona sobre o dentro de un o unos envases, el controlador del robot puede modificar el estado de la o las herramientas para que pasen del primer estado al segundo estado; mientras que las herramientas se mantienen en el segundo estado, el robot puede manipular el o los envases según las necesidades del cliente lo dicten, finalmente, cuando el robot ha posicionado el o los envases del cliente en su destino final, entonces el controlador del robot puede volver a modificar el estado de la o las herramientas para manipular envases de manera que pasen del segundo al primer estado sin lastimarse; al volver al primer estado, el o los envases quedan libres de nuevo y el robot se puede desplazar a cualquier otro punto de la rutina de movimiento.  When the robot is positioned on or inside one or some containers, the robot controller can modify the state of the tool (s) so that they pass from the first state to the second state; While the tools are kept in the second state, the robot can manipulate the container (s) according to the client's needs, finally, when the robot has positioned the client's container (s) in its final destination, then the robot controller you can change the state of the tool or tools to handle containers again so that they pass from the second to the first state without being injured; when returning to the first state, the container (s) are free again and the robot can move to any other point of the movement routine.
Las figuras 13a y 13b muestran una herramienta para manipular objetos cilindricos suaves, como por ejemplo pan. La herramienta está formada por un efector copie B 90 que a su vez integra un dedo ancho 91 en la misma pieza, dos dedos delgados 92, un pistón neumático 93, una abrazadera base pistón 94, una abrazadera émbolo pistón 95, seis baleros 96, cuatro elementos de sujeción 97 y un elemento de sujeción 98.  Figures 13a and 13b show a tool for manipulating soft cylindrical objects, such as bread. The tool is formed by a copier effector B 90 which in turn integrates a wide finger 91 in the same piece, two thin fingers 92, a pneumatic piston 93, a piston base clamp 94, a piston plunger clamp 95, six bearings 96, four fasteners 97 and a fastener 98.
La herramienta para manipular objetos cilindricos suaves se acopla por medio de su efector copie B 90 al anillo efector 70 de ensamble de efector 7 del robot de tipo delta de la presente invención. Dicho efector copie B 90 es una base en donde se ensamblan cuatro baleros 96, dos de esos cuatro baleros 96 detienen a los elementos de sujeción 97 que a su vez, funcionan como eje y posicionan a la abrazadera base pistón 94 para sujetar al pistón neumático al efector copie B 90 y brindarle un grado de libertad rotacional al pistón neumático 93 para que cuando el pistón neumático 93 se expanda o contraiga, pueda rotar sin deformar ni forzar su émbolo. Los otros dos baleros 96 detienen a dos elementos de sujeción 97 que a su vez, funcionan como ejes y ensamblan a los dos dedos delgados 92 permitiéndoles un grado de libertad rotacional que les permiten girar con respecto al efector copie B 90 para generar un movimiento de apertura o cierre en los dedos. El efector copie 90 B también contiene en su construcción un dedo ancho 91 que funciona como un contrapunto para sujetar piezas cuando los dedos delgados 92 cierran. The tool for handling soft cylindrical objects is coupled by means of its copy effector B 90 to the effector ring 70 of the effector assembly 7 of the delta type robot of the present invention. Said copier effector B 90 is a base where four bearings 96 are assembled, two of those Four bearings 96 stop the fasteners 97 which, in turn, function as an axle and position the piston base clamp 94 to attach the pneumatic piston to the copier effector B 90 and provide a degree of rotational freedom to the pneumatic piston 93 so that when The pneumatic piston 93 expands or contracts, can rotate without deforming or forcing its plunger. The other two bearings 96 stop two fasteners 97 which, in turn, function as axes and assemble the two thin fingers 92 allowing them a degree of rotational freedom that allows them to rotate with respect to the copy effect B 90 to generate a movement of opening or closing on the fingers. The copier effector 90 B also contains in its construction a wide finger 91 that functions as a counterpoint to hold parts when the thin fingers 92 close.
Los dos dedos delgados 92 están acoplados al efector copie B 90 como se comenta en el párrafo anterior. Cada dedo delgado 92 es alargado, en un punto opuesto al punto en donde ensamblan los dedos delgados 92 con el efector copie B, cuenta con una superficie curva que se fabrica a la forma específica del producto a manipular. Además, en la parte media del cuerpo de cada dedo delgado 92 se cuenta con un asiento para baleros 96 en donde se debe de ensamblar un balero 96, dicho balero 96 soporta un elemento de sujeción 98 que une a los dos dedos delgados 92, actúa como eje y ensambla la abrazadera émbolo pistón 95 entre los dos dedos delgados 92 y el émbolo del pistón neumático 93, permitiéndole rotar sobre el eje del elemento de sujeción 98 sin lastimar ni forzar el émbolo del pistón neumático 93.  The two thin fingers 92 are coupled to the copy effector B 90 as discussed in the previous paragraph. Each thin finger 92 is elongated, at a point opposite the point where the thin fingers 92 join with the copy effect B, has a curved surface that is manufactured to the specific shape of the product to be handled. In addition, in the middle part of the body of each thin finger 92 there is a seat for bearings 96 where a bearing 96 must be assembled, said bearing 96 supports a fastener 98 that joins the two thin fingers 92, acts as a shaft and assembles the piston plunger clamp 95 between the two thin fingers 92 and the piston of the pneumatic piston 93, allowing it to rotate on the axis of the clamping element 98 without hurting or forcing the piston of the pneumatic piston 93.
La herramienta para manipular objetos cilindricos suaves es actuada por medio del pistón neumático 93, que de un lado conecta en su base al dedo ancho 91 del efector copie B 90, dicho dedo ancho 91 es un punto fijo dentro de la herramienta para manipular objetos cilindricos suaves y del otro lado en su émbolo conecta a los dos dedos delgados 92. The tool for manipulating soft cylindrical objects is actuated by means of the pneumatic piston 93, which on one side connects the wide finger 91 of the copy effector B 90 at its base, said wide finger 91 is a fixed point within the tool to manipulate soft cylindrical objects and the other side in its plunger connects to the two thin fingers 92.
Cuando el controlador del robot de la presente invención elimina la alimentación neumática del pistón neumático 93, los dedos delgados 92 tienden a acercarse al dedo ancho 91 por la acción de un resorte interno al cuerpo del pistón 93 que aplica fuerza para que el émbolo del pistón 93 se retraiga, mediante esta acción, la herramienta para manipular objetos cilindricos suaves podría tomar control sobre el producto u objeto cilindrico suave del cliente para que el robot lo manipule de acuerdo a las necesidades del proceso.  When the robot controller of the present invention eliminates the pneumatic feed of the pneumatic piston 93, the thin fingers 92 tend to approach the wide finger 91 by the action of an internal spring to the piston body 93 which applies force so that the piston of the piston 93, by means of this action, the tool to manipulate soft cylindrical objects could take control over the product or soft cylindrical object of the client so that the robot can manipulate it according to the needs of the process.
Cuando el controlador del robot de la presente invención acciona la alimentación neumática del pistón neumático 93, los dedos delgados 92 tienden a alejarse del dedo ancho 91 por la acción de la alimentación neumática que aplica fuerza para que el émbolo del pistón 93 se expanda alejándose del cuerpo del pistón 93, mediante esta acción, la herramienta para manipular objetos cilindricos suaves libera el producto u objeto cilindrico suave del cliente para que el robot se pueda desplazar sin carga para tomar un objeto nuevo del proceso en cuestión.  When the robot controller of the present invention drives the pneumatic feed of the pneumatic piston 93, the thin fingers 92 tend to move away from the wide finger 91 by the action of the pneumatic feed that applies force for the piston piston 93 to expand away from the Piston body 93, by this action, the tool for handling soft cylindrical objects releases the product or soft cylindrical object from the customer so that the robot can move without load to take a new object from the process in question.
Cabe señalar que el efector copie A 90 comprende en su parte superior al menos una pestaña 99, preferiblemente dos pestañas 99, con una pluralidad de perforaciones distribuidas a lo largo de ésta(s) con el objetivo de que dichas perforaciones se alineen con las perforaciones de las pestañas 74 del anillo efector 70. Las pestañas 99 sobresalen de la parte superior del efector copie A 90 y pueden estar localizadas en forma opuesta una de la otra. Las pestañas 99 están debidamente dimensionadas de tal manera que entran dentro de la parte interna 72 del anillo efector 70. En xana modalidad alternativa, la herramienta pará manipular objetos cilindricos suaves puede contener dos pistones neumáticos 93 por cada uno de los dedos delgados 92, de esta manera permitiendo mayor versatilidad a la herramienta al momento de sujetar piezas irregulares. It should be noted that the copy effector A 90 comprises at its top at least one flange 99, preferably two tabs 99, with a plurality of perforations distributed along this (s) so that said perforations align with the perforations of the tabs 74 of the effector ring 70. The tabs 99 protrude from the top of the effector copy A 90 and may be located opposite each other. The tabs 99 are properly sized so that they enter into the inner part 72 of the effector ring 70. In an alternative embodiment, the tool for manipulating soft cylindrical objects can contain two pneumatic pistons 93 for each of the thin fingers 92, thus allowing the tool to be more versatile when gripping irregular parts.
Las herramientas anteriores no son limitativas, ya que un técnico en la materia entenderá que se pueden adaptar diferentes herramientas siempre y cuando la herramienta comprenda un efector copie con dos pestañas conteniendo perforaciones distribuidas a lo largo de éstas, con el objetivo de que la herramienta se ensamble al ensamble efector 7 mediante las pestañas 74 del anillo efector 70.  The above tools are not limiting, since a person skilled in the art will understand that different tools can be adapted as long as the tool comprises a copy effector with two tabs containing perforations distributed along them, with the objective that the tool be join the effector assembly 7 by means of the tabs 74 of the effector ring 70.
Los elementos reconfigurables antes mencionados, como ya se ha señalado con anterioridad permiten a cualquier ¿Líente variar el espacio de trabajo, velocidad, flexibilidad, torque y precisión; variables que todo cliente desea tener en sus robots tipo delta.  The aforementioned reconfigurable elements, as already indicated above, allow any ¿Liménte to vary the workspace, speed, flexibility, torque and precision; variables that every customer wants to have in their delta robots.
Se hace constar que con relación a esta fecha, el mejor método conocido por el solicitante para llevar a la práctica la citada invención, es el que resulta claro de la presente descripción de la invención.  It is noted that in relation to this date, the best method known by the applicant to implement said invention is that which is clear from the present description of the invention.

Claims

REIVINDICACIONES Habiéndose descrito la invención como antecede, se reclama como propiedad lo contenido en las siguientes reivindicaciones: CLAIMS Having described the invention as above, the contents of the following claims are claimed as property:
1. Un robot industrial modular de tipo delta reconfigurable, caracterizado porque comprende:  1. A reconfigurable delta modular industrial robot, characterized in that it comprises:
un perfil estructural;  a structural profile;
tres ensambles de unión trapezoidal;  three trapezoidal junction assemblies;
tres ensambles de motores;  three engine assemblies;
tres ensambles de brazo articulado, un ensamble de brazo articulado acoplado por cada ensamble de motores;  three articulated arm assemblies, an articulated arm assembly coupled by each motor assembly;
seis ensambles de antebrazo, dos ensambles de antebrazo acoplados por cada brazo articulado; y  six forearm assemblies, two forearm assemblies coupled by each articulated arm; Y
un ensamble de efector, ensamblado a los seis ensambles de antebrazo, y  an effector assembly, assembled to the six forearm assemblies, and
en donde los tres ensambles de unión trapezoidal en conjunto con los ensambles de base de motores forman la base del robot y definen un diámetro de base reconfigurable del robot y se acoplan al perfil estructural.  wherein the three trapezoidal joint assemblies together with the motor base assemblies form the robot base and define a reconfigurable robot base diameter and fit the structural profile.
2. El robot industrial de conformidad con la reivindicación 1, caracterizado porgue una longitud del ensamble de brazos, una longitud del ensamble de antebrazos y un diámetro del ensamble de efector pueden ser personalizados para crear espacios de trabajo del robot específicos a las necesidades del cliente.  2. The industrial robot according to claim 1, characterized in that a length of the arm assembly, a length of the forearm assembly and a diameter of the effector assembly can be customized to create robot work spaces specific to the needs of the client .
3. El robot industrial de conformidad con la reivindicación 1, caracterizado porque cada uno de los tres ensambles de unión trapezoidal comprende un trapezoide base, en donde el trapezoide base comprende una pared superior, una cara exterior frontal, una cara posterior y una pared inferior.  3. The industrial robot according to claim 1, characterized in that each of the three trapezoidal junction assemblies comprises a base trapezoid, wherein the base trapezoid comprises an upper wall, a front outer face, a rear face and a lower wall .
4. El robot industrial de conformidad con cualquiera de las reivindicaciones anteriores, caracterizado porque las paredes superior, exterior frontal, posterior e inferior del trapezoide base son paredes longitudinalmente personalizables, en donde las paredes se pueden expandir o reducir, de esta manera reconfigurando el diámetro de la base de los robots para crear espacios de trabajo del robot específicas a las necesidades del cliente. 4. The industrial robot according to any of the preceding claims, characterized in that the upper, outer front, back and bottom walls of the base trapezoid are longitudinally customizable walls, where the walls can be expanded or reduced, thus reconfiguring the robot's base diameter to create robot work spaces specific to the needs the client's.
5. El robot industrial de conformidad con la reivindicación 1, caracterizado porque cada uno de los tres ensambles de brazo articulado tienen una barra superior y una barra inferior acopladas en un extremo a una cavidad formada entre un rotor hombro y un opresor hombro y en otro extremo acopladas a un codo, y en donde la barra superior e inferior pueden ser fabricadas en diferentes longitudes y diámetros para crear espacios de trabajo del robot específicas a las necesidades del cliente.  5. The industrial robot according to claim 1, characterized in that each of the three articulated arm assemblies has an upper bar and a lower bar coupled at one end to a cavity formed between a shoulder rotor and a shoulder oppressor and at another end coupled to an elbow, and where the upper and lower bar can be manufactured in different lengths and diameters to create robot work spaces specific to customer needs.
6. El robot industrial de conformidad con la reivindicación 5, caracterizado porque el rotor hombro, el opresor hombro y el codo son elementos reconfigurables .  6. The industrial robot according to claim 5, characterized in that the shoulder rotor, shoulder oppressor and elbow are reconfigurable elements.
7. El robot industrial de conformidad con la reivindicación 1, caracterizado porque los seis ensambles de antebrazo tienen una barra de antebrazo conectada a dos copies, en donde la barra de antebrazo puede ser fabricada en diferentes longitudes y diámetros para crear espacios de trabajo del robot específicos a las necesidades del cliente.  7. The industrial robot according to claim 1, characterized in that the six forearm assemblies have a forearm bar connected to two copies, wherein the forearm bar can be manufactured in different lengths and diameters to create robot work spaces specific to customer needs.
8. El robot industrial de conformidad con la reivindicación 6, caracterizado porque los dos copies son elementos reconfigurables.  8. The industrial robot according to claim 6, characterized in that the two copies are reconfigurable elements.
9. El robot industrial de conformidad con la reivindicación 1, caracterizado porque el ensamble de efector contiene un anillo efector reconfigurable o personalizable que puede ser fabricado en tres tamaños diferentes para crear espacios de trabajo del robot específicos a las necesidades del cliente. 9. The industrial robot according to claim 1, characterized in that the effector assembly contains a reconfigurable or customizable effector ring that can be manufactured in three different sizes to create robot work spaces specific to customer needs.
10. El robot industrial de conformidad con la reivindicación 9, caracterizado porgue el anillo efector además comprende una perforación interna, en donde la perforación interna comprende al menos una pestaña. 10. The industrial robot according to claim 9, characterized in that the effector ring further comprises an internal perforation, wherein the internal perforation comprises at least one flange.
11. El robot industrial de conformidad con la reivindicación 10, caracterizado porgue la perforación interna preferiblemente comprende dos pestañas.  11. The industrial robot according to claim 10, characterized in that the internal perforation preferably comprises two tabs.
12. El robot industrial de conformidad con la reivindicación 1, caracterizado porgue los tres ensambles de motores son ensambles de motores simples.  12. The industrial robot according to claim 1, characterized in that the three motor assemblies are simple motor assemblies.
13. El robot industrial de conformidad con la reivindicación 1, caracterizado porgue los tres ensambles de motores son ensambles de motores dobles.  13. The industrial robot according to claim 1, characterized in that the three motor assemblies are double motor assemblies.
14. El robot industrial de conformidad con la reivindicación 13, caracterizado porgue los ensambles de motores dobles están formados por una base de motores, dos reductores, dos motores, elementos de sujeción y un copie flexible.  14. The industrial robot according to claim 13, characterized in that the double motor assemblies are formed by a motor base, two reducers, two motors, fasteners and a flexible copy.
15. El robot industrial de conformidad con la reivindicación 14, caracterizado porgue un primer reductor está acoplado a un primer costado de un rotor hombro de manera directa sin usar elementos intermedios.  15. The industrial robot according to claim 14, characterized in that a first reducer is coupled to a first side of a shoulder rotor directly without using intermediate elements.
16. El robot industrial de conformidad con la reivindicación 14, caracterizado porgue un segundo reductor está acoplado a un segundo costado de un rotor hombro de manera indirecta usando el copie flexible.  16. The industrial robot according to claim 14, characterized in that a second reducer is coupled to a second side of a shoulder rotor indirectly using the flexible copy.
17. El robot industrial de conformidad con la reivindicación 16, caracterizado porgue el copie flexible está ensamblado entre una flecha de salida del segundo reductor y el segundo costado del rotor hombro.  17. The industrial robot according to claim 16, characterized in that the flexible copy is assembled between an exit arrow of the second reducer and the second side of the shoulder rotor.
18. El robot industrial de conformidad con cualquiera de las reivindicaciones 16 o 17, caracterizado porgue el copie flexible puede deformarse elásticamente de manera temporal para compensar un deefasamiento angular que pudiera existir entre la salida de cada flecha de los reductores sobre el rotor hombro. 18. The industrial robot according to any of claims 16 or 17, characterized in that the flexible copy can be elastically deformed temporary to compensate for an angular deepening that could exist between the output of each arrow of the reducers on the shoulder rotor.
19. El robot industrial de conformidad con la reivindicación 12, caracterizado porque los tres ensambles de motores simple comprenden un total de tres motores.  19. The industrial robot according to claim 12, characterized in that the three simple motor assemblies comprise a total of three motors.
20. El robot industrial de conformidad con la reivindicación 12, caracterizado porque los tres ensambles de motores doble comprende un total de seis motores.  20. The industrial robot according to claim 12, characterized in that the three double motor assemblies comprise a total of six motors.
21. El robot industrial de conformidad con la reivindicación 19 ó 20, caracterizado porque los motores pueden seleccionarse de servomotores, motores a paso, motores de corriente alterna, motores de corriente directa o una combinación de los mismos.  21. The industrial robot according to claim 19 or 20, characterized in that the motors can be selected from servomotors, stepper motors, alternating current motors, direct current motors or a combination thereof.
22. El robot industrial de conformidad con cualquiera de las reivindicaciones 12 a 20, caracterizado porque un torque aplicado por cada ensamble de base de motores a cada ensamble de brazo articulado puede ser personalizado para comprender simple o doble torque para cumplir con las necesidades específicas del cliente.  22. The industrial robot according to any of claims 12 to 20, characterized in that a torque applied by each motor base assembly to each articulated arm assembly can be customized to comprise single or double torque to meet the specific needs of the client.
23. Una herramienta para manipular envases, caracterizada porque comprende:  23. A tool for handling containers, characterized in that it comprises:
un efector copie;  a copy effector;
dos barras de sujeción; y  two tie bars; Y
al menos una pinza para manipular envases, en donde la pinza comprende un pistón neumático y la pinza se acopla a una porción inferior del efector copie mediante las dos barras de sujeción.  at least one caliper for handling containers, wherein the caliper comprises a pneumatic piston and the caliper is coupled to a lower portion of the copier effector by means of the two clamping bars.
24. La herramienta de conformidad con la reivindicación 23, caracterizada porque la al menos una pinza para manipular envases comprende al menos dos dedos de pinza.  24. The tool according to claim 23, characterized in that the at least one clamp for handling packages comprises at least two clamp fingers.
25. La herramienta de conformidad con la reivindicación 24, caracterizada porque los al menos dos dedos de pinza comprenden una esfera de apertura localizada entre los dedos. 25. The tool according to claim 24, characterized in that the at least two Clamp fingers comprise an opening sphere located between the fingers.
26. La herramienta de conformidad con cualquiera de las reivindicaciones 23 a 25, caracterizada porgue la esfera de apertura está configurada para abrir temporalmente los al menos dos dedos de pinza y cuando el pistón se retrae los al menos dos dedos regresan a su posición original.  26. The tool according to any of claims 23 to 25, characterized in that the opening sphere is configured to temporarily open the at least two caliper fingers and when the piston retracts the at least two fingers return to their original position.
27. La herramienta de conformidad con la reivindicación 24, caracterizada porque los al menos dos dedos son de un material flexible.  27. The tool according to claim 24, characterized in that the at least two fingers are of a flexible material.
28. La herramienta de conformidad con la reivindicación 23, caracterizada porque el efector copie además comprende al menos una pestaña de ensamble en una porción superior del efector copie.  28. The tool according to claim 23, characterized in that the copying effector further comprises at least one assembly flange in an upper portion of the copying effector.
29. La herramienta de conformidad con la reivindicación 28, caracterizada porque la al menos una pestaña de ensamble comprende una pluralidad de perforaciones alineadoras con un anillo efector.  29. The tool according to claim 28, characterized in that the at least one assembly flange comprises a plurality of alignment holes with an effector ring.
30. Una herramienta para manipular objetos cilindricos suaves, caracterizada porque comprende:  30. A tool for manipulating soft cylindrical objects, characterized in that it comprises:
un efector copie;  a copy effector;
un dedo ancho;  a wide finger;
un pistón neumático;  a pneumatic piston;
una abrazadera base pistón;  a piston base clamp;
una abrazadera émbolo pistón; y  a piston piston clamp; Y
dos dedos delgados;  two thin fingers;
el dedo ancho integrado directamente al efector copie, en donde los dos dedos delgados están localizados de manera frontal al dedo ancho.  the wide finger integrated directly to the copy effect, where the two thin fingers are located frontally to the wide finger.
31. La herramienta de conformidad con la reivindicación 30, caracterizada porque el dedo ancho es un elemento de contrapunto.  31. The tool according to claim 30, characterized in that the wide finger is a counterpoint element.
32. La herramienta de conformidad con la reivindicación 30, caracterizada porque cada uno de los dos dedos delgados comprenden un asiento para baleros. 32. The tool in accordance with the claim 30, characterized in that each of the two thin fingers comprises a seat for bearings.
33. La herramienta de conformidad con la reivindicación 30, caracterizada porgue el efector copie además comprende al menos una pestaña de ensamble en una porción superior del efector copie.  33. The tool according to claim 30, characterized in that the copying effector further comprises at least one assembly flange in an upper portion of the copying effector.
34. La herramienta de conformidad con la reivindicación 33, caracterizada porgue la al menos una pestaña de ensamble comprende una pluralidad de perforaciones alineadoras con un anillo efector.  34. The tool according to claim 33, characterized in that the at least one assembly flange comprises a plurality of alignment holes with an effector ring.
35. La herramienta de conformidad con la reivindicación 30, caracterizada porgue los dos dedos delgados son actuados mediante el mismo pistón neumático.  35. The tool according to claim 30, characterized in that the two thin fingers are operated by the same pneumatic piston.
36. La herramienta de conformidad con la reivindicación 30, caracterizada porgue opcionalmente la herramienta contiene dos pistones neumáticos, cada uno actúa a cada dedo delgado de manera independiente.  36. The tool according to claim 30, characterized in that the tool optionally contains two pneumatic pistons, each acting on each thin finger independently.
PCT/MX2017/000146 2016-12-07 2017-12-06 Reconfigurable modular industrial delta robot, system and tool for same WO2018106101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2016016187A MX2016016187A (en) 2016-12-07 2016-12-07 Reconfigurable modular industrial delta robot, system and tool for same.
MXMX/A/2016/016187 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018106101A1 true WO2018106101A1 (en) 2018-06-14

Family

ID=62492134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2017/000146 WO2018106101A1 (en) 2016-12-07 2017-12-06 Reconfigurable modular industrial delta robot, system and tool for same

Country Status (2)

Country Link
MX (1) MX2016016187A (en)
WO (1) WO2018106101A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112025690A (en) * 2020-09-25 2020-12-04 李景会 Delta parallel four-shaft type manipulator
WO2022134513A1 (en) * 2020-12-22 2022-06-30 辰星(天津)自动化设备有限公司 Expandable robot unit and six-arm robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877867A1 (en) * 2004-11-18 2006-05-19 Sydel Sa Light weight object gripping device for parallel type manipulator robot, has robot gripper with grip jaws detachably mounted on support levers by screw, and motor controlled by variator with program to detect objects` presence between jaws
US20100263471A1 (en) * 2009-04-17 2010-10-21 Weber Maschinenbau Gmbh Breidenbach Robot having delta kinematics
MX2013006781A (en) * 2013-06-14 2014-12-16 Inst Politecnico Nacional Delta-type parallel robot with fixed reconfigurable platform.
WO2015177154A1 (en) * 2014-05-19 2015-11-26 Universite De Montpellier Pod for a parallel robot for controlling an object
EP3095563A1 (en) * 2015-05-14 2016-11-23 Euromatic S.r.l. Device for the movement and positioning of an object in space

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877867A1 (en) * 2004-11-18 2006-05-19 Sydel Sa Light weight object gripping device for parallel type manipulator robot, has robot gripper with grip jaws detachably mounted on support levers by screw, and motor controlled by variator with program to detect objects` presence between jaws
US20100263471A1 (en) * 2009-04-17 2010-10-21 Weber Maschinenbau Gmbh Breidenbach Robot having delta kinematics
MX2013006781A (en) * 2013-06-14 2014-12-16 Inst Politecnico Nacional Delta-type parallel robot with fixed reconfigurable platform.
WO2015177154A1 (en) * 2014-05-19 2015-11-26 Universite De Montpellier Pod for a parallel robot for controlling an object
EP3095563A1 (en) * 2015-05-14 2016-11-23 Euromatic S.r.l. Device for the movement and positioning of an object in space

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112025690A (en) * 2020-09-25 2020-12-04 李景会 Delta parallel four-shaft type manipulator
WO2022134513A1 (en) * 2020-12-22 2022-06-30 辰星(天津)自动化设备有限公司 Expandable robot unit and six-arm robot

Also Published As

Publication number Publication date
MX2016016187A (en) 2018-06-06

Similar Documents

Publication Publication Date Title
US20210370527A1 (en) Field- assembled soft gripping for industrial and collaborative robots
WO2018106101A1 (en) Reconfigurable modular industrial delta robot, system and tool for same
Ohta et al. Design of a lightweight soft robotic arm using pneumatic artificial muscles and inflatable sleeves
JP6879562B2 (en) Modular robot system
TWI624340B (en) Industrial robot
RU2767926C2 (en) Gripping device with bernoulli gripping unit and vacuum gripping unit
ES2548486T3 (en) Rotating, compressible and expandable terminal effector for an industrial robot
ES2333930B1 (en) PARALLEL ROBOT WITH FOUR DEGREES OF FREEDOM.
EP2113343A3 (en) Multi-joint manipulator
WO2014125360A1 (en) Industrial delta type robot
US20140060234A1 (en) Parallel link robot with addtional actuator arranged at driven links
US20140150591A1 (en) Multi-parallel manipulator system
JP6636950B2 (en) Parallel robot acting on an object and method of implementing the same
JP5956620B1 (en) Transport system and transport method
EP3159257B1 (en) Rotary joint with actuator, framework construction kit and framework with rotary joints
US20150316129A1 (en) Reconfigurable Motion Generator
KR101467504B1 (en) Robot finger module
US9228649B1 (en) Simultaneous actuating mechanism for parallel axis rotors
USD885860S1 (en) Torque tool
US8240730B2 (en) Pneumatic actuator
KR101927005B1 (en) Key for actuating a plurality of humanoid robot mechanisms
JP7117760B2 (en) 6 DOF joint
Choi et al. Self-reconfigurable planar parallel robot in the horizontal plane
ES2936524B2 (en) Part for articulating the arm of a robot
JP7252428B1 (en) Packing material and packing method for parallel link robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879153

Country of ref document: EP

Kind code of ref document: A1