WO2018105913A1 - Apparatus and method for detecting discharge of power equipment - Google Patents

Apparatus and method for detecting discharge of power equipment Download PDF

Info

Publication number
WO2018105913A1
WO2018105913A1 PCT/KR2017/012827 KR2017012827W WO2018105913A1 WO 2018105913 A1 WO2018105913 A1 WO 2018105913A1 KR 2017012827 W KR2017012827 W KR 2017012827W WO 2018105913 A1 WO2018105913 A1 WO 2018105913A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
ultrasonic
signal
wireless communication
communication unit
Prior art date
Application number
PCT/KR2017/012827
Other languages
French (fr)
Korean (ko)
Inventor
윤대근
Original Assignee
한국알프스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국알프스 주식회사 filed Critical 한국알프스 주식회사
Publication of WO2018105913A1 publication Critical patent/WO2018105913A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1209Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using acoustic measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/04Arrangements for displaying electric variables or waveforms for producing permanent records
    • G01R13/14Recording on a light-sensitive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1245Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of line insulators or spacers, e.g. ceramic overhead line cap insulators; of insulators in HV bushings

Definitions

  • the present invention relates to an apparatus and method for detecting discharge of a power plant, and more particularly, to an apparatus and method for detecting partial discharge of insulator using an ultrasonic sensor.
  • Power transmission power equipment is a power transmission or substation that transmits electricity produced in a power plant to large-scale users such as cities, and is installed with power equipment including transformers using high pressure and extra high pressure (over tens of thousands of volts).
  • Figure 1 shows an example of such a power equipment.
  • a power line 10 is connected to a transformer 20 to a pole, and an insulator 30 is installed between the pole and the power line 10.
  • the insulator (30) which is a solid insulator used to insulate and support an electric conductor, should not flow current as a complete insulator, but the insulation is destroyed due to deterioration, resulting in partial discharge.
  • Such partial discharge phenomenon may increase the degree of insulation deterioration due to oxides generated during electric tree and partial discharge when it occurs for a long time even if there is no problem in the performance and operation of the system.
  • Such insulation deterioration may cause the power equipment to stop functioning, and in extreme cases, it may lead to an explosion, causing a problem such as a power failure (shutdown) to stop the supply of electricity to the entire city or industrial complexes, etc. This paralyzing fatal situation will occur.
  • Ultrasonic diagnostic device is a device that a diagnoser (user) hears a sound and diagnoses it by converting ultrasonic waves that are inaudible to humans into sounds in an audible frequency range.
  • the problem to be solved by the present invention is to provide an apparatus and method that can detect whether the ultrasonic wave is generated automatically when installed around the pole to diagnose whether or not the partial discharge.
  • the problem to be solved by the present invention is to provide an apparatus and method for quickly and accurately diagnosing partial discharge by efficiently removing ultrasonic waves (noise) generated in the car, wind, etc. around the pole.
  • Discharge detection apparatus of a power equipment is disposed on the pole and the ultrasonic sensor for detecting the ultrasonic signal generated by the deterioration of the power equipment;
  • a discharge detector determining a discharge state when a frequency of the ultrasonic signal detected by the ultrasonic sensor is included in a preset frequency range;
  • a wireless communication unit configured to receive a signal regarding discharge from the discharge detection unit and transmit the received signal to the outside, and transmit a control signal received from the outside to the discharge detection unit.
  • the discharge detection device of the power equipment may be composed of the sensor unit, the discharge detection unit and the wireless communication unit integrated module.
  • the ultrasonic sensor, the discharge detector, and a power supply unit for supplying power to the wireless communication unit may further include.
  • the ultrasonic sensor is disposed around the insulator, it can detect the ultrasonic wave generated in the insulator.
  • the predetermined frequency range may be set within a predetermined range around 120Hz.
  • the discharge detection unit includes an IIR filter for passing a frequency of 120Hz band, when the peak value of the frequency passing through the IIR filter is more than a predetermined value to the discharge state You can judge.
  • the discharge detection unit may operate in a sleep state after transmitting a signal on whether or not discharged through the wireless communication unit.
  • the discharge detection unit may receive the ultrasonic signal from the ultrasonic sensor in excess of the time required to stabilize the IIR filter.
  • the ultrasonic sensor detects the ultrasonic signal generated by the deterioration of the power equipment; Receiving a detected ultrasonic signal by a discharge detector, and determining the discharge state when the detected ultrasonic signal is included in a preset frequency range; And receiving, by the wireless communication unit, a signal regarding discharge from the discharge detection unit and transmitting the received signal to the outside.
  • the determining of the discharge state, the ultrasonic signal detected by the ultrasonic sensor using an IIR filter, and the size of the filtered data is more than a predetermined size. In this case, it can be determined as a discharge state.
  • the IIR filter can pass a predetermined band around 120Hz.
  • the present invention it is possible to easily detect the partial discharge of the power equipment, in particular the insulator.
  • an effect of shortening the measurement time can be obtained by using an IIR filter instead of using the FFT frequency analysis.
  • the microprocessor since the microprocessor wakes up and operates only when receiving the sensor signal in the sleep mode, power consumption may be reduced.
  • the present invention it is possible to check the presence or absence of partial discharge of the power equipment from a remote site by receiving data through a wireless communication unit without directly measuring a person. Therefore, the cost can be reduced and the presence of discharge can be easily confirmed.
  • Figure 1 shows a power installation according to the prior art.
  • FIG. 2 is a block diagram showing a power equipment discharge detection apparatus according to an embodiment of the present invention.
  • FIG 3 shows an example in which the power equipment discharge detection apparatus according to the present invention is installed.
  • FIG. 4 is a flowchart illustrating a power equipment discharge detection method according to the present invention.
  • FIG. 5 is a flowchart illustrating the discharge detection step of FIG. 4 in more detail.
  • Figure 6 shows the simulation results of the power equipment discharge detection equipment according to the present invention.
  • FIG. 2 is a block diagram showing a discharge detection device of a power facility according to the present invention.
  • the apparatus 100 for detecting discharge of power facilities may include a sensor unit 110, a discharge detector 120, a wireless communication unit 130, and a power supply unit 140.
  • the sensor unit 110 may include an ultrasonic sensor and an amplifier (AMP), the ultrasonic sensor detects the ultrasonic wave generated in the power equipment, the amplifier amplifies the detected signal and delivers it to the discharge detector.
  • the power plant may be a transformer or insulator. In particular, since insulators are completely insulators, no current flows and no ultrasonic waves are generated under normal conditions. However, if the insulators deteriorate and the insulation breaks down, some current can flow. That is, ultrasonic waves are generated by the partial discharge.
  • the sensor unit 110 may detect ultrasonic waves generated from the insulator.
  • the discharge detector 120 may detect whether the battery is discharged, in particular, whether the battery is partially discharged by receiving the ultrasonic signal detected by the sensor 110.
  • the frequency of the ultrasonic waves generated by the partial discharge is related to the frequency of the alternating current flowing in the power plant. For example, since the frequency of the AC potential of the Republic of Korea is 60Hz, the period of partial discharge is 120Hz. Therefore, the discharge detector 120 determines that the partial discharge occurs when the frequency of the ultrasonic wave detected by the sensor unit 110 is within a predetermined bandwidth around 120 Hz.
  • the discharge detector 120 may be implemented by a microprocessor such as an MCU.
  • the MCU may wake up at regular intervals to reduce battery power consumption, and may turn off the power of the ultrasonic sensor unit 110 in addition to the time for processing and transmitting sensor data and reading sensor values. After the sensor is powered off, the controller enters the sleep mode again.
  • the MCU may control operations of the sensor unit and the wireless communication unit in addition to the discharge detection.
  • the MCU that is, the discharge detector 120 may include a filter that passes only the frequency of the 120Hz band and the frequency of the remaining bands noise processing.
  • a filter can be implemented by software.
  • the filter may be implemented using a digital band pass filter such as a Butterworth filter, and may be an Infinite Impulse Response Filer (IIR) filter.
  • IIR Infinite Impulse Response Filer
  • the IIR filter may be an IIR filter of more than 4th order to increase the filtering efficiency.
  • the ultrasonic signal may be generated by other signals around the insulator.
  • the filter may remove the ultrasonic wave generated by the other signal by noise processing and pass only the ultrasonic signal by the partial discharge.
  • the discharge detector 120 detects a peak value of the signal passing through the filter and transmits the peak value to the outside through the wireless communication unit 130. In addition, when the peak value is larger than the set reference value, the discharge detector 120 may determine that partial discharge has occurred. For example, when the detected peak value is 0.5 or more, it may be determined that partial discharge has occurred.
  • the discharge detection unit 120 reads the sensor value at a speed of 240 Hz or more that is twice as fast as 120 Hz (for example, 500 Hz), and the data for a time longer than the filter stabilization time (for example, 0.5 seconds). Can be obtained.
  • the acquired data only a signal with a fixed bandwidth is passed around 120 Hz, and a peak value is extracted from the passed signal, and when the peak value is larger than a predetermined reference value, it may be determined that partial discharge has occurred.
  • the peak value is transmitted to the outside through the wireless communication unit.
  • the filter stabilization time is the minimum time for the IIR filter to operate normally. Since the filter stabilization time is very short, about 0.1, it is possible to detect whether the discharge is efficient.
  • FFT Fast Fourier Transform
  • frequency analysis may be used as a method for detecting a frequency, but FFT analysis requires more time for frequency analysis than an IIR filter.
  • the filter stabilization time is only 0.1 second, and the data can be detected and analyzed for only 0.1 second or more to detect the partial discharge.
  • the experiment confirmed that the peak frequency can be clearly detected at 120Hz when the FFT process is performed on the same signal.
  • the signal processing time is reduced, thereby reducing the power consumption of the battery by reducing the operation time of the MCU (discharge detection unit) and the power-on time of the sensor unit.
  • the use of FFT requires a 32-bit or higher specification processor, but the IIR filter can handle an 8-bit low-profile processor, resulting in lower implementation costs.
  • the wireless communication unit 130 may include a short range communication module such as Zigbee or Bluetooth, and may manage communication with a gateway.
  • various wireless communication methods may be used.
  • Internet modules such as a wireless local area network (WLAN) (Wi-Fi), a wireless broadband (Wibro), a world interoperability for microwave access (Wimax), and a high speed downlink packet access (HSDPA) may be used.
  • Zigbee and Bluetooth may be used as short-range communication methods, such as RFID (Radio Frequency Identification), Infrared Data Association (IrDA), Ultra Wideband (UWB), and the like.
  • the power supply unit 140 may supply power to the sensor unit 110, the discharge detection unit 120, and the wireless communication unit 130.
  • the sensor unit 110, the discharge detector 120, the wireless communication unit 130, and the power supply unit described above may be configured as an integrated module.
  • FIG 3 shows an example in which the discharge diagnosis apparatus 100 according to the present invention is installed.
  • the discharge diagnosis apparatus 100 may be installed near the insulator of the electric pole to detect ultrasonic waves generated from the insulator, and diagnose whether or not the partial discharge is based on the ultrasonic signal.
  • the intensity and the detection result of the ultrasonic signal can be transmitted to the server through the wireless communication unit, the server can receive it to identify the insulators that have occurred.
  • FIG. 4 is a flowchart illustrating a discharge diagnosis method of a power facility according to the present invention.
  • a MCU in a sleep mode state that is, a wake up detection unit wakes up (S110).
  • the discharge detector wakes up
  • the sensor is turned on (S120) and receives a sensor signal detected by the ultrasonic sensor (S130). That is, the sensor value is detected by detecting the discharge (S140), and enters the sleep mode again (S150).
  • FIG. 5 illustrates the discharge detection step S140 of FIG. 4 in more detail.
  • the sensor data is first filtered (S142).
  • an IIR filter may be used as a filter.
  • the IIR filter may be used to remove noise by passing only a band in a preset range (120 Hz when the frequency of the alternating potential is 60 Hz) and filtering the remaining frequencies. This is to remove the ultrasonic waves generated by factors other than the discharge.
  • the MCU may turn off the sensor (S144). Turning off the sensor is to reduce the battery consumption of the power supply.
  • the amplitude of the filtered data is detected and the peak value is detected. If the peak value is equal to or greater than the preset reference value, it may be determined that partial discharge has occurred. For example, when the peak value is 0.5 or more, it can be determined that partial discharge has occurred. Discharge detection procedures such as filtering, peak value detection, and partial discharge generation may be performed at the MCU.
  • the MCU may transmit a detection result to a server (not shown) through the wireless communication unit.
  • the server receives such data from the discharge detection device 100 arranged near the plurality of insulators, and can easily detect where the abnormality has occurred.
  • Figure 6 is a simulation result for verifying the effect of the present invention
  • Figure 6 (a) is a case of detecting a partial discharge by applying the IIR filter
  • Figure 6 (b) is a partial discharge through the FFT frequency analysis The case where is detected is shown.
  • the filter when the IIR filter is applied, the filter is stabilized after the filter stabilization time, that is, 0.108 seconds, to detect the partial discharge by processing the received sensor signal normally.
  • the partial discharge detection time can be facilitated and the cost can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

The purpose of the present invention is to detect a partial discharge of power equipment, and a discharge detection apparatus according to the present invention may comprise: an ultrasonic sensor which is disposed on an electric pole so as to sense an ultrasonic signal caused by the deterioration of power equipment; a discharge detection unit for determining that the power equipment is in a discharged state, when the frequency of the ultrasonic signal sensed by the ultrasonic sensor falls within a predetermined frequency range; and a wireless communication unit for receiving a signal, which indicates whether the power equipment is discharged, from the discharge detection unit and transmitting the same to the outside, and delivering a control signal, received from the outside, to the discharge detection unit.

Description

전력설비의 방전 검출 장치 및 방법Discharge Detection Apparatus and Method of Power Equipment
본 발명은 전력설비의 방전 검출 장치 및 방법에 관한 것으로, 보다 상세하게는 초음파 센서를 이용하여 애자의 부분 방전을 검출하는 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for detecting discharge of a power plant, and more particularly, to an apparatus and method for detecting partial discharge of insulator using an ultrasonic sensor.
송변전용 전력설비는 발전소에서 생산된 전기를 도시 등의 대규모 사용처에 전송하는 송전 또는 변전 설비로 고압 및 특고압(수만볼트 이상)을 사용하는 변압기를 포함하는 전력설비가 설치된다.Power transmission power equipment is a power transmission or substation that transmits electricity produced in a power plant to large-scale users such as cities, and is installed with power equipment including transformers using high pressure and extra high pressure (over tens of thousands of volts).
도 1은 이러한 전력 설비의 일 예를 나타낸 것이다. Figure 1 shows an example of such a power equipment.
도 1을 참조하면, 전주에는 전력선(10)가 변압기(20)가 연결되며, 전주와 전력선(10) 사이에는 애자(30)가 설치되어 있다. Referring to FIG. 1, a power line 10 is connected to a transformer 20 to a pole, and an insulator 30 is installed between the pole and the power line 10.
이러한 전력설비는 기계적 스트레스, 온도 등의 영향으로 절연열화가 발생하여 내부 절연부분에서의 국부적인 부분방전이 발생하게 된다. 예를 들어, 변압기(20)는 부하가 불규칙적으로 변하고 과부하로 가열되면 열화로 인해 부분방전이 촉진된다. 이러한 열화현상이 빈번하게 반복되 권선(捲線, Winding wire) 간 절연물의 손상과 누설전류의 증가 등으로 수명이 단축되고 심한 경우 소손(燒損)되는 등의 화재사고를 일으킨다.In such power equipment, insulation deterioration occurs due to mechanical stress, temperature, etc., thereby causing local partial discharge in the internal insulation portion. For example, when the load of the transformer 20 changes irregularly and is heated by overload, partial discharge is promoted due to deterioration. This deterioration is frequently repeated, resulting in a fire accident such as a shortening of the service life due to damage of insulation between the winding wires and an increase in leakage current, and in severe cases, a burnout.
특히, 전기도체를 절연하고 지지할 목적으로 사용되는 고체절연물인 애자(30, Insulator)는 완전 절연체로 전류가 흐르지 않아야 하지만 열화로 인해 절연이 파괴되어 부분 방전이 발생하게 된다. In particular, the insulator (30), which is a solid insulator used to insulate and support an electric conductor, should not flow current as a complete insulator, but the insulation is destroyed due to deterioration, resulting in partial discharge.
이러한 부분방전 현상은 초기에는 시스템의 성능 및 작동에 문제가 없더라도 지속적인 시간동안 발생하는 경우 전기트리 및 부분방전 시 발생하는 산화물 등에 의하여 절연열화의 정도가 증가하게 된다. 이러한 절연열화 현상은 전력설비의 기능정지를 초래할 수 있으며 극단적일 경우 폭발로 이어져, 정전(shutdown)과 같은 문제가 발생하여 도시 전체 또는 산업공단 등으로의 전기 공급이 중단되어 도시나 공단 등의 기능이 마비되는 치명적인 상황이 발생하게 된다. Such partial discharge phenomenon may increase the degree of insulation deterioration due to oxides generated during electric tree and partial discharge when it occurs for a long time even if there is no problem in the performance and operation of the system. Such insulation deterioration may cause the power equipment to stop functioning, and in extreme cases, it may lead to an explosion, causing a problem such as a power failure (shutdown) to stop the supply of electricity to the entire city or industrial complexes, etc. This paralyzing fatal situation will occur.
따라서 이러한 부분방전에 의한 문제를 방지하기 위해 다양한 방법이 강구되고 있다.Therefore, various methods have been taken to prevent the problem caused by the partial discharge.
예를 들어, 이러한 부분 방전이 발생되는 곳에서는 UV-C(ultraviolet C) 또는 초음파가 발생된다. 이러한 현상을 이용하여 전력 설비 진단자가 전기적으로 전주 주변에서 초음파 진단기를 사용하여 부분 방전을 진단하는 방법이 사용된다. 초음파 진단기를 사람에게 들리지 않는 초음파를 가청 주파수 영역의 소리로 변환하여 진단자(사용자)가 소리를 듣고 진단하는 기기이다. For example, where such partial discharges occur, UV-C (ultraviolet C) or ultrasonic waves are generated. Using this phenomenon, a method of diagnosing partial discharge using an ultrasonic diagnostic apparatus around an electric pole is used by a power equipment diagnoser. Ultrasonic diagnostic device is a device that a diagnoser (user) hears a sound and diagnoses it by converting ultrasonic waves that are inaudible to humans into sounds in an audible frequency range.
이러한 방식은 사람이 일일이 초음파 진단기를 들고 다니면서 진단해야 하기 때문에 매우 번거로울 뿐 아니라 비용과 시간이 많이 소요되는 문제점이 있다. This method is very cumbersome as well as costly and time-consuming because people have to carry out an ultrasound diagnosis.
본 발명이 해결하고자 하는 과제는 전주 주변에 설치해 주면 자동으로 초음파 발생 여부를 감지하여 부분 방전 여부를 진단할 수 있는 장치 및 방법을 제공하는 것이다. The problem to be solved by the present invention is to provide an apparatus and method that can detect whether the ultrasonic wave is generated automatically when installed around the pole to diagnose whether or not the partial discharge.
또한, 본 발명이 해결하고자 하는 과제는 전주 주변의 자동차, 바람 등에서 발생되는 초음파(노이즈)를 효율적으로 제거하여 빠르고 정확하게 부분 방전 여부를 진단할 수 있는 장치 및 방법을 제공하는 것이다. In addition, the problem to be solved by the present invention is to provide an apparatus and method for quickly and accurately diagnosing partial discharge by efficiently removing ultrasonic waves (noise) generated in the car, wind, etc. around the pole.
본 발명에 따른 전력설비의 방전 검출 장치는 전주 상에 배치되어 전력 설비의 열화에 의해 발생되는 초음파 신호를 감지하는 초음파 센서; 상기 초음파 센서가 감지한 초음파 신호의 주파수가 기 설정된 주파수 범위에 포함되는 경우 방전 상태로 판단하는 방전 검출부; 및 상기 방전 검출부로부터 방전 여부에 대한 신호를 수신하여 외부로 전송하고, 외부로부터 수신한 제어신호를 상기 방전 검출부로 전달하는 무선 통신부를 포함할 수 있다. Discharge detection apparatus of a power equipment according to the present invention is disposed on the pole and the ultrasonic sensor for detecting the ultrasonic signal generated by the deterioration of the power equipment; A discharge detector determining a discharge state when a frequency of the ultrasonic signal detected by the ultrasonic sensor is included in a preset frequency range; And a wireless communication unit configured to receive a signal regarding discharge from the discharge detection unit and transmit the received signal to the outside, and transmit a control signal received from the outside to the discharge detection unit.
또한, 본 발명에 따른 전력설비의 방전 검출 장치에서, 상기 센서부, 방전 검출부 및 무선 통신부 일체형 모듈로 구성될 수 있다. In addition, in the discharge detection device of the power equipment according to the present invention, it may be composed of the sensor unit, the discharge detection unit and the wireless communication unit integrated module.
또한, 본 발명에 따른 전력설비의 방전 검출 장치에서, 상기 초음파 센서, 방전 검출부, 및 무선 통신부에 전원을 공급하는 전원부를 더 포함할 수 있다. In addition, in the discharge detection apparatus of the power equipment according to the present invention, the ultrasonic sensor, the discharge detector, and a power supply unit for supplying power to the wireless communication unit may further include.
또한, 본 발명에 따른 전력설비의 방전 검출 장치에서, 상기 초음파 센서는 애자 주위에 배치되어, 애자에서 발생하는 초음파를 감지할 수 있다. In addition, in the discharge detection device of the power equipment according to the present invention, the ultrasonic sensor is disposed around the insulator, it can detect the ultrasonic wave generated in the insulator.
또한, 본 발명에 따른 전력설비의 방전 검출 장치에서, 상기 기 설정된 주파수 범위는 120Hz를 중심으로 소정 범위 내로 설정될 수 있다. In addition, in the discharge detection device of the power equipment according to the present invention, the predetermined frequency range may be set within a predetermined range around 120Hz.
또한, 본 발명에 따른 전력설비의 방전 검출 장치에서, 상기 방전 검출부는 120Hz 대역의 주파수를 통과시키는 IIR 필터를 포함하고, 상기 IIR 필터를 통과한 주파수의 피크 값이 기 설정된 값 이상인 경우 방전 상태로 판단할 수 있다. In addition, in the discharge detection device of the power equipment according to the present invention, the discharge detection unit includes an IIR filter for passing a frequency of 120Hz band, when the peak value of the frequency passing through the IIR filter is more than a predetermined value to the discharge state You can judge.
또한, 본 발명에 따른 전력설비의 방전 검출 장치에서, 상기 방전 검출부는 상기 무선 통신부를 통해 방전 여부에 대한 신호를 전송 한 후에는 슬립(sleep) 상태로 동작할 수 있다. In addition, in the discharge detection device of the power equipment according to the present invention, the discharge detection unit may operate in a sleep state after transmitting a signal on whether or not discharged through the wireless communication unit.
또한, 본 발명에 따른 전력설비의 방전 검출 장치에서, 상기 방전 검출부는 상기 IIR 필터의 안정화에 필요한 시간을 초과하여 상기 초음파 센서로부터 초음파 신호를 수신할 수 있다. In addition, in the discharge detection device of the power equipment according to the present invention, the discharge detection unit may receive the ultrasonic signal from the ultrasonic sensor in excess of the time required to stabilize the IIR filter.
또한, 본 발명에 따른 전력설비의 방전 검출 방법은 초음파 센서가 전력설비의 열화에 의해 발생하는 초음파 신호를 감지하는 단계; 방전 검출부가 상기 감지된 초음파 신호를 수신하고, 감지된 초음파신호가 기 설정된 주파수 범위에 포함되는 경우 방전 상태로 판단하는 단계; 및 무선 통신부가 상기 방전 검출부로부터 방전 여부에 대한 신호를 수신하여 외부로 전송하는 단계를 포함할 수 있다. In addition, the discharge detection method of the power equipment according to the present invention, the ultrasonic sensor detects the ultrasonic signal generated by the deterioration of the power equipment; Receiving a detected ultrasonic signal by a discharge detector, and determining the discharge state when the detected ultrasonic signal is included in a preset frequency range; And receiving, by the wireless communication unit, a signal regarding discharge from the discharge detection unit and transmitting the received signal to the outside.
또한, 본 발명에 따른 전력설비의 방전 검출 방법에서, 상기 방전 상태로 판단하는 단계는, 상기 초음파 센서에서 감지된 초음파 신호를 IIR 필터를 사용하여 필터링하고, 필터링된 데이터의 크기가 기 설정된 크기 이상인 경우 방전 상태로 판단할 수 있다. In addition, in the discharge detection method of the power equipment according to the present invention, the determining of the discharge state, the ultrasonic signal detected by the ultrasonic sensor using an IIR filter, and the size of the filtered data is more than a predetermined size. In this case, it can be determined as a discharge state.
또한, 본 발명에 따른 전력설비의 방전 검출 방법에서, 상기 IIR 필터는 120Hz를 중심으로 기 설정된 대역만큼 통과시킬 수 있다. In addition, in the discharge detection method of the power equipment according to the present invention, the IIR filter can pass a predetermined band around 120Hz.
본 발명에 의하면, 전력설비 특히, 애자의 부분 방전을 손쉽게 검출할 수 있다. According to the present invention, it is possible to easily detect the partial discharge of the power equipment, in particular the insulator.
또한, 본 발명에 의하면, 방전 주파수 대역(120Hz) 이외의 주파수의 신호 레벨을 현저히 낮추어 부분 방전의 발생 유무를 명확히 판단할 수 있다. Further, according to the present invention, it is possible to clearly determine whether or not partial discharge is generated by significantly lowering the signal level at frequencies other than the discharge frequency band (120 Hz).
또한, 본 발명에 의하면, FFT 주파수 분석을 사용한 대신 IIR 필터를 사용함으로써 측정 시간을 단축하는 효과를 얻을 수 있다.In addition, according to the present invention, an effect of shortening the measurement time can be obtained by using an IIR filter instead of using the FFT frequency analysis.
또한, 본 발명에 의하면, 마이크로 프로세서가 슬립 모드 상태에서 센서 신호를 수신할 때에만 웨이크업 되어 동작하므로 전력 소모를 줄일 수 있다. In addition, according to the present invention, since the microprocessor wakes up and operates only when receiving the sensor signal in the sleep mode, power consumption may be reduced.
또한, 본 발명에 의하면, 사람이 직접 측정하지 않고 무선 통신부를 통해 데이터를 전송받아 원격지에서 전력설비의 부분 방전 유무를 확인할 수 있다. 따라서 비용을 절감할 수 있고 방전 유무를 쉽게 확인할 수 있다.In addition, according to the present invention, it is possible to check the presence or absence of partial discharge of the power equipment from a remote site by receiving data through a wireless communication unit without directly measuring a person. Therefore, the cost can be reduced and the presence of discharge can be easily confirmed.
도 1은 종래 기술에 따른 전력설비를 나타내낸 것이다. Figure 1 shows a power installation according to the prior art.
도 2는 본 발명의 일 실시예에 따른 전력설비 방전 검출 장치를 나타낸 블럭도이다. 2 is a block diagram showing a power equipment discharge detection apparatus according to an embodiment of the present invention.
도 3은 본 발명에 따른 전력설비 방전 검출 장치가 설치된 예를 나타낸 것이다. 3 shows an example in which the power equipment discharge detection apparatus according to the present invention is installed.
도 4는 본 발명에 따른 전력설비 방전 검출 방법을 나타낸 흐름도이다.4 is a flowchart illustrating a power equipment discharge detection method according to the present invention.
도 5는 도 4의 방전 검출 단계를 보다 상세히 나타낸 흐름도이다. 5 is a flowchart illustrating the discharge detection step of FIG. 4 in more detail.
도 6은 본 발명에 따른 전력설비 방전 검출 장비의 시뮬레이션 결과를 나타낸 것이다. Figure 6 shows the simulation results of the power equipment discharge detection equipment according to the present invention.
이하 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니되며, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms or words used in the present specification and claims should not be construed as being limited to ordinary or dictionary meanings, but should be construed as meanings and concepts consistent with the technical spirit of the present invention.
본 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다. 본 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless otherwise stated.
이하 첨부된 도면을 참조하여 본 발명의 실시예에 대해 상세히 살펴보기로 한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명에 따른 전력설비의 방전 검출 장치를 나타낸 블록도이다. 2 is a block diagram showing a discharge detection device of a power facility according to the present invention.
도 2를 참조하면 본 발명에 따른 전력설비의 방전 검출 장치(100)는 센서부(110), 방전 검출부(120), 무선 통신부(130), 및 전원부(140)를 포함할 수 있다. Referring to FIG. 2, the apparatus 100 for detecting discharge of power facilities according to the present invention may include a sensor unit 110, a discharge detector 120, a wireless communication unit 130, and a power supply unit 140.
상기 센서부(110)는 초음파 센서 및 증폭기(AMP)를 포함할 수 있으며, 초음파 센서는 전력설비에서 발생하는 초음파를 감지하고 증폭기는 감지된 신호를 증폭하여 방전 검출부로 전달한다. 상기 전력설비는 변압기 또는 애자일 수 있다. 특히 애자는 완전 절연체이기 때문에 정상 상태인 경우에는 전류가 흐르지 않고 초음파도 발생되지 않는다. 하지만 애자가 열화되어 절연이 파괴되는 경우에는 부분적으로 전류가 흐를 수 있다. 즉 부분 방전에 의해 초음파가 발생하게 된다. 상기 센서부(110)는 애자에서 발생하는 초음파를 감지할 수 있다. The sensor unit 110 may include an ultrasonic sensor and an amplifier (AMP), the ultrasonic sensor detects the ultrasonic wave generated in the power equipment, the amplifier amplifies the detected signal and delivers it to the discharge detector. The power plant may be a transformer or insulator. In particular, since insulators are completely insulators, no current flows and no ultrasonic waves are generated under normal conditions. However, if the insulators deteriorate and the insulation breaks down, some current can flow. That is, ultrasonic waves are generated by the partial discharge. The sensor unit 110 may detect ultrasonic waves generated from the insulator.
상기 방전 검출부(120)는 상기 센서(110)에서 감지한 초음파 신호를 수신하여 방전 여부 특히, 부분 방전 여부를 검출할 수 있다. 부분 방전에 의해 발생된 초음파의 주파수는 전력설비의 흐르는 교류 전류의 주파수와 연관되어 있다. 예를 들어 대한민국의 교류 전위의 주파수는 60Hz이므로 부분 방전의 발생 주기는 120Hz가 된다. 따라서 방전 검출부(120)는 센서부(110)에서 감지된 초음파의 주파수가 120Hz를 중심으로 소정의 대역폭 안에 있으면 부분 방전이 발생한 것으로 판단한다. The discharge detector 120 may detect whether the battery is discharged, in particular, whether the battery is partially discharged by receiving the ultrasonic signal detected by the sensor 110. The frequency of the ultrasonic waves generated by the partial discharge is related to the frequency of the alternating current flowing in the power plant. For example, since the frequency of the AC potential of the Republic of Korea is 60Hz, the period of partial discharge is 120Hz. Therefore, the discharge detector 120 determines that the partial discharge occurs when the frequency of the ultrasonic wave detected by the sensor unit 110 is within a predetermined bandwidth around 120 Hz.
한편 상기 방전 검출부(120)는 MCU와 같은 마이크로프로세서에 의해 구현될 수 있다. MCU는 배터리 전원의 소비를 줄이기 위해 일정 주기로 웨이크업(wake up)되어 센서 데이터를 처리 및 송신하고 센서 값을 읽는 시간 이외에는 초음파 센서부(110)의 전원을 오프(off)할 수 있다. 센서부 전원 오프 후에는 다시 슬립(sleep) 모드로 진입한다. 상기 MCU는 방전 검출 이외에도 센서부 및 무선 통신부의 동작을 제어할 수 있다. The discharge detector 120 may be implemented by a microprocessor such as an MCU. The MCU may wake up at regular intervals to reduce battery power consumption, and may turn off the power of the ultrasonic sensor unit 110 in addition to the time for processing and transmitting sensor data and reading sensor values. After the sensor is powered off, the controller enters the sleep mode again. The MCU may control operations of the sensor unit and the wireless communication unit in addition to the discharge detection.
또한, 상기 MCU 즉, 방전 검출부(120)는 120Hz 대역의 주파수만을 통과시키고 나머지 대역의 주파수는 노이즈 처리하는 필터를 포함할 수 있다. 이러한 필터는 소프트웨어에 의해 구현 가능하다. In addition, the MCU, that is, the discharge detector 120 may include a filter that passes only the frequency of the 120Hz band and the frequency of the remaining bands noise processing. Such a filter can be implemented by software.
상기 필터는 버터워스(butterworth) 필터 등의 디지털 밴드 패스 필터를 이용하여 구현할 수 있으며, 무한 임펄스 응답(Infinite Impulse Response Filer, IIR) 필터일 수 있다. 특히 상기 IIR 필터는 필터링 효율을 높이기 4차 이상의 IIR 필터가 사용될 수 있다. The filter may be implemented using a digital band pass filter such as a Butterworth filter, and may be an Infinite Impulse Response Filer (IIR) filter. In particular, the IIR filter may be an IIR filter of more than 4th order to increase the filtering efficiency.
애자 주위에는 부분 방전 이외에도 다른 신호에 의해 초음파 신호가 발생될 수 있는데, 필터는 이러한 다른 신호에 의해 발생한 초음파를 노이즈 처리하여 제거하고 부분 방전에 의한 초음파 신호만을 통과시킬 수 있다. In addition to the partial discharge, the ultrasonic signal may be generated by other signals around the insulator. The filter may remove the ultrasonic wave generated by the other signal by noise processing and pass only the ultrasonic signal by the partial discharge.
방전 검출부(120)는 필터를 통과한 신호의 피크(peak)값을 검출하여 무선 통신부(130)를 통해 외부로 전송한다. 또한 방전 검출부(120)는 피크값이 설정된 기준값 보다 큰 경우에는 부분 방전이 발생한 것으로 판단할 수 있다. 예를 들어 검출된 피크값이 0.5 이상인 경우 부분 방전이 발생한 것으로 판단할 수 있다. The discharge detector 120 detects a peak value of the signal passing through the filter and transmits the peak value to the outside through the wireless communication unit 130. In addition, when the peak value is larger than the set reference value, the discharge detector 120 may determine that partial discharge has occurred. For example, when the detected peak value is 0.5 or more, it may be determined that partial discharge has occurred.
즉, 방전 검출부(120)는 센서부(110)의 센서 값을 120Hz 보다 2배 빠른 240Hz 이상의 속도로 센서 값을 읽으며(예를 들어 500Hz) 필터 안정화 시간 이상의 시간 동안(예를 들어 0.5초) 데이터를 취득할 수 있다. 취득된 데이터에서 120Hz를 중심으로 이정 대역폭(band with)의 신호만을 통과시키고, 통과된 신호에 대해 피크값을 추출하여 피크값이 일정 기준값 보다 큰 경우에는 부분 방전이 발생한 것으로 판단할 수 있다. 그리고 상기 피크값은 무선 통신부를 통해 외부로 전송된다. That is, the discharge detection unit 120 reads the sensor value at a speed of 240 Hz or more that is twice as fast as 120 Hz (for example, 500 Hz), and the data for a time longer than the filter stabilization time (for example, 0.5 seconds). Can be obtained. In the acquired data, only a signal with a fixed bandwidth is passed around 120 Hz, and a peak value is extracted from the passed signal, and when the peak value is larger than a predetermined reference value, it may be determined that partial discharge has occurred. The peak value is transmitted to the outside through the wireless communication unit.
상기 필터 안정화 시간은 IIR 필터가 정상적으로 동작하기 위한 최소한의 시간인데, 0.1 정도로 매우 짧기 때문에 효율적으로 방전여부를 검출할 수 있다. 주파수를 검출하는 방법으로는 FFT(Fast Fourier Transform) 주파수 분석이 사용될 수도 있으나 FFT 분석은 IIR 필터에 비해 상대적으로 주파수 분석에 시간이 많이 소요된다. The filter stabilization time is the minimum time for the IIR filter to operate normally. Since the filter stabilization time is very short, about 0.1, it is possible to detect whether the discharge is efficient. Fast Fourier Transform (FFT) frequency analysis may be used as a method for detecting a frequency, but FFT analysis requires more time for frequency analysis than an IIR filter.
IIR 필터를 사용하는 경우에는 필터 안정화 시간이 0.1초에 불과하고 0.1초 이상 동안만 데이터를 취득하여 분석하면 부분 방전 여부를 검출할 수 있다. 하지만, 동일한 신호에 대하여 FFT 처리를 할 경우 5초 이상의 데이터를 취득해야 명확하게 120Hz 에서 Peak 주파수가 검출 될 수 있음을 실험을 통해서 확인할 있었다. In the case of using an IIR filter, the filter stabilization time is only 0.1 second, and the data can be detected and analyzed for only 0.1 second or more to detect the partial discharge. However, the experiment confirmed that the peak frequency can be clearly detected at 120Hz when the FFT process is performed on the same signal.
이와 같이 IIR 필터를 사용하는 경우 신호 처리 시간을 줄임으로써 MCU(방전 검출부)의 가동 시간 및 센서부의 전원 On 시간을 줄임으로써 배터리의 소비 전원을 줄이는 효과를 얻을 수 있다. 또한 FFT를 사용하려면 32 비트 이상의 고 사양 Processer가 필요하지만 IIR 필터의 경우 8비터 저 사향 Processer에서도 처리 가능하기 때문에 구현 비용의 절감 효과를 얻을 수 있다.When the IIR filter is used as described above, the signal processing time is reduced, thereby reducing the power consumption of the battery by reducing the operation time of the MCU (discharge detection unit) and the power-on time of the sensor unit. In addition, the use of FFT requires a 32-bit or higher specification processor, but the IIR filter can handle an 8-bit low-profile processor, resulting in lower implementation costs.
상기 무선 통신부(130)는 지그비(Zigbee) 또는 블루투스(Bluetooth)와 같은 근거리 통신 모듈을 포함할 수 있으며, 게이트웨이(Gateway)와의 통신을 주관할 수 있다. 상기 무선 통신부(130)는 이외에도 다양한 무선 통신 방식이 사용될 수 있다. 예를 들어, WLAN(Wireless LAN)(Wi-Fi), Wibro(Wireless broadband), Wimax(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access) 등의 인터넷 모듈이 사용될 수 있다. 또한, 근거리 통신 방식으로 지그비, 블로투스 이외에도 RFID(Radio Frequency Identification), 적외선 통신(IrDA, infrared Data Association), UWB(Ultra Wideband) 등이 이용될 수 있다.The wireless communication unit 130 may include a short range communication module such as Zigbee or Bluetooth, and may manage communication with a gateway. In addition to the wireless communication unit 130, various wireless communication methods may be used. For example, Internet modules such as a wireless local area network (WLAN) (Wi-Fi), a wireless broadband (Wibro), a world interoperability for microwave access (Wimax), and a high speed downlink packet access (HSDPA) may be used. In addition, Zigbee and Bluetooth may be used as short-range communication methods, such as RFID (Radio Frequency Identification), Infrared Data Association (IrDA), Ultra Wideband (UWB), and the like.
상기 전원부(140)는 센서부(110), 방전 검출부(120), 및 무선 통신부(130)에 전원을 공급할 수 있다. The power supply unit 140 may supply power to the sensor unit 110, the discharge detection unit 120, and the wireless communication unit 130.
이상 살펴본 센서부(110), 방전 검출부(120), 무선 통신부(130), 및 전원부는 일체형 모듈로 구성될 수 있다. The sensor unit 110, the discharge detector 120, the wireless communication unit 130, and the power supply unit described above may be configured as an integrated module.
도 3은 본 발명에 따른 방전 진단 장치(100)를 설치한 예를 나타낸 것이다. 3 shows an example in which the discharge diagnosis apparatus 100 according to the present invention is installed.
도 3에 도시된 것과 같이 방전 진단 장치(100)는 전주의 애자 근처에 설치되어 애자에서 발생하는 초음파를 감지하고, 초음파 신호에 근거하여 부분 방전 여부를 진단할 수 있다. 또한, 무선 통신부를 통해 초음파 신호의 세기 및 검출 결과를 서버로 전송할 수 있고, 서버에서는 이를 수신하여 이상이 발생한 애자를 확인할 수 있다. As shown in FIG. 3, the discharge diagnosis apparatus 100 may be installed near the insulator of the electric pole to detect ultrasonic waves generated from the insulator, and diagnose whether or not the partial discharge is based on the ultrasonic signal. In addition, the intensity and the detection result of the ultrasonic signal can be transmitted to the server through the wireless communication unit, the server can receive it to identify the insulators that have occurred.
도 4는 본 발명에 따른 전력설비의 방전 진단 방법을 나타낸 흐름도이다. 4 is a flowchart illustrating a discharge diagnosis method of a power facility according to the present invention.
도 4를 참조하면, 먼저 슬립 모드 상태에 있는 MCU 즉, 방전 검출부를 웨이크업(wake up) 한다(S110). 방전 검출부는 웨이크 되면 센서를 온 시킨 후(S120) 초음파 센서가 감지한 센서 신호를 수신한다(S130). 즉, 센서값을 읽어 방전 여부를 검출하고(S140), 다시 슬립모드로 진입한다(S150). Referring to FIG. 4, first, a MCU in a sleep mode state, that is, a wake up detection unit wakes up (S110). When the discharge detector wakes up, the sensor is turned on (S120) and receives a sensor signal detected by the ultrasonic sensor (S130). That is, the sensor value is detected by detecting the discharge (S140), and enters the sleep mode again (S150).
상기 도 5는 도 4의 방전 검출 단계(S140)를 보다 상세히 나타낸 것이다. 5 illustrates the discharge detection step S140 of FIG. 4 in more detail.
도 5를 참조하면, 센서 데이터를 먼저 필터링하다(S142). 이때 필터를 IIR 필터를 사용할 수 있으며, IIR 필터를 사용하여 기설정된 범위의 주파수(교류 전위의 주파수가 60Hz인 경우에는 120Hz) 대역만 통과시키고 나머지 대역의 주파수는 필터링 하여 노이즈를 제거한다. 이는 방전 이외의 다른 요소에 의해 발생된 초음파를 제거하기 위한 것이다. Referring to FIG. 5, the sensor data is first filtered (S142). In this case, an IIR filter may be used as a filter. The IIR filter may be used to remove noise by passing only a band in a preset range (120 Hz when the frequency of the alternating potential is 60 Hz) and filtering the remaining frequencies. This is to remove the ultrasonic waves generated by factors other than the discharge.
상기와 같이 필터링이 완료되면, MCU가 센서를 오프시킬 수 있다(S144). 센서를 오프시키는 것은 전원부의 배터리 소모를 줄이기 위한 것이다. When the filtering is completed as described above, the MCU may turn off the sensor (S144). Turning off the sensor is to reduce the battery consumption of the power supply.
다음으로 필터링된 데이터의 진폭을 검출하고 피크값을 검출하여, 피크값이 기 설정된 기준값 이상이면 부분 방전이 발생한 것으로 판단할 수 있다. 예를 들어, 피크값이 0.5 이상이면 부분 방전이 발생한 것으로 판단할 수 있다. 필터링, 피크값 검출, 및 부분 방전 발생과 같은 방전 검출 절차는 MCU에서 수행될 수 있다. Next, the amplitude of the filtered data is detected and the peak value is detected. If the peak value is equal to or greater than the preset reference value, it may be determined that partial discharge has occurred. For example, when the peak value is 0.5 or more, it can be determined that partial discharge has occurred. Discharge detection procedures such as filtering, peak value detection, and partial discharge generation may be performed at the MCU.
그리고 피크값이 검출되면 MCU는 무선 통신부를 통해 검출 결과를 서버(미도시)로 전송할 수 있다. When the peak value is detected, the MCU may transmit a detection result to a server (not shown) through the wireless communication unit.
서버에서는 다수의 애자 근처에 배치된 방전 검출 장치(100)로부터 이러한 데이터를 수신하여 어느 곳에서 이상이 발생하였는지를 손쉽게 검출할 수 있다. The server receives such data from the discharge detection device 100 arranged near the plurality of insulators, and can easily detect where the abnormality has occurred.
도 6은 본 발명의 효과를 검증하기 위한 시뮬레이션 결과를 나타낸 것으로, 도 6의 (a)는 IIR 필터를 적용하여 부분 방전을 검출한 경우이고 도 6의 (b)는 FFT 주파수 분석을 통해 부분 방전을 검출한 경우를 나타낸 것이다. 6 is a simulation result for verifying the effect of the present invention, Figure 6 (a) is a case of detecting a partial discharge by applying the IIR filter and Figure 6 (b) is a partial discharge through the FFT frequency analysis The case where is detected is shown.
도 6을 참조하면, IIR 필터를 적용한 경우 필터 안정화 시간 즉, 0.108초 후에는 필터가 안정화되어 수신된 센서 신호를 정상적으로 처리하여 부분 방전을 검출할 수 있었다. Referring to FIG. 6, when the IIR filter is applied, the filter is stabilized after the filter stabilization time, that is, 0.108 seconds, to detect the partial discharge by processing the received sensor signal normally.
하지만 FFT 주파수 분석을 사용하는 경우, 0.1초간 샘플링 한 경우 주파수 특성이 제대로 반영되지 않아 부분 방전 여부를 검출할 수 없고 5초간 샘플링을 해야 비로소 유의미한 데이터가 추출되고 부분 방전 여부를 검출할 수 있었다. However, in case of using FFT frequency analysis, the frequency characteristics were not properly reflected in the case of sampling for 0.1 seconds, and it was not possible to detect the partial discharge. Only after 5 seconds, the meaningful data was extracted and the partial discharge could be detected.
이상에서 살펴본 바와 같이 본 발명에 의하면 부분 방전 검출 시간을 용이하게 할 수 있을 뿐만 아니라 비용도 절감할 수 있다는 장점이 있다. As described above, according to the present invention, the partial discharge detection time can be facilitated and the cost can be reduced.
이상의 본 발명의 상세한 설명에서는 그에 따른 특별한 실시예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.In the foregoing detailed description of the invention, only specific embodiments thereof have been described. It is to be understood, however, that the present invention is not limited to the specific forms referred to in the description, but rather includes all modifications, equivalents, and substitutions within the spirit and scope of the invention as defined by the appended claims. Should be.
즉, 본 발명은 상술한 특정의 실시예 및 설명에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능하며, 그와 같은 변형은 본 발명의 보호 범위 내에 있게 된다.That is, the present invention is not limited to the above specific embodiments and descriptions, and various modifications can be made by those skilled in the art without departing from the gist of the present invention as claimed in the claims. It is possible for such modifications to fall within the protection scope of the present invention.
[부호의 설명][Description of the code]
100 : 방전 검출 장치100: discharge detection device
110: 센서부110: sensor unit
120: 방전 검출부120: discharge detector
130: 무선 통신부130: wireless communication unit
140: 전원부140: power supply

Claims (12)

  1. 전주 상에 배치되어 전력 설비의 열화에 의해 발생되는 초음파 신호를 감지하는 초음파 센서;An ultrasonic sensor disposed on a pole to sense an ultrasonic signal generated by deterioration of a power facility;
    상기 초음파 센서가 감지한 초음파 신호의 주파수가 기 설정된 주파수 범위에 포함되는 경우 방전 상태로 판단하는 방전 검출부; 및 A discharge detector determining a discharge state when a frequency of the ultrasonic signal detected by the ultrasonic sensor is included in a preset frequency range; And
    상기 방전 검출부로부터 방전 여부에 대한 신호를 수신하여 외부로전송하고, 외부로부터 수신한 제어신호를 상기 방전 검출부로 전달하는 무선 통신부를 포함하는 전력설비의 방전 검출 장치. And a wireless communication unit configured to receive a signal regarding discharge from the discharge detection unit and transmit the received signal to the outside, and transmit a control signal received from the outside to the discharge detection unit.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 센서부, 방전 검출부 및 무선 통신부 일체형 모듈로 구성된 전력설비의 방전 검출 장치. And a discharge detection device for a power facility comprising the sensor unit, a discharge detection unit, and a wireless communication unit integrated module.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 초음파 센서, 방전 검출부, 및 무선 통신부에 전원을 공급하는 전원부를 더 포함하는 전력설비의 방전 검출 장치..And a power supply unit for supplying power to the ultrasonic sensor, a discharge detector, and a wireless communication unit.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 초음파 센서는 애자 주위에 배치되어, 애자에서 발생하는 초음파를 감지하는 전력 설비의 방전 검출 장치. The ultrasonic sensor is disposed around the insulator, the discharge detection device of the power equipment for detecting the ultrasonic wave generated in the insulator.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 기 설정된 주파수는 120Hz를 중심으로 소정 범위 내로 설정되는 전력설비의 방전 검출 장치.And the preset frequency is set within a predetermined range around 120 Hz.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 방전 검출부는 120Hz 대역의 주파수를 통과시키는 IIR 필터를 포함하고, 상기 IIR 필터를 통과한 주파수의 피크 값이 기 설정된 값 이상인 경우 방전 상태로 판단하는 전력설비의 방전 검출 장치. And a discharge detector including an IIR filter passing a frequency in a 120 Hz band, and determining a discharge state when a peak value of a frequency passing through the IIR filter is equal to or larger than a preset value.
  7. 제1항에 있어서, The method of claim 1,
    상기 방전 검출부는 상기 무선 통신부를 통해 방전 여부에 대한 신호를 전송 한 후에는 슬립(sleep) 상태로 동작하는 전력설비의 방전 검출 장치.And wherein the discharge detector operates in a sleep state after transmitting a signal regarding discharge through the wireless communication unit.
  8. 제6항에 있어서, The method of claim 6,
    상기 방전 검출부는 상기 IIR 필터의 안정화에 필요한 시간을 초과하여 상기 초음파 센서로부터 초음파 신호를 수신하는 전력설비의 방전 검출 장치. And the discharge detector receives an ultrasonic signal from the ultrasonic sensor in excess of a time required for stabilization of the IIR filter.
  9. 초음파 센서가 전력설비의 열화에 의해 발생하는 초음파 신호를 감지하는 단계;Detecting, by an ultrasonic sensor, an ultrasonic signal generated by deterioration of a power facility;
    방전 검출부가 상기 감지된 초음파 신호를 수신하고, 감지된 초음파신호가 기 설정된 주파수 범위에 포함되는 경우 방전 상태로 판단하는 단계; 및 Receiving a detected ultrasonic signal by a discharge detector, and determining the discharge state when the detected ultrasonic signal is included in a preset frequency range; And
    무선 통신부가 상기 방전 검출부로부터 방전 여부에 대한 신호를 수신하여 외부로 전송하는 단계를 포함하는 전력설비의 방전 진단 방법. And a wireless communication unit receiving a signal regarding discharge from the discharge detection unit and transmitting the signal to the outside.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 방전 상태로 판단하는 단계는, 상기 초음파 센서에서 감지된 초음파 신호를 IIR 필터를 사용하여 필터링하고, 필터링된 값의 크기가 기 설정된 크기 이상인 경우 방전 상태로 판단하는 전력설비의 방전 진단 방법. In the determining of the discharge state, the ultrasonic signal detected by the ultrasonic sensor is filtered using an IIR filter, and when the magnitude of the filtered value is greater than a predetermined size, the discharge diagnosis method of the power equipment.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 IIR 필터는 120Hz를 중심으로 기 설정된 대역만큼 통과시키는 전력설비의 방전 진단 방법. The IIR filter is a discharge diagnostic method of a power facility to pass through a predetermined band around 120Hz.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 방전 검출부는 상기 필터링된 값의 피크값을 무선 통신부를 통해 외부로 전송하고, 전송후에는 슬립 모드로 진입하는 단계를 더 포함하는 전력설비의 방전 진단 방법. And discharging the peak value of the filtered value to the outside through the wireless communication unit and entering a sleep mode after the transmission.
PCT/KR2017/012827 2016-12-06 2017-11-14 Apparatus and method for detecting discharge of power equipment WO2018105913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160165252A KR101959708B1 (en) 2016-12-06 2016-12-06 Apparatus and method for detecting discharge for electric power facility
KR10-2016-0165252 2016-12-06

Publications (1)

Publication Number Publication Date
WO2018105913A1 true WO2018105913A1 (en) 2018-06-14

Family

ID=62492085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012827 WO2018105913A1 (en) 2016-12-06 2017-11-14 Apparatus and method for detecting discharge of power equipment

Country Status (2)

Country Link
KR (1) KR101959708B1 (en)
WO (1) WO2018105913A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102457493B1 (en) * 2022-07-27 2022-10-21 윤성전력(주) IoT system for monitoring strain insulator of power line

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101200053B1 (en) * 2012-03-08 2012-11-12 주식회사 현신 Thereof method and, progressive unusual condition real time diagnostic equipment of transformers and insulator
KR101410733B1 (en) * 2013-01-10 2014-06-24 한국전기연구원 Partial discharge measurement device using reference MIC and method which can guide fault position
KR101538999B1 (en) * 2014-06-26 2015-07-24 (주)에스에이치아이앤씨 Partial discharge diagnosis apparatus and method
US20160161543A1 (en) * 2014-12-09 2016-06-09 Rosemount Inc. Partial discharge detection system
KR101647424B1 (en) * 2015-12-30 2016-08-16 주식회사 알씨엔파워 Apparatus for diagnosing electric power equipments automatically

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101200053B1 (en) * 2012-03-08 2012-11-12 주식회사 현신 Thereof method and, progressive unusual condition real time diagnostic equipment of transformers and insulator
KR101410733B1 (en) * 2013-01-10 2014-06-24 한국전기연구원 Partial discharge measurement device using reference MIC and method which can guide fault position
KR101538999B1 (en) * 2014-06-26 2015-07-24 (주)에스에이치아이앤씨 Partial discharge diagnosis apparatus and method
US20160161543A1 (en) * 2014-12-09 2016-06-09 Rosemount Inc. Partial discharge detection system
KR101647424B1 (en) * 2015-12-30 2016-08-16 주식회사 알씨엔파워 Apparatus for diagnosing electric power equipments automatically

Also Published As

Publication number Publication date
KR20180064851A (en) 2018-06-15
KR101959708B1 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
JP6165711B2 (en) System and method for detecting and locating intermittent and other failures
KR101846195B1 (en) Motor status monitoring system and method thereof
CN102494894A (en) Audio monitoring and fault diagnosis system for wind generating set and audio monitoring and fault diagnosis method for same
CN109769193B (en) Online loudspeaker fault diagnosis system based on peak-to-average ratio and mean value screening
CN104198830B (en) Based on electromagnetic environment real-time monitoring system and the method for dual communication passage switching at runtime
KR102329845B1 (en) Power distributing board having system for sensing and checking deterioration of electrical equipment insulator
WO2018105913A1 (en) Apparatus and method for detecting discharge of power equipment
CN106771927B (en) GIS voltage withstand fault positioning method, fault cause judging method using same and positioning device
CN102736650A (en) Online temperature monitoring early-warning system for high-voltage electric power equipment
KR102009993B1 (en) Intelligent fire prevention diagnosis system and method
CN110045220A (en) A kind of electrical leakage detecting method and intelligent appliance system
CN113324592A (en) System, method, switching device and storage medium for pipe gallery monitoring
KR101954273B1 (en) A Smart Cabinet Panel System
CN2773708Y (en) Periodic inspection experimental device of gas relay
CN110967653A (en) Electric leakage detection device and electric leakage detection method
CN109085470A (en) A kind of arc light sensor device and equipment health status judgment method
CN213021956U (en) Temperature detection system of power distribution cabinet
CN101251949A (en) Monitoring device for a two wire line annunciator system
WO2020111510A1 (en) Switchgear monitoring apparatus using acoustic signals
CN111122928A (en) Electrical complete set of start test separately excited power supply device and providing method thereof
CN109118080A (en) A kind of construction site management software system of the noise monitoring unit comprising weighted mean method
CN205301446U (en) It overhauls operation safety precaution device to exchange double circuit transmission line
CN213210428U (en) Pole transformer remote alarm device
CN110570635A (en) automobile turning alarm detection table
CN212779366U (en) Transformer substation power failure maintenance anti-induction electric accident early warning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878449

Country of ref document: EP

Kind code of ref document: A1