WO2018105911A1 - Hydrogen production equipment and hydrogen production method - Google Patents

Hydrogen production equipment and hydrogen production method Download PDF

Info

Publication number
WO2018105911A1
WO2018105911A1 PCT/KR2017/012809 KR2017012809W WO2018105911A1 WO 2018105911 A1 WO2018105911 A1 WO 2018105911A1 KR 2017012809 W KR2017012809 W KR 2017012809W WO 2018105911 A1 WO2018105911 A1 WO 2018105911A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
gas
steam
heat
high concentration
Prior art date
Application number
PCT/KR2017/012809
Other languages
French (fr)
Korean (ko)
Inventor
정종헌
이승문
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to AU2017372827A priority Critical patent/AU2017372827B2/en
Priority to CN201780085518.1A priority patent/CN110382405A/en
Publication of WO2018105911A1 publication Critical patent/WO2018105911A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • C01B3/045Decomposition of water in gaseous phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a hydrogen production equipment and a hydrogen production method, and more particularly to a hydrogen production equipment and a hydrogen production method for producing hydrogen by recycling the by-product gas produced in the iron making process.
  • By-product gas generated in the steelmaking process contains a large amount of carbon dioxide, and if carbon dioxide is released into the atmosphere as it is, it causes environmental pollution. Accordingly, attempts have been made to convert carbon dioxide in the by-product gas generated in the steelmaking process to hydrogen and reuse it for various devices requiring hydrogen such as power plants or steel product production lines and processes for power generation.
  • the present invention provides a hydrogen production facility and a hydrogen production method that can reduce the cost of producing hydrogen.
  • the present invention provides a hydrogen production facility and a hydrogen production method that can reduce the amount of steam supplied from the outside for the production of hydrogen, thereby reducing the cost of hydrogen production.
  • Hydrogen production facility is provided with a by-product gas generated in the steelmaking process, a heat recovery device for recovering the heat of the by-product gas; A hydrogen amplification device receiving the by-product gas discharged from the heat recovery device and increasing the hydrogen concentration in the by-product gas to produce a high concentration hydrogen-containing gas; At least one of steam generated by heat exchanging a high concentration hydrogen-containing gas generated in the hydrogen amplifying apparatus and steam generated during heat recovery of the by-product gas in the heat recovery apparatus, connected to at least one of the heat recovery apparatus and the hydrogen amplifying apparatus; A hydrogen gas processing device for supplying one to the hydrogen amplifying device; And a hydrogen separation device for separating hydrogen from the high concentration hydrogen-containing gas provided through the hydrogen gas treatment device.
  • One end is connected to the heat recovery device and the other end is connected to the hydrogen amplification device to supply the by-product gas discharged from the heat recovery device to the hydrogen amplification device, and steam of the hydrogen gas processing device to the hydrogen amplification device.
  • the hydrogen gas processing apparatus includes a heat exchanger for generating steam by heat exchanging the high concentration hydrogen-containing gas discharged from the hydrogen amplifying apparatus, and lowering the temperature of the high concentration hydrogen gas, wherein the by-product gas in the heat recovery apparatus And a steam supply unit configured to move at least one of steam generated during heat recovery and steam generated by the heat exchanger to the byproduct gas moving pipe to mix the byproduct gas.
  • the hydrogen gas processing device may include: a first hydrogen gas moving pipe connected to the hydrogen amplifying device to discharge a high concentration hydrogen containing gas from the hydrogen amplifying device; A first heat exchanger connected to the first hydrogen gas moving pipe to heat exchange the mixed gas and the high concentration hydrogen-containing gas mixed with the by-product gas and the steam supplied through the by-product gas moving pipe; A second heat exchanger connected to the first heat exchanger to heat exchange the high concentration hydrogen-containing gas heat-recovered in the first heat exchanger; And a second hydrogen gas transfer pipe connected to the first heat exchanger and the second heat exchanger to move the high concentration hydrogen-containing gas recovered from the first heat exchanger to the second heat exchanger.
  • the steam supply unit one end is connected to the heat recovery device, the first steam moving pipe for discharging the by-product steam from the heat recovery device;
  • a second steam moving pipe one end of which is connected to the second heat exchanger to move steam generated during heat exchange of the high concentration hydrogen-containing gas, wherein the other end of each of the first and second steam moving pipes is It is connected to the by-product gas moving pipe.
  • the first heat exchanger is installed on the byproduct gas extension path, and the first heat exchanger is installed at a rear end of a point where the steam and the byproduct gas supplied from each of the first and second steam moving pipes are mixed.
  • a heat recovery medium moving pipe connected to each of the heat recovery device and the second heat exchanger and supplying a heat recovery medium for heat exchange.
  • a plurality of hydrogen amplification apparatuses are provided.
  • It includes a sulfur removal device for removing the sulfur contained in the by-product gas discharged from the heat recovery device to supply to the hydrogen amplification device.
  • an oxygen remover for removing oxygen from the hydrogen gas discharged from the hydrogen separation device.
  • Hydrogen production method includes a heat recovery process for recovering the heat of the by-product gas generated in the steelmaking process; Hydrogen amplification process to produce a high concentration hydrogen-containing gas by increasing the concentration of hydrogen in the by-product gas subjected to the heat recovery process; And a hydrogen separation process of separating hydrogen from the high concentration hydrogen-containing gas generated in the hydrogen amplification process.
  • the hydrogen amplification process may include at least one of steam generated during heat recovery of by-product gas in the heat recovery process and steam generated by heat exchange of high concentration hydrogen-containing gas generated by the hydrogen amplification process. Mixing with coarse by-product gas; And reacting the by-product gas and steam.
  • the hydrogen amplification process includes heat exchanging a gas in which the steam and the by-product gas are mixed with a high concentration hydrogen-containing gas generated by the hydrogen amplification process.
  • the process of generating steam generated by heat exchange of the high concentration hydrogen-containing gas generated by the hydrogen amplification process may include a gas containing the high concentration hydrogen-containing gas generated by the hydrogen amplification process and the gas mixed with the steam and by-product gas.
  • the gas in which the steam and the by-product gas are mixed is heated up to a temperature required for the hydrogen amplification reaction by heat exchange with the high concentration hydrogen-containing gas.
  • the hydrogen amplification process includes a plurality of hydrogen amplification processes.
  • an oxygen removal process for removing oxygen from the separated hydrogen gas.
  • steam is produced using heat generated during the hydrogen production process, and the steam is recycled back to the hydrogen production process. Therefore, the steam required for generating hydrogen can be procured by the hydrogen production facility, so that the amount of steam produced and supplied from the outside can be reduced or not used. Therefore, compared with the related art, it is possible to reduce the steam production cost for hydrogen production, thereby reducing the hydrogen production cost.
  • FIG. 1 is a view showing a molten iron manufacturing equipment and hydrogen fish equipment according to a first embodiment of the present invention
  • FIG. 2 is a view showing a hydrogen fish equipment according to a second embodiment of the present invention
  • FIG. 3 is a view showing a hydrogen fish equipment according to a third embodiment of the present invention.
  • FIG. 4 is a view showing a hydrogen fish equipment according to a fourth embodiment of the present invention.
  • FIG. 5 is a view showing a hydrogen fish equipment according to a fifth embodiment of the present invention.
  • FIG. 6 illustrates a form of steam supply into the hydrophobic amplification apparatus by recovering process heat according to the ratio (steam / CO) of the amount of CO / steam in by-product gas supplied to the hydrogen amplification apparatus when using the hydrogen fish facility according to the first embodiment.
  • the present invention relates to a hydrogen production facility and a hydrogen production method for producing hydrogen by recycling the by-product gas (hereinafter, by-product gas) in the steel making process. More specifically, the present invention provides a hydrogen production facility and a hydrogen production method for producing hydrogen using a component composition and a heat source included in by-product gas of a finex iron making process.
  • steam is produced using heat generated during the hydrogen production process (hereinafter, referred to as “process heat”) and recycled back to the hydrogen production process. Therefore, the steam required for generating hydrogen can be procured by the hydrogen production facility, so that the amount of steam produced and supplied from the outside can be reduced or not used. Therefore, compared with the related art, it is possible to reduce the steam production cost for hydrogen production, thereby reducing the hydrogen production cost.
  • 1 is a view showing a molten iron manufacturing equipment and the hydrogen fish equipment according to the first embodiment of the present invention.
  • 2 is a view showing a hydrogen fish facility according to a second embodiment of the present invention.
  • 3 is a view showing a hydrogen fish facility according to a third embodiment of the present invention.
  • 4 is a view showing a hydrogen fish equipment according to a fourth embodiment of the present invention.
  • 5 is a view showing a hydrogen fish equipment according to a fifth embodiment of the present invention.
  • a molten iron manufacturing facility includes a reducing furnace 2 for reducing iron ore to produce reduced iron and a melt gasifier 1 for melting molten iron produced in the reducing furnace 2 to produce molten iron.
  • the reduction furnace 2 removes oxygen from iron ore pretreated by drying or heating to produce reduced iron.
  • the iron ore is reduced by using the reducing gas generated during melting of the reduced iron in the melting gasifier 1.
  • the pre-treated iron ore is a state containing a lot of oxygen (Fe 2 O 3 , FeO 4 ), the iron ore reacts with the reducing gas supplied from the molten gasifier (1) 1, 2) Oxygen is removed, which is converted to FeOx (x is 0 ⁇ 1.3) or Fe form containing less oxygen, and is reduced iron.
  • the high-temperature gas in the reduction furnace may generate a water-gas reaction between H 2 O-gas as in Scheme 3 (Scheme 3).
  • the iron ore supplied to the reduction furnace 2 may be powdered iron ore or hardened iron ore in the form of pellets or briquettes.
  • the reduction furnace 2 may be provided in plural, and the iron ore may be reduced in stages while sequentially passing through the plurality of reduction furnaces 2.
  • one or more moving beds may be provided.
  • the melt gasifier 1 melts the reduced iron produced in the reduction furnace 2. To this end, charged iron and coal briquettes and pulverized coal, which are heat sources, are charged to the upper side of the melting gasifier 1, and oxygen (O 2 ) is blown into the lower side. Accordingly, reduction and melting to remove oxygen in the reduced iron are generated, thereby forming molten iron (or molten iron).
  • the reducing gas generated in the melt gasifier 1 is supplied to the reducing furnace 2 and recycled to reduce the iron ore.
  • the reducing gas of the molten gasifier 1 is supplied to the reduction furnace 2 to reduce the iron ore, at which time the iron ore is reduced in the reduction furnace 2. That is, the reducing gas of the melt gasifier 1 is supplied to the reducing furnace 2 to combust air or oxygen, coal and pulverized coal, and iron ore is reduced and melted by heat and reducing gas generated at this time.
  • the generated reducing gas is a high temperature of 350 °C to 600 °C, mainly contains CO, H 2 , CO 2 , H 2 O, N 2 and a small amount of CH 4 , O 2 and the like.
  • the total volume of by-product gas generated from the reduction furnace 2 may include 10 to 40% of CO, 10 to 40% of H 2 , and 5 to 35% of H 2 O.
  • Hydrogen production facility and hydrogen production method according to an embodiment of the present invention produces hydrogen using the by-product gas generated in the reduction furnace of the above-described molten iron manufacturing equipment.
  • the hydrogen production facility recovers heat of by-product gas discharged from the reduction furnace 2, and collects and removes trace iron ore fines (or fine particles).
  • a hydrogen amplification apparatus 200 for producing a by-product gas having a high hydrogen concentration (hereinafter referred to as a high concentration hydrogen-containing gas) by increasing the hydrogen concentration in the by-product gas from which the fine powder is removed from the heat recovery apparatus 100, and a heat recovery apparatus ( 100 and the hydrogen amplifying apparatus 200 are connected to heat the steam generated during the heat recovery of the by-product gas in the heat recovery apparatus 100 and the high concentration hydrogen-containing gas generated in the hydrogen amplifying apparatus 200.
  • the heat recovery apparatus 100 produces steam from by-product gas of 300 ° C. to 600 ° C. generated from the reduction furnace 2. More specifically, the heat recovery apparatus 100 produces steam by using a reaction through a heat exchange action between a hot by-product gas and a heat recovery medium having a lower temperature.
  • a by-product gas moving pipe (hereinafter, the first by-product gas moving pipe 110) is installed to connect the reduction furnace 2 and the heat recovery device 100.
  • the heat recovery apparatus 100 may include, for example, a reactor having an internal space, a heat exchange means installed in the reactor, and having a piping for separately flowing a by-product gas and a heat recovery medium, wherein the by-product gas And steam is generated through a heat exchange action due to a temperature difference between the heat recovery media, and the by-product gas drops to 230 ° C. to 350 ° C., more specifically, about 250 ° C. while passing through the heat recovery device 100.
  • water is used as the heat recovery medium.
  • the heat recovery medium 100 is connected to a heat recovery medium supply pipe 120 through which the heat recovery medium can pass and move.
  • the heat recovery medium is not limited to the above-described water, and various materials capable of generating steam through the heat exchange action may be used.
  • the steam generated in the heat recovery device 100 is discharged from the heat recovery device 100 and then recycled to increase the hydrogen concentration in the hydrogen amplification device 200.
  • the heat recovery apparatus 100 is connected to the steam moving pipe (hereinafter, the first steam moving pipe 2100) through which steam can pass and move.
  • the heat recovery apparatus 100 may further include a function of collecting and removing iron ore fines in the by-product gas as well as a steam production function through the heat exchange action of the by-product gas.
  • the inside of the reactor of the heat recovery device 100 may include a filter capable of separating gas and fine powder or fine particles.
  • the heat recovery device 100 may be a device provided with a heat exchange means and a filter.
  • the by-product gas purified by separating and removing fine powder from the heat recovery device 100 is supplied to the hydrogen amplification device 200.
  • a by-product gas moving pipe (hereinafter, the second by-product gas moving pipe 140) is installed to connect the heat recovery device 100 and the hydrogen amplifying device 200.
  • the purified by-product gas is supplied to the hydrogen amplifying apparatus 200 through the second by-product gas moving pipe 140.
  • the temperature of the purified by-product gas needs to be raised to a temperature that is easy for reaction.
  • a reaction in which CO, H 2 O, and CO 2 are hydrogenated in the purified by-product gas is an exothermic reaction, and the high concentration hydrogen-containing gas generated by such a reaction has a high temperature of about 450 ° C.
  • it is effective to lower the temperature.
  • the high concentration hydrogen-containing gas generated in the hydrogen amplification apparatus 200 is introduced into the hydrogen amplification apparatus 200 using heat of the high concentration hydrogen-containing gas without being moved to the hydrogen separation apparatus 300 as it is.
  • the temperature of the purified by-product gas is raised. That is, the high concentration hydrogen-containing gas and the purified by-product gas are heat-exchanged, and the purified by-product gas is heated up and supplied to the hydrogen amplifying apparatus 200.
  • the high concentration hydrogen-containing gas heat exchanged with the purified by-product gas has an effect of lowering the temperature by the heat exchange action.
  • the steam by-produced in the heat recovery apparatus 100 is recycled to increase the hydrogen concentration in the hydrogen amplification apparatus 200.
  • the steam supply apparatus 3000 in order to recycle the steam and heat using the high concentration hydrogen-containing gas generated in the hydrogen amplification apparatus 200 and the by-product steam in the heat recovery apparatus 100 to increase the hydrogen concentration, the steam supply apparatus 3000 ).
  • the steam supply device 3000 generates steam by heat-exchanging the high concentration hydrogen-containing gas discharged from the hydrogen amplification device 200, and reduces the temperature of the high concentration hydrogen gas, and the heat recovery device 1000.
  • Steam supply unit for moving at least one of the steam generated during the heat recovery of the by-product gas at 100 and the steam generated by the hydrogen gas processing device 1000 to the second by-product gas moving pipe 410 and mixed with the by-product gas (2000).
  • the hydrogen gas processing apparatus 1000 is connected to the hydrogen amplifying apparatus 200, and includes a first hydrogen gas moving pipe 1100 and a first hydrogen gas moving pipe 1100 for discharging a high concentration hydrogen-containing gas from the hydrogen amplifying device 200. And a first heat exchanger 1300 and a first heat exchanger 1300 that heat exchange the mixed gas and the high concentration hydrogen-containing gas mixed with the by-product gas and the steam supplied through the second by-product gas moving pipe 410. ) Is connected to the second heat exchanger 1400, the first heat exchanger 1300 and the second heat exchanger 1400 to heat exchange the high concentration hydrogen-containing gas heat recovered from the first heat exchanger 1300. And a second hydrogen gas moving pipe 1200 for moving the high concentration hydrogen-containing gas recovered from the first heat exchanger 1300 to the second heat exchanger 1400.
  • the steam supply unit 2000 has one end connected to the heat recovery device 100, and the first steam moving pipe 2100 for discharging the by-product steam from the heat recovery device 100 and one end of the second heat exchanger 1400.
  • a third steam moving pipe 2300 connected to the second by-product gas moving pipe 4100.
  • the steam generated during the hydrogen production in the hydrogen production equipment is used. That is, steam generated by the heat recovery device 100 described above and steam generated by the second heat exchanger 1400 for recovering heat of a high concentration hydrogen-containing gas are used.
  • a steam moving pipe (hereinafter referred to as a second steam moving pipe 2200) for discharging and moving steam generated from the second heat exchanger 1400 is installed, and the first and second steam moving pipes 2100 and 2200 are provided.
  • the third steam moving pipe 2300 is connected to supply the steam moved to the front end of the first heat exchanger 1300 on the second by-product gas moving pipe 140 extending path.
  • one end of the third steam moving pipe 2300 is connected to the first and second steam moving pipes 2100 and 2200, and the other end thereof is connected to the second by-product gas moving pipe 140. Therefore, the steam generated in the heat recovery device 100 and the steam generated in the second heat exchanger 1400 are mixed in the third steam moving pipe 2300, and the mixed steam is mixed in the second by-product gas moving pipe 140.
  • the by-product gas mixed with the steam flows into the first heat exchanger 1300, the by-product gas mixed with the steam by heat exchange action with the high concentration hydrogen-containing gas supplied to the first heat exchanger 1300
  • the temperature is raised to 300 ° C to 400 ° C, preferably 350 ° C, and supplied to the hydrogen amplification apparatus.
  • the hydrogen amplification apparatus 200 is an apparatus for increasing the concentration of hydrogen in the by-product gas purified by the heat recovery apparatus 100.
  • the concentration of hydrogen in the by-product gas is increased by converting CO and H 2 O contained in the purified by-product gas to H 2 .
  • the hydrogen amplification apparatus 200 uses hydrogen by using a reaction between CO and H 2 O contained in by-product gas and steam (Scheme 4) and a reaction between CO and H 2 O and metal catalyst in the by-product gas (Scheme 5).
  • the steam reacting with the CO and H 2 O contained in the by-product gas as described above, the steam generated by the heat exchange action of the by-product gas in the heat recovery device 100 and the high concentration in the second heat exchanger 1400 Steam generated by the heat exchange action to lower the temperature of the hydrogen containing gas is used. That is, the steam generated during the hydrogen production process is recycled without separately producing and supplying steam outside the hydrogen production facility.
  • the heat required for the reaction in the hydrogen amplification apparatus is sufficiently satisfied by the heat of the by-product gas provided from the reduction furnace 2 and steam.
  • the concentration of hydrogen in the by-product gas increases, in which the temperature of the high concentration-containing gas generated as the exothermic reaction is high, about 450 ° C. Therefore, as described above, the high concentration hydrogen-containing gas is not directly transferred to the hydrogen separation device 300, and the heat is recycled to raise the purified by-product gas to be supplied to the hydrogen amplification device 200 and to produce steam. .
  • a first hydrogen gas moving pipe 1100 is installed to move the high concentration hydrogen-containing gas discharged from the hydrogen amplifying apparatus 200 to the first heat exchanger 1300, and passes through the first heat exchanger 1300.
  • a second hydrogen gas moving pipe 1200 is installed to move a high concentration hydrogen containing gas to the second heat exchanger 1400.
  • the second heat exchanger 1400 heat-exchanges the high concentration hydrogen-containing gas, the temperature of which is first decreased by the first heat exchanger 1300, to a temperature close to room temperature or room temperature.
  • water is used as the heat exchange medium.
  • a heat recovery medium supply pipe 120 for supplying a heat exchange medium such as water to the second heat exchanger 1400 is connected, which is the same heat recovery medium that supplies water to the heat recovery device 100 described above.
  • Supply piping 120 can be used.
  • one end of the heat recovery medium supply pipe 120 may be connected to the heat recovery device 100 and the other end may be connected to the second heat exchanger 1400 so that water may be moved in both directions and supplied to each of the heat recovery device 100. .
  • the second heat exchanger 1400 lowers the temperature of the high concentration hydrogen-containing gas to room temperature or close to room temperature through heat exchange between the high concentration hydrogen-containing gas and water, and then the high concentration hydrogen-containing gas is supplied to the hydrogen separation device. . Then, in the second heat exchanger 1400, steam of 200 ° C. to 300 ° C. is generated by the heat exchange action between the high concentration hydrogen-containing gas and the heat exchange medium, which causes the second and third steam moving pipes 2200 and 2300 to be separated. It is supplied to the second by-product gas moving pipe 140 and mixed with the purified by-product gas.
  • a steam moving pipe (hereinafter, the second steam moving pipe 2200) is installed so that the steam of the second heat exchanger 1400 can be moved to the second by-product gas moving pipe 140.
  • the second steam moving pipe 2200 is connected to the second heat exchanger 1400 and the other end thereof is connected to the third steam moving pipe 2300.
  • steam provided from each of the first and second steam moving pipes 2100 and 2200 flows into the third steam moving pipe 2300.
  • first to third steam moving pipes 2100, 2200, and 2300 are not limited to the above-described connection structure, and steam generated by the heat recovery device 100 and steam generated by the second heat exchanger 1400, respectively. It is possible to change to a variety of structures that can be supplied to the second by-product gas moving pipe 140.
  • the hydrogen separation device 300 removes the water component contained in the high concentration hydrogen-containing gas and separates hydrogen.
  • the hydrogen separation device 300 is, for example, a means having a H 2 Pressure Swing Absorber (H 2 PSA), using a method of adsorptive separation of hydrogen as a gas component from a high concentration of hydrogen-containing gas using pressure fluctuations. It may be a means to.
  • the hydrogen separation device may be a means for separating hydrogen by a temperature swing adsorption (TSA) method.
  • TSA temperature swing adsorption
  • the heat recovery device 100 has been described as having a heat exchange means and a filter for removing fine powder.
  • the present invention is not limited thereto, and as in the second embodiment illustrated in FIG. 2, a heat recovery device 100a including a heat exchange unit and a fine powder removal device 100b including a filter may be separately provided.
  • steam is generated by heat exchange between the by-product gas and the heat exchange medium in the heat recovery device 100a, which is supplied to the second by-product gas moving pipe 140 through the first steam moving pipe 2100.
  • the by-product gas heat-exchanged in the heat recovery device 100a is supplied to the fine powder removing device 100b, and is moved to the hydrogen amplifying device 200 through the second by-product gas moving pipe 140 after the fine powder is removed. .
  • the fine powder removing device 100b is installed between the heat recovery device 100a and the hydrogen amplifying device 200 so that the fine powder is removed after the heat of the by-product gas is recovered.
  • the present invention is not limited thereto, and a heat recovery device 100a may be provided between the fine powder removing device 100b and the hydrogen amplifying device 200 to recover heat after the fine powder in the by-product gas is removed.
  • one hydrogen amplification apparatus 200 is provided, but is not limited thereto. As illustrated in FIG. 3, a plurality of hydrogen amplification apparatuses 200a and 200b may be provided. .
  • the first and second hydrogen amplification deposition apparatuses 200a and 200b are provided, and the second by-product gas moving pipe 140 is connected to the first hydrogen amplifying apparatus 200a.
  • the first heat exchanger 1300 is installed on the extension path of the second by-product gas moving pipe 140.
  • One end of the first hydrogen gas moving pipe 1100 is connected to the first hydrogen amplifying device 200a and the other end is connected to the front end of the first heat exchanger 1300 on an extension path of the second byproduct gas moving pipe 140. Connected.
  • the high concentration hydrogen-containing gas generated in the first hydrogen amplifying apparatus 200a flows into the first heat exchanger 1300 through the first hydrogen gas moving pipe 1100 and is purified by the first heat exchanger 1300. Heat exchange with the off-gas. At this time, the temperature of the high concentration hydrogen-containing gas in the first heat exchanger 1300 is lowered, the temperature of the purified by-product gas is heated up and supplied to the first hydrogen amplifying apparatus 200a. In addition, the high concentration hydrogen-containing gas whose temperature is decreased in the first heat exchanger 1300 is moved to the second heat exchanger 1400 through the second hydrogen gas moving pipe 1200, and is heat-exchanged, and then the second heat exchanger 1400. ) And the second hydrogen amplifying apparatus 200b are moved to the second hydrogen amplifying apparatus 200b through the third hydrogen gas moving pipe 520. In addition, the generated steam is supplied to the second by-product gas moving pipe 150 through the second steam moving pipe 2200.
  • the high concentration hydrogen-containing gas generated by passing through the first hydrogen amplifying apparatus 200a reacts again in the second hydrogen amplifying apparatus 200b to proceed with the hydrogen concentration increasing reaction and then is discharged.
  • the high concentration hydrogen-containing gas discharged from the second hydrogen amplification device 200b is supplied to the hydrogen separation device after heat is recovered through a third heat exchanger 1500 installed outside the second hydrogen amplification device 200b. do.
  • the steam generated in the third heat exchanger 1500 is introduced into the second heat exchanger 1400 through the fourth steam transfer pipe 2400 and then supplied to the second steam transfer pipe 2200 at a temperature of 250 ° C. It is mixed with the purified by-product gas.
  • the hydrogen conversion rate of the by-product gas can be improved.
  • the third embodiment described above is a structure in which a hydrogen amplification device is further provided in the first embodiment.
  • the present invention is not limited thereto, and the hydrogen amplification apparatus may be applied to the hydrogen production facility according to the second embodiment as in the third embodiment, or may be applied to other embodiments described below.
  • a sulfur removal device 710 is installed between the heat recovery device 100 and the hydrogen amplification device 200, and the hydrogen amplification device 200 and hydrogen separation are performed.
  • the compressor 720 is further installed between the apparatuses 300.
  • the sulfur removing device 710 is a means for separating and removing the sulfur (S) contained in the purified by-product gas, using a ZnO catalyst.
  • the high concentration hydrogen-containing gas contains a small amount of water, in order to easily separate the hydrogen from it, it is effective that the pressure of the high concentration hydrogen-containing gas is 7bar to 20bar.
  • the high concentration hydrogen-containing gas passed through the second heat exchanger has a low pressure of less than 7 bar, after the high concentration hydrogen-containing gas is compressed in the compressor 720 to increase the pressure to 7 bar to 20 bar, the hydrogen separation device 300 ).
  • the fourth embodiment described above has described the installation of the sulfur removing device 710 and the compressor 720 in the first embodiment.
  • the present invention is not limited thereto, and the sulfur removing device 710 and the compressor 720 may be applied to the hydrogen production facilities according to the second and third embodiments as in the fourth embodiment, and the fifth embodiment will be described later. You may.
  • the fifth embodiment is a configuration in which an oxygen remover 800 is additionally installed at the rear end of the hydrogen separation device 300 of the hydrogen production facility according to the fourth embodiment. Hydrogen separated from the hydrogen separation device 300 may contain a small amount of oxygen. Thus, for the production of higher purity hydrogen, an oxygen remover for removing a small amount of oxygen is installed.
  • the oxygen remover 800 according to the embodiment increases the purity of hydrogen gas by removing and separating oxygen contained in hydrogen gas using Pd as a catalyst.
  • Hydrogen production method is a heat recovery process for recovering the heat of the by-product gas generated in the steelmaking process, a hydrogen amplification process to produce a high concentration of hydrogen-containing gas by increasing the hydrogen concentration of the by-product gas subjected to the heat recovery process And a hydrogen separation process for separating hydrogen from the high concentration hydrogen-containing gas generated in the hydrogen amplification process.
  • the hydrogen amplification process is a by-product of the heat recovery process at least one of the steam generated during the heat recovery of the by-product gas and the steam generated by the heat exchange of the high concentration hydrogen-containing gas generated by the hydrogen amplification process Mixing with gas and reacting off-gas with steam.
  • Gas produced by the reduction furnace 2 of the molten iron production equipment that is, by-product gas is supplied to the heat recovery device 100 through the first by-product gas moving pipe 110.
  • the by-product gas supplied to the heat recovery device 100 is a gas having a temperature of about 350 ° C. to 600 ° C., and is about 230 ° C. to about 60 ° C. by heat exchange with the heat exchange medium, that is, water in the heat recovery device 100. The temperature drops to 350 ° C. Then, the iron ore fine powder contained in the by-product gas is removed by the filter provided in the heat recovery apparatus 100 and discharged to the outside of the heat recovery apparatus.
  • the by-product gas from which heat recovery and fine powder has been removed from the heat recovery apparatus 100 is mixed with steam supplied from the third steam moving pipe 2300 while moving through the second by-product gas moving pipe 140.
  • the steam is steam generated by heat recovery of by-product gas in the heat recovery device 100 and heat exchange of high concentration hydrogen-containing gas generated in the hydrogen amplification device 200 in the foregoing process.
  • These steams are mixed with the by-product gas in the second by-product gas moving pipe 140 and then passed through the second heat exchanger 1400.
  • the high concentration hydrogen-containing gas generated in the hydrogen amplifying apparatus 200 flows into the second heat exchanger 1400 through the first hydrogen gas moving pipe 1100, and the heat of about 450 ° C.
  • the hydrogen amplification apparatus 200 is supplied to the hydrogen amplifying apparatus 200 while the temperature of the mixed gas is raised, and the high concentration hydrogen-containing gas is supplied to the third heat exchanger 1500 through the second hydrogen gas moving pipe 1200.
  • the mixed gas of steam and by-product gas supplied to the hydrogen amplification apparatus 200 reacts in the hydrogen amplification apparatus 200, whereby an exothermic reaction in which CO and H 2 O in the by-product gas becomes CO 2 and hydrogen (H 2 )
  • the concentration of hydrogen in the by-product gas increases, thereby producing a high concentration of hydrogen-containing gas.
  • the high concentration hydrogen-containing gas generated in the hydrogen amplification apparatus 200 is moved to the first heat exchanger 1300 through the first hydrogen gas moving pipe 1100 and heat exchanged with the purified byproduct gas as described above. 2 is moved to the heat exchanger (1400) and heat exchanged to a temperature close to room temperature or close to room temperature and then to a hydrogen separation device. At this time, the steam generated by the heat exchange of the high concentration hydrogen-containing gas in the second heat exchanger 1400 flows into the first heat exchanger 1300 through the first and second steam moving pipes 2100 and 2200 and is purified. The by-product gas is reused as a heat source for heat exchange.
  • FIG. 6 illustrates the hydrophobic amplification apparatus 200 by recovering process heat according to a ratio (steam / CO) of the amount of CO in the steam amount / byproduct gas supplied to the hydrogen amplification apparatus 200 when using the hydrogen fish facility according to the first embodiment.
  • a graph showing the type of steam supply into the vessel.
  • the ratio of steam and CO (steam / CO) introduced to the hydrogen amplification apparatus 200 was about 2.5, where the steam was all manufactured and procured outside the hydrogen production facility. At this time, since both the heat for hydrogen amplification and H 2 O for the reaction must be provided from the steam, a large amount of steam was required.
  • by-product gas generated in the steelmaking process is recycled. That is, heat and H 2 required for hydrogen generation are supplied from heat in the by-product gas itself and steam (H 2 O) contained in the by-product gas.
  • the high-temperature, high-concentration hydrogen-containing gas generated in the hydrogen amplification apparatus 200 is not sent directly to the hydrogen separation device, and the heat of the high-concentration hydrogen-containing gas is recycled in heat exchange to produce heat and H 2 O for hydrogen production. It is possible to procure from high concentration hydrogen-containing gas.
  • the ratio (steam / CO) of steam and CO supplied to the hydrogen amplification apparatus 200 can be lowered to 1.2, which is smaller than that of the conventional (2 to 3). That is, the amount of steam supplied for producing hydrogen can be reduced as compared with the related art.
  • steam is produced using heat generated during the hydrogen production process, and is recycled back to the hydrogen production process. Therefore, the steam required for generating hydrogen can be procured by the hydrogen production facility, so that the amount of steam produced and supplied from the outside can be reduced or not used. Therefore, compared with the related art, it is possible to reduce the steam production cost for hydrogen production, thereby reducing the hydrogen production cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

The hydrogen production equipment according to the present invention produces steam using heat generated during a hydrogen production process, and recycles the steam back into the hydrogen production process. Thus, the steam required for generating hydrogen can be provided by the hydrogen production equipment, thereby allowing the amount of steam manufactured and supplied from the outside to be reduced or to not be used. Therefore, the hydrogen production equipment according to the present invention can reduce the cost of producing steam for hydrogen production compared to the prior art, and thus has the effect of reducing hydrogen production costs.

Description

수소 생산 설비 및 수소 생산 방법Hydrogen Production Equipment and Hydrogen Production Method
본 발명은 수소 생산 설비 및 수소 생산 방법에 관한 것으로, 보다 상세하게는 제선 공정에서 부생되는 가스를 재활용하여, 수소를 생산하는 수소 생산 설비 및 수소 생산 방법에 관한 것이다.The present invention relates to a hydrogen production equipment and a hydrogen production method, and more particularly to a hydrogen production equipment and a hydrogen production method for producing hydrogen by recycling the by-product gas produced in the iron making process.
제철 공정에서 발생되는 부생가스에는 다량의 이산화탄소를 포함하고 있으며, 이산화탄소가 그대로 대기로 방출될 경우, 환경 오염의 원인이 된다. 따라서, 제철 공정에서 발생된 부생가스 중 이산화탄소를 수소로 전환시켜, 수소가 필요한 여러 장치 예컨대, 전력 생산을 위한 발전소 또는 철강 제품 생산 라인 및 공정을 위하여 재사용하는 시도가 계속 되고 있다.By-product gas generated in the steelmaking process contains a large amount of carbon dioxide, and if carbon dioxide is released into the atmosphere as it is, it causes environmental pollution. Accordingly, attempts have been made to convert carbon dioxide in the by-product gas generated in the steelmaking process to hydrogen and reuse it for various devices requiring hydrogen such as power plants or steel product production lines and processes for power generation.
한편, 제철 공정들 중, 용융가스화로에 산소를 취입하여 환원철을 용융시켜 용선을 제조하는 파이넥스(finex) 타입의 용선 제조 설비에서 발생된 부생가스에는 열량이 풍부한 CO 및 H2가 포함되어 있다. 따라서, 파이넥스 부생가스(FOG: Finex off gas)를 이용하여 수소를 생산하는 것이 효과적이다.On the other hand, in the steelmaking process, by-product gas generated in a finex type molten iron manufacturing facility that blows oxygen into a molten gas furnace and melts reduced iron to produce molten iron includes CO and H 2 rich in calories. Therefore, it is effective to produce hydrogen using Finex off gas (FOG).
그런데, 파이넥스 부생가스를 이용하여 수소를 생산하는데 있어서, 고온의 부생가스의 냉각 및 수소 제조를 위해 다량의 스팀이 필요하며, 상기 스팀은 수소 생산 설비의 외부에서 제조하여 조달하고 있다. 따라서, 다량의 스팀 공급 및 이에 따른 수소 생산 비용이 상승하는 문제가 있다.However, in producing hydrogen using Finex by-product gas, a large amount of steam is required for cooling the high temperature by-product gas and producing hydrogen, and the steam is manufactured and procured outside the hydrogen production facility. Therefore, there is a problem in that a large amount of steam supply and thus hydrogen production cost increases.
(선행특허문헌)(Prior patent application)
한국등록특허 10-1321930Korea Patent Registration 10-1321930
본 발명은 수소 제조 비용을 줄일 수 있는 수소 생산 설비 및 수소 생산 방법을 제공한다.The present invention provides a hydrogen production facility and a hydrogen production method that can reduce the cost of producing hydrogen.
본 발명은 수소 제조를 위해 외부에서 공급되는 스팀(steam)의 양을 줄이고, 이로 인해 수소 생산 비용을 줄일 수 있는 수소 생산 설비 및 수소 생산 방법을 제공한다.The present invention provides a hydrogen production facility and a hydrogen production method that can reduce the amount of steam supplied from the outside for the production of hydrogen, thereby reducing the cost of hydrogen production.
본 발명에 따른 수소 생산 설비는 제철 공정에서 발생된 부생가스를 제공받아, 상기 부생가스의 열을 회수하는 열 회수 장치; 상기 열 회수 장치에서 배출된 부생가스를 제공받아, 상기 부생가스 중 수소 농도를 증가시켜, 고농도 수소 함유 가스를 생산하는 수소 증폭 장치; 상기 열 회수 장치 및 수소 증폭 장치 중 적어도 하나와 연결되어, 상기 열 회수 장치에서 부생가스의 열 회수 중에 발생된 스팀 및 상기 수소 증폭 장치에서 발생된 고농도 수소 함유 가스를 열 교환시켜 발생된 스팀 중 적어도 하나를 상기 수소 증폭 장치로 공급하는 수소 가스 처리 장치; 및 상기 수소 가스 처리 장치를 통해 제공된 고농도 수소 함유 가스로부터 수소를 분리하는 수소 분리 장치;를 포함한다.Hydrogen production facility according to the present invention is provided with a by-product gas generated in the steelmaking process, a heat recovery device for recovering the heat of the by-product gas; A hydrogen amplification device receiving the by-product gas discharged from the heat recovery device and increasing the hydrogen concentration in the by-product gas to produce a high concentration hydrogen-containing gas; At least one of steam generated by heat exchanging a high concentration hydrogen-containing gas generated in the hydrogen amplifying apparatus and steam generated during heat recovery of the by-product gas in the heat recovery apparatus, connected to at least one of the heat recovery apparatus and the hydrogen amplifying apparatus; A hydrogen gas processing device for supplying one to the hydrogen amplifying device; And a hydrogen separation device for separating hydrogen from the high concentration hydrogen-containing gas provided through the hydrogen gas treatment device.
일단이 상기 열 회수 장치에 연결되고 타단이 상기 수소 증폭 장치에 연결되어, 상기 열 회수 장치로부터 배출된 부생 가스를 상기 수소 증폭 장치로 공급하고, 상기 수소 가스 처리 장치의 스팀을 상기 수소 증폭 장치로 공급하는 부생가스 이동 배관을 포함한다.One end is connected to the heat recovery device and the other end is connected to the hydrogen amplification device to supply the by-product gas discharged from the heat recovery device to the hydrogen amplification device, and steam of the hydrogen gas processing device to the hydrogen amplification device. Includes off-gas supply pipe for supplying.
상기 수소 가스 처리 장치는 상기 수소 증폭 장치로부터 배출된 상기 고농도 수소 함유 가스를 열 교환시켜 스팀을 생성하고, 상기 고농도 수소 가스의 온도를 하락시키는 열 교환기를 포함하고, 상기 열 회수 장치에서 부생가스의 열 회수 중에 발생된 스팀 및 상기 열 교환기에 의해 발생된 스팀 중 적어도 하나를 상기 부생 가스 이동 배관으로 이동시켜 상기 부생가스와 혼합시키는 스팀 공급부;를 포함한다.The hydrogen gas processing apparatus includes a heat exchanger for generating steam by heat exchanging the high concentration hydrogen-containing gas discharged from the hydrogen amplifying apparatus, and lowering the temperature of the high concentration hydrogen gas, wherein the by-product gas in the heat recovery apparatus And a steam supply unit configured to move at least one of steam generated during heat recovery and steam generated by the heat exchanger to the byproduct gas moving pipe to mix the byproduct gas.
상기 수소 가스 처리 장치는, 상기 수소 증폭 장치와 연결되어, 상기 수소 증폭 장치로부터 고농도 수소 함유 가스를 배출시키는 제 1 수소 가스 이동 배관; 상기 제 1 수소 가스 이동 배관과 연결되어, 상기 부생 가스 이동 배관을 통해 공급되는 부생가스와 스팀이 혼합된 혼합가스와 고농도 수소 함유 가스를 열 교환시키는 제 1 열 교환기; 상기 제 1 열 교환기와 연결되어, 상기 제 1 열 교환기에서 열 회수된 고농도 수소 함유 가스를 열 교환시키는 제 2 열 교환기; 및 상기 제 1 열 교환기와 제 2 열 교환기를 연결되어, 상기 제 1 열 교환기에서 열 회수된 고농도 수소 함유 가스를 제 2 열 교환기로 이동시키는 제 2 수소 가스 이동 배관;을 포함한다.The hydrogen gas processing device may include: a first hydrogen gas moving pipe connected to the hydrogen amplifying device to discharge a high concentration hydrogen containing gas from the hydrogen amplifying device; A first heat exchanger connected to the first hydrogen gas moving pipe to heat exchange the mixed gas and the high concentration hydrogen-containing gas mixed with the by-product gas and the steam supplied through the by-product gas moving pipe; A second heat exchanger connected to the first heat exchanger to heat exchange the high concentration hydrogen-containing gas heat-recovered in the first heat exchanger; And a second hydrogen gas transfer pipe connected to the first heat exchanger and the second heat exchanger to move the high concentration hydrogen-containing gas recovered from the first heat exchanger to the second heat exchanger.
상기 스팀 공급부는, 일단이 상기 열 회수 장치에 연결되어, 상기 열 회수 장치에서 부생된 스팀을 배출시키는 제 1 스팀 이동 배관; 일단이 상기 제 2 열 교환기에 연결되어, 상기 고농도 수소 함유 가스의 열 교환 중 발생된 스팀을 이동시키는 제 2 스팀 이동 배관;을 포함하고, 상기 제 1 및 제 2 스팀 이동 배관 각각의 타단이 상기 부생가스 이동 배관에 연결된다.The steam supply unit, one end is connected to the heat recovery device, the first steam moving pipe for discharging the by-product steam from the heat recovery device; A second steam moving pipe, one end of which is connected to the second heat exchanger to move steam generated during heat exchange of the high concentration hydrogen-containing gas, wherein the other end of each of the first and second steam moving pipes is It is connected to the by-product gas moving pipe.
상기 제 1 열 교환기는 상기 부생가스 연장 경로 상에 설치되며, 상기 제 1 열 교환기는 상기 제 1 및 제 2 스팀 이동 배관 각각으로부터 공급된 스팀과 상기 부생가스가 혼합되는 지점의 후단에 설치된다.The first heat exchanger is installed on the byproduct gas extension path, and the first heat exchanger is installed at a rear end of a point where the steam and the byproduct gas supplied from each of the first and second steam moving pipes are mixed.
상기 열 회수 장치 및 제 2 열 교환기 각각과 연결되어, 열 교환을 위한 열 회수 매체를 공급하는 열 회수 매체 이동 배관을 포함한다.And a heat recovery medium moving pipe connected to each of the heat recovery device and the second heat exchanger and supplying a heat recovery medium for heat exchange.
상기 수소 증폭 장치가 복수개 마련된다.A plurality of hydrogen amplification apparatuses are provided.
상기 열 회수 장치로부터 배출된 부생가스 중 함유된 황을 제거하여 상기 수소 증폭 장치로 공급하는 황 제거 장치를 포함한다.It includes a sulfur removal device for removing the sulfur contained in the by-product gas discharged from the heat recovery device to supply to the hydrogen amplification device.
상기 수소 가스 처리 장치로부터 제공된 고농도 수소 함유 가스를 압축시켜 압력을 증가시켜 상기 수소 분리 장치로 공급하는 압축기를 포함한다.And a compressor for compressing the high concentration hydrogen-containing gas provided from the hydrogen gas treatment device to increase the pressure to supply the hydrogen separation device.
상기 수소 분리 장치로부터 배출된 수소 가스로부터 산소를 제거하는 산소 제거기를 포함한다.And an oxygen remover for removing oxygen from the hydrogen gas discharged from the hydrogen separation device.
본 발명에 따른 수소 생산 방법은 제철 공정에서 발생된 부생가스의 열을 회수하는 열 회수 과정; 상기 열 회수 과정을 거친 부생가스 중 수소 농도를 증가시켜 고농도 수소 함유 가스를 생산하는 수소 증폭 과정; 및 상기 수소 증폭 과정에서 생성된 고농도 수소 함유 가스 중 수소를 분리하는 수소 분리 과정;을 포함하고,Hydrogen production method according to the present invention includes a heat recovery process for recovering the heat of the by-product gas generated in the steelmaking process; Hydrogen amplification process to produce a high concentration hydrogen-containing gas by increasing the concentration of hydrogen in the by-product gas subjected to the heat recovery process; And a hydrogen separation process of separating hydrogen from the high concentration hydrogen-containing gas generated in the hydrogen amplification process.
상기 수소 증폭 과정은, 상기 열 회수 과정에서 부생가스의 열 회수 중에 발생된 스팀 및 상기 수소 증폭 과정에 의해 발생된 고농도 수소 함유 가스의 열 교환에 의해 발생된 스팀 중 적어도 하나를 상기 열 회수 과정을 거친 부생가스와 혼합시키는 과정; 및 상기 부생가스와 스팀을 반응시키는 과정;을 포함한다. The hydrogen amplification process may include at least one of steam generated during heat recovery of by-product gas in the heat recovery process and steam generated by heat exchange of high concentration hydrogen-containing gas generated by the hydrogen amplification process. Mixing with coarse by-product gas; And reacting the by-product gas and steam.
상기 수소 증폭 과정은, 상기 스팀과 부생가스가 혼합된 가스를 상기 수소 증폭 과정에 의해 생성된 고농도 수소 함유 가스와 열 교환시키는 과정을 포함한다.The hydrogen amplification process includes heat exchanging a gas in which the steam and the by-product gas are mixed with a high concentration hydrogen-containing gas generated by the hydrogen amplification process.
상기 수소 증폭 과정에 의해 발생된 고농도 수소 함유 가스의 열 교환에 의해 발생된 스팀을 생성하는 과정은, 상기 수소 증폭 과정에 의해 발생된 고농도 수소 함유 가스와, 상기 스팀과 부생가스가 혼합된 가스를 열 교환시키는 1차 열 교환 과정; 상기 1차 열 교환 과정을 거친 고농도 수소 함유 가스를 열 교환 매체와 열 교환시켜 스팀을 생성하는 과정;을 포함한다.The process of generating steam generated by heat exchange of the high concentration hydrogen-containing gas generated by the hydrogen amplification process may include a gas containing the high concentration hydrogen-containing gas generated by the hydrogen amplification process and the gas mixed with the steam and by-product gas. Primary heat exchange process for heat exchange; And heat-exchanging the high concentration hydrogen-containing gas that has undergone the first heat exchange process with a heat exchange medium to generate steam.
상기 스팀과 부생가스가 혼합된 가스는 상기 고농도 수소 함유 가스와의 열 교환 작용에 의해 수소 증폭 반응에 필요한 온도로 승온된다.The gas in which the steam and the by-product gas are mixed is heated up to a temperature required for the hydrogen amplification reaction by heat exchange with the high concentration hydrogen-containing gas.
상기 수소 증폭 과정은 복수의 수소 증폭 과정을 포함한다.The hydrogen amplification process includes a plurality of hydrogen amplification processes.
상기 열 회수 과정과 수소 중폭 과정 사이에 상기 부생가스 중 황을 제거하는 과정을 포함한다.And removing sulfur in the by-product gas between the heat recovery process and the hydrogen blast process.
상기 수소 증폭 과정과 상기 수소 분리 과정 사이에 상기 고농도 수소 함유 가스를 압축시키는 압축 과정을 포함한다.And a compression process of compressing the high concentration hydrogen-containing gas between the hydrogen amplification process and the hydrogen separation process.
상기 수소 분리 과정 후에, 분리된 수소 가스로부터 산소를 제거하는 산소 제거 과정을 포함한다.After the hydrogen separation process, an oxygen removal process for removing oxygen from the separated hydrogen gas.
본 발명의 실시예들에 의하면, 수소 생산 공정 중에 발생된 열을 이용하여 스팀(steam)을 생산하고, 이를 다시 수소 생산 공정에 재활용한다. 이에, 수소 생성에 필요한 스팀을 수소 생산 설비에 의해 조달이 가능하여, 외부에서 제조되어 공급되는 스팀의 양을 줄이거나, 사용하지 않을 수 있다. 따라서, 종래에 비해, 수소 생산을 위한 스팀 생산 비용을 줄일 수 있고, 이로 인해, 수소 생산 비용이 절감되는 효과가 있다.According to the embodiments of the present invention, steam is produced using heat generated during the hydrogen production process, and the steam is recycled back to the hydrogen production process. Therefore, the steam required for generating hydrogen can be procured by the hydrogen production facility, so that the amount of steam produced and supplied from the outside can be reduced or not used. Therefore, compared with the related art, it is possible to reduce the steam production cost for hydrogen production, thereby reducing the hydrogen production cost.
도 1은 용선 제조 설비 및 본 발명의 제 1 실시예에 따른 수소 생선 설비를 나타낸 도면1 is a view showing a molten iron manufacturing equipment and hydrogen fish equipment according to a first embodiment of the present invention
도 2는 본 발명의 제 2 실시예에 따른 수소 생선 설비를 나타낸 도면2 is a view showing a hydrogen fish equipment according to a second embodiment of the present invention
도 3은 본 발명의 제 3 실시예에 따른 수소 생선 설비를 나타낸 도면3 is a view showing a hydrogen fish equipment according to a third embodiment of the present invention
도 4는 본 발명의 제 4 실시예에 따른 수소 생선 설비를 나타낸 도면4 is a view showing a hydrogen fish equipment according to a fourth embodiment of the present invention
도 5는 본 발명의 제 5 실시예에 따른 수소 생선 설비를 나타낸 도면5 is a view showing a hydrogen fish equipment according to a fifth embodiment of the present invention
도 6은 제 1 실시예에 따른 수소 생선 설비 사용시에 수소 증폭 장치로 공급되는 스팀량/부생가스 중 CO량의 비율(스팀/CO)에 따른 공정열 회수에 의한 소수 증폭 장치 내로의 스팀 공급 형태를 표시한 그래프FIG. 6 illustrates a form of steam supply into the hydrophobic amplification apparatus by recovering process heat according to the ratio (steam / CO) of the amount of CO / steam in by-product gas supplied to the hydrogen amplification apparatus when using the hydrogen fish facility according to the first embodiment. Graph displayed
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you. Like numbers refer to like elements in the figures.
본 발명은 제선 공정에서 부생되는 가스(이하, 부생가스)를 재활용하여, 수소를 생산하는 수소 생산 설비 및 수소 생산 방법에 관한 것이다. 보다 구체적으로, 파이넥스(finex) 제선 공정의 부생가스 중 포함된 성분 조성과 열원을 이용하여 수소를 생산하는 수소 생산 설비 및 수소 생산 방법을 제공한다. 또한, 수소 생산 공정 중에 발생된 열(이하, 공정열)을 이용하여 스팀(steam)을 생산하고, 이를 다시 수소 생산 공정에 재활용한다. 이에, 수소 생성에 필요한 스팀을 수소 생산 설비에 의해 조달이 가능하여, 외부에서 제조되어 공급되는 스팀의 양을 줄이거나, 사용하지 않을 수 있다. 따라서, 종래에 비해, 수소 생산을 위한 스팀 생산 비용을 줄일 수 있고, 이로 인해, 수소 생산 비용이 절감되는 효과가 있다.The present invention relates to a hydrogen production facility and a hydrogen production method for producing hydrogen by recycling the by-product gas (hereinafter, by-product gas) in the steel making process. More specifically, the present invention provides a hydrogen production facility and a hydrogen production method for producing hydrogen using a component composition and a heat source included in by-product gas of a finex iron making process. In addition, steam is produced using heat generated during the hydrogen production process (hereinafter, referred to as “process heat”) and recycled back to the hydrogen production process. Therefore, the steam required for generating hydrogen can be procured by the hydrogen production facility, so that the amount of steam produced and supplied from the outside can be reduced or not used. Therefore, compared with the related art, it is possible to reduce the steam production cost for hydrogen production, thereby reducing the hydrogen production cost.
이하, 도 1을 참조하여, 본 발명의 제 1 실시예에 따른 수소 생산 설비에 대해 설명한다.Hereinafter, a hydrogen production facility according to a first embodiment of the present invention will be described with reference to FIG. 1.
도 1은 용선 제조 설비 및 본 발명의 제 1 실시예에 따른 수소 생선 설비를 나타낸 도면이다. 도 2는 본 발명의 제 2 실시예에 따른 수소 생선 설비를 나타낸 도면이다. 도 3은 본 발명의 제 3 실시예에 따른 수소 생선 설비를 나타낸 도면이다. 도 4는 본 발명의 제 4 실시예에 따른 수소 생선 설비를 나타낸 도면이다. 도 5는 본 발명의 제 5 실시예에 따른 수소 생선 설비를 나타낸 도면이다.1 is a view showing a molten iron manufacturing equipment and the hydrogen fish equipment according to the first embodiment of the present invention. 2 is a view showing a hydrogen fish facility according to a second embodiment of the present invention. 3 is a view showing a hydrogen fish facility according to a third embodiment of the present invention. 4 is a view showing a hydrogen fish equipment according to a fourth embodiment of the present invention. 5 is a view showing a hydrogen fish equipment according to a fifth embodiment of the present invention.
먼저, 용선 제조 설비에 대해 간략히 설명한다. 도 1을 참조하면, 용선 제조 설비는 철광석을 환원시켜 환원철을 제조하는 환원로(2), 환원로(2)에서 제조된 환원철을 용융시켜 용선을 제조하는 용융가스화로(1)를 포함한다. First, the molten iron manufacturing equipment is briefly described. Referring to FIG. 1, a molten iron manufacturing facility includes a reducing furnace 2 for reducing iron ore to produce reduced iron and a melt gasifier 1 for melting molten iron produced in the reducing furnace 2 to produce molten iron.
환원로(2)는 건조 또는 가열 등에 의해 예비 처리된 철광석으로부터 산소를 제거하여 환원철을 제조한다. 이때, 환원로(2)에서는 용융가스화로(1)에서 환원철 용융 중에 발생된 환원가스를 이용하여 철광석을 환원시킨다. 보다 구체적으로 설명하면, 예비 처리된 처리된 철광석은 산소를 많이 포함하고 있는 상태(Fe2O3, FeO4)이고, 상기 철광석은 용융가스화로(1)로부터 공급된 환원가스와 반응하여(반응식 1, 2) 산소가 제거되며, 이에 산소가 적게 함유된 FeOx (x는 0~1.3) 또는 Fe 형태로 전환되어 환원철이 된다. 이때, 환원로 내의 고온의 가스는 반응식 3과 같이 수증기(H2O)-기체 간의 전이 반응(water-gas reaction)이 발생될 수 있다(반응식 3).The reduction furnace 2 removes oxygen from iron ore pretreated by drying or heating to produce reduced iron. At this time, in the reducing furnace 2, the iron ore is reduced by using the reducing gas generated during melting of the reduced iron in the melting gasifier 1. More specifically, the pre-treated iron ore is a state containing a lot of oxygen (Fe 2 O 3 , FeO 4 ), the iron ore reacts with the reducing gas supplied from the molten gasifier (1) 1, 2) Oxygen is removed, which is converted to FeOx (x is 0 ~ 1.3) or Fe form containing less oxygen, and is reduced iron. At this time, the high-temperature gas in the reduction furnace may generate a water-gas reaction between H 2 O-gas as in Scheme 3 (Scheme 3).
반응식 1) 1/3Fe2O3 + CO/H2 -> 2/3 Fe + CO2/H2OScheme 1) 1 / 3Fe 2 O 3 + CO / H 2- > 2/3 Fe + CO 2 / H 2 O
반응식 2) 1/4Fe3O4 + CO/H2 -> 3/4 Fe + CO2/H2OScheme 2) 1/4 Fe 3 O 4 + CO / H 2- > 3/4 Fe + CO 2 / H 2 O
반응식 3) CO + H2O -> CO2 + H2 Scheme 3) CO + H 2 O-> CO 2 + H 2
환원로(2)로 공급되는 철광석은 분 철광석이거나, 펠렛 또는 브리켓 형태의 괴성화된 철광석일 수 있다. 예컨대, 환원로(2)로 분 철광석이 투입되는 경우, 환원로(2)는 복수개로 구비될 수 있으며, 분 철광석이 복수의 환원로(2)를 순차적으로 거치면서, 단계적으로 환원될 수 있다. 다른 예로, 환원로(2)로 괴성화된 철광석이 투입되는 경우, 1개 또는 1개 이상의 무빙 베드(moving bed)를 구비할 수 있다.The iron ore supplied to the reduction furnace 2 may be powdered iron ore or hardened iron ore in the form of pellets or briquettes. For example, when powdered iron ore is introduced into the reduction furnace 2, the reduction furnace 2 may be provided in plural, and the iron ore may be reduced in stages while sequentially passing through the plurality of reduction furnaces 2. . As another example, when the iron ore hardened into the reduction furnace 2 is introduced, one or more moving beds may be provided.
용융가스화로(1)는 환원로(2)에서 제조된 환원철을 용융시킨다. 이를 위해 용융가스화로(1)의 상측으로 환원철과, 열원인 성형탄 및 미분탄을 장입하고, 하측으로 산소(O2)를 취입하면, 산소와 성형탄 등의 연소 반응에 의해 고열과 환원가스가 생성되고, 이에 따라 환원철 중 산소를 제거하는 환원과 용융이 일어나 용선(또는 용융철)이 생성된다. 그리고 용융가스화로(1)에서 생성된 환원가스는 환원로(2)로 공급되어, 철광석을 환원시키는데 재활용된다.The melt gasifier 1 melts the reduced iron produced in the reduction furnace 2. To this end, charged iron and coal briquettes and pulverized coal, which are heat sources, are charged to the upper side of the melting gasifier 1, and oxygen (O 2 ) is blown into the lower side. Accordingly, reduction and melting to remove oxygen in the reduced iron are generated, thereby forming molten iron (or molten iron). The reducing gas generated in the melt gasifier 1 is supplied to the reducing furnace 2 and recycled to reduce the iron ore.
그리고, 상술한 바와 같이, 용융가스화로(1)의 환원가스가 환원로(2)로 공급되어 철광석을 환원시키며, 이때 환원로(2)에서 철광석을 환원시킨다. 즉, 용융가스화로(1)의 환원가스는 환원로(2)로 공급되어 공기 또는 산소와 석탄 및 미분탄을 연소시키고, 이때 발생된 열과 환원가스에 의해 철광석이 환원 및 용융된다. 이때, 발생된 환원가스는 350℃ 내지 600℃의 고온이며, 주로 CO, H2, CO2, H2O, N2와, 미량의 CH4, O2 등을 포함한다. 이때, 환원로(2)로부터 발생된 부생가스 전체 부피에 대해 CO는 10 내지 40%, H2는 10 내지 40%, H2O는 5 내지 35%를 포함할 수 있다.As described above, the reducing gas of the molten gasifier 1 is supplied to the reduction furnace 2 to reduce the iron ore, at which time the iron ore is reduced in the reduction furnace 2. That is, the reducing gas of the melt gasifier 1 is supplied to the reducing furnace 2 to combust air or oxygen, coal and pulverized coal, and iron ore is reduced and melted by heat and reducing gas generated at this time. At this time, the generated reducing gas is a high temperature of 350 ℃ to 600 ℃, mainly contains CO, H 2 , CO 2 , H 2 O, N 2 and a small amount of CH 4 , O 2 and the like. In this case, the total volume of by-product gas generated from the reduction furnace 2 may include 10 to 40% of CO, 10 to 40% of H 2 , and 5 to 35% of H 2 O.
본 발명의 실시예에 따른 수소 생산 설비 및 수소 생산 방법은 상술한 용선 제조 설비의 환원로에서 발생된 부생가스를 이용하여 수소를 생산한다.Hydrogen production facility and hydrogen production method according to an embodiment of the present invention produces hydrogen using the by-product gas generated in the reduction furnace of the above-described molten iron manufacturing equipment.
도 1을 참조하면, 제 1 실시예에 따른 수소 생산 설비는 환원로(2)로부터 배출되는 부생가스의 열을 회수하고, 미량의 철광석 미분(또는 미립자)을 포집하여 제거하는 열 회수 장치(100), 열 회수 장치(100)에서 미분이 제거된 부생가스 중 수소 농도를 증가시켜, 수소 농도가 높은 부생가스(이하, 고농도 수소 함유 가스)를 제조하는 수소 증폭 장치(200), 열 회수 장치(100) 및 수소 증폭 장치(200) 중 적어도 하나와 연결되어, 상기 열 회수 장치(100)에서 부생가스의 열 회수 중에 발생된 스팀 및 상기 수소 증폭 장치(200)에서 발생된 고농도 수소 함유 가스를 열 교환시켜 발생된 스팀 중 적어도 하나를 수소 증폭 장치(200)로 공급하는 수소 가스 처리 장치(1000)를 구비하는 스팀 공급 장치(3000), 수소 가스 처리 장치(1000)를 통해 제공된 고농도 수소 함유 가스로부터 수소를 분리하는 수소 분리 장치(300)를 포함한다.Referring to FIG. 1, the hydrogen production facility according to the first embodiment recovers heat of by-product gas discharged from the reduction furnace 2, and collects and removes trace iron ore fines (or fine particles). ), A hydrogen amplification apparatus 200 for producing a by-product gas having a high hydrogen concentration (hereinafter referred to as a high concentration hydrogen-containing gas) by increasing the hydrogen concentration in the by-product gas from which the fine powder is removed from the heat recovery apparatus 100, and a heat recovery apparatus ( 100 and the hydrogen amplifying apparatus 200 are connected to heat the steam generated during the heat recovery of the by-product gas in the heat recovery apparatus 100 and the high concentration hydrogen-containing gas generated in the hydrogen amplifying apparatus 200. From a high concentration hydrogen-containing gas provided through the steam supply device 3000 and the hydrogen gas processing device 1000, which includes a hydrogen gas processing device 1000 for supplying at least one of the steam generated by the exchange to the hydrogen amplification device 200. Number Hydrogen separation device 300 for separating the cattle.
열 회수 장치(100)는 환원로(2)로부터 발생된 300℃ 내지 600℃의 부생가스로부터 스팀을 생산한다. 보다 구체적으로, 열 회수 장치(100)는 고온의 부생가스와, 그보다 온도가 낮은 열 회수 매체 간의 열 교환 작용을 통한 반응을 이용하여 스팀을 생산한다. 이를 위해, 환원로(2)와 열 회수 장치(100)를 연결하도록 부생가스 이동 배관(이하, 제 1 부생가스 이동 배관(110))이 설치된다.The heat recovery apparatus 100 produces steam from by-product gas of 300 ° C. to 600 ° C. generated from the reduction furnace 2. More specifically, the heat recovery apparatus 100 produces steam by using a reaction through a heat exchange action between a hot by-product gas and a heat recovery medium having a lower temperature. To this end, a by-product gas moving pipe (hereinafter, the first by-product gas moving pipe 110) is installed to connect the reduction furnace 2 and the heat recovery device 100.
실시예에 따른 열 회수 장치(100)는 예컨대, 내부 공간을 가지는 반응기, 반응기 내에 설치되며, 부생가스 및 열 회수 매체 각각이 별도로 흐르는 배관을 구비하는 열 교환 수단을 포함할 수 있으며, 이때 부생가스 및 열 회수 매체 간의 온도 차이로 인한 열 교환 작용을 통해 스팀이 생성되며, 이때 부생가스는 열 회수 장치(100)를 통과하면서 230℃ 내지 350℃, 보다 구체적인 예로는 약 250℃로 하락한다.The heat recovery apparatus 100 according to the embodiment may include, for example, a reactor having an internal space, a heat exchange means installed in the reactor, and having a piping for separately flowing a by-product gas and a heat recovery medium, wherein the by-product gas And steam is generated through a heat exchange action due to a temperature difference between the heat recovery media, and the by-product gas drops to 230 ° C. to 350 ° C., more specifically, about 250 ° C. while passing through the heat recovery device 100.
실시예에서는 열 회수 매체로 물을 사용하며, 이를 위해, 열 회수 장치(100)에는 열 회수 매체가 통과 및 이동할 수 있는 열 회수 매체 공급 배관(120)이 연결된다.In an embodiment, water is used as the heat recovery medium. For this purpose, the heat recovery medium 100 is connected to a heat recovery medium supply pipe 120 through which the heat recovery medium can pass and move.
한편, 열 회수 매체는 상술한 물에 한정되지 않고, 열 교환 작용을 통해 스팀을 생성할 수 있는 다양한 재료가 사용될 수 있다.On the other hand, the heat recovery medium is not limited to the above-described water, and various materials capable of generating steam through the heat exchange action may be used.
열 회수 장치(100)에서 생성된 스팀은 상기 열 회수 장치(100)로부터 배출되어 이후 수소 증폭 장치(200)에서 수소 농도를 증가시키는데 재활용된다. 이를 위해, 열 회수 장치(100)에는 스팀이 통과 및 이동할 수 있는 스팀 이동 배관(이하, 제 1 스팀 이동 배관(2100))이 연결된다.The steam generated in the heat recovery device 100 is discharged from the heat recovery device 100 and then recycled to increase the hydrogen concentration in the hydrogen amplification device 200. To this end, the heat recovery apparatus 100 is connected to the steam moving pipe (hereinafter, the first steam moving pipe 2100) through which steam can pass and move.
또한, 열 회수 장치(100)에는 부생가스의 열교환 작용을 통한 스팀 생산 기능뿐만 아니라, 부생가스 중 철광석 미분을 포집, 제거하는 기능이 더 포함될 수 있다. 이를 위해 열 회수 장치(100)의 반응기 내부에는 가스와 미분 또는 미립자를 분리할 수 있는 필터를 포함할 수 있다. 다른 말로 하면, 열 회수 장치(100)는 열 교환 수단과 필터가 함께 구비된 장치일 수 있다.In addition, the heat recovery apparatus 100 may further include a function of collecting and removing iron ore fines in the by-product gas as well as a steam production function through the heat exchange action of the by-product gas. To this end, the inside of the reactor of the heat recovery device 100 may include a filter capable of separating gas and fine powder or fine particles. In other words, the heat recovery device 100 may be a device provided with a heat exchange means and a filter.
열 회수 장치(100)에서 미분이 분리, 제거되어 정제된 부생가스는 수소 증폭 장치(200)로 공급되다. 이를 위해 열 회수 장치(100)와 수소 증폭 장치(200)를 연결하도록 부생가스 이동 배관(이하, 제 2 부생가스 이동 배관(140))이 설치된다. 이에, 정제된 부생가스는 제 2 부생가스 이동 배관(140)을 통해 수소 증폭 장치(200)로 공급된다.The by-product gas purified by separating and removing fine powder from the heat recovery device 100 is supplied to the hydrogen amplification device 200. To this end, a by-product gas moving pipe (hereinafter, the second by-product gas moving pipe 140) is installed to connect the heat recovery device 100 and the hydrogen amplifying device 200. Thus, the purified by-product gas is supplied to the hydrogen amplifying apparatus 200 through the second by-product gas moving pipe 140.
정제된 부생가스가 수소 증폭 장치(200)에서 반응하여 수소 농도가 증가되기 위해서는 상기 정제된 부생가스의 온도가 반응에 용이한 온도로 승온될 필요가 있다. 또한, 수소 증폭 장치(200)에서는 정제된 부생가스 중 CO, H2O 및 CO2 등이 수소화되는 반응은 발열 반응이며, 이러한 반응으로 생성된 고농도 수소 함유 가스는 그 온도가 약 450℃로 높으며, 수소 분리 장치(300)에서 수소 분리를 위해서는 그 온도를 낮추는 것이 효과적이다.In order for the purified by-product gas to react in the hydrogen amplification apparatus 200 to increase the hydrogen concentration, the temperature of the purified by-product gas needs to be raised to a temperature that is easy for reaction. In addition, in the hydrogen amplification apparatus 200, a reaction in which CO, H 2 O, and CO 2 are hydrogenated in the purified by-product gas is an exothermic reaction, and the high concentration hydrogen-containing gas generated by such a reaction has a high temperature of about 450 ° C. For the hydrogen separation in the hydrogen separation device 300, it is effective to lower the temperature.
본 발명의 실시예에서는 수소 증폭 장치(200)에서 생성된 고농도 수소 함유 가스를 그대로 수소 분리 장치(300)로 이동시키지 않고, 고농도 수소 함유 가스의 열을 이용하여 수소 증폭 장치(200)로 유입되는 정제된 부생가스의 온도를 승온시킨다. 즉, 고농도 수소 함유 가스와 정제된 부생가스를 열교환시켜, 상기 정제된 부생가스를 승온시켜 수소 증폭 장치(200)로 공급한다. 또한, 이때 정제된 부생가스와 열 교환되는 고농도 수소 함유 가스는 그 열교환 작용에 의해 온도가 낮아지는 효과가 있다.In the exemplary embodiment of the present invention, the high concentration hydrogen-containing gas generated in the hydrogen amplification apparatus 200 is introduced into the hydrogen amplification apparatus 200 using heat of the high concentration hydrogen-containing gas without being moved to the hydrogen separation apparatus 300 as it is. The temperature of the purified by-product gas is raised. That is, the high concentration hydrogen-containing gas and the purified by-product gas are heat-exchanged, and the purified by-product gas is heated up and supplied to the hydrogen amplifying apparatus 200. In addition, the high concentration hydrogen-containing gas heat exchanged with the purified by-product gas has an effect of lowering the temperature by the heat exchange action.
또한, 본 발명의 실시예에서는 열 회수 장치(100)에서 부생된 스팀을 수소 증폭 장치(200)에서 수소 농도를 높이는 데 재활용한다.In addition, in the embodiment of the present invention, the steam by-produced in the heat recovery apparatus 100 is recycled to increase the hydrogen concentration in the hydrogen amplification apparatus 200.
따라서, 본 발명에서는 수소 증폭 장치(200)에서 생성된 고농도 수소 함유 가스를 이용한 스팀 및 열과, 열 회수 장치(100)에서 부생된 스팀을 수소 농도를 증가시키는데 재 재활용하기 위하여, 스팀 공급 장치(3000)를 구비한다.Therefore, in the present invention, in order to recycle the steam and heat using the high concentration hydrogen-containing gas generated in the hydrogen amplification apparatus 200 and the by-product steam in the heat recovery apparatus 100 to increase the hydrogen concentration, the steam supply apparatus 3000 ).
스팀 공급 장치(3000)는 수소 증폭 장치(200)로부터 배출된 상기 고농도 수소 함유 가스를 열 교환시켜 스팀을 생성하고, 상기 고농도 수소 가스의 온도를 하락시키는 수소 가스 처리 장치(1000) 및 열 회수 장치(100)에서 부생가스의 열 회수 중에 발생된 스팀 및 상기 수소 가스 처리 장치(1000)에 의해 발생된 스팀 중 적어도 하나를 제 2 부생 가스 이동 배관(410)으로 이동시켜 부생가스와 혼합시키는 스팀 공급부(2000)를 포함한다.The steam supply device 3000 generates steam by heat-exchanging the high concentration hydrogen-containing gas discharged from the hydrogen amplification device 200, and reduces the temperature of the high concentration hydrogen gas, and the heat recovery device 1000. Steam supply unit for moving at least one of the steam generated during the heat recovery of the by-product gas at 100 and the steam generated by the hydrogen gas processing device 1000 to the second by-product gas moving pipe 410 and mixed with the by-product gas (2000).
수소 가스 처리 장치(1000)는 수소 증폭 장치(200)와 연결되어, 수소 증폭 장치(200)로부터 고농도 수소 함유 가스를 배출시키는 제 1 수소 가스 이동 배관(1100), 제 1 수소 가스 이동 배관(1100)과 연결되어, 제 2 부생 가스 이동 배관(410)을 통해 공급되는 부생가스와 스팀이 혼합된 혼합가스와 고농도 수소 함유 가스를 열 교환시키는 제 1 열 교환기(1300), 제 1 열 교환기(1300)와 연결되어, 제 1 열 교환기(1300)에서 열 회수된 고농도 수소 함유 가스를 열 교환시키는 제 2 열 교환기(1400), 제 1 열 교환기(1300)와 제 2 열 교환기(1400)를 연결하여, 상기 제 1 열 교환기(1300)에서 열 회수된 고농도 수소 함유 가스를 제 2 열 교환기(1400)로 이동시키는 제 2 수소 가스 이동 배관(1200)을 포함한다.The hydrogen gas processing apparatus 1000 is connected to the hydrogen amplifying apparatus 200, and includes a first hydrogen gas moving pipe 1100 and a first hydrogen gas moving pipe 1100 for discharging a high concentration hydrogen-containing gas from the hydrogen amplifying device 200. And a first heat exchanger 1300 and a first heat exchanger 1300 that heat exchange the mixed gas and the high concentration hydrogen-containing gas mixed with the by-product gas and the steam supplied through the second by-product gas moving pipe 410. ) Is connected to the second heat exchanger 1400, the first heat exchanger 1300 and the second heat exchanger 1400 to heat exchange the high concentration hydrogen-containing gas heat recovered from the first heat exchanger 1300. And a second hydrogen gas moving pipe 1200 for moving the high concentration hydrogen-containing gas recovered from the first heat exchanger 1300 to the second heat exchanger 1400.
스팀 공급부(2000)는 일단이 열 회수 장치(100)에 연결되어, 상기 열 회수 장치(100)에서 부생된 스팀을 배출시키는 제 1 스팀 이동 배관(2100), 일단이 제 2 열 교환기(1400)에 연결되어, 상기 고농도 수소 함유 가스의 열 교환 중 발생된 스팀을 이동시키는 제 2 스팀 이동 배관(2300), 일단이 제 1 및 제 2 스팀 이동 배관(2100, 2200)과 연결되고 타단이 상기 제 2 부생가스 이동 배관(4100)에 연결된 제 3 스팀 이동 배관(2300)을 포함한다.The steam supply unit 2000 has one end connected to the heat recovery device 100, and the first steam moving pipe 2100 for discharging the by-product steam from the heat recovery device 100 and one end of the second heat exchanger 1400. A second steam moving pipe 2300 for moving steam generated during heat exchange of the high concentration hydrogen-containing gas, one end of which is connected to the first and second steam moving pipes 2100 and 2200 and the other end of the second steam moving pipe 2300; And a third steam moving pipe 2300 connected to the second by-product gas moving pipe 4100.
이하, 본 발명의 실시예에 따른 수소 가스 처리 장치(1000) 및 스팀 공급부(2000)에 대해 보다 상세히 설명한다.Hereinafter, the hydrogen gas processing apparatus 1000 and the steam supply unit 2000 according to the embodiment of the present invention will be described in more detail.
정제된 부생가스 중 CO 및 H2O와 반응할 스팀을 공급해야 하는데, 본 발명의 실시예에서는 상술한 바와 같이, 수소 생산 설비에서 수소 생산 중에 발생되는 스팀을 이용한다. 즉, 상술한 열 회수 장치(100)에서 부생되는 스팀과, 고농도 수소 함유 가스의 열을 회수하는 제 2 열 교환기(1400)에서 부생되는 스팀을 이용한다. 이를 위해, 제 2 열 교환기(1400)로부터 발생된 스팀을 배출시켜 이동시키는 스팀 이동 배관(이하, 제 2 스팀 이동 배관(2200))을 설치하고, 제 1 및 제 2 스팀 이동 배관(2100, 2200)으로 이동된 스팀을 제 2 부생가스 이동 배관(140) 연장 경로 상에서 제 1 열 교환기(1300) 전단으로 공급시킬 수 있도록 제 3 스팀 이동 배관(2300)을 연결한다. 즉, 제 3 스팀 이동 배관(2300)은 일단이 제 1 및 제 2 스팀 이동 배관(2100, 2200)과 연결되고 타단이 제 2 부생가스 이동 배관(140)과 연결된다. 따라서, 열 회수 장치(100)에서 발생된 스팀과 제 2 열 교환기(1400)에서 발생된 스팀은 제 3 스팀 이동 배관(2300)에서 혼합되고, 혼합된 스팀은 제 2 부생가스 이동 배관(140)에서 정제된 부생가스와 혼합된다. 이후, 스팀과 혼합된 부생가스가 제 1 열 교환기(1300)로 유입되면, 상기 제 1 열 교환기(1300)로 공급되는 고농도 수소 함유 가스와의 열 교환 작용에 의해, 스팀과 혼합된 부생가스의 온도가 300℃ 내지 400℃ 바람직하게는 350℃로 승온되어 수소 증폭 장치로 공급된다.Steam to be reacted with the CO and H 2 O in the purified by-product gas to be supplied, as described above, in the embodiment of the present invention, the steam generated during the hydrogen production in the hydrogen production equipment is used. That is, steam generated by the heat recovery device 100 described above and steam generated by the second heat exchanger 1400 for recovering heat of a high concentration hydrogen-containing gas are used. To this end, a steam moving pipe (hereinafter referred to as a second steam moving pipe 2200) for discharging and moving steam generated from the second heat exchanger 1400 is installed, and the first and second steam moving pipes 2100 and 2200 are provided. The third steam moving pipe 2300 is connected to supply the steam moved to the front end of the first heat exchanger 1300 on the second by-product gas moving pipe 140 extending path. That is, one end of the third steam moving pipe 2300 is connected to the first and second steam moving pipes 2100 and 2200, and the other end thereof is connected to the second by-product gas moving pipe 140. Therefore, the steam generated in the heat recovery device 100 and the steam generated in the second heat exchanger 1400 are mixed in the third steam moving pipe 2300, and the mixed steam is mixed in the second by-product gas moving pipe 140. Mixed with by-product gas refined in Subsequently, when the by-product gas mixed with the steam flows into the first heat exchanger 1300, the by-product gas mixed with the steam by heat exchange action with the high concentration hydrogen-containing gas supplied to the first heat exchanger 1300 The temperature is raised to 300 ° C to 400 ° C, preferably 350 ° C, and supplied to the hydrogen amplification apparatus.
수소 증폭 장치(200)는 열 회수 장치(100)에서 정제된 부생가스 중 수소 농도를 증가시키는 장치이다. 실시예에 따른 수소 증폭 장치(200)에서는 정제된 부생가스 중 함유된 CO 및 H2O를 H2로 전환시킴으로써, 부생가스 중 수소 농도를 증가시킨다. 이때, 수소 증폭 장치(200)는 부생가스 중 함유된 CO 및 H2O와 스팀 간의 반응(반응식 4) 및 상기 부생가스 중 CO 및 H2O와 금속 촉매 간의 반응(반응식 5)을 이용하여 수소 농도를 증가시킨다. 여기서 부생가스 중 함유된 CO 및 H2O와 반응하는 스팀은 상술한 바와 같이, 열 회수 장치(100)에서 부생가스의 열 교환 작용에 의해 생성된 스팀과, 제 2 열 교환기(1400)에서 고농도 수소 함유 가스의 온도를 낮추기 위한 열 교환 작용에 의해 생성된 스팀을 사용한다. 즉, 수소 생산 설비 외부에서 별도로 스팀을 제조하여 공급하지 않고, 수소 생산 공정 중에 발생된 스팀을 재활용한다. 또한, 수소 증폭 장치에서 반응에 필요한 열은 환원로(2)로부터 제공된 부생가스가 가지고 있는 열과, 스팀에 의해 충분히 충족된다.The hydrogen amplification apparatus 200 is an apparatus for increasing the concentration of hydrogen in the by-product gas purified by the heat recovery apparatus 100. In the hydrogen amplification apparatus 200 according to the embodiment, the concentration of hydrogen in the by-product gas is increased by converting CO and H 2 O contained in the purified by-product gas to H 2 . In this case, the hydrogen amplification apparatus 200 uses hydrogen by using a reaction between CO and H 2 O contained in by-product gas and steam (Scheme 4) and a reaction between CO and H 2 O and metal catalyst in the by-product gas (Scheme 5). Increase the concentration Here, the steam reacting with the CO and H 2 O contained in the by-product gas, as described above, the steam generated by the heat exchange action of the by-product gas in the heat recovery device 100 and the high concentration in the second heat exchanger 1400 Steam generated by the heat exchange action to lower the temperature of the hydrogen containing gas is used. That is, the steam generated during the hydrogen production process is recycled without separately producing and supplying steam outside the hydrogen production facility. The heat required for the reaction in the hydrogen amplification apparatus is sufficiently satisfied by the heat of the by-product gas provided from the reduction furnace 2 and steam.
반응식 4) CO + H2O -> CO2 + H2(수성 가스 반응)Scheme 4) CO + H 2 O-> CO 2 + H 2 (water gas reaction)
반응식 5) H2O + M(촉매) -> H2 + MO(금속 촉매 반응)Scheme 5) H 2 O + M (catalyst)-> H 2 + MO (metal catalyst reaction)
수소 증폭 장치(200)에서는 상술한 반응을 통해, 부생가스 중 수소 농도가 증가하는데, 이때 반응은 발열 반응으로서 생성된 고농도 함유 가스의 온도가 약 450℃로 높다. 따라서, 상술한 바와 같이, 고농도 수소 함유 가스를 바로 수소 분리 장치(300)로 이동시키지 않고, 그 열을 수소 증폭 장치(200)로 공급될 정제된 부생가스를 승온시키고, 스팀을 생산하는데 재활용된다.In the hydrogen amplification apparatus 200, through the above-described reaction, the concentration of hydrogen in the by-product gas increases, in which the temperature of the high concentration-containing gas generated as the exothermic reaction is high, about 450 ° C. Therefore, as described above, the high concentration hydrogen-containing gas is not directly transferred to the hydrogen separation device 300, and the heat is recycled to raise the purified by-product gas to be supplied to the hydrogen amplification device 200 and to produce steam. .
이를 위해, 수소 증폭 장치(200)로부터 배출된 고농도 수소 함유 가스를 제 1 열 교환기(1300)로 이동시키도록 제 1 수소 가스 이동 배관(1100)이 설치되고, 제 1 열 교환기(1300)를 통과한 고농도 수소 함유 가스를 제 2 열 교환기(1400)로 이동시키도록 제 2 수소 가스 이동 배관(1200)이 설치된다.To this end, a first hydrogen gas moving pipe 1100 is installed to move the high concentration hydrogen-containing gas discharged from the hydrogen amplifying apparatus 200 to the first heat exchanger 1300, and passes through the first heat exchanger 1300. A second hydrogen gas moving pipe 1200 is installed to move a high concentration hydrogen containing gas to the second heat exchanger 1400.
제 2 열 교환기(1400)는 제 1 열 교환기(1300)에 의해 온도가 1차 하락된 고농도 수소 함유 가스를 2차로 열 교환시켜 상온 또는 상온과 근접한 온도까지 하락시킨다. 실시예에 따른 제 2 열 교환기(1400)에서는 열 교환 매체로 물을 사용한다. 이를 위해, 제 2 열 교환기(1400)로 열 교환 매체 예컨대, 물을 공급할 열 회수 매체 공급 배관(120)이 연결되며, 이는 앞에서 상술한 열 회수 장치(100)로 물을 공급하는 동일한 열 회수 매체 공급 배관(120)을 이용할 수 있다. 예컨대, 열 회수 매체 공급 배관(120)의 일단이 열 회수 장치(100)에 연결되고 타단이 제 2 열 교환기(1400)에 연결되어, 물이 양 방향으로 이동되어 각각으로 공급되도록 구성될 수 있다.The second heat exchanger 1400 heat-exchanges the high concentration hydrogen-containing gas, the temperature of which is first decreased by the first heat exchanger 1300, to a temperature close to room temperature or room temperature. In the second heat exchanger 1400 according to the embodiment, water is used as the heat exchange medium. To this end, a heat recovery medium supply pipe 120 for supplying a heat exchange medium such as water to the second heat exchanger 1400 is connected, which is the same heat recovery medium that supplies water to the heat recovery device 100 described above. Supply piping 120 can be used. For example, one end of the heat recovery medium supply pipe 120 may be connected to the heat recovery device 100 and the other end may be connected to the second heat exchanger 1400 so that water may be moved in both directions and supplied to each of the heat recovery device 100. .
제 2 열 교환기(1400)는 고농도 수소 함유 가스와 물 간의 열 교환 작용을 통해, 고농도 수소 함유 가스의 온도를 상온 또는 상온과 근접한 온도로 하락시키고, 이후 고농도 수소 함유 가스는 수소 분리 장치로 공급된다. 그리고, 제 2 열 교환기(1400)에서 고농도 수소 함유 가스와 열 교환 매체 간의 열 교환 작용에 의해 200℃ 내지 300℃의 스팀이 발생되며, 이는 제 2 및 제 3 스팀 이동 배관(2200, 2300)을 통해 제 2 부생가스 이동 배관(140)으로 공급되어 정제된 부생가스와 혼합된다. 이를 위해, 제 2 열 교환기(1400)의 스팀이 제 2 부생가스 이동 배관(140)으로 이동될 수 있도록 스팀 이동 배관(이하, 제 2 스팀 이동 배관(2200))이 설치된다. 보다 구체적인 예로, 제 2 스팀 이동 배관(2200)은 일단이 제 2 열 교환기(1400)에 연결되고 타단이 제 3 스팀 이동 배관(2300)에 연결된다. 이에, 제 3 스팀 이동 배관(2300)으로 제 1 및 제 2 스팀 이동 배관(2100, 2200) 각각으로부터 제공된 스팀이 유입된다.The second heat exchanger 1400 lowers the temperature of the high concentration hydrogen-containing gas to room temperature or close to room temperature through heat exchange between the high concentration hydrogen-containing gas and water, and then the high concentration hydrogen-containing gas is supplied to the hydrogen separation device. . Then, in the second heat exchanger 1400, steam of 200 ° C. to 300 ° C. is generated by the heat exchange action between the high concentration hydrogen-containing gas and the heat exchange medium, which causes the second and third steam moving pipes 2200 and 2300 to be separated. It is supplied to the second by-product gas moving pipe 140 and mixed with the purified by-product gas. To this end, a steam moving pipe (hereinafter, the second steam moving pipe 2200) is installed so that the steam of the second heat exchanger 1400 can be moved to the second by-product gas moving pipe 140. As a more specific example, one end of the second steam moving pipe 2200 is connected to the second heat exchanger 1400 and the other end thereof is connected to the third steam moving pipe 2300. Thus, steam provided from each of the first and second steam moving pipes 2100 and 2200 flows into the third steam moving pipe 2300.
물론, 제 1 내지 제 3 스팀 이동 배관(2100, 2200, 2300)은 상술한 연결 구조에 한정되지 않고, 열 회수 장치(100)에서 발생된 스팀 및 제 2 열 교환기(1400)에서 발생된 스팀 각각을 제 2 부생가스 이동 배관(140)으로 공급할 수 있는 다양한 구조로 변경이 가능하다.Of course, the first to third steam moving pipes 2100, 2200, and 2300 are not limited to the above-described connection structure, and steam generated by the heat recovery device 100 and steam generated by the second heat exchanger 1400, respectively. It is possible to change to a variety of structures that can be supplied to the second by-product gas moving pipe 140.
수소 분리 장치(300)는 고농도 수소 함유 가스에 함유되어 있는 물 성분을 제거하고, 수소를 분리한다. 수소 분리 장치(300)는 예컨대, 수소 압력 순환 흡착기(H2 Pressure Swing Absorber, H2 PSA)를 구비하는 수단으로, 압력변동을 이용하여 고농도 수소 함유 가스로부터 기체 성분인 수소를 흡착분리하는 방법을 사용하는 수단일 수 있다. 다른 예로, 수소 분리 장치는 열적변동흡착(TSA; temperature swing adsorption) 방법으로 수소를 분리하는 수단일 수 있다.The hydrogen separation device 300 removes the water component contained in the high concentration hydrogen-containing gas and separates hydrogen. The hydrogen separation device 300 is, for example, a means having a H 2 Pressure Swing Absorber (H 2 PSA), using a method of adsorptive separation of hydrogen as a gas component from a high concentration of hydrogen-containing gas using pressure fluctuations. It may be a means to. As another example, the hydrogen separation device may be a means for separating hydrogen by a temperature swing adsorption (TSA) method.
상술한 제 1 실시예에서는 열 회수 장치(100)가 열 교환 수단과 미분 제거를 위한 필터가 일체형으로 구비된 것으로 설명하였다. 하지만 이에 한정되지 않고, 도 2에 도시된 제 2 실시예와 같이, 열 교환 수단을 포함하는 열 회수 장치(100a)와, 필터를 포함하는 미분 제거 장치(100b)가 별도로 마련될 수 있다. 이에 열 회수 장치(100a)에서 부생가스와 열 교환 매체 간의 열 교환에 의해, 스팀이 생성되고, 이는 제 1 스팀 이동 배관(2100)을 통해 제 2 부생가스 이동 배관(140)으로 공급된다. 그리고, 열 회수 장치(100a)에서 열 교환된 부생가스는 미분 제거 장치(100b)로 공급되어, 미분이 제거된 후에 제 2 부생가스 이동 배관(140)을 통해 수소 증폭 장치(200)로 이동된다.In the first embodiment described above, the heat recovery device 100 has been described as having a heat exchange means and a filter for removing fine powder. However, the present invention is not limited thereto, and as in the second embodiment illustrated in FIG. 2, a heat recovery device 100a including a heat exchange unit and a fine powder removal device 100b including a filter may be separately provided. As a result, steam is generated by heat exchange between the by-product gas and the heat exchange medium in the heat recovery device 100a, which is supplied to the second by-product gas moving pipe 140 through the first steam moving pipe 2100. The by-product gas heat-exchanged in the heat recovery device 100a is supplied to the fine powder removing device 100b, and is moved to the hydrogen amplifying device 200 through the second by-product gas moving pipe 140 after the fine powder is removed. .
상기 제 2 실시예에서는 열 회수 장치(100a)와 수소 증폭 장치(200) 사이에 미분 제거 장치(100b)가 설치되어, 부생가스의 열이 회수된 후에 미분이 제거되는 것으로 설명하였다. 하지만, 이에 한정되지 않고, 미분 제거 장치(100b)와 수소 증폭 장치(200) 사이에 열 회수 장치(100a)가 설치되어, 부생가스 중 미분이 제거된 후에 열을 회수할 수도 있다.In the second embodiment, the fine powder removing device 100b is installed between the heat recovery device 100a and the hydrogen amplifying device 200 so that the fine powder is removed after the heat of the by-product gas is recovered. However, the present invention is not limited thereto, and a heat recovery device 100a may be provided between the fine powder removing device 100b and the hydrogen amplifying device 200 to recover heat after the fine powder in the by-product gas is removed.
또한, 상술한 제 1 실시예에서는 하나의 수소 증폭 장치(200)를 구비하였으나, 이에 한정되지 않고, 도 3에 도시된 바와 같이 복수 예컨대 2개의 수소 증폭 장치(200a, 200b)가 구비될 수 있다. 예컨대, 제 3 실시예와 같이 제 1 및 제 2 수소 증폭 증착 장치(200a, 200b)가 구비되고, 제 2 부생가스 이동 배관(140)이 제 1 수소 증폭 장치(200a)와 연결되며, 상기 제 2 부생가스 이동 배관(140)의 연장 경로 상에 제 1 열 교환기(1300)가 설치된다. 그리고, 제 1 수소 가스 이동 배관(1100)의 일단이 제 1 수소 증폭 장치(200a)에 연결되고 타단이 제 2 부생가스 이동 배관(140)의 연장 경로 상에서 제 1 열 교환기(1300)의 전단에 연결된다.In addition, in the first embodiment described above, one hydrogen amplification apparatus 200 is provided, but is not limited thereto. As illustrated in FIG. 3, a plurality of hydrogen amplification apparatuses 200a and 200b may be provided. . For example, as in the third embodiment, the first and second hydrogen amplification deposition apparatuses 200a and 200b are provided, and the second by-product gas moving pipe 140 is connected to the first hydrogen amplifying apparatus 200a. The first heat exchanger 1300 is installed on the extension path of the second by-product gas moving pipe 140. One end of the first hydrogen gas moving pipe 1100 is connected to the first hydrogen amplifying device 200a and the other end is connected to the front end of the first heat exchanger 1300 on an extension path of the second byproduct gas moving pipe 140. Connected.
따라서, 제 1 수소 증폭 장치(200a)에서 생성된 고농도 수소 함유 가스는 제 1 수소 가스 이동 배관(1100)을 통해 제 1 열 교환기(1300)로 유입되고, 상기 제 1 열 교환기(1300)에서 정제된 부생가스와 열 교환된다. 이때, 제 1 열 교환기(1300)에서 고농도 수소 함유 가스의 온도는 하락하고, 정제된 부생가스의 온도는 승온되어 제 1 수소 증폭 장치(200a)로 공급된다. 그리고 제 1 열 교환기(1300)에서 온도가 하락된 고농도 수소 함유 가스는 제 2 수소 가스 이동 배관(1200)을 통해 제 2 열 교환기(1400)로 이동되어 열 교환된 후, 제 2 열 교환기(1400)와 제 2 수소 증폭 장치(200b)를 연결하는 제 3 수소 가스 이동 배관(520)을 통해 제 2 수소 증폭 장치(200b)로 이동된다. 그리고 이때 발생된 스팀은 제 2 스팀 이동 배관(2200)을 통해 제 2 부생가스 이동 배관(150)으로 공급된다.Therefore, the high concentration hydrogen-containing gas generated in the first hydrogen amplifying apparatus 200a flows into the first heat exchanger 1300 through the first hydrogen gas moving pipe 1100 and is purified by the first heat exchanger 1300. Heat exchange with the off-gas. At this time, the temperature of the high concentration hydrogen-containing gas in the first heat exchanger 1300 is lowered, the temperature of the purified by-product gas is heated up and supplied to the first hydrogen amplifying apparatus 200a. In addition, the high concentration hydrogen-containing gas whose temperature is decreased in the first heat exchanger 1300 is moved to the second heat exchanger 1400 through the second hydrogen gas moving pipe 1200, and is heat-exchanged, and then the second heat exchanger 1400. ) And the second hydrogen amplifying apparatus 200b are moved to the second hydrogen amplifying apparatus 200b through the third hydrogen gas moving pipe 520. In addition, the generated steam is supplied to the second by-product gas moving pipe 150 through the second steam moving pipe 2200.
또한, 제 1 수소 증폭 장치(200a)를 통과하여 생성된 고농도 수소 함유 가스는 제 2 수소 증폭 장치(200b)에서 다시 한번 반응하여 수소 농도 증가 반응이 진행된 후, 배출된다. 이때, 제 2 수소 증폭 장치(200b)로부터 배출된 고농도 수소 함유 가스는 상기 제 2 수소 증폭 장치(200b)의 외부에 설치된 제 3 열 교환기(1500)를 거쳐 열이 회수된 후에 수소 분리 장치로 공급된다. 그리고 제 3 열 교환기(1500)에서 생성된 스팀은 제 4 스팀 이동 배관(2400)을 통해 제 2 열 교환기(1400)로 유입된 후에 250℃의 온도로 제 2 스팀 이동 배관(2200)으로 공급되어 정제된 부생가스와 혼합된다.In addition, the high concentration hydrogen-containing gas generated by passing through the first hydrogen amplifying apparatus 200a reacts again in the second hydrogen amplifying apparatus 200b to proceed with the hydrogen concentration increasing reaction and then is discharged. At this time, the high concentration hydrogen-containing gas discharged from the second hydrogen amplification device 200b is supplied to the hydrogen separation device after heat is recovered through a third heat exchanger 1500 installed outside the second hydrogen amplification device 200b. do. The steam generated in the third heat exchanger 1500 is introduced into the second heat exchanger 1400 through the fourth steam transfer pipe 2400 and then supplied to the second steam transfer pipe 2200 at a temperature of 250 ° C. It is mixed with the purified by-product gas.
이렇게 제 3 실시예에서는 복수의 수소 증폭 장치(200a, 200b)를 이용함으로써, 부생가스 의 수소 전환율을 향상시킬 수 있다.As described above, in the third embodiment, by using the plurality of hydrogen amplifying apparatuses 200a and 200b, the hydrogen conversion rate of the by-product gas can be improved.
상술한 제 3 실시예는 제 1 실시예에서 추가적으로 수소 증폭 장치를 더 설치하는 구조이다. 하지만 이에 한정되지 않고 제 2 실시예에 따른 수소 생산 설비에 제 3 실시예와 같이 수소 증폭 장치를 적용할 수도 있고, 후술되는 다른 실시예들에 적용할 수도 있다.The third embodiment described above is a structure in which a hydrogen amplification device is further provided in the first embodiment. However, the present invention is not limited thereto, and the hydrogen amplification apparatus may be applied to the hydrogen production facility according to the second embodiment as in the third embodiment, or may be applied to other embodiments described below.
제 4 실시예에 따른 수소 생산 설비는 제 1 실시예에서, 열 회수 장치(100)와 수소 증폭 장치(200) 사이에 황 제거 장치(710)를 설치하고, 수소 증폭 장치(200)와 수소 분리 장치(300) 사이에 압축기(720)를 더 설치한 구성이다. 여기서 황 제거 장치(710)는 정제된 부생가스 중 함유된 황(S)을 분리, 제거하는 수단으로, ZnO 촉매를 이용한다.In the hydrogen production facility according to the fourth embodiment, in the first embodiment, a sulfur removal device 710 is installed between the heat recovery device 100 and the hydrogen amplification device 200, and the hydrogen amplification device 200 and hydrogen separation are performed. The compressor 720 is further installed between the apparatuses 300. The sulfur removing device 710 is a means for separating and removing the sulfur (S) contained in the purified by-product gas, using a ZnO catalyst.
한편, 고농도 수소 함유 가스에는 미량의 물이 포함되어 있고, 이로부터 수소를 용이하게 분리하기 위해서는 고농도 수소 함유 가스의 압력이 7bar 내지 20bar가 되는 것이 효과적이다. 하지만, 제 2 열 교환기를 거친 고농도 수소 함유 가스는 그 압력이 7bar 미만으로 낮기 때문에, 상기 고농도 수소 함유 가스를 압축기(720)에서 압축시켜 압력을 7bar 내지 20bar로 증가시킨 후에, 수소 분리 장치(300)로 공급한다.On the other hand, the high concentration hydrogen-containing gas contains a small amount of water, in order to easily separate the hydrogen from it, it is effective that the pressure of the high concentration hydrogen-containing gas is 7bar to 20bar. However, since the high concentration hydrogen-containing gas passed through the second heat exchanger has a low pressure of less than 7 bar, after the high concentration hydrogen-containing gas is compressed in the compressor 720 to increase the pressure to 7 bar to 20 bar, the hydrogen separation device 300 ).
상술한 제 4 실시예는 제 1 실시예에서 추가적으로 황 제거 장치(710) 및 압축기(720)를 설치하는 것을 설명하였다. 하지만, 이에 한정되지 않고 제 2 및 제 3 실시예에 따른 수소 생산 설비에 제 4 실시예와 같이 황 제거 장치(710) 및 압축기(720)를 적용할 수도 있고, 후술되는 제 5 실시예에 적용할 수도 있다.The fourth embodiment described above has described the installation of the sulfur removing device 710 and the compressor 720 in the first embodiment. However, the present invention is not limited thereto, and the sulfur removing device 710 and the compressor 720 may be applied to the hydrogen production facilities according to the second and third embodiments as in the fourth embodiment, and the fifth embodiment will be described later. You may.
제 5 실시예는 제 4 실시예에 따른 수소 생산 설비의 수소 분리 장치(300) 후단에 산소 제거기(800)를 추가 설치한 구성이다. 수소 분리 장치(300)에서 분리된 수소에는 미량의 산소가 포함되어 있을 수 있다. 이에, 보다 순도 높은 수소의 생산을 위해, 미량의 산소 제거를 위한 산소 제거기가 설치된다. 실시예에 따른 산소 제거기(800)는 Pd를 촉매로 하여, 수소 가스 중 함유된 산소를 제거, 분리하여 수소 가스의 순도를 높인다.The fifth embodiment is a configuration in which an oxygen remover 800 is additionally installed at the rear end of the hydrogen separation device 300 of the hydrogen production facility according to the fourth embodiment. Hydrogen separated from the hydrogen separation device 300 may contain a small amount of oxygen. Thus, for the production of higher purity hydrogen, an oxygen remover for removing a small amount of oxygen is installed. The oxygen remover 800 according to the embodiment increases the purity of hydrogen gas by removing and separating oxygen contained in hydrogen gas using Pd as a catalyst.
이하, 실시예에 따른 수소 생산 설비를 이용한 수소 생산 과정을 일괄 설명하며, 앞에서 상술한 내용과 중복되는 내용은 생략하거나 간략히 설명한다.Hereinafter, the hydrogen production process using the hydrogen production equipment according to the embodiment will be collectively described, and the descriptions overlapping with the above-described details will be omitted or briefly described.
본 발명의 실시예에 따른 수소 생산 방법은 제철 공정에서 발생된 부생가스의 열을 회수하는 열 회수 과정, 열 회수 과정을 거친 부생가스 중 수소 농도를 증가시켜 고농도 수소 함유 가스를 생산하는 수소 증폭 과정 및 상기 수소 증폭 과정에서 생성된 고농도 수소 함유 가스 중 수소를 분리하는 수소 분리 과정을 포함한다. 여기서, 수소 증폭 과정은 열 회수 과정에서 부생가스의 열 회수 중에 발생된 스팀 및 수소 증폭 과정에 의해 발생된 고농도 수소 함유 가스의 열 교환에 의해 발생된 스팀 중 적어도 하나를 상기 열 회수 과정을 거친 부생가스와 혼합시키는 과정 및 부생가스와 스팀을 반응시키는 과정을 포함한다.Hydrogen production method according to an embodiment of the present invention is a heat recovery process for recovering the heat of the by-product gas generated in the steelmaking process, a hydrogen amplification process to produce a high concentration of hydrogen-containing gas by increasing the hydrogen concentration of the by-product gas subjected to the heat recovery process And a hydrogen separation process for separating hydrogen from the high concentration hydrogen-containing gas generated in the hydrogen amplification process. Here, the hydrogen amplification process is a by-product of the heat recovery process at least one of the steam generated during the heat recovery of the by-product gas and the steam generated by the heat exchange of the high concentration hydrogen-containing gas generated by the hydrogen amplification process Mixing with gas and reacting off-gas with steam.
이하, 본 발명의 실시예에 따른 수소 생산 방법을 설명하는데 있어서, 도 1에 도시된 제 1 실시예를 예로 들어 보다 구체적으로 설명한다.Hereinafter, in describing the hydrogen production method according to an embodiment of the present invention, the first embodiment shown in FIG. 1 will be described in more detail.
용선 제조 설비의 환원로(2)에서 부생된 가스 즉, 부생가스는 제 1 부생가스 이동 배관(110)을 통해 열 회수 장치(100)로 공급된다. 열 회수 장치(100)로 공급된 부생가스는 약 350℃ 내지 600℃의 온도를 각지는 가스로서, 열 회수 장치(100)에서 열 교환 매체 즉, 물과의 열 교환 작용에 의해 약 230℃ 내지 350℃로 온도가 하락한다. 그리고, 열 회수 장치(100) 내에 구비된 필터에 의해서, 부생가스에 포함된 철광석 미분이 제거되어 열 회수 장치 외부로 배출된다.Gas produced by the reduction furnace 2 of the molten iron production equipment, that is, by-product gas is supplied to the heat recovery device 100 through the first by-product gas moving pipe 110. The by-product gas supplied to the heat recovery device 100 is a gas having a temperature of about 350 ° C. to 600 ° C., and is about 230 ° C. to about 60 ° C. by heat exchange with the heat exchange medium, that is, water in the heat recovery device 100. The temperature drops to 350 ° C. Then, the iron ore fine powder contained in the by-product gas is removed by the filter provided in the heat recovery apparatus 100 and discharged to the outside of the heat recovery apparatus.
열 회수 장치(100)에서 열 회수 및 미분이 제거된 부생가스는 제 2 부생가스 이동 배관(140)을 통해 이동하던 중에, 제 3 스팀 이동 배관(2300)으로부터 공급된 스팀과 혼합된다. 여기서 스팀은 열 회수 장치(100)에서 부생가스의 열 회수에 의해 발생된 스팀과, 앞선 공정에서 수소 증폭 장치(200)에서 생성된 고농도 수소 함유 가스의 열 교환에 의해 생성된 스팀이다. 이들 스팀이 제 2 부생가스 이동 배관(140)에서 부생가스와 혼합된 후에 제 2 열 교환기(1400)를 통과한다. 이때 제 2 열 교환기(1400)로 수소 증폭 장치(200)에서 생성된 고농도 수소 함유가스가 제 1 수소 가스 이동 배관(1100)을 통해 유입되어, 상기 고농도 수소 함유 가스가 가지고 있는 약 450℃의 열과 스팀과 부생가스가 혼합된 혼합가스 간의 열 교환 작용이 일어난다. 따라서, 혼합가스의 온도가 상승된 상태로 수소 증폭 장치(200)로 공급되며, 고농도 수소 함유 가스는 제 2 수소 가스 이동 배관(1200)을 통해 제 3 열 교환기(1500)로 공급된다. 수소 증폭 장치(200)로 공급된 스팀과 부생가스의 혼합가스는 상기 수소 증폭 장치(200)에서 반응하여, 부생가스 중 CO 및 H2O가 CO2 및 수소(H2)가 되는 발열 반응이 일어나, 부생가스 중 수소 농도가 증가하며, 이에 고농도 수소 함유 가스가 생성된다. 수소 증폭 장치(200)에서 생성된 고농도 수소 함유 가스는 상술한 바와 같이 제 1 수소 가스 이동 배관(1100)을 통해 제 1 열 교환기(1300)로 이동되어 정제된 부생가스와 열 교환되고, 이후 제 2 열 교환기(1400)로 이동되어 상온 또는 상온과 근접한 온도까지 열 교환 된 후에 수소 분리 장치로 이동된다. 이때, 제 2 열 교환기(1400)에서 고농도 수소 함유 가스의 열 교환에 의해 생성된 스팀은 제 1 및 제 2 스팀 이동 배관(2100, 2200)을 통해 제 1 열 교환기(1300)로 유입되어 정제된 부생가스를 열 교환시키기 위한 열원으로 재사용된다.The by-product gas from which heat recovery and fine powder has been removed from the heat recovery apparatus 100 is mixed with steam supplied from the third steam moving pipe 2300 while moving through the second by-product gas moving pipe 140. Here, the steam is steam generated by heat recovery of by-product gas in the heat recovery device 100 and heat exchange of high concentration hydrogen-containing gas generated in the hydrogen amplification device 200 in the foregoing process. These steams are mixed with the by-product gas in the second by-product gas moving pipe 140 and then passed through the second heat exchanger 1400. At this time, the high concentration hydrogen-containing gas generated in the hydrogen amplifying apparatus 200 flows into the second heat exchanger 1400 through the first hydrogen gas moving pipe 1100, and the heat of about 450 ° C. which the high concentration hydrogen-containing gas has and Heat exchange action occurs between the mixed gas in which steam and by-product gas are mixed. Therefore, the hydrogen amplification apparatus 200 is supplied to the hydrogen amplifying apparatus 200 while the temperature of the mixed gas is raised, and the high concentration hydrogen-containing gas is supplied to the third heat exchanger 1500 through the second hydrogen gas moving pipe 1200. The mixed gas of steam and by-product gas supplied to the hydrogen amplification apparatus 200 reacts in the hydrogen amplification apparatus 200, whereby an exothermic reaction in which CO and H 2 O in the by-product gas becomes CO 2 and hydrogen (H 2 ) Hence, the concentration of hydrogen in the by-product gas increases, thereby producing a high concentration of hydrogen-containing gas. The high concentration hydrogen-containing gas generated in the hydrogen amplification apparatus 200 is moved to the first heat exchanger 1300 through the first hydrogen gas moving pipe 1100 and heat exchanged with the purified byproduct gas as described above. 2 is moved to the heat exchanger (1400) and heat exchanged to a temperature close to room temperature or close to room temperature and then to a hydrogen separation device. At this time, the steam generated by the heat exchange of the high concentration hydrogen-containing gas in the second heat exchanger 1400 flows into the first heat exchanger 1300 through the first and second steam moving pipes 2100 and 2200 and is purified. The by-product gas is reused as a heat source for heat exchange.
그리고, 상술한 바와 같은 일련의 순환 싸이클이 수소 생산 공정 중에 반복된다.Then, a series of cycles as described above are repeated during the hydrogen production process.
도 6은 제 1 실시예에 따른 수소 생선 설비 사용시에 수소 증폭 장치(200)로 공급되는 스팀량/부생가스 중 CO량의 비율(스팀/CO)에 따른 공정열 회수에 의한 소수 증폭 장치(200) 내로의 스팀 공급 형태를 표시한 그래프이다.FIG. 6 illustrates the hydrophobic amplification apparatus 200 by recovering process heat according to a ratio (steam / CO) of the amount of CO in the steam amount / byproduct gas supplied to the hydrogen amplification apparatus 200 when using the hydrogen fish facility according to the first embodiment. A graph showing the type of steam supply into the vessel.
종래에는 수소 증폭 장치(200)로 투입되는 스팀과 CO의 비율(스팀/CO)이 약 2.5였으며, 여기서 스팀은 모두 수소 생산 설비 외부에서 제조되어 조달되었다. 이때, 스팀으로부터 수소 증폭을 위한 열과, 반응을 위한 H2O를 모두 제공받아야 하기 때문에, 다량의 스팀이 필요하였다.Conventionally, the ratio of steam and CO (steam / CO) introduced to the hydrogen amplification apparatus 200 was about 2.5, where the steam was all manufactured and procured outside the hydrogen production facility. At this time, since both the heat for hydrogen amplification and H 2 O for the reaction must be provided from the steam, a large amount of steam was required.
하지만, 본 발명의 실시예들에 의하면, 제철 공정, 보다 구체적으로는 파이넥스 제철 공정에서 발생된 부생가스를 재활용한다. 즉, 수소 발생에 필요한 열과 H2를 부생가스 자체 내 열과, 상기 부생가스 내 함유된 스팀(H2O)으로부터 조달된다. 또한, 수소 증폭 장치(200)에서 생성된 고온의 고농도 수소 함유 가스를 그대로 수소 분리 장치로 보내지 않고, 상기 고농도 수소 함유 가스의 열을 열 교환에 재활용함으로써, 수소 생산을 위한 열과 H2O를 생산된 고농도 수소 함유 가스로부터 조달이 가능하다.However, according to embodiments of the present invention, by-product gas generated in the steelmaking process, more specifically, the Finex steelmaking process is recycled. That is, heat and H 2 required for hydrogen generation are supplied from heat in the by-product gas itself and steam (H 2 O) contained in the by-product gas. In addition, the high-temperature, high-concentration hydrogen-containing gas generated in the hydrogen amplification apparatus 200 is not sent directly to the hydrogen separation device, and the heat of the high-concentration hydrogen-containing gas is recycled in heat exchange to produce heat and H 2 O for hydrogen production. It is possible to procure from high concentration hydrogen-containing gas.
따라서, 도 6에 도시된 바와 같이, 대략 수소 증폭 장치(200)로 공급되는 스팀과 CO의 비율(스팀/CO)을 종래(2 내지 3)에 비해 작은 1.2 비율까지 낮출 수 있다. 즉, 종래에 비해 수소 생산을 위해 공급되는 스팀량을 줄일 수 있다.Therefore, as shown in FIG. 6, the ratio (steam / CO) of steam and CO supplied to the hydrogen amplification apparatus 200 can be lowered to 1.2, which is smaller than that of the conventional (2 to 3). That is, the amount of steam supplied for producing hydrogen can be reduced as compared with the related art.
또한, 스팀을 제공하는데 있어서도, 제철 공정에서 발생된 부생가스 및 수소 생산 설비 자체 내에서 조달이 가능하여, 외부에서 제조되어 공급되는 스팀의 양을 줄이거나, 사용하지 않을 수 있다. 따라서, 종래에 비해, 수소 생산을 위한 스팀 생산 비용을 줄일 수 있고, 이로 인해, 수소 생산 비용이 절감되는 효과가 있다. 또한, 이로 인해 외부에서의 스팀 제조량이 감소함에 따라, 그에 따른 에너지 소비가 줄어들어 CO2 배출량을 줄일 수 있다.In addition, in providing the steam, it is possible to procure in the by-product gas generated in the iron making process and the hydrogen production facility itself, it is possible to reduce or not use the amount of steam that is manufactured and supplied from the outside. Therefore, compared with the related art, it is possible to reduce the steam production cost for hydrogen production, thereby reducing the hydrogen production cost. In addition, this reduces the amount of steam produced from the outside, thereby reducing the energy consumption accordingly can reduce the CO2 emissions.
본 발명의 실시예에 따른 수소 생산 설비에 의하면, 수소 생산 공정 중에 발생된 열을 이용하여 스팀(steam)을 생산하고, 이를 다시 수소 생산 공정에 재활용한다. 이에, 수소 생성에 필요한 스팀을 수소 생산 설비에 의해 조달이 가능하여, 외부에서 제조되어 공급되는 스팀의 양을 줄이거나, 사용하지 않을 수 있다. 따라서, 종래에 비해, 수소 생산을 위한 스팀 생산 비용을 줄일 수 있고, 이로 인해, 수소 생산 비용이 절감되는 효과가 있다.According to the hydrogen production facility according to an embodiment of the present invention, steam is produced using heat generated during the hydrogen production process, and is recycled back to the hydrogen production process. Therefore, the steam required for generating hydrogen can be procured by the hydrogen production facility, so that the amount of steam produced and supplied from the outside can be reduced or not used. Therefore, compared with the related art, it is possible to reduce the steam production cost for hydrogen production, thereby reducing the hydrogen production cost.

Claims (19)

  1. 제철 공정에서 발생된 부생가스를 제공받아, 상기 부생가스의 열을 회수하는 열 회수 장치;A heat recovery device that receives the by-product gas generated in the steelmaking process and recovers heat of the by-product gas;
    상기 열 회수 장치에서 배출된 부생가스를 제공받아, 상기 부생가스 중 수소 농도를 증가시켜, 고농도 수소 함유 가스를 생산하는 수소 증폭 장치;A hydrogen amplification device receiving the by-product gas discharged from the heat recovery device and increasing the hydrogen concentration in the by-product gas to produce a high concentration hydrogen-containing gas;
    상기 열 회수 장치 및 수소 증폭 장치 중 적어도 하나와 연결되어, 상기 열 회수 장치에서 부생가스의 열 회수 중에 발생된 스팀 및 상기 수소 증폭 장치에서 발생된 고농도 수소 함유 가스를 열 교환시켜 발생된 스팀 중 적어도 하나를 상기 수소 증폭 장치로 공급하는 수소 가스 처리 장치; 및At least one of steam generated by heat exchanging a high concentration hydrogen-containing gas generated in the hydrogen amplifying apparatus and steam generated during heat recovery of the by-product gas in the heat recovery apparatus, connected to at least one of the heat recovery apparatus and the hydrogen amplifying apparatus; A hydrogen gas processing device for supplying one to the hydrogen amplifying device; And
    상기 수소 가스 처리 장치를 통해 제공된 고농도 수소 함유 가스로부터 수소를 분리하는 수소 분리 장치;A hydrogen separation device for separating hydrogen from the high concentration hydrogen containing gas provided through the hydrogen gas treatment device;
    를 포함하는 수소 생산 설비.Hydrogen production equipment comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    일단이 상기 열 회수 장치에 연결되고 타단이 상기 수소 증폭 장치에 연결되어, 상기 열 회수 장치로부터 배출된 부생 가스를 상기 수소 증폭 장치로 공급하고, 상기 수소 가스 처리 장치의 스팀을 상기 수소 증폭 장치로 공급하는 부생가스 이동 배관을 포함하는 수소 생산 설비.One end is connected to the heat recovery device and the other end is connected to the hydrogen amplification device to supply the by-product gas discharged from the heat recovery device to the hydrogen amplification device, and steam of the hydrogen gas processing device to the hydrogen amplification device. Hydrogen production equipment, including by-product gas transfer piping to supply.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 수소 가스 처리 장치는 상기 수소 증폭 장치로부터 배출된 상기 고농도 수소 함유 가스를 열 교환시켜 스팀을 생성하고, 상기 고농도 수소 가스의 온도를 하락시키는 열 교환기를 포함하고,The hydrogen gas treatment device includes a heat exchanger for heat-exchanging the high concentration hydrogen-containing gas discharged from the hydrogen amplification device to generate steam, and to lower the temperature of the high concentration hydrogen gas,
    상기 열 회수 장치에서 부생가스의 열 회수 중에 발생된 스팀 및 상기 열 교환기에 의해 발생된 스팀 중 적어도 하나를 상기 부생 가스 이동 배관으로 이동시켜 상기 부생가스와 혼합시키는 스팀 공급부;A steam supply unit for moving at least one of steam generated during heat recovery of the by-product gas and steam generated by the heat exchanger in the heat recovery apparatus to the by-product gas moving pipe and mixing the by-product gas;
    를 포함하는 수소 생산 설비.Hydrogen production equipment comprising a.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 수소 가스 처리 장치는,The hydrogen gas processing device,
    상기 수소 증폭 장치와 연결되어, 상기 수소 증폭 장치로부터 고농도 수소 함유 가스를 배출시키는 제 1 수소 가스 이동 배관;A first hydrogen gas moving pipe connected to the hydrogen amplifying device to discharge a high concentration hydrogen-containing gas from the hydrogen amplifying device;
    상기 제 1 수소 가스 이동 배관과 연결되어, 상기 부생 가스 이동 배관을 통해 공급되는 부생가스와 스팀이 혼합된 혼합가스와 고농도 수소 함유 가스를 열 교환시키는 제 1 열 교환기;A first heat exchanger connected to the first hydrogen gas moving pipe to heat exchange the mixed gas and the high concentration hydrogen-containing gas mixed with the by-product gas and the steam supplied through the by-product gas moving pipe;
    상기 제 1 열 교환기와 연결되어, 상기 제 1 열 교환기에서 열 회수된 고농도 수소 함유 가스를 열 교환시키는 제 2 열 교환기;및A second heat exchanger connected to the first heat exchanger to heat exchange the high concentration hydrogen-containing gas heat-recovered in the first heat exchanger; and
    상기 제 1 열 교환기와 제 2 열 교환기를 연결되어, 상기 제 1 열 교환기에서 열 회수된 고농도 수소 함유 가스를 제 2 열 교환기로 이동시키는 제 2 수소 가스 이동 배관;A second hydrogen gas transfer pipe connected to the first heat exchanger and the second heat exchanger to move the high concentration hydrogen-containing gas heat-recovered from the first heat exchanger to a second heat exchanger;
    을 포함하는 수소 생산 설비.Hydrogen production equipment comprising a.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 스팀 공급부는,The steam supply unit,
    일단이 상기 열 회수 장치에 연결되어, 상기 열 회수 장치에서 부생된 스팀을 배출시키는 제 1 스팀 이동 배관;A first steam moving pipe having one end connected to the heat recovery device and discharging the by-product steam from the heat recovery device;
    일단이 상기 제 2 열 교환기에 연결되어, 상기 고농도 수소 함유 가스의 열 교환 중 발생된 스팀을 이동시키는 제 2 스팀 이동 배관;A second steam transfer pipe, one end of which is connected to the second heat exchanger and moves steam generated during heat exchange of the high concentration hydrogen-containing gas;
    을 포함하고,Including,
    상기 제 1 및 제 2 스팀 이동 배관 각각의 타단이 상기 부생가스 이동 배관에 연결된 수소 생산 설비.Hydrogen production facility, the other end of each of the first and second steam moving pipe is connected to the by-product gas moving pipe.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 제 1 열 교환기는 상기 부생가스 연장 경로 상에 설치되며, The first heat exchanger is installed on the byproduct gas extension path,
    상기 제 1 열 교환기는 상기 제 1 및 제 2 스팀 이동 배관 각각으로부터 공급된 스팀과 상기 부생가스가 혼합되는 지점의 후단에 설치된 수소 생산 설비.And the first heat exchanger is installed at a rear end of a point where the steam supplied from each of the first and second steam moving pipes and the by-product gas are mixed.
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 열 회수 장치 및 제 2 열 교환기 각각과 연결되어, 열 교환을 위한 열 회수 매체를 공급하는 열 회수 매체 이동 배관을 포함하는 수소 생산 설비.And a heat recovery medium moving pipe connected to each of the heat recovery device and the second heat exchanger to supply a heat recovery medium for heat exchange.
  8. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,The method according to any one of claims 1 to 7,
    상기 수소 증폭 장치가 복수개 마련된 수소 생산 설비.Hydrogen production equipment provided with a plurality of the hydrogen amplification device.
  9. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,The method according to any one of claims 1 to 7,
    상기 열 회수 장치로부터 배출된 부생가스 중 함유된 황을 제거하여 상기 수소 증폭 장치로 공급하는 황 제거 장치를 포함하는 수소 생산 설비.And a sulfur removal device for removing sulfur contained in by-product gas discharged from the heat recovery device and supplying the sulfur to the hydrogen amplification device.
  10. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,The method according to any one of claims 1 to 7,
    상기 수소 가스 처리 장치로부터 제공된 고농도 수소 함유 가스를 압축시켜 압력을 증가시켜 상기 수소 분리 장치로 공급하는 압축기를 포함하는 수소 생산 설비.And a compressor for compressing the high concentration hydrogen-containing gas provided from the hydrogen gas treatment device to increase the pressure and supply the pressure to the hydrogen separation device.
  11. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,The method according to any one of claims 1 to 7,
    상기 수소 분리 장치로부터 배출된 수소 가스로부터 산소를 제거하는 산소 제거기를 포함하는 수소 생산 설비.And an oxygen remover for removing oxygen from the hydrogen gas discharged from the hydrogen separation device.
  12. 제철 공정에서 발생된 부생가스의 열을 회수하는 열 회수 과정; A heat recovery process for recovering heat of the by-product gas generated in the steelmaking process;
    상기 열 회수 과정을 거친 부생가스 중 수소 농도를 증가시켜 고농도 수소 함유 가스를 생산하는 수소 증폭 과정; 및Hydrogen amplification process to produce a high concentration hydrogen-containing gas by increasing the concentration of hydrogen in the by-product gas subjected to the heat recovery process; And
    상기 수소 증폭 과정에서 생성된 고농도 수소 함유 가스 중 수소를 분리하는 수소 분리 과정;A hydrogen separation process of separating hydrogen from the high concentration hydrogen-containing gas generated in the hydrogen amplification process;
    을 포함하고,Including,
    상기 수소 증폭 과정은,The hydrogen amplification process,
    상기 열 회수 과정에서 부생가스의 열 회수 중에 발생된 스팀 및 상기 수소 증폭 과정에 의해 발생된 고농도 수소 함유 가스의 열 교환에 의해 발생된 스팀 중 적어도 하나를 상기 열 회수 과정을 거친 부생가스와 혼합시키는 과정;및Mixing at least one of steam generated during heat recovery of the by-product gas in the heat recovery process and steam generated by heat exchange of the high concentration hydrogen-containing gas generated by the hydrogen amplification process with the by-product gas which has undergone the heat recovery process Process; and
    상기 부생가스와 스팀을 반응시키는 과정;Reacting the by-product gas and steam;
    을 포함하는 수소 생산 방법.Hydrogen production method comprising a.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 수소 증폭 과정은,The hydrogen amplification process,
    상기 스팀과 부생가스가 혼합된 가스를 상기 수소 증폭 과정에 의해 생성된 고농도 수소 함유 가스와 열 교환시키는 과정을 포함하는 수소 생산 방법.And heat exchanging the gas mixed with the steam and by-product gas with a high concentration hydrogen-containing gas generated by the hydrogen amplification process.
  14. 청구항 13에 있어서,The method according to claim 13,
    상기 수소 증폭 과정에 의해 발생된 고농도 수소 함유 가스의 열 교환에 의해 발생된 스팀을 생성하는 과정은,The process of generating steam generated by the heat exchange of the high concentration hydrogen-containing gas generated by the hydrogen amplification process,
    상기 수소 증폭 과정에 의해 발생된 고농도 수소 함유 가스와, 상기 스팀과 부생가스가 혼합된 가스를 열 교환시키는 1차 열 교환 과정;A first heat exchange process of heat exchanging a high concentration hydrogen-containing gas generated by the hydrogen amplification process and a gas mixed with the steam and by-product gas;
    상기 1차 열 교환 과정을 거친 고농도 수소 함유 가스를 열 교환 매체와 열 교환시켜 스팀을 생성하는 과정;Generating steam by heat-exchanging a high concentration hydrogen-containing gas that has undergone the first heat exchange process with a heat exchange medium;
    을 포함하는 수소 생산 방법.Hydrogen production method comprising a.
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 스팀과 부생가스가 혼합된 가스는 상기 고농도 수소 함유 가스와의 열 교환 작용에 의해 수소 증폭 반응에 필요한 온도로 승온되는 수소 생산 방법.And a gas in which the steam and the by-product gas are mixed are heated up to a temperature necessary for a hydrogen amplification reaction by heat exchange with the high concentration hydrogen-containing gas.
  16. 청구항 12 내지 청구항 15 중 어느 한 항에 있어서,The method according to any one of claims 12 to 15,
    상기 수소 증폭 과정은 복수의 수소 증폭 과정을 포함하는 수소 생산 방법.The hydrogen amplification process comprises a plurality of hydrogen amplification process.
  17. 청구항 12 내지 청구항 15 중 어느 한 항에 있어서,The method according to any one of claims 12 to 15,
    상기 열 회수 과정과 수소 중폭 과정 사이에 상기 부생가스 중 황을 제거하는 과정을 포함하는 수소 생산 방법.And removing sulfur in the by-product gas between the heat recovery process and the hydrogen blast process.
  18. 청구항 12 내지 청구항 15 중 어느 한 항에 있어서,The method according to any one of claims 12 to 15,
    상기 수소 증폭 과정과 상기 수소 분리 과정 사이에 상기 고농도 수소 함유 가스를 압축시키는 압축 과정을 포함하는 수소 생산 방법.And a compression process of compressing the high concentration hydrogen-containing gas between the hydrogen amplification process and the hydrogen separation process.
  19. 청구항 12 내지 청구항 15 중 어느 한 항에 있어서,The method according to any one of claims 12 to 15,
    상기 수소 분리 과정 후에, 분리된 수소 가스로부터 산소를 제거하는 산소 제거 과정을 포함하는 수소 생산 방법.After the hydrogen separation process, the hydrogen production method comprising an oxygen removal process for removing oxygen from the separated hydrogen gas.
PCT/KR2017/012809 2016-12-05 2017-11-13 Hydrogen production equipment and hydrogen production method WO2018105911A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2017372827A AU2017372827B2 (en) 2016-12-05 2017-11-13 Hydrogen production equipment and hydrogen production method
CN201780085518.1A CN110382405A (en) 2016-12-05 2017-11-13 Hydrogen production equipment and hydrogen production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0164440 2016-12-05
KR1020160164440A KR101881973B1 (en) 2016-12-05 2016-12-05 Hydrogen producing apparatus and method for producing hydrogen

Publications (1)

Publication Number Publication Date
WO2018105911A1 true WO2018105911A1 (en) 2018-06-14

Family

ID=62491560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012809 WO2018105911A1 (en) 2016-12-05 2017-11-13 Hydrogen production equipment and hydrogen production method

Country Status (4)

Country Link
KR (1) KR101881973B1 (en)
CN (1) CN110382405A (en)
AU (1) AU2017372827B2 (en)
WO (1) WO2018105911A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084772A (en) * 2010-01-18 2011-07-26 주식회사 포스코 Apparatus for manufacturing molten irons that is capable of reducing carbon dioxide emissions
KR20130076645A (en) * 2011-12-28 2013-07-08 주식회사 포스코 Apparatus for manufacturing syngas containing co and h2 and method thereof
KR101321930B1 (en) * 2012-06-07 2013-10-28 주식회사 포스코 Manufacturing apparatus for reduced iron and manufacturing method thereof using the same
KR101384802B1 (en) * 2012-12-27 2014-04-14 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing thereof
KR20150062249A (en) * 2013-11-28 2015-06-08 주식회사 포스코 Apparatus for manufacturing molten iron

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080099861A (en) * 2006-03-14 2008-11-13 미츠비시 가스 가가쿠 가부시키가이샤 Hydrogen generator and process for producing hydrogen
US8894967B2 (en) * 2008-03-28 2014-11-25 IFP Energies Nouvelles Process for the production of highly thermally-integrated hydrogen by reforming a hydrocarbon feedstock
KR101464056B1 (en) * 2010-03-02 2014-11-21 제이에프이 스틸 가부시키가이샤 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084772A (en) * 2010-01-18 2011-07-26 주식회사 포스코 Apparatus for manufacturing molten irons that is capable of reducing carbon dioxide emissions
KR20130076645A (en) * 2011-12-28 2013-07-08 주식회사 포스코 Apparatus for manufacturing syngas containing co and h2 and method thereof
KR101321930B1 (en) * 2012-06-07 2013-10-28 주식회사 포스코 Manufacturing apparatus for reduced iron and manufacturing method thereof using the same
KR101384802B1 (en) * 2012-12-27 2014-04-14 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing thereof
KR20150062249A (en) * 2013-11-28 2015-06-08 주식회사 포스코 Apparatus for manufacturing molten iron

Also Published As

Publication number Publication date
KR20180064157A (en) 2018-06-14
AU2017372827A1 (en) 2019-07-11
CN110382405A (en) 2019-10-25
KR101881973B1 (en) 2018-07-25
AU2017372827B2 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2011087199A1 (en) Molten iron manufacturing apparatus for reducing emissions of carbon dioxide
US20220235426A1 (en) Method and system for producing steel or molten-iron-containing materials with reduced emissions
WO2014104596A1 (en) Molten iron manufacturing apparatus and molten iron manufacturing method
WO2011081276A1 (en) Apparatus for manufacturing molten iron
WO2013094861A1 (en) Apparatus for reducing carbon dioxide by using molten slag
WO2014104438A1 (en) Molten iron manufacturing apparatus and molten iron manufacturing method
CN105579593A (en) DNA-adapter-molecules for the preparation of DNA-libraries and method for producing them and use
TW202237861A (en) Smart hydrogen production for dri making
WO2017111415A1 (en) Method for decomposing and recycling carbon dioxide using hot stove
WO2018004070A1 (en) Apparatus for manufacturing molten iron and method for manufacturing molten iron by using same
WO2013172653A1 (en) Molten iron production apparatus and molten iron producing method using same
TWI565806B (en) Reduction of metal oxides using a gas stream containing both hydrocarbon and hydrogen
WO2021101193A1 (en) Method for producing carbon monoxide and use thereof
JP4515975B2 (en) System and method using reformed gas
WO2018105911A1 (en) Hydrogen production equipment and hydrogen production method
WO2012138191A2 (en) Apparatus and method for treating coke oven gas
KR101541900B1 (en) Apparatus for manufacturing molten iron
WO2012091422A2 (en) Device for manufacturing reduced iron using nuclear reactor and method for manufacturing reduced iron using same
WO2024029806A1 (en) Molten iron production facility and molten iron production method
WO2024029807A1 (en) Molten iron manufacturing equipment and molten iron manufacturing method
KR100250719B1 (en) Melt reduction equipment and operating method
WO2019124859A1 (en) Molten iron manufacturing apparatus and molten iron manufacturing method
KR101235268B1 (en) Carbon dioxide reformer from finex off gas and method for reforming thereof
WO2020105901A1 (en) Device for manufacturing molten iron
WO2019124758A1 (en) Molten iron manufacturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017372827

Country of ref document: AU

Date of ref document: 20171113

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17877453

Country of ref document: EP

Kind code of ref document: A1