WO2013172653A1 - Molten iron production apparatus and molten iron producing method using same - Google Patents

Molten iron production apparatus and molten iron producing method using same Download PDF

Info

Publication number
WO2013172653A1
WO2013172653A1 PCT/KR2013/004304 KR2013004304W WO2013172653A1 WO 2013172653 A1 WO2013172653 A1 WO 2013172653A1 KR 2013004304 W KR2013004304 W KR 2013004304W WO 2013172653 A1 WO2013172653 A1 WO 2013172653A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
reduction
gas
carbon dioxide
reactor
Prior art date
Application number
PCT/KR2013/004304
Other languages
French (fr)
Korean (ko)
Inventor
정종헌
이승문
김기현
김성만
신명균
김현용
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201380025114.5A priority Critical patent/CN104302789B/en
Publication of WO2013172653A1 publication Critical patent/WO2013172653A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/143Injection of partially reduced ore into a molten bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/28Increasing the gas reduction potential of recycled exhaust gases by separation
    • C21B2100/282Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • the present invention relates to a molten iron manufacturing apparatus and a method for manufacturing molten iron using the same. More particularly, molten iron is reduced by molten reduction while reducing iron ore using gas generated by reforming by-product gas generated in a steelmaking process.
  • the present invention relates to a production apparatus and a method for manufacturing molten iron using the same.
  • the two methods differ depending on the type of reducing agent used, and the reaction conditions of reduced iron production, such as change in physical and chemical properties of iron ore, fluidization properties, and sticking, are solved. While the patent uses a bubbling fluidized bed, a technique (US Pat. No. 5,431,711) for reducing iron ore in the form of a circulating fluidized bed has been developed to reduce iron ore in the form of fine powder discarded at an ironworks.
  • Embodiments of the present invention are to provide an apparatus for producing molten iron by reducing the iron ore raw material by selecting hydrogen and carbon monoxide using the by-product gas generated in the iron making process and a method for producing molten iron using the same.
  • a raw material pretreatment system for sorting and pretreating iron ore raw materials suitable for reduction; And a first rising pipe to which the pretreated iron ore raw material is transferred from the raw material pretreatment facility, and a second rising pipe connected to the first rising pipe, wherein the transferred iron ore raw material is pre-reduced by reducing gas.
  • Pre-reduction reactor A reduction reactor for reducing the partial reduced iron transferred from the pre-reduction reactor; A molten reduction reactor producing molten iron by melting and reducing the partially reduced iron obtained from the reduction reactor using a reducing gas; A steel off-product by-product pretreatment system for mixing and reforming carbon dioxide generated in a steelmaking by-product gas or iron ore reduction process and supplying the generated reducing gas to the melt reduction reactor or the pre-reduction reactor; And an iron ore reduction process facility for supplying carbon dioxide generated in the iron ore reduction process may be provided.
  • the iron ore reduction process equipment, the second pre-reduction reactor for pre-reducing the iron ore raw material by the reducing gas supplied from the reduction reactor;
  • a second raw material pretreatment facility for supplying the iron ore raw material that has been screened and pretreated to be suitable for the second pre-reduction reactor by the reducing gas supplied from the second pre-reduction reactor;
  • a carbon dioxide line separating carbon dioxide from a reducing gas line connected to the raw material pretreatment facility and supplying carbon dioxide to the steelmaking by-product gas pretreatment facility. It may include.
  • the steelmaking by-product gas pretreatment apparatus may include: an iron-making by-product gas separator for separating hydrogen from steelmaking by-product gas and supplying the separated hydrogen to the second riser; A first heater for supplying heat to the iron by-product gas from which the hydrogen is separated by heat exchange with a circulating gas circulating through the raw material pretreatment facility; A first reforming reactor for generating hydrogen and carbon as the iron-based by-product gas from which the hydrogen supplemented by the first heater is separated, and supplying the generated hydrogen to the first riser; And carbon dioxide generated from the first reforming reactor connected to the first reforming reactor, carbon dioxide generated by the combustion of the gas used in the first heater, and carbon dioxide generated in the iron ore reduction process facility to produce carbon monoxide. And the produced carbon monoxide may include a second reforming reactor for supplying to the melt reduction reactor.
  • One or more embodiments of the present invention may further include a second heater for supplying heat to the second reforming reactor.
  • the steelmaking by-product gas pretreatment apparatus includes: an iron-making by-product gas separator for separating hydrogen and supplying the separated hydrogen to the second riser; A first heater for replenishing heat by circulating gas circulating the hydrogen by-product by-product separated from the hydrogen through the raw material pretreatment facility; And carbon dioxide generated by the combustion of the gas used in the first heater and carbon dioxide generated in the iron ore reduction process facility to produce a reducing gas including hydrogen and carbon monoxide and the produced reducing gas is the melt reduction. It may include a third reforming reactor for supplying the reactor.
  • the first riser is operated at 800 ° C. or higher, and the second riser is operated at 350 to 650 ° C.
  • a first heat exchanger is installed between the steelmaking by-product gas separation device and the second riser to form a heat exchange with hydrogen discharged from the first riser and the second riser.
  • the hydrogen gas discharged from the second riser is installed on the second ore conduit connecting the first and the second riser.
  • a second heat exchanger for supplying the first rising pipe after heat exchange with a partial reduced iron flowing through a second ore conduit may be installed, and the raw material pretreatment facility receives heat from a reducing gas line for supplying reducing gas from the reduction reactor. It is characterized by.
  • the hydrocarbon processing apparatus for supplying high heat and reducing gas is installed in the melt reduction reactor, and the oxygen reduction line for supplying pure oxygen may be installed in the melt reduction reactor.
  • the hydrocarbon treatment device is characterized in that the device for burning coal pulverized coal, coke and briquette form.
  • the present invention may further include a carbon dioxide separator connected to a reducing gas line to separate carbon dioxide from the reducing gas, the reducing gas connected to the carbon dioxide separator and passed through the carbon dioxide separator. It may further include a carbon dioxide line for supplying a reduced gas line and the separated carbon dioxide to the steelmaking by-product pre-treatment facility to supply to the reduction reactor, the carbon dioxide storage is installed on the carbon dioxide line to store the separated carbon dioxide.
  • the apparatus may further include.
  • a steam-gas reforming reactor connected to a second raw material pretreatment plant for reforming the gas discharged through the second raw material pretreatment facility to generate steam; And a hydrogen separation device connected to the steam-gas reforming reactor to separate the generated steam and carbon dioxide. It may further include.
  • a carbon dioxide line connected to a hydrogen separation device to supply the separated carbon dioxide to a steelmaking by-product pretreatment facility, and the hydrogen separation device to connect the separated hydrogen to the reduction reactor and the first reactor. It may further include a hydrogen line for supplying the riser.
  • a fourth heat exchanger may be formed on the hydrogen line to supplement the heat source with hydrogen in the hydrogen line by heat exchange with gas supplied from the melt reduction reactor to the reduction reactor. It may further include a carbon dioxide storage device is installed on the carbon dioxide line to store the separated carbon dioxide, the raw material pretreatment equipment from the hydrogen line and the reduction reactor to supplement the heat amount to the hydrogen passed through the fourth heat exchanger
  • the third heater may be installed on the reducing gas line connected to the.
  • the steelmaking by-product gas pretreatment step may include: separating hydrogen from the steelmaking by-product gas and supplying the separated hydrogen to the first riser;
  • the iron by-product gas from which the hydrogen is separated is heated by heat exchange with a circulating gas circulated through the raw material pretreatment facility and supplied to the first reforming reactor to produce carbon and hydrogen to supply the produced hydrogen to the pre-reduction reactor.
  • the steelmaking by-product gas pretreatment step may include: separating hydrogen from the steelmaking by-product gas and supplying the separated hydrogen to the pre-reduction reactor; Heating the iron by-product gas from which the hydrogen is separated by heat exchange with a circulating gas circulating through the raw material pretreatment facility; And supplying the heated hydrogen by-product off-gas separated into the third reforming reactor to produce a reducing gas including carbon and hydrogen, and supplying the produced reducing gas to the melt reduction reactor. It may include.
  • the unreacted carbon dioxide may be further recovered in the reducing gas production step and recycled back to the third reforming reactor.
  • the raw material pretreatment step is a step of performing a preliminary heating by deforming the iron ore raw material by receiving a heat amount by the reducing gas discharged from the reduction reactor.
  • the iron ore raw material is hematite, magnetite, moisture-containing iron ore or steelmaking process dust (dust), characterized in that the fine form of any one or more.
  • the first riser is operated at 800 ° C. or higher
  • the second riser is operated at a range of 350 ° C. to 650 ° C.
  • the hydrogen separated from the steelmaking by-product gas Is supplied to the second riser by heat exchange with hydrogen discharged from the first riser and the second riser, and on the second ore conduit connecting the first and the second riser. It is characterized in that the hydrogen gas discharged from the second riser is heat-exchanged with the partial reduced iron flowing through the second ore conduit to increase the temperature and then supply the hydrogen gas to the first riser.
  • the melt reduction step may further include receiving high heat and reducing gas by a hydrocarbon processing apparatus connected to the melt reduction reactor, and receiving pure oxygen through an oxygen line. have.
  • the iron ore reduction step may include: pre-reducing iron ore raw materials by reducing gas supplied from the reduction reactor to the second pre-reduction reactor; Supplying iron ore raw material pre-treated to be suitable for the second pre-reduction reactor by the reducing gas supplied from the second pre-reduction reactor to the second raw material pretreatment facility to the second pre-reduction reactor; And separating carbon dioxide from the reducing gas discharged from the second preliminary reduction reactor and supplying the carbon dioxide to the iron by-product by-product pretreatment step. It may include.
  • the separation of carbon dioxide is performed by a carbon dioxide separation unit or a hydrogen separation unit connected to the second raw material pretreatment facility, and the steam-gas reforming reactor is disposed at the front end of the hydrogen separation unit. Is installed to generate water vapor in the reducing gas introduced from the second raw material pretreatment facility, and the hydrogen separated from the hydrogen separation device is exchanged with the reducing gas supplied from the melt reduction reactor to the reduction reactor. It is heated and supplied to the first riser.
  • Embodiments of the present invention are to reform the iron by-product gas, including carbon dioxide to produce a hydrogen-rich reducing agent gas, and by reducing the fine iron ore of hematite and magnetite system by selectively using hydrogen and carbon monoxide in the reducing agent gas for iron ore reduction Can be prepared.
  • carbon dioxide is recovered and reformed and recycled using a steelmaking process gas, thereby reducing carbon dioxide and securing a large amount of hydrogen reducing agent, thereby reducing the low-grade iron ore.
  • FIG. 1 is a schematic diagram of a molten iron manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a molten iron manufacturing apparatus according to a first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a molten iron manufacturing apparatus according to a second embodiment of the present invention.
  • FIG. 1 is a schematic view of a molten iron manufacturing apparatus according to an embodiment of the present invention, referring to Figure 1, the molten iron manufacturing apparatus of the embodiment according to the present invention to produce molten iron by using the iron and steel by-products efficiently It comprises a raw material pretreatment facility 10, steelmaking by-product gas pretreatment facility 20, pre-reduction / reduction reactor 30 and the melt reduction reactor (40).
  • the molten iron manufacturing apparatus according to the embodiment of the present invention may be modified with the type of raw materials used or installed with additional apparatus.
  • the raw material pretreatment system 10 is supplied to the raw material pretreatment system 10 through the iron ore raw material line 5 to the low-grade ore, which is generally in the form of fine particles of several millimeters or less, to be deformed or controlled to reduce the It is a device that performs preheating.
  • the raw material pretreatment facility 10 is to vary depending on the form of the reduction and melting reactor of iron ore, when the pre-reduction / reduction reactor 30 is a fixed bed form, the iron ore particles present in the fine form is transformed into a pellet (pellet) form, etc. It is advantageous. Particularly, fine iron ore of several hundred microns or less including magnetite which is not suitable for blast furnace type reactor, as well as fine iron ore of several tens of microns or less discharged in dust form during the steelmaking process, is transformed into pellet form during raw material pretreatment. Can be. They may be mixed with coal or present in a charcoal form with a binder.
  • the iron ore in the form of fine particles which exist from thousands of microns to several microns, is a bubble fluidized bed, a circulating fluidized bed, or a riser according to its shape and physicochemical properties. It can be suitably selected and pretreated to suit various fluidized bed reactors, such as rotary fluidized bed, drum or spray form.
  • Iron ore in the form of fine powder in the embodiment according to the present invention includes hematite and magnetite, which can not be used directly in the form of blast furnace, low iron ore containing a lot of moisture, dust ore in the form of dust (dust) discharged as a by-product of the steelmaking process.
  • the finely divided iron ore selected according to the pre-reduction / reduction reactor 30 shape may be heated to an appropriate temperature or morphologically modified by physicochemical methods.
  • iron ore containing a lot of moisture, such as limonite can be dried or pre-heated, iron ore with high impurities or low iron content such as taconite may be subjected to a raw material pretreatment process such as crushing or beneficiation in advance.
  • the steel by-product by-product pretreatment unit 20 recovers carbon dioxide from the gas discharged from the iron ore reduction process through a carbon dioxide line 37, and then, the steel by-product gas such as coke oven exhaust gas is a steel by-product gas line (6) When supplied through the feed is mixed together, reformed, sorted and separated to supply the reducing gas to the melt reduction reactor 40 through the reducing gas line 70 as appropriate.
  • the reformed reducing gas includes hydrogen and carbon monoxide as main components, and is appropriately distributed and supplied selectively according to the type of iron ore to reduce the hydrogen and carbon monoxide in the pre-reduction / reduction reactor 30 and the melt reduction reactor 40. It can effectively enhance the reducing ability of.
  • the iron and gas by-product pretreatment system 20 properly supplies a reducing gas suitable for reducing the lower iron ore using a carbon dioxide recovery and reuse technology as well as a heat recovery and heat supply system of the reactor.
  • carbon dioxide may be reduced by recovering and recycling carbon dioxide generated during the steelmaking process.
  • the iron ore raw material pretreated in the raw material pretreatment facility 10 is introduced into the pre-reduction / reduction reactor 30 through the ore conduit 52, the pre-reduction / reduction reactor At 30, the iron ore raw material is pre-reduced and reduced and introduced into the molten reduction reactor 40 through the partial reduced iron transfer pipe (54).
  • the preliminary reduction / reduction reactor 30 reduces the reducing gas generated from the molten reduction reactor 40 through the reducing gas line 64 and the reformed reducing gas generated from the steelmaking by-product gas pretreatment facility 20. It is a device for preliminarily reducing or reducing the iron ore transferred from the raw material pretreatment facility 10 by using the reducing gas supplied through the line 60.
  • the pre-reduction / reduction reactor 30 may be connected in series or in parallel with one or two or more so as to adjust the reduction reaction rate for removing oxygen from the iron ore according to the iron ore particle size and reactor type.
  • the pre-reduction / reduction reactor 30 is determined by the iron ore type and the appropriate reduction reaction temperature, pressure range, etc. If the reduction process of the iron ore in the form of a fixed bed (fixed bed), reduced and calcined at a high temperature of 900 °C or more It is also possible.
  • the pre-reduction / reduction reactor 30 may connect several reactor types to each other. In particular, in the case of a fluidized bed (fluidized bed) reactor, the reaction temperature and the degree of fluidization should be controlled so as to prevent carbon deposition or sticking.
  • hematite In general, in the case of hematite (hematite), it is well reduced at a temperature between 600 ⁇ 850 °C under a pressure higher than the atmospheric pressure, and in the case of magnetite (magnetite) it is well reduced at a temperature between 350 ⁇ 650 °C.
  • the reducing gas separated and separated from the steel by-product by-product pretreatment facility 20 for efficient reduction of low-grade iron ore such as hard-reduced ore is input and controlled according to the form and reduction of iron ore. If a large amount of hydrogen reducing agent is used, the reduction rate of the lower iron ore can be increased.
  • the molten reduction reactor 40 of the embodiment according to the present invention melts and reduces the partial reduced iron obtained from the preliminary reduction / reduction reactor 30 by using a hydrocarbon processing apparatus 80 for supplying high heat and reducing gas.
  • 90 is a device for producing.
  • the hydrocarbon processing device 80 is a device for burning coal pulverized in the form of pulverized coal, coke or briquettes so as to provide heat and reducing gas required for the reactor.
  • the calorific value it is preferable to use pure oxygen rather than air in terms of carbon dioxide reduction, and the pure oxygen is supplied through the oxygen line 85, and in order to secure the reducing gas in the reactor and secure the space when the pure oxygen is introduced.
  • the insufficient driving force can be controlled by the introduction of hydrocarbons by the hydrocarbon (reduction gas) gas line 70 obtained from the steelmaking by-product gas pretreatment facility 20.
  • Figure 2 is a schematic diagram of a molten iron manufacturing apparatus of the first embodiment according to the present invention, the basic configuration and function is the same as in Figure 1, but according to the type and characteristics of iron ore to be reduced, the configuration of the invention is modified or additional devices are to be installed Can be.
  • a reactor in the form of a fluidized bed was used to promote indirect reduction of the lower iron ore present in the form of a fine reduction / reduction reactor.
  • the fluidized bed reactor is to reduce the iron ore present in the form of fine powder by reducing gas such as carbon monoxide, hydrogen, etc., compared with using a fixed bed reactor of the blast furnace and shaft reactors, such as pellet or sintering process of iron ore This process can be simplified because there is no need, and iron ore is in the form of fine powder, so iron ore reduction rate is fast.
  • the fluidized bed reactor is applied differently depending on the particle size and the iron ore density change. That is, all iron ore particles of several millimeters or less are preferred to combine several fluidized bed reactor types rather than requiring one reactor type in the reduction process, which results in carbon deposition or sticking phenomenon occurring when reducing finely divided iron ores. It is possible to achieve an efficient iron ore reduction process by reducing the, and by minimizing the scattering loss caused by the fluidized bed reactor type. This is possible by appropriate choice of fluidized bed reactors depending on the type of iron ore.
  • a riser-type fluidized bed reactor is generally used to reduce the magnetite-type fine iron ore, which is generally less than several hundred microns and has an average particle distribution of several tens of microns.
  • a bubble fluidized bed reactor was applied for hematite-type fine iron ores with fine iron ore less than several millimeters and average particle distribution of several hundred microns.
  • the fine iron ore is in contact with a reducing gas under appropriate reaction conditions to form reduced iron, it is possible to form a molten iron 90 in the melt reduction reactor (40).
  • the magnetite-based iron ore raw material is well reduced by the reducing gas containing a large amount of hydrogen as a reducing gas as shown in the following formula (1), and the iron ore indirect reduction reaction occurs well in the temperature range of 350 ⁇ 650 °C.
  • the iron ore of the magnetite series is mixed in the raw material pretreatment facility 10b to have a normal distribution of several tens of micron particle size and treated to be in the Geldart A range to be reduced in the riser 33 and 34.
  • the iron ore with high moisture may be subjected to a drying process or the ore with high impurities may be accompanied by a pretreatment process by beneficiation.
  • fine magnetite which is present in tens of microns is reduced by using hydrogen, and the reduction reaction occurs faster than carbon monoxide as a reducing agent at a temperature of 800 ° C.
  • the preliminary iron ore may be preheated to allow a (preliminary) reduction at a temperature of 800 ° C. or higher.
  • the preheating can be performed by circulating and burning some of the gas discharged from the reduction reactor 32 to the fine magnetite raw material pretreatment facility 10b and raising the temperature to 800 ° C or higher.
  • the reduction reaction of the magnetite system using hydrogen is rapidly reduced at a reduction temperature of 800 ° C. or higher until the iron ore reduction rate is 40-50% or less, but the reduction reaction rate is significantly reduced when the reduction rate is 40-50% or more. Therefore, in order to obtain an iron ore reduction rate of 50% or more, it is appropriate that the reaction temperature is 350 to 650 ° C or less. This is because the reduction rate is increased by reducing the fine magnetite with hydrogen, and the reduction reaction rate is inhibited by carbon deposition or sticking. For this purpose, it is appropriate to reduce by connecting two or more rising tubes for the reduction of the fine magnetite.
  • the first riser 34 is adjusted so that the reduction rate is 40 to 50% at a temperature of 800 °C or more, and the second riser 33 is to accelerate the reduction reaction at 350 ⁇ 650 °C temperature.
  • the reduced iron thus obtained may be mixed with the reduced iron of the hematite system and reduced to be added to the melt reduction reactor 40. At this time, it is also possible to distinguish the reduced iron of the magnetite system and hematite system to be introduced into the melt reduction reactor (40).
  • the reducing gas for reducing the iron ore of the magnetite system is advantageously reduced by using hydrogen gas produced from the steelmaking by-product gas pretreatment facility 20-1.
  • the reducing gas may exist in the form of various mixed gases.
  • the reactor used at this time is not limited to the riser, the type of iron ore is not limited to the iron ore of the magnetite system, it is possible to include a hematite system and a dust (iron) in the form of dust (dust) discharged as a by-product of steelmaking process.
  • the reduction reactor may be connected to two or more according to the reduction rate and the iron ore residence time.
  • the iron ore raw material is supplied to the raw material pretreatment facility 10b for sorting and pretreating the iron ore raw material to be suitable for reduction through the iron ore raw material line 5b, and the iron ore raw material pretreated from the raw material pretreatment facility 10b. Is transferred to a preliminary reduction reactor, wherein the preliminary reduction reactor is a first riser 34 to which the pretreated iron ore raw material is transferred, and a second riser 33 connected to the first riser 34. Is done.
  • the partial reduced iron transferred from the preliminary reduction reactors 33 and 34 in which the transferred iron ore raw material is pre-reduced by the reducing gas is reduced in the reduction reactor 32, and the partial reduced iron obtained from the reduction reactor 32 is melted.
  • the molten iron 90 is produced by melt reduction using a reducing gas in the reduction reactor 40.
  • carbon dioxide generated in a steelmaking by-product gas or iron ore reduction process is mixed and reformed to generate a reducing gas, and the generated reducing gas is the molten reduction reactor 40 or the preliminary reduction reactors 33 and 34.
  • the iron by-product by-product pretreatment facility 20-1 to supply to the iron ore reduction process facility 100-1 to supply the carbon dioxide is shown.
  • the carbon dioxide generated by the complete combustion of the gas and carbon dioxide generated in the iron ore reduction process facility (100-1) to produce carbon monoxide and the produced carbon monoxide is supplied to the melt reduction reactor (40) Reactor 20b It should.
  • the carbon supply to the second reforming reactor 20b is made through the carbon line 18.
  • the temperature of the gas circulated through the raw material pretreatment facility 10b is 800 ° C. or higher.
  • a part of the gas used in the first heater 12a may supply carbon dioxide to the second reforming reactor 20b by complete combustion, and at the same time, heat may be supplied by the second heater 12b.
  • the remaining gas can be supplied to power plant 13a to produce power.
  • Hydrogen gas generated in the first reforming reactor 20a is introduced into the first riser 34 and the hydrogen may be present at 800 ° C. or more, and the amount of heat insufficient is part of the gas discharged from the reduction reactor 32. It is also possible to supplement by using as a combustion gas. At this time, the hydrogen gas discharged from the second riser 33 may be replenished to the first riser 34 after heat exchange with the second heat exchanger 11b.
  • Hydrogen reducing agent gas in the first embodiment according to the present invention is the coke oven gas (COG) generated in the process of making coke from the steel mill and the gas discharged from the iron ore reduction process equipment 100-1 of the embodiment according to the present invention CO2 is recovered and reformed to produce.
  • COG coke oven gas
  • This is a technology that efficiently uses the gas generated in the coal-based steelmaking process.
  • the second reforming reactor 20b is supplied through the carbon dioxide line 37 recovered from the carbon (C) obtained from the first reforming reactor 20a and the iron ore reduction process facility 100 as shown in Equation (3) below. It is a device for obtaining carbon monoxide by reforming the carbon dioxide obtained from the second heater 12b for supplying heat to the carbon dioxide and the second reforming reactor 20b.
  • the reducing gas (hydrogen) supplied to the first riser 34 must satisfy a temperature of 800 ° C. or higher. Therefore, a first heat exchanger 11a is installed between the steelmaking by-product gas separator 21 and the second riser 33 to discharge from the first riser 34 and the second riser 33. The heat amount of the reducing gas supplied to the second riser 33 is replenished by heat exchange with hydrogen.
  • the heat exchange is performed through the primary riser discharge line 34a and the secondary riser discharge line 33a, respectively. At this time, high temperature hydrogen flows on the first riser discharge line 34a and the second riser discharge line 33a, and hydrogen of the hydrogen line 17a to which low temperature hydrogen is supplied from the first heat exchanger 11a. When the heat exchange is performed and the amount of hydrogen supplied is insufficient, hydrogen may be supplied to the second riser 33 after the heat exchange.
  • the second heat exchanger (11b) is installed on the second ore conduit (52b) connecting the first and the second riser (33, 34) to the hydrogen gas discharged from the second riser (33) After the heat exchange with the partial reduced iron flowing through the second ore conduit 52b, the first riser 34 is supplied.
  • the hydrogen supplied to the first riser 34 after the heat exchange is mixed and supplied with the hydrogen supplied by the hydrogen line 17a supplied from the first reforming reactor 20a to the first riser 34.
  • the raw material pretreatment facility (10b) requires heat for pretreatment of iron ore raw material, the heat of the reducing gas of the reducing gas line 62d supplied from the reduction reactor 32 to the raw material pretreatment facility (10b) Supplied by (circulating gas). That is, the high temperature reducing gas flows through the circulating gas (reduction gas) line 72 after heating the raw material pretreatment facility 10b. Since the temperature of the reducing gas flowing through the circulating gas line 72 is also high, it is possible to heat exchange and combust the steel off-by-product gas from which the hydrogen is removed from the first heater 12a as described above.
  • Iron ore reduction process equipment (100-1) in the first embodiment according to the present invention is a second pre-reduction reactor (31) for reducing the iron ore raw material by the reducing gas supplied from the reduction reactor 32, and Second raw material pretreatment for supplying the iron ore raw material that has been screened and pretreated to be suitable for the second pre-reduction reactor 31 by the reducing gas supplied from the second pre-reduction reactor 31 to the second pre-reduction reactor 31.
  • a carbon dioxide line (37) for separating carbon dioxide from the reducing gas line (62c) connected to the facility (10a) and the second raw material pretreatment (10a) and supplying carbon dioxide to the steelmaking by-product gas pretreatment (20-1). Include. Iron ore raw materials are reduced while being sequentially transferred to the second preliminary reduction reactor 31 and the reduction reactor 32 through the fifth ore conduit 52e and the fourth ore conduit 52d.
  • the iron ore reduction process equipment 100-1 flows to the second preliminary reduction reactor 31 and the second raw material pretreatment equipment 10a sequentially through reducing gas lines 62a and 62b, and reduces gas lines ( Through 62c) some of the reducing gas is stored in the power plant (13b), the remaining reducing gas is separated into carbon dioxide.
  • the separated carbon dioxide is supplied to the second reforming reactor 20b through the carbon dioxide line 37, the reducing gas separated in the carbon dioxide separator 14 Is mixed with a reducing gas line 64 flowing into the reduction reactor 32 from the melt reduction reactor 40 through a reducing gas line 66 and supplied to the reduction reactor 32.
  • a carbon dioxide storage device 15 may be installed on the carbon dioxide line 37.
  • hematite-based fine iron ore having a mean particle distribution of several hundred microns is used as a reducing gas, and a reducing gas containing a large amount of carbon monoxide is used. It is produced by reducing iron and reduced more easily in the temperature range of 600 ⁇ 850 °C. Reaction formula at this time is as following formula (4).
  • hematite-based iron ore is mixed in a second raw material pretreatment (10a) to have a normal distribution of several hundred microns particle size is reduced using a bubble fluidized bed reactor of Geldart B particle fluidization.
  • the iron ore with high moisture may be subjected to a drying process, or the ore with high impurities may be accompanied by a pretreatment process by beneficiation.
  • the iron ore is mixed with the reducing iron ore of the magnetite system through a reduction reactor 31 using a reducing gas containing a large amount of carbon monoxide rising from the molten reduction reactor 40 to be reduced in the reduction reactor 32. It is also possible.
  • the reduction temperature is made in the range of 650 °C ⁇ 800 °C to promote the reduction by a large amount of carbon monoxide.
  • the form of the reducing gas generally favors a large amount of carbon monoxide rising from the melt reduction reactor, but can be present in the form of various mixed gases.
  • the reactor used at this time is not limited to the bubble fluidized bed reactor, the type of iron ore is not limited to the iron ore of the hematite system, it is possible to include a dust (iron) in the form of dust (iron) discharged as a by-product of iron and iron process Do.
  • Carbon dioxide recovered from the iron ore reduction process facility (100-1) is by-product gas discharged from the second raw material pretreatment facility (10a) or the second pre-reduction reactor (31) to a power plant (13b) to produce power in part.
  • a power plant 13b
  • the reducing gas separated by the carbon dioxide separator 14 is mixed with the reducing gas rising in the melt reduction reactor 40 and re-introduced into the reduction reactor 32.
  • the reforming reactor may be in the form of a fixed bed or fluidized bed, but the fluidized bed is preferred. Carbon monoxide obtained from the second reforming reactor 20b may be introduced into the melt reduction reactor 40.
  • the molten reduction reactor 40 produces the molten iron 90 by melting and reducing the partially reduced iron obtained from the reduction reactor 32 using hydrocarbon treatment devices 80a and 80b for supplying high heat and reducing gas.
  • the hydrocarbon processing apparatus (80a, 80b) burns pulverized coal, coke or briquette coal mass to provide the heat and reducing gas required for the reactor.
  • the carbon monoxide obtained from the second reforming reactor 20b can be regulated by supplying it through the reducing gas line 68. In case of lack, it may be separately supplied through the hydrocarbon supply line 80b.
  • Figure 3 shows a schematic view of the molten iron manufacturing apparatus of the second embodiment according to the present invention
  • the configuration and function of the molten iron manufacturing apparatus of the second embodiment is the same as in the first embodiment unless otherwise described, but iron and steel by-products
  • the method of carbon dioxide recovery and by-product gas reforming in the gas separation device 20-2 may be modified or additional additional devices may be installed.
  • the flow in the fluidized bed reduction reactor of the fine iron ore in the second embodiment is the same as in the first embodiment, and the fine iron ore in the hematite system is reduced in the riser in the bubble fluidized bed reactor, respectively, and then reduced. At the same time, the mixture is reduced in the reactor 32 and introduced into the melt reduction reactor 40.
  • the flow of the reducing gas of the fine iron ore reduction reactor 32 may be modified by by-product gas reforming and reducing gas circulation.
  • the hydrogen gas separated from the steelmaking by-product gas pretreatment facility 20-2 using COG which is steel by-product gas, passes through the hydrogen line 17a. 34) After the heat exchanged from the discharged hydrogen gas and the first heat exchanger (11a) is introduced into the second riser (33).
  • a gas excluding hydrogen from iron by-product gas such as COG or FOG (FINEX OFF GAS) mainly consists of methane gas.
  • the methane gas is circulated through a raw material pretreatment system (10b) by using a circulating gas of 800 ° C. or higher.
  • the amount of heat is replenished by the third heat exchanger 11c and then introduced into the third reforming reactor 20c.
  • the circulating gas circulated through the raw material pretreatment facility 10b passes through the third heat exchanger 11c, and part of the circulating gas is supplied to the power plant 13a to produce electric power, and the rest of the third reforming reactor ( It is also possible to supply carbon dioxide at the same time as supplying heat to 20c).
  • Another source of carbon dioxide supplied to the third reforming reactor (20c) is to recycle a portion of the gas discharged from the second raw material pretreatment (10a) or the second pre-reduction reactor (31) to steam-gas reforming reactor (25) And hydrogen separation apparatus 27 to separate hydrogen and can be obtained from the discharged gas.
  • the separated hydrogen is heat-exchanged in the fourth heat exchanger (11d) and the gas of the reducing gas line 64, which is connected to the melt reduction reactor 40 and the reduction reactor 32 to supply the reducing gas to the reduction reactor 32. Then, it may be supplied as a reducing gas to the first riser 34 through the hydrogen line 17c.
  • the hydrogen passing through the fourth heat exchanger (11d) is heated by heat exchange with the reducing gas supplied to the raw material pretreatment (10b) in the reduction reactor 32 can be supplied to the first riser (34). have.
  • Carbon dioxide that is not completely reacted in the third reforming reactor 20c may be recovered by the carbon dioxide recycling line 22 and recycled into the third reforming reactor 20c.
  • the reducing gas produced from the third reforming reactor 20c may be introduced into the melt reduction reactor 40 through the reducing gas line 68 to accelerate the melt reduction reaction. It is also possible to reduce the amount of reducing gas and calorific value required in the reactor by accelerating the reduction melting rate by adding a large amount of hydrogen.
  • the rest of the configuration is the same as in the first embodiment. However, it is not limited only to the above-mentioned variations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

The present invention relates to a molten iron production apparatus and a molten iron producing method using the same, comprising: a raw material pre-treatment unit for selecting and pre-treating an iron ore material suitable for reduction; a preliminary reduction reactor having a first rising tube for transferring the pre-treated iron ore material from the raw material pre-treatment unit, and a second rising tube connected to the first rising tube, so as to preliminarily reduce the transferred iron ore material by a reduction gas; a reduction reactor for reducing the partially reduced iron transferred from the preliminary reduction reactor; a molten reduction reactor for producing molten iron by molting and reducing the partially reduced iron obtained from the reduction reactor using the reduction gas; a pre-treatment unit for a by-product gas from an iron-and-steel making process which generates the reduction gas by mixing and reforming the by-product gas from the iron-and-steel making process or carbon dioxide generated from an iron ore reduction process, and supplies the generated reduction gas to the molten reduction reactor or the preliminary reduction reactor; and an iron ore reduction process unit for supplying the carbon dioxide generated from the iron ore reduction process.

Description

용선 제조장치 및 이를 이용한 용선 제조방법Molten iron manufacturing apparatus and molten iron manufacturing method using the same
본 발명은 용선 제조장치 및 이를 이용한 용선의 제조방법에 관한 것으로, 보다 상세하게는 제철공정에서 발생하는 부생가스를 개질하여 발생된 가스를 이용하여 분철광석을 환원시킴과 동시에 용융환원에 의해 용선을 생산하는 장치 및 이를 이용한 용선 제조방법에 관한 것이다.The present invention relates to a molten iron manufacturing apparatus and a method for manufacturing molten iron using the same. More particularly, molten iron is reduced by molten reduction while reducing iron ore using gas generated by reforming by-product gas generated in a steelmaking process. The present invention relates to a production apparatus and a method for manufacturing molten iron using the same.
종래 유동층 환원 반응기를 사용한 분철광석 환원기술은 1950년대 메탄-수증기 개질에 의해 수소를 공급하는 메탄가스 기반 환원철 생산기술로서 주로 90% 수소환원제와 주로 600℃ 이하 반응온도 및 5기압 이상의 조건에서 철광석 유동화에 의해 환원철을 생산하는 기술은 미국등록특허 제 2,821,471호 또는 제 3,022,156호에 개시되어 있고, 석탄(C)의 가스화에 의해 생성된 환원제 가스를 기반으로 주로 600℃ 이상의 반응 온도에서 철광석을 환원하여 환원철을 생산하는 기술은 미국등록특허 제 3,246,978호에 개시되어 있다.Conventional iron ore reduction technology using a fluidized bed reduction reactor is a methane gas-based reduced iron production technology that supplies hydrogen by methane-steam reforming in the 1950s, mainly 90% hydrogen reducing agent, iron ore fluidization under the reaction temperature of below 600 ℃ and above 5 atm The technique for producing reduced iron by the disclosed in US Patent No. 2,821,471 or 3,022,156, based on the reducing agent gas generated by the gasification of coal (C) mainly reduced iron ore at a reaction temperature of 600 ℃ or more The technique for producing this is disclosed in US Pat. No. 3,246,978.
상기의 두 가지 방식은 사용되는 환원제 종류에 따라 철광석의 물리화학적 특성 변화, 유동화 성질, 접착(sticking) 해결 등 환원철 생산의 반응 조건이 다르다. 상기 특허는 기포(bubbling) 유동층을 사용하는 반면 제철소에서 버려지는 미분체 형태의 철광석을 환원시키기 위해 순환유동층 형태의 철광석을 환원하는 기술(미국등록특허 제 5,431,711)도 개발되었다. The two methods differ depending on the type of reducing agent used, and the reaction conditions of reduced iron production, such as change in physical and chemical properties of iron ore, fluidization properties, and sticking, are solved. While the patent uses a bubbling fluidized bed, a technique (US Pat. No. 5,431,711) for reducing iron ore in the form of a circulating fluidized bed has been developed to reduce iron ore in the form of fine powder discarded at an ironworks.
상기 기술의 지속적 개발은 수 mm이하의 분철광석을 유동층 반응기에서 환원하여 환원철을 생산하는 파이넥스(FINEX)와 같은 상업적 기술로 발전하였으며, 용선 생산 효율화를 증가시키기 위하여 부생가스의 CO2 제거 후 남아있는 환원제 가스를 이용하는 기술(미국등록특허 제 5,846,268호)도 소개되었다. 그러나, 메탄가스 또는 석탄(C) 기반 환원철 생산 공정은 주로 고급 철광석 사용에 한정되었으며, 수백 마이크론 이하 미분체로 존재하는 자철광을 포함한 현재 사용되지 않는 다양한 미분 철광석의 환원에는 한계가 있었다.The continuous development of the technology has developed into commercial technologies such as FINEX, which produces reduced iron by reducing ferrous ore of several millimeters or less in a fluidized bed reactor, and reducing agent remaining after CO2 removal of by-product gas in order to increase the efficiency of molten iron production. Techniques using gas (US Patent No. 5,846,268) have also been introduced. However, methane gas or coal (C) based reduced iron production process was mainly limited to the use of high-grade iron ore, there was a limit to the reduction of a variety of fine iron ore that is not currently used, including magnetite present in the fine powder of several hundred microns or less.
또한, 석탄(C) 기반 제철공정에서 다량의 이산화탄소의 배출 한계를 극복하고 철강생산량 증가와 함께 지속적인 환경문제에 대응하는 새로운 기술이 필요하게 되었다.In addition, new technologies are needed to overcome the emission limits of large amounts of carbon dioxide in the coal (C) -based steelmaking process, increase steel production, and respond to environmental problems.
본 발명의 실시예들은 제철공정에서 발생하는 부생가스를 이용하여 수소와 일산화탄소를 선별하여 철광석 원료를 환원시킴으로써 용선을 생산하는 장치 및 이를 이용한 용선의 제조방법을 제공하고자 한다. Embodiments of the present invention are to provide an apparatus for producing molten iron by reducing the iron ore raw material by selecting hydrogen and carbon monoxide using the by-product gas generated in the iron making process and a method for producing molten iron using the same.
본 발명의 하나 또는 다수의 실시예에서는 철광석 원료를 환원에 적합하도록 선별 및 전처리하는 원료 전처리설비; 상기 원료 전처리설비로부터 전처리된 철광석 원료가 이송되는 제1 상승관과, 상기 제1 상승관과 연결되어 있는 제2 상승관을 포함하여 이루어지며, 상기 이송된 철광석 원료가 환원가스에 의해 예비환원되는 예비환원 반응기; 상기 예비환원 반응기로부터 이송된 부분 환원철을 환원시키는 환원 반응기; 상기 환원 반응기로부터 얻어진 부분 환원철을 환원가스를 이용하여 용융 환원시킴으로써 용선을 생산하는 용융환원 반응기; 제철 부생가스 또는 철광석 환원공정에서 발생되는 이산화탄소를 혼합 및 개질하여 환원가스를 생성하고, 상기 생성된 환원가스를 상기 용융환원 반응기 또는 상기 예비환원 반응기에 공급하는 제철 부생가스 전처리설비; 및 상기 철광석 환원공정에서 발생되는 이산화탄소를 공급하는 철광석 환원공정 설비;를 포함하는 용선 제조장치가 제공될 수 있다.In one or more embodiments of the present invention, a raw material pretreatment system for sorting and pretreating iron ore raw materials suitable for reduction; And a first rising pipe to which the pretreated iron ore raw material is transferred from the raw material pretreatment facility, and a second rising pipe connected to the first rising pipe, wherein the transferred iron ore raw material is pre-reduced by reducing gas. Pre-reduction reactor; A reduction reactor for reducing the partial reduced iron transferred from the pre-reduction reactor; A molten reduction reactor producing molten iron by melting and reducing the partially reduced iron obtained from the reduction reactor using a reducing gas; A steel off-product by-product pretreatment system for mixing and reforming carbon dioxide generated in a steelmaking by-product gas or iron ore reduction process and supplying the generated reducing gas to the melt reduction reactor or the pre-reduction reactor; And an iron ore reduction process facility for supplying carbon dioxide generated in the iron ore reduction process may be provided.
본 발명의 하나 또는 다수의 실시예에서는 상기 철광석 환원공정 설비는, 상기 환원 반응기로부터 공급되는 환원가스에 의해 철광석 원료를 예비환원시키는 제2 예비환원 반응기; 상기 제2 예비환원 반응기로부터 공급되는 환원가스에 의해 상기 제2 예비환원 반응기에 적합하도록 선별 및 전처리된 철광석 원료를 상기 제2 예비환원 반응기에 공급하는 제2 원료 전처리설비; 및 상기 원료 전처리설비와 연결된 환원가스 라인으로부터 이산화탄소를 분리하여 이산화탄소를 상기 제철 부생가스 전처리설비에 공급하는 이산화탄소 라인; 을 포함할 수 있다.In one or more embodiments of the present invention, the iron ore reduction process equipment, the second pre-reduction reactor for pre-reducing the iron ore raw material by the reducing gas supplied from the reduction reactor; A second raw material pretreatment facility for supplying the iron ore raw material that has been screened and pretreated to be suitable for the second pre-reduction reactor by the reducing gas supplied from the second pre-reduction reactor; And a carbon dioxide line separating carbon dioxide from a reducing gas line connected to the raw material pretreatment facility and supplying carbon dioxide to the steelmaking by-product gas pretreatment facility. It may include.
본 발명의 하나 또는 다수의 실시예 상기 제철 부생가스 전처리설비는, 제철 부생가스로부터 수소를 분리하여 상기 분리된 수소를 상기 제2 상승관에 공급하는 제철 부생가스 분리장치; 상기 수소가 분리된 제철 부생가스에 상기 원료 전처리설비를 거쳐 순환하는 순환가스와의 열교환에 의해 열량을 공급하는 제1 가열기; 상기 제1 가열기에 의해 열량이 보충된 상기 수소가 분리된 제철 부생가스로 수소 및 탄소를 발생시키고 상기 발생된 수소를 상기 제1 상승관에 공급하는 제1 개질반응기; 및 상기 제1 개질반응기와 연결되어 상기 제1 개질반응기로부터 발생된 탄소, 상기 제1 가열기에 사용되는 가스의 연소에 의해 발생된 이산화탄소 및 철광석 환원공정 설비에서 발생된 이산화탄소와 함께 유입되어 일산화탄소를 생산하고 상기 생산된 일산화탄소는 상기 용융환원 반응기에 공급하는 제2 개질반응기를 포함할 수 있다.In one or more embodiments of the present invention, the steelmaking by-product gas pretreatment apparatus may include: an iron-making by-product gas separator for separating hydrogen from steelmaking by-product gas and supplying the separated hydrogen to the second riser; A first heater for supplying heat to the iron by-product gas from which the hydrogen is separated by heat exchange with a circulating gas circulating through the raw material pretreatment facility; A first reforming reactor for generating hydrogen and carbon as the iron-based by-product gas from which the hydrogen supplemented by the first heater is separated, and supplying the generated hydrogen to the first riser; And carbon dioxide generated from the first reforming reactor connected to the first reforming reactor, carbon dioxide generated by the combustion of the gas used in the first heater, and carbon dioxide generated in the iron ore reduction process facility to produce carbon monoxide. And the produced carbon monoxide may include a second reforming reactor for supplying to the melt reduction reactor.
본 발명의 하나 또는 다수의 실시예에서는 제2 개질반응기에 열량을 공급하는 제2 가열기를 더 포함할 수 있다.One or more embodiments of the present invention may further include a second heater for supplying heat to the second reforming reactor.
본 발명의 하나 또는 다수의 실시예에서는 제철 부생가스 전처리설비는, 수소를 분리하여 상기 분리된 수소를 상기 제2 상승관에 공급하는 제철 부생가스 분리장치; 상기 수소가 분리된 제철 부생가스를 상기 원료 전처리설비를 거쳐 순환하는 순환가스에 의해 열량을 보충하는 제1 가열기; 및 상기 제1 가열기에 사용된 가스의 연소에 의해 발생된 이산화탄소 및 상기 철광석 환원공정 설비에서 발생된 이산화탄소와 함께 유입되어 수소 및 일산화탄소를 포함하는 환원가스를 생산하고 상기 생산된 환원가스는 상기 용융환원 반응기에 공급하는 제3 개질반응기를 포함할 수 있다.In one or more embodiments of the present invention, the steelmaking by-product gas pretreatment apparatus includes: an iron-making by-product gas separator for separating hydrogen and supplying the separated hydrogen to the second riser; A first heater for replenishing heat by circulating gas circulating the hydrogen by-product by-product separated from the hydrogen through the raw material pretreatment facility; And carbon dioxide generated by the combustion of the gas used in the first heater and carbon dioxide generated in the iron ore reduction process facility to produce a reducing gas including hydrogen and carbon monoxide and the produced reducing gas is the melt reduction. It may include a third reforming reactor for supplying the reactor.
본 발명의 하나 또는 다수의 실시예에서 제1 상승관은 800℃ 이상에서 작동하며, 상기 제2 상승관은 350~650℃ 범위에서 작동하는 것을 특징으로 한다.In one or more embodiments of the present invention, the first riser is operated at 800 ° C. or higher, and the second riser is operated at 350 to 650 ° C.
본 발명의 하나 또는 다수의 실시예에서 상기 제철 부생가스 분리장치와 상기 제2 상승관 사이에는 제1 열교환기가 설치되어 상기 제1 상승관 및 제2 상승관으로부터 배출되는 수소와의 열교환에 의해 상기 제2 상승관에 공급되는 환원가스의 열량을 보충하는 것을 특징으로 하며, 상기 제1 및 제2 상승관을 연결하는 제2 광석도관 상에 설치되어 상기 제2 상승관으로부터 배출되는 수소가스를 상기 제2 광석도관을 흐르는 부분 환원철과 열교환 후 상기 제1 상승관에 공급하는 제2 열교환기가 설치될 수 있으며, 상기 원료 전처리설비는 상기 환원 반응기로부터 환원가스를 공급하는 환원가스 라인으로부터 열량을 공급받는 것을 특징으로 한다.In one or more embodiments of the present invention, a first heat exchanger is installed between the steelmaking by-product gas separation device and the second riser to form a heat exchange with hydrogen discharged from the first riser and the second riser. Compensating for the heat of the reducing gas supplied to the second riser, the hydrogen gas discharged from the second riser is installed on the second ore conduit connecting the first and the second riser. A second heat exchanger for supplying the first rising pipe after heat exchange with a partial reduced iron flowing through a second ore conduit may be installed, and the raw material pretreatment facility receives heat from a reducing gas line for supplying reducing gas from the reduction reactor. It is characterized by.
본 발명의 하나 또는 다수의 실시예에서는 용융환원 반응기에는 고열과 환원가스를 공급하는 탄화수소처리장치가 설치되는 것을 특징으로 하며, 상기 용융환원 반응기에는 순산소를 공급하는 산소 라인이 설치될 수 있으며, 상기 탄화수소처리장치는 미분탄, 코크스 및 브리켓 형태의 석탄 덩어리를 연소시키는 장치인 것을 특징으로 한다.In one or more embodiments of the present invention, the hydrocarbon processing apparatus for supplying high heat and reducing gas is installed in the melt reduction reactor, and the oxygen reduction line for supplying pure oxygen may be installed in the melt reduction reactor. The hydrocarbon treatment device is characterized in that the device for burning coal pulverized coal, coke and briquette form.
본 발명의 하나 또는 다수의 실시예에서는 환원가스 라인에 연결되어 상기 환원가스로부터 이산화탄소를 분리하는 이산화탄소 분리장치를 더 포함할 수 있으며, 상기 이산화탄소 분리장치와 연결되어 상기 이산화탄소 분리장치를 통과한 환원가스를 환원 반응기에 공급하도록 하는 환원가스 라인 및 상기 분리된 이산화탄소를 상기 제철 부생가스 전처리설비에 공급하는 이산화탄소 라인을 더 포함할 수 있으며, 상기 이산화탄소 라인 상에 설치되어 상기 분리된 이산화탄소를 저장하는 이산화탄소 저장장치를 더 포함할 수 있다.In one or more embodiments of the present invention may further include a carbon dioxide separator connected to a reducing gas line to separate carbon dioxide from the reducing gas, the reducing gas connected to the carbon dioxide separator and passed through the carbon dioxide separator. It may further include a carbon dioxide line for supplying a reduced gas line and the separated carbon dioxide to the steelmaking by-product pre-treatment facility to supply to the reduction reactor, the carbon dioxide storage is installed on the carbon dioxide line to store the separated carbon dioxide The apparatus may further include.
본 발명의 하나 또는 다수의 실시예에서는 제2 원료 전처리설비에 연결되어 상기 제2 원료 전처리설비를 통해 배출되는 가스를 개질하여 수증기를 발생시키는 수증기-가스 개질반응기; 및 상기 수증기-가스 개질반응기와 연결되어 상기 발생된 수증기와 이산화탄소를 분리하는 수소분리장치; 를 더 포함할 수 있다.In one or more embodiments of the present invention, a steam-gas reforming reactor connected to a second raw material pretreatment plant for reforming the gas discharged through the second raw material pretreatment facility to generate steam; And a hydrogen separation device connected to the steam-gas reforming reactor to separate the generated steam and carbon dioxide. It may further include.
본 발명의 하나 또는 다수의 실시예에서는 수소분리장치와 연결되어 상기 분리된 이산화탄소를 제철 부생가스 전처리설비에 공급하는 이산화탄소 라인 및 상기 수소분리장치와 연결되어 상기 분리된 수소를 상기 환원 반응기 및 제1 상승관에 공급하는 수소 라인을 더 포함할 수 있다.In one or more embodiments of the present invention, a carbon dioxide line connected to a hydrogen separation device to supply the separated carbon dioxide to a steelmaking by-product pretreatment facility, and the hydrogen separation device to connect the separated hydrogen to the reduction reactor and the first reactor. It may further include a hydrogen line for supplying the riser.
본 발명의 하나 또는 다수의 실시예에서는 수소 라인 상에 상기 용융환원 반응기로부터 상기 환원 반응기로 공급되는 가스와의 열교환에 의해 상기 수소 라인의 수소에 열원을 보충하는 제4 열교환기가 형성될 수 있으며, 상기 이산화탄소 라인 상에 설치되어 상기 분리된 이산화탄소를 저장하는 이산화탄소 저장장치를 더 포함할 수 있으며, 상기 제4 열교환기를 통과한 수소에 열량을 보충하기 위하여 상기 수소 라인과 상기 환원 반응기로부터 상기 원료 전처리설비에 연결되는 환원가스 라인 상에 제3 가열기가 설치될 수 있다.In one or more embodiments of the present invention, a fourth heat exchanger may be formed on the hydrogen line to supplement the heat source with hydrogen in the hydrogen line by heat exchange with gas supplied from the melt reduction reactor to the reduction reactor. It may further include a carbon dioxide storage device is installed on the carbon dioxide line to store the separated carbon dioxide, the raw material pretreatment equipment from the hydrogen line and the reduction reactor to supplement the heat amount to the hydrogen passed through the fourth heat exchanger The third heater may be installed on the reducing gas line connected to the.
본 발명의 하나 또는 다수의 실시예에서는 철광석 원료를 환원에 적합하도록 전처리하는 원료 전처리단계; 상기 전처리된 원료를 제1 상승관 및 제2 상승관을 포함하는 예비환원 반응기에 이송하여 환원가스에 의해 예비환원시키는 단계; 예비환원되어 환원 반응기에 이송된 부분 환원철을 환원시키는 단계; 상기 환원 반응기로부터 얻어진 부분 환원철을 환원가스를 이용하여 용융 환원시킴으로써 용선을 생산하는 용융환원 단계; 제철 부생가스와 철광석 환원공정에서 발생되는 이산화탄소를 혼합 및 개질하여 환원가스를 생성하고, 상기 생성된 환원가스를 상기 용융환원 단계 또는 상기 예비환원 단계에 공급하는 제철 부생가스 전처리단계; 및 상기 철광석 환원공정에서 발생되는 이산화탄소를 공급하는 철광석 환원공정단계; 를 포함하는 용선 제조방법이 제공될 수 있다.In one or more embodiments of the present invention, a raw material pretreatment step of pretreating the iron ore raw material to be suitable for reduction; Transferring the pretreated raw material to a pre-reduction reactor including a first riser and a second riser to pre-reduce by reducing gas; Reducing the partially reduced iron that was pre-reduced and transferred to the reduction reactor; A melt reduction step of producing molten iron by melting and reducing the partially reduced iron obtained from the reduction reactor using a reducing gas; A steel off-product by-product pretreatment step of mixing and modifying carbon dioxide generated in a steelmaking by-product gas and an iron ore reduction process and supplying the generated reducing gas to the melt reduction step or the pre-reduction step; And an iron ore reduction step of supplying carbon dioxide generated in the iron ore reduction step; A molten iron manufacturing method including a may be provided.
본 발명의 하나 또는 다수의 실시예에서 상기 제철 부생가스 전처리단계는, 상기 제철 부생가스로부터 수소를 분리하여 상기 분리된 수소를 상기 제1 상승관에 공급하는 단계; 상기 수소가 분리된 제철 부생가스를 상기 원료 전처리설비를 거쳐 순환하는 순환가스와의 열교환에 의해 가열하여 제1 개질반응기에 공급하여 탄소와 수소를 생산하여 상기 생산된 수소를 상기 예비환원 반응기에 공급하는 단계; 상기 생산된 탄소와 상기 가열에 의해 발생된 이산화탄소 및 상기 철광석 환원공정단계에서 발생된 이산화탄소가 제2 개질반응기에 유입되어 일산화탄소를 생산하고 상기 생산된 일산화탄소를 상기 용융환원 반응기에 공급하는 단계; 를 포함할 수 있다.In one or more embodiments of the present invention, the steelmaking by-product gas pretreatment step may include: separating hydrogen from the steelmaking by-product gas and supplying the separated hydrogen to the first riser; The iron by-product gas from which the hydrogen is separated is heated by heat exchange with a circulating gas circulated through the raw material pretreatment facility and supplied to the first reforming reactor to produce carbon and hydrogen to supply the produced hydrogen to the pre-reduction reactor. Doing; Supplying the produced carbon, carbon dioxide generated by the heating, and carbon dioxide generated in the iron ore reduction process step into a second reforming reactor to produce carbon monoxide and supplying the produced carbon monoxide to the melt reduction reactor; It may include.
본 발명의 하나 또는 다수의 실시예에서 상기 제철 부생가스 전처리단계는, 상기 제철 부생가스로부터 수소를 분리하여 상기 분리된 수소를 상기 예비환원 반응기에 공급하는 단계; 상기 수소가 분리된 제철 부생가스를 상기 원료 전처리설비를 거쳐 순환하는 순환가스와의 열교환에 의해 가열하는 단계; 및 상기 가열된 수소가 분리된 제철 부생가스를 제3 개질반응기에 공급하여 탄소와 수소를 포함하는 환원가스를 생산하고 상기 생산된 환원가스를 상기 용융환원 반응기에 공급하는 단계; 를 포함할 수 있다.In one or more embodiments of the present invention, the steelmaking by-product gas pretreatment step may include: separating hydrogen from the steelmaking by-product gas and supplying the separated hydrogen to the pre-reduction reactor; Heating the iron by-product gas from which the hydrogen is separated by heat exchange with a circulating gas circulating through the raw material pretreatment facility; And supplying the heated hydrogen by-product off-gas separated into the third reforming reactor to produce a reducing gas including carbon and hydrogen, and supplying the produced reducing gas to the melt reduction reactor. It may include.
본 발명의 하나 또는 다수의 실시예에서는 상기 환원가스 생산 단계에서 미반응된 이산화탄소는 회수되어 다시 제3 개질반응기로 재순환되는 단계를 더 포함할 수 있다.In one or more embodiments of the present invention, the unreacted carbon dioxide may be further recovered in the reducing gas production step and recycled back to the third reforming reactor.
본 발명의 하나 또는 다수의 실시예에서 상기 원료전처리 단계는, 상기 환원 반응기로부터 배출되는 환원가스에 의해 열량을 공급받아 상기 철광석 원료를 변형하거나 성분을 조절하여 예비 가열을 수행하는 단계인 것을 특징으로 하며, 상기 철광석 원료는 적철광, 자철광, 수분 함유 철광석 또는 제철공정 더스트(dust) 중 어느 하나 이상의 미분 형태인 것을 특징으로 한다.In one or more embodiments of the present invention, the raw material pretreatment step is a step of performing a preliminary heating by deforming the iron ore raw material by receiving a heat amount by the reducing gas discharged from the reduction reactor. In addition, the iron ore raw material is hematite, magnetite, moisture-containing iron ore or steelmaking process dust (dust), characterized in that the fine form of any one or more.
본 발명의 하나 또는 다수의 실시예에서 제1 상승관은 800℃ 이상에서 작동하며, 상기 제2 상승관은 350~650℃의 범위에서 작동하는 것을 특징으로 하며, 상기 제철 부생가스로부터 분리된 수소는 상기 제1 상승관 및 제2 상승관으로부터 배출되는 수소와의 열교환에 의해 상기 제2 상승관에 공급되는 것을 특징으로 하며, 상기 제1 및 제2 상승관을 연결하는 제2 광석도관 상에 설치되어 상기 제2 상승관으로부터 배출되는 수소가스를 상기 제2 광석도관을 흐르는 부분 환원철과 열교환하여 승온시킨 후 상기 제1 상승관에 공급하는 하는 것을 특징으로 한다.In one or more embodiments of the present invention, the first riser is operated at 800 ° C. or higher, and the second riser is operated at a range of 350 ° C. to 650 ° C., and the hydrogen separated from the steelmaking by-product gas. Is supplied to the second riser by heat exchange with hydrogen discharged from the first riser and the second riser, and on the second ore conduit connecting the first and the second riser. It is characterized in that the hydrogen gas discharged from the second riser is heat-exchanged with the partial reduced iron flowing through the second ore conduit to increase the temperature and then supply the hydrogen gas to the first riser.
본 발명의 하나 또는 다수의 실시예에서 상기 용융환원 단계는, 상기 용융환원 반응기에 연결된 탄화수소처리장치에 의해 고열과 환원가스를 공급받고, 산소 라인을 통해 순산소를 공급받는 단계를 더 포함할 수 있다.In one or more embodiments of the present invention, the melt reduction step may further include receiving high heat and reducing gas by a hydrocarbon processing apparatus connected to the melt reduction reactor, and receiving pure oxygen through an oxygen line. have.
본 발명의 하나 또는 다수의 실시예에서 상기 철광석 환원공정 단계는, 상기 환원 반응기로부터 제2 예비환원 반응기에 공급되는 환원가스에 의해 철광석 원료를 예비환원시키는 단계; 상기 제2 예비환원 반응기로부터 제2 원료 전처리설비로 공급되는 환원가스에 의해 상기 제2 예비환원 반응기에 적합하도록 전처리된 철광석 원료를 상기 제2 예비환원 반응기에 공급하는 단계; 및 상기 제2 예비환원 반응기로부터 배출되는 환원가스로부터 이산화탄소를 분리하여 상기 제철 부생가스 전처리단계에 공급하는 이산화탄소 분리 공급단계; 를 포함할 수 있다.In one or more embodiments of the present invention, the iron ore reduction step may include: pre-reducing iron ore raw materials by reducing gas supplied from the reduction reactor to the second pre-reduction reactor; Supplying iron ore raw material pre-treated to be suitable for the second pre-reduction reactor by the reducing gas supplied from the second pre-reduction reactor to the second raw material pretreatment facility to the second pre-reduction reactor; And separating carbon dioxide from the reducing gas discharged from the second preliminary reduction reactor and supplying the carbon dioxide to the iron by-product by-product pretreatment step. It may include.
본 발명의 하나 또는 다수의 실시예에서 이산화탄소의 분리는 상기 제2 원료 전처리설비와 연결되는 이산화탄소 분리장치 또는 수소분리장치에 의해 이루어지는 것을 특징으로 하며, 상기 수소분리장치의 전단에는 수증기-가스 개질반응기가 설치되어 상기 제2 원료 전처리설비로부터 유입된 환원가스에서 수증기를 발생시키는 것을 특징으로 하며, 상기 수소분리장치로부터 분리된 수소는 상기 용융환원 반응기로부터 환원 반응기로 공급되는 환원가스와의 열교환에 의해 가열되어 상기 제1 상승관에 공급되는 것을 특징으로 한다.In one or more embodiments of the present invention, the separation of carbon dioxide is performed by a carbon dioxide separation unit or a hydrogen separation unit connected to the second raw material pretreatment facility, and the steam-gas reforming reactor is disposed at the front end of the hydrogen separation unit. Is installed to generate water vapor in the reducing gas introduced from the second raw material pretreatment facility, and the hydrogen separated from the hydrogen separation device is exchanged with the reducing gas supplied from the melt reduction reactor to the reduction reactor. It is heated and supplied to the first riser.
본 발명의 실시예들은 이산화탄소를 포함한 제철 부생가스를 개질하여 수소가 풍부한 환원제 가스를 생산하고, 환원제 가스 중 수소와 일산화탄소를 선별적으로 철광석 환원에 이용함으로써 적철광 및 자철광 계통의 미분 철광석을 환원시켜 용선을 제조할 수 있다.Embodiments of the present invention are to reform the iron by-product gas, including carbon dioxide to produce a hydrogen-rich reducing agent gas, and by reducing the fine iron ore of hematite and magnetite system by selectively using hydrogen and carbon monoxide in the reducing agent gas for iron ore reduction Can be prepared.
또한, 이산화탄소를 회수하고 제철공정 가스를 이용하여 개질, 재활용함으로써 이산화탄소 저감과 동시에 다량의 수소환원제를 확보하여 저품위 철광석 환원에 유리한 효과가 있다.In addition, carbon dioxide is recovered and reformed and recycled using a steelmaking process gas, thereby reducing carbon dioxide and securing a large amount of hydrogen reducing agent, thereby reducing the low-grade iron ore.
도 1은 본 발명의 실시예에 따른 용선 제조장치의 개략도이다.1 is a schematic diagram of a molten iron manufacturing apparatus according to an embodiment of the present invention.
도 2는 본 발명의 제1 실시예에 따른 용선 제조장치의 개략도이다.2 is a schematic view of a molten iron manufacturing apparatus according to a first embodiment of the present invention.
도 3은 본 발명의 제2 실시예에 따른 용선 제조장치의 개략도이다.3 is a schematic diagram of a molten iron manufacturing apparatus according to a second embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be embodied in various different forms, and the present embodiments merely make the disclosure of the present invention complete, and are common in the art to which the present invention pertains. It is provided to fully inform those skilled in the art of the scope of the invention, which is to be defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
도 1은 본 발명의 실시예에 따른 용선 제조장치의 개략도를 도시한 것인데, 도 1을 참조하면, 본 발명에 따른 실시예의 용선 제조장치는 제철 부생가스를 효율적으로 이용하여 용선을 제조하기 위하여 철광석 등의 원료 전처리설비(10), 제철 부생가스 전처리설비(20), 예비환원/환원 반응기(30) 및 용융환원 반응기(40)를 포함하여 이루어진다. 본 발명의 실시예에 따른 용선 제조장치는 사용되는 원료 형태에 의해 변형되거나 부가적인 장치와 함께 설치될 수 있다.1 is a schematic view of a molten iron manufacturing apparatus according to an embodiment of the present invention, referring to Figure 1, the molten iron manufacturing apparatus of the embodiment according to the present invention to produce molten iron by using the iron and steel by-products efficiently It comprises a raw material pretreatment facility 10, steelmaking by-product gas pretreatment facility 20, pre-reduction / reduction reactor 30 and the melt reduction reactor (40). The molten iron manufacturing apparatus according to the embodiment of the present invention may be modified with the type of raw materials used or installed with additional apparatus.
상기 원료 전처리설비(10)는 일반적으로 수 mm이하의 미분 형태로 존재하는 저품위광석을 철광석 원료 라인(5)을 통해 상기 원료 전처리설비(10)에 공급하여 환원에 적합하도록 변형하거나 성분을 조절하여 예비 가열을 수행하는 장치이다.The raw material pretreatment system 10 is supplied to the raw material pretreatment system 10 through the iron ore raw material line 5 to the low-grade ore, which is generally in the form of fine particles of several millimeters or less, to be deformed or controlled to reduce the It is a device that performs preheating.
상기 원료 전처리설비(10)는 철광석의 환원 및 용융 반응기 형태에 따라 달라지는 것으로 예비환원/환원 반응기(30)가 고정층 형태일 경우, 미분 형태로 존재하는 철광석 미립자는 펠렛(pellet) 형태 등으로 변형되는 것이 유리하다. 특히, 고로 형태의 반응기에 적합하지 않은 자철광을 포함한 수백 마이크론 이하의 미분 철광석뿐만 아니라 제선 공정 중 더스트(dust) 형태로 배출되는 수십 마이크론 이하의 미분 철광석은 원료 전처리 과정에서 펠렛(pellet)형태로 변형될 수 있다. 이들은 석탄과 혼합되거나 바인더와 함께 탄재내장 형태로 존재할 수도 있다. The raw material pretreatment facility 10 is to vary depending on the form of the reduction and melting reactor of iron ore, when the pre-reduction / reduction reactor 30 is a fixed bed form, the iron ore particles present in the fine form is transformed into a pellet (pellet) form, etc. It is advantageous. Particularly, fine iron ore of several hundred microns or less including magnetite which is not suitable for blast furnace type reactor, as well as fine iron ore of several tens of microns or less discharged in dust form during the steelmaking process, is transformed into pellet form during raw material pretreatment. Can be. They may be mixed with coal or present in a charcoal form with a binder.
반면, 상기 예비환원/환원 반응기(30)가 유동층 형태일 경우에는 수천 마이크론에서 수 마이크론까지 존재하는 미분 형태의 철광석은 그 형태 및 물리화학적 성질에 따라 기포유동층, 순환형 유동층 또는 상승관(riser), 회전식 유동층, 드럼(drum) 또는 스프레이 형태 등 다양한 유동층 반응기에 적합하도록 적절히 선별되고 전처리 될 수 있다. On the other hand, when the pre-reduction / reduction reactor 30 is in the form of a fluidized bed, the iron ore in the form of fine particles, which exist from thousands of microns to several microns, is a bubble fluidized bed, a circulating fluidized bed, or a riser according to its shape and physicochemical properties. It can be suitably selected and pretreated to suit various fluidized bed reactors, such as rotary fluidized bed, drum or spray form.
본 발명에 따른 실시예에서 미분 형태의 철광석은 고로 형태에서 직접 사용 할 수 없는 적철광 및 자철광, 수분을 많이 포함된 저급 철광석, 제철공정 부산물로서 배출된 더스트(dust) 형태의 철광석 등을 포함한다. 상기 예비환원/환원 반응기(30) 형태에 따라 선별된 미분 형태의 철광석은 적절한 온도로 가열되거나 물리화학적 방법에 의해 형태 변형이 가해질 수 있다. 특히, 갈철석(limonite)처럼 수분을 많이 포함한 철광석은 건조 또는 예비 가열될 수 있으며, 타코나이트(Taconite)처럼 불순물이 많거나 철 함량이 낮은 철광석은 미리 파쇄 또는 선광 등 원료 전처리 공정을 거칠 수 있다.Iron ore in the form of fine powder in the embodiment according to the present invention includes hematite and magnetite, which can not be used directly in the form of blast furnace, low iron ore containing a lot of moisture, dust ore in the form of dust (dust) discharged as a by-product of the steelmaking process. The finely divided iron ore selected according to the pre-reduction / reduction reactor 30 shape may be heated to an appropriate temperature or morphologically modified by physicochemical methods. In particular, iron ore containing a lot of moisture, such as limonite can be dried or pre-heated, iron ore with high impurities or low iron content such as taconite may be subjected to a raw material pretreatment process such as crushing or beneficiation in advance.
그리고, 상기 제철 부생가스 전처리설비(20)는 철광석 환원공정에서 배출한 가스 중 이산화탄소를 이산화탄소 라인(37)을 통하여 회수한 후, 코크스 오븐 배출 가스와 같은 제철 부생가스가 제철 부생가스 라인(6)을 통해 공급될 때 함께 공급되어 혼합 개질하고 선별 및 분리하여 환원가스 라인(70)을 통하여 상기 환원가스를 적절하게 용융환원 반응기(40)로 분배 공급한다. In addition, the steel by-product by-product pretreatment unit 20 recovers carbon dioxide from the gas discharged from the iron ore reduction process through a carbon dioxide line 37, and then, the steel by-product gas such as coke oven exhaust gas is a steel by-product gas line (6) When supplied through the feed is mixed together, reformed, sorted and separated to supply the reducing gas to the melt reduction reactor 40 through the reducing gas line 70 as appropriate.
상기 개질된 환원가스는 수소와 일산화탄소가 주성분인데, 상기 수소와 일산화탄소를 환원시키고자 하는 철광석의 종류에 따라 선택적으로 적절히 분배하여 공급함으로써 예비환원/환원 반응기(30) 및 용융환원 반응기(40)에서의 환원능력을 효율적으로 강화시킬 수 있다. 이를 위하여 제철 부생가스 전처리설비(20)는 반응기의 열 회수 및 열 공급 시스템뿐만 아니라 이산화탄소 회수 및 재사용 기술을 이용하여 저급철광석 환원에 적합한 환원가스를 적절히 공급한다.The reformed reducing gas includes hydrogen and carbon monoxide as main components, and is appropriately distributed and supplied selectively according to the type of iron ore to reduce the hydrogen and carbon monoxide in the pre-reduction / reduction reactor 30 and the melt reduction reactor 40. It can effectively enhance the reducing ability of. To this end, the iron and gas by-product pretreatment system 20 properly supplies a reducing gas suitable for reducing the lower iron ore using a carbon dioxide recovery and reuse technology as well as a heat recovery and heat supply system of the reactor.
상기와 같이 본 발명에 따른 실시예에서는 제철공정 중 발생한 이산화탄소를 회수, 재활용함으로써 이산화탄소를 저감시킬 수 있다.As described above, in the embodiment of the present invention, carbon dioxide may be reduced by recovering and recycling carbon dioxide generated during the steelmaking process.
도 1을 참조하면, 본 발명에 따른 실시예에서는 원료 전처리설비(10)에서 전처리된 철광석 원료가 광석도관(52)을 통하여 예비환원/환원 반응기(30)로 투입되고, 상기 예비환원/환원 반응기(30)에서 상기 철광석 원료가 예비환원 및 환원되어 부분 환원철 이송배관(54)를 통하여 용융환원 반응기(40)에 투입된다.1, in the embodiment according to the present invention, the iron ore raw material pretreated in the raw material pretreatment facility 10 is introduced into the pre-reduction / reduction reactor 30 through the ore conduit 52, the pre-reduction / reduction reactor At 30, the iron ore raw material is pre-reduced and reduced and introduced into the molten reduction reactor 40 through the partial reduced iron transfer pipe (54).
이때, 상기 예비환원/환원 반응기(30)는 상기 용융환원 반응기(40)로부터 환원가스 라인(64)을 통해 상승하는 환원가스와 제철 부생가스 전처리설비(20)로부터 생성된 개질 환원가스를 환원가스 라인(60)을 통해 공급되는 환원가스를 이용하여 원료 전처리설비(10)로부터 이송되는 철광석을 예비 환원하거나 환원하는 장치이다. In this case, the preliminary reduction / reduction reactor 30 reduces the reducing gas generated from the molten reduction reactor 40 through the reducing gas line 64 and the reformed reducing gas generated from the steelmaking by-product gas pretreatment facility 20. It is a device for preliminarily reducing or reducing the iron ore transferred from the raw material pretreatment facility 10 by using the reducing gas supplied through the line 60.
상기 예비환원/환원 반응기(30)는 철광석 입자 크기 및 반응기 형태에 따라 철광석으로부터 산소를 제거하는 환원반응속도를 조절하도록 1개 또는 2개 이상 직렬 또는 병렬로 연결될 수 있다. 상기 예비환원/환원 반응기(30)는 철광석 형태 및 반응기에 따라 적절한 환원반응 온도, 압력 범위 등이 결정되며 상기 철광석의 환원 공정이 고정층(fixed bed) 형태일 경우, 900℃ 이상의 고온에서 환원되고 소성되는 것도 가능하다. 상기 예비환원/환원 반응기(30)는 여러 반응기 형태를 서로 연결할 수도 있다. 특히, 유동층(fluidized bed) 반응기의 경우, 카본침적(carbon deposition)이나 부착(sticking) 등이 발생되지 않도록 반응온도 및 유동화 정도 등을 조절하여 연결해야 한다. The pre-reduction / reduction reactor 30 may be connected in series or in parallel with one or two or more so as to adjust the reduction reaction rate for removing oxygen from the iron ore according to the iron ore particle size and reactor type. The pre-reduction / reduction reactor 30 is determined by the iron ore type and the appropriate reduction reaction temperature, pressure range, etc. If the reduction process of the iron ore in the form of a fixed bed (fixed bed), reduced and calcined at a high temperature of 900 ℃ or more It is also possible. The pre-reduction / reduction reactor 30 may connect several reactor types to each other. In particular, in the case of a fluidized bed (fluidized bed) reactor, the reaction temperature and the degree of fluidization should be controlled so as to prevent carbon deposition or sticking.
일반적으로 적철광(hematite)의 경우, 상압보다 높은 압력하에서 600~850℃ 사이의 온도에서 환원이 잘 이루어지고, 자철광(magnetite)의 경우에는 350~650℃ 사이의 온도에서 환원이 잘 이루어진다. 그리고, 난환원광 등 저급 철광석의 효율적인 환원반응을 위하여 제철 부생가스 전처리설비(20)로부터 분리 선별된 환원가스는 철광석의 형태 및 환원반응기에 따라 투입, 조절되도록 한다. 만약, 다량의 수소환원제를 사용하면 저급 철광석의 환원속도를 증가시킬 수 있다. In general, in the case of hematite (hematite), it is well reduced at a temperature between 600 ~ 850 ℃ under a pressure higher than the atmospheric pressure, and in the case of magnetite (magnetite) it is well reduced at a temperature between 350 ~ 650 ℃. In addition, the reducing gas separated and separated from the steel by-product by-product pretreatment facility 20 for efficient reduction of low-grade iron ore such as hard-reduced ore is input and controlled according to the form and reduction of iron ore. If a large amount of hydrogen reducing agent is used, the reduction rate of the lower iron ore can be increased.
그리고, 본 발명에 따른 실시예의 용융환원 반응기(40)는 상기 예비환원/환원 반응기(30)로부터 얻어진 부분 환원철을 고열과 환원가스를 공급하는 탄화수소처리장치(80)를 이용하여 용융 환원함으로써 용선(90)을 생산하는 장치이다. 상기 탄화수소처리장치(80)는 반응기에 필요한 열량과 환원가스를 제공할 수 있도록 미분탄, 코크스 또는 브리켓 형태의 석탄 덩어리를 연소하는 장치이다. In addition, the molten reduction reactor 40 of the embodiment according to the present invention melts and reduces the partial reduced iron obtained from the preliminary reduction / reduction reactor 30 by using a hydrocarbon processing apparatus 80 for supplying high heat and reducing gas. 90) is a device for producing. The hydrocarbon processing device 80 is a device for burning coal pulverized in the form of pulverized coal, coke or briquettes so as to provide heat and reducing gas required for the reactor.
이때 발열량을 조절하는 매개체로는 이산화탄소 저감 측면에서 공기보다는 순산소를 이용하는 것이 바람직하며, 상기 순산소는 산소라인(85)을 통하여 공급하며, 순산소 투입시 반응기내 환원가스 침투 및 공간확보를 위해 부족한 구동력(driving force)은 제철 부생가스 전처리설비(20)로부터 얻어지는 탄화수소(환원가스) 가스 라인(70)에 의한 탄화수소의 투입에 의해 조절하는 것이 가능하다. 또한, 수소의 다량 투입에 의해 환원용융속도를 가속화함으로써 반응기내 필요한 환원 가스량 및 발열량을 낮추는 것도 가능하다.In this case, as a medium for controlling the calorific value, it is preferable to use pure oxygen rather than air in terms of carbon dioxide reduction, and the pure oxygen is supplied through the oxygen line 85, and in order to secure the reducing gas in the reactor and secure the space when the pure oxygen is introduced. The insufficient driving force can be controlled by the introduction of hydrocarbons by the hydrocarbon (reduction gas) gas line 70 obtained from the steelmaking by-product gas pretreatment facility 20. In addition, it is also possible to reduce the amount of reducing gas and calorific value required in the reactor by accelerating the reduction melting rate by adding a large amount of hydrogen.
이하에서는 본 발명에 따른 제1 실시예를 도 2을 참조하여 보다 구체적으로 설명한다.Hereinafter, a first embodiment according to the present invention will be described in more detail with reference to FIG. 2.
도 2는 본 발명에 따른 제1 실시예의 용선 제조장치의 개략도인데, 기본적인 구성 및 기능은 도 1에서와 동일하나 환원하고자 하는 철광석 종류 및 특성에 따라 발명의 구성이 변형되거나 추가적으로 부가 장치가 설치될 수 있다. Figure 2 is a schematic diagram of a molten iron manufacturing apparatus of the first embodiment according to the present invention, the basic configuration and function is the same as in Figure 1, but according to the type and characteristics of iron ore to be reduced, the configuration of the invention is modified or additional devices are to be installed Can be.
본 발명에 따른 제1 실시예는 예비환원/환원 반응기로 미분 형태로 존재하는 저급 철광석의 간접환원을 촉진하기 위해 유동층 형태의 반응기를 사용하였다. 상기 유동층 반응기는 미분 형태로 존재하는 철광석을 일산화탄소, 수소 등의 환원가스에 의해 환원시키는 것으로 고로 및 샤프트(shaft) 반응기의 고정층 반응기를 사용하는 것과 비교하여 철광석의 펠렛 공정 또는 소결 공정 등과 같은 전처리 공정이 필요 없어 공정 단순화가 가능하고 철광석이 미분 형태로 존재하여 철광석 환원속도가 빠르다. In the first embodiment according to the present invention, a reactor in the form of a fluidized bed was used to promote indirect reduction of the lower iron ore present in the form of a fine reduction / reduction reactor. The fluidized bed reactor is to reduce the iron ore present in the form of fine powder by reducing gas such as carbon monoxide, hydrogen, etc., compared with using a fixed bed reactor of the blast furnace and shaft reactors, such as pellet or sintering process of iron ore This process can be simplified because there is no need, and iron ore is in the form of fine powder, so iron ore reduction rate is fast.
이때 미분 형태의 철광석은 입자 크기 및 환원시 철광석 밀도 변화에 따라 유동층 반응기 형태가 다르게 적용된다. 즉, 수 mm이하의 모든 철광석 입자는 환원 공정에서 하나의 반응기 형태를 요구하기보다는 여러 유동층 반응기 형태의 결합을 선호하며, 이는 미분 형태의 철광석을 환원시 발생되는 카본침적이나 부착(sticking) 현상 발생을 감소시키고, 유동층 반응기 형태에 의해 발생되는 비산손실을 최소화하여 효율적인 철광석 환원공정을 이룰 수 있다. 이는 철광석 형태에 따라 유동층 반응기를 적절히 선택함으로써 가능하다. At this time, in the form of fine iron ore, the fluidized bed reactor is applied differently depending on the particle size and the iron ore density change. That is, all iron ore particles of several millimeters or less are preferred to combine several fluidized bed reactor types rather than requiring one reactor type in the reduction process, which results in carbon deposition or sticking phenomenon occurring when reducing finely divided iron ores. It is possible to achieve an efficient iron ore reduction process by reducing the, and by minimizing the scattering loss caused by the fluidized bed reactor type. This is possible by appropriate choice of fluidized bed reactors depending on the type of iron ore.
본 발명에 따른 제1 실시예에서는 일반적으로 수백 마이크론 이하로 존재하고 평균 입자분포가 수십마이크론으로 존재하는 자철광 형태의 미분 철광석을 환원하기 위하여 상승관(riser)형태의 유동층 반응기를 적용하고, 일반적으로 수 mm이하의 미분 철광석으로 존재하고 평균 입자분포가 수백 마이크론으로 존재하는 적철광 형태의 미분 철광석을 위해 기포 유동층 반응기를 적용하였다. 상기 미분 철광석은 적절한 반응조건에서 환원가스와 접촉하여 환원철이 생성된 후, 용융환원 반응기(40)에서 용선(90)화 하는 것이 가능하다. In the first embodiment according to the present invention, a riser-type fluidized bed reactor is generally used to reduce the magnetite-type fine iron ore, which is generally less than several hundred microns and has an average particle distribution of several tens of microns. A bubble fluidized bed reactor was applied for hematite-type fine iron ores with fine iron ore less than several millimeters and average particle distribution of several hundred microns. The fine iron ore is in contact with a reducing gas under appropriate reaction conditions to form reduced iron, it is possible to form a molten iron 90 in the melt reduction reactor (40).
상기 자철광 계열의 철광석 원료는 하기 식(1)에서 보는 바와 같이 환원가스로서 다량의 수소를 함유한 환원가스에 의해 환원이 잘 일어나며 철광석 간접 환원반응은 350~650℃의 온도 범위에서 잘 일어난다. The magnetite-based iron ore raw material is well reduced by the reducing gas containing a large amount of hydrogen as a reducing gas as shown in the following formula (1), and the iron ore indirect reduction reaction occurs well in the temperature range of 350 ~ 650 ℃.
1/4 Fe3O4 + H2 → 3/4 Fe + H2O -------------- (1)1/4 Fe 3 O 4 + H 2 → 3/4 Fe + H 2 O -------------- (1)
따라서 주로 자철광 계열의 철광석은 원료전처리 설비(10b)에서 수십 마이크론 입자크기의 정규분포를 가지도록 혼합하여 Geldart A 범위에 있도록 처리함으로써 상승관(33,34)에서 환원하는 것이 좋다. 이때 수분이 많은 철광석은 건조공정을 거치거나 불순물이 많은 광석은 선광에 의해 예비처리 공정을 수반하는 것도 가능하다. 일반적으로 수십 마이크론으로 존재하는 미분 자철광은 수소를 사용하여 환원할 경우, 환원반응 초기에 800℃ 이상의 온도에서 환원제로서 일산화탄소보다 빠르게 환원반응이 발생함으로 기포 유동층보다는 상승관(riser)에 의하여 철광석을 환원하는 것이 적당하다. 이때, 상기 예비처리 공정에서는 800℃ 이상의 온도에서 (예비)환원이 가능하도록 미분 철광석을 예열할 수 있다. 상기의 예열은 환원 반응기(32)에서 배출하는 일부 가스를 미분 자철광 원료 전처리설비(10b)로 순환 및 연소시켜 800℃ 이상의 온도로 상승시킴으로써 가능하다. Therefore, it is preferable that the iron ore of the magnetite series is mixed in the raw material pretreatment facility 10b to have a normal distribution of several tens of micron particle size and treated to be in the Geldart A range to be reduced in the riser 33 and 34. At this time, the iron ore with high moisture may be subjected to a drying process or the ore with high impurities may be accompanied by a pretreatment process by beneficiation. In general, fine magnetite which is present in tens of microns is reduced by using hydrogen, and the reduction reaction occurs faster than carbon monoxide as a reducing agent at a temperature of 800 ° C. or higher at the initial stage of the reduction reaction, thereby reducing the iron ore by a riser rather than a bubble fluidized bed. It is suitable to do. In this case, in the pretreatment process, the preliminary iron ore may be preheated to allow a (preliminary) reduction at a temperature of 800 ° C. or higher. The preheating can be performed by circulating and burning some of the gas discharged from the reduction reactor 32 to the fine magnetite raw material pretreatment facility 10b and raising the temperature to 800 ° C or higher.
일반적으로 수소를 사용한 자철광 계통의 환원반응은 철광석 환원율이 40~50%이하까지는 800℃ 이상의 환원온도에서 빠르게 환원되지만, 환원율이 40~50%이상의 경우에는 환원반응속도가 현저히 감소하게 된다. 따라서 50% 이상의 철광석 환원율을 얻기 위해서는 반응온도는 350~650℃이하로 하는 것이 적당하다. 이는 수소에 의해 미분 자철광을 환원함에 의해 환원율이 높아짐과 동시에 카본침적이나 부착(sticking)에 의해 환원반응속도가 저해되기 때문이다. 이를 위하여 미분 자철광의 환원을 위한 상승관을 2개 이상 연결하여 환원하는 것이 적당하다. In general, the reduction reaction of the magnetite system using hydrogen is rapidly reduced at a reduction temperature of 800 ° C. or higher until the iron ore reduction rate is 40-50% or less, but the reduction reaction rate is significantly reduced when the reduction rate is 40-50% or more. Therefore, in order to obtain an iron ore reduction rate of 50% or more, it is appropriate that the reaction temperature is 350 to 650 ° C or less. This is because the reduction rate is increased by reducing the fine magnetite with hydrogen, and the reduction reaction rate is inhibited by carbon deposition or sticking. For this purpose, it is appropriate to reduce by connecting two or more rising tubes for the reduction of the fine magnetite.
즉, 제1 상승관(34)은 800℃ 이상의 온도에서 환원율이 40~50% 가 되도록 조절하고, 제2 상승관(33)는 350~650℃ 온도에서 환원반응이 가속화되도록 한다.That is, the first riser 34 is adjusted so that the reduction rate is 40 to 50% at a temperature of 800 ℃ or more, and the second riser 33 is to accelerate the reduction reaction at 350 ~ 650 ℃ temperature.
이렇게 얻어진 환원철은 적철광 계통의 환원철과 혼합하여 환원시킨 후 용융환원 반응기(40)에 투입할 수 있다. 이때 자철광 계통과 적철광 계통의 환원철을 구별하여 용융환원 반응기(40)에 투입하는 것도 가능하다. 상기 자철광 계통의 철광석의 환원을 위한 환원가스는 제철 부생가스 전처리설비(20-1)로부터 생산된 수소가스를 이용하여 환원하는 것이 유리하다. 그러나, 환원가스의 형태는 여러 가지 혼합가스의 형태로 존재할 수 있다. 또한, 이때 사용되는 반응기는 상승관으로 한정되는 것은 아니며, 철광석의 종류는 자철광 계통의 철광석으로 한정되지 않는 것으로 적철광 계통 및 제철공정 부산물로서 배출된 더스트(dust)형태의 철광석 등을 포함하는 것이 가능하고, 상기 환원반응기는 환원율 및 철광석 체류시간에 따라 2개 이상 연결하는 것도 가능하다. The reduced iron thus obtained may be mixed with the reduced iron of the hematite system and reduced to be added to the melt reduction reactor 40. At this time, it is also possible to distinguish the reduced iron of the magnetite system and hematite system to be introduced into the melt reduction reactor (40). The reducing gas for reducing the iron ore of the magnetite system is advantageously reduced by using hydrogen gas produced from the steelmaking by-product gas pretreatment facility 20-1. However, the reducing gas may exist in the form of various mixed gases. In addition, the reactor used at this time is not limited to the riser, the type of iron ore is not limited to the iron ore of the magnetite system, it is possible to include a hematite system and a dust (iron) in the form of dust (dust) discharged as a by-product of steelmaking process. In addition, the reduction reactor may be connected to two or more according to the reduction rate and the iron ore residence time.
도 2를 참조하면, 철광석 원료는 철광석 원료 라인(5b)을 통해 철광석 원료를 환원에 적합하도록 선별 및 전처리되는 원료 전처리설비(10b)에 공급되고, 상기 원료 전처리설비(10b)로부터 전처리된 철광석 원료가 예비환원 반응기에 이송되는데, 상기 예비환원 반응기는 상기 전처리된 철광석 원료가 이송되는 제1 상승관(34)과, 상기 제1 상승관(34)과 연결되어 있는 제2 상승관(33)으로 이루어진다.Referring to FIG. 2, the iron ore raw material is supplied to the raw material pretreatment facility 10b for sorting and pretreating the iron ore raw material to be suitable for reduction through the iron ore raw material line 5b, and the iron ore raw material pretreated from the raw material pretreatment facility 10b. Is transferred to a preliminary reduction reactor, wherein the preliminary reduction reactor is a first riser 34 to which the pretreated iron ore raw material is transferred, and a second riser 33 connected to the first riser 34. Is done.
상기 원료 전처리설비(10b)로부터 철광석 원료는 제1 광석도관(52a), 제2 광석도관(52b) 및 제3 광석도관(52c)을 통하여 순차적으로 제1 상승관(34), 제2 상승관(33) 및 환원 반응기(32)로 이동하면서 환원된다.Iron ore raw material from the raw material pretreatment facility (10b) through the first ore conduit (52a), the second ore conduit (52b) and the third ore conduit (52c) sequentially the first riser (34), the second riser It is reduced while moving to 33 and the reduction reactor 32.
즉, 상기 이송된 철광석 원료가 환원가스에 의해 예비환원되는 예비환원 반응기(33,34)로부터 이송된 부분 환원철은 환원 반응기(32)에서 환원되며, 상기 환원 반응기(32)로부터 얻어진 부분 환원철은 용융환원 반응기(40)에서 환원가스를 이용하여 용융 환원시킴으로써 용선(90)을 생산한다.That is, the partial reduced iron transferred from the preliminary reduction reactors 33 and 34 in which the transferred iron ore raw material is pre-reduced by the reducing gas is reduced in the reduction reactor 32, and the partial reduced iron obtained from the reduction reactor 32 is melted. The molten iron 90 is produced by melt reduction using a reducing gas in the reduction reactor 40.
또한, 도 2에는 제철 부생가스 또는 철광석 환원공정에서 발생되는 이산화탄소를 혼합 및 개질하여 환원가스를 생성하고, 상기 생성된 환원가스를 상기 용융환원 반응기(40) 또는 상기 예비환원 반응기(33,34)에 공급하는 제철 부생가스 전처리설비(20-1) 및 상기 이산화탄소를 공급하는 철광석 환원공정 설비(100-1)가 도시되어 있다.In addition, in FIG. 2, carbon dioxide generated in a steelmaking by-product gas or iron ore reduction process is mixed and reformed to generate a reducing gas, and the generated reducing gas is the molten reduction reactor 40 or the preliminary reduction reactors 33 and 34. The iron by-product by-product pretreatment facility 20-1 to supply to the iron ore reduction process facility 100-1 to supply the carbon dioxide is shown.
이때, 상기 상기 제철 부생가스 전처리설비(20-1)는, 제철 부생가스로부터 수소를 분리하여 상기 분리된 수소를 상기 제2 상승관(33)에 공급하는 제철 부생가스 분리장치(21), 상기 수소가 분리된 제철 부생가스에 상기 원료 전처리설비(10b)를 거쳐 순환하는 순환가스 라인(72) 내의 순환가스와의 열교환에 의해 열량을 공급하는 제1 가열기(12a), 상기 발생된 수소를 상기 제1 상승관(34)에 공급하는 제1 개질반응기(20a) 및 상기 제1 개질반응기(20a)와 연결되어 상기 제1 개질반응기(20a)로부터 발생된 탄소와 상기 제1 가열기(12a)에 의한 가스의 완전연소에 의해 발생된 이산화탄소 및 철광석 환원공정 설비(100-1)에서 발생된 이산화탄소와 함께 유입되어 일산화탄소를 생산하고 상기 생산된 일산화탄소는 상기 용융환원 반응기(40)에 공급하는 제2 개질반응기(20b)를 포함한다. 이때, 상기 제2 개질반응기(20b)로의 탄소 공급은 탄소 라인(18)을 통해 이루어진다.At this time, the steel by-product by-product pretreatment 20-1, the steel by-product off-gas separation device 21 for separating the hydrogen from the steel by-product by-product to supply the separated hydrogen to the second riser (33), The first heater 12a for supplying heat to the iron by-product gas from which hydrogen is separated by the heat exchange with the circulating gas in the circulating gas line 72 circulating through the raw material pretreatment facility 10b, and the generated hydrogen is It is connected to the first reforming reactor (20a) and the first reforming reactor (20a) supplied to the first riser (34) to the carbon generated from the first reforming reactor (20a) and the first heater (12a) The carbon dioxide generated by the complete combustion of the gas and carbon dioxide generated in the iron ore reduction process facility (100-1) to produce carbon monoxide and the produced carbon monoxide is supplied to the melt reduction reactor (40) Reactor 20b It should. At this time, the carbon supply to the second reforming reactor 20b is made through the carbon line 18.
상기 제1 가열기(12a)에 의해 열량이 보충된 상기 수소가 분리된 제철 부생가스는 대부분이 메탄으로 이루어져 있으며, 메탄 라인(19)을 통해 제1 가열기(12a)로 유입되며, 상기 제1 개질반응기(20a)에서는 하기 식(2)와 같은 반응에 의해 수소 및 탄소를 발생시킨다. Most of the seasonal by-product gas from which the hydrogen is supplemented by the first heater 12a is separated from the hydrogen, is mostly made of methane, and flows into the first heater 12a through the methane line 19, and the first reforming is performed. In the reactor 20a, hydrogen and carbon are generated by a reaction such as the following formula (2).
CH4 → C + 2H2 --------------------(2)CH 4 → C + 2H 2 -------------------- (2)
이때, 상기 원료 전처리설비(10b)를 거쳐 순환하는 가스의 온도는 800℃ 이상이다.At this time, the temperature of the gas circulated through the raw material pretreatment facility 10b is 800 ° C. or higher.
상기 제1 가열기(12a)에 사용된 가스의 일부는 완전연소에 의해 제2 개질반응기(20b)에 이산화탄소를 공급함과 동시에 제2 가열기(12b)에 의해 열량을 공급하는 것도 가능하다. 나머지 가스는 전력을 생산하도록 발전소(13a)에 공급될 수 있다. 상기 제1 개질반응기(20a)에서 발생한 수소가스는 제1 상승관(34)으로 투입되며 상기 수소는 800℃ 이상으로 존재하는 것이 가능하며, 부족한 열량은 환원 반응기(32)로부터 배출된 가스의 일부를 연소가스로 이용하여 보충하는 것도 가능하다. 이때 수소를 제2 상승관(33)으로부터 배출되는 수소가스를 제2 열교환기(11b)에서 열교환한 후 제1 상승관(34)에 보충하는 것도 가능하다. A part of the gas used in the first heater 12a may supply carbon dioxide to the second reforming reactor 20b by complete combustion, and at the same time, heat may be supplied by the second heater 12b. The remaining gas can be supplied to power plant 13a to produce power. Hydrogen gas generated in the first reforming reactor 20a is introduced into the first riser 34 and the hydrogen may be present at 800 ° C. or more, and the amount of heat insufficient is part of the gas discharged from the reduction reactor 32. It is also possible to supplement by using as a combustion gas. At this time, the hydrogen gas discharged from the second riser 33 may be replenished to the first riser 34 after heat exchange with the second heat exchanger 11b.
본 발명에 따른 제1 실시예에서의 수소환원제 가스는 제철소로부터 코크스를 만드는 과정에서 발생하는 코크스 오븐 가스(COG)와 본 발명에 따른 실시예의 철광석 환원공정 설비(100-1)에서 배출되는 가스 중 이산화탄소를 회수하고 개질하여 생산한다. 이는 석탄 기반 제철공정에서 발생되는 가스를 효율적으로 이용하는 기술이다.Hydrogen reducing agent gas in the first embodiment according to the present invention is the coke oven gas (COG) generated in the process of making coke from the steel mill and the gas discharged from the iron ore reduction process equipment 100-1 of the embodiment according to the present invention CO2 is recovered and reformed to produce. This is a technology that efficiently uses the gas generated in the coal-based steelmaking process.
상기 제2 개질반응기(20b)는 하기 식(3)에서 보는 바와 같이 제1 개질반응기(20a)로부터 얻어진 탄소(C)와 철광석 환원공정 설비(100)로부터 회수되는 이산화탄소 라인(37)을 통해 공급되는 이산화탄소 및 제2 개질반응기(20b)에 열량을 공급하는 제2 가열기(12b)로부터 얻어진 이산화탄소를 개질하여 일산화탄소를 얻는 장치이다. The second reforming reactor 20b is supplied through the carbon dioxide line 37 recovered from the carbon (C) obtained from the first reforming reactor 20a and the iron ore reduction process facility 100 as shown in Equation (3) below. It is a device for obtaining carbon monoxide by reforming the carbon dioxide obtained from the second heater 12b for supplying heat to the carbon dioxide and the second reforming reactor 20b.
C + CO2 → 2CO --------------------(3)C + CO 2 → 2CO -------------------- (3)
한편, 상기 제1 상승관(34)은 800℃ 이상에서 작동하므로 상기 제1 상승관(34)에 공급되는 환원가스(수소)는 800℃ 이상의 온도를 만족해야 한다. 따라서, 제철 부생가스 분리장치(21)와 상기 제2 상승관(33) 사이에는 제1 열교환기(11a)가 설치되어 상기 제1 상승관(34) 및 제2 상승관(33)으로부터 배출되는 수소와의 열교환에 의해 상기 제2 상승관(33)에 공급되는 환원가스의 열량을 보충하게 된다.On the other hand, since the first riser 34 operates at 800 ° C. or higher, the reducing gas (hydrogen) supplied to the first riser 34 must satisfy a temperature of 800 ° C. or higher. Therefore, a first heat exchanger 11a is installed between the steelmaking by-product gas separator 21 and the second riser 33 to discharge from the first riser 34 and the second riser 33. The heat amount of the reducing gas supplied to the second riser 33 is replenished by heat exchange with hydrogen.
상기의 열교환은 각각 1차 상승관 배출라인(34a) 및 2차 상승관 배출라인(33a)을 통해 이루어진다. 이때, 상기 1차 상승관 배출라인(34a) 및 2차 상승관 배출라인(33a) 상에는 고온의 수소가 흐르며 상기 제1 열교환기(11a)에서 저온의 수소가 공급되는 수소 라인(17a)의 수소가 열교환하게 됨과 동시에 공급되는 수소의 양이 부족한 경우에는 열교환 후에 제2 상승관(33)에 수소가 공급될 수 있다.The heat exchange is performed through the primary riser discharge line 34a and the secondary riser discharge line 33a, respectively. At this time, high temperature hydrogen flows on the first riser discharge line 34a and the second riser discharge line 33a, and hydrogen of the hydrogen line 17a to which low temperature hydrogen is supplied from the first heat exchanger 11a. When the heat exchange is performed and the amount of hydrogen supplied is insufficient, hydrogen may be supplied to the second riser 33 after the heat exchange.
상기 제1 및 제2 상승관(33,34)을 연결하는 제2 광석도관(52b) 상에 제2 열교환기(11b)가 설치되어 상기 제2 상승관(33)으로부터 배출되는 수소가스를 상기 제2 광석도관(52b)을 흐르는 부분 환원철과 열교환 후 상기 제1 상승관(34)에 공급하게 된다. 상기 열교환 후 제1 상승관(34)에 공급되는 수소는 제1 개질반응기(20a)로부터 제1 상승관(34)에 공급되는 수소 라인(17a)에 의해 공급되는 수소와 함께 혼합되어 공급된다.The second heat exchanger (11b) is installed on the second ore conduit (52b) connecting the first and the second riser (33, 34) to the hydrogen gas discharged from the second riser (33) After the heat exchange with the partial reduced iron flowing through the second ore conduit 52b, the first riser 34 is supplied. The hydrogen supplied to the first riser 34 after the heat exchange is mixed and supplied with the hydrogen supplied by the hydrogen line 17a supplied from the first reforming reactor 20a to the first riser 34.
상기 원료 전처리설비(10b)는 철광석 원료의 전처리를 위하여 열을 필요로하는데, 이때의 열은 상기 환원 반응기(32)에서 상기 원료 전처리설비(10b)로 공급되는 환원가스 라인(62d)의 환원가스(순환가스)에 의해 공급받는다. 즉, 상기 고온의 환원가스는 상기 원료 전처리설비(10b)를 가열한 후에 순환가스(환원가스) 라인(72)을 통해 흐른다. 상기 순환가스 라인(72)을 통해 흐르는 환원가스의 온도 또한 고온이므로 상기에서와 같이 제1 가열기(12a)에서 수소가 제거된 제철 부생가스를 열교환 및 연소시킬 수 있다.The raw material pretreatment facility (10b) requires heat for pretreatment of iron ore raw material, the heat of the reducing gas of the reducing gas line 62d supplied from the reduction reactor 32 to the raw material pretreatment facility (10b) Supplied by (circulating gas). That is, the high temperature reducing gas flows through the circulating gas (reduction gas) line 72 after heating the raw material pretreatment facility 10b. Since the temperature of the reducing gas flowing through the circulating gas line 72 is also high, it is possible to heat exchange and combust the steel off-by-product gas from which the hydrogen is removed from the first heater 12a as described above.
본 발명에 따른 제1 실시예에서의 철광석 환원공정 설비(100-1)는 상기 환원 반응기(32)로부터 공급되는 환원가스에 의해 철광석 원료를 예비환원시키는 제2 예비환원 반응기(31)와, 상기 제2 예비환원 반응기(31)로부터 공급되는 환원가스에 의해 상기 제2 예비환원 반응기(31)에 적합하도록 선별 및 전처리된 철광석 원료를 상기 제2 예비환원 반응기(31)에 공급하는 제2 원료 전처리설비(10a)와, 상기 제2 원료 전처리설비(10a)와 연결된 환원가스 라인(62c)으로부터 이산화탄소를 분리하여 이산화탄소를 상기 제철 부생가스 전처리설비(20-1)에 공급하는 이산화탄소 라인(37)을 포함한다. 철광석 원료는 제5 광석도관(52e), 제4 광석도관(52d)를 통해 순차적으로 제2 예비환원 반응기(31) 및 환원 반응기(32)로 이송되면서 환원된다.Iron ore reduction process equipment (100-1) in the first embodiment according to the present invention is a second pre-reduction reactor (31) for reducing the iron ore raw material by the reducing gas supplied from the reduction reactor 32, and Second raw material pretreatment for supplying the iron ore raw material that has been screened and pretreated to be suitable for the second pre-reduction reactor 31 by the reducing gas supplied from the second pre-reduction reactor 31 to the second pre-reduction reactor 31. A carbon dioxide line (37) for separating carbon dioxide from the reducing gas line (62c) connected to the facility (10a) and the second raw material pretreatment (10a) and supplying carbon dioxide to the steelmaking by-product gas pretreatment (20-1). Include. Iron ore raw materials are reduced while being sequentially transferred to the second preliminary reduction reactor 31 and the reduction reactor 32 through the fifth ore conduit 52e and the fourth ore conduit 52d.
본 발명에 따른 철광석 환원공정 설비(100-1)는 환원가스 라인(62a,62b)을 통해 순차적으로 제2 예비환원 반응기(31) 및 제2 원료 전처리설비(10a)로 흐르며, 환원가스 라인(62c)를 통해 일부의 환원가스는 발전소(13b)에 저장되고, 나머지 환원가스는 이산화탄소로 분리된다.The iron ore reduction process equipment 100-1 according to the present invention flows to the second preliminary reduction reactor 31 and the second raw material pretreatment equipment 10a sequentially through reducing gas lines 62a and 62b, and reduces gas lines ( Through 62c) some of the reducing gas is stored in the power plant (13b), the remaining reducing gas is separated into carbon dioxide.
상기 이산화탄소의 분리는 이산화탄소 분리장치(14)에서 이루어지고, 분리된 이산화탄소는 이산화탄소 라인(37)을 통해 상기 제2 개질반응기(20b)에 공급되며, 상기 이산화탄소 분리장치(14)에서 분리된 환원가스는 환원가스 라인(66)을 통해 상기 용융환원 반응기(40)에서 환원 반응기(32)로 유입되는 환원가스 라인(64)와 혼합되어 환원 반응기(32)로 공급된다.Separation of the carbon dioxide is made in the carbon dioxide separator 14, the separated carbon dioxide is supplied to the second reforming reactor 20b through the carbon dioxide line 37, the reducing gas separated in the carbon dioxide separator 14 Is mixed with a reducing gas line 64 flowing into the reduction reactor 32 from the melt reduction reactor 40 through a reducing gas line 66 and supplied to the reduction reactor 32.
이때, 상기 이산화탄소 라인(37) 상에는 이산화탄소 저장장치(15)가 설치될 수 있다.In this case, a carbon dioxide storage device 15 may be installed on the carbon dioxide line 37.
본 발명에 따른 제1 실시예에서의 이산화탄소를 공급하는 철광석 환원공정에서는 평균 입자분포가 수백 마이크론 크기로 존재하는 적철광(hematite)계열의 미분 철광석이 환원가스로써 다량의 일산화탄소를 함유한 환원가스를 사용하여 환원철로 생성되며 600~850℃의 온도 범위에서 보다 용이하게 환원된다. 이때의 반응식은 하기 식(4)와 같다.In the iron ore reduction process for supplying carbon dioxide in the first embodiment according to the present invention, hematite-based fine iron ore having a mean particle distribution of several hundred microns is used as a reducing gas, and a reducing gas containing a large amount of carbon monoxide is used. It is produced by reducing iron and reduced more easily in the temperature range of 600 ~ 850 ℃. Reaction formula at this time is as following formula (4).
1/3 Fe2O3 + CO → 2/3 Fe + CO2 -------------- (4)1/3 Fe 2 O 3 + CO → 2/3 Fe + CO 2 -------------- (4)
본 발명에 따른 실시예에서는 주로 적철광 계열 철광석은 제2 원료전처리 설비(10a)에서 수백 마이크론 입자크기의 정규분포를 가지도록 혼합하여 Geldart B 입자 유동화의 기포 유동층 반응기를 사용하여 환원시킨다. 이때 수분이 많은 철광석은 건조공정을 거치거나 불순물이 많은 광석은 선광에 의해 예비처리 공정이 수반되는 것도 가능하다. In the embodiment according to the present invention mainly hematite-based iron ore is mixed in a second raw material pretreatment (10a) to have a normal distribution of several hundred microns particle size is reduced using a bubble fluidized bed reactor of Geldart B particle fluidization. At this time, the iron ore with high moisture may be subjected to a drying process, or the ore with high impurities may be accompanied by a pretreatment process by beneficiation.
예비처리 공정 이후, 철광석은 용융환원 반응기(40)부터 상승하는 다량의 일산화탄소를 함유한 환원가스를 사용하여 환원 반응기(31)를 거쳐 자철광 계통의 환원 철광석과 혼합되어 환원 반응기(32)에서 환원되는 것도 가능하다. 이때 환원온도는 다량의 일산화탄소에 의해 환원이 촉진되도록 650℃~800℃의 범위에서 이루어진다. 환원가스의 형태는 일반적으로 용융환원 반응기로부터 상승하는 다량의 일산화탄소를 선호하나 여러 가지 혼합가스의 형태로 존재할 수 있다. 또한, 이때 사용되는 반응기는 기포유동층 반응기로 한정되는 것은 아니며, 철광석의 종류는 적철광 계통의 철광석으로 한정되지 않는 것으로 자철광 및 제철공정 부산물로서 배출된 더스트(dust)형태의 철광석 등을 포함하는 것이 가능하다. After the pretreatment process, the iron ore is mixed with the reducing iron ore of the magnetite system through a reduction reactor 31 using a reducing gas containing a large amount of carbon monoxide rising from the molten reduction reactor 40 to be reduced in the reduction reactor 32. It is also possible. At this time, the reduction temperature is made in the range of 650 ℃ ~ 800 ℃ to promote the reduction by a large amount of carbon monoxide. The form of the reducing gas generally favors a large amount of carbon monoxide rising from the melt reduction reactor, but can be present in the form of various mixed gases. In addition, the reactor used at this time is not limited to the bubble fluidized bed reactor, the type of iron ore is not limited to the iron ore of the hematite system, it is possible to include a dust (iron) in the form of dust (iron) discharged as a by-product of iron and iron process Do.
상기 철광석 환원공정 설비(100-1)에서 회수되는 이산화탄소는 제2 원료 전처리설비(10a) 또는 제2 예비환원 반응기(31)로부터 배출되는 부생가스로 일부분은 전력을 생산하기 위하여 발전소(13b)에 공급되고 나머지는 공정 중 재순환가스로 회수되어 이산화탄소 분리장치(14)에서 이산화탄소로 분리된 후 일부는 제2 개질반응기(20b)로 투입되고 나머지는 이산화탄소 저장장치(15)에 의해 지하에 저장할 수 있다. 상기 이산화탄소 분리장치(14)에서 분리된 환원가스는 용융환원 반응기(40)에서 상승하는 환원가스와 혼합되어 환원 반응기(32)로 재투입된다. 여기서 상기 개질 반응기의 형태는 고정층 또는 유동층 형태로 존재하는 것이 가능하나 유동층 형태를 선호한다. 제2 개질반응기(20b)으로부터 얻어진 일산화탄소는 용융환원 반응기(40)에 투입될 수 있다.Carbon dioxide recovered from the iron ore reduction process facility (100-1) is by-product gas discharged from the second raw material pretreatment facility (10a) or the second pre-reduction reactor (31) to a power plant (13b) to produce power in part. After being supplied and the remainder is recovered as a recycle gas during the process to be separated into carbon dioxide in the carbon dioxide separation unit 14, some may be introduced into the second reforming reactor 20b and the rest may be stored underground by the carbon dioxide storage unit 15. . The reducing gas separated by the carbon dioxide separator 14 is mixed with the reducing gas rising in the melt reduction reactor 40 and re-introduced into the reduction reactor 32. The reforming reactor may be in the form of a fixed bed or fluidized bed, but the fluidized bed is preferred. Carbon monoxide obtained from the second reforming reactor 20b may be introduced into the melt reduction reactor 40.
상기 용융환원 반응기(40)는 환원 반응기(32)로부터 얻어진 부분 환원철을 고열과 환원가스를 공급하는 탄화수소처리장치(80a,80b)를 이용하여 용융 환원함으로써 용선(90)을 생산한다.  The molten reduction reactor 40 produces the molten iron 90 by melting and reducing the partially reduced iron obtained from the reduction reactor 32 using hydrocarbon treatment devices 80a and 80b for supplying high heat and reducing gas.
상기 탄화수소처리장치(80a,80b)는 반응기에 필요한 열량과 환원가스를 제공할 수 있도록 미분탄, 코크스 또는 브리켓 형태 석탄 덩어리를 연소시킨다. 이때 발열량을 조절하는 매개체로는 이산화탄소 저감 측면에서 공기보다는 순산소를 이용하는 것이 바람직하며, 산소 라인(85)을 통해 순산소 투입시 반응기내 환원가스 침투 및 공간확보를 위해 부족한 구동력(driving force)은 제2 개질반응기(20b)로부터 얻어지는 일산화탄소를 환원가스 라인(68)을 통해 공급함으로써 조절 가능하다. 부족한 경우에는 별도로 탄화수소 공급라인(80b)을 통해 공급할 수도 있다.The hydrocarbon processing apparatus (80a, 80b) burns pulverized coal, coke or briquette coal mass to provide the heat and reducing gas required for the reactor. In this case, it is preferable to use pure oxygen rather than air in terms of carbon dioxide reduction as a medium for controlling the calorific value, and the driving force insufficient for infiltrating the reducing gas and securing the space in the reactor when the pure oxygen is injected through the oxygen line 85 is The carbon monoxide obtained from the second reforming reactor 20b can be regulated by supplying it through the reducing gas line 68. In case of lack, it may be separately supplied through the hydrocarbon supply line 80b.
이하에서는 본 발명에 따른 제2 실시예에 대하여 도 3을 참조하여 설명한다.Hereinafter, a second embodiment according to the present invention will be described with reference to FIG. 3.
도 3은 본 발명에 따른 제2 실시예의 용선 제조장치의 개략도를 도시한 것인데, 제2 실시예의 용선 제조장치의 구성 및 기능은 특별히 다르게 설명하지 않은 한 상기 제1 실시예에서와 동일하나 제철 부생가스 분리장치(20-2)에서의 이산화탄소 회수 및 부생가스 개질 방법 등은 변형되거나 추가적인 부가장치들이 설치될 수 있다.Figure 3 shows a schematic view of the molten iron manufacturing apparatus of the second embodiment according to the present invention, the configuration and function of the molten iron manufacturing apparatus of the second embodiment is the same as in the first embodiment unless otherwise described, but iron and steel by-products The method of carbon dioxide recovery and by-product gas reforming in the gas separation device 20-2 may be modified or additional additional devices may be installed.
제2 실시예에서의 미분 철광석의 유동층 환원반응기에서의 흐름은 제1 실시예에서와 동일하고, 적철광 계통의 미분 철광석은 기포 유동층 반응기에서 자철광 계통의 미분 철광석은 상승관에서 각각 환원된 후, 환원 반응기(32)에서 혼합되는 동시에 환원되어 용융환원 반응기(40)속으로 투입된다. 그러나, 미분 철광석 환원 반응기(32)의 환원가스의 흐름은 부생가스 개질 및 환원가스 순환방식에 의해 변형될 수 있다.The flow in the fluidized bed reduction reactor of the fine iron ore in the second embodiment is the same as in the first embodiment, and the fine iron ore in the hematite system is reduced in the riser in the bubble fluidized bed reactor, respectively, and then reduced. At the same time, the mixture is reduced in the reactor 32 and introduced into the melt reduction reactor 40. However, the flow of the reducing gas of the fine iron ore reduction reactor 32 may be modified by by-product gas reforming and reducing gas circulation.
본 발명에 따른 제2 실시예에서는 제철 부생가스인 COG를 사용하여 제철 부생가스 전처리설비(20-2)로부터 분리된 수소가스가 수소 라인(17a)을 통해 제1 및 제2 상승관(33,34) 배출된 수소가스와 제1 열교환기(11a)에서 열교환 후 제2 상승관(33)으로 투입된다.In the second embodiment according to the present invention, the hydrogen gas separated from the steelmaking by-product gas pretreatment facility 20-2 using COG, which is steel by-product gas, passes through the hydrogen line 17a. 34) After the heat exchanged from the discharged hydrogen gas and the first heat exchanger (11a) is introduced into the second riser (33).
또한, COG 또는 FOG(FINEX OFF GAS) 등의 제철 부생가스로부터 수소를 제외한 가스는 주로 메탄가스로 이루어져 있는데, 상기 메탄가스는 원료 전처리설비(10b)을 거쳐 순환되는 800℃ 이상의 순환가스를 이용하여 제3 열교환기(11c)에 의해 열량을 보충한 후 제3 개질반응기(20c)로 투입된다. 이때 상기 원료 전처리설비(10b)을 거쳐 순환되는 순환가스는 제3 열교환기(11c)를 통과한 후 일부는 전력을 생산하도록 발전소(13a)로 공급되고 나머지는 완전연소에 의해 제3 개질반응기(20c)에 열량을 공급함과 동시에 이산화탄소를 공급하여 주는 것도 가능하다. In addition, a gas excluding hydrogen from iron by-product gas such as COG or FOG (FINEX OFF GAS) mainly consists of methane gas. The methane gas is circulated through a raw material pretreatment system (10b) by using a circulating gas of 800 ° C. or higher. The amount of heat is replenished by the third heat exchanger 11c and then introduced into the third reforming reactor 20c. At this time, the circulating gas circulated through the raw material pretreatment facility 10b passes through the third heat exchanger 11c, and part of the circulating gas is supplied to the power plant 13a to produce electric power, and the rest of the third reforming reactor ( It is also possible to supply carbon dioxide at the same time as supplying heat to 20c).
상기 제3 개질반응기(20c)에 공급되는 또 다른 이산화탄소 원천은 제2 원료전처리 설비(10a) 또는 제2 예비환원 반응기(31)로부터 배출된 가스의 일부를 재순환하여 수증기-가스 개질반응기(25)와 수소분리장치(27)를 사용하여 수소를 분리하고 배출되는 배출가스로부터 얻어질 수 있다. 이때 분리된 수소는 용융환원반응기(40)와 환원 반응기(32)가 연결되어 상기 환원 반응기(32)에 환원가스를 공급하는 환원가스 라인(64)의 가스와 제4 열교환기(11d)에서 열교환 후 수소 라인(17c)을 통해 제1 상승관(34)으로 환원가스로써 공급될 수 있다. Another source of carbon dioxide supplied to the third reforming reactor (20c) is to recycle a portion of the gas discharged from the second raw material pretreatment (10a) or the second pre-reduction reactor (31) to steam-gas reforming reactor (25) And hydrogen separation apparatus 27 to separate hydrogen and can be obtained from the discharged gas. At this time, the separated hydrogen is heat-exchanged in the fourth heat exchanger (11d) and the gas of the reducing gas line 64, which is connected to the melt reduction reactor 40 and the reduction reactor 32 to supply the reducing gas to the reduction reactor 32. Then, it may be supplied as a reducing gas to the first riser 34 through the hydrogen line 17c.
이때, 상기 제4 열교환기(11d)를 통과한 수소는 환원 반응기(32)에서 원료 전처리설비(10b)에 공급되는 환원가스와의 열교환에 의해 가열되어 제1 상승관(34)에 공급될 수 있다.At this time, the hydrogen passing through the fourth heat exchanger (11d) is heated by heat exchange with the reducing gas supplied to the raw material pretreatment (10b) in the reduction reactor 32 can be supplied to the first riser (34). have.
상기 수소분리장치(27)로부터 배출된 가스 중 일부는 이산화탄소 저장장치(15)에 의해 지하에 저장되고 나머지는 제3 개질반응기(20c)로 이송되어 하기 식(5)에서 보는 바와 같이 수소와 일산화탄소의 환원가스를 생산한다. Some of the gas discharged from the hydrogen separation device 27 is stored underground by the carbon dioxide storage device 15, and the rest is transferred to the third reforming reactor 20c, and hydrogen and carbon monoxide are shown in Equation 5 below. Produces reducing gas.
CH4 + CO2 → 2CO + 2H2 ----------------------(5)CH 4 + CO 2 → 2CO + 2H 2 ---------------------- (5)
상기 제3 개질반응기(20c)에서 완전히 반응하지 않은 이산화탄소는 이산화탄소 재순환 라인(22)에 의해 회수되어 제3 개질반응기(20c)속으로 재순환될 수 있다. 상기 제3 개질반응기(20c)로부터 생산된 환원가스는 환원가스 라인(68)을 통해 용융환원 반응기(40)로 투입되어 용융환원 반응을 가속화시킬 수 있다. 또한 수소의 다량 투입에 의해 환원용융속도를 가속화함으로써 반응기내 필요한 환원 가스량 및 발열량을 낮추는 것도 가능하다. 나머지 구성은 제1 실시예와 동일하다. 그러나 위에 언급한 변형만으로 한정되지 않는다. Carbon dioxide that is not completely reacted in the third reforming reactor 20c may be recovered by the carbon dioxide recycling line 22 and recycled into the third reforming reactor 20c. The reducing gas produced from the third reforming reactor 20c may be introduced into the melt reduction reactor 40 through the reducing gas line 68 to accelerate the melt reduction reaction. It is also possible to reduce the amount of reducing gas and calorific value required in the reactor by accelerating the reduction melting rate by adding a large amount of hydrogen. The rest of the configuration is the same as in the first embodiment. However, it is not limited only to the above-mentioned variations.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.Although embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may implement the present invention in other specific forms without changing the technical spirit or essential features thereof. I can understand that.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The scope of the present invention is shown by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. .

Claims (34)

  1. 철광석 원료를 환원에 적합하도록 선별 및 전처리하는 원료 전처리설비;A raw material pretreatment system for sorting and pretreating iron ore raw materials to be suitable for reduction;
    상기 원료 전처리설비로부터 전처리된 철광석 원료가 이송되는 제1 상승관과, 상기 제1 상승관과 연결되어 있는 제2 상승관을 포함하여 이루어지며, 상기 이송된 철광석 원료가 환원가스에 의해 예비환원되는 예비환원 반응기;And a first rising pipe to which the pretreated iron ore raw material is transferred from the raw material pretreatment facility, and a second rising pipe connected to the first rising pipe, wherein the transferred iron ore raw material is pre-reduced by reducing gas. Pre-reduction reactor;
    상기 예비환원 반응기로부터 이송된 부분 환원철을 환원시키는 환원 반응기; A reduction reactor for reducing the partial reduced iron transferred from the pre-reduction reactor;
    상기 환원 반응기로부터 얻어진 부분 환원철을 환원가스를 이용하여 용융 환원시킴으로써 용선을 생산하는 용융환원 반응기; A molten reduction reactor for producing molten iron by melting and reducing the partially reduced iron obtained from the reduction reactor using a reducing gas;
    제철 부생가스 또는 철광석 환원공정에서 발생되는 이산화탄소를 혼합 및 개질하여 환원가스를 생성하고, 상기 생성된 환원가스를 상기 용융환원 반응기 또는 상기 예비환원 반응기에 공급하는 제철 부생가스 전처리설비; 및 A steel off-product by-product pretreatment system for mixing and reforming carbon dioxide generated in a steelmaking by-product gas or iron ore reduction process and supplying the generated reducing gas to the melt reduction reactor or the pre-reduction reactor; And
    상기 철광석 환원공정에서 발생되는 이산화탄소를 공급하는 철광석 환원공정 설비;An iron ore reduction process facility for supplying carbon dioxide generated in the iron ore reduction process;
    를 포함하는 용선 제조장치.A molten iron manufacturing apparatus comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 철광석 환원공정 설비는,The iron ore reduction process equipment,
    상기 환원 반응기로부터 공급되는 환원가스에 의해 철광석 원료를 예비환원시키는 제2 예비환원 반응기;A second pre-reduction reactor for preliminarily reducing the iron ore raw material by the reducing gas supplied from the reduction reactor;
    상기 제2 예비환원 반응기로부터 공급되는 환원가스에 의해 상기 제2 예비환원 반응기에 적합하도록 선별 및 전처리된 철광석 원료를 상기 제2 예비환원 반응기에 공급하는 제2 원료 전처리설비; 및 A second raw material pretreatment facility for supplying the iron ore raw material that has been screened and pretreated to be suitable for the second pre-reduction reactor by the reducing gas supplied from the second pre-reduction reactor; And
    상기 원료 전처리설비와 연결된 환원가스 라인으로부터 이산화탄소를 분리하여 이산화탄소를 상기 제철 부생가스 전처리설비에 공급하는 이산화탄소 라인;A carbon dioxide line separating carbon dioxide from a reducing gas line connected to the raw material pretreatment facility and supplying carbon dioxide to the steelmaking by-product gas pretreatment facility;
    을 포함하는 용선 제조장치.A molten iron manufacturing apparatus comprising a.
  3. 제2항에 있어서,The method of claim 2,
    상기 제철 부생가스 전처리설비는,The steel off-product by-product pretreatment facility,
    제철 부생가스로부터 수소를 분리하여 상기 분리된 수소를 상기 제2 상승관에 공급하는 제철 부생가스 분리장치;An iron by-product off-gas separator for separating hydrogen from iron by-product gas and supplying the separated hydrogen to the second riser;
    상기 수소가 분리된 제철 부생가스에 상기 원료 전처리설비를 거쳐 순환하는 순환가스와의 열교환에 의해 열량을 공급하는 제1 가열기;A first heater for supplying heat to the iron by-product gas from which the hydrogen is separated by heat exchange with a circulating gas circulating through the raw material pretreatment facility;
    상기 제1 가열기에 의해 열량이 보충된 상기 수소가 분리된 제철 부생가스로 수소 및 탄소를 발생시키고 상기 발생된 수소를 상기 제1 상승관에 공급하는 제1 개질반응기; 및A first reforming reactor for generating hydrogen and carbon as the seasonal iron by-product gas in which the hydrogen supplemented with the caloric heat is supplemented, and supplying the generated hydrogen to the first riser; And
    상기 제1 개질반응기와 연결되어 상기 제1 개질반응기로부터 발생된 탄소, 상기 제1 가열기에 사용되는 가스의 연소에 의해 발생된 이산화탄소 및 철광석 환원공정 설비에서 발생된 이산화탄소와 함께 유입되어 일산화탄소를 생산하고 상기 생산된 일산화탄소는 상기 용융환원 반응기에 공급하는 제2 개질반응기를 포함하는 것을 특징으로 하는 용선 제조장치.It is connected to the first reforming reactor and introduced with carbon generated from the first reforming reactor, carbon dioxide generated by the combustion of the gas used in the first heater and carbon dioxide generated in the iron ore reduction process equipment to produce carbon monoxide. The produced carbon monoxide manufacturing apparatus, characterized in that it comprises a second reforming reactor for supplying the melt reduction reactor.
  4. 제3항에 있어서,The method of claim 3,
    상기 제2 개질반응기에 열량을 공급하는 제2 가열기를 더 포함하는 것을 특징으로 하는 용선 제조장치.And a second heater for supplying heat to the second reforming reactor.
  5. 제2항에 있어서,The method of claim 2,
    상기 제철 부생가스 전처리설비는,The steel off-product by-product pretreatment facility,
    수소를 분리하여 상기 분리된 수소를 상기 제2 상승관에 공급하는 제철 부생가스 분리장치;A steelmaking by-product gas separator for separating hydrogen and supplying the separated hydrogen to the second riser;
    상기 수소가 분리된 제철 부생가스를 상기 원료 전처리설비를 거쳐 순환하는 순환가스에 의해 열량을 보충하는 제1 가열기; 및A first heater for replenishing heat by circulating gas circulating the hydrogen by-product by-product separated from the hydrogen through the raw material pretreatment facility; And
    상기 제1 가열기에 사용된 가스의 연소에 의해 발생된 이산화탄소 및 상기 철광석 환원공정 설비에서 발생된 이산화탄소와 함께 유입되어 수소 및 일산화탄소를 포함하는 환원가스를 생산하고 상기 생산된 환원가스는 상기 용융환원 반응기에 공급하는 제3 개질반응기를 포함하는 것을 특징으로 하는 용선 제조장치.Induced with carbon dioxide generated by the combustion of the gas used in the first heater and carbon dioxide generated in the iron ore reduction process equipment to produce a reducing gas containing hydrogen and carbon monoxide and the produced reducing gas is the melt reduction reactor The molten iron manufacturing apparatus characterized by including a 3rd reforming reactor supplied to.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 상승관은 800℃ 이상에서 작동하며, 상기 제2 상승관은 350~650℃ 범위에서 작동하는 것을 특징으로 하는 용선 제조장치.The first riser is operated at 800 ℃ or more, the second riser is a molten iron manufacturing apparatus, characterized in that operating in the 350 ~ 650 ℃ range.
  7. 제 1항 내지 제6항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 6,
    상기 제철 부생가스 분리장치와 상기 제2 상승관 사이에는 제1 열교환기가 설치되어 상기 제1 상승관 및 제2 상승관으로부터 배출되는 수소와의 열교환에 의해 상기 제2 상승관에 공급되는 환원가스의 열량을 보충하는 것을 특징으로 하는 용선 제조장치.A first heat exchanger is installed between the steelmaking by-product gas separator and the second riser to reduce the amount of reducing gas supplied to the second riser by heat exchange with hydrogen discharged from the first riser and the second riser. The molten iron manufacturing apparatus characterized by replenishing calories.
  8. 제1항 내지 제6항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 6,
    상기 제1 및 제2 상승관을 연결하는 제2 광석도관 상에 설치되어 상기 제2 상승관으로부터 배출되는 수소가스를 상기 제2 광석도관을 흐르는 부분 환원철과 열교환 후 상기 제1 상승관에 공급하는 제2 열교환기가 설치되는 것을 특징으로 하는 용선 제조장치.It is installed on the second ore conduit connecting the first and the second riser pipe to supply hydrogen gas discharged from the second riser to the first riser after heat exchange with the partial reduced iron flowing through the second ore conduit The molten iron manufacturing apparatus characterized in that the second heat exchanger is installed.
  9. 제1항 내지 제6항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 6,
    상기 원료 전처리설비는 상기 환원 반응기로부터 환원가스를 공급하는 환원가스 라인으로부터 열량을 공급받는 것을 특징으로 하는 용선 제조장치.The raw material pretreatment facility is a molten iron manufacturing apparatus characterized in that the heat is supplied from the reducing gas line for supplying the reducing gas from the reduction reactor.
  10. 제2항에 있어서,The method of claim 2,
    상기 용융환원 반응기에는 고열과 환원가스를 공급하는 탄화수소처리장치가 설치되는 것을 특징으로 하는 용선 제조장치.The molten iron reactor is characterized in that the hydrocarbon processing device for supplying high heat and reducing gas is installed in the melt reduction reactor.
  11. 제10항에 있어서,The method of claim 10,
    상기 용융환원 반응기에는 순산소를 공급하는 산소 라인이 설치되는 것을 특징으로 하는 용선 제조장치.The molten iron reactor is characterized in that the oxygen line for supplying pure oxygen is installed in the melt reduction reactor.
  12. 제10항 또는 제11항에 있어서,The method according to claim 10 or 11, wherein
    상기 탄화수소처리장치는 미분탄, 코크스 및 브리켓 형태의 석탄 덩어리를 연소시키는 장치인 것을 특징으로 하는 용선 제조장치.The hydrocarbon processing apparatus is a molten iron manufacturing apparatus, characterized in that for burning coal pulverized coal, coke and briquette form.
  13. 제2항에 있어서,The method of claim 2,
    상기 환원가스 라인에 연결되어 상기 환원가스로부터 이산화탄소를 분리하는 이산화탄소 분리장치를 더 포함하는 것을 특징으로 하는 용선 제조장치.And a carbon dioxide separation device connected to the reducing gas line to separate carbon dioxide from the reducing gas.
  14. 제13항에 있어서,The method of claim 13,
    상기 이산화탄소 분리장치와 연결되어 상기 이산화탄소 분리장치를 통과한 환원가스를 환원 반응기에 공급하도록 하는 환원가스 라인 및 상기 분리된 이산화탄소를 상기 제철 부생가스 전처리설비에 공급하는 이산화탄소 라인을 더 포함하는 것을 특징으로 하는 용선 제조장치.And a carbon dioxide line connected to the carbon dioxide separator for supplying the reducing gas passed through the carbon dioxide separator to a reduction reactor and a carbon dioxide line for supplying the separated carbon dioxide to the steel by-product pretreatment facility. Molten iron manufacturing apparatus.
  15. 제14항에 있어서,The method of claim 14,
    상기 이산화탄소 라인 상에 설치되어 상기 분리된 이산화탄소를 저장하는 이산화탄소 저장장치를 더 포함하는 것을 특징으로 하는 용선 제조장치.And a carbon dioxide storage device installed on the carbon dioxide line to store the separated carbon dioxide.
  16. 제2항에 있어서,The method of claim 2,
    상기 제2 원료 전처리설비에 연결되어 상기 제2 원료 전처리설비를 통해 배출되는 가스를 개질하여 수증기를 발생시키는 수증기-가스 개질반응기; 및A steam-gas reforming reactor connected to the second raw material pretreatment plant for reforming the gas discharged through the second raw material pretreatment facility to generate steam; And
    상기 수증기-가스 개질반응기와 연결되어 상기 발생된 수증기와 이산화탄소를 분리하는 수소분리장치;A hydrogen separation device connected to the steam-gas reforming reactor to separate the generated steam and carbon dioxide;
    를 더 포함하는 것을 특징으로 하는 용선 제조장치.The molten iron manufacturing apparatus characterized in that it further comprises.
  17. 제16항에 있어서,The method of claim 16,
    상기 수소분리장치와 연결되어 상기 분리된 이산화탄소를 제철 부생가스 전처리설비에 공급하는 이산화탄소 라인 및 상기 수소분리장치와 연결되어 상기 분리된 수소를 상기 환원 반응기 및 제1 상승관에 공급하는 수소 라인을 더 포함하는 것을 특징으로 하는 용선 제조장치.A carbon dioxide line connected to the hydrogen separation device to supply the separated carbon dioxide to a steelmaking by-product gas pretreatment facility, and a hydrogen line connected to the hydrogen separation device to supply the separated hydrogen to the reduction reactor and the first riser. A molten iron manufacturing apparatus comprising a.
  18. 제17항에 있어서,The method of claim 17,
    상기 수소 라인 상에 상기 용융환원 반응기로부터 상기 환원 반응기로 공급되는 가스와의 열교환에 의해 상기 수소 라인의 수소에 열원을 보충하는 제4 열교환기가 형성되는 것을 특징으로 하는 용선 제조장치.And a fourth heat exchanger configured to replenish a heat source to hydrogen in the hydrogen line by heat exchange with gas supplied from the melt reduction reactor to the reduction reactor on the hydrogen line.
  19. 제18항에 있어서,The method of claim 18,
    상기 이산화탄소 라인 상에 설치되어 상기 분리된 이산화탄소를 저장하는 이산화탄소 저장장치를 더 포함하는 것을 특징으로 하는 용선 제조장치.And a carbon dioxide storage device installed on the carbon dioxide line to store the separated carbon dioxide.
  20. 제19항에 있어서,The method of claim 19,
    상기 제4 열교환기를 통과한 수소에 열량을 보충하기 위하여 상기 수소 라인과 상기 환원 반응기로부터 상기 원료 전처리설비에 연결되는 환원가스 라인 상에 제3 가열기가 설치되는 것을 특징으로 하는 용선 제조장치.And a third heater is provided on a reducing gas line connected to the raw material pretreatment facility from the hydrogen line and the reduction reactor so as to replenish the heat amount to the hydrogen passing through the fourth heat exchanger.
  21. 철광석 원료를 환원에 적합하도록 전처리하는 원료 전처리단계;A raw material pretreatment step of pretreating the iron ore raw material to be suitable for reduction;
    상기 전처리된 원료를 제1 상승관 및 제2 상승관을 포함하는 예비환원 반응기에 이송하여 환원가스에 의해 예비환원시키는 단계;Transferring the pretreated raw material to a pre-reduction reactor including a first riser and a second riser to pre-reduce by reducing gas;
    예비환원되어 환원 반응기에 이송된 부분 환원철을 환원시키는 단계; Reducing the partially reduced iron that was pre-reduced and transferred to the reduction reactor;
    상기 환원 반응기로부터 얻어진 부분 환원철을 환원가스를 이용하여 용융 환원시킴으로써 용선을 생산하는 용융환원 단계;A melt reduction step of producing molten iron by melting and reducing the partially reduced iron obtained from the reduction reactor using a reducing gas;
    제철 부생가스와 철광석 환원공정에서 발생되는 이산화탄소를 혼합 및 개질하여 환원가스를 생성하고, 상기 생성된 환원가스를 상기 용융환원 단계 또는 상기 예비환원 단계에 공급하는 제철 부생가스 전처리단계; 및A steel off-product by-product pretreatment step of mixing and modifying carbon dioxide generated in a steelmaking by-product gas and an iron ore reduction process and supplying the generated reducing gas to the melt reduction step or the pre-reduction step; And
    상기 철광석 환원공정에서 발생되는 이산화탄소를 공급하는 철광석 환원공정단계;An iron ore reduction step of supplying carbon dioxide generated in the iron ore reduction step;
    를 포함하는 용선 제조방법.The molten iron manufacturing method comprising a.
  22. 제21항에 있어서,The method of claim 21,
    상기 제철 부생가스 전처리단계는,The steel off-product by-product pretreatment step,
    상기 제철 부생가스로부터 수소를 분리하여 상기 분리된 수소를 상기 제1 상승관에 공급하는 단계;Separating hydrogen from the steelmaking by-product gas and supplying the separated hydrogen to the first riser;
    상기 수소가 분리된 제철 부생가스를 상기 원료 전처리설비를 거쳐 순환하는 순환가스와의 열교환에 의해 가열하여 제1 개질반응기에 공급하여 탄소와 수소를 생산하여 상기 생산된 수소를 상기 예비환원 반응기에 공급하는 단계;The iron by-product gas from which the hydrogen is separated is heated by heat exchange with a circulating gas circulated through the raw material pretreatment facility and supplied to the first reforming reactor to produce carbon and hydrogen to supply the produced hydrogen to the pre-reduction reactor. Doing;
    상기 생산된 탄소와 상기 가열에 의해 발생된 이산화탄소 및 상기 철광석 환원공정단계에서 발생된 이산화탄소가 제2 개질반응기에 유입되어 일산화탄소를 생산하고 상기 생산된 일산화탄소를 상기 용융환원 반응기에 공급하는 단계;Supplying the produced carbon, carbon dioxide generated by the heating, and carbon dioxide generated in the iron ore reduction process step into a second reforming reactor to produce carbon monoxide and supplying the produced carbon monoxide to the melt reduction reactor;
    를 포함하는 용선 제조방법.The molten iron manufacturing method comprising a.
  23. 제21항에 있어서,The method of claim 21,
    상기 제철 부생가스 전처리단계는,The steel off-product by-product pretreatment step,
    상기 제철 부생가스로부터 수소를 분리하여 상기 분리된 수소를 상기 예비환원 반응기에 공급하는 단계;Separating hydrogen from the iron by-product gas and supplying the separated hydrogen to the pre-reduction reactor;
    상기 수소가 분리된 제철 부생가스를 상기 원료 전처리설비를 거쳐 순환하는 순환가스와의 열교환에 의해 가열하는 단계; 및Heating the iron by-product gas from which the hydrogen is separated by heat exchange with a circulating gas circulating through the raw material pretreatment facility; And
    상기 가열된 수소가 분리된 제철 부생가스를 제3 개질반응기에 공급하여 탄소와 수소를 포함하는 환원가스를 생산하고 상기 생산된 환원가스를 상기 용융환원 반응기에 공급하는 단계;Supplying the heated hydrogen by-product off-gas to the third reforming reactor to produce a reducing gas including carbon and hydrogen, and supplying the produced reducing gas to the melt reduction reactor;
    를 포함하는 것을 특징으로 하는 용선 제조방법.The molten iron manufacturing method comprising a.
  24. 제23항에 있어서,The method of claim 23, wherein
    상기 환원가스 생산 단계에서 미반응된 이산화탄소는 회수되어 다시 제3 개질반응기로 재순환되는 단계를 더 포함하는 것을 특징으로 하는 용선 제조방법.The unreacted carbon dioxide in the reducing gas production step is recovered and recycled back to the third reforming reactor further comprising the step of producing a molten iron.
  25. 제21항에 있어서,The method of claim 21,
    상기 원료전처리 단계는,The raw material pretreatment step,
    상기 환원 반응기로부터 배출되는 환원가스에 의해 열량을 공급받아 상기 철광석 원료를 변형하거나 성분을 조절하여 예비 가열을 수행하는 단계인 것을 특징으로 하는 용선 제조방법.The method of manufacturing a molten iron, characterized in that the step of performing the pre-heating by receiving the heat amount by the reducing gas discharged from the reduction reactor by modifying the iron ore raw material or by adjusting the components.
  26. 제25항에 있어서,The method of claim 25,
    상기 철광석 원료는 적철광, 자철광, 수분 함유 철광석 또는 제철공정 더스트(dust) 중 어느 하나 이상의 미분 형태인 것을 특징으로 하는 용선 제조방법.The iron ore raw material is a molten iron manufacturing method, characterized in that the fine form of any one or more of hematite, magnetite, moisture-containing iron ore or steelmaking process dust (dust).
  27. 제21항에 있어서,The method of claim 21,
    상기 제1 상승관은 800℃ 이상에서 작동하며, 상기 제2 상승관은 350~650℃의 범위에서 작동하는 것을 특징으로 하는 용선 제조방법.The first riser is operated at 800 ℃ or more, the second riser is a molten iron manufacturing method characterized in that operating in the range of 350 ~ 650 ℃.
  28. 제22항 또는 제23항에 있어서,The method of claim 22 or 23,
    상기 제철 부생가스로부터 분리된 수소는 상기 제1 상승관 및 제2 상승관으로부터 배출되는 수소와의 열교환에 의해 상기 제2 상승관에 공급되는 것을 특징으로 하는 용선 제조방법.Hydrogen separated from the steelmaking by-product gas is supplied to the second riser by heat exchange with hydrogen discharged from the first riser and the second riser.
  29. 제22항 또는 제23항에 있어서,The method of claim 22 or 23,
    상기 제1 및 제2 상승관을 연결하는 제2 광석도관 상에 설치되어 상기 제2 상승관으로부터 배출되는 수소가스를 상기 제2 광석도관을 흐르는 부분 환원철과 열교환하여 승온시킨 후 상기 제1 상승관에 공급하는 하는 것을 특징으로 하는 용선 제조방법.The first rising pipe is installed on a second ore conduit connecting the first and second rising pipes to heat up the hydrogen gas discharged from the second rising pipe by heat exchange with the partial reduced iron flowing through the second ore conduit. The molten iron manufacturing method characterized in that the supply to.
  30. 제22항 또는 제23에 있어서,The method of claim 22 or 23,
    상기 용융환원 단계는, The melt reduction step,
    상기 용융환원 반응기에 연결된 탄화수소처리장치에 의해 고열과 환원가스를 공급받고, 산소 라인을 통해 순산소를 공급받는 단계를 더 포함하는 것을 특징으로 하는 용선 제조방법.Receiving a high heat and reducing gas supplied by a hydrocarbon processing device connected to the melt reduction reactor, the molten iron manufacturing method characterized in that it further comprises the step of receiving pure oxygen through an oxygen line.
  31. 제21항에 있어서,The method of claim 21,
    상기 철광석 환원공정 단계는,The iron ore reduction process step,
    상기 환원 반응기로부터 제2 예비환원 반응기에 공급되는 환원가스에 의해 철광석 원료를 예비환원시키는 단계;Pre-reducing the iron ore raw material by the reducing gas supplied from the reduction reactor to the second pre-reduction reactor;
    상기 제2 예비환원 반응기로부터 제2 원료 전처리설비로 공급되는 환원가스에 의해 상기 제2 예비환원 반응기에 적합하도록 전처리된 철광석 원료를 상기 제2 예비환원 반응기에 공급하는 단계; 및Supplying iron ore raw material pre-treated to be suitable for the second pre-reduction reactor by the reducing gas supplied from the second pre-reduction reactor to the second raw material pretreatment facility to the second pre-reduction reactor; And
    상기 제2 예비환원 반응기로부터 배출되는 환원가스로부터 이산화탄소를 분리하여 상기 제철 부생가스 전처리단계에 공급하는 이산화탄소 분리 공급단계;A carbon dioxide separation supply step of separating carbon dioxide from the reducing gas discharged from the second pre-reduction reactor and supplying it to the steelmaking by-product gas pretreatment step;
    를 포함하는 것을 특징으로 하는 용선 제조방법.The molten iron manufacturing method comprising a.
  32. 제31항에 있어서,The method of claim 31, wherein
    상기 이산화탄소의 분리는 상기 제2 원료 전처리설비와 연결되는 이산화탄소 분리장치 또는 수소분리장치에 의해 이루어지는 것을 특징으로 하는 용선 제조방법.The separation of the carbon dioxide is a molten iron manufacturing method, characterized in that made by a carbon dioxide separator or a hydrogen separator connected to the second raw material pretreatment equipment.
  33. 제32항에 있어서,33. The method of claim 32,
    상기 수소분리장치의 전단에는 수증기-가스 개질반응기가 설치되어 상기 제2 원료 전처리설비로부터 유입된 환원가스에서 수증기를 발생시키는 것을 특징으로 하는 용선 제조방법.A steam-gas reforming reactor is installed at the front end of the hydrogen separation device to produce steam from the reducing gas introduced from the second raw material pretreatment facility.
  34. 제32항에 있어서,33. The method of claim 32,
    상기 수소분리장치로부터 분리된 수소는 상기 용융환원 반응기로부터 환원 반응기로 공급되는 환원가스와의 열교환에 의해 가열되어 상기 제1 상승관에 공급되는 것을 특징으로 하는 용선 제조방법.Hydrogen separated from the hydrogen separation device is heated by heat exchange with the reducing gas supplied from the melt reduction reactor to the reduction reactor is supplied to the first riser, characterized in that the molten iron.
PCT/KR2013/004304 2012-05-16 2013-05-15 Molten iron production apparatus and molten iron producing method using same WO2013172653A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380025114.5A CN104302789B (en) 2012-05-16 2013-05-15 Ferrum water making device and utilize the process for producing molten iron of this device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120052097A KR101321928B1 (en) 2012-05-16 2012-05-16 Apparatus for manufacturing molten irons and method for manufacturing molten irons using the same
KR10-2012-0052097 2012-05-16

Publications (1)

Publication Number Publication Date
WO2013172653A1 true WO2013172653A1 (en) 2013-11-21

Family

ID=49583997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004304 WO2013172653A1 (en) 2012-05-16 2013-05-15 Molten iron production apparatus and molten iron producing method using same

Country Status (3)

Country Link
KR (1) KR101321928B1 (en)
CN (1) CN104302789B (en)
WO (1) WO2013172653A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896378A (en) * 2022-10-24 2023-04-04 中国科学院过程工程研究所 Electric energy heating hydrogen direct reduction iron-making method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108018391B (en) * 2017-12-18 2019-12-17 东北大学 method for producing molten iron by multi-stage reduction of complex refractory iron ore powder
KR102176345B1 (en) * 2018-10-17 2020-11-09 주식회사 포스코 Manufacturing appratus of molten iron reducing emission of carbon dioxide and manufacturing method of the same
KR102176350B1 (en) * 2018-11-22 2020-11-09 주식회사 포스코 Device for manufacturing molten iron
CN112974825B (en) * 2021-02-18 2024-05-24 安徽马钢粉末冶金有限公司 Reduction method of iron ore powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0156653B1 (en) * 1994-03-04 1998-11-16 파투찌 알렉산더,토이플 아르민 Method of charging ore
KR20010065011A (en) * 1999-12-20 2001-07-11 이구택 Apparatus for manufacturing molten pig iron, and its manufacturing method
KR20050054849A (en) * 2003-12-05 2005-06-10 주식회사 포스코 An apparatus for manufacturing a molten iron directly using fine or lump coals and fine iron ores, the method thereof, the integrated steel mill using the same and the method thereof
KR20090069591A (en) * 2007-12-26 2009-07-01 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948929B1 (en) * 2007-12-24 2010-03-23 주식회사 포스코 Reducing furnace and apparatus for manufacturing molten iron comprising the same
KR101142501B1 (en) * 2009-12-28 2012-05-07 주식회사 포스코 Apparatus for manufacturing molten irons

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0156653B1 (en) * 1994-03-04 1998-11-16 파투찌 알렉산더,토이플 아르민 Method of charging ore
KR20010065011A (en) * 1999-12-20 2001-07-11 이구택 Apparatus for manufacturing molten pig iron, and its manufacturing method
KR20050054849A (en) * 2003-12-05 2005-06-10 주식회사 포스코 An apparatus for manufacturing a molten iron directly using fine or lump coals and fine iron ores, the method thereof, the integrated steel mill using the same and the method thereof
KR20090069591A (en) * 2007-12-26 2009-07-01 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896378A (en) * 2022-10-24 2023-04-04 中国科学院过程工程研究所 Electric energy heating hydrogen direct reduction iron-making method

Also Published As

Publication number Publication date
CN104302789B (en) 2016-06-22
CN104302789A (en) 2015-01-21
KR101321928B1 (en) 2013-10-28

Similar Documents

Publication Publication Date Title
WO2013172653A1 (en) Molten iron production apparatus and molten iron producing method using same
US10100379B2 (en) System and method for fluidized direct reduction of iron ore concentrate powder
CN102206723B (en) Air-base direct reduction iron-making method for reducing iron concentrate powder by self-reforming of gas rich in methane
CN111961784B (en) Method and system for reduction reaction of iron ore powder in bubbling bed
CN115516116A (en) Method for producing carburized sponge iron
AU2013383015B2 (en) Process and plant for producing titanium slag from ilmenite
CN115449579B (en) Low-carbon smelting reduction iron-making method and device
US20160168652A1 (en) Desulfurization of gases in the production of pig iron
WO2014104438A1 (en) Molten iron manufacturing apparatus and molten iron manufacturing method
US20140083252A1 (en) Reduction of metal oxides using gas stream containing both hydrocarbon and hydrogen
CN115261541A (en) Molten iron manufacturing apparatus and molten iron manufacturing method
WO2018004070A1 (en) Apparatus for manufacturing molten iron and method for manufacturing molten iron by using same
CN115491453B (en) PLCsmelt smelting reduction iron-making method and device
JP2016536468A (en) Steel production in coke dry fire extinguishing system.
CN115652007A (en) Novel smelting reduction iron-making method and device
KR20230138002A (en) Off-gas recovery from direct reduction process
WO2012091422A2 (en) Device for manufacturing reduced iron using nuclear reactor and method for manufacturing reduced iron using same
CN113969329A (en) Metal reduction smelting method and system for reducing carbon dioxide emission
CN115261542B (en) Circulating fluidized bed direct reduction system and process for short-process smelting of coal dust and mineral powder
WO2024029806A1 (en) Molten iron production facility and molten iron production method
CN106811595A (en) The system and method for processing vanadium titano-magnetite
CN115820965B (en) Energy-saving consumption-reducing system and method for thermal mass circulation of molten reduced iron
CN113214854B (en) Hydrogen-rich gas metallurgy reduction co-low-valence pulverized coal pyrolysis process and system
WO2012091414A2 (en) Device for manufacturing reduced iron using syngas and method for manufacturing reduced iron using same
WO2019124859A1 (en) Molten iron manufacturing apparatus and molten iron manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13790454

Country of ref document: EP

Kind code of ref document: A1