WO2018105886A1 - 무선 셀룰라 통신 시스템에서 하향링크 제어신호 복호 방법 및 장치 - Google Patents

무선 셀룰라 통신 시스템에서 하향링크 제어신호 복호 방법 및 장치 Download PDF

Info

Publication number
WO2018105886A1
WO2018105886A1 PCT/KR2017/011844 KR2017011844W WO2018105886A1 WO 2018105886 A1 WO2018105886 A1 WO 2018105886A1 KR 2017011844 W KR2017011844 W KR 2017011844W WO 2018105886 A1 WO2018105886 A1 WO 2018105886A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal
control signal
time point
base station
Prior art date
Application number
PCT/KR2017/011844
Other languages
English (en)
French (fr)
Inventor
여정호
오진영
박성진
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP17878448.4A priority Critical patent/EP3537642A4/en
Priority to CN202211085594.1A priority patent/CN115459885A/zh
Priority to CN201780075468.9A priority patent/CN110050430B/zh
Priority to US16/465,375 priority patent/US10841940B2/en
Priority to CN202211085563.6A priority patent/CN115459884A/zh
Publication of WO2018105886A1 publication Critical patent/WO2018105886A1/ko
Priority to US17/098,972 priority patent/US11291032B2/en
Priority to US17/695,458 priority patent/US20220210811A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the present invention relates to a wireless communication system and a method and apparatus for downlink control signal decoding. More specifically, the present invention relates to a method of detecting a downlink control signal and determining a timing for sending HARQ-ACK feedback on downlink data when the terminal is set to a delay reduction mode.
  • a 5G communication system or a pre-5G communication system is called a Beyond 4G network communication system or a post LTE system.
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
  • mmWave ultra-high frequency
  • FD-MIMO massive array multiple input / output
  • 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation
  • cloud RAN cloud radio access network
  • ultra-dense network ultra-dense network
  • D2D Device to Device communication
  • CoMP Coordinated Multi-Points
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Slide Window Superposition Coding
  • ACM Advanced Coding Modulation
  • FBMC Fanter Bank Multi Carrier
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M machine to machine
  • MTC Machine Type Communication
  • IT intelligent Internet technology services can be provided that collect and analyze data generated from connected objects to create new value in human life.
  • IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing information technology (IT) technology and various industries. It can be applied to.
  • a plurality of services may be provided to a user in a communication system, and in order to provide the plurality of services to a user, a method and an apparatus using the same are required to provide each service within a same time period according to characteristics. .
  • the conventional LTE system transmits HARQ ACK or NACK information indicating whether the data transmission is successful uplink after 3 ms after receiving the downlink data to the base station.
  • HARQ ACK / NACK information of a physical downlink shared channel (PDSCH) received from a base station to a UE in subframe n is transmitted through a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) in subframe n + 4. Delivered to the base station.
  • a base station may transmit downlink control information (DCI) including uplink resource allocation information to a user equipment or request retransmission through a physical hybrid ARQ indicator channel (PHICH).
  • DCI downlink control information
  • PHICH physical hybrid ARQ indicator channel
  • the UE When the UE receives the scheduling in subframe n, the UE performs uplink data transmission in subframe n + 4. That is, PUSCH transmission is performed in subframe n + 4.
  • HARQ ACK / NACK transmission timing or PUSCH transmission timing depends on uplink-downlink subframe configuration, which is a predetermined rule. Is performed according to.
  • the HARQ ACK / NACK transmission timing or the PUSCH transmission timing are predetermined timings when the time required for signal processing between the base station and the terminal is about 3 ms. However, if the LTE base station and the terminal reduces the signal processing time by about 1 ms or 2 ms, it will be possible to reduce the delay time for data transmission.
  • the HARQ-ACK timing for the downlink data or the uplink for the uplink data grant according to the discovery region where the DCI is detected is detected.
  • the timing of the data transfer can vary. For example, when DCI is detected in the common search region, the operation is performed at n + 4 timing, and when DCI is detected in the terminal specific search region, the operation is performed at n + 4 timing.
  • one search region may be a common search region and a terminal specific search region for a specific terminal. In this case, it is necessary to define operations of the terminal and the base station. Accordingly, the present invention provides a method and apparatus for transmitting and receiving a base station and a terminal by decoding a downlink control signal.
  • the method of the terminal receiving a control signal for scheduling uplink transmission from the base station, the uplink based on the search space in which the control signal is detected Determining a time point at which the signal is to be transmitted to a first time point or a second time point ahead of the first time point, and transmitting the uplink signal to the base station at the first time point or the second time point.
  • a terminal receives a control signal for scheduling uplink transmission from a transceiver for transmitting and receiving a signal and a base station, and receives an uplink signal based on a search space in which the control signal is detected.
  • a control unit configured to determine a transmission time point as a first time point or a second time point ahead of the first time point, and to transmit the uplink signal to the base station at the first time point or the second time point.
  • a method of a base station includes transmitting a control signal for scheduling uplink transmission to a terminal and a first time point and the first time from the terminal based on a search space to which the control signal is mapped. Receiving an uplink signal at all of the second time points preceding the time point.
  • a base station transmits a control signal for scheduling uplink transmission to a transceiver for transmitting and receiving a signal and a terminal, and transmits a control signal from the terminal based on a search space to which the control signal is mapped.
  • a controller configured to receive an uplink signal at both a first time point and a second time point preceding the first time point.
  • a control signal decoding and a method of transmitting / receiving corresponding thereto are provided to enable efficient resource operation.
  • 1 is a diagram illustrating a downlink time-frequency domain transmission structure of an LTE or LTE-A system.
  • FIG. 2 is a diagram illustrating an uplink time-frequency domain transmission structure of an LTE or LTE-A system.
  • FIG. 3 is a diagram showing how data for eMBB, URLLC, and mMTC are allocated in frequency-time resources in a communication system.
  • FIG. 4 is a diagram showing a state in which data for eMBB, URLLC, and mMTC are allocated in frequency-time resources in a communication system.
  • FIG. 5 is a diagram illustrating a structure in which one transport block is divided into several code blocks and a CRC is added according to an embodiment.
  • FIG. 6 is a diagram illustrating a method for uplink transmission by a terminal.
  • FIG. 7 is a diagram illustrating the operation of a base station according to the first embodiment.
  • FIG. 8 is a diagram illustrating an operation of a terminal according to the first embodiment.
  • FIG. 9 is a diagram illustrating the operation of a base station according to the second embodiment.
  • FIG. 10 is a diagram illustrating an operation of a terminal according to the second embodiment.
  • FIG. 11 is a diagram illustrating operations of a base station and a terminal according to the third embodiment.
  • FIG. 12 is a diagram illustrating operations of a base station and a terminal according to the fourth embodiment.
  • FIG. 13 is a diagram illustrating operations of a base station and a terminal according to embodiment 4-1.
  • FIG. 14 is a diagram illustrating operations of a base station and a terminal according to the fifth embodiment.
  • 15 is a block diagram illustrating a structure of a terminal according to embodiments.
  • 16 is a block diagram illustrating a structure of a base station according to embodiments.
  • each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It creates a means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s).
  • Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
  • each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • logical function e.g., a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • the functions noted in the blocks may occur out of order.
  • the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
  • ' ⁇ part' used in the present embodiment refers to software or a hardware component such as an FPGA or an ASIC, and ' ⁇ part' performs certain roles.
  • ' ⁇ ' is not meant to be limited to software or hardware.
  • ' ⁇ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors.
  • ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'.
  • the components and ' ⁇ ' may be implemented to play one or more CPUs in the device or secure multimedia card.
  • ' ⁇ part' may include one or more processors.
  • the wireless communication system has moved away from providing the initial voice-oriented service, for example, 3GPP High Speed Packet Access (HSPA), Long Term Evolution (LTE) or Evolved Universal Terrestrial Radio Access (E-UTRA), LTE-Advanced.
  • HSPA High Speed Packet Access
  • LTE Long Term Evolution
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • LTE-Advanced Advances in broadband wireless communication systems that provide high-speed, high-quality packet data services such as LTE-A, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE's 802.16e Doing.
  • 5G or NR (new radio) communication standard is being developed as a 5th generation wireless communication system.
  • At least one service of Enhanced Mobile Broadband (eMBB), Massive Machine Type Communications (mMTTC), and Ultra-Reliable and Low-latency Communications (URLLC) may be provided to a terminal in a wireless communication system including a fifth generation.
  • the services may be provided to the same terminal during the same time period.
  • the eMBB may be a high speed data transmission
  • the mMTC may be a service aimed at minimizing the terminal power and accessing multiple terminals
  • the URLLC may be a high reliability and a low latency.
  • the three services may be major scenarios in an LTE system or a system such as 5G / NR (new radio, next radio) after LTE.
  • 5G / NR new radio, next radio
  • a base station schedules data corresponding to an eMBB service to a terminal in a specific transmission time interval (TTI)
  • TTI transmission time interval
  • the eMBB data is already scheduled.
  • the generated URLLC data may be transmitted in the frequency band without transmitting part of the eMBB data in the transmitted frequency band.
  • the terminal scheduled for the eMBB and the terminal scheduled for the URLLC may be the same terminal or different terminals. In such a case, since the portion of the eMBB data that has already been scheduled and transmitted is not transmitted, the possibility of damaging the eMBB data increases.
  • the base station is a subject performing resource allocation of the terminal, and may be at least one of an eNode B, a Node B, a base station (BS), a wireless access unit, a base station controller, or a node on a network.
  • the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • DL downlink
  • UL uplink of a signal transmitted from a terminal to a base station.
  • the following describes an embodiment of the present invention using an LTE or LTE-A system as an example, but the embodiment of the present invention may be applied to other communication systems having a similar technical background or channel form.
  • the fifth generation mobile communication technology (5G, new radio, NR) developed after LTE-A may be included in this.
  • the embodiment of the present invention may be applied to other communication systems through some modifications within the scope of the present invention without departing from the scope of the present invention by the judgment of those skilled in the art.
  • an LTE system employs an orthogonal frequency division multiplexing (OFDM) scheme in downlink (DL), and a single carrier frequency division multiple (SC-FDMA) in uplink (UL). Access) method is adopted.
  • the uplink refers to a radio link through which a terminal or user equipment (UE) or a mobile station (MS) transmits data or control signals to an eNode B or a base station (BS), and the downlink refers to a base station
  • the above-described multiple access scheme is generally designed such that orthogonality does not overlap the time-frequency resources for carrying data or control information for each user. By establishing and assigning, data or control information of each user can be distinguished.
  • the LTE system employs a hybrid automatic repeat request (HARQ) scheme in which the data is retransmitted in the physical layer when a decoding failure occurs in the initial transmission.
  • HARQ hybrid automatic repeat request
  • the receiver when the receiver does not correctly decode (decode) the data, the receiver transmits NACK (Negative Acknowledgement) informing the transmitter of the decoding failure so that the transmitter can retransmit the corresponding data in the physical layer.
  • NACK Negative Acknowledgement
  • the receiver combines the data retransmitted by the transmitter with previously decoded data to improve data reception performance.
  • the transmitter may transmit an acknowledgment (ACK) indicating the decoding success to the transmitter so that the transmitter may transmit new data.
  • ACK acknowledgment
  • FIG. 1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource region in which the data or control channel is transmitted in downlink in an LTE system or a similar system.
  • the horizontal axis represents the time domain and the vertical axis represents the frequency domain.
  • the minimum transmission unit in the time domain is an OFDM symbol, N symb (102) OFDM symbols are gathered to form one slot 106, two slots are gathered to form one subframe 105.
  • the length of the slot is 0.5ms and the length of the subframe is 1.0ms.
  • the radio frame 114 is a time domain section composed of 10 subframes.
  • the minimum transmission unit in the frequency domain is a subcarrier, and the bandwidth of the entire system transmission bandwidth is composed of a total of N BW 104 subcarriers. However, such specific values may be applied variably.
  • the basic unit of a resource in the time-frequency domain may be represented by an OFDM symbol index and a subcarrier index as a resource element (RE).
  • the resource block 108 (Resource Block; RB or PRB) may be defined as N symb 102 consecutive OFDM symbols in the time domain and N RB 110 consecutive subcarriers in the frequency domain. Accordingly, one RB 108 in one slot may include N symb x N RB REs 112.
  • the data rate increases in proportion to the number of RBs scheduled to the UE.
  • the LTE system can define and operate six transmission bandwidths. In the case of an FDD system in which downlink and uplink are divided into frequencies, the downlink transmission bandwidth and the uplink transmission bandwidth may be different.
  • the channel bandwidth represents an RF bandwidth corresponding to the system transmission bandwidth. Table 1 below shows the correspondence between the system transmission bandwidth and the channel bandwidth defined in the LTE system. For example, an LTE system having a 10 MHz channel bandwidth may have a transmission bandwidth of 50 RBs.
  • the downlink control information may be transmitted within the first N OFDM symbols in the subframe.
  • N ⁇ 1, 2, 3 ⁇ . Accordingly, the N value may be variably applied to each subframe according to the amount of control information to be transmitted in the current subframe.
  • the transmitted control information may include a control channel transmission interval indicator indicating how many control information is transmitted over OFDM symbols, scheduling information for downlink data or uplink data, and information about HARQ ACK / NACK.
  • DCI downlink control information
  • DCI is defined according to various formats, and according to each format, whether or not the scheduling information (UL grant) for uplink data or the scheduling information (DL grant) for downlink data, and whether the DCI is a compact DCI with a small size of control information. It can indicate whether to apply spatial multiplexing using multiple antennas, whether to use DCI for power control.
  • DCI format 1 which is scheduling control information (DL grant) for downlink data, may include at least one of the following control information.
  • Resource allocation type 0/1 flag Indicates whether the resource allocation method is type 0 or type 1.
  • Type 0 uses the bitmap method to allocate resources in resource block group (RBG) units.
  • the basic unit of scheduling is an RB represented by time and frequency domain resources, and the RBG is composed of a plurality of RBs to become a basic unit of scheduling in a type 0 scheme.
  • Type 1 allows allocating a specific RB within the RBG.
  • Resource block assignment indicates an RB allocated for data transmission.
  • the resource to be expressed is determined by the system bandwidth and the resource allocation method.
  • Modulation and coding scheme indicates the modulation scheme used for data transmission and the size of a transport block, which is data to be transmitted.
  • HARQ process number indicates a process number of HARQ.
  • New data indicator indicates whether HARQ initial transmission or retransmission.
  • -Redundancy version indicates a redundant version of HARQ.
  • TPC Transmit Power Control
  • PUCCH Physical Uplink Control CHannel
  • PUCCH indicates a transmit power control command for PUCCH, which is an uplink control channel.
  • the DCI is a physical downlink control channel (PDCCH) (or control information, hereinafter referred to as used interchangeably) or an enhanced PDCCH (EPDCCH) (or enhanced control information), which is a downlink physical control channel through channel coding and modulation processes. Can be used interchangeably).
  • PDCCH physical downlink control channel
  • EPDCCH enhanced PDCCH
  • the DCI is scrambled with a specific Radio Network Temporary Identifier (RNTI) (or UE identifier) independently for each UE, and a CRC (cyclic redundancy check) is added, and after channel coding, each DCP is composed of independent PDCCHs. Is sent. In the time domain, the PDCCH is mapped and transmitted during the control channel transmission period. The frequency domain mapping position of the PDCCH is determined by the identifier (ID) of each terminal and can be transmitted by spreading over the entire system transmission band.
  • RNTI Radio Network Temporary Identifier
  • CRC cyclic redundancy check
  • the downlink data may be transmitted on a physical downlink shared channel (PDSCH) which is a physical channel for downlink data transmission.
  • PDSCH may be transmitted after the control channel transmission interval, and scheduling information such as specific mapping position and modulation scheme in the frequency domain is determined based on the DCI transmitted through the PDCCH.
  • the base station informs the UE of the modulation scheme applied to the PDSCH to be transmitted and the transport block size (TBS) of the data to be transmitted.
  • the MCS may consist of 5 bits or more or fewer bits.
  • the TBS corresponds to a size before channel coding for error correction is applied to data (transport block, TB) that the base station intends to transmit.
  • Modulation methods supported by the LTE system are Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (16QAM), and 64QAM.
  • QPSK Quadrature Phase Shift Keying
  • 16QAM Quadrature Amplitude Modulation
  • 64QAM 64QAM.
  • Each modulation order (Qm) corresponds to 2, 4, and 6. That is, 2 bits per symbol for QPSK modulation, 4 bits per symbol for 16QAM modulation, and 6 bits per symbol for 64QAM modulation.
  • modulation schemes of 256QAM or more may be used depending on system modifications.
  • FIG. 2 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource region in which data or a control channel is transmitted in uplink in an LTE-A system.
  • the minimum transmission unit in the time domain is an SC-FDMA symbol 202, and N symb UL SC-FDMA symbols may be combined to form one slot 206. Two slots are gathered to form one subframe 205.
  • the minimum transmission unit in the frequency domain is a subcarrier, and the total system transmission bandwidth 204 consists of a total of N BW subcarriers. N BW may have a value proportional to the system transmission band.
  • the basic unit of a resource in the time-frequency domain may be defined as a SC-FDMA symbol index and a subcarrier index as a resource element (RE) 212.
  • the resource block pair 208 may be defined as N symb UL contiguous SC-FDMA symbols in the time domain and N sc RB contiguous subcarriers in the frequency domain. Therefore, one RB is composed of N symb UL x N sc RB Rs .
  • the minimum transmission unit for data or control information is in RB units.
  • PUCCH is mapped to a frequency domain corresponding to 1 RB and transmitted during one subframe.
  • PUCCH or PUSCH which is an uplink physical channel for transmitting HARQ ACK / NACK corresponding to a PDCCH / EPDDCH including a PDSCH or a semi-persistent scheduling release (SPS release), which is a physical channel for downlink data transmission.
  • SPS release semi-persistent scheduling release
  • the timing relationship of can be defined. For example, in an LTE system operating with frequency division duplex (FDD), HARQ ACK / NACK corresponding to a PDCCH / EPDCCH including a PDSCH or an SPS release transmitted in an n-4th subframe is transmitted to a PUCCH or PUSCH in an nth subframe. Can be sent.
  • FDD frequency division duplex
  • downlink HARQ adopts an asynchronous HARQ scheme in which data retransmission time is not fixed. That is, when the HARQ NACK is fed back from the terminal to the initial transmission data transmitted by the base station, the base station freely determines the transmission time of the retransmission data by the scheduling operation.
  • the UE may buffer the data determined to be an error as a result of decoding the received data for the HARQ operation, and then perform combining with the next retransmission data.
  • HARQ ACK / NACK information of the PDSCH transmitted in the subframe nk is transmitted from the terminal to the base station through the PUCCH or the PUSCH in the subframe n, where k is the FDD or time division duplex (TDD) of the LTE system and its sub It may be defined differently according to the frame setting. For example, in the case of the FDD LTE system, k is fixed to 4. Meanwhile, in the TDD LTE system, k may be changed according to subframe configuration and subframe number. Also, when data is transmitted through a plurality of carriers, a value of k may be differently applied according to the TDD setting of each carrier. In the case of the TDD, the k value is determined according to the TDD UL / DL configuration as shown in Table 2 below.
  • the uplink HARQ adopts a synchronous HARQ scheme with a fixed data transmission time point. That is, a Physical Hybrid (Physical Uplink Shared Channel), which is a physical channel for transmitting uplink data, a PDCCH, which is a preceding downlink control channel, and a PHICH (Physical Hybrid), which is a physical channel through which downlink HARQ ACK / NACK corresponding to the PUSCH is transmitted.
  • the uplink / downlink timing relationship of the indicator channel may be transmitted and received according to the following rule.
  • k may be defined differently according to FDD or time division duplex (TDD) of LTE system and its configuration. For example, in the case of an FDD LTE system, k may be fixed to four. Meanwhile, in the TDD LTE system, k may be changed according to subframe configuration and subframe number. Also, when data is transmitted through a plurality of carriers, a value of k may be differently applied according to the TDD setting of each carrier. In the case of the TDD, the k value is determined according to the TDD UL / DL configuration as shown in Table 3 below.
  • HARQ-ACK information of the PHICH transmitted in subframe i is related to the PUSCH transmitted in subframe i-k.
  • k is given by 4. That is, HARQ-ACK information of the PHICH transmitted in subframe i in the FDD system is related to the PUSCH transmitted in subframe i-4.
  • the k value according to Table 4 below This can be given.
  • the PHICH transmitted in subframe 6 may be HARQ-ACK information of the PUSCH transmitted in subframe 2 that is 4 subframes before.
  • the description of the wireless communication system has been described with reference to the LTE system, and the present invention is not limited to the LTE system but can be applied to various wireless communication systems such as NR and 5G.
  • the k value when applied to another wireless communication system, the k value may be changed and applied to a system using a modulation scheme corresponding to FDD.
  • 3 and 4 illustrate how data for eMBB, URLLC, and mMTC, which are services considered in a 5G or NR system, are allocated in frequency-time resources.
  • the eMBB, URLLC, and mMTC data are allocated in the entire system frequency band 300. If the URLLC data 303, 305, 307 is generated while the eMBB 301 and the mMTC 309 are allocated and transmitted in a specific frequency band and need to be transmitted, a portion to which the eMBB 301 and the mMTC 309 are already allocated.
  • URLLC data 303, 305, and 307 may be transmitted without emptying or transmitting data. Since URLLC needs to reduce latency among the services, URLLC data may be allocated 303, 305, and 307 to a portion of the resource 301 to which the eMBB is allocated, and thus may be transmitted.
  • eMBB data may not be transmitted in the overlapping frequency-time resource, and thus transmission performance of the eMBB data may be lowered. That is, in the above case, eMBB data transmission failure due to URLLC allocation may occur.
  • the entire system frequency band 400 may be divided and used for transmitting services and data in each of the subbands 402, 404, and 406.
  • Information related to the subband configuration may be predetermined, and this information may be transmitted by the base station to the terminal through higher signaling. Alternatively, the information related to the subbands may be arbitrarily divided by the base station or the network node to provide services to the terminal without transmitting subband configuration information.
  • the subband 402 is used for eMBB data transmission
  • the subband 404 is URLLC data transmission
  • the subband 406 is used for mMTC data transmission.
  • the length of a transmission time interval (TTI) used for URLLC transmission may be shorter than the length of TTI used for eMBB or mMTC transmission.
  • the response of the information related to the URLLC can be sent faster than eMBB or mMTC, thereby transmitting and receiving information with a low delay.
  • FIG. 5 is a diagram illustrating a process in which one transport block is divided into several code blocks and a CRC is added.
  • one transport block (TB) to be transmitted in the uplink or the downlink may be added with a CRC 503 at the end or the beginning.
  • the CRC may have 16 bits or 24 bits or a fixed number of bits, or may have a variable number of bits depending on channel conditions, and may be used to determine whether channel coding is successful.
  • Blocks 501 and 503 added with TB and CRC may be divided into a plurality of codeblocks (CBs) 507, 509, 511 and 513 (505).
  • the code block may be divided by a predetermined maximum size, and in this case, the last code block 513 may be smaller than other code blocks, or may have a length equal to that of other code blocks by inserting 0, a random value, or 1. I can match it.
  • CRCs 517, 519, 521, and 523 may be added to the divided code blocks, respectively (515).
  • the CRC may have 16 bits or 24 bits or a fixed number of bits, and may be used to determine whether channel coding is successful.
  • the CRC 503 added to the TB and the CRCs 517, 519, 521, and 523 added to the code block may be omitted according to the type of channel code to be applied to the code block. For example, when the LDPC code, not the turbo code, is applied to the code block, the CRCs 517, 519, 521, and 523 to be inserted for each code block may be omitted. However, even when LDPC is applied, the CRCs 517, 519, 521, and 523 may be added to the code block as it is. In addition, CRC may be added or omitted even when polar codes are used.
  • the eMBB service described below is called a first type service, and the eMBB data is called first type data.
  • the first type of service or the first type of data is not limited to the eMBB but may also be applicable to a case where high-speed data transmission is required or broadband transmission is required.
  • the URLLC service is referred to as a second type service, and the URLLC data is referred to as second type data.
  • the second type service or the second type data is not limited to URLLC, but may also correspond to a case in which low latency is required, high reliability transmission is required, or other systems in which low latency and high reliability are simultaneously required.
  • the mMTC service is referred to as type 3 service, and the data for mMTC is referred to as type 3 data.
  • the third type service or the third type data is not limited to the mMTC and may correspond to a case where a low speed, wide coverage, or low power is required.
  • the first type service includes or does not include the third type service.
  • the structure of the physical layer channel used for each type to transmit the three types of services or data may be different. For example, at least one of a length of a transmission time interval (TTI), an allocation unit of frequency resources, a structure of a control channel, and a data mapping method may be different.
  • the terms physical channel and signal in the conventional LTE or LTE-A system may be used.
  • the contents of the present invention can be applied in a wireless communication system other than the LTE and LTE-A systems.
  • the embodiment defines the transmission and reception operations of the terminal and the base station for the first type, the second type, the third type of service or data transmission, and the terminals receiving different types of service or data scheduling in the same system. Suggests specific ways to work together.
  • the first type, the second type, and the third type terminal refer to terminals which have received one type, second type, third type service or data scheduling, respectively.
  • the first type terminal, the second type terminal, and the third type terminal may be the same terminal or may be different terminals.
  • At least one of a PHICH, an uplink scheduling grant signal, and a downlink data signal is referred to as a first signal.
  • at least one of the uplink data signal for the uplink scheduling grant and the HARQ ACK / NACK for the downlink data signal is called a second signal.
  • the response signal of the terminal corresponding to the first signal may be a second signal.
  • the service type of the first signal may be at least one of eMBB, URLLC, and mMTC, and the second signal may also correspond to at least one of the services.
  • PUCCH format 0 or 4 and PHICH may be a first signal
  • a second signal corresponding thereto may be a PUSCH.
  • the PDSCH may be the first signal
  • the PUCCH or PUSCH including HARQ ACK / NACK information of the PDSCH may be the second signal.
  • a PDCCH / EPDCCH including an aperiodic CSI trigger may be a first signal
  • a corresponding second signal may be a PUSCH including channel measurement information.
  • the base station when the base station transmits the first signal in the n-th TTI, assuming that the terminal transmits the second signal in the n + k-th TTI, the base station informs the terminal when to transmit the second signal Is equivalent to telling the value of k.
  • the base station to inform the terminal of the timing to transmit the second signal is offset Equivalent to giving the value a.
  • the offset may be defined by various methods such as n + 3 + a and n + 5 + a instead of n + 4 + a, and the n + 4 + a value referred to in the present invention below may also be offset in various ways. It can be defined.
  • the contents of the present invention will be described based on the FDD LTE system, but can be applied to a TDD system and an NR system.
  • higher signaling is a signal transmission method transmitted from a base station to a terminal using a downlink data channel of a physical layer, or from a terminal to a base station using an uplink data channel of a physical layer, and RRC signaling or PDCP signaling. Or MAC control element (MAC CE).
  • MAC CE MAC control element
  • the method for transmitting the second signal may be possible in various ways. For example, after the UE receives the downlink data PDSCH, the timing of transmitting HARQ ACK / NACK information corresponding to the PDSCH to the base station is the method described in the present invention, but the PUCCH format selected, the PUCCH resource selection or The method of mapping HARQ ACK / NACK information to the PUSCH may follow the conventional LTE method.
  • the normal mode is a mode using a first signal and a second signal transmission timing used in conventional LTE and LTE-A systems, and in the normal mode, about 3 ms including TA. It is possible to secure signal processing time.
  • the second signal for the first signal received by the terminal in subframe n is transmitted by the terminal in subframe n + 4.
  • the transmission may be referred to as n + 4 timing transmission. If the second signal for the first signal transmitted in subframe n + k is scheduled to be transmitted at n + 4 timing, the second signal means that the second signal is transmitted in subframe n + k + 4.
  • n + 4 timing in TDD means that a subframe in which a second signal with respect to the first signal transmitted in subframe n can be transmitted fastest follows n + 4, and follows a predetermined timing relationship. Can mean.
  • the subframe n + 4 may not be used for uplink transmission, it may be impossible for the terminal to transmit the second signal in the subframe n + 4. Therefore, it is necessary to define a timing relationship for the second signal transmission, and when defining the relationship, the minimum timing may be referred to as n + 4 timing, which assumes a subframe n + 4.
  • n + 3 timing in TDD means that a subframe in which a second signal for the first signal transmitted in subframe n can be transmitted fastest follows n + 3 and follows a predetermined timing relationship. Can mean.
  • n + 3 timing it is necessary to define a timing relationship for the second signal transmission, and when defining the relationship, the minimum timing may be referred to as n + 3 timing, which assumes a subframe n + 3.
  • the latency reduction mode is a mode that enables the transmission timing of the second signal with respect to the first signal to be equal to or faster than the normal mode, and may reduce the delay time.
  • timing can be controlled in various ways.
  • the delay reduction mode may be used in combination with a reduced processing time mode.
  • the delay reduction mode may be set to a terminal that supports the delay reduction mode through higher signaling.
  • a second signal for the first signal transmitted in subframe n may be transmitted before subframe n + 4.
  • the terminal in which the delay reduction mode is set may transmit a second signal for the first signal transmitted in subframe n in subframe n + 3.
  • the transmission may be referred to as n + 3 timing transmission.
  • the second signal for the first signal transmitted in subframe n + 1 is scheduled to be transmitted at n + 3 timing
  • the second signal is transmitted in subframe n + 4.
  • a second signal for a first signal transmitted in subframe n + 2 is scheduled to be transmitted at an n + 3 timing
  • the second signal is transmitted in subframe n + 5. That is, if the second signal for the first signal transmitted in subframe n + k is scheduled to be transmitted at n + 3 timing, the second signal means that the second signal is transmitted in subframe n + k + 3.
  • the present invention description will be made based on the case where the lengths of the transmission time intervals (TTI) used in the normal mode and the delay reduction mode are the same. However, the present invention may be applicable to the case where the TTI in the normal mode and the TTI in the delay reduction mode are different.
  • the second signal when the first signal is a PDSCH, the second signal may be a PUCCH or a PUSCH including HARQ-ACK information of the PDSCH.
  • the first signal when the first signal is a PDCCH or EPDCCH including PHICH or uplink scheduling information, the second signal may be a PUSCH for the uplink scheduling.
  • the first signal when the first signal is a PDCCH / EPDCCH including an aperiodic CSI trigger, the second signal may be a PUSCH including channel measurement information.
  • the base station When the delay reduction mode is set to the upper signaling to the terminal, the base station has an uncertainty when the upper signaling is transmitted to the terminal, so a method of always transmitting a second signal at a predetermined timing may be necessary regardless of the setting of the base station. have. For example, even if the base station sets the delay reduction mode to transmit n + 3 timing to the terminal, the base station cannot guarantee that the terminal knows exactly when the delay reduction mode setting is valid. Accordingly, there may be a need for a method in which the base station can transmit n + 4 timing transmission to the terminal during the configuration. That is, a method of performing n + 4 timing transmission may be required regardless of the delay reduction mode setting.
  • a method of performing n + 4 timing transmission regardless of the delay reduction mode setting may be used in combination with a fall-back mode transmission. Accordingly, when the fallback mode transmission is performed, the base station considers that the second signal is transmitted at the n + 4 timing instead of the n + 3 or n + 2 timing, and performs the uplink reception operation.
  • the fallback mode transmission may include 1) when the first signal transmission is delivered in a specific downlink control information (DCI) format, and 2) when DCI for the first signal transmission is delivered in a specific search space.
  • DCI downlink control information
  • the DCI may be delivered using at least one predetermined RNTI value in at least one method.
  • the cell-specific search space (CSS) and the UE-specific search space (USS), which may be the search region, may be defined as follows.
  • a control channel element (CCE) number to which a downlink control signal of aggregation level L and a control channel may be mapped in subframe k may be calculated as follows.
  • x mod y may refer to the remainder of x divided by y.
  • M (L) means the number of downlink control channels of aggregation level L.
  • m may be a natural number from 0 to M (L)
  • m ' m in CSS
  • m' m + M (L) n CI in USS
  • n CI may be a carrier indicator field value.
  • M (L) value may be defined as shown in Table 5.
  • the CCE number at which the control signal starts to be mapped is determined as 0, 4, 8, 12 at aggregation level 4, and 0, 8 at aggregation level 8.
  • USS can be changed according to the RNTI value that serves as a unique number of the terminal.
  • the delay of the base station is performed.
  • the second signal may be transmitted at n + 4 timing at all times. That is, in the above method, even if the terminal is configured to transmit the second signal at the n + 3 timing, when the downlink scheduling is performed in the DCI format 1A, the terminal transmits the second signal at the n + 4 timing.
  • the use of the fallback mode transmission is, for example, the DCI is a common search space.
  • the second signal may always be transmitted at n + 4 timing with respect to the delay mode reduction setting of the base station for the first signal related to the DCI. That is, in the above method, even if the terminal is configured to transmit the second signal at the n + 3 timing, when the DCI is transmitted in the cell common search region, the terminal transmits the second signal at the n + 4 timing.
  • the fallback mode transmission may include, for example, setting an RNTI for the fallback mode transmission to the UE in advance and using the RNTI. Therefore, when the base station generates the PDCCH or EPDCCH and delivers the DCI, the second signal may always be transmitted at n + 4 timing with respect to the delay mode reduction setting of the base station for the first signal associated with the DCI. That is, in the above method, even if the UE is configured to transmit the second signal at n + 3 timing, if the PDCCH or EPDCCH decoding succeeds using the RNTI value, the terminal transmits the second signal at n + 4 timing. .
  • FIG. 6 is a diagram illustrating a method for uplink transmission by a terminal when the base station sets a delay reduction mode to the terminal and transmits a first signal (601).
  • the terminal confirms whether the first signal transmission is the fallback mode scheduling (603), and if the fallback mode transmission is correct in the confirmation (603), delay reduction mode
  • the second signal is transmitted at timing n + 4 regardless of the setting (605). If the check 603 does not transmit the fallback mode, the second signal is transmitted at a timing determined by the delay reduction mode setting, for example, n + 3 timing or n + 2 timing (607).
  • a transmission mode in which the fastest transmission timing of the second signal with respect to the first signal transmitted in subframe n is subframe n + 4 may be referred to as a normal mode.
  • the transmission mode in which the earliest transmission timing of the second signal is subframe n + 2 or n + 3 may be referred to as a delay reduction mode or a signal processing time reduction mode.
  • the subframe n + 4, which is a reference transmission timing for distinguishing the normal mode and the delay reduction mode, is changed to classify based on another timing, and thus the present invention may be applied.
  • the DCI for transmitting the first signal is transmitted in a specific search space
  • using the fallback mode transmission may include, for example, an area in which the DCI is set as a common search space (CSS).
  • the second signal may always be transmitted at an n + 4 timing with respect to the delay mode reduction setting of the base station for the first signal associated with the DCI.
  • the terminal transmits the second signal at the n + 4 timing.
  • the DCI is transmitted in a UE-specific search space (USS)
  • the second signal is transmitted at an n + 3 timing as set.
  • the DCI format that attempts detection varies according to a transmission mode. For example, when the transmission mode 4 is set, the UE attempts to detect DCI format 1A in CSS and USS, and detects DCI format 2 in USS for PDSCH reception using C-RNTI. Can be. Therefore, in the above example, when the delay reduction mode is set to n + 3 timing, the fallback mode to n + 4 timing occurs when the terminal detects DCI format 1A in CSS.
  • the problem to be solved in the present invention is the operation method of the terminal and the base station when the search area for which the terminal is to detect DCI format 1A is CSS and USS. That is, it may be a problem that may occur when CSS and USS overlap.
  • a search region consisting of 4 and 8 CCEs may be included in both CSS and USS.
  • the UE is set to the delay reduction mode of n + 3 timing
  • the specific search area is CSS and USS
  • the UE detects DCI format 1A in the search area the UE moves downward on the detected DCI format 1A. It is not known whether the timing of transmitting the HARQ-ACK feedback of the link data transmission is n + 3 timing or n + 4 timing. Therefore, the present invention provides a method of operation of the terminal and the base station for solving the above problems.
  • the first search region may be mixed with a cell-specific search space (CSS), and the second search region may be mixed with a UE-specific search space (USS).
  • CCS cell-specific search space
  • USS UE-specific search space
  • detection and decoding may be used interchangeably.
  • the fallback mode in the present invention is used when the base station sets the delay reduction mode to the terminal, and the fallback mode is not used in the normal mode.
  • the second signal corresponding to the downlink control signal may be HARQ-ACK for downlink data transmission scheduled by the control signal or uplink data for uplink data transmission scheduling of the control signal. Can be.
  • FIG. 7 and 8 illustrate a method of prioritizing the first search area in the search area when the UE successfully decodes the downlink control signal in the first search area and the second search area. This is explained with reference.
  • the base station sets the delay reduction mode to transmit the second signal to the terminal at the n + 3 timing
  • the second signal is transmitted at the n + 4 timing and the second search is performed.
  • the fallback mode may be operated to transmit the second signal at an n + 3 timing.
  • the terminal may determine the search region as the first search region. That is, when a certain search area is the first search area and the second search area, the terminal may regard the search area as the first search area.
  • the terminal transmits the corresponding second signal to the base station at n + 4 timing.
  • the terminal transmits a corresponding second signal to the base station at n + 4 timing
  • the terminal performs transmission of the corresponding second signal in a fallback mode at n + 4 timing.
  • the above method is a method for a control signal format that can be transmitted in both the first search area and the second search area. If a specific control signal can be transmitted only in the second search area, another method may be used. If the terminal detects a control signal that can be transmitted only in the second search area from the search area that is the first search area and the second search area, the corresponding search area may be determined as the second search area.
  • the method described in the first embodiment may be used for detection of DCI format 1A, and the detection region may always be the second search region in the detection of DCI transmitted only in USS such as DCI format 2. . That is, in the FDD system, when the terminal detects the DCI format 1A in the CSS, the transmission of the second signal uses n + 4 timing. In the TDD system, when the terminal detects the DCI format 1A in the CSS, the transmission of the second signal uses the timing defined by assuming the minimum timing is n + 4.
  • 7 is a flowchart illustrating a method of operating a base station according to the first embodiment.
  • 7- (a) is a flowchart illustrating which search area the base station maps and transmits a control signal to.
  • the base station sets the delay reduction mode to the terminal and encodes a downlink control signal to be transmitted (701).
  • the control signal to be transmitted and the second signal corresponding to the first signal are checked whether the timing to be transmitted from the terminal should be n + 4 timing or n + 3 timing (703). If the second signal should be transmitted at n + 4 timing, the downlink control signal is mapped to the first search area (705). If the second signal is to be transmitted at n + 3 timing, the downlink control signal is mapped to the second search area instead of the first search area (707). Thereafter, the mapped control signal is transmitted through the control channel (709).
  • 7- (b) is a flowchart illustrating a method of determining, by a base station, a reception timing of a corresponding second signal according to a search region mapping of a control signal.
  • the base station sets the delay reduction mode to the terminal and maps the downlink control signal to the search region after encoding (711).
  • the base station checks whether the control signal is mapped to the first search area (713). If the region to which the control signal is mapped is the first search region, a corresponding second signal is received at n + 4 timing (715). If the area to which the control signal is mapped is not the first search area, a corresponding second signal is received at n + 3 timing (717).
  • 8 is a flowchart illustrating a method of operating a terminal according to the first embodiment.
  • 8- (a) is a flowchart illustrating an example of a method of determining a timing for transmitting a second signal according to a search region in which a terminal detects a control signal.
  • the terminal set to the delay reduction mode performs signal reception and control signal decoding (801).
  • the terminal determines whether the search region in which the control signal is detected is the first search region and the second search region (803). If the search area in which the control signal is detected is the first search area and the second search area, the corresponding second signal is transmitted to the base station at n + 4 timing (805).
  • the terminal determines whether the search region is the first search region (807), and if the first search region is n, the corresponding second signal is n. Transmit to base station at +4 timing (805). If the search area in which the control signal is detected is not the first search area, the corresponding second signal is transmitted to the base station at n + 3 timing (809).
  • 8- (b) is a flowchart illustrating another example of a method of determining a timing for transmitting a second signal according to a search region in which a terminal detects a control signal.
  • the terminal set to the delay reduction mode performs signal reception and control signal decoding (811).
  • the terminal checks the search region in which the control signal is detected (813), and if the search region is the first search region, transmits a corresponding second signal to the base station at n + 4 timing (815). If the search region in which the control signal is detected is not the first search region, the corresponding second signal is transmitted to the base station at n + 3 timing (817).
  • the DCI format such as DCI format 1A, which can be transmitted in both the first search region and the second search region, is usually used by the base station while the channel state of the terminal is degraded or when higher signaling is performed. It is determined that these things are used only in a special case, so that the base station and the terminal may use the same method as the present embodiment.
  • 9 and 10 illustrate a method of giving priority to the second search area in the search area when the UE successfully decodes the downlink control signal in the first search area and the second search area. This is explained with reference.
  • the base station sets the delay reduction mode to transmit the second signal to the terminal at the n + 3 timing
  • the second signal is transmitted at the n + 4 timing and the second search is performed.
  • the fallback mode may be operated to transmit the second signal at an n + 3 timing.
  • the terminal may determine the search region as the second search region. That is, when a certain search area is the first search area and the second search area, the terminal may regard the search area as the second search area.
  • the terminal transmits the corresponding second signal to the base station at n + 3 timing.
  • the terminal transmits the corresponding second signal to the base station at n + 3 timing, and if the downlink control signal is decoded in a non-second search region, The second signal is transmitted to the base station at n + 4 timing.
  • the terminal performs transmission of the corresponding second signal in a fallback mode at n + 4 timing.
  • the above method is a method for a control signal format that can be transmitted in both the first search area and the second search area. If a specific control signal can be transmitted only in the second search area, another method may be used. If the terminal detects a control signal that can be transmitted only in the second search area from the search area that is the first search area and the second search area, the corresponding search area may be determined as the second search area.
  • the method described in the second embodiment may be used for the detection of DCI format 1A, and the detection region may always be the second search region in the detection of DCI delivered only in USS such as DCI format 2. .
  • the second signal is transmitted using n + 4 timing.
  • the transmission of the second signal uses the timing defined by assuming the minimum timing is n + 4.
  • 9 is a flowchart illustrating a method of operating a base station according to the second embodiment.
  • 9- (a) is a flowchart illustrating which search area the base station maps and transmits a control signal to.
  • the base station sets a delay reduction mode to the terminal and encodes a downlink control signal to be transmitted (901).
  • 9- (b) is a flowchart illustrating a method of determining, by a base station, a reception timing of a corresponding second signal according to a search region mapping of a control signal.
  • the base station sets the delay reduction mode to the terminal and maps the downlink control signal to the search region after encoding (911).
  • the base station checks whether the control signal is mapped to the second search area (913). If the region to which the control signal is mapped is the second search region, the corresponding second signal is received at n + 3 timing (915). If the area to which the control signal is mapped is not the second search area, a corresponding second signal is received at n + 4 timing (917).
  • FIG. 10 is a flowchart illustrating a method of operating a terminal according to the second embodiment.
  • 10- (a) is a flowchart illustrating an example of a method of determining a timing for transmitting a second signal according to a search region in which a terminal detects a control signal.
  • the terminal set to the delay reduction mode performs signal reception and control signal decoding (1001).
  • the terminal checks whether the search region in which the control signal is detected is the first search region and the second search region (1003). If the search area in which the control signal is detected is the first search area and the second search area, the corresponding second signal is transmitted to the base station at n + 3 timing (1005).
  • the terminal determines whether the search region is the second search region (1007), and if the second search region is n, the corresponding second signal is n. Transmit to base station at +3 timing (1005). If the search region in which the control signal is detected is not the second search region, the corresponding second signal is transmitted to the base station at n + 4 timing (1009).
  • FIG. 10- (b) is a flowchart illustrating another example of a method of determining a timing for transmitting a second signal according to a search region in which a terminal detects a control signal.
  • the terminal set to the delay reduction mode performs signal reception and control signal decoding (1011).
  • the terminal checks the search area in which the control signal is detected (1013), and if the search area is the second search area, transmits a corresponding second signal to the base station at n + 3 timing (1015). If the search region in which the control signal is detected is not the second search region, the corresponding second signal is transmitted to the base station at n + 4 timing (1017).
  • the base station and the terminal Since the base station and the terminal are already set to higher signaling to use n + 3 timing when the present embodiment is applied, the base station and the terminal uses this embodiment to prioritize n + 3 timing transmission. It may be.
  • the search area to be prioritized in the search area is set to higher signaling. This is explained with reference.
  • the base station sets a delay reduction mode with higher signaling to the terminal and sets a search area to be prioritized (1101). For example, when one search region corresponds to the first search region and the second search region, the terminal determines whether the search region is the first search region or the second search region, such as higher signaling priotized_common_search_space. Configuration information can be delivered to the terminal through a variable. In the example, if the priotized_common_search_space variable value is TRUE, the terminal determines that the search region corresponding to the first search region and the second search region is the first search region (1105), and if the variable value is FALSE, the terminal determines the second search region ( 1107).
  • the terminal determines the search area as the first search area (1105)
  • the base station and the terminal perform the same transmission / reception operation as in the first embodiment. do.
  • the base station and the terminal perform the same transmission / reception operation as in the second embodiment. To perform.
  • the above method is a method for a control signal format that can be transmitted in both the first search area and the second search area. If a specific control signal can be transmitted only in the second search area, another method may be used. If the terminal detects a control signal that can be transmitted only in the second search area from the search area that is the first search area and the second search area, the corresponding search area may be determined as the second search area.
  • the method described in the third embodiment may be used for the detection of DCI format 1A, and the detection region may always be the second search region in the detection of DCI delivered only in USS such as DCI format 2. .
  • the fourth embodiment will be described with reference to FIG. 12 when a terminal successfully decodes a downlink control signal in a first search area and a second search area with reference to FIG. 12.
  • the base station sets the delay reduction mode to transmit the second signal to the terminal at the n + 3 timing
  • the second signal is transmitted at the n + 4 timing and the second search is performed.
  • the fallback mode may be operated to transmit the second signal at an n + 3 timing.
  • the terminal may use the timing of transmitting the second signal with respect to the previously received control signal.
  • the control signal for the recently received downlink data transmission or the uplink data transmission among the control signals received in the previous subframes is used. If the transmission of the second signal with respect to the recently received control signal uses n + 3 timing, the second signal with respect to the currently received control signal also uses n + 3 timing. Also, if the transmission of the second signal with respect to the recently received control signal uses n + 4 timing, the second signal with respect to the currently received control signal also uses n + 4 timing. This may be a method for allowing the base station and the terminal to reuse recent transmission and reception operations.
  • the above method is a method for a control signal format that can be transmitted in both the first search area and the second search area. If a specific control signal can be transmitted only in the second search area, another method may be used. If the terminal detects a control signal that can be transmitted only in the second search area from the search area that is the first search area and the second search area, the corresponding search area may be determined as the second search area.
  • the method described in the fourth embodiment may be used for the detection of DCI format 1A, and the detection region may always be the second search region in the detection of DCI transmitted only in USS such as DCI format 2. .
  • the base station sets a delay reduction mode to the terminal and encodes and maps a downlink control signal to be transmitted (1201).
  • n + 4 timing For example, if a control signal for transmitting downlink data is transmitted to a corresponding UE in a previous subframe, and the second signal for the control signal is to use n + 4 timing, the control transmitted in the current subframe It is determined that the second signal with respect to the signal also uses n + 4 timing.
  • the terminal set to the delay reduction mode performs signal reception and control signal decoding (1211).
  • the terminal checks whether the search region in which the control signal is detected is the first search region and the second search region (1213). If the search area in which the control signal is detected is the first search area and the second search area, the second signal for the current control signal is transmitted to the base station at the second signal transmission timing for the recently received control signal (1215). If the search area in which the control signal is detected is not the search area that is the first search area and the second search area, if the control signal is mapped to the first search area, the corresponding second signal is transmitted at n + 4 timing, and the second search is performed. If it is mapped to the region, the corresponding second signal is transmitted at n + 3 timing (1217).
  • the terminal when the terminal successfully decodes the downlink control signal in the first search area and the second search area, the terminal uses the timing used in the previous downlink data transmission in certain cases, and promises in advance except in the specific case. A method of using the timing is described with reference to FIG.
  • FIG. 13 is a flowchart illustrating a method for determining a second signal transmission timing of a base station and a terminal according to whether a control signal has been recently transmitted or received in subframes.
  • the base station sets the delay reduction mode to the terminal, encodes and maps a downlink control signal to be transmitted, and the terminal configured to the delay reduction mode performs signal reception and control signal decoding (1301).
  • the base station and the terminal determine whether the control signal for requesting the transmission of the second signal is transmitted or received within k subframes (1303).
  • K may be a predetermined value. For example, it may be within the last 4 subframes or 10 subframes, or may be determined as the current radio frame. Or, it may correspond only to the previous subframe.
  • the timing used for transmitting the second signal is used as it is (1305). That is, in this case, the base station and the terminal may operate according to the fourth embodiment. If a control signal for requesting the second signal transmission has not been received within the recent k subframe, transmission and reception may be performed according to the first embodiment, the second embodiment, or the third embodiment (1307).
  • the base station when a base station transmits a control signal for downlink data transmission in a first search area and a second search area to a terminal, the base station receives HARQ-ACK feedback or a second signal for the data. This will be described with reference to FIG. 14.
  • the base station sets a delay reduction mode to the terminal and encodes and maps a downlink control signal to be transmitted (1401).
  • the base station determines whether the corresponding search area is the first search area and the second search area (1403). If the search region to which the control signal is mapped is the first search region and the second search region, the base station may attempt to detect the second signal corresponding to the control signal at both n + 3 timing and n + 4 timing ( 1405). In operation 1405, the second signal for the current control signal is transmitted to the base station at the second signal transmission timing for the recently received control signal.
  • search region to which the control signal is mapped is not the search region that is the first search region and the second search region, if the control signal is mapped to the first search region, a corresponding second signal is detected at n + 4 timing. If it is mapped to the second search area, a corresponding second signal is detected at n + 3 timing (1407).
  • the above method is a method for a control signal format that can be transmitted in both the first search area and the second search area. If a specific control signal can be transmitted only in the second search area, another method may be used. If the base station transmits a control signal that can be transmitted only in the second search area in the search area that is the first search area and the second search area, the detection attempt of the corresponding second signal may be performed only at n + 3 timing.
  • the method described in the fifth embodiment may be used for transmission of DCI format 1A and detection of the corresponding second signal, and transmission of DCI transmitted only in USS such as DCI format 2 and detection of the corresponding second signal are delayed. In reduced mode, n + 3 timing will be available.
  • the operation of the delay reduction mode has been described to use n + 3 timing, but this is merely to give a specific example to help explain the present invention, and is not intended to limit the scope of the present invention. That is, in the present invention, the delay reduction mode may be applicable to setting the second signal to be transmitted at an n + 2 or n + 3 timing.
  • FIGS. 15 and 16 a transmitter, a receiver, and a processor of the terminal and the base station are shown in FIGS. 15 and 16, respectively.
  • a transmission and reception method of the base station and the terminal In order to perform the operation of the control signal detection method according to the search area from the first embodiment to the fifth embodiment, there is shown a transmission and reception method of the base station and the terminal. Each should operate according to the embodiment.
  • FIG. 15 is a block diagram illustrating an internal structure of a terminal according to an embodiment of the present invention.
  • the terminal of the present invention may include a terminal receiver 1500, a terminal transmitter 1504, and a terminal processor 1502.
  • the terminal receiver 1500 and the terminal may collectively be referred to as a transmitter / receiver in the exemplary embodiment of the present invention.
  • the transceiver may transmit and receive a signal with the base station.
  • the signal may include control information and data.
  • the transmission and reception unit may be composed of an RF transmitter for up-converting and amplifying the frequency of the transmitted signal, and an RF receiver for low noise amplifying and down-converting the received signal.
  • the transceiver may receive a signal through a wireless channel, output the signal to the terminal processor 1502, and transmit a signal output from the terminal processor 1502 through a wireless channel.
  • the terminal processing unit 1502 may control a series of processes so that the terminal may operate according to the above-described embodiment of the present invention.
  • the terminal receiver 1500 may receive a signal including a control signal, and the terminal processor 1502 may determine to perform a decoding by determining a DCI format to perform decoding according to the search area.
  • the processor determines the search region in which the DCI is detected to determine the transmission timing of the second signal. Thereafter, the terminal transmitter 1504 transmits the second signal at the timing determined by the processor if it is necessary to transmit the second signal related to the control signal at the timing.
  • the base station of the present invention may include a base station receiving unit 1601, a base station transmitting unit 1605, and a base station processing unit 1603.
  • the base station receiver 1601 and the base station transmitter 1605 may be collectively referred to as a transceiver in the embodiment of the present invention.
  • the transceiver may transmit and receive a signal with the terminal.
  • the signal may include control information and data.
  • the transmission and reception unit may be composed of an RF transmitter for up-converting and amplifying the frequency of the transmitted signal, and an RF receiver for low noise amplifying and down-converting the received signal.
  • the transceiver may receive a signal through a wireless channel, output the signal to the base station processor 1603, and transmit a signal output from the terminal processor 1603 through a wireless channel.
  • the base station processor 1603 may control a series of processes to operate the base station according to the above-described embodiment of the present invention.

Abstract

본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 발명은 무선통신 시스템에 대한 것으로서, 하향링크 제어신호 복호 방법 및 장치에 관한 것이다.

Description

무선 셀룰라 통신 시스템에서 하향링크 제어신호 복호 방법 및 장치
본 발명은 무선통신 시스템에 대한 것으로서, 하향링크 제어신호 복호 방법 및 장치에 관한 것이다. 보다 구체적으로는, 지연시간 감소모드 단말이 지연감소 모드로 설정되었을 때, 하향링크 제어신호를 검출하고 하향링크 데이터에 대한 HARQ-ACK 피드백을 보내는 타이밍을 결정하는 방법에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
이와 같이 통신 시스템에서 복수의 서비스가 사용자에게 제공될 수 있으며, 이와 같은 복수의 서비스를 사용자에게 제공하기 위해 특징에 맞게 각 서비스를 동일한 시구간 내에서 제공할 수 있는 방법 및 이를 이용한 장치가 요구된다.
특히, 종래의 LTE 시스템에서는 하향링크 데이터를 전송 받은 후 3 ms 이후에 상향링크로 데이터 전송 성공 여부를 알려주는 HARQ ACK 또는 NACK 정보를 기지국으로 전송한다. 예를 들어 기지국으로부터 단말에 서브프레임 n에 수신된 physical downlink shared channel (PDSCH)의 HARQ ACK / NACK 정보가 서브프레임 n+4에서 physical uplink control channel (PUCCH) 혹은 physical uplink shared channel (PUSCH)를 통해 기지국으로 전달된다. 또한 FDD LTE 시스템에서 기지국이 단말에게 상향링크 자원할당 정보가 포함된 downlink control information (DCI)를 전송하거나, physical hybrid ARQ indicator channel (PHICH)를 통해 재전송을 요구할 수 있는데, 상기와 같은 상향링크 데이터 전송 스케줄링을 단말이 서브프레임 n에 받았을 때, 단말은 서브프레임 n+4에서 상향링크 데이터 전송을 수행한다. 즉, 서브프레임 n+4에서 PUSCH 전송을 수행하게 된다. 상기 예제는 FDD를 사용하는 LTE 시스템에서의 설명이며, TDD를 사용하는 LTE 시스템에서는 HARQ ACK/NACK 전송 타이밍이나, PUSCH 전송 타이밍이 상향링크-하향링크 서브프레임 설정에 따라 달라지며, 이는 미리 정해진 규칙에 따라 수행된다.
FDD 또는 TDD를 사용하는 LTE 시스템에서 HARQ ACK/NACK 전송 타이밍이나, PUSCH 전송 타이밍은 기지국과 단말의 신호처리에 필요한 시간이 약 3 ms 정도인 경우에 맞추어 미리 정해진 타이밍이다. 하지만 LTE 기지국과 단말이 신호처리 시간을 1 ms 혹은 2 ms 정도로 줄이면 데이터 전송을 위한 지연시간을 감소시킬 수 있을 것이다.
상기와 같이 지연시간 감소를 위한 전송을 지원하는 단말은 지연감소모드로 설정이 되어 있을 때, DCI가 검출되는 탐색영역에 따라 하향링크 데이터에 대한 HARQ-ACK 타이밍 혹은 상향링크 데이터 그랜트에 대한 상향링크 데이터 전송의 타이밍이 달라질 수 있다. 예를 들어, 공통탐색영역에서 DCI가 검출되면 n+4 타이밍으로 동작하고, 단말특정탐색영역에서 DCI가 검출되면 n+4 타이밍으로 동작하는 것이 가능하다. 하지만 경우에 따라서는, 특정 단말에게 하나의 탐색영역이 공통탐색영역이자 단말특정탐색영역인 경우가 발생할 수 있으며, 이 경우에 단말과 기지국의 동작을 정의할 필요가 있다. 따라서 본 발명에서는 하향링크 제어신호를 복호하고, 이에 따르는 기지국과 단말의 송수신 방법 및 장치를 제공한다.
상기와 같은 문제점을 해결하기 위하여, 본 발명의 일 실시 예에 따른 단말의 방법은, 기지국으로부터 상향링크 전송을 스케쥴링하는 제어 신호를 수신하는 단계, 상기 제어 신호가 검출된 탐색공간에 기초하여 상향링크 신호를 전송할 시점을 제1 시점 또는 상기 제1 시점 보다 앞서는 제2 시점으로 결정하는 단계, 및 상기 제1 시점 또는 상기 제2 시점에서 상기 상향링크 신호를 기지국으로 전송하는 단계를 포함한다.
본 발명의 또 다른 실시 예에 따른 단말은, 신호를 송신 및 수신하는 송수신부 및 기지국으로부터 상향링크 전송을 스케쥴링하는 제어 신호를 수신하고, 상기 제어 신호가 검출된 탐색공간에 기초하여 상향링크 신호를 전송할 시점을 제1 시점 또는 상기 제1 시점 보다 앞서는 제2 시점으로 결정하고, 상기 제1 시점 또는 상기 제2 시점에서 상기 상향링크 신호를 기지국으로 전송하도록 설정된 제어부를 포함한다.
본 발명의 또 다른 실시 예에 따른 기지국의 방법은, 단말로 상향링크 전송을 스케쥴링하는 제어 신호를 전송하는 단계 및 상기 제어 신호가 매핑된 탐색공간에 기초하여 상기 단말로부터 제1 시점 및 상기 제1 시점 보다 앞서는 제2 시점 모두에서 상향링크 신호를 수신하는 단계를 포함한다.
본 발명의 또 다른 실시 예에 따른 기지국은, 신호를 송신 및 수신하는 송수신부 및 단말로 상향링크 전송을 스케쥴링하는 제어 신호를 전송하고, 상기 제어 신호가 매핑된 탐색공간에 기초하여 상기 단말로부터 제1 시점 및 상기 제1 시점 보다 앞서는 제2 시점 모두에서 상향링크 신호를 수신하도록 설정된 제어부를 포함한다.
본 발명의 일 실시예에 따르면, 기지국 및 단말의 지연감소 모드 동작에서 제어신호 디코딩 및 이에 따르는 송수신 방법을 제공하여 효율적인 자원 운용이 가능하도록 한다.
도 1은 LTE 또는 LTE-A 시스템의 하향링크 시간-주파수영역 전송 구조를 나타낸 도면이다.
도 2는 LTE 또는 LTE-A 시스템의 상향링크 시간-주파수영역 전송 구조를 나타낸 도면이다.
도 3은 통신 시스템에서 eMBB, URLLC, mMTC용 데이터들이 주파수-시간자원에서 할당된 모습을 나타낸 도면이다.
도 4는 통신 시스템에서 eMBB, URLLC, mMTC용 데이터들이 주파수-시간자원에서 할당된 모습을 나타낸 도면이다.
도 5는 실시 예에 따른 하나의 트랜스포트 블록이 여럿의 코드 블록으로 나뉘고 CRC가 추가되는 구조를 나타낸 도면이다.
도 6은 단말이 상향링크 전송하는 방법을 도시한 도면이다.
도 7은 제1실시예에 따른 기지국의 동작을 도시한 도면이다.
도 8은 제1실시예에 따른 단말의 동작을 도시한 도면이다.
도 9는 제2실시예에 따른 기지국의 동작을 도시한 도면이다.
도 10은 제2실시예에 따른 단말의 동작을 도시한 도면이다.
도 11은 제3실시예에 따른 기지국과 단말의 동작을 도시한 도면이다.
도 12는 제4실시예에 따른 기지국 및 단말의의 동작을 도시한 도면이다.
도 13은 제4-1실시예에 따른 기지국 및 단말의 동작을 도시한 도면이다.
도 14는 제5실시예에 따른 기지국 및 단말의 동작을 도시한 도면이다.
도 15는 실시 예들에 따른 단말의 구조를 도시하는 블록도이다.
도 16은 실시 예들에 따른 기지국의 구조를 도시하는 블록도이다.
본 발명의 실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이 때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이 때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시 예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 혹은 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), 3GPP2의 HRPD(High Rate Packet Data), UMB(Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다. 또한, 5세대 무선통신 시스템으로 5G 혹은 NR (new radio)의 통신표준이 만들어지고 있다.
이와 같이 5세대를 포함한 무선통신 시스템에서 eMBB (Enhanced mobile broadband), mMTC (massive Machine Type Communications) (mMTC) 및 URLLC (Ultra-Reliable and low-latency Communications) 중 적어도 하나의 서비스가 단말에 제공될 수 있다. 상기 서비스들은 동일 시구간 동안에 동일 단말에 제공될 수 있다. 실시 예에서 eMBB는 고용량데이터의 고속 전송, mMTC는 단말전력 최소화와 다수 단말의 접속, URLLC는 고신뢰도와 저지연을 목표로 하는 서비스일 수 있으나 이에 제한되지는 않는다. 상기 3가지의 서비스는 LTE 시스템 혹은 LTE 이후의 5G/NR (new radio, next radio) 등의 시스템에서 주요한 시나리오일 수 있다. 실시 예에서는 eMBB와 URLLC의 공존, 혹은 mMTC와 URLLC와의 공존 방법 및 이를 이용한 장치에 대해서 서술한다.
기지국이 특정 전송시간구간(transmission time interval, TTI)에서 eMBB 서비스에 해당하는 데이터를 어떠한 단말에게 스케줄링 하였을 때, 상기 TTI에서 URLLC 데이터를 전송해야 할 상황이 발생하였을 경우, 상기 이미 eMBB 데이터를 스케줄링하여 전송하고 있는 주파수 대역에서 eMBB 데이터 일부를 전송하지 않고, 상기 발생한 URLLC 데이터를 상기 주파수 대역에서 전송할 수 있다. 상기 eMBB를 스케줄링 받은 단말과 URLLC를 스케줄링 받은 단말은 서로 같은 단말일 수도 있고, 서로 다른 단말일 수도 있을 것이다. 이와 같은 경우 경우 이미 스케줄링하여 전송하고 있던 eMBB 데이터 일부를 전송하지 않는 부분이 생기기 때문에 eMBB 데이터가 손상될 가능성이 증가한다. 따라서 상기 경우에 eMBB를 스케줄링을 받은 단말 혹은 URLLC를 스케줄링 받은 단말에서 수신한 신호를 처리하는 방법 및 신호 수신 방법이 정해질 필요가 있다. 따라서 실시 예에서는 일부 또는 전체 주파수 대역을 공유하여 eMBB와 URLLC에 따른 정보가 스케줄링 될 때, 혹은 mMTC와 URLLC에 따른 정보가 동시에 스케줄링 될 때, 혹은 mMTC와 eMBB에 따른 정보가 동시에 스케줄링 될 때, 혹은 eMBB와 URLLC와 mMTC에 따른 정보가 동시에 스케줄링 될 때 각 서비스에 따른 정보를 전송할 수 있는 이종서비스간 공존 방법에 대해서 서술한다.
이하 본 발명의 실시 예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 본 발명에서 하향링크(Downlink; DL)는 기지국이 단말에게 전송하는 신호의 무선 전송경로이고, 상향링크는(Uplink; UL)는 단말이 기국에게 전송하는 신호의 무선 전송경로를 의미한다. 또한, 이하에서 LTE 혹은 LTE-A 시스템을 일례로서 본 발명의 실시 예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 발명의 실시 예가 적용될 수 있다. 예를 들어 LTE-A 이후에 개발되는 5세대 이동통신 기술(5G, new radio, NR)이 이에 포함될 수 있을 것이다. 또한, 본 발명의 실시 예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
상기 광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(terminal 혹은 User Equipment, UE) 혹은 Mobile Station((MS)이 기지국(eNode B, 혹은 base station(BS))으로 데이터 혹은 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 혹은 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 통상 각 사용자 별로 데이터 혹은 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성 (Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 혹은 제어정보를 구분할 수 있다.
LTE 시스템은 초기 전송에서 복호 실패가 발생된 경우, 물리 계층에서 해당 데이터를 재전송하는 HARQ (Hybrid Automatic Repeat reQuest) 방식을 채용하고 있다. HARQ 방식이란 수신기가 데이터를 정확하게 복호화(디코딩)하지 못한 경우, 수신기가 송신기에게 디코딩 실패를 알리는 정보(NACK; Negative Acknowledgement)를 전송하여 송신기가 물리 계층에서 해당 데이터를 재전송할 수 있게 한다. 수신기는 송신기가 재전송한 데이터를 이전에 디코딩 실패한 데이터와 결합하여 데이터 수신성능을 높이게 된다. 또한, 수신기가 데이터를 정확하게 복호한 경우 송신기에게 디코딩 성공을 알리는 정보(ACK; Acknowledgement)를 전송하여 송신기가 새로운 데이터를 전송할 수 있도록 할 수 있다.
도 1은 LTE 시스템 또는 이와 유사한 시스템에서 하향링크에서 상기 데이터 혹은 제어채널이 전송되는 무선자원영역인 시간-주파수영역의 기본 구조를 나타낸 도면이다.
도 1을 참조하면, 가로축은 시간영역을, 세로축은 주파수영역을 나타낸다. 시간영역에서의 최소 전송단위는 OFDM 심벌로서, Nsymb (102)개의 OFDM 심벌이 모여 하나의 슬롯(106)을 구성하고, 2개의 슬롯이 모여 하나의 서브프레임(105)을 구성한다. 상기 슬롯의 길이는 0.5ms 이고, 서브프레임의 길이는 1.0ms 이다. 그리고 라디오 프레임(114)은 10개의 서브프레임으로 구성되는 시간영역구간이다. 주파수영역에서의 최소 전송단위는 서브캐리어(subcarrier)로서, 전체 시스템 전송 대역 (Transmission bandwidth)의 대역폭은 총 NBW (104)개의 서브캐리어로 구성된다. 다만 이와 같은 구체적인 수치는 가변적으로 적용될 수 있다.
시간-주파수영역에서 자원의 기본 단위는 리소스 엘리먼트(112, Resource Element; RE)로서 OFDM 심벌 인덱스 및 서브캐리어 인덱스로 나타낼 수 있다. 리소스 블록(108, Resource Block; RB 혹은 Physical Resource Block; PRB)은 시간영역에서 Nsymb (102)개의 연속된 OFDM 심벌과 주파수 영역에서 NRB (110)개의 연속된 서브캐리어로 정의될 수 있다. 따라서, 한 슬롯에서 하나의 RB(108)는 Nsymb x NRB 개의 RE(112)를 포함할 수 있다. 일반적으로 데이터의 주파수 영역 최소 할당단위는 상기 RB이며, LTE 시스템에서 일반적으로 상기 Nsymb = 7, NRB=12 이고, NBW 및 NRB 는 시스템 전송 대역의 대역폭에 비례할 수 있다. 단말에게 스케줄링 되는 RB 개수에 비례하여 데이터 레이트가 증가하게 된다. LTE 시스템은 6개의 전송 대역폭을 정의하여 운영할 수 있다. 하향링크와 상향링크를 주파수로 구분하여 운영하는 FDD 시스템의 경우, 하향링크 전송 대역폭과 상향링크 전송 대역폭이 서로 다를 수 있다. 채널 대역폭은 시스템 전송 대역폭에 대응되는 RF 대역폭을 나타낸다. 아래의 표 1은 LTE 시스템에 정의된 시스템 전송 대역폭과 채널 대역폭 (Channel bandwidth)의 대응관계를 나타낸다. 예를 들어, 10MHz 채널 대역폭을 갖는 LTE 시스템은 전송 대역폭이 50개의 RB로 구성될 수 있다.
[표 1]
Figure PCTKR2017011844-appb-I000001
하향링크 제어정보의 경우 상기 서브프레임 내의 최초 N 개의 OFDM 심벌 이내에 전송될 수 있다. 실시 예에서 일반적으로 N = {1, 2, 3} 이다. 따라서 현재 서브프레임에 전송해야 할 제어정보의 양에 따라 상기 N 값이 서브프레임마다 가변적으로 적용될 수 있다. 상기 전송 되는 제어 정보는 제어정보가 OFDM 심벌 몇 개에 걸쳐 전송되는지를 나타내는 제어채널 전송구간 지시자, 하향링크 데이터 혹은 상향링크 데이터에 대한 스케쥴링 정보, HARQ ACK/NACK 에 관한 정보를 포함할 수 있다.
LTE 시스템에서 하향링크 데이터 혹은 상향링크 데이터에 대한 스케줄링 정보는 하향링크 제어정보(Downlink Control Information; DCI)를 통해 기지국으로부터 단말에게 전달된다. DCI 는 여러 가지 포맷에 따라 정의되며, 각 포멧에 따라 상향링크 데이터에 대한 스케줄링 정보 (UL grant) 인지 하향링크 데이터에 대한 스케줄링 정보 (DL grant) 인지 여부, 제어정보의 크기가 작은 컴팩트 DCI 인지 여부, 다중안테나를 사용한 공간 다중화 (spatial multiplexing)을 적용하는지 여부, 전력제어 용 DCI 인지 여부 등을 나타낼 수 있다. 예컨대, 하향링크 데이터에 대한 스케줄링 제어정보(DL grant)인 DCI format 1 은 적어도 다음과 같은 제어정보들 중 하나를 포함할 수 있다.
- 자원 할당 유형 0/1 플래그(Resource allocation type 0/1 flag): 리소스 할당 방식이 유형 0 인지 유형 1 인지 지시한다. 유형 0 은 비트맵 방식을 적용하여 RBG (resource block group) 단위로 리소스를 할당한다. LTE 시스템에서 스케줄링의 기본 단위는 시간 및 주파수 영역 리소스로 표현되는 RB이고, RBG 는 복수개의 RB로 구성되어 유형 0 방식에서의 스케줄링의 기본 단위가 된다. 유형 1 은 RBG 내에서 특정 RB를 할당하도록 한다.
- 자원 블록 할당(Resource block assignment): 데이터 전송에 할당된 RB를 지시한다. 시스템 대역폭 및 리소스 할당 방식에 따라 표현하는 리소스가 결정된다.
- 변조 및 코딩 방식(Modulation and coding scheme; MCS): 데이터 전송에 사용된 변조방식과 전송하고자 하는 데이터인 transport block 의 크기를 지시한다.
- HARQ 프로세스 번호(HARQ process number): HARQ 의 프로세스 번호를 지시한다.
- 새로운 데이터 지시자(New data indicator): HARQ 초기전송인지 재전송인지를 지시한다.
- 중복 버전(Redundancy version): HARQ 의 중복 버전(redundancy version) 을 지시한다.
- PUCCH를 위한 전송 전력 제어 명령(Transmit Power Control(TPC) command) for PUCCH(Physical Uplink Control CHannel): 상향링크 제어 채널인 PUCCH 에 대한 전송 전력 제어 명령을 지시한다.
상기 DCI는 채널코딩 및 변조과정을 거쳐 하향링크 물리제어채널인 PDCCH (Physical downlink control channel)(또는, 제어 정보, 이하 혼용하여 사용하도록 한다) 혹은 EPDCCH (Enhanced PDCCH)(또는, 향상된 제어 정보, 이하 혼용하여 사용하도록 한다)상에서 전송될 수 있다.
일반적으로 상기 DCI는 각 단말에 대해 독립적으로 특정 RNTI (Radio Network Temporary Identifier)(또는, 단말 식별자)로 스크램블 되어 CRC(cyclic redundancy check)가 추가되고, 채널코딩된 후, 각각 독립적인 PDCCH로 구성되어 전송된다. 시간영역에서 PDCCH는 상기 제어채널 전송구간 동안 매핑되어 전송된다. PDCCH 의 주파수영역 매핑 위치는 각 단말의 식별자(ID) 에 의해 결정되고, 전체 시스템 전송 대역에 퍼져서 전송 될 수 있다.
하향링크 데이터는 하향링크 데이터 전송용 물리채널인 PDSCH (Physical Downlink Shared Channel) 상에서 전송 될 수 있다. PDSCH는 상기 제어채널 전송구간 이후부터 전송될 수 있으며, 주파수 영역에서의 구체적인 매핑 위치, 변조 방식 등의 스케줄링 정보는 상기 PDCCH 를 통해 전송되는 DCI를 기반으로 결정된다.
상기 DCI 를 구성하는 제어정보 중에서 MCS 를 통해서, 기지국은 단말에게 전송하고자 하는 PDSCH에 적용된 변조방식과 전송하고자 하는 데이터의 크기 (transport block size; TBS)를 통지한다. 실시 예에서 MCS 는 5비트 혹은 그보다 더 많거나 적은 비트로 구성될 수 있다. 상기 TBS 는 기지국이 전송하고자 하는 데이터 (transport block, TB)에 오류정정을 위한 채널코딩이 적용되기 이전의 크기에 해당한다.
LTE 시스템에서 지원하는 변조방식은 QPSK(Quadrature Phase Shift Keying), 16QAM(Quadrature Amplitude Modulation), 64QAM 으로서, 각각의 변조오더(Modulation order) (Qm) 는 2, 4, 6 에 해당한다. 즉, QPSK 변조의 경우 심벌 당 2 비트, 16QAM 변조의 경우 심볼 당 4 비트, 64QAM 변조의 경우 심벌 당 6 비트를 전송할 수 있다. 또한 시스템 변형에 따라 256QAM 이상의 변조 방식도 사용될 수 있다.
도 2는 LTE-A 시스템에서 상향링크에서 데이터 혹은 제어채널이 전송되는 무선자원영역인 시간-주파수영역의 기본 구조를 나타낸 도면이다.
도 2를 참조하면, 가로축은 시간영역을, 세로축은 주파수영역을 나타낸다. 시간영역에서의 최소 전송단위는 SC-FDMA 심벌(202)로서, NsymbUL 개의 SC-FDMA 심벌이 모여 하나의 슬롯(206)을 구성할 수 있다. 그리고 2개의 슬롯이 모여 하나의 서브프레임(205)을 구성한다. 주파수영역에서의 최소 전송단위는 서브캐리어로서, 전체 시스템 전송 대역(transmission bandwidth; 204)은 총 NBW개의 서브캐리어로 구성된다. NBW는 시스템 전송 대역에 비례하는 값을 가질 수 있다.
시간-주파수영역에서 자원의 기본 단위는 리소스 엘리먼트(Resource Element; RE, 212)로서 SC-FDMA 심벌 인덱스 및 서브캐리어 인덱스로 정의할 수 있다. 리소스 블록 페어(208, Resource Block pair; RB pair)은 시간영역에서 NsymbUL 개의 연속된 SC-FDMA 심벌과 주파수 영역에서 NscRB 개의 연속된 서브캐리어로 정의될 수 있다. 따라서, 하나의 RB는 NsymbUL x NscRB 개의 RE로 구성된다. 일반적으로 데이터 혹은 제어정보의 최소 전송단위는 RB 단위이다. PUCCH 의 경우 1 RB에 해당하는 주파수 영역에 매핑되어 1 서브프레임 동안 전송된다.
LTE 시스템에서는 하향링크 데이터 전송용 물리채널인 PDSCH 혹은 반영구적 스케줄링 해제(semi-persistent scheduling release; SPS release)를 포함하는 PDCCH/EPDDCH에 대응하는 HARQ ACK/NACK이 전송되는 상향링크 물리채널인 PUCCH 혹은 PUSCH의 타이밍 관계가 정의될 수 있다. 일례로 FDD(frequency division duplex)로 동작하는 LTE 시스템에서는 n-4번째 서브프레임에서 전송된 PDSCH 혹은 SPS release를 포함하는 PDCCH/EPDCCH에 대응하는 HARQ ACK/NACK가 n번째 서브프레임에서 PUCCH 혹은 PUSCH로 전송될 수 있다.
LTE 시스템에서 하향링크 HARQ는 데이터 재전송시점이 고정되지 않은 비동기(asynchronous) HARQ 방식을 채택하고 있다. 즉, 기지국이 전송한 초기전송 데이터에 대해 단말로부터 HARQ NACK을 피드백 받은 경우, 기지국은 재전송 데이터의 전송시점을 스케줄링 동작에 의해 자유롭게 결정한다. 단말은 HARQ 동작을 위해 수신 데이터에 대한 디코딩 결과, 오류로 판단된 데이터에 대해 버퍼링을 한 후, 다음 재전송 데이터와 컴바이닝을 수행할 수 있다.
서브프레임 n-k에서 전송된 PDSCH의 HARQ ACK/NACK 정보는 서브프레임 n에 PUCCH 혹은 PUSCH를 통해 단말에서 기지국으로 전송되며, 이 때 상기 k는 LTE의 시스템의 FDD 또는 TDD(time division duplex)와 그 서브프레임 설정에 따라 다르게 정의될 수 있다. 일례로 FDD LTE 시스템의 경우에는 상기 k가 4로 고정된다. 한편 TDD LTE 시스템의 경우에는 상기 k가 서브프레임 설정과 서브프레임 번호에 따라 바뀔 수 있다. 또한 복수의 캐리어를 통한 데이터 전송 시에 각 캐리어의 TDD 설정에 따라 k의 값이 다르게 적용될 수 있다. 상기 TDD의 경우에 k 값은 하기 표 2에서와 같이 TDD UL/DL 설정에 따라 결정된다.
[표 2]
Figure PCTKR2017011844-appb-I000002
LTE 시스템에서 하향링크 HARQ 와 달리 상향링크 HARQ는 데이터 전송시점이 고정된 동기(synchronous) HARQ 방식을 채택하고 있다. 즉, 상향링크 데이터 전송용 물리채널인 PUSCH(Physical Uplink Shared Channel)와 이에 선행하는 하향링크 제어채널인 PDCCH, 그리고 상기 PUSCH에 대응되는 하향링크 HARQ ACK/NACK이 전송되는 물리채널인 PHICH(Physical Hybrid Indicator Channel)의 상/하향링크 타이밍 관계가 다음과 같은 규칙에 의해 송수신 될 수 있다.
단말은 서브프레임 n에 기지국으로부터 전송된 상향링크 스케줄링 제어정보를 포함하는 PDCCH 혹은 하향링크 HARQ ACK/NACK이 전송되는 PHICH를 수신하면, 서브프레임 n+k에 상기 제어정보에 대응되는 상향링크 데이터를 PUSCH를 통해 전송한다. 이 때 상기 k는 LTE의 시스템의 FDD 또는 TDD(time division duplex)와 그 설정에 따라 다르게 정의될 수 있다. 일례로 FDD LTE 시스템의 경우에는 상기 k가 4로 고정될 수 있다. 한편 TDD LTE 시스템의 경우에는 상기 k가 서브프레임 설정과 서브프레임 번호에 따라 바뀔 수 있다. 또한 복수의 캐리어를 통한 데이터 전송 시에 각 캐리어의 TDD 설정에 따라 k의 값이 다르게 적용될 수 있다. 상기 TDD의 경우에 k 값은 하기 표 3에서와 같이 TDD UL/DL 설정에 따라 결정된다.
[표 3]
Figure PCTKR2017011844-appb-I000003
한편, 서브프레임 i에 전송되는 PHICH의 HARQ-ACK 정보는, 서브프레임 i-k에서 전송된 PUSCH에 연관된 것이다. FDD 시스템인 경우 상기 k는 4로 주어진다. 즉, FDD 시스템에서 서브프레임 i에 전송되는 PHICH의 HARQ-ACK 정보는, 서브프레임 i-4에서 전송된 PUSCH에 연관된 것이다. TDD 시스템의 경우 EIMTA가 설정되지 않은 단말이, 하나의 서빙셀만 설정되거나 혹은 모두 같은 TDD UL/DL 설정으로 되었을 경우에는, TDD UL/DL 설정 1에서 6일 때, 하기 표 4에 따라 k값이 주어질 수 있다.
[표 4]
Figure PCTKR2017011844-appb-I000004
즉, 예를 들어, TDD UL/DL 설정 1에서, 서브프레임 6에서 전송되는 PHICH는 4 서브프레임 전인 서브프레임 2에서 전송된 PUSCH의 HARQ-ACK 정보일 수 있다.
만약, TDD UL/DL 설정 0일 때는, IPHICH=0에 해당하는 PHICH 자원으로 HARQ-ACK이 수신되면, 상기 HARQ-ACK 정보가 가리키는 PUSCH는 서브프레임 i-k에서 전송된 것이며 상기 k 값은 상기 표 4에 따라 주어진다. TDD UL/DL 설정 0일 때는, IPHICH=1에 해당하는 PHICH 자원으로 HARQ-ACK이 수신되면, 상기 HARQ-ACK 정보가 가리키는 PUSCH는 서브프레임 i-6에서 전송된 것이다.
상기 무선통신시스템의 설명은 LTE 시스템을 기준으로 설명하였으며, 본 발명의 내용은 LTE 시스템에 국한되는 것이 아니라 NR, 5G 등 다양한 무선 통신 시스템에서 적용될 수 있다. 또한 실시 예에서 다른 무선 통신 시스템에 적용되는 경우 FDD와 대응되는 변조 방식을 사용하는 시스템에도 k 값은 변경되어 적용될 수 있다.
도 3과 도 4는 5G 혹은 NR 시스템에서 고려되는 서비스인 eMBB, URLLC, mMTC용 데이터들이 주파수-시간자원에서 할당된 모습을 도시한다.
도 3 및 도 4를 참조하면, 각 시스템에서 정보 전송을 위해 주파수 및 시간 자원이 할당된 방식을 볼 수 있다.
우선 도 3에서는 전제 시스템 주파수 대역(300)에서 eMBB, URLLC, mMTC용 데이터가 할당된 모습이다. eMBB(301)와 mMTC(309)가 특정 주파수 대역에서 할당되어 전송되는 도중에 URLLC 데이터(303, 305, 307)가 발생하여 전송이 필요한 경우, eMBB(301) 및 mMTC(309)가 이미 할당된 부분을 비우거나, 전송을 하지 않고 URLLC 데이터(303, 305, 307)를 전송할 수 있다. 상기 서비스 중에서 URLLC는 지연시간을 줄이는 것이 필요하기 때문에, eMBB가 할당된 자원(301)의 일부분에 URLLC 데이터가 할당(303, 305, 307)되어 전송될 수 있다. 물론 eMBB가 할당된 자원에서 URLLC가 추가로 할당되어 전송되는 경우, 중복되는 주파수-시간 자원에서는 eMBB 데이터가 전송되지 않을 수 있으며, 따라서 eMBB 데이터의 전송 성능이 낮아질 수 있다. 즉, 상기의 경우에 URLLC 할당으로 인한 eMBB 데이터 전송 실패가 발생할 수 있다.
도 4에서는 전체 시스템 주파수 대역(400)을 나누어 각 서브밴드(402, 404, 406)에서 서비스 및 데이터를 전송하는 용도로 사용할 수 있다. 상기 서브밴드 설정과 관련된 정보는 미리 결정될 수 있으며, 이 정보는 기지국이 단말에게 상위 시그널링을 통해 전송될 수 있다. 혹은 상기 서브 밴드와 관련된 정보는 기지국 또는 네트워크 노드가 임의로 나누어 단말에게 별도의 서브밴드 설정 정보의 전송 없이 서비스들을 제공할 수도 있다. 도 4에서는 서브밴드 402는 eMBB 데이터 전송, 서브밴드 404는 URLLC 데이터 전송, 서브밴드 406에서는 mMTC 데이터 전송에 사용되는 모습을 도시한다.
실시 예 전반에서 URLLC 전송에 사용되는 전송시간구간(transmission time interval, TTI)의 길이는 eMBB 혹은 mMTC 전송에 사용되는 TTI 길이보다 짧을 수 있다. 또한 URLLC와 관련된 정보의 응답을 eMBB 또는 mMTC보다 빨리 전송할 수 이 있으며, 이에 따라 낮은 지연으로 정보를 송수신 할 수 있다.
도 5는 하나의 트랜스포트 블록이 여러 개의 코드 블록으로 나뉘고 CRC가 추가되는 과정을 도시한 도면이다.
도 5를 참조하면, 상향링크 또는 하향링크에서 전송하고자 하는 하나의 트랜스포트블록(501, transport block; TB)는 마지막 또는 맨 앞부분에 CRC(503)이 추가될 수 있다. 상기 CRC는 16비트 혹은 24비트 혹은 미리 고정된 비트수를 가지거나 채널 상황 등에 따라 가변적인 비트수를 가질 수 있으며, 채널코딩의 성공 여부를 판단할 수 있는데 사용될 수 있다. TB와 CRC가 추가된 블록(501, 503)은 여러 개의 코드블록(codeblock; CB)들(507, 509, 511, 513)로 나뉠 수 있다(505). 상기 코드블록은 최대 크기가 미리 정해져서 나뉠 수 있으며, 이 경우 마지막 코드블록(513)은 다른 코드블록보다 크기가 작을 수 있거나, 혹은 0, 랜덤 값 혹은 1을 넣어 다른 코드블록들과 길이를 같도록 맞추어줄 수 있다. 상기 나뉜 코드블록들에 각각 CRC들(517, 519, 521, 523)이 추가될 수 있다(515). 상기 CRC는 16비트 혹은 24비트 혹은 미리 고정된 비트수를 가질 수 있으며, 채널코딩의 성공 여부를 판단할 수 있는데 사용될 수 있다. 하지만 상기 TB에 추가된 CRC(503)과 코드블록에 추가된 CRC들(517, 519, 521, 523)은 코드블록에 적용될 채널코드의 종류에 따라 생략될 수도 있다. 예를 들어, 터보코드가 아니라 LDPC 코드가 코드블록에 적용될 경우, 코드블록마다 삽입될 CRC들(517, 519, 521, 523)은 생략될 수도 있을 것이다. 하지만, LDPC가 적용되는 경우에도 CRC들(517, 519, 521, 523)은 그대로 코드블록에 추가될 수 있다. 또한 폴라 코드가 사용되는 경우에도 CRC가 추가되거나 생략 될 수 있다.
이하에서 기술되는 eMBB 서비스를 제1타입 서비스라하며, eMBB용 데이터를 제1타입 데이터라 한다. 상기 제1타입 서비스 혹은 제1타입 데이터는 eMBB에 국한되는 것은 아니고 고속데이터전송이 요구되거나 광대역 전송을 하는 경우에도 해당될 수 있다. 또한 URLLC 서비스를 제2타입 서비스, URLLC용 데이터를 제2타입 데이터라 한다. 상기 제2타입 서비스 혹은 제2타입 데이터는 URLLC에 국한되는 것은 아니고 저지연시간이 요구되거나 고신뢰도 전송이 필요한 경우 혹은 저지연시간 및 고신뢰도가 동시에 요구되는 다른 시스템에도 해당될 수 있다. 또한 mMTC 서비스를 제3타입 서비스, mMTC용 데이터를 제3타입 데이터라 한다. 상기 제3타입 서비스 혹은 제3타입 데이터는 mMTC에 국한되는 것은 아니고 저속도 혹은 넓은 커버리지, 혹은 저전력 등이 요구되는 경우에 해당될 수 있다. 또한 실시 예를 설명할 때 제1타입 서비스는 제3타입 서비스를 포함하거나 포함하지 않는 것으로 이해될 수 있다.
상기 3가지의 서비스 혹은 데이터를 전송하기 위해 각 타입별로 사용하는 물리계층 채널의 구조는 다를 수 있다. 예를 들어, 전송시간구간(TTI)의 길이, 주파수 자원의 할당 단위, 제어채널의 구조 및 데이터의 매핑 방법 중 적어도 하나가 다를 수 있을 것이다.
상기에서는 3가지의 서비스와 3가지의 데이터로 설명을 하였지만 더 많은 종류의 서비스와 그에 해당하는 데이터가 존재할 수 있으며, 이 경우에도 본 발명의 내용이 적용될 수 있을 것이다.
실시 예에서 제안하는 방법 및 장치를 설명하기 위해 종래의 LTE 혹은 LTE-A 시스템에서의 물리채널 (physical channel)와 신호(signal)라는 용어가 사용될 수 있다. 하지만 본 발명의 내용은 LTE 및 LTE-A 시스템이 아닌 무선 통신 시스템에서 적용될 수 있는 것이다.
실시 예는 상술한 바와 같이, 제1타입, 제2타입, 제3타입 서비스 혹은 데이터 전송을 위한 단말과 기지국의 송수신 동작을 정의하고, 서로 다른 타입의 서비스 혹은 데이터 스케줄링을 받는 단말들을 동일 시스템 내에서 함께 운영하기 위한 구체적인 방법을 제안한다. 본 발명에서 제1타입, 제2타입, 제3타입 단말은 각각 1타입, 제2타입, 제3타입 서비스 혹은 데이터 스케줄링을 받은 단말을 가리킨다. 실시 예에서 제1타입 단말, 제2타입 단말 및 제3타입 단말은 동일한 단말일 수도 있고, 각기 상이한 단말일 수도 있다.
이하 실시 예에서는 PHICH와 상향링크 스케줄링 승인(uplink scheduling grant) 신호와 하향링크 데이터 신호 중 적어도 하나를 제1신호라 칭한다. 또한 본 발명에서는 상향링크 스케줄링 승인에 대한 상향링크 데이터 신호와, 하향링크 데이터 신호에 대한 HARQ ACK/NACK 중 적어도 하나를 제2신호라 칭한다. 실시 예에서는 기지국이 단말에게 전송하는 신호 중에서, 단말로부터의 응답을 기대하는 신호이면 제1신호가 될 수 있으며, 제1신호에 해당하는 단말의 응답신호가 제2신호일 수 있다. 또한 실시 예에서 제1신호의 서비스 종류는 eMBB, URLLC 및 mMTC 중 적어도 하나일 수 있으며, 제2 신호 역시 상기 서비스 중 적어도 하나에 대응할 수 있다. 예를 들어, LTE 및 LTE-A 시스템에서 PUCCH format 0 혹은 4 및 PHICH가 제1신호가 될 수 있으며, 이에 해당하는 제2신호는 PUSCH가 될 수 있다. 또한 예를 들어, LTE 및 LTE-A 시스템에서 PDSCH가 제1신호가 될 수 있으며, 상기 PDSCH의 HARQ ACK/NACK 정보가 포함된 PUCCH 혹은 PUSCH가 제2신호가 될 수 있을 것이다. 또한, 비주기 채널측정 요구 (aperiodic CSI trigger)를 포함하는 PDCCH/EPDCCH가 제1신호가 될 수 있으며, 이에 해당하는 제2신호는 채널측정 정보가 포함된 PUSCH가 될 수 있다.
또한 이하 실시 예에서 기지국이 제1신호를 n번째 TTI에서 전송하였을 때 단말이 제2신호를 n+k번째 TTI에서 전송한다고 가정하면, 상기에서 기지국이 단말에게 제2신호를 전송할 타이밍을 알려준다는 것은 k값을 알려주는 것과 같다. 혹은 기지국이 제1신호를 n번째 TTI에서 전송하였을 때 단말이 제2신호를 n+4+a번째 TTI에서 전송한다고 가정하면, 상기에서 기지국이 단말에게 제2신호를 전송할 타이밍을 알려준다는 것은 오프셋 값 a를 알려주는 것과 같다. 상기 n+4+a 대신 n+3+a, n+5+a 등 다양한 방법으로 오프셋이 정의될 수 있으며, 이하 본 발명에서 언급되는 n+4+a 값도 마찬가지로 다양한 방법으로 오프셋 a 값이 정의될 수 있을 것이다.
본 발명에서의 내용은 FDD LTE 시스템을 기준으로 설명하지만, TDD 시스템 및 NR 시스템 등에서도 적용이 가능한 것이다.
이하 본 발명에서 상위시그널링은 기지국에서 물리계층의 하향링크 데이터 채널을 이용하여 단말로, 혹은 단말에서 물리계층의 상향링크 데이터 채널을 이용하여 기지국으로 전달되는 신호 전달 방법이며, RRC 시그널링, 혹은 PDCP 시그널링, 혹은 MAC 제어요소(MAC control element; MAC CE)라고 언급될 수도 있다.
본 발명에서는 단말 혹은 기지국이 제1신호를 수신한 후, 제2신호를 송신하는 타이밍을 결정하는 방법을 설명하고 있지만, 제2신호를 보내는 방법은 다양한 방법으로 가능할 수 있다. 일례로 단말이 하향링크 데이터인 PDSCH를 수신한 후, 상기 PDSCH에 해당하는 HARQ ACK/NACK 정보를 기지국으로 보내는 타이밍은 본 발명에서 설명한 방법을 따르지만, 사용하는 PUCCH 포맷의 선택, PUCCH 자원의 선택 혹은 PUSCH에 HARQ ACK/NACK 정보를 매핑하는 방법 등은 종래 LTE의 방법을 따를 수 있다.
본 발명에서 노말모드(normal mode)라 함은 종래 LTE 및 LTE-A 시스템에서 사용하는 제1신호 및 제2신호 전송 타이밍 등을 이용하는 모드이며, 상기 노말모드에서는 TA를 포함하여 약 3 ms 정도의 신호처리시간을 확보해주는 것이 가능하다. 예를 들어 노말모드로 동작하는 FDD LTE 시스템에서 서브프레임 n에 단말이 수신한 제1신호에 대한 제2신호의 전송은 서브프레임 n+4에서 단말이 송신한다. 본 발명에서 상기 전송을 n+4 타이밍 전송이라 할 수 있다. 서브프레임 n+k에서 전송된 제1신호에 대한 제2신호가 n+4 타이밍에 전송되도록 스케줄링 되었다면, 상기 제2신호는 서브프레임 n+k+4에서 전송되는 것을 의미한다. 한편 TDD에서의 n+4 타이밍이라함은, 서브프레임 n에서 전송된 제1신호에 대한 제2신호가 가장 빨리 전송될 수 있는 서브프레임이 n+4로 가정하여 미리 약속된 타이밍 관계를 따르는 것을 의미할 수 있다. TDD 시스템에서는 서브프레임 n+4가 상향링크 전송용이 아닐 수 있으므로, 단말이 제2신호를 서브프레임 n+4에 전송하는 것이 불가능할 수 있다. 따라서 제2신호 전송을 위한 타이밍 관계를 정의하는 것이 필요하며, 상기 관계를 정의할 때 최소 타이밍을 서브프레임 n+4를 가정하고 정한 것을 따르는 것을 n+4 타이밍이라 할 수 있을 것이다. 반대로 TDD에서의 n+3 타이밍이라함은, 서브프레임 n에서 전송된 제1신호에 대한 제2신호가 가장 빨리 전송될 수 있는 서브프레임이 n+3로 가정하여 미리 약속된 타이밍 관계를 따르는 것을 의미할 수 있다. 마찬가지로 제2신호 전송을 위한 타이밍 관계를 정의하는 것이 필요하며, 상기 관계를 정의할 때 최소 타이밍을 서브프레임 n+3를 가정하고 정한 것을 따르는 것을 n+3 타이밍이라 할 수 있을 것이다.
한편 본 발명에서 지연감소모드(latency reduction mode)라 함은 제1신호에 대한 제2신호의 전송 타이밍을 노말모드보다 빠르거나 같게 하는 것이 가능하도록 하는 모드로서, 지연시간을 감소시킬 수 있다. 지연감소모드에서는 다양한 방법으로 타이밍을 제어하도록 할 수 있을 것이다. 본 발명에서 지연감소모드는 감소된 프로세싱타임모드(reduced processing time mode) 등과 혼용되어 사용될 수 있다. 상기 지연감소모드의 설정은 상위시그널링으로 지연감소모드를 지원하는 단말에게 설정될 수 있다. 상기 지연감소모드가 설정된 단말은 서브프레임 n에 전송된 제1신호에 대한 제2신호가 서브프레임 n+4 이전에 전송될 수 있다. 예를 들어 상기 지연감소모드가 설정된 단말은 서브프레임 n에 전송된 제1신호에 대한 제2신호가 서브프레임 n+3에서 전송될 수 있다. 본 발명에서 상기 전송을 n+3 타이밍 전송이라 할 수 있다. 서브프레임 n+1에서 전송된 제1신호에 대한 제2신호가 n+3 타이밍에 전송되도록 스케줄링 되었다면, 상기 제2신호는 서브프레임 n+4에서 전송되는 것을 의미한다. 또한 예를 들어, 서브프레임 n+2에서 전송된 제1신호에 대한 제2신호가 n+3 타이밍에 전송되도록 스케줄링 되었다면, 상기 제2신호는 서브프레임 n+5에서 전송되는 것을 의미한다. 즉, 서브프레임 n+k에서 전송된 제1신호에 대한 제2신호가 n+3 타이밍에 전송되도록 스케줄링 되었다면, 상기 제2신호는 서브프레임 n+k+3에서 전송되는 것을 의미한다.
본 발명에서는 노말모드와 지연감소모드에서 사용하는 전송시간구간(TTI)의 길이가 같은 경우를 기반으로 설명을 하기로 한다. 하지만 본 발명의 내용이 노말모드에서의 TTI와 지연감소모드에서의 TTI의 길이가 다른 경우에도 적용이 가능할 것이다.
본 발명에서 제공하는 실시예들에서, 제1신호가 PDSCH 일 경우, 제2신호는 상기 PDSCH의 HARQ-ACK 정보를 포함한 PUCCH 혹은 PUSCH가 될 수 있다. 제1신호가 PHICH 혹은 상향링크 스케줄링 정보를 포함하는 PDCCH 혹은 EPDCCH일 경우, 제2신호는 상기 상향링크 스케줄링에 대한 PUSCH가 될 수 있다. 또한, 제1신호가 비주기 채널측정 요구 (aperiodic CSI trigger)를 포함하는 PDCCH/EPDCCH 일 경우, 제2신호는 채널측정 정보가 포함된 PUSCH가 될 수 있다.
지연감소모드가 단말에게 상위시그널링으로 설정될 때, 기지국은 단말에 상위시그널링이 언제 전달되는지 불확실성이 존재하므로, 기지국의 설정과는 관계 없이 항상 정해진 타이밍에 제2신호가 전달되도록 하는 방법이 필요할 수 있다. 예를 들어, 기지국은 단말에게 n+3 타이밍 전송을 하도록 지연감소모드 설정하여도, 상기 단말이 상기 지연감소모드 설정이 언제부터 유효한지 정확히 아는 것을 보장할 수 없다. 따라서 상기 설정이 이루어지는 동안 기지국이 단말에게 n+4 타이밍 전송이 이루어 질 수 있는 방법이 필요할 수 있다. 즉, 상기 지연감소모드 설정과는 관계 없이 n+4 타이밍 전송이 이루어지는 방법이 필요할 수 있다. 본 발명에서는 상기 지연감소모드 설정과는 관계 없이 n+4 타이밍 전송이 이루어지는 방법을 폴백(fall-back)모드 전송과 혼용되어 사용될 수 있다. 따라서 기지국은 상기 폴백모드 전송이 되면, n+3 혹은 n+2 타이밍이 아니라 n+4 타이밍에 제2신호가 전송된다고 생각하여 상향링크 수신 동작을 수행한다.
상기 폴백모드 전송은 1) 제1신호 전송이 특정 하향링크 제어정보 (DCI) 포맷으로 전달될 경우, 2) 제1신호 전송을 위한 DCI가 특정 탐색영역(search space)에서 전달될 경우,
3) 미리 설정된 특정 RNTI 값을 이용하여 DCI가 전달될 경우 중 최소한 한가지 방법으로 이루어질 수 있다.
상기에서 탐색영역일 수 있는 셀특정 탐색영역(cell-specific search space; CSS)과 단말특정 탐색영역(UE-specific search space; USS)은 하기와 같이 정의될 수 있다. 서브프레임 k에서 aggregation level L의 하향링크 제어신호 및 제어채널이 매핑될 수 있는 제어채널요소(control channel element; CCE) 번호는 아래와 같이 계산될 수 있다.
Figure PCTKR2017011844-appb-I000005
CSS에서 aggregation level 4와 8에서는 Yk가 0으로 정의된다. USS에서는 Yk=(AYk-1) mod D로 정의되며, Y-1=nRNTI는 0이 아니고, A=39827, D=65537,
Figure PCTKR2017011844-appb-I000006
로 정의될 수 있으며, ns는 라디오프레임 안에서의 슬롯 번호이다. 상기에서 x mod y라함은 x를 y로 나눈 나머지를 가리킬 수 있다. M(L)은 aggregation level L의 하향링크 제어채널의 수를 의미한다. m은 0부터 M(L)까지의 자연수 일 수 있고, CSS에서는 m'=m이며, USS에서는 m' =m+ M(L)nCI이고, nCI는 carrier indicator field 값일 수 있다. M(L) 값은 하기 표 5와 같이 정의될 수 있다.
[표 5]
Figure PCTKR2017011844-appb-I000007
예를 들어, CSS는 제어신호가 매핑되기 시작하는 CCE 번호가, aggregation level 4에서는 0, 4, 8, 12로 결정되고, aggregation level 8에서는 0, 8로 결정된다. USS는 단말의 고유번호 역할을 하는 RNTI 값에 따라서 바뀔 수 있다.
상기 1)번 방법에서, 제1신호 전송이 특정 DCI 포맷으로 전달될 경우를 폴백모드 전송으로 사용하는 것은, 예를 들어, 종래 LTE 시스템에서 DCI 포맷 1A로 하향링크 스케줄링이 이루어질 때, 기지국의 지연모드감소 설정과는 관계 없이 항상 n+4 타이밍에 제2신호가 전송 될 수 있다. 즉, 상기 방법에서 단말은 n+3 타이밍에 제2신호를 전송하도록 설정이 되어 있다고 하더라도, DCI 포맷 1A로 하향링크 스케줄링이 되면, n+4 타이밍에 제2신호를 전송하도록 한다.
상기 2)번 방법에서, 제1신호 전송을 위한 DCI가 특정 탐색영역(search space)에서 전달될 경우를 폴백모드 전송으로 사용하는 것은, 예를 들어, DCI가 셀공통 탐색영역(common search space)으로 설정된 영역에서 DCI가 전달될 경우, 상기 DCI와 관련된 제1신호에 대해 기지국의 지연모드감소 설정과는 관계 없이 항상 n+4 타이밍에 제2신호가 전송 될 수 있다. 즉, 상기 방법에서 단말은 n+3 타이밍에 제2신호를 전송하도록 설정이 되어 있다고 하더라도, DCI가 셀공통 탐색영역에서 전달되면, n+4 타이밍에 제2신호를 전송하도록 한다.
상기 3)번 방법에서, 미리 설정된 특정 RNTI 값을 이용하여 DCI가 전달될 경우를 폴백모드 전송으로 사용하는 것은, 예를 들어, 단말에게 미리 폴백모드 전송을 위한 RNTI를 설정하고, 상기 RNTI를 이용하여 PDCCH 혹은 EPDCCH를 기지국이 생성하여 DCI를 전달할 경우, 상기 DCI와 관련된 제1신호에 대해 기지국의 지연모드감소 설정과는 관계 없이 항상 n+4 타이밍에 제2신호가 전송 될 수 있다. 즉, 상기 방법에서 단말은 n+3 타이밍에 제2신호를 전송하도록 설정이 되어 있다고 하더라도, PDCCH 혹은 EPDCCH 디코딩이 상기 RNTI 값을 이용하여 성공하면, n+4 타이밍에 제2신호를 전송하도록 한다.
도 6은 기지국이 단말에게 지연감소모드 설정을 하고, 제1신호 전송을 하였을 때(601), 단말이 상향링크 전송하는 방법을 도시한 도면이다. 상기 기지국으로부터의 제1신호가 전송되었을 때(601), 단말은 상기 제1신호 전송이 폴백모드 스케줄링인지를 확인하고(603), 상기 확인(603)에서 폴백모드 전송이 맞다면, 지연감소모드 설정과 관계 없이 n+4 타이밍에 제2신호를 전송한다(605). 상기 확인(603)에서 폴백모드 전송이 아니라면, 지연감소모드 설정에 따라 정해진 타이밍, 예를 들어 n+3 타이밍 혹은 n+2 타이밍에 제2신호를 전송한다(607).
본 발명의 실시예에서는 1), 2), 3)과 같은 표식으로 발명을 구분하여 설명할 수 있다.
본 발명에서는 서브프레임 n에서 전송된 제1신호에 대한 제2신호의 제일 빠른 전송 타이밍이 서브프레임 n+4인 전송모드를 노멀모드라고 할 수 있으며, 서브프레임 n에서 전송된 제1신호에 대한 제2신호의 제일 빠른 전송 타이밍이 서브프레임 n+2 또는 n+3인 전송모드를 지연감소모드 혹은 신호처리시간감소모드라고 할 수 있다. 상기에서 노멀모드와 지연감소모드를 구분하는 기준 전송 타이밍인 서브프레임 n+4는 다른 타이밍을 기준으로 구분하는 것으로 변경되어 본 발명이 적용될 수 있을 것이다.
본 발명에서는, DCI가 특정 탐색영역에서 검출될 경우에 n+4타이밍으로의 폴백모드로 동작하는 방법을 기준으로 설명한다. 즉, 제1신호 전송을 위한 DCI가 특정 탐색영역(search space)에서 전달될 경우를 폴백모드 전송으로 사용하는 것은, 예를 들어, DCI가 셀공통 탐색영역(common search space; CSS)으로 설정된 영역에서 DCI가 전달될 경우, 상기 DCI와 관련된 제1신호에 대해 기지국의 지연모드감소 설정과는 관계 없이 항상 n+4 타이밍에 제2신호가 전송 될 수 있다. 상기 방법에서 단말은 n+3 타이밍에 제2신호를 전송하도록 설정이 되어 있다고 하더라도, DCI가 셀공통탐색영역에서 전달되면, n+4 타이밍에 제2신호를 전송하도록 한다. 반대로 DCI가 단말특정탐색영역(UE-specific search space; USS)에서 전달되면, 설정된 것과 같이 n+3 타이밍에 제2신호를 전송하도록 한다.
종래 LTE단말은 전송모드(transmission mode)에 따라 검출을 시도하는 DCI 포맷이 달라진다. 예를 들어, 전송모드4로 설정된 경우에는, C-RNTI을 이용하여 전달되는 PDSCH 수신을 위해, 단말은 CSS와 USS에서는 DCI 포맷1A의 검출을 시도하고, USS에서는 DCI 포맷2의 검출을 시도할 수 있다. 따라서 상기 예에서는, n+3 타이밍으로의 지연감소모드 설정이 된 경우, n+4 타이밍으로의 폴백모드는 단말이 DCI 포맷1A를 CSS에서 검출하였을 때 발생한다. 본 발명에서 해결하고자 하는 문제는, 상기 예에서 단말이 DCI 포맷1A를 검출하고자 하는 탐색영역이 CSS이면서 USS일 때 단말과 기지국의 동작 방법이다. 즉, CSS와 USS가 중복되는 경우에 발생할 수 있는 문제일 수 있다. 예를 들어, aggregation level이 4와 8의 경우, 각각 4개와 8개의 CCE들로 이루어지는 탐색영역이 CSS와 USS 모두에 포함될 수 있다. 상기와 같이, n+3타이밍의 지연감소모드로 설정된 단말에게, 특정 탐색영역이 CSS이면서 USS이고, 상기 탐색영역에서 단말이 DCI 포맷1A를 검출하였을 경우, 단말은 검출된 DCI 포맷1A에 대한 하향링크 데이터 전송의 HARQ-ACK 피드백을 전송할 타이밍이 n+3 타이밍인지 n+4 타이밍인지 알 수 없다. 따라서 본 발명에서는 상기와 같은 문제를 해결하기 위한 단말과 기지국의 동작 방법을 제시한다. 본 발명에서는 제1탐색영역은 셀특정 탐색영역(cell-specific search space; CSS)과 혼용될 수 있고, 제2탐색영역은 단말특정 탐색영역(UE-specific search space; USS)과 혼용될 수 있다. 또한 본 발명에서는 검출(detection)과 복호(decoding)이 혼용되어 사용될 수 있다.
본 발명에서의 폴백모드는 기지국이 단말에게 지연감소모드를 설정한 경우에 사용되며, 노멀모드에서는 폴백모드가 사용되지 않는다. 또한 본 발명에서 하향링크 제어신호에 해당하는 제2신호라 함은, 상기 제어신호가 스케줄링 하는 하향링크 데이터 전송에 대한 HARQ-ACK 또는 상기 제어신호의 상향링크 데이터 전송 스케줄링에 대한 상향링크 데이터가 될 수 있다.
[제1실시예]
제1실시예는 단말이 제1탐색영역이자 제2탐색영역에서 하향링크 제어신호의 복호가 성공하였을 경우, 탐색영역에 있어 제1탐색영역에 우선순위를 두는 방법에 대하여 도 7 및 도 8을 참고하여 설명한다.
기지국이 단말에게 n+3 타이밍으로 제2신호를 전송하도록 지연감소모드를 설정하였을 때, 하향링크 제어신호가 제1탐색영역에서 복호되면 n+4 타이밍에 제2신호를 전송하고, 제2탐색영역에서 복호되면 n+3 타이밍에 제2신호를 전송하도록 폴백모드를 동작할 수 있다. 단, 하향링크 제어신호가 복호된 탐색영역이 제1탐색영역이자 제2탐색영역에 해당될 경우, 단말은 상기 탐색영역을 제1탐색영역으로 판단할 수 있다. 즉, 어떠한 탐색영역이 제1탐색영역이면서 제2탐색영역일 때, 단말은 해당 탐색영역을 제1탐색영역으로 간주할 수 있다. 따라서, 하향링크 제어신호가 복호된 탐색영역이 제1탐색영역이자 제2탐색영역에 해당될 경우, 단말은 해당되는 제2신호를 n+4 타이밍에 기지국으로 전송한다. 다시 설명하면, 단말은 하향링크 제어신호가 제1탐색영역에서 복호되면 해당되는 제2신호를 n+4 타이밍에서 기지국으로 전송하고, 하향링크 제어신호가 제1탐색영역이 아닌 곳에서 복호되면 해당되는 제2신호를 n+3 타이밍에서 기지국으로 전송한다. 또는, 단말은 하향링크 제어신호가 제1탐색영역에서 복호되면, 해당되는 제2신호의 전송을 n+4 타이밍으로의 폴백모드로 수행한다. 상기 방법은, 제1탐색영역과 제2탐색영역에서 모두 전송될 수 있는 제어신호 포맷에 대한 방법이며, 만약 특정 제어신호가 제2탐색영역에서만 전달될 수 있는 경우는 다른 방법을 사용할 수 있다. 단말이 제1탐색영역이자 제2탐색영역인 탐색영역에서 제2탐색영역에서만 전달될 수 있는 제어신호를 검출하였다면, 해당 탐색영역을 제2탐색영역으로 판단할 수 있다. 예를 들어, 제1실시예에서 설명하는 방법은, DCI 포맷 1A의 검출에 사용될 수 있으며, DCI 포맷2 등 USS에서만 전달되는 DCI의 검출은 항상 해당 탐색영역이 제2탐색영역이 될 수 있을 것이다. 즉, FDD 시스템에서, 단말이 CSS에서 DCI 포맷1A 검출되면, 제2신호의 전송은 n+4 타이밍을 이용한다. TDD 시스템에서, 단말이 CSS에서 DCI 포맷1A 검출되면, 제2신호의 전송은 최소 타이밍을 n+4로 가정하여 정의된 타이밍을 이용한다.
도 7은 제1실시예에 따른 기지국의 동작 방법을 도시한 순서도이다. 도 7-(a)는 기지국이 제어신호를 어떠한 탐색영역에 매핑하여 전송할지를 나타낸 순서도이다. 기지국은 단말에게 지연감소모드 설정을 하고, 전송할 하향링크 제어신호를 인코딩한다(701). 전송하고자 하는 제어신호 및 제1신호에 해당하는 제2신호가 단말로부터 전달될 타이밍이 n+4 타이밍이어야하는지 n+3 타이밍이어야하는지 확인한다(703). 만약 상기 제2신호가 n+4 타이밍에 전송되어야 한다면, 제1탐색영역에 상기 하향링크 제어신호를 매핑한다(705). 만약 상기 제2신호가 n+3 타이밍에 전송되어야 한다면, 제1탐색영역이 아닌 제2탐색영역에 상기 하향링크 제어신호를 매핑한다(707). 이후 매핑된 제어신호를 제어채널을 통해 송신한다(709).
도 7-(b)는 기지국이 제어신호의 탐색영역 매핑에 따라 해당되는 제2신호의 수신 타이밍을 결정하는 방법을 도시한 순서도이다. 기지국은 단말에게 지연감소모드를 설정하고 하향링크 제어신호를 인코딩 후 탐색영역에 매핑한다(711). 기지국은 제어신호가 제1탐색영역에 매핑되었는지 확인한다(713). 상기 제어신호가 매핑된 영역이 제1탐색영역이면 해당되는 제2신호를 n+4 타이밍에서 수신한다(715). 상기 제어신호가 매핑된 영역이 제1탐색영역이 아니면 해당되는 제2신호를 n+3 타이밍에서 수신한다(717).
도 8은 제1실시예에 따른 단말의 동작 방법을 도시한 순서도이다. 도 8-(a)는 단말이 제어신호를 검출한 탐색영역에 따라 제2신호를 전송하는 타이밍을 결정하는 방법의 일례를 설명한 순서도이다. 지연감소모드로 설정된 단말은 신호 수신 및 제어신호 디코딩을 수행한다(801). 단말은 제어신호가 검출된 탐색영역이 제1탐색영역이자 제2탐색영역인지 확인한다(803). 만약 제어신호가 검출된 탐색영역이 제1탐색영역이자 제2탐색영역이라면 해당되는 제2신호를 n+4 타이밍에 기지국으로 송신한다(805). 만약 제어신호가 검출된 탐색영역이 제1탐색영역이자 제2탐색영역이 아니라면, 단말은 상기 탐색영역이 제1탐색영역인지 확인하고(807), 제1탐색영역이라면 해당되는 제2신호를 n+4 타이밍에 기지국으로 송신한다(805). 만약 제어신호가 검출된 탐색영역이 제1탐색영역이 아니라면 해당되는 제2신호를 n+3 타이밍에 기지국으로 송신한다(809).
도 8-(b)는 단말이 제어신호를 검출한 탐색영역에 따라 제2신호를 전송하는 타이밍을 결정하는 방법의 다른 일례를 설명한 순서도이다. 지연감소모드로 설정된 단말은 신호 수신 및 제어신호 디코딩을 수행한다(811). 단말은 제어신호가 검출된 탐색영역을 확인하고(813), 상기 탐색영역이 제1탐색영역이라면 해당되는 제2신호를 n+4 타이밍에 기지국으로 송신한다(815). 만약 제어신호가 검출된 탐색영역이 제1탐색영역이 아니라면 해당되는 제2신호를 n+3 타이밍에 기지국으로 송신한다(817).
제1탐색영역과 제2탐색영역 모두에서 전송될 수 있는 DCI 포맷1A와 같은 DCI 포맷은, 기지국이 보통 단말의 채널 상태가 나빠졌거나, 상위 시그널링이 이루어지는 동안에 사용하는 것이므로, 상기 DCI 포맷1A와 같은 것들은 특수한 경우에만 쓴다고 판단하여, 기지국과 단말은 본 실시예와 같은 방식을 사용하는 것일 수 있다.
[제2실시예]
제2실시예는 단말이 제1탐색영역이자 제2탐색영역에서 하향링크 제어신호의 복호가 성공하였을 경우, 탐색영역에 있어 제2탐색영역에 우선순위를 두는 방법에 대하여 도 9 및 도 10을 참고하여 설명한다.
기지국이 단말에게 n+3 타이밍으로 제2신호를 전송하도록 지연감소모드를 설정하였을 때, 하향링크 제어신호가 제1탐색영역에서 복호되면 n+4 타이밍에 제2신호를 전송하고, 제2탐색영역에서 복호되면 n+3 타이밍에 제2신호를 전송하도록 폴백모드를 동작할 수 있다. 단, 하향링크 제어신호가 복호된 탐색영역이 제1탐색영역이자 제2탐색영역에 해당될 경우, 단말은 상기 탐색영역을 제2탐색영역으로 판단할 수 있다. 즉, 어떠한 탐색영역이 제1탐색영역이면서 제2탐색영역일 때, 단말은 해당 탐색영역을 제2탐색영역으로 간주할 수 있다. 따라서, 하향링크 제어신호가 복호된 탐색영역이 제1탐색영역이자 제2탐색영역에 해당될 경우, 단말은 해당되는 제2신호를 n+3 타이밍에 기지국으로 전송한다. 다시 설명하면, 단말은 하향링크 제어신호가 제2탐색영역에서 복호되면 해당되는 제2신호를 n+3 타이밍에서 기지국으로 전송하고, 하향링크 제어신호가 제2탐색영역이 아닌 곳에서 복호되면 해당되는 제2신호를 n+4 타이밍에서 기지국으로 전송한다. 또는, 단말은 하향링크 제어신호가 제2탐색영역이 아닌 곳에서 복호되면, 해당되는 제2신호의 전송을 n+4 타이밍으로의 폴백모드로 수행한다. 상기 방법은, 제1탐색영역과 제2탐색영역에서 모두 전송될 수 있는 제어신호 포맷에 대한 방법이며, 만약 특정 제어신호가 제2탐색영역에서만 전달될 수 있는 경우는 다른 방법을 사용할 수 있다. 단말이 제1탐색영역이자 제2탐색영역인 탐색영역에서 제2탐색영역에서만 전달될 수 있는 제어신호를 검출하였다면, 해당 탐색영역을 제2탐색영역으로 판단할 수 있다. 예를 들어, 제2실시예에서 설명하는 방법은, DCI 포맷 1A의 검출에 사용될 수 있으며, DCI 포맷2 등 USS에서만 전달되는 DCI의 검출은 항상 해당 탐색영역이 제2탐색영역이 될 수 있을 것이다. 즉, FDD 시스템에서, 단말이 USS가 아닌 탐색영역에서 DCI 포맷1A 검출되면, 제2신호의 전송은 n+4 타이밍을 이용한다. TDD 시스템에서, 단말이 USS가 아닌 탐색영역에서 DCI 포맷1A 검출되면, 제2신호의 전송은 최소 타이밍을 n+4로 가정하여 정의된 타이밍을 이용한다.
도 9는 제2실시예에 따른 기지국의 동작 방법을 도시한 순서도이다. 도 9-(a)는 기지국이 제어신호를 어떠한 탐색영역에 매핑하여 전송할지를 나타낸 순서도이다. 기지국은 단말에게 지연감소모드 설정을 하고, 전송할 하향링크 제어신호를 인코딩한다(901). 전송하고자 하는 제어신호 및 제1신호에 해당하는 제2신호가 단말로부터 전달될 타이밍이 n+4 타이밍이어야하는지 n+3 타이밍이어야하는지 확인한다(903). 만약 상기 제2신호가 n+4 타이밍에 전송되어야 한다면, 제2탐색영역이 아닌 제1탐색영역에 상기 하향링크 제어신호를 매핑한다(905). 만약 상기 제2신호가 n+3 타이밍에 전송되어야 한다면, 제2탐색영역에 상기 하향링크 제어신호를 매핑한다(907). 이후 매핑된 제어신호를 제어채널을 통해 송신한다(909).
도 9-(b)는 기지국이 제어신호의 탐색영역 매핑에 따라 해당되는 제2신호의 수신 타이밍을 결정하는 방법을 도시한 순서도이다. 기지국은 단말에게 지연감소모드를 설정하고 하향링크 제어신호를 인코딩 후 탐색영역에 매핑한다(911). 기지국은 제어신호가 제2탐색영역에 매핑되었는지 확인한다(913). 상기 제어신호가 매핑된 영역이 제2탐색영역이면 해당되는 제2신호를 n+3 타이밍에서 수신한다(915). 상기 제어신호가 매핑된 영역이 제2탐색영역이 아니면 해당되는 제2신호를 n+4 타이밍에서 수신한다(917).
도 10은 제2실시예에 따른 단말의 동작 방법을 도시한 순서도이다. 도 10-(a)는 단말이 제어신호를 검출한 탐색영역에 따라 제2신호를 전송하는 타이밍을 결정하는 방법의 일례를 설명한 순서도이다. 지연감소모드로 설정된 단말은 신호 수신 및 제어신호 디코딩을 수행한다(1001). 단말은 제어신호가 검출된 탐색영역이 제1탐색영역이자 제2탐색영역인지 확인한다(1003). 만약 제어신호가 검출된 탐색영역이 제1탐색영역이자 제2탐색영역이라면 해당되는 제2신호를 n+3 타이밍에 기지국으로 송신한다(1005). 만약 제어신호가 검출된 탐색영역이 제1탐색영역이자 제2탐색영역이 아니라면, 단말은 상기 탐색영역이 제2탐색영역인지 확인하고(1007), 제2탐색영역이라면 해당되는 제2신호를 n+3 타이밍에 기지국으로 송신한다(1005). 만약 제어신호가 검출된 탐색영역이 제2탐색영역이 아니라면 해당되는 제2신호를 n+4 타이밍에 기지국으로 송신한다(1009).
도 10-(b)는 단말이 제어신호를 검출한 탐색영역에 따라 제2신호를 전송하는 타이밍을 결정하는 방법의 다른 일례를 설명한 순서도이다. 지연감소모드로 설정된 단말은 신호 수신 및 제어신호 디코딩을 수행한다(1011). 단말은 제어신호가 검출된 탐색영역을 확인하고(1013), 상기 탐색영역이 제2탐색영역이라면 해당되는 제2신호를 n+3 타이밍에 기지국으로 송신한다(1015). 만약 제어신호가 검출된 탐색영역이 제2탐색영역이 아니라면 해당되는 제2신호를 n+4 타이밍에 기지국으로 송신한다(1017).
기지국과 단말은 본 실시예를 적용할 때는 이미 n+3 타이밍을 이용하도록 상위 시그널링으로 설정이 되어 있는 경우이기 때문에, n+3 타이밍 전송을 우선시하기 위해, 기지국과 단말이 본 실시예를 사용하는 것일 수 있다.
[제3실시예]
제3실시예는 단말이 제1탐색영역이자 제2탐색영역에서 하향링크 제어신호의 복호가 성공하였을 경우, 탐색영역에 있어 우선순위를 둘 탐색영역을 상위시그널링으로 설정하는 방법에 대하여 도 11을 참고하여 설명한다.
기지국은 단말에게 상위시그널링으로 지연감소모드 설정과 함께, 우선할 탐색영역을 설정한다(1101). 예를 들어, 하나의 탐색영역이 제1탐색영역이자 제2탐색영역에 해당될 경우, 단말은 상기 탐색영역을 제1탐색영역으로 판단할지, 아니면 제2탐색영역으로 판단할지를 상위시그널링 priotized_common_search_space와 같은 변수를 통해 단말에게 설정정보를 전달할수 있다. 상기 예에서 priotized_common_search_space 변수 값이 TRUE이면 단말은 1탐색영역이자 제2탐색영역에 해당되는 탐색영역을 제1탐색영역으로 판단하고(1105), 상기 변수 값이 FALSE이면 제2탐색영역으로 판단한다(1107).
하나의 탐색영역이 제1탐색영역이자 제2탐색영역에 해당될 경우, 단말은 상기 탐색영역을 제1탐색영역으로 판단하면(1105), 기지국과 단말은 제1실시예와 같은 송수신 동작을 수행한다.
한편 하나의 탐색영역이 제1탐색영역이자 제2탐색영역에 해당될 경우, 단말은 상기 탐색영역을 제2탐색영역으로 판단하면(1107), 기지국과 단말은 제2실시예와 같은 송수신 동작을 수행한다.
상기 방법은, 제1탐색영역과 제2탐색영역에서 모두 전송될 수 있는 제어신호 포맷에 대한 방법이며, 만약 특정 제어신호가 제2탐색영역에서만 전달될 수 있는 경우는 다른 방법을 사용할 수 있다. 단말이 제1탐색영역이자 제2탐색영역인 탐색영역에서 제2탐색영역에서만 전달될 수 있는 제어신호를 검출하였다면, 해당 탐색영역을 제2탐색영역으로 판단할 수 있다. 예를 들어, 제3실시예에서 설명하는 방법은, DCI 포맷 1A의 검출에 사용될 수 있으며, DCI 포맷2 등 USS에서만 전달되는 DCI의 검출은 항상 해당 탐색영역이 제2탐색영역이 될 수 있을 것이다.
[제4실시예]
제4실시예는 단말이 제1탐색영역이자 제2탐색영역에서 하향링크 제어신호의 복호가 성공하였을 경우, 이전 하향링크 데이터 전송시 사용한 타이밍을 이용하는 방법에 대하여 도 12를 참고하여 설명한다.
기지국이 단말에게 n+3 타이밍으로 제2신호를 전송하도록 지연감소모드를 설정하였을 때, 하향링크 제어신호가 제1탐색영역에서 복호되면 n+4 타이밍에 제2신호를 전송하고, 제2탐색영역에서 복호되면 n+3 타이밍에 제2신호를 전송하도록 폴백모드를 동작할 수 있다. 단, 하향링크 제어신호가 복호된 탐색영역이 제1탐색영역이자 제2탐색영역에 해당될 경우, 단말은 이전에 수신한 제어신호에 대한 제2신호를 송신하는 타이밍을 다시 이용할 수 있다. 즉, 현재 수신한 제어신호가 제1탐색영역이자 제2탐색영역에서 복호되었을 경우, 이전 서브프레임들에서 수신한 제어신호 중, 최근에 수신한 하향링크 데이터 전송 혹은 상향링크 데이터 전송에 대한 제어신호에 따르는 제2신호의 전송 타이밍을 이용한다. 최근에 수신한 제어신호에 대한 제2신호의 전송이 n+3 타이밍을 이용하는 것이었으면 현재 수신한 제어신호에 대한 제2신호도 n+3 타이밍을 이용한다. 또한, 최근에 수신한 제어신호에 대한 제2신호의 전송이 n+4 타이밍을 이용하는 것이었으면 현재 수신한 제어신호에 대한 제2신호도 n+4 타이밍을 이용한다. 이는 기지국과 단말이 최근의 송수신 동작을 재사용할 수 있도록 하기 위한 방법일 수 있다. 상기 방법은, 제1탐색영역과 제2탐색영역에서 모두 전송될 수 있는 제어신호 포맷에 대한 방법이며, 만약 특정 제어신호가 제2탐색영역에서만 전달될 수 있는 경우는 다른 방법을 사용할 수 있다. 단말이 제1탐색영역이자 제2탐색영역인 탐색영역에서 제2탐색영역에서만 전달될 수 있는 제어신호를 검출하였다면, 해당 탐색영역을 제2탐색영역으로 판단할 수 있다. 예를 들어, 제4실시예에서 설명하는 방법은, DCI 포맷 1A의 검출에 사용될 수 있으며, DCI 포맷2 등 USS에서만 전달되는 DCI의 검출은 항상 해당 탐색영역이 제2탐색영역이 될 수 있을 것이다.
도 12-(a)는 상기 실시예에서 설명한 바와 같은 기지국의 동작을 도시한 순서도이다. 기지국은 단말에게 지연감소모드 설정을 하고, 전송할 하향링크 제어신호를 인코딩 및 매핑한다(1201). 상기 제어신호가 매핑된 영역이 제1탐색영역이면서 제2탐색영역인지 확인한다(1203). 상기 제어신호가 매핑된 영역이 제1탐색영역이면서 제2탐색영역이면, 해당 단말에게 최근 송신한 제어신호에 대한 제2신호 전송 타이밍에서 현재 제어신호에 대한 제2신호 수신 시도한다(1205). 예를 들어, 이전 서브프레임에서 해당 단말에게 하향링크 데이터를 전송하기 위한 제어신호를 전송하였고, 해당 제어신호에 대한 제2신호가 n+4 타이밍을 이용하도록 되었더라면, 현재 서브프레임에서 전송한 제어신호에 대한 제2신호도 n+4 타이밍을 이용한다고 판단한다.
도 12-(b)는 상기 실시예에서 설명한 바와 같은 단말의 동작을 도시한 순서도이다. 지연감소모드로 설정된 단말은 신호 수신 및 제어신호 디코딩을 수행한다(1211). 단말은 제어신호가 검출된 탐색영역이 제1탐색영역이자 제2탐색영역인지 확인한다(1213). 만약 제어신호가 검출된 탐색영역이 제1탐색영역이자 제2탐색영역이라면 최근 수신한 제어신호에 대한 제2신호 전송 타이밍에서 현재 제어신호에 대한 제2신호를 기지국으로 송신한다(1215). 만약 제어신호가 검출된 탐색영역이 제1탐색영역이자 제2탐색영역인 탐색영역이 아니라면, 제어신호가 제1탐색영역에 매핑되었으면 해당되는 제2신호를 n+4 타이밍에 전송, 제2탐색영역에 매핑되었으면 해당되는 제2신호를 n+3 타이밍에 전송한다(1217).
[제4-1실시예]
제4-1실시예는 단말이 제1탐색영역이자 제2탐색영역에서 하향링크 제어신호의 복호가 성공하였을 경우, 특정 경우에는 이전 하향링크 데이터 전송시 사용한 타이밍을 이용하면서, 특정 경우 이외에는 미리 약속된 타이밍을 이용하는 방법에 대하여 도 13를 참고하여 설명한다.
도 13은 최근 서브프레임들에서 송수신한 제어신호 유무에 따른 기지국 및 단말의 제2신호 전송 타이밍 결정 방법을 도시한 순서도이다. 기지국은 단말에게 지연감소모드 설정을 하고, 전송할 하향링크 제어신호를 인코딩 및 매핑하고, 지연감소모드로 설정된 단말은 신호 수신 및 제어신호 디코딩을 수행한다(1301). 기지국과 단말은 최근 k 서브프레임 이내에 제2신호 송신을 요구하는 제어신호를 송수신하였는지를 판단한다(1303). 상기에서 k는 미리 약속된 값일 수 있다. 예를 들어, 최근 4서브프레임 혹은 10서브프레임 이내에서일 수도 있고, 혹은 현재의 라디오프레임이라고 정해질 수 있을 것이다. 또는, 바로 전 서브프레임에만 해당될 수 있다. 만약 최근 k 서브프레임 이내에 제어신호가 수신되었고, 해당 제어신호가 제2신호 송신을 요구한 제어신호였다면, 상기 제2신호를 송신할 때 사용하는 타이밍을 그대로 이용한다(1305). 즉, 상기 경우에는 제4실시예에 따라 기지국과 단말이 동작할 수 있다. 만약, 최근 k 서브프레임 이내에, 제2신호 송신을 요구하는 제어신호가 수신되지 않았다면, 제1실시예, 또는 제2실시예, 또는 제3실시예에 따라 송수신을 동작할 수 있다(1307).
[제5실시예]
제5실시예는 기지국이 단말에게 제1탐색영역이자 제2탐색영역에서 하향링크 데이터 전송을 위한 제어신호를 전송하였을 경우, 상기 데이터에 대한 HARQ-ACK 피드백 혹은 제2신호를 기지국이 수신하는 방법에 대하여 도 14를 참고하여 설명한다.
도 14는 본 실시예에 따르는 기지국의 동작을 도시한 순서도이다. 기지국은 단말에게 지연감소모드 설정을 하고, 전송할 하향링크 제어신호를 인코딩 및 매핑한다(1401). 기지국은 해당 탐색영역이 제1탐색영역이자 제2탐색영역인지 확인한다(1403). 만약 제어신호가 매핑된 탐색영역이 제1탐색영역이자 제2탐색영역이라면, 기지국은 상기 제어신호에 해당하는 제2신호의 검출을 n+3 타이밍과 n+4 타이밍에서 모두 시도할 수 있다(1405). 최근 수신한 제어신호에 대한 제2신호 전송 타이밍에서 현재 제어신호에 대한 제2신호를 기지국으로 송신한다(1405). 만약 제어신호가 매핑된 탐색영역이 제1탐색영역이자 제2탐색영역인 탐색영역이 아니라면, 제어신호가 제1탐색영역에 매핑되었으면 해당되는 제2신호를 n+4 타이밍에 검출시도하고, 제2탐색영역에 매핑되었으면 해당되는 제2신호를 n+3 타이밍에 검출 시도한다(1407).
상기 방법은, 제1탐색영역과 제2탐색영역에서 모두 전송될 수 있는 제어신호 포맷에 대한 방법이며, 만약 특정 제어신호가 제2탐색영역에서만 전달될 수 있는 경우는 다른 방법을 사용할 수 있다. 기지국이 제1탐색영역이자 제2탐색영역인 탐색영역에서 제2탐색영역에서만 전달될 수 있는 제어신호를 전송하였다면, 해당되는 제2신호의 검출시도를 n+3 타이밍에서만 수행할 수 있다. 예를 들어, 제5실시예에서 설명하는 방법은, DCI 포맷 1A의 전송 및 해당 제2신호 검출에 사용될 수 있으며, DCI 포맷2 등 USS에서만 전달되는 DCI의 전송 및 해당 제2신호의 검출은 지연감소모드에서는 n+3 타이밍을 이용할 수 있을 것이다.
상기 실시예들에서는 지연감소모드의 동작이 n+3 타이밍을 이용하도록 설명하였지만, 이는 본 발명의 설명을 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 즉 본 발명에서 지연감소모드에서는 n+2 또는 n+3 타이밍에 제2신호를 전송하도록 설정하는 것에도 적용이 가능할 수 있다.
본 발명의 상기 실시예들을 수행하기 위해 단말과 기지국의 송신부, 수신부, 처리부가 각각 도 15와 도 16에 도시되어 있다. 상기 제1실시예부터 제5실시예까지 탐색 영역에 따르는 제어신호 검출 방법에 대한 동작을 수행하기 위해 기지국과 단말의 송수신 방법이 나타나 있으며, 이를 수행하기 위해 기지국과 단말의 수신부, 처리부, 송신부가 각각 실시 예에 따라 동작하여야 한다.
구체적으로 도 15는 본 발명의 실시예에 따른 단말의 내부 구조를 도시하는 블록도이다. 도 15에서 도시되는 바와 같이, 본 발명의 단말은 단말기 수신부(1500), 단말기 송신부(1504), 단말기 처리부(1502)를 포함할 수 있다. 단말기 수신부(1500)와 단말이 송신부(1504)를 통칭하여 본 발명의 실시 예에서는 송수신부라 칭할 수 있다. 송수신부는 기지국과 신호를 송수신할 수 있다. 상기 신호는 제어 정보와, 데이터를 포함할 수 있다. 이를 위해, 송수신부는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 또한, 송수신부는 무선 채널을 통해 신호를 수신하여 단말기 처리부(1502)로 출력하고, 단말기 처리부(1502)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다. 단말기 처리부(1502)는 상술한 본 발명의 실시예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들어, 단말 수신부(1500)에서 제어신호를 포함하는 신호를 수신하고, 단말 처리부(1502)는 탐색영역에 따르는 디코딩을 수행할 DCI 포맷을 결정하여 디코딩을 수행하도록 제어할 수 있다. 또한 상기 처리부에서는 DCI가 검출된 탐색영역을 판단하여, 제2신호의 전송 타이밍을 결정한다. 이후, 단말 송신부(1504)에서 상기 타이밍에서 상기 제어신호와 관련된 제2신호 송신이 필요하다면 상기 처리부에서 결정된 타이밍에서 상기 제2신호를 송신한다.
도 16은 본 발명의 실시예에 따른 기지국의 내부 구조를 도시하는 블록도이다. 도 16에서 도시되는 바와 같이, 본 발명의 기지국은 기지국 수신부(1601), 기지국 송신부(1605), 기지국 처리부(1603)를 포함할 수 있다. 기지국 수신부(1601)와 기지국 송신부(1605)를 통칭하여 본 발명의 실시 예에서는 송수신부라 칭할 수 있다. 송수신부는 단말과 신호를 송수신할 수 있다. 상기 신호는 제어 정보와, 데이터를 포함할 수 있다. 이를 위해, 송수신부는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 또한, 송수신부는 무선 채널을 통해 신호를 수신하여 기지국 처리부(1603)로 출력하고, 단말기 처리부(1603)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다. 기지국 처리부(1603)는 상술한 본 발명의 실시예에 따라 기지국이 동작할 수 있도록 일련의 과정을 제어할 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 즉 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예컨대, 본 발명의 실시예 1와 실시예 2의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다. 또한 상기 실시예들은 LTE/LTE-A 시스템을 기준으로 제시되었지만, 5G, NR 시스템 등 다른 시스템에도 상기 실시예의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능할 것이다.
상술한 본 발명의 구체적인 실시 예들에서, 발명에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 발명이 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (15)

  1. 무선 통신 시스템에서 단말의 방법에 있어서,
    기지국으로부터 상향링크 전송을 스케쥴링하는 제어 신호를 수신하는 단계;
    상기 제어 신호가 검출된 탐색공간에 기초하여, 상향링크 신호를 전송할 시점을 제1 시점 또는 상기 제1 시점 보다 앞서는 제2 시점으로 결정하는 단계; 및
    상기 제1 시점 또는 상기 제2 시점에서 상기 상향링크 신호를 기지국으로 전송하는 단계를 포함하는 것인, 방법.
  2. 제1항에 있어서,
    상기 제어 신호가 검출된 탐색공간은 셀공통 탐색공간이자 단말특정 탐색공간인 것인, 방법.
  3. 제2항에 있어서,
    상기 결정하는 단계는, 상기 상향링크 신호를 전송할 시점을 상기 제1 시점을 우선하여 선택하거나, 상기 제2 시점을 우선하여 선택하거나, 상위 계층 시그널링의 지시에 따라 결정하거나, 또는 이전 상향링크 전송 시점에 따라 결정하는 것인, 방법.
  4. 제1항에 있어서,
    상기 단말에 지연감소 모드가 설정된 경우, 상기 제1 시점은 폴백 모드에 따른 전송 시점이며 상기 제2 시점은 상기 지연감소 모드에 따른 전송 시점인 것인, 방법.
  5. 무선 통신 시스템에서 단말에 있어서,
    신호를 송신 및 수신하는 송수신부; 및
    기지국으로부터 상향링크 전송을 스케쥴링하는 제어 신호를 수신하고, 상기 제어 신호가 검출된 탐색공간에 기초하여 상향링크 신호를 전송할 시점을 제1 시점 또는 상기 제1 시점 보다 앞서는 제2 시점으로 결정하고, 상기 제1 시점 또는 상기 제2 시점에서 상기 상향링크 신호를 기지국으로 전송하도록 설정된 제어부를 포함하는, 단말.
  6. 제5항에 있어서,
    상기 제어 신호가 검출된 탐색공간은 셀공통 탐색공간이자 단말특정 탐색공간인 것인, 단말.
  7. 제6항에 있어서,
    상기 제어부는, 상기 상향링크 신호를 전송할 시점을 상기 제1 시점을 우선하여 선택하거나, 상기 제2 시점을 우선하여 선택하거나, 상위 계층 시그널링의 지시에 따라 결정하거나, 또는 이전 상향링크 전송 시점에 따라 결정하는 것인, 단말.
  8. 제5항에 있어서,
    상기 단말에 지연감소 모드가 설정된 경우, 상기 제1 시점은 폴백 모드에 따른 전송 시점이며 상기 제2 시점은 상기 지연감소 모드에 따른 전송 시점인 것인, 단말.
  9. 무선 통신 시스템에서 기지국의 방법에 있어서,
    단말로 상향링크 전송을 스케쥴링하는 제어 신호를 전송하는 단계; 및
    상기 제어 신호가 매핑된 탐색공간에 기초하여, 상기 단말로부터 제1 시점 및 상기 제1 시점 보다 앞서는 제2 시점 모두에서 상향링크 신호를 수신하는 단계를 포함하는, 방법.
  10. 제9항에 있어서,
    상기 제어 신호가 매핑된 탐색공간은 셀공통 탐색공간이자 단말특정 탐색공간이며,
    상기 단말에 지연감소 모드가 설정된 경우, 상기 제1 시점은 폴백 모드에 따른 전송 시점이며 상기 제2 시점은 상기 지연감소 모드에 따른 전송 시점인 것인, 방법.
  11. 제10항에 있어서,
    상기 제어 신호를 수신한 단말은, 상기 상향링크 신호를 전송할 시점을 상기 제1 시점을 우선하여 선택하거나, 상기 제2 시점을 우선하여 선택하거나, 상위 계층 시그널링의 지시에 따라 결정하거나, 또는 이전 상향링크 전송 시점에 따라 결정하는 것인, 방법.
  12. 무선 통신 시스템에서 기지국에 있어서,
    신호를 송신 및 수신하는 송수신부; 및
    단말로 상향링크 전송을 스케쥴링하는 제어 신호를 전송하고, 상기 제어 신호가 매핑된 탐색공간에 기초하여 상기 단말로부터 제1 시점 및 상기 제1 시점 보다 앞서는 제2 시점 모두에서 상향링크 신호를 수신하도록 설정된 제어부를 포함하는, 기지국.
  13. 제12항에 있어서,
    상기 제어 신호가 매핑된 탐색공간은 셀공통 탐색공간이자 단말특정 탐색공간인 것인, 기지국.
  14. 제13항에 있어서,
    상기 제어 신호를 수신한 단말은, 상기 상향링크 신호를 전송할 시점을 상기 제1 시점을 우선하여 선택하거나, 상기 제2 시점을 우선하여 선택하거나, 상위 계층 시그널링의 지시에 따라 결정하거나, 또는 이전 상향링크 전송 시점에 따라 결정하는 것인, 기지국.
  15. 제12항에 있어서,
    상기 단말에 지연감소 모드가 설정된 경우, 상기 제1 시점은 폴백 모드에 따른 전송 시점이며 상기 제2 시점은 상기 지연감소 모드에 따른 전송 시점인 것인, 기지국.
PCT/KR2017/011844 2016-12-06 2017-10-25 무선 셀룰라 통신 시스템에서 하향링크 제어신호 복호 방법 및 장치 WO2018105886A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17878448.4A EP3537642A4 (en) 2016-12-06 2017-10-25 METHOD AND APPARATUS FOR DECODING AN UPLINK CONTROL SIGNAL IN A WIRELESS CELLULAR COMMUNICATION SYSTEM
CN202211085594.1A CN115459885A (zh) 2016-12-06 2017-10-25 终端、基站及其方法
CN201780075468.9A CN110050430B (zh) 2016-12-06 2017-10-25 用于在无线蜂窝通信系统中解码下行链路控制信号的方法和装置
US16/465,375 US10841940B2 (en) 2016-12-06 2017-10-25 Method and apparatus for decoding downlink control signal in wireless cellular communication system
CN202211085563.6A CN115459884A (zh) 2016-12-06 2017-10-25 终端、基站及其方法
US17/098,972 US11291032B2 (en) 2016-12-06 2020-11-16 Method and apparatus for decoding downlink control signal in wireless cellular communication system
US17/695,458 US20220210811A1 (en) 2016-12-06 2022-03-15 Method and apparatus for decoding downlink control signal in wireless cellular communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160165255A KR20180064853A (ko) 2016-12-06 2016-12-06 무선 셀룰라 통신 시스템에서 하향링크 제어신호 복호 방법 및 장치
KR10-2016-0165255 2016-12-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/465,375 A-371-Of-International US10841940B2 (en) 2016-12-06 2017-10-25 Method and apparatus for decoding downlink control signal in wireless cellular communication system
US17/098,972 Continuation US11291032B2 (en) 2016-12-06 2020-11-16 Method and apparatus for decoding downlink control signal in wireless cellular communication system

Publications (1)

Publication Number Publication Date
WO2018105886A1 true WO2018105886A1 (ko) 2018-06-14

Family

ID=62492070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011844 WO2018105886A1 (ko) 2016-12-06 2017-10-25 무선 셀룰라 통신 시스템에서 하향링크 제어신호 복호 방법 및 장치

Country Status (5)

Country Link
US (3) US10841940B2 (ko)
EP (1) EP3537642A4 (ko)
KR (1) KR20180064853A (ko)
CN (3) CN110050430B (ko)
WO (1) WO2018105886A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11653226B2 (en) * 2020-07-30 2023-05-16 Shanghai Langbo Communication Technology Company Limited Method and device in communication nodes for wireless communication

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117885A1 (ko) * 2015-01-19 2016-07-28 주식회사 케이티 하향링크 제어정보 전송 방법 및 그 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102196479B (zh) * 2010-03-10 2014-01-08 华为技术有限公司 定时提前值的共享检测方法、用户设备、基站及系统
US9591664B2 (en) * 2011-02-21 2017-03-07 Lg Electronics Inc. Method for setting search space for relay node in wireless communication system and device therefor
EP2590350A1 (en) * 2011-11-07 2013-05-08 Panasonic Corporation Enhanced PDCCH overlapping with the PDCCH region
WO2014065585A1 (ko) * 2012-10-23 2014-05-01 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 수신하는 방법 및 이를 위한 장치
KR20160089844A (ko) 2015-01-19 2016-07-28 주식회사 케이티 Mtc 단말을 위한 하향 링크 공용 제어 채널 송수신 방법 및 장치
US9929834B2 (en) * 2015-04-28 2018-03-27 Qualcomm Incorporated Low latency operation with different hybrid automatic repeat request (HARQ) timing options
US10314037B2 (en) * 2016-07-08 2019-06-04 Qualcomm Incorporated Latency reduction techniques in wireless communications
US10306627B2 (en) * 2016-09-16 2019-05-28 Qualcomm Incorporated Techniques for allocating resources in low latency wireless communications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117885A1 (ko) * 2015-01-19 2016-07-28 주식회사 케이티 하향링크 제어정보 전송 방법 및 그 장치

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Reduced Processing for 1ms TTI", R1-1611502, 3GPP TSG RAN WG1 MEETING #87, 4 November 2016 (2016-11-04), Reno, USA, XP051189100 *
NOKIA ET AL.: "Dynamic Fallback and Required Scheduling Restrictions for 1ms TTI with Different Processing Times", R1-1612205, 3GPP TSG RAN WG1 MEETING #87, 4 November 2016 (2016-11-04), Reno, Nevada (USA, XP051189214 *
SAMSUNG: "Fall-back Mode Operation for Processing Time Reduction with 1ms TTI", R1-1612399, 3GPP TSG RAN WG1 MEETING #8 7, 4 November 2016 (2016-11-04), Reno, USA, XP051189296 *
See also references of EP3537642A4 *
SHARP: "Shortened Processing Time Operation for 1 ms TTI", R1-1612616, 3GPP TSG RAN WG1 MEETING #87, 4 November 2016 (2016-11-04), Reno, USA, XP051189647, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/> *

Also Published As

Publication number Publication date
US20210068141A1 (en) 2021-03-04
EP3537642A1 (en) 2019-09-11
US20220210811A1 (en) 2022-06-30
CN115459884A (zh) 2022-12-09
CN115459885A (zh) 2022-12-09
US20200015259A1 (en) 2020-01-09
US11291032B2 (en) 2022-03-29
KR20180064853A (ko) 2018-06-15
CN110050430A (zh) 2019-07-23
CN110050430B (zh) 2022-07-19
US10841940B2 (en) 2020-11-17
EP3537642A4 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
AU2018341374C1 (en) Uplink transmission method and corresponding equipment
WO2020189997A1 (en) Method and device for priority-based control and data information transmission in wireless communication system
WO2019160319A1 (en) Method and apparatus for transmitting or receiving data and control information in wireless communication system
WO2018021768A1 (en) Method and apparatus for managing hybrid automatic repeat request process in mobile communication system
WO2019066630A1 (en) UPLINK TRANSMISSION METHOD AND CORRESPONDING EQUIPMENT
WO2016144140A1 (en) Transmissions of downlink control channels for low cost ues
WO2018203657A1 (ko) 무선 통신 시스템에서 상향 제어 채널 전송 방법 및 장치
WO2018199551A1 (ko) 상향링크 이동통신 시스템을 위한 자원 할당 및 프리코딩 방법 및 장치
WO2016204456A1 (ko) 무선 셀룰라 통신 시스템에서 협대역을 이용한 신호 전송을 위한 송수신 방법 및 장치
WO2018084521A1 (ko) 무선 셀룰라 통신 시스템에서 제어신호 검출 방법 및 장치
WO2016208991A1 (ko) 무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치
WO2018203618A1 (ko) 무선 셀룰러 통신 시스템에서 제어 정보 전송 방법 및 장치
WO2019216588A1 (ko) 무선 셀룰라 통신 시스템에서 제어 정보 송수신 방법 및 장치
AU2018262995B2 (en) Method and apparatus for identifying uplink signal transmission timing in wireless communication system
WO2019013606A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널 수신 시간 설정 방법 및 장치
WO2018174639A1 (ko) 무선 통신 시스템에서 제어 및 데이터 채널 전송 시간 설정 방법 및 장치
WO2017014613A1 (ko) 무선 셀룰러 통신 시스템에서 협대역 신호 전송을 위한 방법 및 장치
WO2017196059A1 (ko) 무선 통신 시스템에서 상향링크 데이터 및 제어신호 전송 타이밍 결정 방법 및 장치
WO2018070757A1 (en) Method and apparatus for transmitting and receiving multiple timing transmission schemes in wireless cellular communication system
WO2018124702A1 (ko) 무선통신 시스템에서 상향링크 제어정보 송수신 방법 및 장치
WO2020145614A1 (en) Method and apparatus for feedback transmission and reception in wireless communication system
CN110999489A (zh) 通信系统
WO2020224969A1 (en) Communications device, infrastructure equipment and methods
WO2019194478A1 (ko) 무선 셀룰라 통신 시스템에서 데이터 스케줄링 및 전송 방법 및 장치
WO2019212181A1 (ko) 무선통신 시스템에서 그룹캐스트를 위한 동기화 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017878448

Country of ref document: EP

Effective date: 20190605