WO2018105823A1 - Polylactic acid copolymer and method for preparing same - Google Patents
Polylactic acid copolymer and method for preparing same Download PDFInfo
- Publication number
- WO2018105823A1 WO2018105823A1 PCT/KR2017/004488 KR2017004488W WO2018105823A1 WO 2018105823 A1 WO2018105823 A1 WO 2018105823A1 KR 2017004488 W KR2017004488 W KR 2017004488W WO 2018105823 A1 WO2018105823 A1 WO 2018105823A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- groups
- substituted
- group
- polylactic acid
- acid copolymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/08—Lactones or lactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
- C08G63/823—Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/12—Applications used for fibers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
Definitions
- the present invention relates to a polylactic acid copolymer and a method for producing the same, and more particularly, to (A) lactic acid as a repeating unit; And (B) a monocyclic, polycyclic, or fused cyclic compound having a hydroxy-tetramethylene-oxy-hydrocarbon group at its terminal; thereby, a polylactic acid copolymer having improved elasticity and thermal stability compared to a polylactic acid homopolymer. And to a method for producing the same.
- biodegradable polylactic acid (PLA) resin obtained through fermentation of corn starch which is easily obtained in nature, is attracting attention as a substitute material for general purpose resins because of low price and ease of supply.
- Application has been attempted in various ranges, such as for general molded products, for textile, medical, packaging.
- the PLA polymerization method is a method of synthesizing by direct condensation polymerization from lactic acid, a method of synthesizing high molecular weight PLA through solid phase polymerization from low molecular weight PLA, and azeotropic condensation using a low boiling solvent.
- a method of synthesizing PLA is known, and recently, there is high interest in PLA synthesis through ring opening polymerization having an advantage of easily synthesizing various high molecular weight PLA.
- polylactic acid homopolymer has a limitation in that mechanical properties such as heat resistance and impact resistance are not sufficient, and satisfies elasticity, which is a major industrial requirement such as general textile products and packaging products. Since the situation is difficult to make, the application range is not expanded.
- the present invention is to solve the problems of the prior art as described above, and to improve the low elasticity inherent to polylactic acid (PLA) and at the same time improve the thermal stability that is a problem during processing and polylactic acid copolymer to increase the production efficiency and It is a technical subject to provide the manufacturing method.
- PLA polylactic acid
- the present invention to solve the above technical problem, (A) lactic acid as a repeating unit; And (B) a monocyclic, polycyclic or fused cyclic compound having a hydroxy-tetramethylene-oxy-hydrocarbon group at the end thereof.
- a method for producing a polylactic acid copolymer is provided.
- a processed resin article prepared using the polylactic acid copolymer is provided.
- the present invention it is possible to provide a novel biodegradable polylactic acid copolymer which significantly improves the low elasticity and thermal stability of a conventional polylactic acid homopolymer, thereby securing a processing range of the same flexibility as conventional general-purpose resins.
- Increasing processing efficiency it is possible to overcome the difficulties of secondary processing due to low elasticity and thermal stability, thereby extending the scope of conventional applications of textile products, film products, packaging products and medical supplies.
- the present invention provides a random or block repeating unit comprising lactic acid; And a monocyclic, polycyclic or fused cyclic compound having a hydroxy-tetramethylene-oxy-hydrocarbon group at the end thereof.
- the lactic acid repeating unit included in the polylactic acid copolymer of the present invention has the following structure in the copolymer.
- the lactic acid repeating unit may be introduced into the copolymer by lactic acid, lactic acid oligomers or lactide (cyclic dimers of lactic acid).
- the content of lactic acid included as a repeating unit in the polylactic acid copolymer of the present invention may be 70 to 99% by weight based on 100% by weight of the copolymer, preferably 85 to 98% by weight, more preferably 90 It may be ⁇ 97% by weight, but is not limited thereto. If the lactic acid content in the polylactic acid copolymer is less than 70% by weight, the degree of polymerization of the polylactic acid copolymer may be low and the biodegradable effect may be insignificant, and if it exceeds 99% by weight, the improvement in elasticity and thermal stability of the polylactic acid copolymer may be achieved. The effect may be low.
- Monocyclic, polycyclic or fused cyclic compounds having hydroxy-tetramethylene-oxy-hydrocarbon groups at the ends, which are included as copolymerized repeating units together with lactic acid repeating units in the polylactic acid copolymers of the present invention are hydroxy-tetramethylene-oxy groups (i.e., HO- (CH 2 ) at the ends via a hydrocarbon group around a monocyclic, polycyclic or fused cyclic moiety)
- a hydroxy-tetramethylene-oxy group is preferably present at both ends.
- the content of the tetramethylene glycol ether-terminal cyclic compound included in the polylactic acid copolymer of the present invention as a repeating unit together with the lactic acid repeating unit may be 1 to 30% by weight based on 100% by weight of the copolymer. May be 2 to 15% by weight, more preferably 3 to 10% by weight, but is not limited thereto. If the content of the tetramethylene glycol ether-terminal cyclic compound as a comonomer in the polylactic acid copolymer is less than 1% by weight, the improvement effect on the elasticity and thermal stability of the polylactic acid copolymer may be insignificant, and if it is more than 30% by weight.
- the degree of polymerization of the polylactic acid copolymer and the biodegradability of the polylactic acid copolymer may be low.
- the tetramethylene glycol ether-terminated cyclic compound may have a structural formula represented by the following Chemical Formula 1-1.
- R 1 and R 2 each independently represent a substituted or unsubstituted divalent hydrocarbon group, wherein R 1 and R 2 each independently comprise one or more bonds selected from ether bonds, ester bonds, ketone bonds and urethane bonds Can do it,
- the anhydrosugar alcohol may be in the form of substituted or unsubstituted alkylene glycol at one or both ends thereof, the alkylene glycol is not particularly limited , Preferably ethylene glycol, propylene glycol or combinations thereof;
- A is a substituted or unsubstituted divalent aliphatic or aromatic monocyclic, polycyclic or fused cyclic group; Or a substituted or unsubstituted divalent monoheterocyclic, polyheterocyclic or fused heterocyclic group comprising at least one hetero atom selected from N, O and S, wherein A is an ester group, ether It may comprise one or more functional groups selected from the group consisting of groups, thioether groups, ketone groups and urethane groups.
- hydrocarbon group refers to a linear, branched or cyclic saturated or unsaturated hydrocarbon group, which may include, but is not limited to, saturated or unsaturated alkyl, alkoxy, aryl and combinations thereof.
- substituted or “substituted” means that a hydrogen atom is a halogen atom (eg, Cl or Br, etc.), a hydroxyl group, an alkyl group having 1 to 13 carbon atoms (eg, methyl, ethyl or propyl). Etc.), an alkoxy group having 1 to 13 carbon atoms (e.g., methoxy, ethoxy or propoxy), an aryl group having 6 to 10 carbon atoms (e.g., phenyl, chlorophenyl or tolyl, etc.), or these It means what was substituted by substituents, such as a combination.
- anhydrous alcohol is obtained by removing one or more water molecules from a compound obtained by adding hydrogen to a reducing terminal group of a saccharide, called hydrogenated sugar or sugar alcohol. It means any substance.
- anhydrosugar alcohol substituted with alkylene glycol refers to the terminal (eg, both ends) hydroxyl group of the anhydrosugar alcohol.
- an alkylene oxide eg, C 1 -C 4 alkylene oxide, more specifically ethylene oxide, propylene oxide or mixtures thereof
- the terminal (eg, amount of anhydrosugar alcohol) Terminal) means a compound of the form in which hydrogen of the hydroxyl group is substituted with hydroxyalkylene oxide of alkylene oxide.
- the result of adding ethylene oxide to both terminal hydroxyl groups of isosorbide is as follows.
- R 1 and R 2 each independently represent a substituted or unsubstituted divalent hydrocarbon group having 12 to 328 carbon atoms, wherein R 1 and R 2 are each independently from an ether bond, an ester bond, a ketone bond and a urethane bond May comprise one or more bonds selected;
- A is a substituted or unsubstituted divalent, aliphatic having 5 to 30 carbon atoms or an aromatic monocyclic, polycyclic or fused cyclic group having 6 to 30 carbon atoms; Or a substituted or unsubstituted divalent, monoheterocyclic, polyheterocyclic or fused heterocyclic group having 5 to 30 ring atoms, including one or more hetero atoms selected from N, O and S. And A may also include one or more functional groups selected from the group consisting of ester groups, ether groups, thioether groups, ketone groups and urethane groups.
- R 1 and R 2 each independently represent a substituted or unsubstituted divalent hydrocarbon group having 12 to 248 carbon atoms, wherein R 1 and R 2 are each independently from an ether bond, an ester bond, a ketone bond and a urethane bond May comprise one or more bonds selected;
- A is a substituted or unsubstituted divalent, aromatic monocyclic, polycyclic or fused cyclic group having 6 to 20 carbon atoms in total; Or a substituted or unsubstituted divalent, monoheterocyclic, polyheterocyclic or fused heterocyclic group having from 5 to 20 ring atoms, including one or more hetero atoms selected from N, O and S. And A may also include one or more functional groups selected from the group consisting of ester groups, ether groups, thioether groups, ketone groups and urethane groups.
- the tetramethylene glycol ether-terminated cyclic compound may have a structural formula represented by Formula 1-2.
- R 3 and R 4 each independently represent a substituted or unsubstituted divalent hydrocarbon group
- the anhydrosugar alcohol may be in the form of substituted or unsubstituted alkylene glycol at one or both ends thereof, the alkylene glycol is not particularly limited , Preferably ethylene glycol, propylene glycol or combinations thereof;
- A is a substituted or unsubstituted divalent aliphatic or aromatic monocyclic, polycyclic or fused cyclic group; Or a substituted or unsubstituted divalent monoheterocyclic, polyheterocyclic or fused heterocyclic group comprising at least one hetero atom selected from N, O and S, wherein A is an ester group, ether May comprise one or more functional groups selected from the group consisting of groups, thioether groups, ketone groups and urethane groups;
- n and m each independently represent the integer of 1-80.
- R 3 and R 4 each independently represent a substituted or unsubstituted alkylene group
- A is a substituted or unsubstituted divalent, aliphatic having 5 to 30 carbon atoms or an aromatic monocyclic, polycyclic or fused cyclic group having 6 to 30 carbon atoms; Or a substituted or unsubstituted divalent, monoheterocyclic, polyheterocyclic or fused heterocyclic group having 5 to 30 ring atoms, including one or more hetero atoms selected from N, O and S. And A may also include one or more functional groups selected from the group consisting of ester groups, ether groups, thioether groups, ketone groups and urethane groups;
- n and m each independently represent the integer of 1-70.
- R 3 and R 4 are each independently a substituted or unsubstituted alkylene group having 2 to 6 carbon atoms, preferably a substituted or unsubstituted alkylene group having 3 to 5 carbon atoms, more preferably a substituted or unsubstituted group Represented tetramethylene group;
- A is a substituted or unsubstituted divalent, aromatic monocyclic, polycyclic or fused cyclic group having 6 to 20 carbon atoms in total; Or a substituted or unsubstituted divalent, monoheterocyclic, polyheterocyclic or fused heterocyclic group having from 5 to 20 ring atoms, including one or more hetero atoms selected from N, O and S. And A may also include one or more functional groups selected from the group consisting of ester groups, ether groups, thioether groups, ketone groups and urethane groups;
- n and m each independently represent the integer of 1-60.
- the tetramethylene glycol ether-terminated cyclic compound may have a structural formula represented by Chemical Formula 1-3.
- n represents the integer of 1-80, Preferably it is 1-70, More preferably, it is 1-60.
- the tetramethylene glycol ether-terminated cyclic compound may have a structural formula represented by the following Chemical Formula 2-1.
- R 1 , R 2 and A are as defined in Formula 1-1.
- the tetramethylene glycol ether-terminal cyclic compound may have a structural formula represented by the following formula (2-2).
- R 3 , R 4 , C, C ', A, n and m are as defined in Formula 1-2 above.
- the tetramethylene glycol ether-terminal cyclic compound may have a structural formula represented by the following formula 2-3, 2-4 or 2-5.
- n represents an integer of 2 to 80, preferably 2 to 70, more preferably 2 to 60.
- n represents the integer of 1-80, Preferably it is 1-70, More preferably, it is 1-60.
- n represents the integer of 1-80, Preferably it is 1-70, More preferably, it is 1-60.
- a monocyclic, polycyclic or fused solution of anhydrous sugar alcohol eg, isosorbide, isomannide, isoidide, etc.
- anhydrous sugar alcohol eg, isosorbide, isomannide, isoidide, etc.
- an ethylene acetate solvent or a methylene chloride solvent e.g., ethylene acetate solvent or a methylene chloride solvent
- cyclic dicarboxylic acid or its diester for example, dimethyl terephthalate, etc.
- PTMEG polytetramethylene ether glycol
- aromatic monocyclic, polycyclic or fused cyclic compounds having a total of 6 to 30 carbon atoms dissolved in ethylene acetate solvent or methylene chloride solvent (e.g., naphthalenedicarboxylic acid, naphthalenedicar
- ethylene acetate solvent or methylene chloride solvent e.g., naphthalenedicarboxylic acid, naphthalenedicar
- the secondary reactant is removed by several washings with an alkaline solution and several washings with distilled water, and the solvent is removed by vacuum depressurization, thereby removing Methylene glycol ether-terminated cyclic compounds can be prepared.
- aromatic monocyclic, polycyclic or fused cyclic compounds having 6 to 30 carbon atoms dissolved in ethylene acetate solvent or methylene chloride solvent (e.g., diphenol, naphthalenediol and the like) )
- ethylene acetate solvent or methylene chloride solvent e.g., diphenol, naphthalenediol and the like
- the solution and the monocyclic, polycyclic or fused cyclic dicarboxylic acid or diester thereof e.g., dimethyl terephthalate, etc.
- PTMEG polytetramethylene ether glycol
- the reaction was carried out by adding a secondary reaction, and then the secondary reactant was removed through several washings with an alkaline solution and several washings with distilled water, and the solvent was removed by vacuum decompression, thereby the chemical formula 2-4 or 2-5 Tetramethylene glycol ether-terminated cyclic compounds can be prepared.
- the copolymer of the present invention may further include one or more additional copolymerization repeating units within the scope of achieving the object of the present invention.
- additional copolymerized repeating units there is no particular limitation on the kind of such additional copolymerized repeating units.
- the copolymer repeating unit that may be further included in the copolymer of the present invention may include polyether, diol, and the like.
- tetramethylene glycol ether- A method for producing a polylactic acid copolymer is provided.
- the method or condition for prepolymerizing the lactic acid the lactic acid oligomer (eg, number average molecular weight (Mn) 100 to 5,000) or lactide in step (1), and generally known methods or conditions may be used.
- lactic acid, lactic acid oligomer or lactide in the presence of a catalyst, lactic acid, lactic acid oligomer or lactide is raised at elevated temperature (eg, 100 to 210 ° C, more specifically 110 to 150 ° C) and reduced pressure conditions.
- a prepolymer can be manufactured by making reaction for a suitable time (for example, 0.1 to 2 hours, more specifically 0.2 to 1.5 hours).
- the number average molecular weight (Mn) of the obtained lactic acid prepolymer may be, for example, 2,000 to 10,000, but is not limited thereto.
- Catalysts that can be used for the preliminary polymerization of lactic acid are, for example, zinc oxide, antimony oxide, antimony chloride, lead oxide, calcium oxide, aluminum oxide, iron oxide, calcium chloride, zinc acetate, paratoluene sulfonic acid, tin tin, First tin sulfate, first tin oxide, second tin oxide, first tin octanoate, tetraphenyl tin, tin powder, titanium tetrachloride, or mixtures thereof.
- the catalyst may be used in an amount of 0.0005 to 5 parts by weight, preferably 0.003 to 1 part by weight based on 100 parts by weight of lactic acid, lactic acid oligomer or lactide.
- amount of the catalyst used is less than 0.0005 parts by weight, the reaction rate is slowed.
- amount of the catalyst used is more than 5 parts by weight, the residual catalyst may discolor the product or degrade the physical properties.
- step (2) the lactic acid prepolymer obtained in step (1) is copolymerized with the tetramethylene glycol ether-terminated cyclic compound.
- Tetramethylene glycol ether-terminated cyclic compounds usable in step (2) include those described above.
- the copolymerization method and conditions in step (2) are also not particularly limited, and conventionally known lactic acid copolymer production methods and conditions may be used.
- an initiator and a tetramethylene glycol ether-terminated cyclic compound as described above are added to the resultant mixture (including the catalyst) of step (1), and a nitrogen atmosphere
- the copolymer may be formed by reacting at an elevated temperature (eg, 100 to 210 ° C, more specifically, 110 to 150 ° C) and a decompression condition under an appropriate time (for example, 0.5 to 4 hours, more specifically 1 to 3 hours). have.
- the number average molecular weight (Mn) of the obtained polylactic acid copolymer may be, for example, 50,000 to 300,000, but is not limited thereto.
- the initiator that may be used in the copolymerization step may be an aliphatic alcohol (eg, linear or branched aliphatic alcohol having 6 to 20 carbon atoms, more specifically 1-dodecanol, 1-octanol, or a mixture thereof). have.
- the initiator may be used in an amount of 0.0005 to 5 parts by weight, preferably 0.003 to 0.1 parts by weight based on 100 parts by weight of lactic acid, lactic acid oligomer or lactide.
- the amount of the initiator is less than 0.0005 parts by weight, there may be a problem in controlling the molecular weight of the copolymer, and if it is more than 5 parts by weight, there may be a problem in the degree of polymerization of the copolymer.
- the polylactic acid copolymer of the present invention is biodegradable and eco-friendly, and at the same time exhibits improved elasticity and thermal stability compared to polylactic acid homopolymers, and thus can be applied to various applications, and particularly high elasticity and thermal stability. It can be used suitably for resin processed products, such as textile products, medical products (such as surgical sutures or medical films) and film materials, and can increase the efficiency of production processing.
- the method for producing a resin processed product using the polylactic acid copolymer of the present invention is not particularly limited, and the method generally used for processing the copolymer resin can be used as it is or as appropriately modified.
- n 1
- the initiator 0.1 g of 1-dodecanol (Sigma Aldrich) was used, and 6 g of tin (II) octanoate (Sn (Oct) 2 , Sigma Aldrich) purified on toluene anhydride was used as a catalyst.
- the number average molecular weight (Mn) of the prepared lactic acid prepolymer was 2,000 to 10,000.
- the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 1-3 36 g was added at a temperature of 180 ° C., followed by copolymerization at a temperature of 200 ° C.
- the number average molecular weight (Mn) of the polylactic acid copolymer prepared was 50,000 to 300,000.
- Tetramethylene glycol ether-terminated cyclic compound of Formula 1-3 The content of the repeating unit was 3% by weight based on the total weight of the polylactic acid copolymer prepared.
- the NMR spectrum of the polylactic acid copolymer prepared above was measured using a Bruker Avance DRX 300. NMR spectral analysis showed that the position shifted due to the hydroxyl group at the end of the tetramethylene glycol ether-terminal cyclic compound was shifted due to electronic environmental change as the ester group was changed through polylactic acid copolymerization. It can be confirmed that the copolymerization result.
- Tetramethylene glycol ether-terminated cyclic compound of Formula 1-3 A polylactic acid copolymer was prepared in the same manner as in Example 1, except that the content of the repeating unit was changed to 10% by weight (based on the total weight of the copolymer).
- a naphthalenedicarboxylate solution and a PTMEG solution dissolved in an ethylene acetate solvent were added to a two neck flask provided with a Deanstock trap, and the reaction was performed by heating and stirring to the reflux temperature of the ethylene acetate solvent. Subsequently, the secondary reactants were removed by washing with an alkaline solution and washing with distilled water, and a tetramethylene glycol ether-terminated cyclic compound of the following Chemical Formula 2-3 was prepared through a solvent removal process under vacuum and reduced pressure.
- n 2
- Lactic acid prepolymer was prepared in the same manner as in Example 1.
- step (1) After the lactic acid prepolymer prepared in step (1) was stirred for 2 hours in a nitrogen atmosphere, 36 g of the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 2-3 was added at 180 ° C., followed by 200 ° C. Copolymerization was carried out at temperature.
- the number average molecular weight (Mn) of the polylactic acid copolymer prepared was 50,000 to 300,000.
- the content of the tetramethylene glycol ether-terminated cyclic compound repeating unit of Formula 2-3 was 3 wt% based on the total weight of the polylactic acid copolymer prepared.
- the NMR spectrum of the polylactic acid copolymer prepared above was measured using a Bruker Avance DRX 300. NMR spectral analysis showed that the position shifted due to the hydroxyl group at the end of the tetramethylene glycol ether-terminal cyclic compound was shifted due to electronic environmental change as the ester group was changed through polylactic acid copolymerization. It can be confirmed that the copolymerization result.
- a biphenol solution and a dimethyl terephthalate solution dissolved in an ethylene acetate solvent were added to a two neck flask equipped with a Dean Stark trap, and heated and stirred at the reflux temperature of the ethylene acetate solvent to proceed with the first reaction, followed by addition of PTMEG.
- the secondary reaction was advanced. Subsequently, the secondary reactants were removed by washing with an alkaline solution and washing with distilled water, and a tetramethylene glycol ether-terminated cyclic compound of the following Chemical Formula 2-4 was prepared through a solvent removal process under vacuum and reduced pressure.
- n 1
- Lactic acid prepolymer was prepared in the same manner as in Example 1.
- step (1) After the lactic acid prepolymer prepared in step (1) was stirred for 2 hours in a nitrogen atmosphere, 36 g of the tetramethylene glycol ether-terminated cyclic compound of Formula 2-4 was added at 180 ° C., followed by 200 ° C. Copolymerization was carried out at temperature.
- the number average molecular weight (Mn) of the polylactic acid copolymer prepared was 50,000 to 300,000.
- the content of the tetramethylene glycol ether-terminated cyclic compound repeat unit of Formula 2-4 was 3 wt% based on the total weight of the polylactic acid copolymer prepared.
- the NMR spectrum of the polylactic acid copolymer prepared above was measured using a Bruker Avance DRX 300. NMR spectral analysis showed that the position shifted due to the hydroxyl group at the end of the tetramethylene glycol ether-terminal cyclic compound was shifted due to electronic environmental change as the ester group was changed through polylactic acid copolymerization. It can be confirmed that the copolymerization result.
- n 1
- Lactic acid prepolymer was prepared in the same manner as in Example 1.
- step (1) After stirring the lactic acid prepolymer prepared in step (1) in a nitrogen atmosphere for 2 hours, 36 g of the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 2-5 was added at 180 ° C., and then 200 ° C. Copolymerization was carried out at temperature.
- the number average molecular weight (Mn) of the polylactic acid copolymer prepared was 50,000 to 300,000.
- the content of the tetramethylene glycol ether-terminated cyclic compound repeat unit of Formula 2-5 was 3% by weight based on the total weight of the polylactic acid copolymer prepared.
- the NMR spectrum of the polylactic acid copolymer prepared above was measured using a Bruker Avance DRX 300. NMR spectral analysis showed that the position shifted due to the hydroxyl group at the end of the tetramethylene glycol ether-terminal cyclic compound was shifted due to electronic environmental change as the ester group was changed through polylactic acid copolymerization. It can be confirmed that the copolymerization result.
- a polylactic acid homopolymer was prepared in the same manner as in Example 1, except that the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 1-3 was not used as the copolymer repeating unit.
- Example 2 The same method as in Example 1, except that isosorbide (content of 3% by weight based on the total weight of the copolymer) was used instead of the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 1-3 as a copolymer repeating unit. Polylactic acid copolymer was prepared.
- Example 2 The same method as Example 1, except that isosorbide (content of 10% by weight based on the total weight of the copolymer) was used instead of the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 1-3 as a copolymer repeating unit. Polylactic acid copolymer was prepared.
- a cyclic compound containing a hydroxy-terminated ester group of Chemical Formula 3 (7 wt% based on the total weight of copolymer) was used as a copolymer repeating unit. Except for producing a polylactic acid copolymer in the same manner as in Example 1.
- Perkin Elmer's Diamond DSC (Differential Scanning Calorimetry) was used to measure the glass transition temperature of the polylactic acid homopolymer and polylactic acid copolymer, and based on the glass transition temperature of the polylactic acid homopolymer (Comparative Example 1), The rate of glass transition temperature rise was calculated.
- the initial modulus (storage modulus) of the polylactic acid homopolymer and the polylactic acid copolymer was measured using a Pysis diamond DMA (Dynamic Mechanical Analyzer) manufactured by Perkin Elmer at a frequency of 1 Hz in the temperature range of 30 to 150 ° C.
- the initial modulus reduction rate of the polylactic acid copolymer was calculated based on the initial modulus of Comparative Example 1).
- the glass transition temperature rise rate and initial modulus reduction rate of each copolymer were measured as follows.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
The present invention relates to a polylactic acid copolymer and a method for preparing the same and, more specifically, to a polylactic acid copolymer with improved elasticity and thermal stability compared to a polylactic acid homopolymer, by including as repeating units, (A) lactic acid, and (B) a monocyclic, polycyclic, or fused cyclic compound having a hydroxyl-tetramethylene-oxy-hydrocabon group at the terminal, and a method for preparing the same.
Description
본 발명은 폴리락트산 공중합체 및 그 제조방법에 관한 것으로서, 보다 상세하게는, 반복단위로서 (A) 락트산; 및 (B) 말단에 히드록시-테트라메틸렌-옥시-탄화수소 기를 갖는 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물;을 포함함으로써, 폴리락트산 단독 중합체 대비 신축성 및 열 안정성이 개선된 폴리락트산 공중합체 및 그 제조방법에 관한 것이다.The present invention relates to a polylactic acid copolymer and a method for producing the same, and more particularly, to (A) lactic acid as a repeating unit; And (B) a monocyclic, polycyclic, or fused cyclic compound having a hydroxy-tetramethylene-oxy-hydrocarbon group at its terminal; thereby, a polylactic acid copolymer having improved elasticity and thermal stability compared to a polylactic acid homopolymer. And to a method for producing the same.
지구 온난화의 주요 원인인 이산화탄소의 배출을 감소시키고, 한정된 고가의 석유 자원을 대체하기 위한 노력의 일환으로 친환경적인 바이오매스(biomass)에 관한 활발한 연구들이 진행되고 있다. 그 중에서 자연에서 손쉽게 얻을 수 있는 옥수수 전분 발효를 통해 얻어지는 생분해성의 폴리락트산(PLA)계 수지가 저렴한 가격, 공급 용이성 등의 이유로 범용 수지의 대체 가능 원료로 주목을 받고 있으며, 동식물 또는 인체에 무해하여 일반적인 성형 제품용에서부터 섬유용, 의료용, 페키징용 등 다양한 범위에서의 적용이 시도되고 있다.In an effort to reduce carbon dioxide emissions, which are a major cause of global warming, and to replace limited expensive petroleum resources, active research on eco-friendly biomass is under way. Among them, biodegradable polylactic acid (PLA) resin obtained through fermentation of corn starch, which is easily obtained in nature, is attracting attention as a substitute material for general purpose resins because of low price and ease of supply. Application has been attempted in various ranges, such as for general molded products, for textile, medical, packaging.
일반적으로 PLA 중합 방법으로는 락트산으로부터 직접 축합 중합을 통해 합성하는 방법, 저분자량의 PLA로부터 고상중합을 통해 고분자량의 PLA를 합성하는 방법, 비점이 낮은 용매를 사용하는 공비축합(azeotropic condensation)을 통해 PLA를 합성하는 방법 등이 알려져 있으며, 최근에는 다양한 고분자량의 PLA를 합성하는데 용이한 장점을 지닌 개환 중합(ring opening polymerization)을 통한 PLA 합성에 대한 관심이 높다. In general, the PLA polymerization method is a method of synthesizing by direct condensation polymerization from lactic acid, a method of synthesizing high molecular weight PLA through solid phase polymerization from low molecular weight PLA, and azeotropic condensation using a low boiling solvent. A method of synthesizing PLA is known, and recently, there is high interest in PLA synthesis through ring opening polymerization having an advantage of easily synthesizing various high molecular weight PLA.
그러나 PLA 자체의 낮은 내열성 및 내충격성 등으로 인해 폴리락트산 단독 중합체는 내열성 및 내충격성 등의 기계적 물성이 충분치 못한 한계가 있으며, 일반 섬유 제품이나 페키징 제품 등과 같은 산업계 주요 요구사항인 신축성 등을 만족시키기 어려운 실정이므로, 그 적용 범위가 확대되지 못하고 있다. However, due to the low heat resistance and impact resistance of PLA itself, polylactic acid homopolymer has a limitation in that mechanical properties such as heat resistance and impact resistance are not sufficient, and satisfies elasticity, which is a major industrial requirement such as general textile products and packaging products. Since the situation is difficult to make, the application range is not expanded.
이에 다양한 용도로의 전개와 함께 기존의 취약한 물성을 보완하고자 다양한 시도들이 소개되고 있지만(예컨대, 한국 공개특허 제 2015-0124281호 및 미국 등록특허 제 8633294호), 특정 물성만을 보완하는데 그쳐, 그 적용 범위가 제한적인 실정이다. In this regard, various attempts have been introduced to complement existing weak properties along with development to various uses (for example, Korean Patent Application Publication No. 2015-0124281 and US Patent Registration No. 8633294), but only to supplement specific properties and apply the same. The scope is limited.
본 발명은 상기와 같은 종래기술의 문제점을 해결하고자 한 것으로, 폴리락트산(PLA) 고유의 낮은 신축성을 개선시키는 동시에 가공 시 문제가 되는 열 안정성을 개선하여 생산 효율을 높일 수 있는 폴리락트산 공중합체 및 그 제조 방법을 제공하는 것을 기술적 과제로 한다.The present invention is to solve the problems of the prior art as described above, and to improve the low elasticity inherent to polylactic acid (PLA) and at the same time improve the thermal stability that is a problem during processing and polylactic acid copolymer to increase the production efficiency and It is a technical subject to provide the manufacturing method.
상기한 기술적 과제를 해결하고자 본 발명은, 반복단위로서 (A) 락트산; 및 (B) 말단에 히드록시-테트라메틸렌-옥시-탄화수소 기를 갖는 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물;을 포함하는 폴리락트산 공중합체를 제공한다. The present invention to solve the above technical problem, (A) lactic acid as a repeating unit; And (B) a monocyclic, polycyclic or fused cyclic compound having a hydroxy-tetramethylene-oxy-hydrocarbon group at the end thereof.
본 발명의 다른 측면에 따르면, (1) 락트산, 락트산 올리고머 또는 락타이드를 예비 중합하는 단계; 및 (2) 상기 (1) 단계에서 얻어진 락트산 예비 중합체와, 말단에 히드록시-테트라메틸렌-옥시-탄화수소 기를 갖는 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물을 공중합하는 단계;를 포함하는, 폴리락트산 공중합체의 제조방법이 제공된다.According to another aspect of the invention, (1) prepolymerizing lactic acid, lactic acid oligomer or lactide; And (2) copolymerizing the lactic acid prepolymer obtained in the step (1) with a monocyclic, polycyclic or fused cyclic compound having a hydroxy-tetramethylene-oxy-hydrocarbon group at the terminal; A method for producing a polylactic acid copolymer is provided.
본 발명의 또 다른 측면에 따르면, 상기 폴리락트산 공중합체를 사용하여 제조된 수지 가공품(processed resin article)이 제공된다.According to another aspect of the present invention, a processed resin article prepared using the polylactic acid copolymer is provided.
본 발명에 따르면, 종래의 폴리락트산 단독 중합체의 낮은 신축성 및 열 안정성을 현저히 개선시킨 신규한 생분해성 폴리락트산 공중합체를 제공할 수 있으며, 이를 통해 기존 범용 수지와 같은 유연한 범위의 가공 안정성을 확보함으로써 가공 효율성을 증대하면서, 낮은 신축성 및 열 안정성으로 인한 2차 가공 처리의 어려움을 극복하여 섬유 제품, 필름 제품, 패키징 제품 및 의료 용품 등의 종래 적용 범위의 확대를 꾀할 수 있다.According to the present invention, it is possible to provide a novel biodegradable polylactic acid copolymer which significantly improves the low elasticity and thermal stability of a conventional polylactic acid homopolymer, thereby securing a processing range of the same flexibility as conventional general-purpose resins. Increasing processing efficiency, it is possible to overcome the difficulties of secondary processing due to low elasticity and thermal stability, thereby extending the scope of conventional applications of textile products, film products, packaging products and medical supplies.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 랜덤 또는 블록 반복단위로서, 락트산; 및 말단에 히드록시-테트라메틸렌-옥시-탄화수소 기를 갖는 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물;을 포함하는 폴리락트산 공중합체를 제공한다.The present invention provides a random or block repeating unit comprising lactic acid; And a monocyclic, polycyclic or fused cyclic compound having a hydroxy-tetramethylene-oxy-hydrocarbon group at the end thereof.
본 발명의 폴리락트산 공중합체에 포함되는 락트산 반복단위는 공중합체 내에서 다음의 구조를 가진다.The lactic acid repeating unit included in the polylactic acid copolymer of the present invention has the following structure in the copolymer.
상기 락트산 반복단위는 락트산, 락트산 올리고머 또는 락타이드(락트산의 환상 이량체)에 의하여 공중합체 내에 도입될 수 있다.The lactic acid repeating unit may be introduced into the copolymer by lactic acid, lactic acid oligomers or lactide (cyclic dimers of lactic acid).
본 발명의 폴리락트산 공중합체에 반복단위로서 포함되는 락트산의 함량은, 공중합체 총 100 중량%를 기준으로 70~99 중량%일 수 있으며, 바람직하게는 85~98 중량%, 보다 바람직하게는 90~97 중량%일 수 있으나, 이에 한정되는 것은 아니다. 폴리락트산 공중합체 내의 락트산 함량이 70 중량% 미만이면, 폴리락트산 공중합체의 중합도가 낮아지고 생분해성 효과가 미비할 수 있고, 99 중량%를 초과하면 폴리락트산 공중합체의 신축성 및 열 안정성에 대한 개선 효과가 낮을 수 있다.The content of lactic acid included as a repeating unit in the polylactic acid copolymer of the present invention may be 70 to 99% by weight based on 100% by weight of the copolymer, preferably 85 to 98% by weight, more preferably 90 It may be ~ 97% by weight, but is not limited thereto. If the lactic acid content in the polylactic acid copolymer is less than 70% by weight, the degree of polymerization of the polylactic acid copolymer may be low and the biodegradable effect may be insignificant, and if it exceeds 99% by weight, the improvement in elasticity and thermal stability of the polylactic acid copolymer may be achieved. The effect may be low.
본 발명의 폴리락트산 공중합체에 락트산 반복단위와 함께 공중합 반복단위로서 포함되는, 말단에 히드록시-테트라메틸렌-옥시-탄화수소 기를 갖는 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물(이하, “테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물”이라고도 한다)은 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 부위를 중심으로 탄화수소기를 통해 말단에 히드록시-테트라메틸렌-옥시 기[즉, HO-(CH2)4-O-]가 존재하는 구조의 화합물로서, 바람직하게는 양 말단에 히드록시-테트라메틸렌-옥시 기가 존재한다. Monocyclic, polycyclic or fused cyclic compounds having hydroxy-tetramethylene-oxy-hydrocarbon groups at the ends, which are included as copolymerized repeating units together with lactic acid repeating units in the polylactic acid copolymers of the present invention (hereinafter “tetra Methylene glycol ether-terminal cyclic compounds ”) are hydroxy-tetramethylene-oxy groups (i.e., HO- (CH 2 ) at the ends via a hydrocarbon group around a monocyclic, polycyclic or fused cyclic moiety) As a compound having a structure of 4 -O-, a hydroxy-tetramethylene-oxy group is preferably present at both ends.
본 발명의 폴리락트산 공중합체에 락트산 반복단위와 함께 반복단위로서 포함되는 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물의 함량은 공중합체 총 100 중량%를 기준으로 1~30 중량%일 수 있으며, 바람직하게는 2~15 중량%, 보다 바람직하게는 3~10 중량%일 수 있으나, 이에 한정되는 것은 아니다. 폴리락트산 공중합체 내의 코모노머로서의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물의 함량이 1 중량% 미만이면, 폴리락트산 공중합체의 신축성 및 열 안정성에 대한 개선 효과가 미비할 수 있으며, 30 중량% 초과이면, 폴리락트산 공중합체의 중합도 및 폴리락트산 공중합체의 생분해성이 낮을 수 있다.The content of the tetramethylene glycol ether-terminal cyclic compound included in the polylactic acid copolymer of the present invention as a repeating unit together with the lactic acid repeating unit may be 1 to 30% by weight based on 100% by weight of the copolymer. May be 2 to 15% by weight, more preferably 3 to 10% by weight, but is not limited thereto. If the content of the tetramethylene glycol ether-terminal cyclic compound as a comonomer in the polylactic acid copolymer is less than 1% by weight, the improvement effect on the elasticity and thermal stability of the polylactic acid copolymer may be insignificant, and if it is more than 30% by weight. The degree of polymerization of the polylactic acid copolymer and the biodegradability of the polylactic acid copolymer may be low.
본 발명의 일 구체예에 따르면, 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물은 하기 화학식 1-1로 표시되는 구조식을 가질 수 있다.According to one embodiment of the present invention, the tetramethylene glycol ether-terminated cyclic compound may have a structural formula represented by the following Chemical Formula 1-1.
[화학식 1-1][Formula 1-1]
HO-(CH2)4-(O-R1)-B-A-B'-(R2-O)-(CH2)4-OHHO- (CH 2 ) 4- (OR 1 ) -BA-B '-(R 2 -O)-(CH 2 ) 4 -OH
상기 화학식 1-1에서,In Chemical Formula 1-1,
R1 및 R2은 각각 독립적으로, 치환된 또는 비치환된 2가의 탄화수소기를 나타내며, 여기서 R1 및 R2는 각각 독립적으로 에테르 결합, 에스테르 결합, 케톤 결합 및 우레탄 결합으로부터 선택된 하나 이상의 결합을 포함할 수 있고, R 1 and R 2 each independently represent a substituted or unsubstituted divalent hydrocarbon group, wherein R 1 and R 2 each independently comprise one or more bonds selected from ether bonds, ester bonds, ketone bonds and urethane bonds Can do it,
B 및 B'은 각각 독립적으로 무수당 알코올을 나타내며, 상기 무수당 알코올은 그 일 말단 또는 양 말단에 알킬렌 글리콜이 치환된 또는 비치환된 형태일 수 있고, 상기 알킬렌 글리콜은 특별히 제한되지 않지만, 바람직하게는 에틸렌 글리콜, 프로필렌 글리콜 또는 이들의 조합일 수 있으며; B and B 'each independently represent an anhydrosugar alcohol, the anhydrosugar alcohol may be in the form of substituted or unsubstituted alkylene glycol at one or both ends thereof, the alkylene glycol is not particularly limited , Preferably ethylene glycol, propylene glycol or combinations thereof;
A는 치환된 또는 비치환된 2가의 지방족 또는 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 그룹이거나; 또는 N, O 및 S로부터 선택된 헤테로 원자를 하나 이상 포함하는, 치환된 또는 비치환된 2가의 모노헤테로사이클릭, 폴리헤테로사이클릭 또는 융합 헤테로사이클릭 그룹일 수 있고, 또한 A는 에스테르 기, 에테르 기, 티오에테르 기, 케톤 기 및 우레탄 기로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함할 수 있다. A is a substituted or unsubstituted divalent aliphatic or aromatic monocyclic, polycyclic or fused cyclic group; Or a substituted or unsubstituted divalent monoheterocyclic, polyheterocyclic or fused heterocyclic group comprising at least one hetero atom selected from N, O and S, wherein A is an ester group, ether It may comprise one or more functional groups selected from the group consisting of groups, thioether groups, ketone groups and urethane groups.
본원 명세서에서, 용어 “탄화수소기”는 선형, 분지형 또는 환형의 포화 또는 불포화 탄화수소기를 의미하며, 여기에는 포화 또는 불포화 알킬, 알콕시, 아릴 및 이들의 조합이 포함될 수 있으나, 이에 한정되지 않는다. As used herein, the term “hydrocarbon group” refers to a linear, branched or cyclic saturated or unsaturated hydrocarbon group, which may include, but is not limited to, saturated or unsaturated alkyl, alkoxy, aryl and combinations thereof.
또한 본원 명세서에서, 용어 “치환” 또는 “치환된”이란 수소 원자가 할로겐 원자(예를 들면, Cl 또는 Br 등), 히드록실기, 탄소수 1 내지 13의 알킬기(예를 들면, 메틸, 에틸 또는 프로필 등), 탄소수 1 내지 13의 알콕시기(예를 들면, 메톡시, 에톡시 또는 프로폭시 등), 탄소수 6 내지 10의 아릴기(예를 들면, 페닐, 클로로페닐 또는 톨릴 등), 또는 이들의 조합 등의 치환기에 의해 치환된 것을 의미한다.In addition, in the present specification, the term “substituted” or “substituted” means that a hydrogen atom is a halogen atom (eg, Cl or Br, etc.), a hydroxyl group, an alkyl group having 1 to 13 carbon atoms (eg, methyl, ethyl or propyl). Etc.), an alkoxy group having 1 to 13 carbon atoms (e.g., methoxy, ethoxy or propoxy), an aryl group having 6 to 10 carbon atoms (e.g., phenyl, chlorophenyl or tolyl, etc.), or these It means what was substituted by substituents, such as a combination.
또한 본원 명세서에서, 용어 “무수당 알코올”은 수소화 당(hydrogenated sugar) 또는 당 알코올(sugar alcohol)이라고 불리우는, 당류가 갖는 환원성 말단기에 수소를 부가하여 얻어지는 화합물로부터 하나 이상의 물 분자를 제거하여 얻은 임의의 물질을 의미한다. In addition, in the present specification, the term “anhydrous alcohol” is obtained by removing one or more water molecules from a compound obtained by adding hydrogen to a reducing terminal group of a saccharide, called hydrogenated sugar or sugar alcohol. It means any substance.
또한 본원 명세서에서, 용어 “알킬렌 글리콜로 치환된 무수당 알코올(이하, “무수당 알코올-알킬렌 글리콜”이라 한다)”이란 무수당 알코올의 말단(예를 들면, 양 말단) 히드록실기와 알킬렌 옥사이드(예를 들면, C1-C4 알킬렌 옥사이드, 보다 구체적으로는 에틸렌 옥사이드, 프로필렌 옥사이드 또는 이들의 혼합물)을 반응시켜 얻어지는 부가물로서, 무수당 알코올의 말단(예를 들어, 양 말단) 히드록실기의 수소가 알킬렌 옥사이드의 히드록시알킬렌 옥사이드로 치환된 형태의 화합물을 의미한다. 예를 들어, 이소소르비드의 양 말단 히드록실기에 에틸렌 옥사이드가 부가된 결과물은 하기와 같다.In addition, in the present specification, the term “anhydrosugar alcohol substituted with alkylene glycol (hereinafter referred to as“ anhydrosugar alcohol-alkylene glycol ”)” refers to the terminal (eg, both ends) hydroxyl group of the anhydrosugar alcohol. As an adduct obtained by reacting an alkylene oxide (eg, C 1 -C 4 alkylene oxide, more specifically ethylene oxide, propylene oxide or mixtures thereof), the terminal (eg, amount of anhydrosugar alcohol) Terminal) means a compound of the form in which hydrogen of the hydroxyl group is substituted with hydroxyalkylene oxide of alkylene oxide. For example, the result of adding ethylene oxide to both terminal hydroxyl groups of isosorbide is as follows.
보다 구체적으로 상기 화학식 1-1에서,More specifically in Chemical Formula 1-1,
R1 및 R2은 각각 독립적으로, 치환된 또는 비치환된 2가의, 탄소수 12 내지 328의 탄화수소기를 나타내며, 여기서 R1 및 R2는 각각 독립적으로 에테르 결합, 에스테르 결합, 케톤 결합 및 우레탄 결합으로부터 선택된 하나 이상의 결합을 포함할 수 있고;R 1 and R 2 each independently represent a substituted or unsubstituted divalent hydrocarbon group having 12 to 328 carbon atoms, wherein R 1 and R 2 are each independently from an ether bond, an ester bond, a ketone bond and a urethane bond May comprise one or more bonds selected;
B 및 B'은 각각 독립적으로 디안하이드로헥시톨을 나타내며, 바람직하게는 이소소르비드(1,6-디안하이드로소르비톨), 이소만니드(1,6-디안하이드로만니톨) 또는 이소이디드(1,6-디안하이드로이디톨)일 수 있으며, 상기 디안하이드로헥시톨은 그 일 말단 또는 양 말단에 알킬렌 글리콜이 치환된 또는 비치환된 형태일 수 있고, 상기 알킬렌 글리콜은 특별히 제한되지 않지만, 바람직하게는 에틸렌 글리콜, 프로필렌 글리콜 또는 이들의 조합일 수 있으며;B and B 'each independently represent dianhydrohexitol, preferably isosorbide (1,6- dianhydrosorbitol), isomannide (1,6- dianhydromannitol) or isoidide (1, 6- dianhydroiditol), the dianhydrohexitol may be a substituted or unsubstituted form of alkylene glycol at one or both ends thereof, the alkylene glycol is not particularly limited, Preferably ethylene glycol, propylene glycol or combinations thereof;
A는 치환된 또는 비치환된 2가의, 총 탄소수 5 내지 30의 지방족 또는 총 탄소수 6 내지 30의 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 그룹이거나; 또는 N, O 및 S로부터 선택된 헤테로 원자를 하나 이상 포함하는, 치환된 또는 비치환된 2가의, 총 고리 원자수 5 내지 30의 모노헤테로사이클릭, 폴리헤테로사이클릭 또는 융합 헤테로사이클릭 그룹일 수 있고, 또한 A는 에스테르 기, 에테르 기, 티오에테르 기, 케톤 기 및 우레탄 기로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함할 수 있다. A is a substituted or unsubstituted divalent, aliphatic having 5 to 30 carbon atoms or an aromatic monocyclic, polycyclic or fused cyclic group having 6 to 30 carbon atoms; Or a substituted or unsubstituted divalent, monoheterocyclic, polyheterocyclic or fused heterocyclic group having 5 to 30 ring atoms, including one or more hetero atoms selected from N, O and S. And A may also include one or more functional groups selected from the group consisting of ester groups, ether groups, thioether groups, ketone groups and urethane groups.
보다 더 구체적으로 상기 화학식 1-1에서,More specifically in Chemical Formula 1-1,
R1 및 R2은 각각 독립적으로, 치환된 또는 비치환된 2가의, 탄소수 12 내지 248의 탄화수소기를 나타내며, 여기서 R1 및 R2는 각각 독립적으로 에테르 결합, 에스테르 결합, 케톤 결합 및 우레탄 결합으로부터 선택된 하나 이상의 결합을 포함할 수 있고; R 1 and R 2 each independently represent a substituted or unsubstituted divalent hydrocarbon group having 12 to 248 carbon atoms, wherein R 1 and R 2 are each independently from an ether bond, an ester bond, a ketone bond and a urethane bond May comprise one or more bonds selected;
B 및 B'은 각각 독립적으로 디안하이드로헥시톨을 나타내며, 바람직하게는 이소소르비드(1,6-디안하이드로소르비톨), 이소만니드(1,6-디안하이드로만니톨) 또는 이소이디드(1,6-디안하이드로이디톨)일 수 있으며, 상기 디안하이드로헥시톨은 그 일 말단 또는 양 말단에 알킬렌 글리콜이 치환된 또는 비치환된 형태일 수 있고, 상기 알킬렌 글리콜은 특별히 제한되지 않지만, 바람직하게는 에틸렌 글리콜, 프로필렌 글리콜 또는 이들의 조합일 수 있으며;B and B 'each independently represent dianhydrohexitol, preferably isosorbide (1,6- dianhydrosorbitol), isomannide (1,6- dianhydromannitol) or isoidide (1, 6- dianhydroiditol), the dianhydrohexitol may be a substituted or unsubstituted form of alkylene glycol at one or both ends thereof, the alkylene glycol is not particularly limited, Preferably ethylene glycol, propylene glycol or combinations thereof;
A는 치환된 또는 비치환된 2가의, 총 탄소수 6 내지 20의 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 그룹이거나; 또는 N, O 및 S로부터 선택된 헤테로 원자를 하나 이상 포함하는, 치환된 또는 비치환된 2가의, 총 고리 원자수 5 내지 20의 모노헤테로사이클릭, 폴리헤테로사이클릭 또는 융합 헤테로사이클릭 그룹일 수 있고, 또한 A는 에스테르 기, 에테르 기, 티오에테르 기, 케톤 기 및 우레탄 기로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함할 수 있다.A is a substituted or unsubstituted divalent, aromatic monocyclic, polycyclic or fused cyclic group having 6 to 20 carbon atoms in total; Or a substituted or unsubstituted divalent, monoheterocyclic, polyheterocyclic or fused heterocyclic group having from 5 to 20 ring atoms, including one or more hetero atoms selected from N, O and S. And A may also include one or more functional groups selected from the group consisting of ester groups, ether groups, thioether groups, ketone groups and urethane groups.
본 발명의 바람직한 일 구체예에 따르면, 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물은 화학식 1-2로 표시되는 구조식을 가질 수 있다.According to one preferred embodiment of the present invention, the tetramethylene glycol ether-terminated cyclic compound may have a structural formula represented by Formula 1-2.
[화학식 1-2][Formula 1-2]
HO-(CH2)4-(O-R3)n-C-B-A-B'-C'-(R4-O)m-(CH2)4-OHHO- (CH 2 ) 4- (OR 3 ) n -CBA-B'-C '-(R 4 -O) m- (CH 2 ) 4 -OH
상기 화학식 1-2에서,In Chemical Formula 1-2,
R3 및 R4는 각각 독립적으로, 치환된 또는 비치환된 2가의 탄화수소기를 나타내고; R 3 and R 4 each independently represent a substituted or unsubstituted divalent hydrocarbon group;
C 및 C'은 각각 독립적으로, 에테르 결합, 에스테르 결합, 케톤 결합 및 우레탄 결합으로부터 선택된 하나 이상의 결합을 포함하는, 치환된 또는 비치환된 2가의 지방족 또는 방향족 탄화수소기를 나타내며; C and C 'each independently represent a substituted or unsubstituted divalent aliphatic or aromatic hydrocarbon group comprising one or more bonds selected from ether bonds, ester bonds, ketone bonds and urethane bonds;
B 및 B'은 각각 독립적으로 무수당 알코올을 나타내고, 상기 무수당 알코올은 그 일 말단 또는 양 말단에 알킬렌 글리콜이 치환된 또는 비치환된 형태일 수 있고, 상기 알킬렌 글리콜은 특별히 제한되지 않지만, 바람직하게는 에틸렌 글리콜, 프로필렌 글리콜 또는 이들의 조합일 수 있으며; B and B 'each independently represent an anhydrosugar alcohol, the anhydrosugar alcohol may be in the form of substituted or unsubstituted alkylene glycol at one or both ends thereof, the alkylene glycol is not particularly limited , Preferably ethylene glycol, propylene glycol or combinations thereof;
A는 치환된 또는 비치환된 2가의 지방족 또는 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 그룹이거나; 또는 N, O 및 S로부터 선택된 헤테로 원자를 하나 이상 포함하는, 치환된 또는 비치환된 2가의 모노헤테로사이클릭, 폴리헤테로사이클릭 또는 융합 헤테로사이클릭 그룹일 수 있고, 또한 A는 에스테르 기, 에테르 기, 티오에테르 기, 케톤 기 및 우레탄 기로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함할 수 있으며;A is a substituted or unsubstituted divalent aliphatic or aromatic monocyclic, polycyclic or fused cyclic group; Or a substituted or unsubstituted divalent monoheterocyclic, polyheterocyclic or fused heterocyclic group comprising at least one hetero atom selected from N, O and S, wherein A is an ester group, ether May comprise one or more functional groups selected from the group consisting of groups, thioether groups, ketone groups and urethane groups;
n 및 m은 각각 독립적으로, 1 내지 80의 정수를 나타낸다. n and m each independently represent the integer of 1-80.
보다 구체적으로, 상기 화학식 1-2에서, More specifically, in Chemical Formula 1-2,
R3 및 R4는 각각 독립적으로, 치환된 또는 비치환된 알킬렌기를 나타내고; R 3 and R 4 each independently represent a substituted or unsubstituted alkylene group;
C 및 C'은 각각 독립적으로, 에테르 결합, 에스테르 결합, 케톤 결합 및 우레탄 결합으로부터 선택된 하나 이상의 결합을 포함하는 2가의, 총 탄소수 3 내지 13의 지방족 또는 총 탄소수 8 내지 32의 방향족 탄화수소기를 나타내며; C and C 'each independently represent a divalent, aliphatic having 3 to 13 carbon atoms or an aromatic hydrocarbon group having 8 to 32 carbon atoms, including one or more bonds selected from ether bonds, ester bonds, ketone bonds, and urethane bonds;
B 및 B'은 각각 독립적으로 디안하이드로헥시톨을 나타내며, 바람직하게는 이소소르비드(1,6-디안하이드로소르비톨), 이소만니드(1,6-디안하이드로만니톨) 또는 이소이디드(1,6-디안하이드로이디톨)일 수 있으며, 상기 디안하이드로헥시톨은 그 일 말단 또는 양 말단에 알킬렌 글리콜이 치환된 또는 비치환된 형태일 수 있고, 상기 알킬렌 글리콜은 특별히 제한되지 않지만, 바람직하게는 에틸렌 글리콜, 프로필렌 글리콜 또는 이들의 조합일 수 있으며;B and B 'each independently represent dianhydrohexitol, preferably isosorbide (1,6- dianhydrosorbitol), isomannide (1,6- dianhydromannitol) or isoidide (1, 6- dianhydroiditol), the dianhydrohexitol may be a substituted or unsubstituted form of alkylene glycol at one or both ends thereof, the alkylene glycol is not particularly limited, Preferably ethylene glycol, propylene glycol or combinations thereof;
A는 치환된 또는 비치환된 2가의, 총 탄소수 5 내지 30의 지방족 또는 총 탄소수 6 내지 30의 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 그룹이거나; 또는 N, O 및 S로부터 선택된 헤테로 원자를 하나 이상 포함하는, 치환된 또는 비치환된 2가의, 총 고리 원자수 5 내지 30의 모노헤테로사이클릭, 폴리헤테로사이클릭 또는 융합 헤테로사이클릭 그룹일 수 있고, 또한 A는 에스테르 기, 에테르 기, 티오에테르 기, 케톤 기 및 우레탄 기로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함할 수 있으며;A is a substituted or unsubstituted divalent, aliphatic having 5 to 30 carbon atoms or an aromatic monocyclic, polycyclic or fused cyclic group having 6 to 30 carbon atoms; Or a substituted or unsubstituted divalent, monoheterocyclic, polyheterocyclic or fused heterocyclic group having 5 to 30 ring atoms, including one or more hetero atoms selected from N, O and S. And A may also include one or more functional groups selected from the group consisting of ester groups, ether groups, thioether groups, ketone groups and urethane groups;
n 및 m은 각각 독립적으로, 1 내지 70의 정수를 나타낸다.n and m each independently represent the integer of 1-70.
보다 더 구체적으로, 상기 화학식 1-2에서, More specifically, in Chemical Formula 1-2,
R3 및 R4는 각각 독립적으로, 치환된 또는 비치환된 탄소수 2 내지 6의 알킬렌기, 바람직하게는 치환된 또는 비치환된 탄소수 3 내지 5의 알킬렌기, 보다 바람직하게는 치환된 또는 비치환된 테트라메틸렌기를 나타내고; R 3 and R 4 are each independently a substituted or unsubstituted alkylene group having 2 to 6 carbon atoms, preferably a substituted or unsubstituted alkylene group having 3 to 5 carbon atoms, more preferably a substituted or unsubstituted group Represented tetramethylene group;
C 및 C'은 각각 독립적으로, 에테르 결합, 에스테르 결합, 케톤 결합 및 우레탄 결합으로부터 선택된 하나 이상의 결합을 포함하는 2가의, 총 탄소수 8 내지 22의 방향족 탄화수소기를 나타내며; C and C 'each independently represent a divalent, aromatic hydrocarbon group having 8 to 22 carbon atoms in total including one or more bonds selected from ether bonds, ester bonds, ketone bonds and urethane bonds;
B 및 B'은 각각 독립적으로 디안하이드로헥시톨을 나타내며, 바람직하게는 이소소르비드(1,6-디안하이드로소르비톨), 이소만니드(1,6-디안하이드로만니톨) 또는 이소이디드(1,6-디안하이드로이디톨)일 수 있으며, 상기 디안하이드로헥시톨은 그 일 말단 또는 양 말단에 알킬렌 글리콜이 치환된 또는 비치환된 형태일 수 있고, 상기 알킬렌 글리콜은 특별히 제한되지 않지만, 바람직하게는 에틸렌 글리콜, 프로필렌 글리콜 또는 이들의 조합일 수 있으며;B and B 'each independently represent dianhydrohexitol, preferably isosorbide (1,6- dianhydrosorbitol), isomannide (1,6- dianhydromannitol) or isoidide (1, 6- dianhydroiditol), the dianhydrohexitol may be a substituted or unsubstituted form of alkylene glycol at one or both ends thereof, the alkylene glycol is not particularly limited, Preferably ethylene glycol, propylene glycol or combinations thereof;
A는 치환된 또는 비치환된 2가의, 총 탄소수 6 내지 20의 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 그룹이거나; 또는 N, O 및 S로부터 선택된 헤테로 원자를 하나 이상 포함하는, 치환된 또는 비치환된 2가의, 총 고리 원자수 5 내지 20의 모노헤테로사이클릭, 폴리헤테로사이클릭 또는 융합 헤테로사이클릭 그룹일 수 있고, 또한 A는 에스테르 기, 에테르 기, 티오에테르 기, 케톤 기 및 우레탄 기로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함할 수 있으며;A is a substituted or unsubstituted divalent, aromatic monocyclic, polycyclic or fused cyclic group having 6 to 20 carbon atoms in total; Or a substituted or unsubstituted divalent, monoheterocyclic, polyheterocyclic or fused heterocyclic group having from 5 to 20 ring atoms, including one or more hetero atoms selected from N, O and S. And A may also include one or more functional groups selected from the group consisting of ester groups, ether groups, thioether groups, ketone groups and urethane groups;
n 및 m은 각각 독립적으로, 1 내지 60의 정수를 나타낸다.n and m each independently represent the integer of 1-60.
본 발명의 보다 바람직한 일 구체예에 따르면, 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물은 화학식 1-3으로 표시되는 구조식을 가질 수 있다.According to one preferred embodiment of the present invention, the tetramethylene glycol ether-terminated cyclic compound may have a structural formula represented by Chemical Formula 1-3.
[화학식 1-3][Formula 1-3]
상기 화학식 1-3에서,In Chemical Formula 1-3,
n은 1 내지 80, 바람직하게는 1 내지 70, 보다 바람직하게는 1 내지 60의 정수를 나타낸다. n represents the integer of 1-80, Preferably it is 1-70, More preferably, it is 1-60.
본 발명의 다른 구체예에 따르면, 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물은 하기 화학식 2-1으로 표시되는 구조식을 가질 수 있다.According to another embodiment of the present invention, the tetramethylene glycol ether-terminated cyclic compound may have a structural formula represented by the following Chemical Formula 2-1.
[화학식 2-1][Formula 2-1]
HO-(CH2)4-(O-R1)-A-(R2-O)-(CH2)4-OHHO- (CH 2 ) 4- (OR 1 ) -A- (R 2 -O)-(CH 2 ) 4 -OH
상기 화학식 2-1에서, In Chemical Formula 2-1,
R1, R2 및 A는 상기 화학식 1-1에서 정의된 바와 같다. R 1 , R 2 and A are as defined in Formula 1-1.
본 발명의 바람직한 다른 구체예에 따르면, 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물은 하기 화학식 2-2로 표시되는 구조식을 가질 수 있다.According to another preferred embodiment of the present invention, the tetramethylene glycol ether-terminal cyclic compound may have a structural formula represented by the following formula (2-2).
[화학식 2-2][Formula 2-2]
HO-(CH2)4-(O-R3)n-C- A- C'-(R4-O)m-(CH2)4-OHHO- (CH 2 ) 4- (OR 3 ) n -C- A- C '-(R 4 -O) m- (CH 2 ) 4 -OH
상기 화학식 2-2에서,In Chemical Formula 2-2,
R3, R4, C, C', A, n 및 m은 상기 화학식 1-2에서 정의된 바와 같다. R 3 , R 4 , C, C ', A, n and m are as defined in Formula 1-2 above.
본 발명의 보다 바람직한 다른 구체예에 따르면, 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물은 하기 화학식 2-3, 2-4 또는 2-5로 표시되는 구조식을 가질 수 있다.According to another preferred embodiment of the present invention, the tetramethylene glycol ether-terminal cyclic compound may have a structural formula represented by the following formula 2-3, 2-4 or 2-5.
[화학식 2-3][Formula 2-3]
상기 화학식 2-3에서, In Chemical Formula 2-3,
n은 2 내지 80, 바람직하게는 2 내지 70, 보다 바람직하게는 2 내지 60의 정수를 나타낸다.n represents an integer of 2 to 80, preferably 2 to 70, more preferably 2 to 60.
[화학식 2-4][Formula 2-4]
상기 화학식 2-4에서, In Chemical Formula 2-4,
n은 1 내지 80, 바람직하게는 1 내지 70, 보다 바람직하게는 1 내지 60의 정수를 나타낸다.n represents the integer of 1-80, Preferably it is 1-70, More preferably, it is 1-60.
[화학식 2-5][Formula 2-5]
상기 화학식 2-5에서, In Chemical Formula 2-5,
n은 1 내지 80, 바람직하게는 1 내지 70, 보다 바람직하게는 1 내지 60의 정수를 나타낸다.n represents the integer of 1-80, Preferably it is 1-70, More preferably, it is 1-60.
본 발명의 폴리락트산 공중합체에 반복단위로서 포함되는, 상기 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물의 제조 방법에는 특별한 제한이 없다. There is no particular limitation on the method for producing the tetramethylene glycol ether-terminated cyclic compound, which is included as a repeating unit in the polylactic acid copolymer of the present invention.
본 발명의 일 구체예에 따르면, 에틸렌 아세테이트 용매 또는 메틸렌 클로라이드 용매로 용해시킨 무수당 알코올(예를 들면, 이소소르비드, 이소만니드, 이소이디드 등) 용액과 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 디카르복시산 또는 그의 디에스테르(예를 들면, 디메틸 테레프탈레이트 등)를 1차 반응시킨 후, 폴리테트라메틸렌 에테르 글리콜(Polytetramethylene ether glycol, 이하 PTMEG)을 첨가하여 2차 반응을 시키며, 이어서 알칼리 용액을 이용한 수회의 수세 및 증류수를 이용한 수회의 수세를 통해 부 반응물을 제거하고, 진공 감압을 통해 용매를 제거함으로써, 상기 화학식 1-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물을 제조할 수 있다. According to one embodiment of the present invention, a monocyclic, polycyclic or fused solution of anhydrous sugar alcohol (eg, isosorbide, isomannide, isoidide, etc.) dissolved in an ethylene acetate solvent or a methylene chloride solvent After cyclic dicarboxylic acid or its diester (for example, dimethyl terephthalate, etc.) is first reacted, polytetramethylene ether glycol (PTMEG) is added to perform a secondary reaction, followed by alkaline solution. By removing the secondary reactant through several washing with water and several washing with distilled water, and removing the solvent through vacuum reduced pressure, the tetramethylene glycol ether-terminated cyclic compound of Formula 1-3 can be prepared.
본 발명의 다른 구체예에 따르면, 에틸렌 아세테이트 용매 또는 메틸렌 클로라이드 용매로 용해시킨 총 탄소수 6 내지 30의 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물(예를 들면, 나프탈렌디카르복시산, 나프탈렌디카르복실레이트 등) 용액과 PTMEG를 반응시킨 후, 알칼리 용액을 이용한 수회의 수세 및 증류수를 이용한 수회의 수세를 통해 부 반응물을 제거하고, 진공 감압을 통해 용매를 제거함으로써, 상기 화학식 2-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물을 제조할 수 있다.According to another embodiment of the invention, aromatic monocyclic, polycyclic or fused cyclic compounds having a total of 6 to 30 carbon atoms dissolved in ethylene acetate solvent or methylene chloride solvent (e.g., naphthalenedicarboxylic acid, naphthalenedicar After reacting the PTMEG with a solution such as a carboxylate, the secondary reactant is removed by several washings with an alkaline solution and several washings with distilled water, and the solvent is removed by vacuum depressurization, thereby removing Methylene glycol ether-terminated cyclic compounds can be prepared.
본 발명의 또 다른 구체예에 따르면, 에틸렌 아세테이트 용매 또는 메틸렌 클로라이드 용매로 용해시킨 총 탄소수 6 내지 30의 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물(예를 들면, 디페놀, 나프탈렌디올 등) 용액과 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 디카르복시산 또는 그의 디에스테르(예를 들면, 디메틸 테레프탈레이트 등)를 1차 반응시킨 후, 폴리테트라메틸렌 에테르 글리콜 (Polytetramethylene ether glycol, 이하 PTMEG)을 첨가하여 2차 반응을 시키며, 이어서 알칼리 용액을 이용한 수회의 수세 및 증류수를 이용한 수회의 수세를 통해 부 반응물을 제거하고, 진공 감압을 통해 용매를 제거함으로써, 상기 화학식 2-4 또는 2-5의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물을 제조할 수 있다.According to another embodiment of the present invention, aromatic monocyclic, polycyclic or fused cyclic compounds having 6 to 30 carbon atoms dissolved in ethylene acetate solvent or methylene chloride solvent (e.g., diphenol, naphthalenediol and the like) ) The solution and the monocyclic, polycyclic or fused cyclic dicarboxylic acid or diester thereof (e.g., dimethyl terephthalate, etc.) and then polytetramethylene ether glycol (PTMEG) The reaction was carried out by adding a secondary reaction, and then the secondary reactant was removed through several washings with an alkaline solution and several washings with distilled water, and the solvent was removed by vacuum decompression, thereby the chemical formula 2-4 or 2-5 Tetramethylene glycol ether-terminated cyclic compounds can be prepared.
본 발명의 공중합체에는, 상기한 락트산 반복단위 및 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 반복단위 외에도, 본 발명의 목적을 달성할 수 있는 범위 내에서 추가의 공중합 반복단위를 하나 이상 더 포함할 수 있으며, 그러한 추가의 공중합 반복단위의 종류에는 특별한 제한이 없다. 예를 들면, 본 발명의 공중합체에 추가로 포함 가능한 공중합 반복단위로는 폴리에테르, 다이올 등이 포함될 수 있다.In addition to the lactic acid repeating unit and the tetramethylene glycol ether-terminated cyclic compound repeating unit, the copolymer of the present invention may further include one or more additional copolymerization repeating units within the scope of achieving the object of the present invention. There is no particular limitation on the kind of such additional copolymerized repeating units. For example, the copolymer repeating unit that may be further included in the copolymer of the present invention may include polyether, diol, and the like.
본 발명의 다른 측면에 따르면, (1) 락트산, 락트산 올리고머 또는 락타이드를 예비중합하는 단계; 및 (2) 상기 (1)단계에서 얻어진 락트산 예비 중합체와, 말단에 히드록시-테트라메틸렌-옥시-탄화수소 기를 갖는 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물(이하, “테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물”이라고도 한다)을 공중합하는 단계;를 포함하는, 폴리락트산 공중합체의 제조방법이 제공된다.According to another aspect of the invention, (1) prepolymerizing lactic acid, lactic acid oligomer or lactide; And (2) a monocyclic, polycyclic or fused cyclic compound having a lactic acid prepolymer obtained in step (1) and a hydroxy-tetramethylene-oxy-hydrocarbon group at the end thereof (hereinafter, “tetramethylene glycol ether- A method for producing a polylactic acid copolymer is provided.
상기 (1) 단계에서 락트산, 락트산 올리고머(예컨대, 수평균분자량(Mn) 100 내지 5,000) 또는 락타이드를 예비 중합하는 방법 내지 조건에는 특별한 제한이 없으며, 통상 알려진 방법 내지 조건을 사용할 수 있다. 이에 한정되는 것은 아니나, 본 발명의 일 구체예에 따르면, 촉매의 존재 하에, 락트산, 락트산 올리고머 또는 락타이드를 승온(예컨대, 100~210℃, 보다 구체적으로는 110~150℃) 및 감압 조건 하에 적정 시간(예컨대, 0.1~2시간, 보다 구체적으로는 0.2~1.5시간) 반응시킴으로써 예비 중합체를 제조할 수 있다. 수득된 락트산 예비 중합체의 수평균분자량(Mn)은, 예컨대 2,000 내지 10,000일 수 있으나, 이에 한정되는 것은 아니다.There is no particular limitation on the method or condition for prepolymerizing the lactic acid, the lactic acid oligomer (eg, number average molecular weight (Mn) 100 to 5,000) or lactide in step (1), and generally known methods or conditions may be used. Although not limited thereto, according to one embodiment of the present invention, in the presence of a catalyst, lactic acid, lactic acid oligomer or lactide is raised at elevated temperature (eg, 100 to 210 ° C, more specifically 110 to 150 ° C) and reduced pressure conditions. A prepolymer can be manufactured by making reaction for a suitable time (for example, 0.1 to 2 hours, more specifically 0.2 to 1.5 hours). The number average molecular weight (Mn) of the obtained lactic acid prepolymer may be, for example, 2,000 to 10,000, but is not limited thereto.
상기 락트산의 예비 중합에 사용될 수 있는 촉매는 예를 들어, 산화아연, 산화안티몬, 염화안티몬, 산화납, 산화칼슘, 산화알루미늄, 산화철, 염화칼슘, 초산아연, 파라톨루엔 슬폰산, 염화 제 1 주석, 황산 제 1 주석, 산화 제 1 주석, 산화 제 2 주석, 옥탄산 제 1 주석, 테트라페닐 주석, 주석 분말, 사염화 티탄 또는 이들의 혼합물일 수 있다. 상기 촉매는 락트산, 락트산 올리고머 또는 락타이드 100 중량부에 대하여 0.0005 내지 5 중량부, 바람직하게는 0.003 내지 1 중량부로 사용될 수 있다. 촉매의 사용량이 0.0005 중량부 미만이면, 반응 속도가 느려지고, 5 중량부 초과이면, 잔류 촉매가 제품의 색상을 변색시키거나 물성을 저하시킬 수 있다.Catalysts that can be used for the preliminary polymerization of lactic acid are, for example, zinc oxide, antimony oxide, antimony chloride, lead oxide, calcium oxide, aluminum oxide, iron oxide, calcium chloride, zinc acetate, paratoluene sulfonic acid, tin tin, First tin sulfate, first tin oxide, second tin oxide, first tin octanoate, tetraphenyl tin, tin powder, titanium tetrachloride, or mixtures thereof. The catalyst may be used in an amount of 0.0005 to 5 parts by weight, preferably 0.003 to 1 part by weight based on 100 parts by weight of lactic acid, lactic acid oligomer or lactide. When the amount of the catalyst used is less than 0.0005 parts by weight, the reaction rate is slowed. When the amount of the catalyst used is more than 5 parts by weight, the residual catalyst may discolor the product or degrade the physical properties.
상기 (2) 단계에서는, (1) 단계에서 수득된 락트산 예비 중합체와 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물을 공중합한다. (2) 단계에서 사용 가능한 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물로는 앞서 설명한 바와 같은 것들을 들 수 있다. (2) 단계에서의 공중합 방법 내지 조건 역시 특별한 제한은 없으며, 통상 알려진 락트산 공중합체 제조방법 내지 조건을 사용할 수 있다. 이에 한정되는 것은 아니나, 본 발명의 일 구체예에 따르면, 상기 (1) 단계의 결과 혼합물(상기 촉매 포함)에 개시제 및 전술한 바와 같은 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물을 투입하고, 질소 분위기에서 승온 (예컨대, 100~210℃, 보다 구체적으로는 110~150℃) 및 감압 조건 하에 적정 시간 (예컨대, 0.5~4시간, 보다 구체적으로는 1~3시간) 반응시킴으로써 공중합체를 형성할 수 있다. 수득된 폴리락트산 공중합체의 수평균분자량(Mn)은, 예컨대 50,000 내지 300,000일 수 있으나, 이에 한정되는 것은 아니다.In step (2), the lactic acid prepolymer obtained in step (1) is copolymerized with the tetramethylene glycol ether-terminated cyclic compound. Tetramethylene glycol ether-terminated cyclic compounds usable in step (2) include those described above. The copolymerization method and conditions in step (2) are also not particularly limited, and conventionally known lactic acid copolymer production methods and conditions may be used. Although not limited thereto, according to one embodiment of the present invention, an initiator and a tetramethylene glycol ether-terminated cyclic compound as described above are added to the resultant mixture (including the catalyst) of step (1), and a nitrogen atmosphere The copolymer may be formed by reacting at an elevated temperature (eg, 100 to 210 ° C, more specifically, 110 to 150 ° C) and a decompression condition under an appropriate time (for example, 0.5 to 4 hours, more specifically 1 to 3 hours). have. The number average molecular weight (Mn) of the obtained polylactic acid copolymer may be, for example, 50,000 to 300,000, but is not limited thereto.
상기 공중합 단계에서 사용될 수 있는 개시제는 지방족(aliphatic) 알코올(예컨대, 탄소수 6 내지 20의 선형 또는 분지형 지방족 알코올, 보다 구체적으로는 1-도데칸올, 1-옥탄올 또는 이들의 혼합물 등)일 수 있다. 개시제는 락트산, 락트산 올리고머 또는 락타이드 100 중량부에 대하여 0.0005 내지 5 중량부, 바람직하게는 0.003 내지 0.1 중량부로 사용될 수 있다. 개시제의 사용량이 0.0005 중량부 미만이면, 공중합체의 분자량 조절에 문제가 있을 수 있고, 5 중량부 초과이면, 공중합체의 중합도에 문제가 있을 수 있다.The initiator that may be used in the copolymerization step may be an aliphatic alcohol (eg, linear or branched aliphatic alcohol having 6 to 20 carbon atoms, more specifically 1-dodecanol, 1-octanol, or a mixture thereof). have. The initiator may be used in an amount of 0.0005 to 5 parts by weight, preferably 0.003 to 0.1 parts by weight based on 100 parts by weight of lactic acid, lactic acid oligomer or lactide. If the amount of the initiator is less than 0.0005 parts by weight, there may be a problem in controlling the molecular weight of the copolymer, and if it is more than 5 parts by weight, there may be a problem in the degree of polymerization of the copolymer.
상기 설명한 바와 같은 본 발명의 폴리락트산 공중합체는 생분해성 및 친환경적 특성을 유지하는 동시에 폴리락트산 단독 중합체 대비 향상된 신축성과 열 안정성을 나타내기 때문에, 다양한 용도로 적용할 수 있으며, 특히 높은 신축성과 열 안정성을 요하는 수지 가공품, 예를 들면, 섬유 제품, 의료용 제품(수술용 봉합사 또는 의료용 필름 등) 및 필름(film) 소재 등에 적합하게 사용될 수 있고 생산 가공의 효율성을 높일 수 있다. As described above, the polylactic acid copolymer of the present invention is biodegradable and eco-friendly, and at the same time exhibits improved elasticity and thermal stability compared to polylactic acid homopolymers, and thus can be applied to various applications, and particularly high elasticity and thermal stability. It can be used suitably for resin processed products, such as textile products, medical products (such as surgical sutures or medical films) and film materials, and can increase the efficiency of production processing.
따라서, 본 발명의 또 다른 측면에 따르면, 본 발명의 폴리락트산 공중합체를 사용하여 제조된 수지 가공품이 제공된다.Thus, according to another aspect of the present invention, there is provided a resin processed article produced using the polylactic acid copolymer of the present invention.
본 발명의 폴리락트산 공중합체를 사용하여 수지 가공품을 제조하는 방법은 특별히 제한되지 않으며, 공중합체 수지의 가공에 일반적으로 사용되는 방법을 그대로 또는 적절히 변형하여 사용할 수 있다.The method for producing a resin processed product using the polylactic acid copolymer of the present invention is not particularly limited, and the method generally used for processing the copolymer resin can be used as it is or as appropriately modified.
이하, 실시예 및 비교예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 본 발명의 범위가 이들로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the scope of the present invention is not limited to these.
[[
실시예Example
]]
[실시예 1]Example 1
딘스탁트랩을 설치한 2넥 플라스크에 에틸렌 아세테이트 용매로 용해시킨 아이소소르바이드 용액 및 디메틸 테레프탈레이트 용액을 넣고, 에틸렌 아세테이트 용매의 환류 온도로 가열 및 교반하여 1차 반응을 진행시키고, 이어서 폴리테트라메틸렌 에테르 글리콜(Poly tetramethylene ether glycol, 이하 PTMEG)을 첨가하여 2차 반응을 진행시켰다. 이어서 알칼리 용액을 이용한 수세 및 증류수를 이용한 수세를 통해 부 반응물을 제거하고, 진공 감압을 통한 용매 제거 공정을 거쳐 하기 화학식 1-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물을 제조하였다. An isosorbide solution and a dimethyl terephthalate solution dissolved in an ethylene acetate solvent were placed in a two neck flask equipped with a Deanstrap trap, followed by heating and stirring to the reflux temperature of the ethylene acetate solvent to proceed with the first reaction, followed by polytetramethylene Ether glycol (Poly tetramethylene ether glycol, hereinafter PTMEG) was added to proceed with the secondary reaction. Subsequently, the secondary reactants were removed by washing with an alkaline solution and washing with distilled water, and a tetramethylene glycol ether-terminated cyclic compound of the following Chemical Formula 1-3 was prepared through a solvent removal process under vacuum and reduced pressure.
[화학식 1-3][Formula 1-3]
상기 화학식 1-3에서, n은 1이다. In Formula 1-3, n is 1.
(1) 단계: 락트산 예비 중합체의 제조(1) Step: Preparation of Lactic Acid Prepolymer
1.2 kg의 락타이드(Purac사, 순도 99.7%)를 2L 반응기에 투입한 후, 1 Torr 미만의 진공 감압 및 50℃의 온도 조건 하에서 2시간 이상 수분을 제거하였다. 수분 제거 후, 진공 감압을 해제하고 질소 환경 하에서 서서히 승온을 시키면서 개시제 및 촉매를 투입하였으며, 120℃의 온도에서 2시간 동안 교반을 진행하여 락트산 예비 중합체를 제조하였다. 상기 개시제로서는 1-도데칸올 (Sigma Aldrich사) 0.1 g을 사용하였고, 촉매로서는 무수 톨루엔에 정제된 옥탄산 주석(II) (Sn(Oct)2, Sigma Aldrich사) 6 g을 사용하였다. 상기 제조된 락트산 예비 중합체의 수평균분자량(Mn)은 2,000 내지 10,000이었다. 1.2 kg of lactide (Purac, purity 99.7%) was added to a 2 L reactor, and then water was removed for at least 2 hours under vacuum reduced pressure of less than 1 Torr and a temperature of 50 ° C. After the removal of water, the vacuum pressure was released and the initiator and the catalyst were added while gradually raising the temperature under a nitrogen environment, and the lactic acid prepolymer was prepared by stirring at a temperature of 120 ° C. for 2 hours. As the initiator, 0.1 g of 1-dodecanol (Sigma Aldrich) was used, and 6 g of tin (II) octanoate (Sn (Oct) 2 , Sigma Aldrich) purified on toluene anhydride was used as a catalyst. The number average molecular weight (Mn) of the prepared lactic acid prepolymer was 2,000 to 10,000.
(2) 단계: (2) step:
폴리락트산Polylactic acid
공중합체 제조 Copolymer preparation
상기 (1) 단계에서 제조된 락트산 예비 중합체를 질소 분위기에서 2시간 교반한 후, 상기 화학식 1-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 36 g을 180℃ 온도 조건에서 투입한 후, 200℃의 온도에서 공중합을 수행하였다. 상기 제조된 폴리락트산 공중합체의 수평균분자량(Mn)은 50,000 내지 300,000이었다. 상기 화학식 1-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 반복단위의 함량은 제조된 폴리락트산 공중합체의 총 중량을 기준으로, 3 중량%이었다.After stirring the lactic acid prepolymer prepared in step (1) in a nitrogen atmosphere for 2 hours, the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 1-3 36 g was added at a temperature of 180 ° C., followed by copolymerization at a temperature of 200 ° C. The number average molecular weight (Mn) of the polylactic acid copolymer prepared was 50,000 to 300,000. Tetramethylene glycol ether-terminated cyclic compound of Formula 1-3 The content of the repeating unit was 3% by weight based on the total weight of the polylactic acid copolymer prepared.
브루커(Bruker)사의 Avance DRX 300을 사용하여 상기 제조된 폴리락트산 공중합체의 NMR 스펙트럼을 측정하였다. NMR 스펙트럼 분석 결과를 통해 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 말단의 히드록실기에 기인하는 관찰 위치가 폴리락트산 공중합을 통하여 에스테르기로 바뀌면서 전자적 환경 변화에 의해 시프트(Shift)되는 현상이 관찰되었으며, 그 결과 공중합되었음을 확인할 수 있다. The NMR spectrum of the polylactic acid copolymer prepared above was measured using a Bruker Avance DRX 300. NMR spectral analysis showed that the position shifted due to the hydroxyl group at the end of the tetramethylene glycol ether-terminal cyclic compound was shifted due to electronic environmental change as the ester group was changed through polylactic acid copolymerization. It can be confirmed that the copolymerization result.
[실시예 2] Example 2
상기 화학식 1-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 반복단위의 함량을 10 중량%(공중합체의 총 중량 기준)로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리락트산 공중합체를 제조하였다.Tetramethylene glycol ether-terminated cyclic compound of Formula 1-3 A polylactic acid copolymer was prepared in the same manner as in Example 1, except that the content of the repeating unit was changed to 10% by weight (based on the total weight of the copolymer).
[실시예 3]Example 3
딘스탁트랩을 설치한 2넥 플라스크에 에틸렌 아세테이트 용매로 용해시킨 나프탈렌디카르복실레이트 용액 및 PTMEG 용액을 넣고, 에틸렌 아세테이트 용매의 환류 온도로 가열 및 교반하여 반응을 진행시켰다. 이어서 알칼리 용액을 이용한 수세 및 증류수를 이용한 수세를 통해 부 반응물을 제거하고, 진공 감압을 통한 용매 제거 공정을 거쳐 하기 화학식 2-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물을 제조하였다.A naphthalenedicarboxylate solution and a PTMEG solution dissolved in an ethylene acetate solvent were added to a two neck flask provided with a Deanstock trap, and the reaction was performed by heating and stirring to the reflux temperature of the ethylene acetate solvent. Subsequently, the secondary reactants were removed by washing with an alkaline solution and washing with distilled water, and a tetramethylene glycol ether-terminated cyclic compound of the following Chemical Formula 2-3 was prepared through a solvent removal process under vacuum and reduced pressure.
[화학식 2-3][Formula 2-3]
상기 화학식 2-3에서, n은 2이다.In Formula 2-3, n is 2.
(1) 단계: 락트산 예비 중합체의 제조(1) Step: Preparation of Lactic Acid Prepolymer
상기 실시예 1과 동일한 방법으로 락트산 예비 중합체를 제조하였다. Lactic acid prepolymer was prepared in the same manner as in Example 1.
(2) 단계: (2) step:
폴리락트산Polylactic acid
공중합체 제조 Copolymer preparation
상기 (1) 단계에서 제조된 락트산 예비 중합체를 질소 분위기에서 2시간 교반한 후, 상기 화학식 2-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 36g을 180℃ 온도 조건에서 투입한 후, 200℃의 온도에서 공중합을 수행하였다. 상기 제조된 폴리락트산 공중합체의 수평균분자량(Mn)은 50,000 내지 300,000이었다. 상기 화학식 2-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 반복단위의 함량은 제조된 폴리락트산 공중합체의 총 중량을 기준으로, 3 중량%이었다.After the lactic acid prepolymer prepared in step (1) was stirred for 2 hours in a nitrogen atmosphere, 36 g of the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 2-3 was added at 180 ° C., followed by 200 ° C. Copolymerization was carried out at temperature. The number average molecular weight (Mn) of the polylactic acid copolymer prepared was 50,000 to 300,000. The content of the tetramethylene glycol ether-terminated cyclic compound repeating unit of Formula 2-3 was 3 wt% based on the total weight of the polylactic acid copolymer prepared.
브루커(Bruker)사의 Avance DRX 300을 사용하여 상기 제조된 폴리락트산 공중합체의 NMR 스펙트럼을 측정하였다. NMR 스펙트럼 분석 결과를 통해 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 말단의 히드록실기에 기인하는 관찰 위치가 폴리락트산 공중합을 통하여 에스테르기로 바뀌면서 전자적 환경 변화에 의해 시프트(Shift)되는 현상이 관찰되었으며, 그 결과 공중합되었음을 확인할 수 있다.The NMR spectrum of the polylactic acid copolymer prepared above was measured using a Bruker Avance DRX 300. NMR spectral analysis showed that the position shifted due to the hydroxyl group at the end of the tetramethylene glycol ether-terminal cyclic compound was shifted due to electronic environmental change as the ester group was changed through polylactic acid copolymerization. It can be confirmed that the copolymerization result.
[실시예 4]Example 4
상기 화학식 2-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 반복단위의 함량을 10 중량%(공중합체의 총 중량 기준)로 변경한 것을 제외하고는, 실시예 3과 동일한 방법으로 폴리락트산 공중합체를 제조하였다.Polylactic acid copolymer in the same manner as in Example 3, except that the content of the tetramethylene glycol ether-terminated cyclic compound repeating unit of Formula 2-3 was changed to 10% by weight (based on the total weight of the copolymer) Was prepared.
[실시예 5]Example 5
딘스탁트랩을 설치한 2넥 플라스크에 에틸렌 아세테이트 용매로 용해시킨 바이페놀 용액 및 디메틸 테레프탈레이트 용액을 넣고, 에틸렌 아세테이트 용매의 환류 온도로 가열 및 교반하여 1차 반응을 진행시키고, 이어서 PTMEG를 첨가하여 2차 반응을 진행시켰다. 이어서 알칼리 용액을 이용한 수세 및 증류수를 이용한 수세를 통해 부 반응물을 제거하고, 진공 감압을 통한 용매 제거 공정을 거쳐 하기 화학식 2-4의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물을 제조하였다.A biphenol solution and a dimethyl terephthalate solution dissolved in an ethylene acetate solvent were added to a two neck flask equipped with a Dean Stark trap, and heated and stirred at the reflux temperature of the ethylene acetate solvent to proceed with the first reaction, followed by addition of PTMEG. The secondary reaction was advanced. Subsequently, the secondary reactants were removed by washing with an alkaline solution and washing with distilled water, and a tetramethylene glycol ether-terminated cyclic compound of the following Chemical Formula 2-4 was prepared through a solvent removal process under vacuum and reduced pressure.
[화학식 2-4][Formula 2-4]
상기 화학식 2-4에서, n은 1이다.In Formula 2-4, n is 1.
(1) 단계: 락트산 예비 중합체의 제조(1) Step: Preparation of Lactic Acid Prepolymer
상기 실시예 1과 동일한 방법으로 락트산 예비 중합체를 제조하였다. Lactic acid prepolymer was prepared in the same manner as in Example 1.
(2) 단계: (2) step:
폴리락트산Polylactic acid
공중합체 제조 Copolymer preparation
상기 (1) 단계에서 제조된 락트산 예비 중합체를 질소 분위기에서 2시간 교반한 후, 상기 화학식 2-4의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 36g을 180℃ 온도 조건에서 투입한 후, 200℃의 온도에서 공중합을 수행하였다. 상기 제조된 폴리락트산 공중합체의 수평균분자량(Mn)은 50,000 내지 300,000이었다. 상기 화학식 2-4의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 반복단위의 함량은 제조된 폴리락트산 공중합체의 총 중량을 기준으로, 3 중량%이었다.After the lactic acid prepolymer prepared in step (1) was stirred for 2 hours in a nitrogen atmosphere, 36 g of the tetramethylene glycol ether-terminated cyclic compound of Formula 2-4 was added at 180 ° C., followed by 200 ° C. Copolymerization was carried out at temperature. The number average molecular weight (Mn) of the polylactic acid copolymer prepared was 50,000 to 300,000. The content of the tetramethylene glycol ether-terminated cyclic compound repeat unit of Formula 2-4 was 3 wt% based on the total weight of the polylactic acid copolymer prepared.
브루커(Bruker)사의 Avance DRX 300을 사용하여 상기 제조된 폴리락트산 공중합체의 NMR 스펙트럼을 측정하였다. NMR 스펙트럼 분석 결과를 통해 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 말단의 히드록실기에 기인하는 관찰 위치가 폴리락트산 공중합을 통하여 에스테르기로 바뀌면서 전자적 환경 변화에 의해 시프트(Shift)되는 현상이 관찰되었으며, 그 결과 공중합되었음을 확인할 수 있다.The NMR spectrum of the polylactic acid copolymer prepared above was measured using a Bruker Avance DRX 300. NMR spectral analysis showed that the position shifted due to the hydroxyl group at the end of the tetramethylene glycol ether-terminal cyclic compound was shifted due to electronic environmental change as the ester group was changed through polylactic acid copolymerization. It can be confirmed that the copolymerization result.
[실시예 6]Example 6
상기 화학식 2-4의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 반복단위의 함량을 10 중량%(공중합체의 총 중량 기준)로 변경한 것을 제외하고는, 실시예 5와 동일한 방법으로 폴리락트산 공중합체를 제조하였다.Polylactic acid copolymer in the same manner as in Example 5, except that the content of the tetramethylene glycol ether-terminated cyclic compound repeating unit of Formula 2-4 was changed to 10% by weight (based on the total weight of the copolymer) Was prepared.
[실시예 7]Example 7
딘스탁트랩을 설치한 2넥 플라스크에 에틸렌 아세테이트 용매로 용해시킨 나프탈렌디올 용액 및 디메틸 테레프탈레이트 용액을 넣고, 에틸렌 아세테이트 용매의 환류 온도로 가열 및 교반하여 1차 반응을 진행시키고, 이어서 PTMEG를 첨가하여 2차 반응을 진행시켰다. 이어서 알칼리 용액을 이용한 수세 및 증류수를 이용한 수세를 통해 부 반응물을 제거하고, 진공 감압을 통한 용매 제거 공정을 거쳐 하기 화학식 2-5의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물을 제조하였다.In a 2-neck flask equipped with a Deanstrap trap, a naphthalenediol solution and a dimethyl terephthalate solution dissolved in an ethylene acetate solvent were added, followed by heating and stirring to the reflux temperature of the ethylene acetate solvent to proceed with a primary reaction, followed by addition of PTMEG. The secondary reaction was advanced. Subsequently, the secondary reactants were removed by washing with an alkaline solution and washing with distilled water, and a tetramethylene glycol ether-terminated cyclic compound of the following Chemical Formula 2-5 was prepared through a solvent removal process under vacuum and reduced pressure.
[화학식 2-5][Formula 2-5]
상기 화학식 2-5에서, n은 1이다.In Formula 2-5, n is 1.
(1) 단계: 락트산 예비 중합체의 제조(1) Step: Preparation of Lactic Acid Prepolymer
상기 실시예 1과 동일한 방법으로 락트산 예비 중합체를 제조하였다. Lactic acid prepolymer was prepared in the same manner as in Example 1.
(2) 단계: (2) step:
폴리락트산Polylactic acid
공중합체 제조 Copolymer preparation
상기 (1) 단계에서 제조된 락트산 예비 중합체를 질소 분위기에서 2시간 교반한 후, 상기 화학식 2-5의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 36g을 180℃ 온도 조건에서 투입한 후, 200℃의 온도에서 공중합을 수행하였다. 상기 제조된 폴리락트산 공중합체의 수평균분자량(Mn)은 50,000 내지 300,000이었다. 상기 화학식 2-5의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 반복단위의 함량은 제조된 폴리락트산 공중합체의 총 중량을 기준으로, 3 중량%이었다.After stirring the lactic acid prepolymer prepared in step (1) in a nitrogen atmosphere for 2 hours, 36 g of the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 2-5 was added at 180 ° C., and then 200 ° C. Copolymerization was carried out at temperature. The number average molecular weight (Mn) of the polylactic acid copolymer prepared was 50,000 to 300,000. The content of the tetramethylene glycol ether-terminated cyclic compound repeat unit of Formula 2-5 was 3% by weight based on the total weight of the polylactic acid copolymer prepared.
브루커(Bruker)사의 Avance DRX 300을 사용하여 상기 제조된 폴리락트산 공중합체의 NMR 스펙트럼을 측정하였다. NMR 스펙트럼 분석 결과를 통해 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 말단의 히드록실기에 기인하는 관찰 위치가 폴리락트산 공중합을 통하여 에스테르기로 바뀌면서 전자적 환경 변화에 의해 시프트(Shift)되는 현상이 관찰되었으며, 그 결과 공중합되었음을 확인할 수 있다.The NMR spectrum of the polylactic acid copolymer prepared above was measured using a Bruker Avance DRX 300. NMR spectral analysis showed that the position shifted due to the hydroxyl group at the end of the tetramethylene glycol ether-terminal cyclic compound was shifted due to electronic environmental change as the ester group was changed through polylactic acid copolymerization. It can be confirmed that the copolymerization result.
[실시예 8]Example 8
상기 화학식 2-5의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 반복단위의 함량을 10 중량%(공중합체의 총 중량 기준)로 변경한 것을 제외하고는, 실시예 7과 동일한 방법으로 폴리락트산 공중합체를 제조하였다.Polylactic acid copolymer in the same manner as in Example 7, except that the content of the tetramethylene glycol ether-terminated cyclic compound repeating unit of Formula 2-5 was changed to 10% by weight (based on the total weight of the copolymer) Was prepared.
[비교예 1] Comparative Example 1
공중합 반복단위로서 상기 화학식 1-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물을 사용하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리락트산 단독 중합체를 제조하였다.A polylactic acid homopolymer was prepared in the same manner as in Example 1, except that the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 1-3 was not used as the copolymer repeating unit.
[비교예 2]Comparative Example 2
공중합 반복단위로서 상기 화학식 1-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 대신에 이소소르비드(공중합체 총 중량 기준으로 3 중량%의 함량)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리락트산 공중합체를 제조하였다. The same method as in Example 1, except that isosorbide (content of 3% by weight based on the total weight of the copolymer) was used instead of the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 1-3 as a copolymer repeating unit. Polylactic acid copolymer was prepared.
[비교예 3]Comparative Example 3
공중합 반복단위로서 상기 화학식 1-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 대신에 이소소르비드(공중합체 총 중량 기준으로 10 중량%의 함량)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리락트산 공중합체를 제조하였다. The same method as Example 1, except that isosorbide (content of 10% by weight based on the total weight of the copolymer) was used instead of the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 1-3 as a copolymer repeating unit. Polylactic acid copolymer was prepared.
[비교예 4] [Comparative Example 4]
공중합 반복단위로서 상기 화학식 1-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 대신에 하기 화학식 3의 히드록시-말단의 에스테르 기 함유 사이클릭 화합물(공중합체 총 중량 기준으로 3 중량%)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리락트산 공중합체를 제조하였다.Instead of the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 1-3, a cyclic compound containing a hydroxy-terminated ester group of Chemical Formula 3 (3 wt% based on the total weight of copolymer) was used as the copolymer repeating unit. Except for producing a polylactic acid copolymer in the same manner as in Example 1.
[화학식 3][Formula 3]
[비교예 5] [Comparative Example 5]
공중합 반복단위로서 상기 화학식 1-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 대신에 상기 화학식 3의 히드록시-말단의 에스테르 기 함유 사이클릭 화합물(공중합체 총 중량 기준으로 5 중량%)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리락트산 공중합체를 제조하였다.Instead of the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 1-3, a cyclic compound containing a hydroxy-terminated ester group of Chemical Formula 3 (5 wt% based on the total weight of copolymer) was used as a copolymer repeating unit. Except for producing a polylactic acid copolymer in the same manner as in Example 1.
[비교예 6] Comparative Example 6
공중합 반복단위로서 상기 화학식 1-3의 테트라메틸렌 글리콜 에테르-말단 사이클릭 화합물 대신에 상기 화학식 3의 히드록시-말단의 에스테르 기 함유 사이클릭 화합물(공중합체 총 중량 기준으로 7 중량%)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 폴리락트산 공중합체를 제조하였다.Instead of the tetramethylene glycol ether-terminated cyclic compound of Chemical Formula 1-3, a cyclic compound containing a hydroxy-terminated ester group of Chemical Formula 3 (7 wt% based on the total weight of copolymer) was used as a copolymer repeating unit. Except for producing a polylactic acid copolymer in the same manner as in Example 1.
<물성측정><Measurement of properties>
상기 실시예 및 비교예에 따라 제조된 폴리락트산 단독 중합체 및 폴리락트산 공중합체에 대하여 하기 항목의 물성들을 측정하고 자체 판정기준에 따라 판정하였으며, 그 결과는 하기 표 1에 나타내었다.For the polylactic acid homopolymer and the polylactic acid copolymer prepared according to the Examples and Comparative Examples, the properties of the following items were measured and determined according to their own criteria, and the results are shown in Table 1 below.
(1) 유리전이온도(Tg) 및 유리전이온도 상승률(△Tg)(1) Glass transition temperature (Tg) and glass transition temperature increase rate (△ Tg)
Perkin Elmer사의 Diamond DSC(Differential Scanning Calorimetry)를 사용하여 폴리락트산 단독 중합체 및 폴리락트산 공중합체의 유리전이온도를 측정하였으며, 폴리락트산 단독 중합체(비교예 1)의 유리전이온도 기준으로 폴리락트산 공중합체의 유리전이온도 상승률을 계산하였다.Perkin Elmer's Diamond DSC (Differential Scanning Calorimetry) was used to measure the glass transition temperature of the polylactic acid homopolymer and polylactic acid copolymer, and based on the glass transition temperature of the polylactic acid homopolymer (Comparative Example 1), The rate of glass transition temperature rise was calculated.
(2) 초기 모듈러스(G') 및 초기 모듈러스 감소율(△G')(2) Initial Modulus (G ') and Initial Modulus Reduction (ΔG')
Perkin Elmer사의 Pysis diamond DMA (Dynamic Mechanical Analyzer)를 사용하여 온도 범위 30~150℃에서 1Hz의 주파수로 폴리락트산 단독 중합체 및 폴리락트산 공중합체의 초기 모듈러스(저장 탄성율)를 측정하였으며, 폴리락트산 단독 중합체(비교예 1)의 초기 모듈러스 기준으로 폴리락트산 공중합체의 초기 모듈러스 감소율을 계산하였다.The initial modulus (storage modulus) of the polylactic acid homopolymer and the polylactic acid copolymer was measured using a Pysis diamond DMA (Dynamic Mechanical Analyzer) manufactured by Perkin Elmer at a frequency of 1 Hz in the temperature range of 30 to 150 ° C. The initial modulus reduction rate of the polylactic acid copolymer was calculated based on the initial modulus of Comparative Example 1).
(3) 판정 기준(3) Judging standard
폴리락트산 단독 중합체(비교예 1)의 유리전이온도 및 초기 모듈러스와 대비하여 각 공중합체의 유리전이온도 상승율 및 초기 모듈러스 감소율을 측정한 결과 값에 대하여 하기와 같이 판정을 하였다.As compared with the glass transition temperature and initial modulus of the polylactic acid homopolymer (Comparative Example 1), the glass transition temperature rise rate and initial modulus reduction rate of each copolymer were measured as follows.
○: 유리전이온도 상승율 5% 이상 및 초기 모듈러스 감소율 5% 이상을 모두 충족○: Meets both glass transition temperature increase rate of 5% or more and initial modulus decrease rate of 5% or more
×: 유리전이온도 상승율 5% 이상 및 초기 모듈러스 감소율 5% 이상 중 1개 이상 불충족×: One or more of glass transition temperature increase rate of 5% or more and initial modulus decrease rate of 5% or more are not satisfied
[표 1]TABLE 1
Claims (16)
- 반복단위로서 As a repeating unit(A) 락트산; 및 (A) lactic acid; And(B) 말단에 히드록시-테트라메틸렌-옥시-탄화수소 기를 갖는 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물;을 포함하는, Comprising (B) a monocyclic, polycyclic or fused cyclic compound having a hydroxy-tetramethylene-oxy-hydrocarbon group at the terminal;폴리락트산 공중합체.Polylactic acid copolymer.
- 제1항에 있어서, 락트산 반복단위가 락트산, 락트산 올리고머 또는 락타이드에 의하여 공중합체 내에 도입되는 것인, 폴리락트산 공중합체.The polylactic acid copolymer according to claim 1, wherein the lactic acid repeating unit is introduced into the copolymer by lactic acid, lactic acid oligomer or lactide.
- 제1항에 있어서, 말단에 히드록시-테트라메틸렌-옥시-탄화수소 기를 갖는 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물이 하기 화학식 1-1로 표시되는 구조를 가지는 것인, 폴리락트산 공중합체:The polylactic acid copolymer according to claim 1, wherein the monocyclic, polycyclic or fused cyclic compound having a hydroxy-tetramethylene-oxy-hydrocarbon group at the terminal has a structure represented by the following Chemical Formula 1-1. :[화학식 1-1][Formula 1-1]HO-(CH2)4-(O-R1)-B-A-B'-(R2-O)-(CH2)4-OHHO- (CH 2 ) 4- (OR 1 ) -BA-B '-(R 2 -O)-(CH 2 ) 4 -OH상기 화학식 1-1에서,In Chemical Formula 1-1,R1 및 R2은 각각 독립적으로, 치환된 또는 비치환된 2가의 탄화수소기를 나타내며, 여기서 R1 및 R2는 각각 독립적으로 에테르 결합, 에스테르 결합, 케톤 결합 및 우레탄 결합으로부터 선택된 하나 이상의 결합을 포함할 수 있고, R 1 and R 2 each independently represent a substituted or unsubstituted divalent hydrocarbon group, wherein R 1 and R 2 each independently comprise one or more bonds selected from ether bonds, ester bonds, ketone bonds and urethane bonds Can do it,B 및 B'은 각각 독립적으로 무수당 알코올을 나타내며, 상기 무수당 알코올은 그 일 말단 또는 양 말단에 알킬렌 글리콜이 치환된 또는 비치환된 형태일 수 있고, B and B 'each independently represent an anhydrosugar alcohol, the anhydrosugar alcohol may be in the form of substituted or unsubstituted alkylene glycol at one or both ends thereof,A는 치환된 또는 비치환된 2가의 지방족 또는 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 그룹이거나; 또는 N, O 및 S로부터 선택된 헤테로 원자를 하나 이상 포함하는, 치환된 또는 비치환된 2가의 모노헤테로사이클릭, 폴리헤테로사이클릭 또는 융합 헤테로사이클릭 그룹이고, 또한 A는 에스테르 기, 에테르 기, 티오에테르 기, 케톤 기 및 우레탄 기로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함할 수 있다. A is a substituted or unsubstituted divalent aliphatic or aromatic monocyclic, polycyclic or fused cyclic group; Or a substituted or unsubstituted divalent monoheterocyclic, polyheterocyclic or fused heterocyclic group comprising at least one hetero atom selected from N, O and S, wherein A is an ester group, an ether group, It may comprise one or more functional groups selected from the group consisting of thioether groups, ketone groups and urethane groups.
- 제3항에 있어서, 화학식 1-1에서,The method of claim 3, wherein in Chemical Formula 1-1,R1 및 R2은 각각 독립적으로, 치환된 또는 비치환된 2가의, 탄소수 12 내지 328의 탄화수소기를 나타내며, 여기서 R1 및 R2는 각각 독립적으로 에테르 결합, 에스테르 결합, 케톤 결합 및 우레탄 결합으로부터 선택된 하나 이상의 결합을 포함할 수 있고,R 1 and R 2 each independently represent a substituted or unsubstituted divalent hydrocarbon group having 12 to 328 carbon atoms, wherein R 1 and R 2 are each independently from an ether bond, an ester bond, a ketone bond and a urethane bond May comprise one or more combinations selected,B 및 B'은 각각 독립적으로 디안하이드로헥시톨을 나타내며, 상기 디안하이드로헥시톨은 그 일 말단 또는 양 말단에 알킬렌 글리콜이 치환된 또는 비치환된 형태일 수 있고,B and B 'each independently represent dianhydrohexitol, and the dianhydrohexitol may be substituted or unsubstituted with alkylene glycol at one or both ends thereof.A는 치환된 또는 비치환된 2가의, 총 탄소수 5 내지 30의 지방족 또는 총 탄소수 6 내지 30의 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 그룹이거나; 또는 N, O 및 S로부터 선택된 헤테로 원자를 하나 이상 포함하는, 치환된 또는 비치환된 2가의, 총 고리 원자수 5 내지 30의 모노헤테로사이클릭, 폴리헤테로사이클릭 또는 융합 헤테로사이클릭 그룹이고, 또한 A는 에스테르 기, 에테르 기, 티오에테르 기, 케톤 기 및 우레탄 기로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함할 수 있는,A is a substituted or unsubstituted divalent, aliphatic having 5 to 30 carbon atoms or an aromatic monocyclic, polycyclic or fused cyclic group having 6 to 30 carbon atoms; Or a substituted or unsubstituted divalent, monoheterocyclic, polyheterocyclic or fused heterocyclic group having at least 5 to 30 ring atoms, comprising at least one hetero atom selected from N, O and S, A may also comprise one or more functional groups selected from the group consisting of ester groups, ether groups, thioether groups, ketone groups and urethane groups,폴리락트산 공중합체.Polylactic acid copolymer.
- 제3항에 있어서, 화학식 1-1에서,The method of claim 3, wherein in Chemical Formula 1-1,R1 및 R2은 각각 독립적으로, 치환된 또는 비치환된 2가의, 탄소수 12 내지 248의 탄화수소기를 나타내며, 여기서 R1 및 R2는 각각 독립적으로 에테르 결합, 에스테르 결합, 케톤 결합 및 우레탄 결합으로부터 선택된 하나 이상의 결합을 포함할 수 있고,R 1 and R 2 each independently represent a substituted or unsubstituted divalent hydrocarbon group having 12 to 248 carbon atoms, wherein R 1 and R 2 are each independently from an ether bond, an ester bond, a ketone bond and a urethane bond May comprise one or more combinations selected,B 및 B'은 각각 독립적으로 디안하이드로헥시톨을 나타내며, 상기 디안하이드로헥시톨은 그 일 말단 또는 양 말단에 알킬렌 글리콜이 치환된 또는 비치환된 형태일 수 있고,B and B 'each independently represent dianhydrohexitol, and the dianhydrohexitol may be substituted or unsubstituted with alkylene glycol at one or both ends thereof.A는 치환된 또는 비치환된 2가의, 총 탄소수 6 내지 20의 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 그룹이거나; 또는 N, O 및 S로부터 선택된 헤테로 원자를 하나 이상 포함하는, 치환된 또는 비치환된 2가의, 총 고리 원자수 5 내지 20의 모노헤테로사이클릭, 폴리헤테로사이클릭 또는 융합 헤테로사이클릭 그룹이고, 또한 A는 에스테르 기, 에테르 기, 티오에테르 기, 케톤 기 및 우레탄 기로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함할 수 있는,A is a substituted or unsubstituted divalent, aromatic monocyclic, polycyclic or fused cyclic group having 6 to 20 carbon atoms in total; Or a substituted or unsubstituted divalent, monoheterocyclic, polyheterocyclic or fused heterocyclic group having at least 5 to 20 ring atoms, and at least one hetero atom selected from N, O and S, A may also include one or more functional groups selected from the group consisting of ester groups, ether groups, thioether groups, ketone groups and urethane groups,폴리락트산 공중합체.Polylactic acid copolymer.
- 제1항에 있어서, 말단에 히드록시-테트라메틸렌-옥시-탄화수소 기를 갖는 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물이 하기 화학식 2-1로 표시되는 구조를 가지는 것인, 폴리락트산 공중합체:The polylactic acid copolymer according to claim 1, wherein the monocyclic, polycyclic or fused cyclic compound having a hydroxy-tetramethylene-oxy-hydrocarbon group at the terminal has a structure represented by the following Chemical Formula 2-1. :[화학식 2-1][Formula 2-1]HO-(CH2)4-(O-R1)-A-(R2-O)-(CH2)4-OHHO- (CH 2 ) 4- (OR 1 ) -A- (R 2 -O)-(CH 2 ) 4 -OH상기 화학식 2-1에서, In Chemical Formula 2-1,R1 및 R2은 각각 독립적으로, 치환된 또는 비치환된 2가의 탄화수소기를 나타내며, 여기서 R1 및 R2는 각각 독립적으로 에테르 결합, 에스테르 결합, 케톤 결합 및 우레탄 결합으로부터 선택된 하나 이상의 결합을 포함할 수 있고, R 1 and R 2 each independently represent a substituted or unsubstituted divalent hydrocarbon group, wherein R 1 and R 2 each independently comprise one or more bonds selected from ether bonds, ester bonds, ketone bonds and urethane bonds Can do it,A는 치환된 또는 비치환된 2가의 지방족 또는 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 그룹이거나; 또는 N, O 및 S로부터 선택된 헤테로 원자를 하나 이상 포함하는, 치환된 또는 비치환된 2가의 모노헤테로사이클릭, 폴리헤테로사이클릭 또는 융합 헤테로사이클릭 그룹이고, 또한 A는 에스테르 기, 에테르 기, 티오에테르 기, 케톤 기 및 우레탄 기로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함할 수 있다. A is a substituted or unsubstituted divalent aliphatic or aromatic monocyclic, polycyclic or fused cyclic group; Or a substituted or unsubstituted divalent monoheterocyclic, polyheterocyclic or fused heterocyclic group comprising at least one hetero atom selected from N, O and S, wherein A is an ester group, an ether group, It may comprise one or more functional groups selected from the group consisting of thioether groups, ketone groups and urethane groups.
- 제6항에 있어서, 화학식 2-1에서,The method of claim 6, wherein in Chemical Formula 2-1,R1 및 R2은 각각 독립적으로, 치환된 또는 비치환된 2가의, 탄소수 12 내지 328의 탄화수소기를 나타내며, 여기서 R1 및 R2는 각각 독립적으로 에테르 결합, 에스테르 결합, 케톤 결합 및 우레탄 결합으로부터 선택된 하나 이상의 결합을 포함할 수 있고,R 1 and R 2 each independently represent a substituted or unsubstituted divalent hydrocarbon group having 12 to 328 carbon atoms, wherein R 1 and R 2 are each independently from an ether bond, an ester bond, a ketone bond and a urethane bond May comprise one or more combinations selected,A는 치환된 또는 비치환된 2가의, 총 탄소수 5 내지 30의 지방족 또는 총 탄소수 6 내지 30의 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 그룹이거나; 또는 N, O 및 S로부터 선택된 헤테로 원자를 하나 이상 포함하는, 치환된 또는 비치환된 2가의, 총 고리 원자수 5 내지 30의 모노헤테로사이클릭, 폴리헤테로사이클릭 또는 융합 헤테로사이클릭 그룹이고, 또한 A는 에스테르 기, 에테르 기, 티오에테르 기, 케톤 기 및 우레탄 기로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함할 수 있는,A is a substituted or unsubstituted divalent, aliphatic having 5 to 30 carbon atoms or an aromatic monocyclic, polycyclic or fused cyclic group having 6 to 30 carbon atoms; Or a substituted or unsubstituted divalent, monoheterocyclic, polyheterocyclic or fused heterocyclic group having at least 5 to 30 ring atoms, comprising at least one hetero atom selected from N, O and S, A may also comprise one or more functional groups selected from the group consisting of ester groups, ether groups, thioether groups, ketone groups and urethane groups,폴리락트산 공중합체.Polylactic acid copolymer.
- 제6항에 있어서, 화학식 2-1에서,The method of claim 6, wherein in Chemical Formula 2-1,R1 및 R2은 각각 독립적으로, 치환된 또는 비치환된 2가의, 탄소수 12 내지 248의 탄화수소기를 나타내며, 여기서 R1 및 R2는 각각 독립적으로 에테르 결합, 에스테르 결합, 케톤 결합 및 우레탄 결합으로부터 선택된 하나 이상의 결합을 포함할 수 있고,R 1 and R 2 each independently represent a substituted or unsubstituted divalent hydrocarbon group having 12 to 248 carbon atoms, wherein R 1 and R 2 are each independently from an ether bond, an ester bond, a ketone bond and a urethane bond May comprise one or more combinations selected,A는 치환된 또는 비치환된 2가의, 총 탄소수 6 내지 20의 방향족 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 그룹이거나; 또는 N, O 및 S로부터 선택된 헤테로 원자를 하나 이상 포함하는, 치환된 또는 비치환된 2가의, 총 고리 원자수 5 내지 20의 모노헤테로사이클릭, 폴리헤테로사이클릭 또는 융합 헤테로사이클릭 그룹이고, 또한 A는 에스테르 기, 에테르 기, 티오에테르 기, 케톤 기 및 우레탄 기로 이루어진 군으로부터 선택된 하나 이상의 작용기를 포함할 수 있는,A is a substituted or unsubstituted divalent, aromatic monocyclic, polycyclic or fused cyclic group having 6 to 20 carbon atoms in total; Or a substituted or unsubstituted divalent, monoheterocyclic, polyheterocyclic or fused heterocyclic group having at least 5 to 20 ring atoms, and at least one hetero atom selected from N, O and S, A may also comprise one or more functional groups selected from the group consisting of ester groups, ether groups, thioether groups, ketone groups and urethane groups,폴리락트산 공중합체.Polylactic acid copolymer.
- 제1항에 있어서, 말단에 히드록시-테트라메틸렌-옥시-탄화수소 기를 갖는 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물이 하기 화학식 1-3으로 표시되는 화합물, 하기 화학식 2-3으로 표시되는 화합물, 하기 화학식 2-4로 표시되는 화합물 및 하기 화학식 2-5로 표시되는 화합물로 이루어진 군으로부터 선택되는 것인, 폴리락트산 공중합체:The compound according to claim 1, wherein the monocyclic, polycyclic or fused cyclic compound having a hydroxy-tetramethylene-oxy-hydrocarbon group at its terminal is represented by the following formula 1-3, represented by the following formula 2-3 A polylactic acid copolymer selected from the group consisting of a compound, a compound represented by the following Chemical Formula 2-4, and a compound represented by the following Chemical Formula 2-5:[화학식 1-3][Formula 1-3][화학식 2-3][Formula 2-3][화학식 2-4][Formula 2-4][화학식 2-5][Formula 2-5]상기 화학식 1-3에서, n은 1 내지 80의 정수를 나타내고,In Formula 1-3, n represents an integer of 1 to 80,상기 화학식 2-3에서, n은 2 내지 80의 정수를 나타내며,In Chemical Formula 2-3, n represents an integer of 2 to 80,상기 화학식 2-4에서, n은 1 내지 80의 정수를 나타내고,In Formula 2-4, n represents an integer of 1 to 80,상기 화학식 2-5에서, n은 1 내지 80의 정수를 나타낸다.In Formula 2-5, n represents an integer of 1 to 80.
- (1) 락트산, 락트산 올리고머 또는 락타이드를 예비중합하는 단계; 및 (1) prepolymerizing lactic acid, lactic acid oligomers or lactide; And(2) 상기 (1)단계에서 얻어진 락트산 예비 중합체와, 말단에 히드록시-테트라메틸렌-옥시-탄화수소 기를 갖는 모노사이클릭, 폴리사이클릭 또는 융합 사이클릭 화합물을 공중합하는 단계;를 포함하는, (2) copolymerizing the lactic acid prepolymer obtained in step (1) with a monocyclic, polycyclic or fused cyclic compound having a hydroxy-tetramethylene-oxy-hydrocarbon group at the terminal;폴리락트산 공중합체의 제조방법.Method for producing a polylactic acid copolymer.
- 제10항에 있어서, (1)단계의 예비중합이 촉매의 존재 하에 수행되는 것인, 폴리락트산 공중합체의 제조방법.The method for preparing a polylactic acid copolymer according to claim 10, wherein the prepolymerization of step (1) is performed in the presence of a catalyst.
- 제11항에 있어서, 촉매가 산화아연, 산화안티몬, 염화안티몬, 산화납, 산화칼슘, 산화알루미늄, 산화철, 염화칼슘, 초산아연, 파라톨루엔 슬폰산, 염화 제1 주석, 황산 제1 주석, 산화 제1 주석, 산화 제2 주석, 옥탄산 제1 주석, 테트라페닐 주석, 주석분말, 사염화 티탄 또는 이들의 혼합물인 것인, 폴리락트산 공중합체의 제조방법.12. The catalyst according to claim 11, wherein the catalyst is zinc oxide, antimony oxide, antimony chloride, lead oxide, calcium oxide, aluminum oxide, iron oxide, calcium chloride, zinc acetate, paratoluene sulfonic acid, first tin chloride, first tin sulfate, oxidizing agent 1 tin, a second tin oxide, a first tin octanoate, tetraphenyl tin, tin powder, titanium tetrachloride or a mixture thereof.
- 제10항에 있어서, (2)단계의 공중합이 개시제의 존재 하에 수행되는 것인, 폴리락트산 공중합체의 제조방법.The method for producing a polylactic acid copolymer according to claim 10, wherein the copolymerization of step (2) is performed in the presence of an initiator.
- 제13항에 있어서, 개시제가 지방족 알코올인 것인, 폴리락트산 공중합체의 제조방법.The method for producing a polylactic acid copolymer according to claim 13, wherein the initiator is an aliphatic alcohol.
- 제1항 내지 제9항 중 어느 한 항의 폴리락트산 공중합체를 사용하여 제조된 수지 가공품.The resin processed product manufactured using the polylactic acid copolymer of any one of Claims 1-9.
- 제15항에 있어서, 섬유 또는 필름인, 수지 가공품.The resin processed product of Claim 15 which is a fiber or a film.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0164956 | 2016-12-06 | ||
KR20160164956 | 2016-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018105823A1 true WO2018105823A1 (en) | 2018-06-14 |
Family
ID=62491007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/004488 WO2018105823A1 (en) | 2016-12-06 | 2017-04-27 | Polylactic acid copolymer and method for preparing same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101889038B1 (en) |
WO (1) | WO2018105823A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100120957A1 (en) * | 2006-01-31 | 2010-05-13 | Cyclics Corporation | Processes for making copolymers using macrocyclic oligoesters, and copolymers therefrom |
US20100197884A1 (en) * | 2007-08-09 | 2010-08-05 | Joseph David Schroeder | Method for making copolymers of lactide and a 1:4-3:6 dianhydrohexitol |
KR20150124281A (en) * | 2014-04-28 | 2015-11-05 | 주식회사 삼양사 | Polylactic acid copolymer having excellent elasticity and method for preparing the same |
KR101606480B1 (en) * | 2015-05-21 | 2016-04-01 | 주식회사 삼양사 | Polylactic acid copolymer having excellently improved elasticity and method for preparing the same |
KR101650923B1 (en) * | 2010-05-20 | 2016-08-25 | 에스케이케미칼주식회사 | Blend of polylactic acid resin and copolyester resin and articles using the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060141183A1 (en) * | 2004-12-22 | 2006-06-29 | Williamson David T | Polyester clay nanocomposites for barrier applications |
JP2008239899A (en) * | 2007-03-28 | 2008-10-09 | Techno Polymer Co Ltd | Heat-radiating resin composition and molded article containing the same |
KR101695926B1 (en) * | 2010-12-02 | 2017-01-12 | 에스케이씨 주식회사 | Polyester film and preparation method thereof |
-
2017
- 2017-04-27 KR KR1020170054181A patent/KR101889038B1/en active IP Right Grant
- 2017-04-27 WO PCT/KR2017/004488 patent/WO2018105823A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100120957A1 (en) * | 2006-01-31 | 2010-05-13 | Cyclics Corporation | Processes for making copolymers using macrocyclic oligoesters, and copolymers therefrom |
US20100197884A1 (en) * | 2007-08-09 | 2010-08-05 | Joseph David Schroeder | Method for making copolymers of lactide and a 1:4-3:6 dianhydrohexitol |
KR101650923B1 (en) * | 2010-05-20 | 2016-08-25 | 에스케이케미칼주식회사 | Blend of polylactic acid resin and copolyester resin and articles using the same |
KR20150124281A (en) * | 2014-04-28 | 2015-11-05 | 주식회사 삼양사 | Polylactic acid copolymer having excellent elasticity and method for preparing the same |
KR101606480B1 (en) * | 2015-05-21 | 2016-04-01 | 주식회사 삼양사 | Polylactic acid copolymer having excellently improved elasticity and method for preparing the same |
Also Published As
Publication number | Publication date |
---|---|
KR101889038B1 (en) | 2018-08-17 |
KR20180065852A (en) | 2018-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022235112A1 (en) | Branched poly(3-hydroxypropionic acid) polymer, and method for preparation thereof | |
WO2014038774A1 (en) | Method for continuously preparing biodegradable aliphatic/aromatic polyester copolymer | |
WO2020091432A1 (en) | Polyimide precursor composition for enhancing adhesiveness of polyimide film and polyimide film manufactured therefrom | |
WO2022235113A1 (en) | Branched poly(lactic acid-3-hydroxypropionic acid) polymer and method for preparing same | |
WO2017164504A1 (en) | Poly(lactic acid) resin composition and molded product comprising same | |
WO2018105823A1 (en) | Polylactic acid copolymer and method for preparing same | |
WO2023195668A1 (en) | Method for preparing bis(glycol)terephthalate and polyester resin using same | |
WO2016186470A1 (en) | Polylactic acid copolymer having significantly improved elasticity, and preparation method therefor | |
WO2022059970A1 (en) | Polyester polymer | |
WO2020197148A1 (en) | Triblock copolymer and preparation method therefor | |
WO2023027559A1 (en) | Block copolymer and preparation method therefor | |
WO2023014109A1 (en) | Poly(3-hydroxypropionic acid) block copolymer, preparation method therefor and product comprising same | |
WO2022050815A1 (en) | Polylactide stereocomplex and preparation method therefor | |
WO2023027512A1 (en) | Poly(lactic acid-b-3-hydroxypropionic acid) block copolymer and method for preparation thereof | |
WO2023146362A1 (en) | Resin comprising poly(lactic acid-b-3-hydroxypropionic acid) block copolymer, and resin composition and resin molded product comprising same | |
WO2024225798A1 (en) | Poly(lactic acid-3-hydroxypropionic acid) copolymer and method for preparing same | |
WO2024147595A1 (en) | Poly(3-hydroxypropionic acid) and preparation method thereof | |
WO2024128848A1 (en) | Poly(lactic acid-b-3-hydroxypropionic acid) block copolymer, and film comprising same | |
WO2021040474A1 (en) | Polymer compound comprising biomass-derived cyclic monomer and preparation method therefor | |
WO2018182328A1 (en) | Polymer composition and film using same | |
WO2022270869A1 (en) | Method for preparation of poly lactic acid polymer | |
WO2024225797A1 (en) | Poly(3-hydroxypropionic acid) polymer and method for preparing same | |
WO2020075908A1 (en) | Polyamic acid composition for producing polyimide resin with superior adhesion and polyimide resin produced therefrom | |
WO2024136563A1 (en) | Method for preparing alkyl poly(3-hydroxypropionate), alkyl poly(3-hydroxypropionate), and composition comprising same | |
WO2023234687A1 (en) | Method for preparing acylic acid and/or glycolide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17879413 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17879413 Country of ref document: EP Kind code of ref document: A1 |