WO2018105702A1 - Heat source system, control device, control method, and program - Google Patents

Heat source system, control device, control method, and program Download PDF

Info

Publication number
WO2018105702A1
WO2018105702A1 PCT/JP2017/044061 JP2017044061W WO2018105702A1 WO 2018105702 A1 WO2018105702 A1 WO 2018105702A1 JP 2017044061 W JP2017044061 W JP 2017044061W WO 2018105702 A1 WO2018105702 A1 WO 2018105702A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
load
heat
cooling tower
heat source
Prior art date
Application number
PCT/JP2017/044061
Other languages
French (fr)
Japanese (ja)
Inventor
正頌 坂井
智 谷
清一 辻
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to US16/467,011 priority Critical patent/US20190301777A1/en
Priority to CN201780075444.3A priority patent/CN110036248A/en
Publication of WO2018105702A1 publication Critical patent/WO2018105702A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D13/00Stationary devices, e.g. cold-rooms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/29High ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves

Definitions

  • the present invention relates to a heat source system, a control device, a control method, and a program.
  • This application claims priority based on Japanese Patent Application No. 2016-237379 filed in Japan on December 7, 2016, the contents of which are incorporated herein by reference.
  • Patent Document 1 describes a heat source apparatus system that aims to stabilize the operation state by always operating a heat source apparatus in a rated operation region regardless of the heat demand on the heat load side.
  • a cooling tower or a heating tower is connected to the heat source apparatus via an outward path and a return path.
  • a heat load is connected to the heat source machine via an outward path and a return path.
  • the return path from the cooling tower or heating tower and the return path from the heat load are connected to the heat exchanger. This heat exchanger performs heat exchange between the return path from the cooling tower or heating tower and the return path from the heat load.
  • the temperature control of the cooling water supplied to the heat source apparatus is complicated in that the temperature of the cooling water from the cooling tower or the heating tower changes due to heat exchange.
  • the accuracy of the temperature control of the cooling water decreases, the accuracy of the temperature control of the cold water supplied by the heat source system may decrease.
  • the lower limit value is set for the temperature of the cooling water supplied to the heat source unit, the temperature of the cooling water may be lower than the lower limit value and the heat source unit may stop.
  • the present invention provides a heat source system, a control device, and a control method capable of continuing the operation of the heat source device even when the amount of cooling energy required by the heat load is small and performing the cooling water temperature control relatively easily. And provide programs.
  • a heat source system includes a heat source unit, a cooling tower side outward path and a cooling tower side return path connected to the heat source apparatus, and a load side outbound path and a load side connected to the heat source apparatus.
  • the heat source system includes a cooling tower bypass path that connects the cooling tower side forward path and the cooling tower return path, and a cooling tower bypass valve that can adjust a circulation amount of the cooling tower bypass path, and the heat exchange system A path may be provided in the load-side return path, and the heat exchanger may be disposed closer to the heat source unit than the cooling tower bypass path in the cooling tower side forward path.
  • the heat source system includes a cooling tower bypass path that connects the cooling tower side forward path and the cooling tower return path, and a cooling tower bypass valve that can adjust a circulation amount of the cooling tower bypass path, and the heat exchange system
  • the path may be provided closer to the heat source unit than the cooling tower bypass path in the cooling tower side forward path.
  • the heat source system includes a load determination unit that determines whether or not a load of cold supply from the heat source unit is less than a load lower limit value, and the load determination unit includes a load of cold supply from the heat source unit that is the load lower limit value.
  • An operation control unit that controls the heat exchange regulating valve to cause the heat exchanger to perform heat exchange.
  • the control device includes: a heat source unit; a cooling tower side outbound path and a cooling tower side return path connected to the heat source unit; a load side outbound path and a load side connected to the heat source unit.
  • a control device for controlling a heat source system comprising a heat exchanger for heat exchange and a heat exchange control valve capable of adjusting a flow rate of the heat exchange path, wherein a load of the heat source machine is less than a load lower limit value
  • the heat exchanger control valve is controlled to the heat exchanger.
  • An operation control unit that performs heat exchange.
  • the control method includes a heat source unit, a cooling tower side forward path and a cooling tower side return path connected to the heat source unit, and a load side outbound path and a load side connected to the heat source unit.
  • the program includes a heat source unit, a cooling tower side forward path and a cooling tower side return path connected to the heat source unit, and a load side outbound path and a load side return path connected to the heat source unit. And heat exchange between the heat exchange path provided in one of the load side return path and the cooling tower side outbound path, and the other of the heat exchange path and the load side return path and the cooling tower side outbound path A heat exchanger that includes a heat exchanger and a heat exchange regulating valve capable of adjusting a flow rate of the heat exchange path, wherein the load of the heat source machine is a load If it is determined whether or not the load of the heat source unit is less than the lower limit of the load, if the load of the heat source unit is determined to be less than the lower limit of the load, the heat exchanger is controlled to perform heat exchange by controlling the adjustment valve for heat exchange It is a program.
  • the operation of the heat source unit can be continued even when the amount of cooling heat required by the heat load is small, and the temperature control of the cooling water is relatively easy. It can be carried out.
  • FIG. It is a schematic block diagram which shows the function structure of the heat-source system which concerns on embodiment. It is a schematic block diagram which shows the example of an apparatus structure of the refrigerator plant main body 200 which concerns on embodiment. It is a graph which shows the operating range of the turbo refrigerator 300 which concerns on embodiment. It is a flowchart which shows the example of the process sequence which the control apparatus 100 which concerns on embodiment controls the refrigerator plant main body 200. FIG. It is a schematic block diagram which shows another example of the apparatus structure of the refrigerator plant main body 200 which concerns on embodiment.
  • FIG. 1 is a schematic block diagram illustrating a functional configuration of the heat source system according to the embodiment.
  • the heat source system 1 includes a control device 100 and a refrigerator plant main body 200.
  • the control device 100 includes a communication unit 110, a storage unit 180, and a control unit 190.
  • the control unit 190 includes a load determination unit 191 and an operation control unit 192.
  • the heat source system 1 supplies cold heat to the heat load.
  • the heat source system supplies cold water to the heat load. That is, the heat source system 1 supplies cold heat using water as a medium to the heat load.
  • the cold water that the heat source system 1 supplies to the heat load corresponds to an example of cold heat.
  • the heat source system 1 stably supplies cold water even when the amount of cold water required by the heat load suddenly increases from a small amount of cold water. . If the refrigerator stops at a light load, it takes time to restart, and if the amount of chilled water required by the heat load increases rapidly, there is a possibility that the amount of chilled heat that can be supplied will be insufficient or the chilled water at the temperature required by the heat load. May not be able to supply. Therefore, the heat source system 1 has a mechanism and mode that do not stop the refrigerator even with a light load.
  • the control device 100 controls the refrigerator plant main body 200.
  • the operation mode in which the control device 100 controls the refrigerator plant body 200 includes a normal mode and a simulated load mode.
  • the operation mode in which the control device 100 controls the refrigerator plant main body 200 is also referred to as the operation mode of the refrigerator plant main body 200.
  • In the normal mode the refrigerator of the refrigerator plant body 200 is stopped when the load is light, whereas in the simulated load mode, the operation of the refrigerator is continued even when the load is light.
  • the control device 100 is configured using a computer such as a PLC (Programmable Logic Controller) or a general-purpose workstation (Work Station).
  • the communication unit 110 communicates with the refrigerator plant main body 200.
  • the communication unit 110 transmits a control signal to the refrigerator plant main body 200 and receives measurement values from various sensors of the refrigerator plant main body 200.
  • the storage unit 180 stores various data.
  • the storage unit 180 is configured using a storage device provided in the control device 100.
  • the control unit 190 controls each unit of the control device 100 and executes various processes.
  • the control unit 190 is configured by, for example, a CPU (Central Processing Unit) included in the control device 100 reading out a program from the storage unit 180 and executing the program.
  • a CPU Central Processing Unit
  • the load determination unit 191 determines whether or not the load of the heat source unit of the refrigerator plant main body 200 is less than the load lower limit value.
  • the load lower limit value here is a threshold value that is a criterion for determining whether or not to stop the operation of the refrigerator at a light load in the normal mode.
  • the operation control unit 192 performs various calculations for controlling the refrigerator plant main body 200. When the operation mode of the refrigerator plant main body 200 is the simulated load mode and the load determination unit 191 determines that the load of the heat source device of the refrigerator plant main body 200 is less than the load lower limit value, the operation control unit 192 The refrigerator plant body 200 is controlled so that the refrigerator of the refrigerator plant body 200 is not stopped.
  • the refrigerator plant body 200 includes a heat exchanger that receives heat from the refrigerator as a simulated heat load, and the operation control unit 192 adjusts for heat exchange connected to the heat exchanger.
  • the valve is controlled to cause the heat exchanger to exchange heat. This heat exchange increases the load that the refrigerator supplies cold water, and the refrigerator continues to operate without stopping light load.
  • FIG. 2 is a schematic configuration diagram showing an example of the device configuration of the refrigerator plant main body 200.
  • the refrigerator plant body 200 includes a turbo refrigerator 300, a cooling tower 410, a cooling water pump 420, a cooling tower side three-way valve 430, a heat exchanger 500, a cold water pump 620, A load side three-way valve 630, an outward path temperature sensor 711, a return path temperature sensor 712, and a flow rate sensor 721 are provided.
  • the turbo refrigerator 300 includes an evaporator 310, an evaporator pump 320, a turbo compressor 330, a condenser 340, a refrigerant pump 350, and an expansion valve 360.
  • the refrigerator plant body 200 is connected to the heat load 610.
  • the refrigerator plant body 200 operates according to the control of the control unit 190 and supplies cold water to the heat load 610.
  • the turbo chiller 300 corresponds to an example of a heat source machine, and supplies cold water to the heat load 610 in response to a request from the heat load 610.
  • the turbo chiller 300 is designed to stop at light loads. When the load of the turbo chiller 300 is the load lower limit value, the turbo chiller 300 stops under the control of the control device 100.
  • the heat source device included in the refrigerator plant main body 200 is not limited to the turbo refrigerator, and may be a heat source device that stops at a light load.
  • the refrigerator plant body 200 may include a heat source device that can supply both hot water and cold water to the heat load 610 instead of the turbo refrigerator 300.
  • the evaporator 310 performs heat exchange between the refrigerant of the turbo chiller 300 and the cold water supplied to the heat load 610.
  • the evaporator 310 evaporates the refrigerant and lowers the temperature of the cold water by the heat of vaporization.
  • the evaporator 310 sprays the refrigerant from the spray port provided above the pipe through which the cold water flows toward the pipe.
  • the refrigerant first path W31 is a path that connects the lower portion of the evaporator 310 and the spray port.
  • An evaporator pump 320 is provided in the refrigerant first path W31, and the evaporator pump 320 allows the liquid refrigerant accumulated in the evaporator 310 to flow to the spray port.
  • the refrigerant that has become a gas in the evaporator 310 flows into the turbo compressor 330 via the refrigerant second path W32 and is compressed.
  • the gaseous refrigerant whose pressure and temperature are increased by the compression flows into the condenser 340 via the refrigerant third path W33.
  • the condenser 340 cools and liquefies the refrigerant by exchanging heat between the gaseous refrigerant compressed by the turbo compressor 330 and the cooling water.
  • the refrigerant that has become liquid returns to the evaporator 310 via the refrigerant fourth path W34.
  • the refrigerant fourth path W34 is provided with a refrigerant pump 350 and an expansion valve 360.
  • the refrigerant pump 350 conveys liquid refrigerant from the condenser 340 to the evaporator 310.
  • the refrigerant is easily evaporated by being depressurized by the expansion valve 360.
  • FIG. 3 is a graph showing the operating range of the turbo chiller 300.
  • the horizontal axis of the graph in FIG. 3 shows the load factor of the turbo chiller 300.
  • the vertical axis indicates whether the turbo chiller 300 can be operated.
  • the turbo chiller 300 can be operated at a load factor of 30% or more. That is, the operating range of the turbo chiller 300 is a load factor of 30% or more.
  • the centrifugal chiller 300 stops.
  • the heat exchanger 500 receives cold water supplied to the turbo refrigerator 300 when the turbo refrigerator 300 is lightly loaded, thereby increasing the load of the turbo refrigerator 300.
  • the turbo chiller 300 can continue to operate even with a light load, and can supply the required amount of cold water to the heat load.
  • the turbo chiller 300 is connected to the cooling tower 410 via the cooling tower side forward path W11 and the cooling tower side return path W12.
  • the cooling tower 410 cools the cooling water heated by exchanging heat with the refrigerant in the condenser 340 of the turbo refrigerator 300.
  • the cooling tower side forward path W ⁇ b> 11 is a path through which the cooling water heated by the condenser 340 flows to the cooling tower 410.
  • the cooling tower side return path W 12 is a path through which the cooling water cooled by the cooling tower 410 flows to the condenser 340.
  • the cooling water pump 420 circulates cooling water between the turbo chiller 300 and the cooling tower 410. In the example of FIG. 2, the cooling water pump 420 is provided in the cooling tower side return path W ⁇ b> 12, and flows cooling water from the cooling tower 410 to the turbo refrigerator 300.
  • the turbo chiller 300 is connected to the thermal load 610 via a load side forward path W21 and a load side return path W22.
  • the load side forward path W ⁇ b> 21 is a path through which the cold water cooled by the evaporator 310 of the turbo chiller 300 flows to the thermal load 610.
  • the load-side return path W ⁇ b> 22 is a path through which cold water that has been used in the thermal load 610 and has increased in temperature flows to the evaporator 310.
  • the cold water pump 620 circulates cold water between the turbo chiller 300 and the heat load 610. In the example of FIG. 2, the chilled water pump 620 is provided in the load-side return path W ⁇ b> 22 and flows chilled water from the heat load 610 to the turbo chiller 300.
  • the heat load 610 may return all the cold water supplied from the evaporator 310 to the evaporator 310.
  • the heat load 610 may take part or all of the cold water and not return it to the evaporator 310.
  • water may be supplied to the evaporator 310 from a water supply source such as a water supply instead of the cold water taken in by the heat load 610.
  • the supplied water may be room temperature water.
  • a heat exchanger 500 is provided in the cooling tower side forward path W11.
  • the heat exchanger 500 is connected to the load side return path W22 via the heat exchange path W23.
  • the heat exchanger 500 performs heat exchange between the cooling tower side forward path W11 and the load side return path W22 by performing heat exchange between the cooling tower side forward path W11 and the heat exchange path W23.
  • the cold water that is diverted from the load-side return path W22 to the heat exchange path W23 absorbs heat from the cooling water that flows through the cooling tower-side forward path W11.
  • the temperature of the cold water returning to the turbo chiller 300 is increased by this heat absorption, and the load at which the turbo chiller 300 supplies cold water to the heat load 610 is increased. Thereby, even when the amount of cold water required by the heat load 610 is small, the load on the turbo chiller 300 becomes equal to or greater than the load lower limit value, and the turbo chiller 300 continues to operate.
  • the load side return path W22 and the heat exchange path W23 are connected via a heat load side three-way valve 630.
  • the heat load side three-way valve 630 is a flow rate adjustment valve corresponding to an example of a heat exchange adjustment valve, and adjusts the amount of cold water branched from the load side return path W22 to the heat exchange path W23.
  • the heat load side three-way valve 630 can set the flow rate from the load side return path W22 to the heat exchange path W23 to zero. As a result, the branch of cold water from the load-side return path W22 to the heat exchange path W23 is blocked.
  • two two-way valves may be used to perform the same control as the three-way valve. The same applies to the other three-way valves.
  • a cooling tower bypass path W13 is provided between the cooling tower side forward path W11 and the cooling tower side return path W12.
  • the temperature of the cooling water flowing to the condenser 340 can be adjusted by bypassing a part of the cooling water flowing through the cooling tower side forward path W11 by the cooling tower bypass path W13 to the cooling tower side return path W12.
  • the cooling tower side forward path W11 and the cooling tower bypass path W13 are connected via a cooling tower side three-way valve 430.
  • the cooling tower side three-way valve 430 is a flow rate adjustment valve corresponding to an example of the cooling tower bypass valve, and adjusts the amount of cooling water bypassed from the cooling tower side forward path W11 to the cooling tower side return path W12.
  • the cooling tower side three-way valve 430 can make the flow rate of the cooling water from the cooling tower side forward path W11 to the cooling tower bypass path W13 zero. As a result, the bypass of the cooling water from the cooling tower side forward path W11 to the cooling tower side return path W12 is blocked.
  • the cooling tower side three-way valve 430 is provided on the downstream side of the heat exchanger 500 in the cooling tower side forward path W11.
  • the downstream side of the heat exchanger 500 is a side close to the cooling tower 410 when viewed from the condenser 340.
  • the cooling water flows through the cooling tower side three-way valve 430 after heat exchange in the heat exchanger 500. For this reason, the cooling water that has passed through the cooling tower side three-way valve 430 does not change in temperature via the heat exchanger 500 before reaching the condenser 340.
  • control unit 190 calculates the bypass amount of the cooling water based on the temperature of the cooling water in the cooling tower side three-way valve 430, it is not necessary to consider the temperature change of the cooling water by the heat exchanger 500. In this respect, it is possible to avoid an increase in load for the control unit 190 to calculate the bypass amount of the cooling water.
  • the outward path temperature sensor 711 is provided in the load-side outbound path W21, and measures the temperature of the cold water flowing through the load-side outbound path W21.
  • the return side temperature sensor 712 is provided in the load side return path W22 and measures the temperature of the cold water flowing through the load side return path W22.
  • the flow rate sensor 721 is provided in the load side forward path W21 and measures the flow rate of the cold water flowing through the load side forward path W21.
  • a value obtained by multiplying a temperature difference obtained by subtracting the temperature measured by the forward path temperature sensor 711 from the temperature measured by the return path temperature sensor 712 and the flow rate measured by the flow sensor 721 indicates the amount of cold water consumed by the heat load 610. Can be considered. In other words, the amount of cold water heat QI_CH consumed by the heat load 610 is expressed as in Expression (1).
  • TI_CHo indicates the cold water outlet temperature.
  • the temperature of the cold water in the load-side outward path W21 measured by the outward-path temperature sensor 711 can be used.
  • TI_CHi indicates the cold water inlet temperature.
  • the temperature of the cold water in the load side return path W22 measured by the return side temperature sensor 712 can be used.
  • FI_CH indicates the cold water flow rate.
  • the chilled water flow rate the chilled water flow rate in the load-side outward path W21 measured by the flow rate sensor 721 can be used.
  • FIG. 4 is a flowchart illustrating an example of a processing procedure in which the control device 100 controls the refrigerator plant main body 200.
  • the control device 100 performs the process of FIG. 4 when an operation start operation that is a user operation instructing the operation start of the heat source system 1 is performed.
  • the operation control unit 192 of the control device 100 activates the turbo chiller 300 (step S ⁇ b> 101).
  • the operation control unit 192 waits for elapse of t2 time from the start of the start of the turbo chiller 300 (step S102), and further waits for elapse of t1 time (step S103).
  • the t1 time is a control determination cycle in the control device 100.
  • the control determination cycle is a cycle in which the operation control unit 192 repeats the process of determining the operation mode of the refrigerator plant main body 200 and controlling the refrigerator plant main body 200.
  • the time t2 is the startup time of the turbo chiller 300. Specifically, the time t2 is an effect waiting time from the start of the start of the turbo chiller 300 until the cooling effect appears.
  • step S103 is not essential. Therefore, the operation control unit 192 may transition to step S104 without waiting for the time in step S103 after waiting for t2 time in step S102.
  • the operation control unit 192 determines the operation mode of the refrigerator plant main body 200 (step S104). For example, the operation control unit 192 calculates the amount of chilled water heat QI_CH consumed by the heat load 610 based on the above equation (1). Then, the operation control unit 192 determines the operation mode by comparing the calculated amount of cold water heat QI_CH with the heat amount lower limit Qmin. When Expression (2) is satisfied, the operation control unit 192 determines that the operation mode of the refrigerator plant body 200 is the normal mode.
  • h1 represents a coefficient for preventing hunting.
  • the operation control unit 192 determines that the operation mode of the refrigerator plant main body 200 is the simulated load mode.
  • h2 represents a coefficient for preventing hunting.
  • the heat amount lower limit Qmin may be determined in advance as a constant value. Or when the range of the load factor which can be drive
  • the operation control unit 192 may determine the operation mode based on the cold water inlet temperature Ti_CHi and the temperature lower limit value Tmin instead of the cold water heat amount QI_CH and the heat lower limit value Qmin. For example, when Formula (4) is materialized, the operation control unit 192 determines that the operation mode of the refrigerator plant body 200 is the normal mode.
  • h3 represents a coefficient for preventing hunting.
  • the operation control unit 192 determines that the operation mode of the refrigerator plant body 200 is the simulated load mode.
  • step S104 determines whether the operation mode is the simulated load mode (step S104: simulated load mode).
  • the operation control unit 192 performs simulated load operation control (step S111).
  • the operation control unit 192 controls the heat load side three-way valve 630 so that the chilled water calorie QI_CH obtained by the equation (1) is equal to or greater than the calorie lower limit Qmin, and the chilled water flowing into the heat exchanger 500 Adjust the flow rate.
  • step S131 the operation control unit 192 waits for elapse of t2 time (step S112). Then, the operation control unit 192 determines whether an operation end operation has been performed (step S131).
  • the operation end operation here is a user operation that instructs the end of the operation of the heat source system 1.
  • step S131: NO it returns to step S104.
  • step S131: YES the operation control part 192 stops the turbo refrigerator 300 (step S141). And the operation control part 192 complete
  • step S104 when it is determined in step S104 that the operation mode is the normal mode (step S104: normal mode), the operation control unit 192 performs normal operation control (step S121).
  • the operation control unit 192 stops the heat exchanger 500 by controlling the heat load side three-way valve 630 so that the flow rate of the cold water branched from the load side return path W22 to the heat exchange path W23 becomes zero. Let Then, the operation control unit 192 waits for elapse of t2 time (step S122). After step S122, the process proceeds to step S131.
  • the heat exchange path W23 is provided in the load side return path W22, and the heat exchanger 500 exchanges heat between the heat exchange path W23 and the cooling tower side forward path W11. Further, the heat load side three-way valve 630 can adjust the flow rate of the heat exchange path W23.
  • the heat exchanger 500 exchanges heat between the heat exchange path W23 and the cooling tower side forward path W11, so that the temperature of the cooling water does not change due to heat exchange after passing through the cooling tower 410. .
  • the heat source system 1 can relatively easily control the temperature of the cooling water. Therefore, in the heat source system 1, the operation of the turbo chiller 300 can be continued even when the amount of cold water required by the heat load 610 is small, and the temperature control of the cooling water can be performed relatively easily.
  • the cooling tower bypass path W13 connects the cooling tower side forward path W11 and the cooling tower side return path W12, and the cooling tower side three-way valve 430 can adjust the flow rate of the cooling tower bypass path W13.
  • the heat exchanger 500 is arranged on the turbo refrigerator 300 side (upstream side of the cooling water path) of the cooling tower side forward path W11 with respect to the cooling tower bypass path W13.
  • the cooling water flows through the cooling tower side three-way valve 430 after heat exchange in the heat exchanger 500. For this reason, the cooling water that has passed through the cooling tower side three-way valve 430 does not change in temperature via the heat exchanger 500 before reaching the condenser 340.
  • the control unit 190 calculates the bypass amount of the cooling water based on the temperature of the cooling water in the cooling tower side three-way valve 430, it is not necessary to consider the temperature change of the cooling water by the heat exchanger 500. In this respect, it is possible to avoid an increase in load for the control unit 190 to calculate the bypass amount of the cooling water.
  • the cooling water can be effectively utilized in that it is cooled by exchanging heat with the cooling water in the heat exchanger 500.
  • the load determination part 191 determines whether the load of the cold water supply to the heat load 610 is less than a load lower limit value.
  • the operation control unit 192 controls the heat load side three-way valve 630 to exchange heat with the heat exchanger 500. To do. Thereby, the operation of the turbo chiller 300 can be continued even when the amount of cold water required by the heat load 610 is small. And when the load of the cold water supply to the heat load 610 is more than a load lower limit, the heat exchanger can be stopped, and the turbo chiller 300 can be operated efficiently.
  • FIG. 5 is a schematic configuration diagram illustrating another example of the apparatus configuration of the refrigerator plant main body 200.
  • the refrigerator plant main body 200 includes a heat exchange three-way valve 240, a turbo refrigerator 300, a cooling tower 410, a cooling water pump 420, a cooling tower side three-way valve 430, and a heat exchanger 500.
  • the turbo refrigerator 300 includes an evaporator 310, an evaporator pump 320, a turbo compressor 330, a condenser 340, a refrigerant pump 350, and an expansion valve 360.
  • the refrigerator plant body 200 is connected to the heat load 610.
  • the heat exchanger 500 is provided in the cooling tower side forward path W11, whereas in the example of FIG. 5, the heat exchanger 500 is provided in the load side return path W22.
  • the heat load side three-way valve 630 is provided in the load side return path W22, and the heat load side three way valve 630 and the heat exchanger 500 are connected by the heat exchange path W23.
  • the heat exchange three-way valve 240 is provided in the cooling tower side forward path W11, and the heat exchange three-way valve 240 and the heat exchanger 500 are connected by the heat exchange path W14.
  • the other points are the same as in the case of FIG.
  • the heat exchange three-way valve 240 corresponds to an example of a heat exchange three-way valve, and adjusts the amount of cooling water branched from the cooling tower side forward path W11 to the heat exchange path W14.
  • the heat exchange three-way valve 240 is provided upstream of the cooling tower side three-way valve 430 in the cooling tower side forward path W11.
  • the upstream side of the cooling tower side three-way valve 430 is closer to the turbo refrigerator 300 than the cooling tower side three way valve 430 when viewed from the turbo refrigerator 300.
  • the heat exchange path W14 is provided in the cooling tower side forward path W11, and the heat exchanger 500 exchanges heat between the heat exchange path W23 and the load side return path W22. Further, the heat exchange three-way valve 240 can adjust the flow rate of the heat exchange path W14.
  • the heat exchanger 500 exchanges heat between the heat exchange path W14 and the load side return path W22, and the heat exchange path W14 is provided in the cooling tower side forward path W11. There is no change in temperature due to heat exchange after passing through the cooling tower 410.
  • the heat source system 1 can relatively easily control the temperature of the cooling water. Therefore, in the heat source system 1, the operation of the turbo chiller 300 can be continued even when the amount of cold water required by the heat load 610 is small, and the temperature control of the cooling water can be performed relatively easily.
  • the heat exchanging path W14 is provided on the turbo chiller 300 side (upstream side of the cooling water path) with respect to the cooling tower bypass path W13 in the cooling tower side forward path W11.
  • the cooling water branched to the heat exchange path W ⁇ b> 14 flows through the cooling tower side three-way valve 430 after heat exchange in the heat exchanger 500.
  • the cooling water that has passed through the cooling tower side three-way valve 430 does not change in temperature via the heat exchanger 500 before reaching the condenser 340. Therefore, when the control unit 190 calculates the bypass amount of the cooling water based on the temperature of the cooling water in the cooling tower side three-way valve 430, it is not necessary to consider the temperature change of the cooling water by the heat exchanger 500. In this respect, it is possible to avoid an increase in load for the control unit 190 to calculate the bypass amount of the cooling water.
  • the cooling water can be effectively utilized in that it is cooled by exchanging heat with the cooling water in the heat exchanger 500.
  • a program for realizing all or part of the functions of the control unit 190 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. You may perform the process of.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • Embodiments of the present invention include a heat source unit, a cooling tower side outbound path and a cooling tower side return path connected to the heat source unit, a load side outbound path and a load side return path connected to the heat source unit, and the load side return path and A heat exchanger provided in any one of the cooling tower side outbound path, the heat exchange path, and a heat exchanger for exchanging heat between the load side return path and the cooling tower side outbound path,
  • the present invention relates to a heat source system comprising: a heat exchange adjustment valve capable of adjusting a flow rate of the heat exchange path. According to this embodiment, the operation of the heat source device can be continued even when the amount of cooling required by the heat load is small, and the temperature control of the cooling water can be performed relatively easily.

Abstract

A heat source system comprises: a heat source device; a cooling tower-side outward path and a cooling tower-side return path that are connected to the heat source device; a load-side outward path and a load-side return path that are connected to the heat source device; a heat exchange channel provided in one of the load-side return path and the cooling tower-side outward path; a heat exchanger to exchange heat between the heat exchange channel and the other of the load-side return path and the cooling tower-side outward path; and a heat exchanger regulation valve that is capable of adjusting the flow rate in the heat exchange channel.

Description

熱源システム、制御装置、制御方法及びプログラムHeat source system, control device, control method and program
 本発明は、熱源システム、制御装置、制御方法及びプログラムに関する。
 本願は、2016年12月7日に、日本国に出願された特願2016-237379号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a heat source system, a control device, a control method, and a program.
This application claims priority based on Japanese Patent Application No. 2016-237379 filed in Japan on December 7, 2016, the contents of which are incorporated herein by reference.
 冷凍機など熱源機の運転負荷を調整するための技術が幾つか提案されている。例えば、特許文献1には、熱負荷側の熱需要によらず常に熱源機を定格の運転域で運転して運転状態を安定させることを目的とした熱源機システムが記載されている。この熱源機システムでは、冷却塔またはヒーティング塔が、熱源機に往路および復路を介して接続されている。また、熱負荷が、熱源機に往路および復路を介して接続されている。さらに、冷却塔またはヒーティング塔からの復路と熱負荷からの復路とが熱交換器に接続されている。この熱交換器は、これら冷却塔またはヒーティング塔からの復路と熱負荷からの復路との間で熱交換を行う。 Several techniques have been proposed for adjusting the operating load of a heat source machine such as a refrigerator. For example, Patent Document 1 describes a heat source apparatus system that aims to stabilize the operation state by always operating a heat source apparatus in a rated operation region regardless of the heat demand on the heat load side. In this heat source apparatus system, a cooling tower or a heating tower is connected to the heat source apparatus via an outward path and a return path. In addition, a heat load is connected to the heat source machine via an outward path and a return path. Furthermore, the return path from the cooling tower or heating tower and the return path from the heat load are connected to the heat exchanger. This heat exchanger performs heat exchange between the return path from the cooling tower or heating tower and the return path from the heat load.
日本国特開平7-280386号公報Japanese Unexamined Patent Publication No. 7-280386
 特許文献1に記載の熱源機システムでは、冷却塔またはヒーティング塔からの冷却水が熱交換によって温度変化する点で、熱源機に供給される冷却水の温度制御が複雑になる。冷却水の温度制御の精度が低下すると、熱源機システムが供給する冷水の温度制御の精度が低下する可能性がある。さらには、熱源機に供給される冷却水の温度に下限値が定められている場合、冷却水の温度が下限値を下回り、熱源機が停止してしまう可能性がある。 In the heat source apparatus system described in Patent Document 1, the temperature control of the cooling water supplied to the heat source apparatus is complicated in that the temperature of the cooling water from the cooling tower or the heating tower changes due to heat exchange. When the accuracy of the temperature control of the cooling water decreases, the accuracy of the temperature control of the cold water supplied by the heat source system may decrease. Furthermore, when the lower limit value is set for the temperature of the cooling water supplied to the heat source unit, the temperature of the cooling water may be lower than the lower limit value and the heat source unit may stop.
 本発明は、熱負荷が要求する冷熱量が少ない場合でも熱源機の運転を継続することができ、かつ、冷却水の温度制御を比較的簡単に行うことができる熱源システム、制御装置、制御方法及びプログラムを提供する。 The present invention provides a heat source system, a control device, and a control method capable of continuing the operation of the heat source device even when the amount of cooling energy required by the heat load is small and performing the cooling water temperature control relatively easily. And provide programs.
 本発明の第1の態様によれば、熱源システムは、熱源機と、前記熱源機に接続された冷却塔側往路及び冷却塔側復路と、前記熱源機に接続された負荷側往路及び負荷側復路と、前記負荷側復路及び前記冷却塔側往路のうちいずれか一方に設けられた熱交換用経路と、前記熱交換用経路と、前記負荷側復路及び前記冷却塔側往路のうち他方とを熱交換させる熱交換器と、前記熱交換用経路の流通量を調整可能な熱交換用調整弁と、を備える。 According to the first aspect of the present invention, a heat source system includes a heat source unit, a cooling tower side outward path and a cooling tower side return path connected to the heat source apparatus, and a load side outbound path and a load side connected to the heat source apparatus. A return path, a heat exchange path provided in any one of the load side return path and the cooling tower side outbound path, the heat exchange path, and the other of the load side return path and the cooling tower side outbound path. A heat exchanger for exchanging heat; and a heat exchange adjusting valve capable of adjusting a flow rate of the heat exchange path.
 前記熱源システムは、前記冷却塔側往路と前記冷却塔復路とを接続する冷却塔バイパス経路と、前記冷却塔バイパス経路の流通量を調整可能な冷却塔バイパス弁と、を備え、前記熱交換用経路は前記負荷側復路に設けられており、前記冷却塔側往路のうち前記冷却塔バイパス経路よりも前記熱源機側に前記熱交換器が配置されているようにしてもよい。 The heat source system includes a cooling tower bypass path that connects the cooling tower side forward path and the cooling tower return path, and a cooling tower bypass valve that can adjust a circulation amount of the cooling tower bypass path, and the heat exchange system A path may be provided in the load-side return path, and the heat exchanger may be disposed closer to the heat source unit than the cooling tower bypass path in the cooling tower side forward path.
 前記熱源システムは、前記冷却塔側往路と前記冷却塔復路とを接続する冷却塔バイパス経路と、前記冷却塔バイパス経路の流通量を調整可能な冷却塔バイパス弁と、を備え、前記熱交換用経路は前記冷却塔側往路のうち前記冷却塔バイパス経路よりも前記熱源機側に設けられているようにしてもよい。 The heat source system includes a cooling tower bypass path that connects the cooling tower side forward path and the cooling tower return path, and a cooling tower bypass valve that can adjust a circulation amount of the cooling tower bypass path, and the heat exchange system The path may be provided closer to the heat source unit than the cooling tower bypass path in the cooling tower side forward path.
 前記熱源システムは、前記熱源機からの冷熱供給の負荷が負荷下限値未満か否かを判定する負荷判定部と、前記負荷判定部が、前記熱源機からの冷熱供給の負荷が前記負荷下限値未満であると判定した場合、前記熱交換用調整弁を制御して前記熱交換器に熱交換を行わせる運転制御部と、を備えるようにしてもよい。 The heat source system includes a load determination unit that determines whether or not a load of cold supply from the heat source unit is less than a load lower limit value, and the load determination unit includes a load of cold supply from the heat source unit that is the load lower limit value. An operation control unit that controls the heat exchange regulating valve to cause the heat exchanger to perform heat exchange.
 本発明の第2の態様によれば、制御装置は、熱源機と、前記熱源機に接続された冷却塔側往路及び冷却塔側復路と、前記熱源機に接続された負荷側往路及び負荷側復路と、前記負荷側復路及び前記冷却塔側往路のうちいずれか一方に設けられた熱交換用経路と、前記熱交換用経路と、前記負荷側復路及び前記冷却塔側往路のうち他方とを熱交換させる熱交換器と、前記熱交換用経路の流通量を調整可能な熱交換用調整弁と、を備える熱源システムを制御する制御装置であって、前記熱源機の負荷が負荷下限値未満か否かを判定する負荷判定部と、前記負荷判定部が、前記熱源機の負荷が前記負荷下限値未満であると判定した場合、前記熱交換用調整弁を制御して前記熱交換器に熱交換を行わせる運転制御部と、を備える。 According to the second aspect of the present invention, the control device includes: a heat source unit; a cooling tower side outbound path and a cooling tower side return path connected to the heat source unit; a load side outbound path and a load side connected to the heat source unit. A return path, a heat exchange path provided in any one of the load side return path and the cooling tower side outbound path, the heat exchange path, and the other of the load side return path and the cooling tower side outbound path. A control device for controlling a heat source system comprising a heat exchanger for heat exchange and a heat exchange control valve capable of adjusting a flow rate of the heat exchange path, wherein a load of the heat source machine is less than a load lower limit value When the load determination unit that determines whether or not the load determination unit determines that the load of the heat source unit is less than the load lower limit value, the heat exchanger control valve is controlled to the heat exchanger. An operation control unit that performs heat exchange.
 本発明の第3の態様によれば、制御方法は、熱源機と、前記熱源機に接続された冷却塔側往路及び冷却塔側復路と、前記熱源機に接続された負荷側往路及び負荷側復路と、前記負荷側復路及び前記冷却塔側往路のうちいずれか一方に設けられた熱交換用経路と、前記熱交換用経路と前記負荷側復路及び前記冷却塔側往路のうち他方とを熱交換させる熱交換器と、前記熱交換用経路の流通量を調整可能な熱交換用調整弁と、を備える熱源システムの、前記熱源機の負荷が負荷下限値未満か否かを判定し、前記熱源機の負荷が前記負荷下限値未満であると判定した場合、前記熱交換用調整弁を制御して前記熱交換器に熱交換を行わせる。 According to the third aspect of the present invention, the control method includes a heat source unit, a cooling tower side forward path and a cooling tower side return path connected to the heat source unit, and a load side outbound path and a load side connected to the heat source unit. Heat the return path, the heat exchange path provided in one of the load side return path and the cooling tower side outbound path, and the other of the heat exchange path, the load side return path and the cooling tower side outbound path. Determining whether or not the load of the heat source unit is less than a load lower limit value of a heat source system comprising a heat exchanger to be exchanged and a heat exchange regulating valve capable of adjusting a circulation amount of the heat exchange path, When it determines with the load of a heat source machine being less than the said load lower limit, the said control valve for heat exchange is controlled, and the said heat exchanger performs heat exchange.
 本発明の第4の態様によれば、プログラムは、熱源機と、前記熱源機に接続された冷却塔側往路及び冷却塔側復路と、前記熱源機に接続された負荷側往路及び負荷側復路と、前記負荷側復路及び前記冷却塔側往路のうちいずれか一方に設けられた熱交換用経路と、前記熱交換用経路と前記負荷側復路及び前記冷却塔側往路のうち他方とを熱交換させる熱交換器と、前記熱交換用経路の流通量を調整可能な熱交換用調整弁と、を備える熱源システムの、前記熱源機の負荷を制御するコンピュータに、前記熱源機の負荷が、負荷下限値未満か否かを判定させ、前記熱源機の負荷が前記負荷下限値未満であると判定した場合、前記熱交換用調整弁を制御して前記熱交換器に熱交換を行わせる、ためのプログラムである。 According to the fourth aspect of the present invention, the program includes a heat source unit, a cooling tower side forward path and a cooling tower side return path connected to the heat source unit, and a load side outbound path and a load side return path connected to the heat source unit. And heat exchange between the heat exchange path provided in one of the load side return path and the cooling tower side outbound path, and the other of the heat exchange path and the load side return path and the cooling tower side outbound path A heat exchanger that includes a heat exchanger and a heat exchange regulating valve capable of adjusting a flow rate of the heat exchange path, wherein the load of the heat source machine is a load If it is determined whether or not the load of the heat source unit is less than the lower limit of the load, if the load of the heat source unit is determined to be less than the lower limit of the load, the heat exchanger is controlled to perform heat exchange by controlling the adjustment valve for heat exchange It is a program.
 上記した熱源システム、制御装置、制御方法及びプログラムによれば、熱負荷が要求する冷熱量が少ない場合でも熱源機の運転を継続することができ、かつ、冷却水の温度制御を比較的簡単に行うことができる。 According to the heat source system, the control device, the control method and the program described above, the operation of the heat source unit can be continued even when the amount of cooling heat required by the heat load is small, and the temperature control of the cooling water is relatively easy. It can be carried out.
実施形態に係る熱源システムの機能構成を示す概略ブロック図である。It is a schematic block diagram which shows the function structure of the heat-source system which concerns on embodiment. 実施形態に係る冷凍機プラント本体200の装置構成の例を示す概略構成図である。It is a schematic block diagram which shows the example of an apparatus structure of the refrigerator plant main body 200 which concerns on embodiment. 実施形態に係るターボ冷凍機300の運転範囲を示すグラフである。It is a graph which shows the operating range of the turbo refrigerator 300 which concerns on embodiment. 実施形態に係る制御装置100が冷凍機プラント本体200を制御する処理手順の例を示すフローチャートである。It is a flowchart which shows the example of the process sequence which the control apparatus 100 which concerns on embodiment controls the refrigerator plant main body 200. FIG. 実施形態に係る冷凍機プラント本体200の装置構成のもう1つの例を示す概略構成図である。It is a schematic block diagram which shows another example of the apparatus structure of the refrigerator plant main body 200 which concerns on embodiment.
 以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、実施形態に係る熱源システムの機能構成を示す概略ブロック図である。図1に示すように、熱源システム1は、制御装置100と、冷凍機プラント本体200とを備える。制御装置100は、通信部110と、記憶部180と、制御部190とを備える。制御部190は、負荷判定部191と、運転制御部192とを備える。
Hereinafter, although embodiment of this invention is described, the following embodiment does not limit the invention concerning a claim. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
FIG. 1 is a schematic block diagram illustrating a functional configuration of the heat source system according to the embodiment. As shown in FIG. 1, the heat source system 1 includes a control device 100 and a refrigerator plant main body 200. The control device 100 includes a communication unit 110, a storage unit 180, and a control unit 190. The control unit 190 includes a load determination unit 191 and an operation control unit 192.
 熱源システム1は、熱負荷に対して冷熱を供給する。具体的には、熱源システムは熱負荷に対して冷水を供給する。すなわち、熱源システム1は、熱負荷に対して水を媒体として冷熱を供給する。熱源システム1が熱負荷に対して供給する冷水は冷熱の例に該当する。
 冷凍機プラント本体200が備える冷凍機が軽負荷にて停止するのに対し、熱源システム1は、熱負荷が要求する冷水量が、小さい冷水量から急増した場合でも、安定的に冷水を供給する。冷凍機が軽負荷にて停止すると再起動に時間を要し、熱負荷が要求する冷水量が急増した場合に供給可能な冷熱量が不足する可能性、あるいは、熱負荷が要求する温度で冷水を供給できない可能性がある。そこで、熱源システム1は、軽負荷でも冷凍機を停止させない仕組み及びモードを備えている。
The heat source system 1 supplies cold heat to the heat load. Specifically, the heat source system supplies cold water to the heat load. That is, the heat source system 1 supplies cold heat using water as a medium to the heat load. The cold water that the heat source system 1 supplies to the heat load corresponds to an example of cold heat.
While the refrigerator included in the refrigerator plant main body 200 stops at a light load, the heat source system 1 stably supplies cold water even when the amount of cold water required by the heat load suddenly increases from a small amount of cold water. . If the refrigerator stops at a light load, it takes time to restart, and if the amount of chilled water required by the heat load increases rapidly, there is a possibility that the amount of chilled heat that can be supplied will be insufficient or the chilled water at the temperature required by the heat load. May not be able to supply. Therefore, the heat source system 1 has a mechanism and mode that do not stop the refrigerator even with a light load.
 制御装置100は、冷凍機プラント本体200を制御する。制御装置100が冷凍機プラント本体200を制御する運転モードには通常モードと模擬負荷モードとがある。制御装置100が冷凍機プラント本体200を制御する運転モードを、冷凍機プラント本体200の運転モードとも称する。
 通常モードでは軽負荷時に冷凍機プラント本体200の冷凍機を停止させるのに対し、模擬負荷モードでは軽負荷時でも冷凍機の運転を継続させる。制御装置100は、例えばPLC(Programmable Logic Controller)又は汎用ワークステーション(Work Station)等のコンピュータを用いて構成される。
The control device 100 controls the refrigerator plant main body 200. The operation mode in which the control device 100 controls the refrigerator plant body 200 includes a normal mode and a simulated load mode. The operation mode in which the control device 100 controls the refrigerator plant main body 200 is also referred to as the operation mode of the refrigerator plant main body 200.
In the normal mode, the refrigerator of the refrigerator plant body 200 is stopped when the load is light, whereas in the simulated load mode, the operation of the refrigerator is continued even when the load is light. The control device 100 is configured using a computer such as a PLC (Programmable Logic Controller) or a general-purpose workstation (Work Station).
 通信部110は、冷凍機プラント本体200と通信を行う。特に、通信部110は、冷凍機プラント本体200へ制御信号を送信し、また、冷凍機プラント本体200の各種センサによる測定値を受信する。
 記憶部180は、各種データを記憶する。記憶部180は、制御装置100が備える記憶デバイスを用いて構成される。
 制御部190は、制御装置100の各部を制御して各種処理を実行する。制御部190は、例えば制御装置100が備えるCPU(Central Processing Unit)が記憶部180からプログラムを読み出して実行することで構成される。
The communication unit 110 communicates with the refrigerator plant main body 200. In particular, the communication unit 110 transmits a control signal to the refrigerator plant main body 200 and receives measurement values from various sensors of the refrigerator plant main body 200.
The storage unit 180 stores various data. The storage unit 180 is configured using a storage device provided in the control device 100.
The control unit 190 controls each unit of the control device 100 and executes various processes. The control unit 190 is configured by, for example, a CPU (Central Processing Unit) included in the control device 100 reading out a program from the storage unit 180 and executing the program.
 負荷判定部191は、冷凍機プラント本体200の熱源機の負荷が負荷下限値未満か否かを判定する。ここでいう負荷下限値は、通常モードで冷凍機の運転を軽負荷にて停止させるか否かの判定基準となる閾値である。
 運転制御部192は、冷凍機プラント本体200を制御するための各種演算を行う。冷凍機プラント本体200の運転モードが模擬負荷モードであり、かつ、負荷判定部191が、冷凍機プラント本体200の熱源機の負荷が負荷下限値未満であると判定した場合、運転制御部192は、冷凍機プラント本体200の冷凍機を停止させないように冷凍機プラント本体200を制御する。具体的には、冷凍機プラント本体200は模擬的な熱負荷として冷凍機からの熱を受ける熱交換器を備えており、運転制御部192は、この熱交換器に接続された熱交換用調整弁を制御して熱交換器に熱交換を行わせる。この熱交換によって冷凍機が冷水を供給する負荷が上昇し、冷凍機は、軽負荷停止を行わずに運転を継続する。
The load determination unit 191 determines whether or not the load of the heat source unit of the refrigerator plant main body 200 is less than the load lower limit value. The load lower limit value here is a threshold value that is a criterion for determining whether or not to stop the operation of the refrigerator at a light load in the normal mode.
The operation control unit 192 performs various calculations for controlling the refrigerator plant main body 200. When the operation mode of the refrigerator plant main body 200 is the simulated load mode and the load determination unit 191 determines that the load of the heat source device of the refrigerator plant main body 200 is less than the load lower limit value, the operation control unit 192 The refrigerator plant body 200 is controlled so that the refrigerator of the refrigerator plant body 200 is not stopped. Specifically, the refrigerator plant body 200 includes a heat exchanger that receives heat from the refrigerator as a simulated heat load, and the operation control unit 192 adjusts for heat exchange connected to the heat exchanger. The valve is controlled to cause the heat exchanger to exchange heat. This heat exchange increases the load that the refrigerator supplies cold water, and the refrigerator continues to operate without stopping light load.
 図2は、冷凍機プラント本体200の装置構成の例を示す概略構成図である。図2の例で、冷凍機プラント本体200は、ターボ冷凍機300と、冷却塔410と、冷却水ポンプ420と、冷却塔側三方弁430と、熱交換器500と、冷水ポンプ620と、熱負荷側三方弁630と、往路側温度センサ711と、復路側温度センサ712と、流量センサ721とを備える。ターボ冷凍機300は、蒸発器310と、蒸発器ポンプ320と、ターボ圧縮機330と、凝縮器340と、冷媒ポンプ350と、膨張弁360とを備える。冷凍機プラント本体200は熱負荷610に接続されている。 FIG. 2 is a schematic configuration diagram showing an example of the device configuration of the refrigerator plant main body 200. In the example of FIG. 2, the refrigerator plant body 200 includes a turbo refrigerator 300, a cooling tower 410, a cooling water pump 420, a cooling tower side three-way valve 430, a heat exchanger 500, a cold water pump 620, A load side three-way valve 630, an outward path temperature sensor 711, a return path temperature sensor 712, and a flow rate sensor 721 are provided. The turbo refrigerator 300 includes an evaporator 310, an evaporator pump 320, a turbo compressor 330, a condenser 340, a refrigerant pump 350, and an expansion valve 360. The refrigerator plant body 200 is connected to the heat load 610.
 冷凍機プラント本体200は、制御部190の制御に従って動作し、熱負荷610に冷水を供給する。
 ターボ冷凍機300は熱源機の例に該当し、熱負荷610からの要求に応じて熱負荷610に冷水を供給する。このターボ冷凍機300は、軽負荷時に停止する仕様になっている。ターボ冷凍機300の負荷が負荷下限値の場合、ターボ冷凍機300は、制御装置100の制御に従って停止する。
 但し、冷凍機プラント本体200が備える熱源機はターボ冷凍機に限らず、軽負荷時に停止する熱源機であればよい。例えば冷凍機プラント本体200が、ターボ冷凍機300に代えて、熱負荷610に対して温水及び冷水のいずれも供給可能な熱源機を備えるようにしてもよい。
The refrigerator plant body 200 operates according to the control of the control unit 190 and supplies cold water to the heat load 610.
The turbo chiller 300 corresponds to an example of a heat source machine, and supplies cold water to the heat load 610 in response to a request from the heat load 610. The turbo chiller 300 is designed to stop at light loads. When the load of the turbo chiller 300 is the load lower limit value, the turbo chiller 300 stops under the control of the control device 100.
However, the heat source device included in the refrigerator plant main body 200 is not limited to the turbo refrigerator, and may be a heat source device that stops at a light load. For example, the refrigerator plant body 200 may include a heat source device that can supply both hot water and cold water to the heat load 610 instead of the turbo refrigerator 300.
 ターボ冷凍機300では、蒸発器310が、ターボ冷凍機300の冷媒と熱負荷610へ供給される冷水との間で熱交換を行う。蒸発器310は冷媒を蒸発させ、気化熱によって冷水の温度を低下させる。
 冷媒の蒸発を促進するために、蒸発器310は、冷水が流れるパイプの上方に設けられた噴霧口からパイプに向かって冷媒を噴霧させる。冷媒第一経路W31は、蒸発器310の下部と噴霧口とを接続する経路である。冷媒第一経路W31には蒸発器ポンプ320が設けられており、蒸発器ポンプ320は、蒸発器310に溜まった液体の冷媒を噴霧口へ流す。
In the turbo chiller 300, the evaporator 310 performs heat exchange between the refrigerant of the turbo chiller 300 and the cold water supplied to the heat load 610. The evaporator 310 evaporates the refrigerant and lowers the temperature of the cold water by the heat of vaporization.
In order to promote the evaporation of the refrigerant, the evaporator 310 sprays the refrigerant from the spray port provided above the pipe through which the cold water flows toward the pipe. The refrigerant first path W31 is a path that connects the lower portion of the evaporator 310 and the spray port. An evaporator pump 320 is provided in the refrigerant first path W31, and the evaporator pump 320 allows the liquid refrigerant accumulated in the evaporator 310 to flow to the spray port.
 蒸発器310で気体になった冷媒は、冷媒第二経路W32を経由してターボ圧縮機330へ流入し圧縮される。圧縮によって圧力及び温度が上昇した気体の冷媒は、冷媒第三経路W33を経由して凝縮器340へ流入する。
 凝縮器340は、ターボ圧縮機330で圧縮された気体の冷媒と冷却水との間で熱交換を行うことで冷媒を冷却して液化させる。
The refrigerant that has become a gas in the evaporator 310 flows into the turbo compressor 330 via the refrigerant second path W32 and is compressed. The gaseous refrigerant whose pressure and temperature are increased by the compression flows into the condenser 340 via the refrigerant third path W33.
The condenser 340 cools and liquefies the refrigerant by exchanging heat between the gaseous refrigerant compressed by the turbo compressor 330 and the cooling water.
 液体になった冷媒は冷媒第四経路W34を経由して蒸発器310へ戻る。冷媒第四経路W34には冷媒ポンプ350と膨張弁360とが設けられており、冷媒ポンプ350は、液体の冷媒を凝縮器340から蒸発器310へ搬送する。冷媒は、膨張弁360で減圧されることで蒸発し易くなる。 The refrigerant that has become liquid returns to the evaporator 310 via the refrigerant fourth path W34. The refrigerant fourth path W34 is provided with a refrigerant pump 350 and an expansion valve 360. The refrigerant pump 350 conveys liquid refrigerant from the condenser 340 to the evaporator 310. The refrigerant is easily evaporated by being depressurized by the expansion valve 360.
 ターボ冷凍機300は、ターボ圧縮機330の仕様により軽負荷では停止する。
 図3は、ターボ冷凍機300の運転範囲を示すグラフである。図3のグラフの横軸はターボ冷凍機300の負荷率を示す。縦軸は、ターボ冷凍機300の運転可否を示す。図3に示すように、ターボ冷凍機300は、30%以上の負荷率で運転可能である。すなわち、ターボ冷凍機300の運転範囲は負荷率30%以上である。一方、負荷率30%未満ではターボ冷凍機300は停止する。
 そこで、模擬負荷モードではターボ冷凍機300の軽負荷時に熱交換器500がターボ冷凍機300に供給される冷水を受けることでターボ冷凍機300の負荷を高める。これにより、ターボ冷凍機300は軽負荷にも運転を継続し、かつ、熱負荷に対して要求量の冷水を供給することができる。
The turbo chiller 300 stops at a light load according to the specifications of the turbo compressor 330.
FIG. 3 is a graph showing the operating range of the turbo chiller 300. The horizontal axis of the graph in FIG. 3 shows the load factor of the turbo chiller 300. The vertical axis indicates whether the turbo chiller 300 can be operated. As shown in FIG. 3, the turbo chiller 300 can be operated at a load factor of 30% or more. That is, the operating range of the turbo chiller 300 is a load factor of 30% or more. On the other hand, if the load factor is less than 30%, the centrifugal chiller 300 stops.
Therefore, in the simulated load mode, the heat exchanger 500 receives cold water supplied to the turbo refrigerator 300 when the turbo refrigerator 300 is lightly loaded, thereby increasing the load of the turbo refrigerator 300. As a result, the turbo chiller 300 can continue to operate even with a light load, and can supply the required amount of cold water to the heat load.
 ターボ冷凍機300は、冷却塔側往路W11及び冷却塔側復路W12を介して冷却塔410に接続されている。冷却塔410は、ターボ冷凍機300の凝縮器340で冷媒と熱交換して加熱された冷却水を冷却する。冷却塔側往路W11は、凝縮器340で加熱された冷却水が冷却塔410へ流れる経路である。冷却塔側復路W12は、冷却塔410で冷却された冷却水が凝縮器340へ流れる経路である。
 冷却水ポンプ420は、ターボ冷凍機300と冷却塔410との間で冷却水を循環させる。図2の例では冷却水ポンプ420は冷却塔側復路W12に設けられており、冷却塔410からターボ冷凍機300へ冷却水を流す。
The turbo chiller 300 is connected to the cooling tower 410 via the cooling tower side forward path W11 and the cooling tower side return path W12. The cooling tower 410 cools the cooling water heated by exchanging heat with the refrigerant in the condenser 340 of the turbo refrigerator 300. The cooling tower side forward path W <b> 11 is a path through which the cooling water heated by the condenser 340 flows to the cooling tower 410. The cooling tower side return path W 12 is a path through which the cooling water cooled by the cooling tower 410 flows to the condenser 340.
The cooling water pump 420 circulates cooling water between the turbo chiller 300 and the cooling tower 410. In the example of FIG. 2, the cooling water pump 420 is provided in the cooling tower side return path W <b> 12, and flows cooling water from the cooling tower 410 to the turbo refrigerator 300.
 また、ターボ冷凍機300は、負荷側往路W21及び負荷側復路W22を介して熱負荷610に接続されている。負荷側往路W21は、ターボ冷凍機300の蒸発器310で冷却された冷水が熱負荷610へ流れる経路である。負荷側復路W22は、熱負荷610で使用されて温度が上昇した冷水が蒸発器310へ流れる経路である。
 冷水ポンプ620は、ターボ冷凍機300と熱負荷610との間で冷水を循環させる。図2の例では冷水ポンプ620は負荷側復路W22に設けられており、熱負荷610からターボ冷凍機300へ冷水を流す。
 熱負荷610が、蒸発器310から供給された冷水を全て蒸発器310へ戻すようにしてもよい。あるいは、熱負荷610、が冷水の一部又は全部を取り込んで蒸発器310へ戻さないようにしてもよい。熱負荷610が冷水の一部又は全部を取り込む場合、熱負荷610が取り込んだ冷水に代えて、例えば水道など水供給源から水が蒸発器310へ供給されるようにしてもよい。この場合、供給される水は常温の水でよい。
Further, the turbo chiller 300 is connected to the thermal load 610 via a load side forward path W21 and a load side return path W22. The load side forward path W <b> 21 is a path through which the cold water cooled by the evaporator 310 of the turbo chiller 300 flows to the thermal load 610. The load-side return path W <b> 22 is a path through which cold water that has been used in the thermal load 610 and has increased in temperature flows to the evaporator 310.
The cold water pump 620 circulates cold water between the turbo chiller 300 and the heat load 610. In the example of FIG. 2, the chilled water pump 620 is provided in the load-side return path W <b> 22 and flows chilled water from the heat load 610 to the turbo chiller 300.
The heat load 610 may return all the cold water supplied from the evaporator 310 to the evaporator 310. Alternatively, the heat load 610 may take part or all of the cold water and not return it to the evaporator 310. When the heat load 610 takes in part or all of the cold water, water may be supplied to the evaporator 310 from a water supply source such as a water supply instead of the cold water taken in by the heat load 610. In this case, the supplied water may be room temperature water.
 また、冷却塔側往路W11には熱交換器500が設けられている。熱交換器500は、熱交換用経路W23を介して負荷側復路W22に接続されている。熱交換器500は、冷却塔側往路W11と熱交換用経路W23との間で熱交換を行うことで、冷却塔側往路W11と負荷側復路W22との間で熱交換を行う。具体的には、負荷側復路W22から熱交換用経路W23へ分流された冷水が、冷却塔側往路W11を流れる冷却水から吸熱する。この吸熱によってターボ冷凍機300へ戻る冷水の温度が上昇し、ターボ冷凍機300が熱負荷610に冷水を供給する負荷が上昇する。これにより、熱負荷610が要求する冷水量が小さい場合でも、ターボ冷凍機300の負荷が負荷下限値以上になり、ターボ冷凍機300が運転を継続する。 In addition, a heat exchanger 500 is provided in the cooling tower side forward path W11. The heat exchanger 500 is connected to the load side return path W22 via the heat exchange path W23. The heat exchanger 500 performs heat exchange between the cooling tower side forward path W11 and the load side return path W22 by performing heat exchange between the cooling tower side forward path W11 and the heat exchange path W23. Specifically, the cold water that is diverted from the load-side return path W22 to the heat exchange path W23 absorbs heat from the cooling water that flows through the cooling tower-side forward path W11. The temperature of the cold water returning to the turbo chiller 300 is increased by this heat absorption, and the load at which the turbo chiller 300 supplies cold water to the heat load 610 is increased. Thereby, even when the amount of cold water required by the heat load 610 is small, the load on the turbo chiller 300 becomes equal to or greater than the load lower limit value, and the turbo chiller 300 continues to operate.
 負荷側復路W22と熱交換用経路W23とは熱負荷側三方弁630を介して接続されている。熱負荷側三方弁630は、熱交換用調整弁の例に該当する流量調整弁であり、負荷側復路W22から熱交換用経路W23へ分岐する冷水の量を調整する。熱負荷側三方弁630は、負荷側復路W22から熱交換用経路W23への流量を0にすることも可能である。これによって負荷側復路W22から熱交換用経路W23への冷水の分岐が遮断される。 
  なお、熱負荷側三方弁630に代えて、2つの二方弁を用いて三方弁と同様の制御を行うようにしてもよい。他の三方弁についても同様である。
The load side return path W22 and the heat exchange path W23 are connected via a heat load side three-way valve 630. The heat load side three-way valve 630 is a flow rate adjustment valve corresponding to an example of a heat exchange adjustment valve, and adjusts the amount of cold water branched from the load side return path W22 to the heat exchange path W23. The heat load side three-way valve 630 can set the flow rate from the load side return path W22 to the heat exchange path W23 to zero. As a result, the branch of cold water from the load-side return path W22 to the heat exchange path W23 is blocked.
Instead of the heat load side three-way valve 630, two two-way valves may be used to perform the same control as the three-way valve. The same applies to the other three-way valves.
 冷却塔側往路W11と冷却塔側復路W12との間には冷却塔バイパス経路W13が設けられている。冷却塔バイパス経路W13が冷却塔側往路W11を流れる冷却水の一部を冷却塔側復路W12へバイパスすることで、凝縮器340へ流れる冷却水の温度を調整することができる。冷却塔側往路W11と冷却塔バイパス経路W13とは冷却塔側三方弁430を介して接続されている。冷却塔側三方弁430は、冷却塔バイパス弁の例に該当する流量調整弁であり、冷却塔側往路W11から冷却塔側復路W12へバイパスされる冷却水の量を調整する。
 冷却塔側三方弁430は、冷却塔側往路W11から冷却塔バイパス経路W13への冷却水の流量を0にすることも可能である。これによって冷却塔側往路W11から冷却塔側復路W12への冷却水のバイパスが遮断される。
A cooling tower bypass path W13 is provided between the cooling tower side forward path W11 and the cooling tower side return path W12. The temperature of the cooling water flowing to the condenser 340 can be adjusted by bypassing a part of the cooling water flowing through the cooling tower side forward path W11 by the cooling tower bypass path W13 to the cooling tower side return path W12. The cooling tower side forward path W11 and the cooling tower bypass path W13 are connected via a cooling tower side three-way valve 430. The cooling tower side three-way valve 430 is a flow rate adjustment valve corresponding to an example of the cooling tower bypass valve, and adjusts the amount of cooling water bypassed from the cooling tower side forward path W11 to the cooling tower side return path W12.
The cooling tower side three-way valve 430 can make the flow rate of the cooling water from the cooling tower side forward path W11 to the cooling tower bypass path W13 zero. As a result, the bypass of the cooling water from the cooling tower side forward path W11 to the cooling tower side return path W12 is blocked.
 冷却塔側三方弁430は、冷却塔側往路W11のうち熱交換器500よりも下流側に設けられている。冷却塔側往路W11のうち熱交換器500よりも下流側は、凝縮器340から見て冷却塔410に近い側である。
 これにより、冷却水は熱交換器500での熱交換後に冷却塔側三方弁430を流れることになる。このため、冷却塔側三方弁430を通過した冷却水が凝縮器340に到達する前に熱交換器500を経由して温度変化することは無い。従って、制御部190が、冷却塔側三方弁430における冷却水の温度に基づいて冷却水のバイパス量を計算する際、熱交換器500による冷却水の温度変化を考慮する必要が無い。この点で、制御部190が冷却水のバイパス量を計算する負荷の増加を回避することができる。
The cooling tower side three-way valve 430 is provided on the downstream side of the heat exchanger 500 in the cooling tower side forward path W11. In the cooling tower side forward path W11, the downstream side of the heat exchanger 500 is a side close to the cooling tower 410 when viewed from the condenser 340.
Thus, the cooling water flows through the cooling tower side three-way valve 430 after heat exchange in the heat exchanger 500. For this reason, the cooling water that has passed through the cooling tower side three-way valve 430 does not change in temperature via the heat exchanger 500 before reaching the condenser 340. Therefore, when the control unit 190 calculates the bypass amount of the cooling water based on the temperature of the cooling water in the cooling tower side three-way valve 430, it is not necessary to consider the temperature change of the cooling water by the heat exchanger 500. In this respect, it is possible to avoid an increase in load for the control unit 190 to calculate the bypass amount of the cooling water.
 往路側温度センサ711は負荷側往路W21に設けられており、負荷側往路W21を流れる冷水の温度を測定する。復路側温度センサ712は負荷側復路W22に設けられており、負荷側復路W22を流れる冷水の温度を測定する。流量センサ721は負荷側往路W21に設けられており、負荷側往路W21を流れる冷水の流量を測定する。
 復路側温度センサ712が測定した温度から往路側温度センサ711が測定した温度を減算した温度差と、流量センサ721が測定した流量とを乗算した値は、熱負荷610が消費した冷水熱量を示していると考えることができる。すなわち、熱負荷610が消費した冷水熱量QI_CHは、式(1)のように示される。
The outward path temperature sensor 711 is provided in the load-side outbound path W21, and measures the temperature of the cold water flowing through the load-side outbound path W21. The return side temperature sensor 712 is provided in the load side return path W22 and measures the temperature of the cold water flowing through the load side return path W22. The flow rate sensor 721 is provided in the load side forward path W21 and measures the flow rate of the cold water flowing through the load side forward path W21.
A value obtained by multiplying a temperature difference obtained by subtracting the temperature measured by the forward path temperature sensor 711 from the temperature measured by the return path temperature sensor 712 and the flow rate measured by the flow sensor 721 indicates the amount of cold water consumed by the heat load 610. Can be considered. In other words, the amount of cold water heat QI_CH consumed by the heat load 610 is expressed as in Expression (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、TI_CHoは、冷水出口温度を示す。冷水出口温度として、往路側温度センサ711が測定する負荷側往路W21における冷水の温度を用いることができる。TI_CHiは、冷水入口温度を示す。冷水入口温度として、復路側温度センサ712が測定する負荷側復路W22における冷水の温度を用いることができる。FI_CHは、冷水流量を示す。冷水流量として、流量センサ721が測定する負荷側往路W21における冷水の流量を用いることができる。 Here, TI_CHo indicates the cold water outlet temperature. As the cold water outlet temperature, the temperature of the cold water in the load-side outward path W21 measured by the outward-path temperature sensor 711 can be used. TI_CHi indicates the cold water inlet temperature. As the cold water inlet temperature, the temperature of the cold water in the load side return path W22 measured by the return side temperature sensor 712 can be used. FI_CH indicates the cold water flow rate. As the chilled water flow rate, the chilled water flow rate in the load-side outward path W21 measured by the flow rate sensor 721 can be used.
 次に、図4を参照して熱源システム1の動作について説明する。
 図4は、制御装置100が冷凍機プラント本体200を制御する処理手順の例を示すフローチャートである。制御装置100は、熱源システム1の運転開始を指示するユーザ操作である運転開始操作が行われると図4の処理を行う。
 図4の処理で、制御装置100の運転制御部192はターボ冷凍機300を起動させる(ステップS101)。そして、運転制御部192は、ターボ冷凍機300の起動開始からt2時間の経過を待ち受け(ステップS102)、さらにt1時間の経過を待ち受ける(ステップS103)。
Next, the operation of the heat source system 1 will be described with reference to FIG.
FIG. 4 is a flowchart illustrating an example of a processing procedure in which the control device 100 controls the refrigerator plant main body 200. The control device 100 performs the process of FIG. 4 when an operation start operation that is a user operation instructing the operation start of the heat source system 1 is performed.
In the process of FIG. 4, the operation control unit 192 of the control device 100 activates the turbo chiller 300 (step S <b> 101). Then, the operation control unit 192 waits for elapse of t2 time from the start of the start of the turbo chiller 300 (step S102), and further waits for elapse of t1 time (step S103).
 t1時間は、制御装置100における制御判定周期である。ここでいう制御判定周期は、運転制御部192が、冷凍機プラント本体200の運転モードを判定して冷凍機プラント本体200を制御する処理を繰り返す周期である。t2時間は、ターボ冷凍機300の起動時間である。具体的には、t2時間は、ターボ冷凍機300の起動を開始してから冷却の効果が表れるまでの効果待ち時間である。
 但し、ステップS103は必須ではない。従って、運転制御部192が、ステップS102でのt2時間待ちの後、ステップS103での時間待ちを行わずにステップS104へ遷移するようにしてもよい。
The t1 time is a control determination cycle in the control device 100. Here, the control determination cycle is a cycle in which the operation control unit 192 repeats the process of determining the operation mode of the refrigerator plant main body 200 and controlling the refrigerator plant main body 200. The time t2 is the startup time of the turbo chiller 300. Specifically, the time t2 is an effect waiting time from the start of the start of the turbo chiller 300 until the cooling effect appears.
However, step S103 is not essential. Therefore, the operation control unit 192 may transition to step S104 without waiting for the time in step S103 after waiting for t2 time in step S102.
 次に、運転制御部192は、冷凍機プラント本体200の運転モードを判定する(ステップS104)。例えば運転制御部192は、上記の式(1)に基づいて、熱負荷610が消費した冷水熱量QI_CHを算出する。そして、運転制御部192は、算出した冷水熱量QI_CHと熱量下限値Qminとを比較して運転モードを判定する。式(2)が成立する場合、運転制御部192は、冷凍機プラント本体200の運転モードを通常モードと判定する。 Next, the operation control unit 192 determines the operation mode of the refrigerator plant main body 200 (step S104). For example, the operation control unit 192 calculates the amount of chilled water heat QI_CH consumed by the heat load 610 based on the above equation (1). Then, the operation control unit 192 determines the operation mode by comparing the calculated amount of cold water heat QI_CH with the heat amount lower limit Qmin. When Expression (2) is satisfied, the operation control unit 192 determines that the operation mode of the refrigerator plant body 200 is the normal mode.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、h1はハンチング防止のための係数を示す。
 一方、式(3)が成立する場合、運転制御部192は、冷凍機プラント本体200の運転モードを模擬負荷モードと判定する。
Here, h1 represents a coefficient for preventing hunting.
On the other hand, when Expression (3) is satisfied, the operation control unit 192 determines that the operation mode of the refrigerator plant main body 200 is the simulated load mode.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、h2はハンチング防止のための係数を示す。
 熱量下限値Qminは、定数値として予め定められていてもよい。あるいは、冷水温度及び冷却水温度等の運転条件により運転可能な負荷率の範囲が変動する場合、制御装置100がターボ冷凍機300と通信を行って熱量下限値Qminを受信するようにしてもよい。
 また、運転制御部192が、冷水熱量QI_CH及び熱量下限値Qminに代えて、冷水入口温度Ti_CHi及び温度下限値Tminに基づいて運転モードを判定するようにしてもよい。例えば、式(4)が成立する場合、運転制御部192は、冷凍機プラント本体200の運転モードを通常モードと判定する。
Here, h2 represents a coefficient for preventing hunting.
The heat amount lower limit Qmin may be determined in advance as a constant value. Or when the range of the load factor which can be drive | operated changes with driving | running conditions, such as cold water temperature and cooling water temperature, you may make it the control apparatus 100 communicate with the turbo refrigerator 300, and may receive the calorie | heat amount lower limit Qmin. .
The operation control unit 192 may determine the operation mode based on the cold water inlet temperature Ti_CHi and the temperature lower limit value Tmin instead of the cold water heat amount QI_CH and the heat lower limit value Qmin. For example, when Formula (4) is materialized, the operation control unit 192 determines that the operation mode of the refrigerator plant body 200 is the normal mode.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、h3はハンチング防止のための係数を示す。
 一方、式(5)が成立する場合、運転制御部192は、冷凍機プラント本体200の運転モードを模擬負荷モードと判定する。
Here, h3 represents a coefficient for preventing hunting.
On the other hand, when Formula (5) is materialized, the operation control unit 192 determines that the operation mode of the refrigerator plant body 200 is the simulated load mode.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、h4はハンチング防止のための係数を示す。
 ステップS104で、運転モードが模擬負荷モードであると判定した場合(ステップS104:模擬負荷モード)、運転制御部192は模擬負荷運転制御を行う(ステップS111)。模擬負荷運転制御では、運転制御部192は、式(1)で求まる冷水熱量QI_CHが熱量下限値Qmin以上になるように、熱負荷側三方弁630を制御して熱交換器500に流れる冷水の流量を調整する。
Here, h4 indicates a coefficient for preventing hunting.
If it is determined in step S104 that the operation mode is the simulated load mode (step S104: simulated load mode), the operation control unit 192 performs simulated load operation control (step S111). In the simulated load operation control, the operation control unit 192 controls the heat load side three-way valve 630 so that the chilled water calorie QI_CH obtained by the equation (1) is equal to or greater than the calorie lower limit Qmin, and the chilled water flowing into the heat exchanger 500 Adjust the flow rate.
 そして、運転制御部192は、t2時間の経過を待ち受ける(ステップS112)。そして、運転制御部192は、運転終了操作が行われたか否かを判定する(ステップS131)。ここでいう運転終了操作は、熱源システム1の運転の終了を指示するユーザ操作である。
 運転終了操作が行われていないと判定した場合(ステップS131:NO)、ステップS104へ戻る。
 一方、運転終了操作が行われたと判定した場合(ステップS131:YES)、運転制御部192は、ターボ冷凍機300を停止させる(ステップS141)。そして、運転制御部192は、冷凍機プラント本体200の制御を終了する(ステップS142)。
 ステップS142の後、図4の処理を終了する。
Then, the operation control unit 192 waits for elapse of t2 time (step S112). Then, the operation control unit 192 determines whether an operation end operation has been performed (step S131). The operation end operation here is a user operation that instructs the end of the operation of the heat source system 1.
When it determines with driving | running | working completion | finish operation not being performed (step S131: NO), it returns to step S104.
On the other hand, when it determines with operation completion | finish operation having been performed (step S131: YES), the operation control part 192 stops the turbo refrigerator 300 (step S141). And the operation control part 192 complete | finishes control of the refrigerator plant main body 200 (step S142).
After step S142, the process of FIG. 4 ends.
 一方、ステップS104で、運転モードが通常モードであると判定した場合(ステップS104:通常モード)、運転制御部192は通常運転制御を行う(ステップS121)。通常運転制御では、運転制御部192は、負荷側復路W22から熱交換用経路W23へ分岐する冷水の流量が0になるように熱負荷側三方弁630を制御することで熱交換器500を停止させる。
 そして、運転制御部192は、t2時間の経過を待ち受ける(ステップS122)。ステップS122の後、ステップS131へ遷移する。
On the other hand, when it is determined in step S104 that the operation mode is the normal mode (step S104: normal mode), the operation control unit 192 performs normal operation control (step S121). In the normal operation control, the operation control unit 192 stops the heat exchanger 500 by controlling the heat load side three-way valve 630 so that the flow rate of the cold water branched from the load side return path W22 to the heat exchange path W23 becomes zero. Let
Then, the operation control unit 192 waits for elapse of t2 time (step S122). After step S122, the process proceeds to step S131.
 以上のように、熱交換用経路W23が負荷側復路W22に設けられ、熱交換器500は、熱交換用経路W23と冷却塔側往路W11とを熱交換させる。また、熱負荷側三方弁630は、熱交換用経路W23の流通量を調整可能である。
 このように、熱源システム1では熱交換器500が熱交換用経路W23と冷却塔側往路W11とを熱交換させるので、冷却水が冷却塔410を経由した後に熱交換によって温度変化することはない。この点で、熱源システム1では冷却水の温度制御を比較的簡単に行うことができる。従って、熱源システム1では、熱負荷610が要求する冷水量が少ない場合でもターボ冷凍機300の運転を継続することができ、かつ、冷却水の温度制御を比較的簡単に行うことができる。
As described above, the heat exchange path W23 is provided in the load side return path W22, and the heat exchanger 500 exchanges heat between the heat exchange path W23 and the cooling tower side forward path W11. Further, the heat load side three-way valve 630 can adjust the flow rate of the heat exchange path W23.
Thus, in the heat source system 1, the heat exchanger 500 exchanges heat between the heat exchange path W23 and the cooling tower side forward path W11, so that the temperature of the cooling water does not change due to heat exchange after passing through the cooling tower 410. . In this respect, the heat source system 1 can relatively easily control the temperature of the cooling water. Therefore, in the heat source system 1, the operation of the turbo chiller 300 can be continued even when the amount of cold water required by the heat load 610 is small, and the temperature control of the cooling water can be performed relatively easily.
 また、冷却塔バイパス経路W13が冷却塔側往路W11と冷却塔側復路W12とを接続し、冷却塔側三方弁430は、冷却塔バイパス経路W13の流通量を調整可能である。熱交換器500は、冷却塔側往路W11のうち、冷却塔バイパス経路W13よりもターボ冷凍機300側(冷却水の経路の上流側)に配置されている。
 これにより、冷却水は熱交換器500での熱交換後に冷却塔側三方弁430を流れることになる。このため、冷却塔側三方弁430を通過した冷却水が凝縮器340に到達する前に熱交換器500を経由して温度変化することは無い。従って、制御部190が、冷却塔側三方弁430における冷却水の温度に基づいて冷却水のバイパス量を計算する際、熱交換器500による冷却水の温度変化を考慮する必要が無い。この点で、制御部190が冷却水のバイパス量を計算する負荷の増加を回避することができる。
 また、冷却水が熱交換器500で冷水と熱交換して冷却される点で、冷水を有効活用することができる。
Further, the cooling tower bypass path W13 connects the cooling tower side forward path W11 and the cooling tower side return path W12, and the cooling tower side three-way valve 430 can adjust the flow rate of the cooling tower bypass path W13. The heat exchanger 500 is arranged on the turbo refrigerator 300 side (upstream side of the cooling water path) of the cooling tower side forward path W11 with respect to the cooling tower bypass path W13.
Thus, the cooling water flows through the cooling tower side three-way valve 430 after heat exchange in the heat exchanger 500. For this reason, the cooling water that has passed through the cooling tower side three-way valve 430 does not change in temperature via the heat exchanger 500 before reaching the condenser 340. Therefore, when the control unit 190 calculates the bypass amount of the cooling water based on the temperature of the cooling water in the cooling tower side three-way valve 430, it is not necessary to consider the temperature change of the cooling water by the heat exchanger 500. In this respect, it is possible to avoid an increase in load for the control unit 190 to calculate the bypass amount of the cooling water.
In addition, the cooling water can be effectively utilized in that it is cooled by exchanging heat with the cooling water in the heat exchanger 500.
 また、負荷判定部191は、熱負荷610への冷水供給の負荷が負荷下限値未満か否かを判定する。運転制御部192は、負荷判定部191が、熱負荷610への冷水供給の負荷が負荷下限値未満であると判定した場合、熱負荷側三方弁630を制御して熱交換器500に熱交換を行わせる。
 これにより、熱負荷610が要求する冷水量が少ない場合でもターボ冷凍機300の運転を継続することができる。かつ、熱負荷610への冷水供給の負荷が負荷下限値以上の場合は熱交換を停止することができる点で、ターボ冷凍機300を効率よく運転することができる。
Moreover, the load determination part 191 determines whether the load of the cold water supply to the heat load 610 is less than a load lower limit value. When the load determination unit 191 determines that the load of the cold water supply to the heat load 610 is less than the load lower limit value, the operation control unit 192 controls the heat load side three-way valve 630 to exchange heat with the heat exchanger 500. To do.
Thereby, the operation of the turbo chiller 300 can be continued even when the amount of cold water required by the heat load 610 is small. And when the load of the cold water supply to the heat load 610 is more than a load lower limit, the heat exchanger can be stopped, and the turbo chiller 300 can be operated efficiently.
 なお、図2の構成例では、熱交換器500への流量調整用に熱負荷側三方弁630を負荷側復路W22に設けたが、熱交換器500への流量調整用の弁を冷却塔側往路W11側に設けるようにしてもよい。図5を参照して、この点について説明する。
 図5は、冷凍機プラント本体200の装置構成のもう1つの例を示す概略構成図である。図5の例で、冷凍機プラント本体200は、熱交換用三方弁240と、ターボ冷凍機300と、冷却塔410と、冷却水ポンプ420と、冷却塔側三方弁430と、熱交換器500と、冷水ポンプ620と、往路側温度センサ711と、復路側温度センサ712と、流量センサ721とを備える。ターボ冷凍機300は、蒸発器310と、蒸発器ポンプ320と、ターボ圧縮機330と、凝縮器340と、冷媒ポンプ350と、膨張弁360とを備える。
 また、冷凍機プラント本体200は熱負荷610に接続されている。
2, the heat load side three-way valve 630 is provided in the load side return path W22 for adjusting the flow rate to the heat exchanger 500, but the flow rate adjusting valve to the heat exchanger 500 is provided on the cooling tower side. It may be provided on the outward path W11 side. This point will be described with reference to FIG.
FIG. 5 is a schematic configuration diagram illustrating another example of the apparatus configuration of the refrigerator plant main body 200. In the example of FIG. 5, the refrigerator plant main body 200 includes a heat exchange three-way valve 240, a turbo refrigerator 300, a cooling tower 410, a cooling water pump 420, a cooling tower side three-way valve 430, and a heat exchanger 500. And a cold water pump 620, a forward side temperature sensor 711, a return side temperature sensor 712, and a flow rate sensor 721. The turbo refrigerator 300 includes an evaporator 310, an evaporator pump 320, a turbo compressor 330, a condenser 340, a refrigerant pump 350, and an expansion valve 360.
The refrigerator plant body 200 is connected to the heat load 610.
 図2の例では熱交換器500が冷却塔側往路W11に設けられていたのに対し、図5の例では熱交換器500が負荷側復路W22に設けられている。
 また、図2の例では負荷側復路W22に熱負荷側三方弁630が設けられ、熱負荷側三方弁630と熱交換器500とが熱交換用経路W23で接続されていたのに対し、図5の例では冷却塔側往路W11に熱交換用三方弁240が設けられ、熱交換用三方弁240と熱交換器500とが熱交換用経路W14で接続されている。それ以外の点は、図2の場合と同様である。
In the example of FIG. 2, the heat exchanger 500 is provided in the cooling tower side forward path W11, whereas in the example of FIG. 5, the heat exchanger 500 is provided in the load side return path W22.
In the example of FIG. 2, the heat load side three-way valve 630 is provided in the load side return path W22, and the heat load side three way valve 630 and the heat exchanger 500 are connected by the heat exchange path W23. In the example of 5, the heat exchange three-way valve 240 is provided in the cooling tower side forward path W11, and the heat exchange three-way valve 240 and the heat exchanger 500 are connected by the heat exchange path W14. The other points are the same as in the case of FIG.
 図5の例で、熱交換用三方弁240は、熱交換用三方弁の例に該当し、冷却塔側往路W11から熱交換用経路W14へ分岐する冷却水の量を調整する。
 また、熱交換用三方弁240は、冷却塔側往路W11のうち冷却塔側三方弁430よりも上流側に設けられている。冷却塔側往路W11のうち冷却塔側三方弁430よりも上流側は、ターボ冷凍機300から見て冷却塔側三方弁430よりもターボ冷凍機300に近い側である。
In the example of FIG. 5, the heat exchange three-way valve 240 corresponds to an example of a heat exchange three-way valve, and adjusts the amount of cooling water branched from the cooling tower side forward path W11 to the heat exchange path W14.
The heat exchange three-way valve 240 is provided upstream of the cooling tower side three-way valve 430 in the cooling tower side forward path W11. In the cooling tower side forward path W11, the upstream side of the cooling tower side three-way valve 430 is closer to the turbo refrigerator 300 than the cooling tower side three way valve 430 when viewed from the turbo refrigerator 300.
 以上のように、熱交換用経路W14が冷却塔側往路W11に設けられ、熱交換器500は、熱交換用経路W23と負荷側復路W22とを熱交換させる。また、熱交換用三方弁240は、熱交換用経路W14の流通量を調整可能である。
 このように、熱源システム1では熱交換器500が熱交換用経路W14と負荷側復路W22とを熱交換させ、熱交換用経路W14が冷却塔側往路W11に設けられているので、冷却水が冷却塔410を経由した後に熱交換によって温度変化することはない。この点で、熱源システム1では冷却水の温度制御を比較的簡単に行うことができる。従って、熱源システム1では、熱負荷610が要求する冷水量が少ない場合でもターボ冷凍機300の運転を継続することができ、かつ、冷却水の温度制御を比較的簡単に行うことができる。
As described above, the heat exchange path W14 is provided in the cooling tower side forward path W11, and the heat exchanger 500 exchanges heat between the heat exchange path W23 and the load side return path W22. Further, the heat exchange three-way valve 240 can adjust the flow rate of the heat exchange path W14.
Thus, in the heat source system 1, the heat exchanger 500 exchanges heat between the heat exchange path W14 and the load side return path W22, and the heat exchange path W14 is provided in the cooling tower side forward path W11. There is no change in temperature due to heat exchange after passing through the cooling tower 410. In this respect, the heat source system 1 can relatively easily control the temperature of the cooling water. Therefore, in the heat source system 1, the operation of the turbo chiller 300 can be continued even when the amount of cold water required by the heat load 610 is small, and the temperature control of the cooling water can be performed relatively easily.
 また、熱交換用経路W14は冷却塔側往路W11のうち冷却塔バイパス経路W13よりもターボ冷凍機300側(冷却水の経路の上流側)に設けられている。
 これにより、熱交換用経路W14へ分岐した冷却水は熱交換器500での熱交換後に冷却塔側三方弁430を流れることになる。このため、冷却塔側三方弁430を通過した冷却水が凝縮器340に到達する前に熱交換器500を経由して温度変化することは無い。従って、制御部190が、冷却塔側三方弁430における冷却水の温度に基づいて冷却水のバイパス量を計算する際、熱交換器500による冷却水の温度変化を考慮する必要が無い。この点で、制御部190が冷却水のバイパス量を計算する負荷の増加を回避することができる。
 また、冷却水が熱交換器500で冷水と熱交換して冷却される点で、冷水を有効活用することができる。
Further, the heat exchanging path W14 is provided on the turbo chiller 300 side (upstream side of the cooling water path) with respect to the cooling tower bypass path W13 in the cooling tower side forward path W11.
Thereby, the cooling water branched to the heat exchange path W <b> 14 flows through the cooling tower side three-way valve 430 after heat exchange in the heat exchanger 500. For this reason, the cooling water that has passed through the cooling tower side three-way valve 430 does not change in temperature via the heat exchanger 500 before reaching the condenser 340. Therefore, when the control unit 190 calculates the bypass amount of the cooling water based on the temperature of the cooling water in the cooling tower side three-way valve 430, it is not necessary to consider the temperature change of the cooling water by the heat exchanger 500. In this respect, it is possible to avoid an increase in load for the control unit 190 to calculate the bypass amount of the cooling water.
In addition, the cooling water can be effectively utilized in that it is cooled by exchanging heat with the cooling water in the heat exchanger 500.
 なお、制御部190の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
It should be noted that a program for realizing all or part of the functions of the control unit 190 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. You may perform the process of. Here, the “computer system” includes an OS and hardware such as peripheral devices.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention.
 本発明の実施形態は、熱源機と、前記熱源機に接続された冷却塔側往路及び冷却塔側復路と、前記熱源機に接続された負荷側往路及び負荷側復路と、前記負荷側復路及び前記冷却塔側往路のうちいずれか一方に設けられた熱交換用経路と、前記熱交換用経路と、前記負荷側復路及び前記冷却塔側往路のうち他方とを熱交換させる熱交換器と、前記熱交換用経路の流通量を調整可能な熱交換用調整弁と、を備える熱源システムに関する。
 この実施形態によれば、熱負荷が要求する冷熱量が少ない場合でも熱源機の運転を継続することができ、かつ、冷却水の温度制御を比較的簡単に行うことができる。
Embodiments of the present invention include a heat source unit, a cooling tower side outbound path and a cooling tower side return path connected to the heat source unit, a load side outbound path and a load side return path connected to the heat source unit, and the load side return path and A heat exchanger provided in any one of the cooling tower side outbound path, the heat exchange path, and a heat exchanger for exchanging heat between the load side return path and the cooling tower side outbound path, The present invention relates to a heat source system comprising: a heat exchange adjustment valve capable of adjusting a flow rate of the heat exchange path.
According to this embodiment, the operation of the heat source device can be continued even when the amount of cooling required by the heat load is small, and the temperature control of the cooling water can be performed relatively easily.
 1 熱源システム
 100 制御装置
 110 通信部
 180 記憶部
 190 制御部
 191 負荷判定部
 192 運転制御部
 200 冷凍機プラント本体
 240 熱交換用三方弁
 300 ターボ冷凍機
 310 蒸発器
 320 蒸発器ポンプ
 330 ターボ圧縮機
 340 凝縮器
 350 冷媒ポンプ
 360 膨張弁
 410 冷却塔
 420 冷却水ポンプ
 430 冷却塔側三方弁
 500 熱交換器
 610 熱負荷
 620 冷水ポンプ
 630 熱負荷側三方弁
 711 往路側温度センサ
 712 復路側温度センサ
 721 流量センサ
 W11 冷却塔側往路
 W12 冷却塔側復路
 W13 冷却塔バイパス経路
 W14、W23 熱交換用経路
 W21 負荷側往路
 W22 負荷側復路
 W31 冷媒第一経路
 W32 冷媒第二経路
 W33 冷媒第三経路
 W34 冷媒第四経路
DESCRIPTION OF SYMBOLS 1 Heat source system 100 Control apparatus 110 Communication part 180 Storage part 190 Control part 191 Load determination part 192 Operation control part 200 Refrigerator plant main body 240 Three-way valve for heat exchange 300 Turbo chiller 310 Evaporator 320 Evaporator pump 330 Turbo compressor 340 Condenser 350 Refrigerant pump 360 Expansion valve 410 Cooling tower 420 Cooling water pump 430 Cooling tower side three-way valve 500 Heat exchanger 610 Heat load 620 Chilled water pump 630 Heat load side three-way valve 711 Outward side temperature sensor 712 Return side temperature sensor 721 Flow rate sensor W11 Cooling tower side outgoing path W12 Cooling tower side return path W13 Cooling tower bypass path W14, W23 Heat exchange path W21 Load side outgoing path W22 Load side return path W31 Refrigerant first path W32 Refrigerant second path W33 Refrigerant third path W34 Refrigerant fourth path

Claims (7)

  1.  熱源機と、
     前記熱源機に接続された冷却塔側往路及び冷却塔側復路と、
     前記熱源機に接続された負荷側往路及び負荷側復路と、
     前記負荷側復路及び前記冷却塔側往路のうちいずれか一方に設けられた熱交換用経路と、
     前記熱交換用経路と、前記負荷側復路及び前記冷却塔側往路のうち他方とを熱交換させる熱交換器と、
     前記熱交換用経路の流通量を調整可能な熱交換用調整弁と、
     を備える熱源システム。
    A heat source machine,
    A cooling tower side forward path and a cooling tower side return path connected to the heat source machine,
    A load-side outward path and a load-side return path connected to the heat source unit;
    A heat exchange path provided in one of the load-side return path and the cooling tower-side outbound path;
    A heat exchanger for exchanging heat between the heat exchanging path and the other of the load-side return path and the cooling tower-side outbound path;
    A heat exchange regulating valve capable of adjusting the flow rate of the heat exchange path;
    A heat source system comprising:
  2.  前記冷却塔側往路と前記冷却塔側復路とを接続する冷却塔バイパス経路と、
     前記冷却塔バイパス経路の流通量を調整可能な冷却塔バイパス弁と、
     を備え、
     前記熱交換用経路は前記負荷側復路に設けられており、
     前記冷却塔側往路のうち前記冷却塔バイパス経路よりも前記熱源機側に前記熱交換器が配置されている、
     請求項1に記載の熱源システム。
    A cooling tower bypass path connecting the cooling tower side forward path and the cooling tower side return path;
    A cooling tower bypass valve capable of adjusting the flow rate of the cooling tower bypass path;
    With
    The heat exchange path is provided in the load-side return path,
    The heat exchanger is disposed closer to the heat source unit than the cooling tower bypass path in the cooling tower side forward path,
    The heat source system according to claim 1.
  3.  前記冷却塔側往路と前記冷却塔側復路とを接続する冷却塔バイパス経路と、
     前記冷却塔バイパス経路の流通量を調整可能な冷却塔バイパス弁と、
     を備え、
     前記熱交換用経路は前記冷却塔側往路のうち前記冷却塔バイパス経路よりも前記熱源機側に設けられている、
     請求項1に記載の熱源システム。
    A cooling tower bypass path connecting the cooling tower side forward path and the cooling tower side return path;
    A cooling tower bypass valve capable of adjusting the flow rate of the cooling tower bypass path;
    With
    The heat exchanging path is provided on the heat source unit side of the cooling tower side outgoing path than the cooling tower bypass path.
    The heat source system according to claim 1.
  4.  前記熱源機からの冷熱供給の負荷が負荷下限値未満か否かを判定する負荷判定部と、前記負荷判定部が、前記熱源機からの冷熱供給の負荷が前記負荷下限値未満であると判定した場合、前記熱交換用調整弁を制御して前記熱交換器に熱交換を行わせる運転制御部と、
     を備える請求項1から3のいずれか一項に記載の熱源システム。
    A load determination unit that determines whether or not a load of cold supply from the heat source unit is less than a load lower limit value, and the load determination unit determines that the load of cold supply from the heat source unit is less than the load lower limit value An operation control unit that controls the heat exchange regulating valve to cause the heat exchanger to perform heat exchange;
    The heat source system according to any one of claims 1 to 3, further comprising:
  5.  熱源機と、
     前記熱源機に接続された冷却塔側往路及び冷却塔側復路と、
     前記熱源機に接続された負荷側往路及び負荷側復路と、
     前記負荷側復路及び前記冷却塔側往路のうちいずれか一方に設けられた熱交換用経路と、
     前記熱交換用経路と、前記負荷側復路及び前記冷却塔側往路のうち他方とを熱交換させる熱交換器と、
     前記熱交換用経路の流通量を調整可能な熱交換用調整弁と、
     を備える熱源システムを制御する制御装置であって、
     前記熱源機の負荷が負荷下限値未満か否かを判定する負荷判定部と、
     前記負荷判定部が、前記熱源機の負荷が前記負荷下限値未満であると判定した場合、前記熱交換用調整弁を制御して前記熱交換器に熱交換を行わせる運転制御部と、
     を備える制御装置。
    A heat source machine,
    A cooling tower side forward path and a cooling tower side return path connected to the heat source machine,
    A load-side outward path and a load-side return path connected to the heat source unit;
    A heat exchange path provided in one of the load-side return path and the cooling tower-side outbound path;
    A heat exchanger for exchanging heat between the heat exchanging path and the other of the load-side return path and the cooling tower-side outbound path;
    A heat exchange regulating valve capable of adjusting the flow rate of the heat exchange path;
    A control device for controlling a heat source system comprising:
    A load determination unit for determining whether the load of the heat source unit is less than a load lower limit value;
    When the load determination unit determines that the load of the heat source unit is less than the load lower limit value, an operation control unit that controls the heat exchange adjustment valve to cause the heat exchanger to perform heat exchange;
    A control device comprising:
  6.  熱源機と、前記熱源機に接続された冷却塔側往路及び冷却塔側復路と、前記熱源機に接続された負荷側往路及び負荷側復路と、前記負荷側復路及び前記冷却塔側往路のうちいずれか一方に設けられた熱交換用経路と、前記熱交換用経路と前記負荷側復路及び前記冷却塔側往路のうち他方とを熱交換させる熱交換器と、前記熱交換用経路の流通量を調整可能な熱交換用調整弁と、を備える熱源システムの、前記熱源機の負荷が負荷下限値未満か否かを判定し、
     前記熱源機の負荷が前記負荷下限値未満であると判定した場合、前記熱交換用調整弁を制御して前記熱交換器に熱交換を行わせる、
     ことを含む制御方法。
    Among the heat source unit, the cooling tower side outbound path and the cooling tower side return path connected to the heat source unit, the load side outbound path and the load side return path connected to the heat source unit, the load side return path and the cooling tower side outbound path A heat exchange path provided in any one of the above, a heat exchanger for exchanging heat between the heat exchange path, the load side return path, and the cooling tower side forward path, and the amount of circulation of the heat exchange path A heat exchange control valve capable of adjusting the heat source, and determining whether or not the load of the heat source machine is less than a load lower limit value,
    When it is determined that the load of the heat source device is less than the load lower limit value, the heat exchanger is controlled by controlling the heat exchange regulating valve,
    A control method comprising:
  7.  熱源機と、前記熱源機に接続された冷却塔側往路及び冷却塔側復路と、前記熱源機に接続された負荷側往路及び負荷側復路と、前記負荷側復路及び前記冷却塔側往路のうちいずれか一方に設けられた熱交換用経路と、前記熱交換用経路と前記負荷側復路及び前記冷却塔側往路のうち他方とを熱交換させる熱交換器と、前記熱交換用経路の流通量を調整可能な熱交換用調整弁と、を備える熱源システムの、前記熱源機の負荷を制御するコンピュータに、
     前記熱源機の負荷が、負荷下限値未満か否かを判定させ、
     前記熱源機の負荷が前記負荷下限値未満であると判定した場合、前記熱交換用調整弁を制御して前記熱交換器に熱交換を行わせる、
     ためのプログラム。
    Among the heat source unit, the cooling tower side outbound path and the cooling tower side return path connected to the heat source unit, the load side outbound path and the load side return path connected to the heat source unit, the load side return path and the cooling tower side outbound path A heat exchange path provided in any one of the above, a heat exchanger for exchanging heat between the heat exchange path, the load side return path, and the cooling tower side forward path, and the amount of circulation of the heat exchange path A computer for controlling the load of the heat source unit of a heat source system comprising:
    Whether the load of the heat source machine is less than a load lower limit value,
    When it is determined that the load of the heat source device is less than the load lower limit value, the heat exchanger is controlled by controlling the heat exchange regulating valve,
    Program for.
PCT/JP2017/044061 2016-12-07 2017-12-07 Heat source system, control device, control method, and program WO2018105702A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/467,011 US20190301777A1 (en) 2016-12-07 2017-12-07 Heat source system, control device, control method, and program
CN201780075444.3A CN110036248A (en) 2016-12-07 2017-12-07 Heat source system, control device, control method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016237379A JP6719370B2 (en) 2016-12-07 2016-12-07 Heat source system, control device, control method, and program
JP2016-237379 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018105702A1 true WO2018105702A1 (en) 2018-06-14

Family

ID=62491864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044061 WO2018105702A1 (en) 2016-12-07 2017-12-07 Heat source system, control device, control method, and program

Country Status (4)

Country Link
US (1) US20190301777A1 (en)
JP (1) JP6719370B2 (en)
CN (1) CN110036248A (en)
WO (1) WO2018105702A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019456022B2 (en) * 2019-07-09 2023-10-19 Nec Corporation Cooling system
DE102020110357A1 (en) 2020-04-16 2021-10-21 Wolfram Ungermann Systemkälte GmbH & Co. KG Method for controlling a hybrid cooling system as well as a hybrid cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280386A (en) * 1994-04-11 1995-10-27 Toshiba Corp Heat source apparatus system
JP2010085010A (en) * 2008-09-30 2010-04-15 Hitachi Plant Technologies Ltd Air conditioning system
JP2012132650A (en) * 2010-12-24 2012-07-12 Ebara Corp Supercritical cycle heat pump device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202431B1 (en) * 1999-01-15 2001-03-20 York International Corporation Adaptive hot gas bypass control for centrifugal chillers
US6532754B2 (en) * 2001-04-25 2003-03-18 American Standard International Inc. Method of optimizing and rating a variable speed chiller for operation at part load
CN1247945C (en) * 2003-07-08 2006-03-29 浙江大学 Low temperature heat source heat pump system and its capacity regulating method
JP5777929B2 (en) * 2011-04-22 2015-09-09 株式会社日立製作所 Operation control system for cold source equipment
CN103913005B (en) * 2013-01-09 2016-05-11 美的集团股份有限公司 The air-conditioning of refrigeration system and control method thereof and this refrigeration system of tool
CN204854097U (en) * 2015-07-16 2015-12-09 上海出入境检验检疫局机电产品检测技术中心 Water -cooled cooling water set test system
CN205079492U (en) * 2015-11-02 2016-03-09 艾默生网络能源有限公司 Air conditioning system
CN205425322U (en) * 2015-12-15 2016-08-03 湖南艾迪希网络能源有限公司 Multisource heat pipe economizer system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280386A (en) * 1994-04-11 1995-10-27 Toshiba Corp Heat source apparatus system
JP2010085010A (en) * 2008-09-30 2010-04-15 Hitachi Plant Technologies Ltd Air conditioning system
JP2012132650A (en) * 2010-12-24 2012-07-12 Ebara Corp Supercritical cycle heat pump device

Also Published As

Publication number Publication date
JP2018091588A (en) 2018-06-14
JP6719370B2 (en) 2020-07-08
US20190301777A1 (en) 2019-10-03
CN110036248A (en) 2019-07-19

Similar Documents

Publication Publication Date Title
US20200158356A1 (en) Heat source system and control method therefor
JP5514787B2 (en) Environmental test equipment
US10197318B2 (en) Chilling machine
WO2018105702A1 (en) Heat source system, control device, control method, and program
JP2012159236A (en) System and method of exhaust heat recovery
US20130291575A1 (en) Cooling system and method for operating same
KR20100063680A (en) A method and system for controlling a temperature in an absorption chiller
CN107835922B (en) Number-of-stations control device, energy supply system, number-of-stations control method, and recording medium
JP5088783B2 (en) Energy-saving control operation method and apparatus for vapor absorption refrigerator
JP2008025915A (en) Absorption refrigerator system
RU2368850C2 (en) Control means of cooling loop with internal heat exchanger
JP7213476B2 (en) Absorption chiller
KR101501175B1 (en) Method for controlling temperature in chiller device
JP6262560B2 (en) Air conditioner and control method of air conditioner
JP2010007962A (en) Temperature controller
KR101120251B1 (en) A method and system for rejecting heat in an absorption chiller
JP2010007957A (en) Temperature controller
JP4721783B2 (en) Operation control method of absorption chiller / heater
JP2012245501A (en) Apparatus for dehumidifying compressed air
JP2010007955A (en) Temperature controller
JP5696319B2 (en) Compressed air dehumidifier
JP2016169891A (en) Method and device for setting target temperature difference at inlet and outlet of evaporator in refrigerator and refrigerator control device
KR101438182B1 (en) Attachment for controlling the flow rate and temperature of brine
US11815298B2 (en) Combined air conditioning and water heating via expansion valve regulation
JP2019152347A (en) Chiller system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877725

Country of ref document: EP

Kind code of ref document: A1